Sample records for future targeted therapy

  1. Bioengineering Strategies for Designing Targeted Cancer Therapies

    PubMed Central

    Wen, Xuejun

    2014-01-01

    The goals of bioengineering strategies for targeted cancer therapies are (1) to deliver a high dose of an anticancer drug directly to a cancer tumor, (2) to enhance drug uptake by malignant cells, and (3) to minimize drug uptake by nonmalignant cells. Effective cancer-targeting therapies will require both passive- and active targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Designing a targeted therapy includes the selection and optimization of a nanoparticle delivery vehicle for passive accumulation in tumors, a targeting moiety for active receptor-mediated uptake, and stimuli-responsive polymers for control of drug release. The future direction of cancer targeting is a combinatorial approach, in which targeting therapies are designed to use multiple targeting strategies. The combinatorial approach will enable combination therapy for delivery of multiple drugs and dual ligand targeting to improve targeting specificity. Targeted cancer treatments in development and the new combinatorial approaches show promise for improving targeted anticancer drug delivery and improving treatment outcomes. PMID:23768509

  2. Targeted therapies in gastric cancer and future perspectives.

    PubMed

    Yazici, Ozan; Sendur, M Ali Nahit; Ozdemir, Nuriye; Aksoy, Sercan

    2016-01-14

    Advanced gastric cancer (AGC) is associated with a high mortality rate and, despite multiple new chemotherapy options, the survival rates of patients with AGC remains poor. After the discovery of targeted therapies, research has focused on the new treatment options for AGC. In the last two decades, many targeted molecules were developed against AGC. Currently, two targeted therapy molecules have been approved for patients with AGC. In 2010, trastuzumab was the first molecule shown to improve survival in patients with HER2-positive AGC as part of a first-line combination regimen. In 2014, ramucirumab was the second targeted molecule to improve survival rates and was suggested as treatment for patients with AGC who had progressed after first-line platinum plus fluoropyrimidine with or without anthracycline chemotherapy. Ramucirumab was the first targeted therapy acting as a single agent in patients with advanced gastroesophageal cancers. Although these two molecules were introduced into clinical use, many other promising molecules have been tested in phase I-II trials. It is obvious that in the near future many different targeted therapies will be in use for treatment of AGC. In this review, the current status of targeted therapies in the treatment of AGC and gastroesophageal junction tumors, including HER (2-3) inhibitors, epidermal growth factor receptor inhibitors, tyrosine kinase inhibitors, antiangiogenic agents, c-MET inhibitors, mammalian target of rapamycin inhibitors, agents against other molecular pathways fibroblast growth factor, Claudins, insulin-like growth factor, heat shock proteins, and immunotherapy, will be discussed.

  3. Adjuvant therapy in renal cell carcinoma: does higher risk for recurrence improve the chance for success?

    PubMed

    Figlin, R A; Leibovich, B C; Stewart, G D; Negrier, S

    2018-02-01

    The success of targeted therapies, including inhibitors of the vascular endothelial growth factor pathway or the mammalian target of rapamycin, in the treatment of metastatic renal cell carcinoma led to interest in testing their efficacy in the adjuvant setting. Results from the first trials are now available, with other studies due to report imminently. This review provides an overview of adjuvant targeted therapy in renal cell carcinoma, including interpretation of currently available conflicting data and future direction of research. We discuss the key differences between the completed targeted therapy adjuvant trials, and highlight the importance of accurately identifying patients who are likely to benefit from adjuvant treatment. We also consider reasons why blinded independent radiology review and treatment dose may prove critical for adjuvant treatment success. The implications of using disease-free survival as a surrogate end point for overall survival from the patient perspective and measurement of health benefit have recently been brought into focus and are discussed. Finally, we discuss how the ongoing adjuvant trials with targeted therapies and checkpoint inhibitors may improve our understanding and ability to prevent tumor recurrence after nephrectomy in the future.

  4. Novel medical therapeutics in glioblastomas, including targeted molecular therapies, current and future clinical trials.

    PubMed

    Quant, Eudocia C; Wen, Patrick Y

    2010-08-01

    The prognosis for glioblastoma is poor despite optimal therapy with surgery, radiation, and chemotherapy. New therapies that improve survival and quality of life are needed. Research has increased our understanding of the molecular pathways important for gliomagenesis and disease progression. Novel agents have been developed against these targets, including receptor tyrosine kinases, intracellular signaling molecules, epigenetic abnormalities, and tumor vasculature and microenvironment. This article reviews novel therapies for glioblastoma, with an emphasis on targeted agents. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Update on B-cell targeted therapies for systemic lupus erythematosus.

    PubMed

    Mok, Chi Chiu

    2014-06-01

    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by flares and remission, leading to accrual of organ damage over time as a result of persistent tissue inflammation and treatment-related complications. Novel therapies aiming at better treatment response and fewer adverse effects are being tested in the pipeline. This review summarizes the B-cell abnormalities observed in patients with SLE, and updates recent data on the efficacy and safety of B-cell targeted therapies in the treatment of SLE. The pitfalls of clinical trial design and future directions of the development of SLE therapeutics are discussed. The variability of clinical response to treatment in SLE reflects the clinical and immunological heterogeneity of the disease. The treatment plan for patients with SLE should be individualized with the aim of eradicating disease activity, preventing flares and minimizing treatment-related complications. Despite the disappointment of recent clinical trials, B-cell remains the promising target of future SLE therapies. Results from ongoing clinical trials on B-cell targeted biological agents are eagerly awaited.

  6. Oncogenic drivers, targeted therapies, and acquired resistance in non-small-cell lung cancer.

    PubMed

    Gower, Arjan; Wang, Yisong; Giaccone, Giuseppe

    2014-07-01

    In the past decade, a shift toward targeted therapies in non-small-cell lung cancer following molecular profiling has dramatically changed the way advanced adenocarcinoma is treated. However, tumor cells inevitably acquire resistance to such therapies, circumventing any sustained clinical benefit. As the genomic classification of lung cancer continues to evolve and as the mechanisms of acquired resistance to targeted therapies become elucidated and more improved target-specific drugs come into sight, the future will see more promising results from the clinic through the development of new therapeutic strategies to overcome, or prevent the development of, resistance for lung cancer patients.

  7. Targeted therapy in esophageal cancer.

    PubMed

    Zhang, Lei; Ma, Jiaojiao; Han, Yu; Liu, Jinqiang; Zhou, Wei; Hong, Liu; Fan, Daiming

    2016-01-01

    An increasing number of patients are diagnosed with esophageal cancer at an advanced stages, and only a small group of them can benefit from the traditional chemotherapy and radiotherapy. So far, multiple monoclonal antibodies and tyrosine kinase inhibitors have been developed, alone or in combination with traditional therapy, to improve the prognosis of patients with advanced esophageal cancer. This review summarizes the recent advances of targeted therapies against EGFR, HER2, VEGFR and c-MET in esophageal cancer. More clinical trials should be performed to evaluate the efficacy and safety of various targeted therapy regimens. Future basic research should focus on investigating the molecular mechanisms of therapeutic targets in esophageal cancer.

  8. Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives.

    PubMed

    Zhou, Li; Wang, Kui; Li, Qifu; Nice, Edouard C; Zhang, Haiyuan; Huang, Canhua

    2016-01-01

    Cancer is a common disease that is a leading cause of death worldwide. Currently, early detection and novel therapeutic strategies are urgently needed for more effective management of cancer. Importantly, protein profiling using clinical proteomic strategies, with spectacular sensitivity and precision, offer excellent promise for the identification of potential biomarkers that would direct the development of targeted therapeutic anticancer drugs for precision medicine. In particular, clinical sample sources, including tumor tissues and body fluids (blood, feces, urine and saliva), have been widely investigated using modern high-throughput mass spectrometry-based proteomic approaches combined with bioinformatic analysis, to pursue the possibilities of precision medicine for targeted cancer therapy. Discussed in this review are the current advantages and limitations of clinical proteomics, the available strategies of clinical proteomics for the management of precision medicine, as well as the challenges and future perspectives of clinical proteomics-driven precision medicine for targeted cancer therapy.

  9. Present and future molecular testing of lung carcinoma.

    PubMed

    Dacic, Sanja; Nikiforova, Marina N

    2014-03-01

    The rapid development of targeted therapies has tremendously changed clinical management of lung carcinoma patients and set the stage for similar developments in other tumor types. Many studies have been published in the past decade in search for the most acceptable method of assessment for predictors of response to targeted therapies in lung cancer. As a result, several guidelines for molecular testing have been published in a past couple of years. Because of accumulated evidence that targetable drugs show the best efficacy and improved progression survival rates in lung cancer patients whose tumors have a specific genotype, molecular testing for predictors of therapy response has became standard of care. Presently, testing for EGFR mutations and ALK rearrangements in lung adenocarcinoma has been standardized. The landscape of targetable genomic alterations in lung carcinoma is expanding, but none of other potentially targetable biomarkers have been standardized outside of clinical trials. This review will summarize current practice of molecular testing. Future methods in molecular testing of lung carcinoma will be briefly reviewed.

  10. Particle therapy for noncancer diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bert, Christoph; Engenhart-Cabillic, Rita; Durante, Marco

    2012-04-15

    Radiation therapy using high-energy charged particles is generally acknowledged as a powerful new technique in cancer treatment. However, particle therapy in oncology is still controversial, specifically because it is unclear whether the putative clinical advantages justify the high additional costs. However, particle therapy can find important applications in the management of noncancer diseases, especially in radiosurgery. Extension to other diseases and targets (both cranial and extracranial) may widen the applications of the technique and decrease the cost/benefit ratio of the accelerator facilities. Future challenges in this field include the use of different particles and energies, motion management in particle bodymore » radiotherapy and extension to new targets currently treated by catheter ablation (atrial fibrillation and renal denervation) or stereotactic radiation therapy (trigeminal neuralgia, epilepsy, and macular degeneration). Particle body radiosurgery could be a future key application of accelerator-based particle therapy facilities in 10 years from today.« less

  11. Cytoreductive Surgery in the Management of Renal Tumours: Rationale, Current Evidence and Future Perspectives.

    PubMed

    Khochikar, Makarand V

    2017-03-01

    Renal cell carcinoma accounts for 3% of adult solid malignant tumours. Approximately 25% of the patients present with metastatic disease at presentation. In the era of immunotherapy (interferon alpha-2b and interleukin-2), studies showed significant survival benefit with cytoreductive nephrectomy (CRN) followed by interferon alpha-2b than interferon alpha 2-b alone. Introduction of targeted therapies (vascular endothelial growth factor receptor-tyrosine kinase inhibitors, mammalian target of rapamycin inhibitors) in 2005 generated a great interest in the management of metastatic renal cell carcinoma (mRCC) as these drugs exhibited tumour shrinkage in the primary tumour as well as in the metastatic site/s. Though there is no level 1 evidence, many studies have shown the usefulness of cytoreductive nephrectomy along with targeted therapy as against to targeted therapy alone. This review is aimed at the rationale behind the cytoreductive nephrectomy in mRCC, the current evidence and what is in store for the future. A detailed search on the management of mRCC was carried out on MEDLINE, Embase, CANCERLIT and Cochrane Library databases using the key words "cytoreductive nephrectomy", "immunotherapy" and "targeted therapy" since 1980 till 2015. Original articles, review articles, monograms, book chapters on metastatic renal cancer and textbooks on urologic oncology, oncology and urology were reviewed. Various international guidelines on this issue were also studied. An identical search was performed using the American Society of Clinical Oncology Abstract database. Trials in the progress or recently completed that were relevant to this paper were identified through clinicaltrials.gov. The latest information for new articles ahead of publication was last accessed in November 2015. CRN has remained an integral part to the management of metastatic renal cell carcinoma mainly for the patients with good performance status, life expectancy of more than 12 months and in the absence of adverse prognostic factors. It had shown measurable survival benefit in the era of immunotherapy (CRN + immunotherapy vs. immunotherapy alone). In the era of targeted therapy, many studies have shown significant survival benefit with CRN + targeted therapy. However, there is no clear level 1 evidence to support this. The ongoing trials (CARMENA and European Organisation for Research and Treatment of Cancer SURTIME) would perhaps guide us in the way in which we should manage mRCC disease in the future. Maybe we may find some answers on the issues of the effectiveness of targeted therapy, the timing of CRN and sequencing these treatment arms once the results of these ongoing and future trials are through.

  12. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly and Cushing Disease Paradigms.

    PubMed

    Mooney, Michael A; Simon, Elias D; Little, Andrew S

    2016-01-01

    The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment.

  13. [Targeted therapies in hepatocellular carcinomas: recent results and future development].

    PubMed

    Marijon, H; Faivre, S; Raymond, E

    2009-05-01

    Hepatocellular carcinoma (HCC) is one of the 5th most common cancers around the world with a limited number of systemic therapeutic options. Cytotoxic agents, hormonotherapy and immunotherapy have failed to demonstrate benefit compared to best supportive care in patients with advanced HCC. The recent development of targeted therapies provided hope for the treatment of advanced HCC. We reviewed phases II-III trials presented in 2007 and 2008. Results are promising with a clinical benefit reported with molecular therapies targeting EGF/EGFR and VEGF/VEGFR pathways.

  14. Future Targets for Female Sexual Dysfunction.

    PubMed

    Farmer, Melissa; Yoon, Hana; Goldstein, Irwin

    2016-08-01

    Female sexual function reflects a dynamic interplay of central and peripheral nervous, vascular, and endocrine systems. The primary challenge in the development of novel treatments for female sexual dysfunction is the identification and targeted modulation of excitatory sexual circuits using pharmacologic treatments that facilitate the synthesis, release, and/or receptor binding of neurochemicals, peptides, and hormones that promote female sexual function. To develop an evidence-based state-of-the-art consensus report that critically integrates current knowledge of the therapeutic potential for known molecular and cellular targets to facilitate the physiologic processes underlying female sexual function. State-of-the-art review representing the opinions of international experts developed in a consensus process during a 1-year period. Expert opinion was established by grading the evidence-based medical literature, intensive internal committee discussion, public presentation, and debate. Scientific investigation is urgently needed to expand knowledge and foster development of future treatments that maintain genital tissue integrity, enhance genital physiologic responsiveness, and optimize positive subjective appraisal of internal and external sexual cues. This article critically condenses the current knowledge of therapeutic manipulation of molecular and cellular targets within biological systems responsible for female sexual physiologic function. Future treatment targets include pharmacologic modulation of emotional learning circuits, restoration of normal tactile sensation, growth factor therapy, gene therapy, stem cell-based therapies, and regenerative medicine. Concurrent use of centrally and peripherally acting therapies could optimize treatment response. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  15. Psychological Therapies for Auditory Hallucinations (Voices): Current Status and Key Directions for Future Research

    PubMed Central

    Thomas, Neil; Hayward, Mark; Peters, Emmanuelle; van der Gaag, Mark; Bentall, Richard P.; Jenner, Jack; Strauss, Clara; Sommer, Iris E.; Johns, Louise C.; Varese, Filippo; García-Montes, José Manuel; Waters, Flavie; Dodgson, Guy; McCarthy-Jones, Simon

    2014-01-01

    This report from the International Consortium on Hallucinations Research considers the current status and future directions in research on psychological therapies targeting auditory hallucinations (hearing voices). Therapy approaches have evolved from behavioral and coping-focused interventions, through formulation-driven interventions using methods from cognitive therapy, to a number of contemporary developments. Recent developments include the application of acceptance- and mindfulness-based approaches, and consolidation of methods for working with connections between voices and views of self, others, relationships and personal history. In this article, we discuss the development of therapies for voices and review the empirical findings. This review shows that psychological therapies are broadly effective for people with positive symptoms, but that more research is required to understand the specific application of therapies to voices. Six key research directions are identified: (1) moving beyond the focus on overall efficacy to understand specific therapeutic processes targeting voices, (2) better targeting psychological processes associated with voices such as trauma, cognitive mechanisms, and personal recovery, (3) more focused measurement of the intended outcomes of therapy, (4) understanding individual differences among voice hearers, (5) extending beyond a focus on voices and schizophrenia into other populations and sensory modalities, and (6) shaping interventions for service implementation. PMID:24936081

  16. Driving personalized medicine: capturing maximum net present value and optimal return on investment.

    PubMed

    Roth, Mollie; Keeling, Peter; Smart, Dave

    2010-01-01

    In order for personalized medicine to meet its potential future promise, a closer focus on the work being carried out today and the foundation it will provide for that future is imperative. While big picture perspectives of this still nascent shift in the drug-development process are important, it is more important that today's work on the first wave of targeted therapies is used to build specific benchmarking and financial models against which further such therapies may be more effectively developed. Today's drug-development teams need a robust tool to identify the exact drivers that will ensure the successful launch and rapid adoption of targeted therapies, and financial metrics to determine the appropriate resource levels to power those drivers. This special report will describe one such benchmarking and financial model that is specifically designed for the personalized medicine field and will explain how the use of this or similar models can help to capture the maximum net present value of targeted therapies and help to realize optimal return on investment.

  17. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells

    PubMed Central

    Abbaspour Babaei, Maryam; Kamalidehghan, Behnam; Saleem, Mohammad; Huri, Hasniza Zaman; Ahmadipour, Fatemeh

    2016-01-01

    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence. PMID:27536065

  18. Adjuvant therapy for advanced renal cell carcinoma.

    PubMed

    Meissner, Matthew A; McCormick, Barrett Z; Karam, Jose A; Wood, Christopher G

    2018-07-01

    Locally advanced, non-metastatic renal cell carcinoma (RCC) is conventionally managed with surgery. However, patients are at a high risk of RCC recurrence and have poor survival outcomes. An effective adjuvant systemic treatment is needed to improve on these outcomes. Targeted molecular and immune-based therapies have been investigated, or are under investigation, but their role in this setting remains unclear. Areas covered: A comprehensive search of PubMed and ClinicalTrials.gov was performed for relevant literature. The following topics pertinent to adjuvant therapy in RCC were evaluated: strategies for patient selection, cytokine-based immunotherapy, vaccine therapy, VEGF and non-VEGF targeted molecular agents, and immune checkpoint inhibitors. Expert commentary: Strong evidence for the incorporation of adjuvant therapy in high-risk RCC is lacking. Multiple targeted molecular therapies have been examined with only one approved for use. Genetic and molecular-based prognostic models are needed to determine who may benefit from adjuvant therapy. Developing adjuvant therapy strategies in the future depends on the results of important ongoing trials with immunotherapy and targeted agents.

  19. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  20. Future prospects of therapeutic clinical trials in acute myeloid leukemia

    PubMed Central

    Khan, Maliha; Mansoor, Armaghan-e-Rehman; Kadia, Tapan M

    2017-01-01

    Acute myeloid leukemia (AML) is a markedly heterogeneous hematological malignancy that is most commonly seen in elderly adults. The response to current therapies to AML is quite variable, and very few new drugs have been recently approved for use in AML. This review aims to discuss the issues with current trial design for AML therapies, including trial end points, patient enrollment, cost of drug discovery and patient heterogeneity. We also discuss the future directions in AML therapeutics, including intensification of conventional therapy and new drug delivery mechanisms; targeted agents, including epigenetic therapies, cell cycle regulators, hypomethylating agents and chimeric antigen receptor T-cell therapy; and detail of the possible agents that may be incorporated into the treatment of AML in the future. PMID:27771959

  1. Malignant Brain Tumours in Children : Present and Future Perspectives.

    PubMed

    Rutka, James T

    2018-05-01

    In contrast to many of the malignant tumors that occur in the central nervous system in adults, the management, responses to therapy, and future perspectives of children with malignant lesions of the brain hold considerable promise. Within the past 5 years, remarkable progress has been made with our understanding of the basic biology of the molecular genetics of several pediatric malignant brain tumors including medulloblastoma, ependymoma, atypical teratoid rhabdoid tumour, and high grade glioma/diffuse intrinsic pontine glioma. The recent literature in pediatric neuro-oncology was reviewed, and a summary of the major findings are presented. Meaningful sub-classifications of these tumors have arisen, placing children into discrete categories of disease with requirements for targeted therapy. While the mainstay of therapy these past 30 years has been a combination of central nervous system irradiation and conventional chemotherapy, now with the advent of high resolution genetic mapping, targeted therapies have emerged, and less emphasis is being placed on craniospinal irradiation. In this article, the present and future perspective of pediatric brain malignancy are reviewed in detail. The progress that has been made offers significant hope for the future for patients with these tumours.

  2. Beyond Bevacizumab: An Outlook to New Anti-Angiogenics for the Treatment of Ovarian Cancer.

    PubMed

    Mahner, Sven; Woelber, Linn; Mueller, Volkmar; Witzel, Isabell; Prieske, Katharina; Grimm, Donata; Keller-V Amsberg, Gunhild; Trillsch, Fabian

    2015-01-01

    In addition to the monoclonal vascular endothelial growth factor (VEGF) antibody bevacizumab, several alternative anti-angiogenic treatment strategies for ovarian cancer patients have been evaluated in clinical trials. Apart from targeting extracellular receptors by the antibody aflibercept or the peptibody trebananib, the multikinase inhibitors pazopanib, nintedanib, cediranib, sunitinib, and sorafenib were developed to interfere with VEGF receptors and multiple additional intracellular pathways. Nintedanib and pazopanib significantly improved progression-free survival in two positive phase III trials for first-line therapy. A reliable effect on overall survival could, however, not be observed for any anti-angiogenic first-line therapies so far. In terms of recurrent disease, two positive phase III trials revealed that trebananib and cediranib are effective anti-angiogenic agents for this indication. Patient selection and biomarker guided prediction of response seems to be a central aspect for future studies. Combining anti-angiogenics with other targeted therapies to possibly spare chemotherapy in certain constellations represents another very interesting future perspective for clinical trials. This short review gives an overview of current clinical trials for anti-angiogenic treatment strategies beyond bevacizumab. In this context, possible future perspectives combining anti-angiogenics with other targeted therapies and the need for specific biomarkers predicting response are elucidated.

  3. Cross-talk between EGFR and IL-6 drives oncogenic signaling and offers therapeutic opportunities in cancer.

    PubMed

    Ray, Kriti; Ujvari, Beata; Ramana, Venkata; Donald, John

    2018-04-07

    Epidermal growth factor receptor (EGFR) is a known target in cancer therapy and targeting the receptor has proven to be extremely successful in treating cancers that are dependent on EGFR signaling. To that effect, targeted therapies to EGFR such as Cetuximab, Panitumumab-monoclonal antibodies and Gefitinib, Erlotinib-tyrosine kinase inhibitors have had success in therapeutic scenarios. However, the development of resistance to these drugs makes it necessary to combine anti- EGFR therapies with other inhibitors, so that resistance can be overcome by the targeting of alternate signaling pathways. On the other hand, components of the inflammatory pathway, within and around a tumor, provide a conducive environment for tumor growth by supplying numerous cytokines and chemokines that foster carcinogenesis. Interleukin 6 (IL-6) is one such cytokine that is found to be associated with inflammation-driven cancers and which also plays a crucial role in acquired resistance to anti-EGFR drugs. The EGFR and IL-6 signaling pathways crosstalk in multiple ways, through various mediators and downstream signaling pathways driving resistance and hence co-targeting them has potential for future cancer treatments. Here we provide an overview on the crosstalk between the EGFR and IL-6 pathways, and discuss how co-targeting these two pathways could be a promising combination therapy of the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A New Era for Cancer Target Therapies: Applying Systems Biology and Computer-Aided Drug Design to Cancer Therapies.

    PubMed

    Wong, Yung-Hao; Chiu, Chia-Chiun; Lin, Chih-Lung; Chen, Ting-Shou; Jheng, Bo-Ren; Lee, Yu-Ching; Chen, Jeremy; Chen, Bor-Sen

    In recent years, many systems biology approaches have been used with various cancers. The materials described here can be used to build bases to discover novel cancer therapy targets in connection with computer-aided drug design (CADD). A deeper understanding of the mechanisms of cancer will provide more choices and correct strategies in the development of multiple target drug therapies, which is quite different from the traditional cancer single target therapy. Targeted therapy is one of the most powerful strategies against cancer and can also be applied to other diseases. Due to the large amount of progress in computer hardware and the theories of computational chemistry and physics, CADD has been the main strategy for developing novel drugs for cancer therapy. In contrast to traditional single target therapies, in this review we will emphasize the future direction of the field, i.e., multiple target therapies. Structure-based and ligand-based drug designs are the two main topics of CADD. The former needs both 3D protein structures and ligand structures, while the latter only needs ligand structures. Ordinarily it is estimated to take more than 14 years and 800 million dollars to develop a new drug. Many new CADD software programs and techniques have been developed in recent decades. We conclude with an example where we combined and applied systems biology and CADD to the core networks of four cancers and successfully developed a novel cocktail for drug therapy that treats multiple targets.

  5. Psychological therapies for auditory hallucinations (voices): current status and key directions for future research.

    PubMed

    Thomas, Neil; Hayward, Mark; Peters, Emmanuelle; van der Gaag, Mark; Bentall, Richard P; Jenner, Jack; Strauss, Clara; Sommer, Iris E; Johns, Louise C; Varese, Filippo; García-Montes, José Manuel; Waters, Flavie; Dodgson, Guy; McCarthy-Jones, Simon

    2014-07-01

    This report from the International Consortium on Hallucinations Research considers the current status and future directions in research on psychological therapies targeting auditory hallucinations (hearing voices). Therapy approaches have evolved from behavioral and coping-focused interventions, through formulation-driven interventions using methods from cognitive therapy, to a number of contemporary developments. Recent developments include the application of acceptance- and mindfulness-based approaches, and consolidation of methods for working with connections between voices and views of self, others, relationships and personal history. In this article, we discuss the development of therapies for voices and review the empirical findings. This review shows that psychological therapies are broadly effective for people with positive symptoms, but that more research is required to understand the specific application of therapies to voices. Six key research directions are identified: (1) moving beyond the focus on overall efficacy to understand specific therapeutic processes targeting voices, (2) better targeting psychological processes associated with voices such as trauma, cognitive mechanisms, and personal recovery, (3) more focused measurement of the intended outcomes of therapy, (4) understanding individual differences among voice hearers, (5) extending beyond a focus on voices and schizophrenia into other populations and sensory modalities, and (6) shaping interventions for service implementation. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  6. Molecular Targeted Drugs and Biomarkers in NSCLC, the Evolving Role of Individualized Therapy

    PubMed Central

    Domvri, Kalliopi; Zarogoulidis, Paul; Darwiche, Kaid; Browning, Robert F.; Li, Qiang; Turner, J. Francis; Kioumis, Ioannis; Spyratos, Dionysios; Porpodis, Konstantinos; Papaiwannou, Antonis; Tsiouda, Theodora; Freitag, Lutz; Zarogoulidis, Konstantinos

    2013-01-01

    Lung cancer first line treatment has been directed from the non-specific cytotoxic doublet chemotherapy to the molecular targeted. The major limitation of the targeted therapies still remains the small number of patients positive to gene mutations. Furthermore, the differentiation between second line and maintenance therapy has not been fully clarified and differs in the clinical practice between cancer centers. The authors present a segregation between maintenance treatment and second line and present a possible definition for the term “maintenance” treatment. In addition, cancer cell evolution induces mutations and therefore either targeted therapies or non-specific chemotherapy drugs in many patients become ineffective. In the present work pathways such as epidermal growth factor, anaplastic lymphoma kinase, met proto-oncogene and PI3K are extensively presented and correlated with current chemotherapy treatment. Future, perspectives for targeted treatment are presented based on the current publications and ongoing clinical trials. PMID:24312144

  7. Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanisms and Therapy

    PubMed Central

    Ma, Junli; Zhou, Qihang; Li, Houkai

    2017-01-01

    The gut microbiota plays critical roles in development of obese-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes(T2D), and insulin resistance(IR), highlighting the potential of gut microbiota-targeted therapies in these diseases. There are various ways that gut microbiota can be manipulated, including through use of probiotics, prebiotics, synbiotics, antibiotics, and some active components from herbal medicines. In this review, we review the main roles of gut microbiota in mediating the development of NAFLD, and the advances in gut microbiota-targeted therapies for NAFLD in both the experimental and clinical studies, as well as the conclusions on the prospect of gut microbiota-targeted therapies in the future. PMID:29035308

  8. BCR-ABL PCR testing in chronic myelogenous leukemia: molecular diagnosis for targeted cancer therapy and monitoring.

    PubMed

    Luu, Martin H; Press, Richard D

    2013-09-01

    The use of tyrosine kinase inhibitors (TKIs) to treat chronic myeloid leukemia (CML) represents the paradigm for modern targeted cancer therapy. Importantly, molecular monitoring using BCR-ABL real-time quantitative reverse transcription polymerase chain reaction (RQ-PCR) for assessing treatment efficacy and quantitating minimal residual disease is a major determinate of practical therapeutic decision-making in the long-term management of this now chronic disease. Herein, we present an overview of CML and the use of TKIs for targeted CML therapy, with an emphasis on the role, application and future aspects of PCR-based molecular monitoring.

  9. Genomic Alterations in Advanced Esophageal Cancer May Lead to Subtype-Specific Therapies

    PubMed Central

    Forde, Patrick M.

    2013-01-01

    The development of targeted agents for metastatic esophageal or gastroesophageal junction (GEJ) tumors has been limited when compared with that for other common tumors. To date, the anti-human epidermal growth factor receptor-2 (HER-2) antibody, trastuzumab, in combination with chemotherapy, is the only approved novel agent for these cancers, and its use is limited to the small population of patients whose tumors overexpress HER-2. Despite recent progress in the field, median overall survival remains only 8–12 months for patients with stage IV esophageal or GEJ cancer. In this article, we examine the molecular aberrations thought to drive the development and spread of esophageal cancer and identify promising targets for specific tumor inhibition. Data from clinical studies of targeted agents are reviewed, including epidermal growth factor receptor antibodies, tyrosine kinase inhibitors, HER-2, and vascular endothelial growth factor-directed therapy. Current and future targets include MET, fibroblast growth factor receptor, and immune-based therapies. Evidence from trials to date suggests that molecularly unselected patient cohorts derive minimal benefit from most target-specific agents, suggesting that future collaborative investigation should focus on preselected molecular subgroups of patients with this challenging heterogeneous disease. PMID:23853247

  10. Gene therapy in liver diseases: state-of-the-art and future perspectives.

    PubMed

    Domvri, Kalliopi; Zarogoulidis, Paul; Porpodis, Konstantinos; Koffa, Maria; Lambropoulou, Maria; Kakolyris, Stylianos; Kolios, George; Zarogoulidis, Konstantinos; Chatzaki, Ekaterini

    2012-12-01

    Gene therapy is a fundamentally novel therapeutic approach that involves introducing genetic material into target cells in order to fight or prevent disease. A number of different strategies of gene therapy are tested at experimental and clinical levels, including: a) replacing a mutated gene that causes disease with a healthy copy of the gene, b) inactivating a mutated gene that its improper function causes pathogenesis, c) introducing a new gene coding a therapeutic compound to fight a disease, d) introducing to the target organ an enzyme converting an inactive pro-drug to its cytotoxic metabolite. In gene therapy, the transcriptional machinery of the patient is used to produce the active factor that exerts the intended therapeutic effect, ideally in a permanent, tissue-specific and manageable way. The liver is a major target for gene therapy, presenting inherited metabolic defects of single-gene etiology, but also severe multifactorial pathologies with limited therapeutic options such as hepatocellular carcinoma. The initial promising results from gene therapy strategies in liver diseases were followed by skepticism on the actual clinical value due to specificity, efficacy, toxicity and immune limitations, but are recently re-evaluated due to progress in vector technology and monitoring techniques. The significant amount of experimental data along with the available information from clinical trials are systematically reviewed here and presented per pathological entity. Finally, future perspectives of gene therapy protocols in hepatology are summarized.

  11. Cardiac gene therapy: Recent advances and future directions.

    PubMed

    Mason, Daniel; Chen, Yu-Zhe; Krishnan, Harini Venkata; Sant, Shilpa

    2015-10-10

    Gene therapy has the potential to serve as an adaptable platform technology for treating various diseases. Cardiovascular disease is a major cause of mortality in the developed world and genetic modification is steadily becoming a more plausible method to repair and regenerate heart tissue. Recently, new gene targets to treat cardiovascular disease have been identified and developed into therapies that have shown promise in animal models. Some of these therapies have advanced to clinical testing. Despite these recent successes, several barriers must be overcome for gene therapy to become a widely used treatment of cardiovascular diseases. In this review, we evaluate specific genetic targets that can be exploited to treat cardiovascular diseases, list the important delivery barriers for the gene carriers, assess the most promising methods of delivering the genetic information, and discuss the current status of clinical trials involving gene therapies targeted to the heart. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Neural stimulation for Parkinson's disease: current therapies and future directions.

    PubMed

    Neimat, Joseph S; Hamani, Clement; Lozano, Andres M

    2006-01-01

    Neural stimulation has rapidly become an integral tool in the treatment of Parkinson's disease and other movement disorders. Today it serves as an important adjunct to medical therapy that continues to gain applicability to patients in whom the disease has progressed significantly. Studies have demonstrated efficacy in several deep-brain targets, with prolonged benefit exceeding 5-year follow-up times. Continuing study is teaching us more about the mechanism of deep-brain stimulation effect. New targets, which may treat the disease more successfully, are being examined. In this review, the history of deep-brain stimulation, the rationale for the known targets of stimulation; the clinical evidence demonstrating their benefit and, finally, future perspectives on new treatments that are being investigated and may have an impact on the field are discussed.

  13. Quantitative imaging as cancer biomarker

    NASA Astrophysics Data System (ADS)

    Mankoff, David A.

    2015-03-01

    The ability to assay tumor biologic features and the impact of drugs on tumor biology is fundamental to drug development. Advances in our ability to measure genomics, gene expression, protein expression, and cellular biology have led to a host of new targets for anticancer drug therapy. In translating new drugs into clinical trials and clinical practice, these same assays serve to identify patients most likely to benefit from specific anticancer treatments. As cancer therapy becomes more individualized and targeted, there is an increasing need to characterize tumors and identify therapeutic targets to select therapy most likely to be successful in treating the individual patient's cancer. Thus far assays to identify cancer therapeutic targets or anticancer drug pharmacodynamics have been based upon in vitro assay of tissue or blood samples. Advances in molecular imaging, particularly PET, have led to the ability to perform quantitative non-invasive molecular assays. Imaging has traditionally relied on structural and anatomic features to detect cancer and determine its extent. More recently, imaging has expanded to include the ability to image regional biochemistry and molecular biology, often termed molecular imaging. Molecular imaging can be considered an in vivo assay technique, capable of measuring regional tumor biology without perturbing it. This makes molecular imaging a unique tool for cancer drug development, complementary to traditional assay methods, and a potentially powerful method for guiding targeted therapy in clinical trials and clinical practice. The ability to quantify, in absolute measures, regional in vivo biologic parameters strongly supports the use of molecular imaging as a tool to guide therapy. This review summarizes current and future applications of quantitative molecular imaging as a biomarker for cancer therapy, including the use of imaging to (1) identify patients whose tumors express a specific therapeutic target; (2) determine whether the drug reaches the target; (3) identify an early response to treatment; and (4) predict the impact of therapy on long-term outcomes such as survival. The manuscript reviews basic concepts important in the application of molecular imaging to cancer drug therapy, in general, and will discuss specific examples of studies in humans, and highlight future directions, including ongoing multi-center clinical trials using molecular imaging as a cancer biomarker.

  14. Nanoparticle-based targeted therapeutics in head-and-neck cancer.

    PubMed

    Wu, Ting-Ting; Zhou, Shui-Hong

    2015-01-01

    Head-and-neck cancer is a major form of the disease worldwide. Treatment consists of surgery, radiation therapy and chemotherapy, but these have not resulted in improved survival rates over the past few decades. Versatile nanoparticles, with selective tumor targeting, are considered to have the potential to improve these poor outcomes. Application of nanoparticle-based targeted therapeutics has extended into many areas, including gene silencing, chemotherapeutic drug delivery, radiosensitization, photothermal therapy, and has shown much promise. In this review, we discuss recent advances in the field of nanoparticle-mediated targeted therapeutics for head-and-neck cancer, with an emphasis on the description of targeting points, including future perspectives.

  15. PSMA Theranostics: Current Status and Future Directions

    PubMed Central

    Afshar-Oromieh, Ali; Jadvar, Hossein; Ahmadzadehfar, Hojjat

    2018-01-01

    Prostate-specific membrane antigen (PSMA) is a promising target for imaging diagnostics and targeted radionuclide therapy (theranostics) of prostate cancer and its metastases. There is increasing evidence of encouraging response rates and a low toxicity profile of radioligand therapy (RLT) of metastatic castration-resistant prostate cancer using 177Lu-labeled PSMA ligands. In this article, we review the current status of diagnostics and therapy using radiolabeled PSMA ligands. We also suggest protocols for patient selection criteria and conduct of PSMA-based RLT. Challenges and opportunities of PSMA theranostics are discussed. PMID:29873291

  16. Recent Advances in Targeted Therapy for Glioma.

    PubMed

    Lin, Lin; Cai, Jinquan; Jiang, Chuanlu

    2017-01-01

    Gliomas are the most common primary malignant brain tumors, which have a universally fatal outcome. Current standard treatment for glioma patients is surgical removal followed by radiotherapy and adjuvant chemotherapy. Due to therapeutic resistance and tumor recurrence, efforts are ongoing to identify the molecules that are fundamental to regulate the tumor progression and provide additional methods for individual treatment of glioma patients. By studying the initiation and maintenance of glioma, studies focused on the targets of tyrosine kinase receptors including EGFR, PDGFR and other crucial signal pathways such as PI3K/AKT and RAS/RAF/MAPK pathway. Furthermore, recent advances in targeting immunotherapy and stem cell therapy also brought numerous strategies to glioma treatment. This article reviewed the researches focused on the advanced strategies of various target therapies for improving the glioma treatment efficacy, and discussed the challenges and future directions for glioma therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Current and future management of Ph/BCR-ABL positive ALL.

    PubMed

    Maino, Elena; Sancetta, Rosaria; Viero, Piera; Imbergamo, Silvia; Scattolin, Anna Maria; Vespignani, Michele; Bassan, Renato

    2014-06-01

    Following the introduction of targeted therapy with tyrosine kinase inhibitors (TKI) at the beginning of the past decade, the outcome of patients with Philadelphia-chromosome positive acute lymphoblastic leukemia (Ph+ ALL) has dramatically improved. Presently, the use of refined programs with first/second generation TKI's and chemotherapy together with allogeneic stem cell transplantation allow up to 50% of all patients to be cured. Further progress is expected with the new TKI ponatinib, overcoming resistance caused by T315I point mutation, other targeted therapies, autologous transplantation in molecularly negative patients, therapeutic monoclonal antibodies like inotuzumab ozogamicin and blinatumomab, and chimeric antigen receptor-modified T cells. Ph+ ALL could become curable in the near future even without allogeneic stem cell transplantation, minimizing the risk of therapy-related death and improving greatly the quality of patients' life.

  18. Changing strategies for target therapy in gastric cancer.

    PubMed

    Lee, Suk-Young; Oh, Sang Cheul

    2016-01-21

    In spite of a worldwide decrease in the incidence of gastric cancer, this malignancy still remains one of the leading causes of cancer mortality. Great efforts have been made to improve treatment outcomes in patients with metastatic gastric cancer, and the introduction of trastuzumab has greatly improved the overall survival. The trastuzumab treatment took its first step in opening the era of molecular targeted therapy, however several issues still need to be resolved to increase the efficacy of targeted therapy. Firstly, many patients with metastatic gastric cancer who receive trastuzumab in combination with chemotherapeutic agents develop resistance to the targeted therapy. Secondly, many clinical trials testing novel molecular targeted agents with demonstrated efficacy in other malignancies have failed to show benefit in patients with metastatic gastric cancer, suggesting the importance of the selection of appropriate indications according to molecular characteristics in application of targeted agents. Herein, we review the molecular targeted agents currently approved and in use, and clinical trials in patients with metastatic gastric cancer, and demonstrate the limitations and future direction in treatment of advanced gastric cancer.

  19. Adoptive therapy with CAR redirected T cells: the challenges in targeting solid tumors.

    PubMed

    Abken, Hinrich

    2015-01-01

    Recent spectacular success in the adoptive cell therapy of leukemia and lymphoma with chimeric antigen receptor (CAR)-modified T cells raised the expectations that this therapy may be efficacious in a wide range of cancer entities. The expectations are based on the predefined specificity of CAR T cells by an antibody-derived binding domain that acts independently of the natural T-cell receptor, recognizes targets independently of presentation by the major histocompatibility complex and allows targeting toward virtually any cell surface antigen. We here discuss that targeting CAR T cells toward solid tumors faces certain circumstances critical for the therapeutic success. Targeting tumor stroma and taking advantage of TRUCK cells, in other words, CAR T cells with inducible release of a transgenic payload, are some strategies envisaged to overcome current limitations in the near future.

  20. Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy

    PubMed Central

    Wickens, Jennifer M.; Alsaab, Hashem O.; Kesharwani, Prashant; Bhise, Ketki; Amin, Mohd Cairul Iqbal Mohd; Tekade, Rakesh Kumar; Gupta, Umesh; Iyer, Arun K.

    2016-01-01

    The cluster-determinant 44 (CD44) receptor has a high affinity for hyaluronic acid (HA) binding and is a desirable receptor for active targeting based on its overexpression in cancer cells compared with normal body cells. The nanocarrier affinity can be increased by conjugating drug-loaded carriers with HA, allowing enhanced cancer cell uptake via the HA-CD44 receptor-mediated endocytosis pathway. In this review, we discuss recent advances in HA-based nanocarriers and micelles for cancer therapy. In vitro and in vivo experiments have repeatedly indicated HA-based nanocarriers to be a target-specific drug and gene delivery platform with great promise for future applications in clinical cancer therapy. PMID:28017836

  1. Cancer metabolism: strategic diversion from targeting cancer drivers to targeting cancer suppliers.

    PubMed

    Kim, Soo-Youl

    2015-03-01

    Drug development groups are close to discovering another pot of gold-a therapeutic target-similar to the success of imatinib (Gleevec) in the field of cancer biology. Modern molecular biology has improved cancer therapy through the identification of more pharmaceutically viable targets, and yet major problems and risks associated with late-phase cancer therapy remain. Presently, a growing number of reports have initiated a discussion about the benefits of metabolic regulation in cancers. The Warburg effect, a great discovery approximately 70 years ago, addresses the "universality" of cancer characteristics. For instance, most cancer cells prefer aerobic glycolysis instead of mitochondrial respiration. Recently, cancer metabolism has been explained not only by metabolites but also through modern molecular and chemical biological techniques. Scientists are seeking context-dependent universality among cancer types according to metabolic and enzymatic pathway signatures. This review presents current cancer metabolism studies and discusses future directions in cancer therapy targeting bio-energetics, bio-anabolism, and autophagy, emphasizing the important contribution of cancer metabolism in cancer therapy.

  2. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future

    PubMed Central

    Chan, Bryan A.

    2015-01-01

    In recent years, there has been a major paradigm shift in the management of non-small cell lung cancer (NSCLC). NSCLC should now be further sub-classified by histology and driver mutation if one is known or present. Translational research advances now allow such mutations to be inhibited by either receptor monoclonal antibodies (mAb) or small molecule tyrosine kinase inhibitors (TKI). Whilst empirical chemotherapy with a platinum-doublet remains the gold standard for advanced NSCLC without a known driver mutation, targeted therapy is pushing the boundary to significantly improve patient outcomes and quality of life. In this review, we will examine the major subtypes of oncogenic drivers behind NSCLC as well as the development of targeted agents available to treat them both now and in the foreseeable future. PMID:25806345

  3. Molecular Diagnostics for Precision Medicine in Colorectal Cancer: Current Status and Future Perspective.

    PubMed

    Chen, Guoli; Yang, Zhaohai; Eshleman, James R; Netto, George J; Lin, Ming-Tseh

    2016-01-01

    Precision medicine, a concept that has recently emerged and has been widely discussed, emphasizes tailoring medical care to individuals largely based on information acquired from molecular diagnostic testing. As a vital aspect of precision cancer medicine, targeted therapy has been proven to be efficacious and less toxic for cancer treatment. Colorectal cancer (CRC) is one of the most common cancers and among the leading causes for cancer related deaths in the United States and worldwide. By far, CRC has been one of the most successful examples in the field of precision cancer medicine, applying molecular tests to guide targeted therapy. In this review, we summarize the current guidelines for anti-EGFR therapy, revisit the roles of pathologists in an era of precision cancer medicine, demonstrate the transition from traditional "one test-one drug" assays to multiplex assays, especially by using next-generation sequencing platforms in the clinical diagnostic laboratories, and discuss the future perspectives of tumor heterogeneity associated with anti-EGFR resistance and immune checkpoint blockage therapy in CRC.

  4. New targeted therapies in pancreatic cancer.

    PubMed

    Seicean, Andrada; Petrusel, Livia; Seicean, Radu

    2015-05-28

    Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways.

  5. One-Compound-Multi-Target: Combination Prospect of Natural Compounds with Thrombolytic Therapy in Acute Ischemic Stroke

    PubMed Central

    Chen, Han-Sen; Qi, Su-Hua; Shen, Jian-Gang

    2017-01-01

    Abstract: Tissue plasminogen activator (t-PA) is the only FDA-approved drug for acute ischemic stroke treatment, but its clinical use is limited due to the narrow therapeutic time window and severe adverse effects, including hemorrhagic transformation (HT) and neurotoxicity. One of the potential resolutions is to use adjunct therapies to reduce the side effects and extend t-PA's therapeutic time window. However, therapies modulating single target seem not to be satisfied, and a multi-target strategy is warranted to resolve such complex disease. Recently, large amount of efforts have been made to explore the active compounds from herbal supplements to treat ischemic stroke. Some natural compounds revealed both neuro- and blood-brain-barrier (BBB)-protective effects by concurrently targeting multiple cellular signaling pathways in cerebral ischemia-reperfusion injury. Thus, those compounds are potential to be one-drug-multi-target agents as combined therapy with t-PA for ischemic stroke. In this review article, we summarize current progress about molecular targets involving in t-PA-mediated HT and neurotoxicity in ischemic brain injury. Based on these targets, we select 23 promising compounds from currently available literature with the bioactivities simultaneously targeting several important molecular targets. We propose that those compounds merit further investigation as combined therapy with t-PA. Finally, we discuss the potential drawbacks of the natural compounds' studies and raise several important issues to be addressed in the future for the development of natural compound as an adjunct therapy. PMID:27334020

  6. HER2-family signalling mechanisms, clinical implications and targeting in breast cancer.

    PubMed

    Elster, N; Collins, D M; Toomey, S; Crown, J; Eustace, A J; Hennessy, B T

    2015-01-01

    Approximately 20 % of human breast cancers (BC) overexpress HER2 protein, and HER2-positivity is associated with a worse prognosis. Although HER2-targeted therapies have significantly improved outcomes for HER2-positive BC patients, resistance to trastuzumab-based therapy remains a clinical problem. In order to better understand resistance to HER2-targeted therapies in HER2-positive BC, it is necessary to examine HER family signalling as a whole. An extensive literature search was carried out to critically assess the current knowledge of HER family signalling in HER2-positive BC and response to HER2-targeted therapy. Known mechanisms of trastuzumab resistance include reduced receptor-antibody binding (MUC4, p95HER2), increased signalling through alternative HER family receptor tyrosine kinases (RTK), altered intracellular signalling involving loss of PTEN, reduced p27kip1, or increased PI3K/AKT activity and altered signalling via non-HER family RTKs such as IGF1R. Emerging strategies to circumvent resistance to HER2-targeted therapies in HER2-positive BC include co-targeting HER2/PI3K, pan-HER family inhibition, and novel therapies such as T-DM1. There is evidence that immunity plays a key role in the efficacy of HER-targeted therapy, and efforts are being made to exploit the immune system in order to improve the efficacy of current anti-HER therapies. With our rapidly expanding understanding of HER2 signalling mechanisms along with the repertoire of HER family and other targeted therapies, it is likely that the near future holds further dramatic improvements to the prognosis of women with HER2-positive BC.

  7. Engineered bifunctional proteins and stem cells: next generation of targeted cancer therapeutics.

    PubMed

    Choi, Sung Hugh; Shah, Khalid

    2016-09-01

    Redundant survival signaling pathways and their crosstalk within tumor and/or between tumor and their microenvironment are key impediments to developing effective targeted therapies for cancer. Therefore developing therapeutics that target multiple receptor signaling pathways in tumors and utilizing efficient platforms to deliver such therapeutics are critical to the success of future targeted therapies. During the past two decades, a number of bifunctional multi-targeting antibodies, fusion proteins, and oncolytic viruses have been developed and various stem cell types have been engineered to efficiently deliver them to tumors. In this review, we discuss the design and efficacy of therapeutics targeting multiple pathways in tumors and the therapeutic potential of therapeutic stem cells engineered with bifunctional agents.

  8. Genetic tumor profiling and genetically targeted cancer therapy.

    PubMed

    Goetsch, Cathleen M

    2011-02-01

    To discuss how understanding and manipulation of tumor genetics information and technology shapes cancer care today and what changes might be expected in the near future. Published articles, web resources, clinical practice. Advances in our understanding of genes and their regulation provide a promise of more personalized cancer care, allowing selection of the most safe and effective therapy in an individual situation. Rapid progress in the technology of tumor profiling and targeted cancer therapies challenges nurses to keep up-to-date to provide quality patient education and care. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Therapeutic gene targeting approaches for the treatment of dyslipidemias and atherosclerosis.

    PubMed

    Mäkinen, Petri I; Ylä-Herttuala, Seppo

    2013-04-01

    Despite improved therapies, cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Therefore, new therapeutic approaches are still needed. In the gene therapy field, RNA interference (RNAi) and regulation of microRNAs (miRNAs) have gained a lot of attention in addition to traditional overexpression based strategies. Here, recent findings in therapeutic gene silencing and modulation of small RNA expression related to atherogenesis and dyslipidemia are summarized. Novel gene therapy approaches for the treatment of hyperlipidemia have been addressed. Antisense oligonucleotide and RNAi-based therapies against apolipoprotein B100 and proprotein convertase subtilisin/kexin type 9 have shown already efficacy in preclinical and clinical trials. In addition, several miRNAs dysregulated in atherosclerotic lesions and regulating cholesterol homeostasis have been found, which may represent novel targets for future therapies. New therapies for lowering lipid levels are now being tested in clinical trials, and both antisense oligonucleotide and RNAi-based therapies have shown promising results in lowering cholesterol levels. However, the modulation of inflammatory component in atherosclerosis by gene therapy and targeting of the effects to plaques are still difficult challenges.

  10. Gene therapy for inherited retinal degenerations: initial successes and future challenges

    NASA Astrophysics Data System (ADS)

    Gupta, Priya R.; Huckfeldt, Rachel M.

    2017-10-01

    Inherited retinal degenerations are a clinically and genetically heterogeneous group of conditions that have historically shared an untreatable course. In recent years, however, a wide range of therapeutic strategies have demonstrated efficacy in preclinical studies and entered clinical trials with a common goal of improving visual function for patients affected with these conditions. Gene therapy offers a particularly elegant and precise opportunity to target the causative genetic mutations underlying these monogenic diseases. The present review will provide an overview of gene therapy with particular emphasis on key clinical results to date and challenges for the future.

  11. Cystic Fibrosis and Its Management Through Established and Emerging Therapies.

    PubMed

    Spielberg, David R; Clancy, John P

    2016-08-31

    Cystic fibrosis (CF) is the most common life-shortening autosomal recessive disorder in the Caucasian population and occurs in many other ethnicities worldwide. The daily treatment burden is substantial for CF patients even when they are well, with numerous pharmacologic and physical therapies targeting lung disease requiring the greatest time commitment. CF treatments continue to advance with greater understanding of factors influencing long-term morbidity and mortality. In recent years, in-depth understanding of genetic and protein structure-function relationships has led to the introduction of targeted therapies for patients with specific CF genotypes. With these advances, CF has become a model of personalized or precision medicine. The near future will see greater access to targeted therapies for most patients carrying common mutations, which will mandate individualized bench-to-bedside methodologies for those with rare genotypes.

  12. Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy.

    PubMed

    Wickens, Jennifer M; Alsaab, Hashem O; Kesharwani, Prashant; Bhise, Ketki; Amin, Mohd Cairul Iqbal Mohd; Tekade, Rakesh Kumar; Gupta, Umesh; Iyer, Arun K

    2017-04-01

    The cluster-determinant 44 (CD44) receptor has a high affinity for hyaluronic acid (HA) binding and is a desirable receptor for active targeting based on its overexpression in cancer cells compared with normal body cells. The nanocarrier affinity can be increased by conjugating drug-loaded carriers with HA, allowing enhanced cancer cell uptake via the HA-CD44 receptor-mediated endocytosis pathway. In this review, we discuss recent advances in HA-based nanocarriers and micelles for cancer therapy. In vitro and in vivo experiments have repeatedly indicated HA-based nanocarriers to be a target-specific drug and gene delivery platform with great promise for future applications in clinical cancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Personalized targeted therapy for esophageal squamous cell carcinoma

    PubMed Central

    Kang, Xiaozheng; Chen, Keneng; Li, Yicheng; Li, Jianying; D'Amico, Thomas A; Chen, Xiaoxin

    2015-01-01

    Esophageal squamous cell carcinoma continues to heavily burden clinicians worldwide. Researchers have discovered the genomic landscape of esophageal squamous cell carcinoma, which holds promise for an era of personalized oncology care. One of the most pressing problems facing this issue is to improve the understanding of the newly available genomic data, and identify the driver-gene mutations, pathways, and networks. The emergence of a legion of novel targeted agents has generated much hope and hype regarding more potent treatment regimens, but the accuracy of drug selection is still arguable. Other problems, such as cancer heterogeneity, drug resistance, exceptional responders, and side effects, have to be surmounted. Evolving topics in personalized oncology, such as interpretation of genomics data, issues in targeted therapy, research approaches for targeted therapy, and future perspectives, will be discussed in this editorial. PMID:26167067

  14. Targeting PSMA by radioligands in non-prostate disease-current status and future perspectives.

    PubMed

    Backhaus, Philipp; Noto, Benjamin; Avramovic, Nemanja; Grubert, Lena Sophie; Huss, Sebastian; Bögemann, Martin; Stegger, Lars; Weckesser, Matthias; Schäfers, Michael; Rahbar, Kambiz

    2018-05-01

    Prostate-specific membrane antigen (PSMA) is the up-and-coming target for molecular imaging of prostate cancer. Despite its name, non-prostate-related PSMA expression in physiologic tissue as well as in benign and malignant disease has been reported in various publications. Unlike in prostate cancer, PSMA expression is only rarely observed in non-prostate tumor cells. Instead, expression occurs in endothelial cells of tumor-associated neovasculature, although no endothelial expression is observed under physiologic conditions. The resulting potential for tumor staging in non-prostate malignant tumors has been demonstrated in first patient studies. This review summarizes the first clinical studies and deduces future perspectives in staging, molecular characterization, and PSMA-targeted radionuclide therapy based on histopathologic examinations of PSMA expression. The non-exclusivity of PSMA in prostate cancer opens a window to utilize the spectrum of available radioactive PSMA ligands for imaging and molecular characterization and maybe even therapy of non-prostate disease.

  15. Making Better Chimeric Antigen Receptors for Adoptive T-cell Therapy

    PubMed Central

    Maus, Marcela V.; June, Carl H.

    2016-01-01

    Chimeric antigen receptors (CARs) are engineered fusion proteins constructed from antigen recognition, signaling, and costimulatory domains that can be expressed in cytotoxic T cells with the purpose of reprograming the T cells to specifically target tumor cells. CAR T-cell therapy uses gene transfer technology to reprogram a patient's own T cells to stably express CARs, thereby combining the specificity of an antibody with the potent cytotoxic and memory functions of a T cell. In early phase clinical trials, CAR T cells targeting CD19 have resulted in sustained complete responses within a population of otherwise refractory patients with B-cell malignancies and, more specifically, have shown complete response rates of ≈90% in patients with relapsed or refractory acute lymphoblastic leukemia. Given this clinical efficacy, preclinical development of CAR T-cell therapy for a number of cancer indications has been actively investigated, and the future of the CAR T-cell field is extensive and dynamic. Several approaches to increase the feasibility and safety of CAR T cells are currently being explored, including investigation into mechanisms regulating the persistence of CAR T cells. Additionally, numerous early-phase clinical trials are now investigating CAR T-cell therapy beyond targeting CD19, especially in solid tumors. Trials investigating combinations of CAR T cells with immune checkpoint blockade therapies are now beginning and results are eagerly awaited. This review evaluates several of the ongoing and future directions of CAR T-cell therapy. PMID:27084741

  16. Inhibitors of Cytotoxic T Lymphocyte Antigen 4 and Programmed Death 1/Programmed Death 1 Ligand for Metastatic Melanoma, Dual Versus Monotherapy-Summary of Advances and Future Directions for Studying These Drugs.

    PubMed

    Loo, Kimberly; Daud, Adil I

    Immense progress in the field of cancer immunotherapy has garnered several novel and successful treatments for metastatic melanoma. Beginning with therapies targeting cytotoxic T lymphocyte antigen 4 (CTLA-4), objective response rates, overall survival, and long-term survival were significantly increased when compared with glycoprotein 100 vaccine therapies. Expanding the breadth of therapies aimed to "release the breaks" on the active immune system, anti-programmed death 1 (PD-1) and anti-programmed death 1 ligand (PD-L1) therapies further improved overall survival, progression-free survival, and objective tumor response while exhibiting more favorable safety profiles compared with ipilimumab and to chemotherapy agents. Given the power of these agents as monotherapies, a combination approach sought to combine the anti-CTLA agent ipilimumab and anti-PD-1 agent, nivolumab, to form a double-pronged attack and target several mechanisms within the active immune system. Given the promise in elevated response rates and progression-free survival, the future appears promising along the immunotherapy front. Continuing the push for progress, biomarkers to uncover the profile of responders to the various therapies will become vital in the treatment of metastatic melanoma patients. Here, we highlight the advances of CTLA-4 and PD-1/PD-L1 inhibitors in the metastatic melanoma setting and discuss future directions for uncovering the full potential of these therapies.

  17. Nanocarrier-mediated drugs targeting cancer stem cells: an emerging delivery approach.

    PubMed

    Malhi, Sarandeep; Gu, Xiaochen

    2015-07-01

    Cancer stem cells (CSCs) play an important role in the development of drug resistance, metastasis and recurrence. Current conventional therapies do not commonly target CSCs. Nanocarrier-based delivery systems targeting cancer cells have entered a new era of treatment, where specific targeting to CSCs may offer superior outcomes to efficient cancer therapies. This review discusses the involvement of CSCs in tumor progression and relevant mechanisms associated with CSCs resistance to conventional chemo- and radio-therapies. It highlights CSCs-targeted strategies that are either under evaluation or could be explored in the near future, with a focus on various nanocarrier-based delivery systems of drugs and nucleic acids to CSCs. Novel nanocarriers targeting CSCs are presented in a cancer-specific way to provide a current perspective on anti-CSCs therapeutics. The field of CSCs-targeted therapeutics is still emerging with a few small molecules and macromolecules currently proving efficacy in clinical trials. However considering the complexities of CSCs and existing delivery difficulties in conventional anticancer therapies, CSC-specific delivery systems would face tremendous technical and clinical challenges. Nanocarrier-based approaches have demonstrated significant potential in specific drug delivery and targeting; their success in CSCs-targeted drug delivery would not only significantly enhance anticancer treatment but also address current difficulties associated with cancer resistance, metastasis and recurrence.

  18. Scientific Advances Shaping the Future Roles of Oncology Nurses.

    PubMed

    Wujcik, Debra

    2016-05-01

    To discuss the recent scientific advances that influence current oncology care and explore the implications of these advances for the future of oncology nursing. Current nursing, medical and basic science literature; Clinicaltrials.gov. The future of oncology care will be influenced by an aging population and increasing number of patients diagnosed with cancer. The advancements in molecular sequencing will lead to more clinical trials, targeted therapies, and treatment decisions based on the genetic makeup of both the patient and the tumor. Nurses must stay current with an ever changing array of targeted therapies and developing science. Nurses will influence cancer care quality, value, cost, and patient satisfaction. It is critical for oncology nurses and nursing organizations to engage with all oncology care stakeholders in identifying the future needs of oncology patients and the environment in which care will be delivered. Nurses themselves must identify the roles that will be needed to ensure a workforce that is adequate in number and well trained to meet the future challenges of care delivery. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Novel targets for HIV therapy.

    PubMed

    Greene, Warner C; Debyser, Zeger; Ikeda, Yasuhiro; Freed, Eric O; Stephens, Edward; Yonemoto, Wes; Buckheit, Robert W; Esté, José A; Cihlar, Tomas

    2008-12-01

    There are currently 25 drugs belonging to 6 different inhibitor classes approved for the treatment of human immunodeficiency virus (HIV) infection. However, new anti-HIV agents are still needed to confront the emergence of drug resistance and various adverse effects associated with long-term use of antiretroviral therapy. The 21st International Conference on Antiviral Research, held in April 2008 in Montreal, Canada, therefore featured a special session focused on novel targets for HIV therapy. The session included presentations by world-renowned experts in HIV virology and covered a diverse array of potential targets for the development of new classes of HIV therapies. This review contains concise summaries of discussed topics that included Vif-APOBEC3G, LEDGF/p75, TRIM 5alpha, virus assembly and maturation, and Vpu. The described viral and host factors represent some of the most noted examples of recent scientific breakthroughs that are opening unexplored avenues to novel anti-HIV target discovery and validation, and should feed the antiretroviral drug development pipeline in the near future.

  20. Cancer therapy based on oncogene addiction.

    PubMed

    McCormick, Frank

    2011-05-01

    Tumor cells contain multiple mutations, yet they often depend on continued expressed of a single oncoprotein for survival. Targeting these proteins has led to dramatic responses. Unfortunately, patients usually progress, through drug resistance or adaptive resistance through reprogramming of signaling networks. The Ras-MAPK pathway provides examples of these successes and failures, and has revealed unexpected degrees of oncogene addiction and signaling complexity that are likely to be useful lessons for the future of targeted therapy. Copyright © 2011 Wiley-Liss, Inc.

  1. Emerging biological therapies for the treatment of myelodysplastic syndromes.

    PubMed

    Zeidan, Amer M; Stahl, Maximilian; Komrokji, Rami

    2016-09-01

    No drug has resulted in a survival advantage in patients with lower-risk myelodysplastic syndromes (MDS). While hypomethylating agents (HMA) have revolutionized treatment options for patients with higher-risk MDS, the prognosis remains dismal after HMA treatment failure. Novel effective therapies are urgently needed especially after HMA failure. This review covers the current approach to disease prognostication and risk-adaptive therapy, as well as novel therapeutic approaches. We discuss the recent advancements in the understanding of MDS disease biology as a basis of targeted drug development. Several classes of novel agents are reviewed including drugs targeting dysregulated epigenetic control mechanisms, signaling pathways, abnormal splicing, as well as agents that target the immune system and the MDS bone marrow niche. Significant advancements in the understanding of the underlying biology of MDS are only starting to be translated into novel treatment options for MDS. Epigenetic therapy has shown significant clinical activity with HMA but the results of clinical trials combining HMAs with histone deacetylase inhibitors (HDACi) have been disappointing to date. Similarly, targeting several aberrant pathways in MDS has not resulted in significant improvements in therapy. Future therapies will focus both on synergic combination of existing drugs as well as novel agents targeting dysregulated immune responses and abnormal RNA splicing in MDS.

  2. The physical basis and future of radiation therapy.

    PubMed

    Bortfeld, T; Jeraj, R

    2011-06-01

    The remarkable progress in radiation therapy over the last century has been largely due to our ability to more effectively focus and deliver radiation to the tumour target volume. Physics discoveries and technology inventions have been an important driving force behind this progress. However, there is still plenty of room left for future improvements through physics, for example image guidance and four-dimensional motion management and particle therapy, as well as increased efficiency of more compact and cheaper technologies. Bigger challenges lie ahead of physicists in radiation therapy beyond the dose localisation problem, for example in the areas of biological target definition, improved modelling for normal tissues and tumours, advanced multicriteria and robust optimisation, and continuous incorporation of advanced technologies such as molecular imaging. The success of physics in radiation therapy has been based on the continued "fuelling" of the field with new discoveries and inventions from physics research. A key to the success has been the application of the rigorous scientific method. In spite of the importance of physics research for radiation therapy, too few physicists are currently involved in cutting-edge research. The increased emphasis on more "professionalism" in medical physics will tip the situation even more off balance. To prevent this from happening, we argue that medical physics needs more research positions, and more and better academic programmes. Only with more emphasis on medical physics research will the future of radiation therapy and other physics-related medical specialties look as bright as the past, and medical physics will maintain a status as one of the most exciting fields of applied physics.

  3. The physical basis and future of radiation therapy

    PubMed Central

    Bortfeld, T; Jeraj, R

    2011-01-01

    The remarkable progress in radiation therapy over the last century has been largely due to our ability to more effectively focus and deliver radiation to the tumour target volume. Physics discoveries and technology inventions have been an important driving force behind this progress. However, there is still plenty of room left for future improvements through physics, for example image guidance and four-dimensional motion management and particle therapy, as well as increased efficiency of more compact and cheaper technologies. Bigger challenges lie ahead of physicists in radiation therapy beyond the dose localisation problem, for example in the areas of biological target definition, improved modelling for normal tissues and tumours, advanced multicriteria and robust optimisation, and continuous incorporation of advanced technologies such as molecular imaging. The success of physics in radiation therapy has been based on the continued “fuelling” of the field with new discoveries and inventions from physics research. A key to the success has been the application of the rigorous scientific method. In spite of the importance of physics research for radiation therapy, too few physicists are currently involved in cutting-edge research. The increased emphasis on more “professionalism” in medical physics will tip the situation even more off balance. To prevent this from happening, we argue that medical physics needs more research positions, and more and better academic programmes. Only with more emphasis on medical physics research will the future of radiation therapy and other physics-related medical specialties look as bright as the past, and medical physics will maintain a status as one of the most exciting fields of applied physics. PMID:21606068

  4. Nano anti-cancer drugs: pros and cons and future perspectives.

    PubMed

    Ali, Imran

    2011-02-01

    For last one decade, scientists are working for developing nano anti-cancer drugs with claim of ideal ones due to their targeted chemotherapic nature. These drugs have many beneficial properties such as targeted drug delivery and gene therapy modalities with minimum side effects. This article describes pros and cons and future perspectives of nano anti-cancer drugs. Efforts have been made to address importance, special features, toxicities (general, blood identities, immune system and environmental) and future perspectives of nano anti-cancer drugs. It was concluded that nano anti-cancer drugs may be magic bullet drugs for cancer treatment leading to bright future of the whole world.

  5. Preservative-free tafluprost/timolol fixed combination: a new opportunity in the treatment of glaucoma.

    PubMed

    Konstas, Anastasios G P; Holló, Gabor

    2016-06-01

    Medical therapy of glaucoma aims to maintain the patient's visual function and quality of life. This generally commences with monotherapy, but it is often difficult to reach the predetermined target pressure with this approach. Fixed combinations (FCs) are therefore selected as the next step of the medical therapy algorithm. By employing a prostaglandin/timolol fixed combination (PTFC) the desired target 24-hour intraocular pressure can be reached in many glaucoma patients with the convenience of once-a-day administration and the associated high rate of adherence. The current role and value of FCs in the medical therapy of glaucoma is critically appraised. Special attention is paid to the PTFCs and the emerging role of preservative-free PTFCs. This review summarizes existing information on the efficacy and tolerability of the new preservative-free tafluprost/timolol FC (Taptiqom®). The preservative-free tafluprost/timolol FC represents a promising stepwise treatment option for those patients whose intraocular pressure is insufficiently controlled with available monotherapy options. This novel FC has the potential to substantially improve glaucoma management and through evolution of the current glaucoma treatment paradigm, to become a core therapeutic option in the future. Nonetheless, future research is needed to better delineate the therapeutic role of current and future preservative-free FCs in glaucoma therapy.

  6. Future clinical challenges in multiple sclerosis: Relevance to sphingosine 1-phosphate receptor modulator therapy.

    PubMed

    Hohlfeld, Reinhard; Barkhof, Frederik; Polman, Chris

    2011-02-22

    The limitations of established therapies for multiple sclerosis (MS) are well-known and include the need for injections, treatment adherence and convenience issues, partial efficacy, and, in some cases, a risk of potentially life-threatening adverse events, such as progressive multifocal leukoencephalopathy. Recently, attention has focused on developing more effective therapies that are administered orally and target neurodegeneration as well as inflammation. In this review, we provide an outlook on the future clinical challenges for MS treatment and management, and focus specifically on the emerging sphingosine 1-phosphate receptor (S1PR) modulators. We highlight the importance of improving our understanding of the neurobiological basis of MS to develop well-tolerated targeted therapies and the need to include advanced MRI assessments that quantify neurodegeneration in interventional studies in MS. As more treatments become available, often with complex pharmacodynamic actions, objective assessment of benefit-to-risk profiles becomes increasingly important to ensure that patients receive appropriate care. Pharmacovigilance and immune monitoring will become important aspects of patient treatment and management in the future. With respect to S1PR modulation, we review the experimental agents that are in clinical development for MS and summarize the steps taken in postmarketing surveillance to ensure that fingolimod (FTY720) has a well-characterized safety profile.

  7. Entering the Era of Targeted Therapy for Chronic Lymphocytic Leukemia: Impact on the Practicing Clinician

    PubMed Central

    Byrd, John C.; Jones, Jeffrey J.; Woyach, Jennifer A.; Johnson, Amy J.; Flynn, Joseph M.

    2014-01-01

    Purpose Chemoimmunotherapy has been the standard of care for chronic lymphocytic leukemia (CLL). However, the introduction of B-cell receptor (BCR) kinase inhibitors such as ibrutinib has the potential to eliminate the role of chemotherapy in the treatment of CLL. How to best incorporate old and new therapies for CLL in this landscape is increasingly complex. Methods This article reviews current data available to clinicians and integrates these data to provide a strategy that can be used to approach the treatment of CLL in the era of BCR signaling inhibitors. Results Current strategies separate patients based on age or functional status as well as genetics [presence or absence of del(17)(p13.1)]. In the era of targeted therapy, this will likely continue based on current available data. Phase III studies support chemoimmunotherapy as the initial standard therapy for patients without del(17)(p13.1). Choice of chemotherapy (fludarabine plus cyclophosphamide, bendamustine, or chlorambucil) and anti-CD20 antibody (rituximab, ofatumumab, or obinutuzumab) varies based on regimen and patient status. For patients with del(17)(p13.1), no standard initial therapy exists, although several options supported by phase II clinical trials (methylprednisolone plus alemtuzumab or ibrutinib) seem better than chemoimmunotherapy. Treatment of relapsed CLL seems to be best supported by ibrutinib-based therapy. Completion of trials with ibrutinib and other new agents in the near future will offer opportunity for chemotherapy-free treatment across all groups of CLL. Conclusion Therapy for CLL has evolved significantly over the past decade with introduction of targeted therapy for CLL. This has the potential to completely transform how CLL is treated in the future. PMID:25049322

  8. Response to MAPK pathway inhibitors in BRAF V600M-mutated metastatic melanoma.

    PubMed

    Parakh, S; Murphy, C; Lau, D; Cebon, J S; Andrews, M C

    2015-02-01

    The management of metastatic melanoma has changed significantly in the past decade with the development of immunotherapies and targeted molecular therapies. Trials of targeted therapies have focused mainly on patients with the most common BRAF V600 mutations, namely V600E/K substitutions, with very little information available on the benefit of targeted therapies on less commonly occurring mutations such as V600R/D and M. We present a 54-year-old man with metastatic melanoma harbouring a rare BRAF V600M mutation, who experienced clinical and radiological response to combined therapy with the BRAF inhibitor dabrafenib and MEK inhibitor trametinib. As our understanding of these therapies evolves and an increasing number of patients have mutational testing performed, there is a clear imperative--as highlighted by this case--to test for rarer mutations and facilitate their inclusion both in everyday practice and in future clinical trials. © 2014 John Wiley & Sons Ltd.

  9. Molecular Diagnostics for Precision Medicine in Colorectal Cancer: Current Status and Future Perspective

    PubMed Central

    Chen, Guoli; Yang, Zhaohai; Eshleman, James R.; Netto, George J.

    2016-01-01

    Precision medicine, a concept that has recently emerged and has been widely discussed, emphasizes tailoring medical care to individuals largely based on information acquired from molecular diagnostic testing. As a vital aspect of precision cancer medicine, targeted therapy has been proven to be efficacious and less toxic for cancer treatment. Colorectal cancer (CRC) is one of the most common cancers and among the leading causes for cancer related deaths in the United States and worldwide. By far, CRC has been one of the most successful examples in the field of precision cancer medicine, applying molecular tests to guide targeted therapy. In this review, we summarize the current guidelines for anti-EGFR therapy, revisit the roles of pathologists in an era of precision cancer medicine, demonstrate the transition from traditional “one test-one drug” assays to multiplex assays, especially by using next-generation sequencing platforms in the clinical diagnostic laboratories, and discuss the future perspectives of tumor heterogeneity associated with anti-EGFR resistance and immune checkpoint blockage therapy in CRC. PMID:27699178

  10. The future of epigenetic therapy in solid tumours--lessons from the past.

    PubMed

    Azad, Nilofer; Zahnow, Cynthia A; Rudin, Charles M; Baylin, Stephen B

    2013-05-01

    The promise of targeting epigenetic abnormalities for cancer therapy has not been realized for solid tumours, although increasing evidence is demonstrating its worth in haematological malignancies. In fact, true clinical efficacy in haematopoietic-related neoplasms has only become evident at low doses of epigenetic-targeting drugs (namely, inhibitors of histone deacetylase and DNA methyltransferases). Describing data from preclinical studies and early clinical trial results, we hypothesize that in using low-dose epigenetic-modulating agents, tumour cells can be reprogrammed, which overrides any immediate cytotoxic and off-target effect observed at high dose. We suggest that such optimization of drug dosing and scheduling of currently available agents could give these agents a prominent place in cancer management--when used alone or in combination with other therapies. If so, optimal use of these known agents might also pave the way for the introduction of other agents that target the epigenome.

  11. Breakthrough Therapies: Cystic Fibrosis (CF) Potentiators and Correctors

    PubMed Central

    Solomon, George M.; Marshall, Susan G.; Ramsey, Bonnie W.; Rowe, Steven M.

    2015-01-01

    Cystic Fibrosis is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene resulting in abnormal protein function. Recent advances of targeted molecular therapies and high throughput screening have resulted in multiple drug therapies that target many important mutations in the CFTR protein. In this review, we provide the latest results and current progress of CFTR modulators for the treatment of cystic fibrosis, focusing on potentiators of CFTR channel gating and Phe508del processing correctors for the Phe508del CFTR mutation. Special emphasis is placed on the molecular basis underlying these new therapies and emerging results from the latest clinical trials. The future directions for augmenting the rescue of Phe508del with CFTR modulators is also emphasized. PMID:26097168

  12. Use of Targeted Therapeutics in Epithelial Ovarian Cancer: A Review of Current Literature and Future Directions.

    PubMed

    Vetter, Monica Hagan; Hays, John L

    2018-03-01

    Epithelial ovarian cancer (EOC) is the leading cause of gynecologic cancer death in the United States. Most patients will ultimately fail platinum-based chemotherapy and have the disease recur. Interest is increasing in the use of targeted therapies in the treatment of EOC. This review focuses on the current use of targeted therapeutics in EOC as well as future directions. A literature search of Medline and PubMed was conducted (January 2000-October 2017) to identify recent reports of targeted drugs in EOC. A wide range of targeted therapeutics is currently being used as both monotherapy and in combination in the treatment of EOC. Clinically, the most commonly used classes of drugs currently are antiangiogenics and poly (ADP-ribose) polymerase inhibitors. However, a number of drugs in varying stages in development target a wide range of biochemical pathways. Activity and response rates of these drugs vary greatly. Questions continue about combination drug therapy and appropriate patient selection. The use of targeted therapeutics in the treatment of EOC, both as monotherapy and in combination, will continue to expand as more mechanisms of tumorigenesis are identified. Multiple clinical trials of a wide range of targeted therapeutics are currently ongoing. Evidence-based selection of drug targets and appropriate patient populations will allow strategic application of targeted therapeutics. Copyright © 2018 Elsevier HS Journals, Inc. All rights reserved.

  13. The Potential Role of Aerobic Exercise to Modulate Cardiotoxicity of Molecularly Targeted Cancer Therapeutics

    PubMed Central

    Lakoski, Susan; Mackey, John R.; Douglas, Pamela S.; Haykowsky, Mark J.; Jones, Lee W.

    2013-01-01

    Molecularly targeted therapeutics (MTT) are the future of cancer systemic therapy. They have already moved from palliative therapy for advanced solid malignancies into the setting of curative-intent treatment for early-stage disease. Cardiotoxicity is a frequent and potentially serious adverse complication of some targeted therapies, leading to a broad range of potentially life-threatening complications, therapy discontinuation, and poor quality of life. Low-cost pleiotropic interventions are therefore urgently required to effectively prevent and/or treat MTT-induced cardiotoxicity. Aerobic exercise therapy has the unique capacity to modulate, without toxicity, multiple gene expression pathways in several organ systems, including a plethora of cardiac-specific molecular and cell-signaling pathways implicated in MTT-induced cardiac toxicity. In this review, we examine the molecular signaling of antiangiogenic and HER2-directed therapies that may underpin cardiac toxicity and the hypothesized molecular mechanisms underlying the cardioprotective properties of aerobic exercise. It is hoped that this knowledge can be used to maximize the benefits of small molecule inhibitors, while minimizing cardiac damage in patients with solid malignancies. PMID:23335619

  14. Targeted Therapies for Advanced Oesophagogastric Cancer: Recent Progress and Future Directions.

    PubMed

    Young, Kate; Chau, Ian

    2016-01-01

    The genomic landscape of oesophagogastric (OG) cancer is highly complex. The recent elucidation of some of the pathways involved has suggested a number of novel targets for therapy. This therapy is urgently required as with conventional chemotherapy regimens patients with advanced OG cancer still have a median overall survival of under a year. This review outlines the rationale for the current treatment of OG cancer with chemotherapy and describes both previously conducted and ongoing clinical trials of novel agents in this area. The targets and associated treatments discussed include HER-2, EGFR, VEGF, c-Met, FGFR-2, PI3K, mTOR andIGF-1. To date only two targeted treatments, trastuzumab and ramucirumab, have become part of the treatment paradigm for OG cancer, partly due to difficulties in defining predictive biomarkers in this disease. However, there are a number of promising drugs in the pipeline and this article seeks to describe these and other potential novel approaches including targeting DNA repair deficiencies and the immune system.

  15. The Emergence of Precision Urologic Oncology: A Collaborative Review on Biomarker-driven Therapeutics.

    PubMed

    Barbieri, Christopher E; Chinnaiyan, Arul M; Lerner, Seth P; Swanton, Charles; Rubin, Mark A

    2017-02-01

    Biomarker-driven cancer therapy, also referred to as precision oncology, has received increasing attention for its promise of improving patient outcomes by defining subsets of patients more likely to respond to various therapies. In this collaborative review article, we examine recent literature regarding biomarker-driven therapeutics in urologic oncology, to better define the state of the field, explore the current evidence supporting utility of this approach, and gauge potential for the future. We reviewed relevant literature, with a particular focus on recent studies about targeted therapy, predictors of response, and biomarker development. The recent advances in molecular profiling have led to a rapid expansion of potential biomarkers and predictive information for patients with urologic malignancies. Across disease states, distinct molecular subtypes of cancers have been identified, with the potential to inform choices of management strategy. Biomarkers predicting response to standard therapies (such as platinum-based chemotherapy) are emerging. In several malignancies (particularly renal cell carcinoma and castration-resistant prostate cancer), targeted therapy against commonly altered signaling pathways has emerged as standard of care. Finally, targeted therapy against alterations present in rare patients (less than 2%) across diseases has the potential to drastically alter patterns of care and choices of therapeutic options. Precision medicine has the highest potential to impact the care of patients. Prospective studies in the setting of clinical trials and standard of care therapy will help define reliable predictive biomarkers and new therapeutic targets leading to real improvement in patient outcomes. Precision oncology uses molecular information (DNA and RNA) from the individual and the tumor to match the right patient with the right treatment. Tremendous strides have been made in defining the molecular underpinnings of urologic malignancies and understanding how these predict response to treatment-this represents the future of urologic oncology. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  16. The Emergence of Precision Urologic Oncology: A Collaborative Review on Biomarker-driven Therapeutics

    PubMed Central

    Barbieri, Christopher E.; Chinnaiyan, Arul M.; Lerner, Seth P.; Swanton, Charles; Rubin, Mark A.

    2016-01-01

    Context Biomarker-driven cancer therapy, also referred to as precision oncology, has received increasing attention for its promise of improving patient outcomes by defining subsets of patients more likely to respond to various therapies. Objective In this collaborative review article, we examine recent literature regarding biomarker-driven therapeutics in urologic oncology, to better define the state of the field, explore the current evidence supporting utility of this approach, and gauge potential for the future. Evidence acquisition We reviewed relevant literature, with a particular focus on recent studies about targeted therapy, predictors of response, and biomarker development. Evidence synthesis The recent advances in molecular profiling have led to a rapid expansion of potential biomarkers and predictive information for patients with urologic malignancies. Across disease states, distinct molecular subtypes of cancers have been identified, with the potential to inform choices of management strategy. Biomarkers predicting response to standard therapies (such as platinum-based chemotherapy) are emerging. In several malignancies (particularly renal cell carcinoma and castration-resistant prostate cancer), targeted therapy against commonly altered signaling pathways has emerged as standard of care. Finally, targeted therapy against alterations present in rare patients (less than 2%) across diseases has the potential to drastically alter patterns of care and choices of therapeutic options. Conclusions Precision medicine has the highest potential to impact the care of patients. Prospective studies in the setting of clinical trials and standard of care therapy will help define reliable predictive biomarkers and new therapeutic targets leading to real improvement in patient outcomes. Patient summary Precision oncology uses molecular information (DNA and RNA) from the individual and the tumor to match the right patient with the right treatment. Tremendous strides have been made in defining the molecular underpinnings of urologic malignancies and understanding how these predict response to treatment—this represents the future of urologic oncology. PMID:27567210

  17. Economic Burden of Chronic Lymphocytic Leukemia in the Era of Oral Targeted Therapies in the United States

    PubMed Central

    Chen, Qiushi; Jain, Nitin; Ayer, Turgay; Wierda, William G.; Flowers, Christopher R.; O’Brien, Susan M.; Keating, Michael J.; Kantarjian, Hagop M.

    2017-01-01

    Purpose Oral targeted therapies represent a significant advance for the treatment of patients with chronic lymphocytic leukemia (CLL); however, their high cost has raised concerns about affordability and the economic impact on society. Our objective was to project the future prevalence and cost burden of CLL in the era of oral targeted therapies in the United States. Methods We developed a simulation model that evaluated the evolving management of CLL from 2011 to 2025: chemoimmunotherapy (CIT) as the standard of care before 2014, oral targeted therapies for patients with del(17p) and relapsed CLL from 2014, and for first-line treatment from 2016 onward. A comparator scenario also was simulated where CIT remained the standard of care throughout. Disease progression and survival parameters for each therapy were based on published clinical trials. Results The number of people living with CLL in the United States is projected to increase from 128,000 in 2011 to 199,000 by 2025 (55% increase) due to improved survival; meanwhile, the annual cost of CLL management will increase from $0.74 billion to $5.13 billion (590% increase). The per-patient lifetime cost of CLL treatment will increase from $147,000 to $604,000 (310% increase) as oral targeted therapies become the first-line treatment. For patients enrolled in Medicare, the corresponding total out-of-pocket cost will increase from $9,200 to $57,000 (520% increase). Compared with the CIT scenario, oral targeted therapies resulted in an incremental cost-effectiveness ratio of $189,000 per quality-adjusted life-year. Conclusion The increased benefit and cost of oral targeted therapies is projected to enhance CLL survivorship but can impose a substantial financial burden on both patients and payers. More sustainable pricing strategies for targeted therapies are needed to avoid financial toxicity to patients. PMID:27870563

  18. Electroporation in veterinary oncology.

    PubMed

    Impellizeri, J; Aurisicchio, L; Forde, P; Soden, D M

    2016-11-01

    Cancer treatments in veterinary medicine continue to evolve beyond the established standard therapies of surgery, chemotherapy and radiation therapy. New technologies in cancer therapy include a targeted mechanism to open the cell membrane based on electroporation, driving therapeutic agents, such as chemotherapy (electro-chemotherapy), for local control of cancer, or delivery of gene-based products (electro-gene therapy), directly into the cancer cell to achieve systemic control. This review examines electrochemotherapy and electro-gene therapy in veterinary medicine and considers future directions and applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Targeted anti-IL-13 therapies in asthma: current data and future perspectives.

    PubMed

    Ntontsi, Polyxeni; Papathanassiou, Evgenia; Loukides, Stelios; Bakakos, Petros; Hillas, Georgios

    2018-02-01

    The identification of patients with severe asthma who will benefit from a personalized management approach remains an unmet need. Interleukin-13 (IL-13) is a cytokine possessing a significant role in asthma pathogenesis and progression of disease. Humanised monoclonal antibodies against IL-13 and IL-13 and IL-4 receptors are mainly proposed as add-on therapy in patients with T H 2-high inflammation with uncontrolled asthma despite maximum therapy. Areas covered: The role of IL-13 in airway inflammation in severe asthma, the targeted anti-IL-13 therapies and biomarkers that predict response to anti-IL-13 treatment are discussed. Expert opinion: New effective individualized therapies in severe asthma are urgently needed to block specific inflammatory pathways using monoclonal antibodies. Studies on anti-IL-13 therapies showed that asthmatic patients could benefit from this novel targeted therapy as far as lung function and exacerbation rate are concerned. T H 2-high and especially periostin-high groups of asthmatics with moderate-to-severe uncontrolled asthma seem to compose the group that could benefit from anti-IL-13 therapy. Targeting IL-13 alone may not be sufficient to achieve asthma control. Inhibition of IL-13 and IL-4 with mabs may be more encouraging and patients will probably have additional benefits from these therapeutic interventions because of IL-13/IL-4 overlapping actions in asthma pathophysiology.

  20. Dendrimer-based nanoparticles for cancer therapy.

    PubMed

    Baker, James R

    2009-01-01

    Recent work has suggested that nanoparticles in the form of dendrimers may be a keystone in the future of therapeutics. The field of oncology could soon be revolutionized by novel strategies for diagnosis and therapy employing dendrimer-based nanotherapeutics. Several aspects of cancer therapy would be involved. Diagnosis using imaging techniques such as MRI will be improved by the incorporation of dendrimers as advanced contrast agents. This might involve novel contrast agents targeted specifically to cancer cells. Dendrimers can also be being applied to a variety of cancer therapies to improve their safety and efficacy. A strategy, somewhat akin to the "Trojan horse," involves targeting anti-metabolite drugs via vitamins or hormones that tumors need for growth. Further applications of dendrimers in photodynamic therapy, boron neutron capture therapy, and gene therapy for cancer are being examined. This presentation will cover the fundamentals of research utilizing dendrimers for cancer diagnosis and therapy. An evaluation of this new technologies will detail what advantage dendrimer based therapeutics might have over conventional cancer drugs.

  1. Molecular mechanisms for vascular complications of targeted cancer therapies.

    PubMed

    Gopal, Srila; Miller, Kenneth B; Jaffe, Iris Z

    2016-10-01

    Molecularly targeted anti-cancer therapies have revolutionized cancer treatment by improving both quality of life and survival in cancer patients. However, many of these drugs are associated with cardiovascular toxicities that are sometimes dose-limiting. Moreover, the long-term cardiovascular consequences of these drugs, some of which are used chronically, are not yet known. Although the scope and mechanisms of the cardiac toxicities are better defined, the mechanisms for vascular toxicities are only beginning to be elucidated. This review summarizes what is known about the vascular adverse events associated with three classes of novel anti-cancer therapies: vascular endothelial growth factor (VEGF) inhibitors, breakpoint cluster-Abelson (BCR-ABL) kinase inhibitors used to treat chronic myelogenous leukaemia (CML) and immunomodulatory agents (IMiDs) used in myeloma therapeutics. Three of the best described vascular toxicities are reviewed including hypertension, increased risk of acute cardiovascular ischaemic events and arteriovenous thrombosis. The available data regarding the mechanism by which each therapy causes vascular complication are summarized. When data are limited, potential mechanisms are inferred from the known effects of inhibiting each target on vascular cell function and disease. Enhanced understanding of the molecular mechanisms of vascular side effects of targeted cancer therapy is necessary to effectively manage cancer patients and to design safer targeted cancer therapies for the future. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  2. Targeting Gas6/TAM in cancer cells and tumor microenvironment.

    PubMed

    Wu, Guiling; Ma, Zhiqiang; Cheng, Yicheng; Hu, Wei; Deng, Chao; Jiang, Shuai; Li, Tian; Chen, Fulin; Yang, Yang

    2018-01-31

    Growth arrest-specific 6, also known as Gas6, is a human gene encoding the Gas6 protein, which was originally found to be upregulated in growth-arrested fibroblasts. Gas6 is a member of the vitamin K-dependent family of proteins expressed in many human tissues and regulates several biological processes in cells, including proliferation, survival and migration, by binding to its receptors Tyro3, Axl and Mer (TAM). In recent years, the roles of Gas6/TAM signalling in cancer cells and the tumour microenvironment have been studied, and some progress has made in targeted therapy, providing new potential directions for future investigations of cancer treatment. In this review, we introduce the Gas6 and TAM receptors and describe their involvement in different cancers and discuss the roles of Gas6 in cancer cells, the tumour microenvironment and metastasis. Finally, we introduce recent studies on Gas6/TAM targeting in cancer therapy, which will assist in the experimental design of future analyses and increase the potential use of Gas6 as a therapeutic target for cancer.

  3. Technological advances in the surgical treatment of movement disorders.

    PubMed

    Gross, Robert E; McDougal, Margaret E

    2013-08-01

    Technological innovations have driven the advancement of the surgical treatment of movement disorders, from the invention of the stereotactic frame to the adaptation of deep brain stimulation (DBS). Along these lines, this review will describe recent advances in inserting neuromodulation modalities, including DBS, to the target, and in the delivery of therapy at the target. Recent radiological advances are altering the way that DBS leads are targeted and inserted, by refining the ability to visualize the subcortical targets using high-field strength magnetic resonance imaging and other innovations, such as diffusion tensor imaging, and the development of novel targeting devices enabling purely anatomical implantations without the need for neurophysiological monitoring. New portable computed tomography scanners also are facilitating lead implantation without monitoring, as well as improving radiological verification of DBS lead location. Advances in neurophysiological mapping include efforts to develop automatic target verification algorithms, and probabilistic maps to guide target selection. The delivery of therapy at the target is being improved by the development of the next generation of internal pulse generators (IPGs). These include constant current devices that mitigate the variability introduced by impedance changes of the stimulated tissue and, in the near future, devices that deliver novel stimulation patterns with improved efficiency. Closed-loop adaptive IPGs are being tested, which may tailor stimulation to ongoing changes in the nervous system, reflected in biomarkers continuously recorded by the devices. Finer-grained DBS leads, in conjunction with new IPGs and advanced programming tools, may offer improved outcomes via current steering algorithms. Finally, even thermocoagulation-essentially replaced by DBS-is being advanced by new minimally-invasive approaches that may improve this therapy for selected patients in whom it may be preferred. Functional neurosurgery has a history of being driven by technological innovation, a tradition that continues into its future.

  4. Driving Toward Precision Medicine for Acute Leukemias: Are We There Yet?

    PubMed

    Chung, Clement; Ma, Hilary

    2017-09-01

    Despite recent progress in the understanding of the molecular basis of acute leukemias, treatment options for these diseases have not changed significantly over the last few decades. We present a nonexhaustive summary of the current cytogenetic and molecular changes associated with acute leukemias in disease prognostication and potential targeted therapies. An emerging paradigm is that many genetic or molecular alterations target similar signal transduction, transcriptional, and epigenetic pathways. Some of these targets may be used as predictive biomarkers for the development of novel targeted therapies that depart significantly from conventional chemotherapy, the current mainstay for the treatment of acute leukemias. Established leukemia-specific predictive biomarkers for precision medicine include those genetic lesions such as BCR-ABL1 for Philadelphia-positive acute lymphoblastic leukemia and PML-RARα for acute promyelocytic leukemia. Evidence indicates that targeted therapy for FLT-ITD gene mutations with small-molecule tyrosine kinase inhibitors can extend its use from relapsed disease to up-front induction therapy. Core-binding factor acute myeloid leukemia in adults predicts benefit with high-dose cytarabine in the absence of KIT mutation. Although risk-adapted therapy based on genetic abnormalities in acute leukemias has allowed the beginning of personalized treatment and selective use of hematopoietic stem cell transplantation, the prognostic and/or predictive value of many novel mutations of the acute leukemic genome is yet to be elucidated. Many challenges lie ahead in targeted therapies due to overlapping of chromosomal and molecular lesions as well as other limiting factors. Future work should focus on the understanding of pathogenetic changes that lead to leukemogenesis, which may guide the rational design of new targeted therapies and make the drive toward precision medicine for acute leukemias one step closer. © 2017 Pharmacotherapy Publications, Inc.

  5. Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollom, Erqi L.; Deng, Lei; Pai, Reetesh K.

    2015-07-01

    Combining the latest targeted biologic agents with the most advanced radiation technologies has been an exciting development in the treatment of cancer patients. Stereotactic body radiation therapy (SBRT) is an ablative radiation approach that has become established for the treatment of a variety of malignancies, and it has been increasingly used in combination with biologic agents, including those targeting angiogenesis-specific pathways. Multiple reports have emerged describing unanticipated toxicities arising from the combination of SBRT and angiogenesis-targeting agents, particularly of late luminal gastrointestinal toxicities. In this review, we summarize the literature describing these toxicities, explore the biological mechanism of action ofmore » toxicity with the combined use of antiangiogenic therapies, and discuss areas of future research, so that this combination of treatment modalities can continue to be used in broader clinical contexts.« less

  6. Synthetic lethality in DNA repair network: A novel avenue in targeted cancer therapy and combination therapeutics.

    PubMed

    Bhattacharjee, Sonali; Nandi, Saikat

    2017-12-01

    Synthetic lethality refers to a lethal phenotype that results from the simultaneous disruptions of two genes, while the disruption of either gene alone is viable. Many DNA double strand break repair (DSBR) genes have synthetic lethal relationships with oncogenes and tumor suppressor genes, which can be exploited for targeted cancer therapy, an approach referred to as combination therapy. DNA double-strand breaks (DSBs) are one of the most toxic lesions to a cell and can be repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). HR and NHEJ genes are particularly attractive targets for cancer therapy because these genes have altered expression patterns in cancer cells when compared with normal cells and these genetic abnormalities can be targeted for selectively killing cancer cells. Here, we review recent advances in the development of small molecule inhibitors against HR and NHEJ genes to induce synthetic lethality and address the future directions and clinical relevance of this approach. © 2017 IUBMB Life, 69(12):929-937, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  7. Transferrin-Conjugated Nanocarriers as Active-Targeted Drug Delivery Platforms for Cancer Therapy.

    PubMed

    Nogueira-Librelotto, Daniele R; Codevilla, Cristiane F; Farooqi, Ammad; Rolim, Clarice M B

    2017-01-01

    A lot of effort has been devoted to achieving active targeting for cancer therapy in order to reach the right cells. Hence, increasingly it is being realized that active-targeted nanocarriers notably reduce off-target effects, mainly because of targeted localization in tumors and active cellular uptake. In this context, by taking advantage of the overexpression of transferrin receptors on the surface of tumor cells, transferrin-conjugated nanodevices have been designed, in hope that the biomarker grafting would help to maximize the therapeutic benefit and to minimize the side effects. Notably, active targeting nanoparticles have shown improved therapeutic performances in different tumor models as compared to their passive targeting counterparts. In this review, current development of nano-based devices conjugated with transferrin for active tumor-targeting drug delivery are highlighted and discussed. The main objective of this review is to provide a summary of the vast types of nanomaterials that have been used to deliver different chemotherapeutics into tumor cells, and to ultimately evaluate the progression on the strategies for cancer therapy in view of the future research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Resistance to therapy in estrogen receptor positive and human epidermal growth factor 2 positive breast cancers: progress with latest therapeutic strategies.

    PubMed

    Lousberg, Laurence; Collignon, Joëlle; Jerusalem, Guy

    2016-11-01

    In this article, we focus on the subtype of estrogen receptor (ER)-positive, human epidermal growth factor 2 (HER2)-positive breast cancer (BC). Preclinical and clinical data indicate a complex molecular bidirectional crosstalk between the ER and HER2 pathways. This crosstalk probably constitutes one of the key mechanisms of drug resistance in this subclass of BC. Delaying or even reversing drug resistance seems possible by targeting pathways implicated in this crosstalk. High-risk patients currently receive anti-HER2 therapy, chemotherapy and endocrine therapy in the adjuvant setting. In metastatic cases, most patients receive a combination of anti-HER2 therapy and chemotherapy. Only selected patients presenting more indolent disease are candidates for combinations of anti-HER2 therapy and endocrine therapy. However, relative improvements in progression-free survival by chemotherapy-based regimens are usually lower in ER-positive patients than the ER-negative and HER2-positive subgroup. Consequently, new approaches aiming to overcome endocrine therapy resistance by adding targeted therapies to endocrine therapy based regimens are currently explored. In addition, dual blockade of HER2 or the combination of trastuzumab and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOP) inhibitors targeting the downstream pathway are strategies to overcome resistance to trastuzumab. This may lead in the near future to the less frequent use of chemotherapy-based treatment options in ER-positive, HER2-positive BC.

  9. High-Intensity Focused Ultrasound Therapy: an Overview for Radiologists

    PubMed Central

    Kim, Young-sun; Choi, Min Joo; Lim, Hyo Keun; Choi, Dongil

    2008-01-01

    High-intensity focused ultrasound therapy is a novel, emerging, therapeutic modality that uses ultrasound waves, propagated through tissue media, as carriers of energy. This completely non-invasive technology has great potential for tumor ablation as well as hemostasis, thrombolysis and targeted drug/gene delivery. However, the application of this technology still has many drawbacks. It is expected that current obstacles to implementation will be resolved in the near future. In this review, we provide an overview of high-intensity focused ultrasound therapy from the basic physics to recent clinical studies with an interventional radiologist's perspective for the purpose of improving the general understanding of this cutting-edge technology as well as speculating on future developments. PMID:18682666

  10. Chemotherapy for hepatocellular carcinoma: The present and the future

    PubMed Central

    Le Grazie, Marco; Biagini, Maria Rosa; Tarocchi, Mirko; Polvani, Simone; Galli, Andrea

    2017-01-01

    Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver. Its relationship to chronic liver diseases, in particular cirrhosis, develops on a background of viral hepatitis, excessive alcohol intake or metabolic steatohepatitis, leads to a high incidence and prevalence of this neoplasia worldwide. Despite the spread of HCC, its treatment it’s still a hard challenge, due to high rate of late diagnosis and to lack of therapeutic options for advanced disease. In fact radical surgery and liver transplantation, the most radical therapeutic approaches, are indicated only in case of early diagnosis. Even local therapies, such as transarterial chemoembolization, find limited indications, leading to an important problem regarding treatment of advanced disease. In this situation, until terminal HCC occurs, systemic therapy is the only possible approach, with sorafenib as the only standard treatment available. Anyway, the efficacy of this drug is limited and many efforts are necessary to understand who could benefit more with this treatment. Therefore, other molecules for a targeted therapy were evaluated, but only regorafenib showed promising results. Beside molecular target therapy, also cytotoxic drugs, in particular oxaliplatin- and gemcitabine-based regimens, and immune-checkpoint inhibitors were tested with interesting results. The future of the treatment of this neoplasia is linked to our ability to understand its mechanisms of resistance and to find novel therapeutic targets, with the objective to purpose individualized approaches to patients affected by advanced HCC. PMID:28824742

  11. Chemotherapy for hepatocellular carcinoma: The present and the future.

    PubMed

    Le Grazie, Marco; Biagini, Maria Rosa; Tarocchi, Mirko; Polvani, Simone; Galli, Andrea

    2017-07-28

    Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver. Its relationship to chronic liver diseases, in particular cirrhosis, develops on a background of viral hepatitis, excessive alcohol intake or metabolic steatohepatitis, leads to a high incidence and prevalence of this neoplasia worldwide. Despite the spread of HCC, its treatment it's still a hard challenge, due to high rate of late diagnosis and to lack of therapeutic options for advanced disease. In fact radical surgery and liver transplantation, the most radical therapeutic approaches, are indicated only in case of early diagnosis. Even local therapies, such as transarterial chemoembolization, find limited indications, leading to an important problem regarding treatment of advanced disease. In this situation, until terminal HCC occurs, systemic therapy is the only possible approach, with sorafenib as the only standard treatment available. Anyway, the efficacy of this drug is limited and many efforts are necessary to understand who could benefit more with this treatment. Therefore, other molecules for a targeted therapy were evaluated, but only regorafenib showed promising results. Beside molecular target therapy, also cytotoxic drugs, in particular oxaliplatin- and gemcitabine-based regimens, and immune-checkpoint inhibitors were tested with interesting results. The future of the treatment of this neoplasia is linked to our ability to understand its mechanisms of resistance and to find novel therapeutic targets, with the objective to purpose individualized approaches to patients affected by advanced HCC.

  12. MaLT - Combined Motor and Language Therapy Tool for Brain Injury Patients Using Kinect.

    PubMed

    Wairagkar, Maitreyee; McCrindle, Rachel; Robson, Holly; Meteyard, Lotte; Sperrin, Malcom; Smith, Andy; Pugh, Moyra

    2017-03-23

    The functional connectivity and structural proximity of elements of the language and motor systems result in frequent co-morbidity post brain injury. Although rehabilitation services are becoming increasingly multidisciplinary and "integrated", treatment for language and motor functions often occurs in isolation. Thus, behavioural therapies which promote neural reorganisation do not reflect the high intersystem connectivity of the neurologically intact brain. As such, there is a pressing need for rehabilitation tools which better reflect and target the impaired cognitive networks. The objective of this research is to develop a combined high dosage therapy tool for language and motor rehabilitation. The rehabilitation therapy tool developed, MaLT (Motor and Language Therapy), comprises a suite of computer games targeting both language and motor therapy that use the Kinect sensor as an interaction device. The games developed are intended for use in the home environment over prolonged periods of time. In order to track patients' engagement with the games and their rehabilitation progress, the game records patient performance data for the therapist to interrogate. MaLT incorporates Kinect-based games, a database of objects and language parameters, and a reporting tool for therapists. Games have been developed that target four major language therapy tasks involving single word comprehension, initial phoneme identification, rhyme identification and a naming task. These tasks have 8 levels each increasing in difficulty. A database of 750 objects is used to programmatically generate appropriate questions for the game, providing both targeted therapy and unique gameplay every time. The design of the games has been informed by therapists and by discussions with a Public Patient Involvement (PPI) group. Pilot MaLT trials have been conducted with three stroke survivors for the duration of 6 to 8 weeks. Patients' performance is monitored through MaLT's reporting facility presented as graphs plotted from patient game data. Performance indicators include reaction time, accuracy, number of incorrect responses and hand use. The resultant games have also been tested by the PPI with a positive response and further suggestions for future modifications made. MaLT provides a tool that innovatively combines motor and language therapy for high dosage rehabilitation in the home. It has demonstrated that motion sensor technology can be successfully combined with a language therapy task to target both upper limb and linguistic impairment in patients following brain injury. The initial studies on stroke survivors have demonstrated that the combined therapy approach is viable and the outputs of this study will inform planned larger scale future trials.

  13. Advances in gene therapy for heart failure.

    PubMed

    Fish, Kenneth M; Ishikawa, Kiyotake

    2015-04-01

    Chronic heart failure is expected to increase its social and economic burden as a consequence of improved survival in patients with acute cardiac events. Cardiac gene therapy holds significant promise in heart failure treatment for patients with currently very limited or no treatment options. The introduction of adeno-associated virus (AAV) gene vector changed the paradigm of cardiac gene therapy, and now it is the primary vector of choice for chronic heart failure gene therapy in clinical and preclinical studies. Recently, there has been significant progress towards clinical translation in this field spearheaded by AAV-1 mediated sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) gene therapy targeting chronic advanced heart failure patients. Meanwhile, several independent laboratories are reporting successful gene therapy approaches in clinically relevant large animal models of heart failure and some of these approaches are expected to enter clinical trials in the near future. This review will focus on gene therapy approaches targeting heart failure that is in clinical trials and those close to its initial clinical trial application.

  14. Targeted therapies in cancer - challenges and chances offered by newly developed techniques for protein analysis in clinical tissues

    PubMed Central

    Malinowsky, K; Wolff, C; Gündisch, S; Berg, D; Becker, KF

    2011-01-01

    In recent years, new anticancer therapies have accompanied the classical approaches of surgery and radio- and chemotherapy. These new forms of treatment aim to inhibit specific molecular targets namely altered or deregulated proteins, which offer the possibility of individualized therapies. The specificity and efficiency of these new approaches, however, bring about a number of challenges. First of all, it is essential to specifically identify and quantify protein targets in tumor tissues for the reasonable use of such targeted therapies. Additionally, it has become even more obvious in recent years that the presence of a target protein is not always sufficient to predict the outcome of targeted therapies. The deregulation of downstream signaling molecules might also play an important role in the success of such therapeutic approaches. For these reasons, the analysis of tumor-specific protein expression profiles prior to therapy has been suggested as the most effective way to predict possible therapeutic results. To further elucidate signaling networks underlying cancer development and to identify new targets, it is necessary to implement tools that allow the rapid, precise, inexpensive and simultaneous analysis of many network components while requiring only a small amount of clinical material. Reverse phase protein microarray (RPPA) is a promising technology that meets these requirements while enabling the quantitative measurement of proteins. Together with recently developed protocols for the extraction of proteins from formalin-fixed, paraffin-embedded (FFPE) tissues, RPPA may provide the means to quantify therapeutic targets and diagnostic markers in the near future and reliably screen for new protein targets. With the possibility to quantitatively analyze DNA, RNA and protein from a single FFPE tissue sample, the methods are available for integrated patient profiling at all levels of gene expression, thus allowing optimal patient stratification for individualized therapies. PMID:21197262

  15. Evolving molecular era of childhood medulloblastoma: time to revisit therapy.

    PubMed

    Khatua, Soumen

    2016-01-01

    Currently medulloblastoma is treated with a uniform therapeutic approach based on histopathology and clinico-radiological risk stratification, resulting in unpredictable treatment failure and relapses. Improved understanding of the biological, molecular and genetic make-up of these tumors now clearly identifies it as a compendium of four distinct subtypes (WNT, SHH, group 3 and 4). Advances in utilization of the genomic and epigenomic machinery have now delineated genetic aberrations and epigenetic perturbations in each subgroup as potential druggable targets. This has resulted in endeavors to profile targeted therapy. The challenge and future of medulloblastoma therapeutics will be to keep pace with the evolving novel biological insights and translating them into optimal targeted treatment regimens.

  16. Colon-targeted delivery of live bacterial cell biotherapeutics including microencapsulated live bacterial cells

    PubMed Central

    Prakash, Satya; Malgorzata Urbanska, Aleksandra

    2008-01-01

    There has been an ample interest in delivery of therapeutic molecules using live cells. Oral delivery has been stipulated as best way to deliver live cells to humans for therapy. Colon, in particular, is a part of gastrointestinal (GI) tract that has been proposed to be an oral targeted site. The main objective of these oral therapy procedures is to deliver live cells not only to treat diseases like colorectal cancer, inflammatory bowel disease, and other GI tract diseases like intestinal obstruction and gastritis, but also to deliver therapeutic molecules for overall therapy in various diseases such as renal failure, coronary heart disease, hypertension, and others. This review provides a comprehensive summary of recent advancement in colon targeted live bacterial cell biotherapeutics. Current status of bacterial cell therapy, principles of artificial cells and its potentials in oral delivery of live bacterial cell biotherapeutics for clinical applications as well as biotherapeutic future perspectives are also discussed in our review. PMID:19707368

  17. VEGF in nuclear medicine: Clinical application in cancer and future perspectives (Review).

    PubMed

    Taurone, Samanta; Galli, Filippo; Signore, Alberto; Agostinelli, Enzo; Dierckx, Rudi A J O; Minni, Antonio; Pucci, Marcella; Artico, Marco

    2016-08-01

    Clinical trials using antiangiogenic drugs revealed their potential against cancer. Unfortunately, a large percentage of patients does not yet benefit from this therapeutic approach highlighting the need of diagnostic tools to non-invasively evaluate and monitor response to therapy. It would also allow to predict which kind of patient will likely benefit of antiangiogenic therapy. Reasons for treatment failure might be due to a low expression of the drug targets or prevalence of other pathways. Molecular imaging has been therefore explored as a diagnostic technique of choice. Since the vascular endothelial growth factor (VEGF/VEGFR) pathway is the main responsible of tumor angiogenesis, several new drugs targeting either the soluble ligand or its receptor to inhibit signaling leading to tumor regression could be involved. Up today, it is difficult to determine VEGF or VEGFR local levels and their non-invasive measurement in tumors might give insight into the available target for VEGF/VEGFR-dependent antiangiogenic therapies, allowing therapy decision making and monitoring of response.

  18. miRNA-based therapies: Strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents

    PubMed Central

    Baumann, V; Winkler, J

    2015-01-01

    The discovery of microRNAs as important regulatory agents for gene expression has expanded the therapeutic opportunities for oligonucleotides. In contrast to siRNA, miRNA-targeted therapy is able to influence not only a single gene, but entire cellular pathways or processes. It is possible to supplement down regulated or non-functional miRNAs by synthetic oligonucleotides, as well as alleviating effects caused by overexpression of malignant miRNAs through artificial antagonists, either oligonucleotides or small molecules. Chemical oligonucleotide modifications together with an efficient delivery system seem to be mandatory for successful therapeutic application. While miRNA-based therapy benefits from the decades of research spent on other therapeutic oligonucleotides, there are some specific challenges associated with miRNA therapy, mainly caused by the short target sequence. The current status and recent progress of miRNA-targeted therapeutics is described and future challenges and potential applications in treatment of cancer and viral infections are discussed. PMID:25495987

  19. Targeted therapies in breast cancer: New challenges to fight against resistance

    PubMed Central

    Masoud, Viviana; Pagès, Gilles

    2017-01-01

    Breast cancer is the most common type of cancer found in women and today represents a significant challenge to public health. With the latest breakthroughs in molecular biology and immunotherapy, very specific targeted therapies have been tailored to the specific pathophysiology of different types of breast cancers. These recent developments have contributed to a more efficient and specific treatment protocol in breast cancer patients. However, the main challenge to be further investigated still remains the emergence of therapeutic resistance mechanisms, which develop soon after the onset of therapy and need urgent attention and further elucidation. What are the recent emerging molecular resistance mechanisms in breast cancer targeted therapy and what are the best strategies to apply in order to circumvent this important obstacle? The main scope of this review is to provide a thorough update of recent developments in the field and discuss future prospects for preventing resistance mechanisms in the quest to increase overall survival of patients suffering from the disease. PMID:28439493

  20. Targeting Antitumor Immune Response for Enhancing the Efficacy of Photodynamic Therapy of Cancer: Recent Advances and Future Perspectives

    PubMed Central

    2016-01-01

    Photodynamic therapy (PDT) is a minimally invasive therapeutic strategy for cancer treatment, which can destroy local tumor cells and induce systemic antitumor immune response, whereas, focusing on improving direct cytotoxicity to tumor cells treated by PDT, there is growing interest in developing approaches to further explore the immune stimulatory properties of PDT. In this review we summarize the current knowledge of the innate and adaptive immune responses induced by PDT against tumors, providing evidence showing PDT facilitated-antitumor immunity. Various immunotherapeutic approaches on different cells are reviewed for their effectiveness in improving the treatment efficiency in concert with PDT. Future perspectives are discussed for further enhancing PDT efficiency via intracellular targetable drug delivery as well as optimized experimental model development associated with the study of antitumor immune response. PMID:27672421

  1. Inorganic chemistry in nuclear imaging and radiotherapy: current and future directions

    PubMed Central

    Carroll, Valerie; Demoin, Dustin W.; Hoffman, Timothy J; Jurisson, Silvia S

    2013-01-01

    Summary Radiometals play an important role in diagnostic and therapeutic radiopharmaceuticals. This field of radiochemistry is multidisciplinary, involving radiometal production, separation of the radiometal from its target, chelate design for complexing the radiometal in a biologically stable environment, specific targeting of the radiometal to its in vivo site, and nuclear imaging and/or radiotherapy applications of the resultant radiopharmaceutical. The critical importance of inorganic chemistry in the design and application of radiometal-containing imaging and therapy agents is described from a historical perspective to future directions. PMID:25382874

  2. Cancer Treatment Using Peptides: Current Therapies and Future Prospects

    PubMed Central

    Thundimadathil, Jyothi

    2012-01-01

    This paper discusses the role of peptides in cancer therapy with special emphasis on peptide drugs which are already approved and those in clinical trials. The potential of peptides in cancer treatment is evident from a variety of different strategies that are available to address the progression of tumor growth and propagation of the disease. Use of peptides that can directly target cancer cells without affecting normal cells (targeted therapy) is evolving as an alternate strategy to conventional chemotherapy. Peptide can be utilized directly as a cytotoxic agent through various mechanisms or can act as a carrier of cytotoxic agents and radioisotopes by specifically targeting cancer cells. Peptide-based hormonal therapy has been extensively studied and utilized for the treatment of breast and prostate cancers. Tremendous amount of clinical data is currently available attesting to the efficiency of peptide-based cancer vaccines. Combination therapy is emerging as an important strategy to achieve synergistic effects in fighting cancer as a single method alone may not be efficient enough to yield positive results. Combining immunotherapy with conventional therapies such as radiation and chemotherapy or combining an anticancer peptide with a nonpeptidic cytotoxic drug is an example of this emerging field. PMID:23316341

  3. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer.

    PubMed

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-12-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.

  4. Emerging drugs for the treatment of wound healing.

    PubMed

    Zielins, Elizabeth R; Brett, Elizabeth A; Luan, Anna; Hu, Michael S; Walmsley, Graham G; Paik, Kevin; Senarath-Yapa, Kshemendra; Atashroo, David A; Wearda, Taylor; Lorenz, H Peter; Wan, Derrick C; Longaker, Michael T

    2015-06-01

    Wound healing can be characterized as underhealing, as in the setting of chronic wounds, or overhealing, occurring with hypertrophic scar formation after burn injury. Topical therapies targeting specific biochemical and molecular pathways represent a promising avenue for improving and, in some cases normalizing, the healing process. A brief overview of both normal and pathological wound healing has been provided, along with a review of the current clinical guidelines and treatment modalities for chronic wounds, burn wounds and scar formation. Next, the major avenues for wound healing drugs, along with drugs currently in development, are discussed. Finally, potential challenges to further drug development, and future research directions are discussed. The large body of research concerning wound healing pathophysiology has provided multiple targets for topical therapies. Growth factor therapies with the ability to be targeted for localized release in the wound microenvironment are most promising, particularly when they modulate processes in the proliferative phase of wound healing.

  5. Human CIK Cells Loaded with Au Nanorods as a Theranostic Platform for Targeted Photoacoustic Imaging and Enhanced Immunotherapy and Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Yang, Yao; Zhang, Jingjing; Xia, Fangfang; Zhang, Chunlei; Qian, Qirong; Zhi, Xiao; Yue, Caixia; Sun, Rongjin; Cheng, Shangli; Fang, Shan; Jin, Weilin; Yang, Yuming; Cui, Daxiang

    2016-06-01

    How to realize targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy of gastric cancer has become a great challenge. Herein, we reported for the first time that human cytokine-induced killer cells (CIK) loaded with gold nanorods were used for targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy of gastric cancer. Silica-modified gold nanorods were prepared; then incubated with human cytokine-induced killer cells (CIK), resultant human CIK cells loaded with Au nanorods were evaluated for their cytotoxicity, targeted ability of gastric cancer in vitro and in vivo, immunotherapy, and photothermal therapy efficacy. In vitro cell experiment shows that human CIK cells labeled with gold nanorods actively target gastric cancer MGC803 cells, inhibit growth of MGC803 cells by inducing cell apoptosis, and kill MGC803 cells under low power density near-infrared (NIR) laser treatment (808-nm continuous wave laser, 1.5 W/cm2, 3 min). In vivo experiment results showed that human CIK cells labeled with gold nanorods could target actively and image subcutaneous gastric cancer vessels via photoacoustic imaging at 4 h post-injection, could enhance immunotherapy efficacy by up-regulating cytokines such as IL-1, IL-12, IL-2, IL-4, IL-17, and IFN-γ, and kill gastric cancer tissues by photothermal therapy via direct injection into tumor site under near-infrared (NIR) laser irradiation. High-performance human CIK cells labeled with Au nanorods are a good novel theranostic platform to exhibit great potential in applications such as tumor-targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy in the near future.

  6. Challenging the current approaches to multiple myeloma- and other cancer-related bone diseases: from bisphosphonates to targeted therapy.

    PubMed

    Kleber, Martina; Udi, Josefina; Metzke, Barbara; Terpos, Evangelos; Roodmann, G David; Morgan, Gareth; Dispenzieri, Angela; Einsele, Hermann; Wäsch, Ralph; Engelhardt, Monika

    2012-06-01

    An international myeloma meeting entitled "Challenging the current approaches to multiple myeloma- and other cancer-related bone diseases: from bisphosphonates to targeted therapy" was held in Freiburg, Germany in July 2011 to discuss novel insights into and approaches to myeloma bone disease and other bone-seeking tumors. This review briefly summarizes the most prominent data of the meeting and current literature on our understanding of bone disease, the role of imaging techniques, operative interventions and systemic bone-seeking treatment, all of which should further improve our future therapeutic choices.

  7. The RON receptor tyrosine kinase in pancreatic cancer pathogenesis and its potential implications for future targeted therapies.

    PubMed

    Kang, Chang Moo; Babicky, Michele L; Lowy, Andrew M

    2014-03-01

    Pancreatic cancer remains a devastating disease with a mortality rate that has not changed substantially in decades. Novel therapies are therefore desperately needed. The RON receptor tyrosine kinase has been identified as an important mediator of KRAS oncogene addiction and is overexpressed in the majority of pancreatic cancers. Preclinical studies show that inhibition of RON function decreases pancreatic cancer cell migration, invasion, and survival and can sensitize pancreatic cancer cells to chemotherapy. This article reviews the current state of knowledge regarding RON biology and pancreatic cancer and discusses its potential as a therapeutic target.

  8. Melanoma immunotherapy: historical precedents, recent successes and future prospects.

    PubMed

    Raaijmakers, Marieke I G; Rozati, Sima; Goldinger, Simone M; Widmer, Daniel S; Dummer, Reinhard; Levesque, Mitchell P

    2013-02-01

    The idea of cancer immunotherapy has been around for more than a century; however, the first immunotherapeutic ipilimumab, an anti-CTLA-4 antibody, has only recently been approved by the US FDA for melanoma. With an increasing understanding of the immune response, it is expected that more therapies will follow. This review aims to provide a general overview of immunotherapy in melanoma. We first explain the development of cancer immunotherapy more than a century ago and the general opinions about it over time. This is followed by a general overview of the immune reaction in order to give insight into the possible targets for therapy. Finally, we will discuss the current therapies for melanoma, their shortcomings and why it is important to develop patient stratification criteria. We conclude with an overview of recent discoveries and possible future therapies.

  9. Current available therapies and future directions in the treatment of malignant gliomas

    PubMed Central

    Desjardins, Annick; Reardon, David A; Vredenburgh, James J

    2009-01-01

    The prognosis of patients diagnosed with malignant glioma (MG) remains poor. However, recent advances in neuro-oncology allowing a better understanding of this particular disease have allowed the development of new therapeutics. Many molecular genetic and signal transduction pathway targets have been identified that are now being investigated. Novel locoregional treatments, as well as strategies to improve regional delivery, are being evaluated. Studies of combinations of these approaches are also underway. In this review, we will discuss the current and future therapies under evaluation for the treatment of malignant gliomas. PMID:19707392

  10. Novel and Experimental Therapies in Chronic Pancreatitis.

    PubMed

    Jagannath, Soumya; Garg, Pramod Kumar

    2017-07-01

    Chronic pancreatitis (CP) is a progressive inflammatory disease of the pancreas. The currently available treatment of CP is aimed at controlling symptoms and managing complications. Unfortunately, no specific treatment is available to halt the progression of the disease process because the pathophysiological perturbations in CP are not well understood. In this review, we discuss various therapeutic targets and investigational agents acting on these targets. Among these, therapies modulating immune cells and those acting on pancreatic stellate cells appear promising and may translate into clinical benefit in near future. However, these experimental therapies are mostly in animal models and they do not recapitulate all aspects of human disease. Still they may be beneficial in developing effective therapeutic modalities to curb inflammation in chronic pancreatitis.

  11. Back to the future: therapies for idiopathic nephrotic syndrome.

    PubMed

    Gibson, Keisha L; Glenn, Dorey; Ferris, Maria E

    2015-01-01

    Roughly 20-40% of individuals with idiopathic nephrotic syndrome will fail to respond to standard therapies and have a high risk of progression to end stage kidney disease (ESKD). In the last 50 years, no new therapies have been approved specifically for the treatment of these individuals with recalcitrant disease. Recent in vitro, translational, and clinical studies have identified novel targets and pathways that not only expand our understanding of the complex pathophysiology of proteinuric disease but also provide an opportunity to challenge the tradition of relying on histologic classification of nephrotic diseases to make treatment decisions. The traditional methods of directing the care of individuals with nephrotic syndrome by histological classification or deciding second line therapies on the basis of steroid-responsiveness may soon yield customizing therapies based on our expanding understanding of molecular targets. Important non-immunologic mechanisms of widely used immunosuppressive therapies may be just as important in palliating proteinuric disease as proposed immunologic functions. © 2015 S. Karger AG, Basel.

  12. Customization of therapy for gastroesophageal adenocarcinoma patients.

    PubMed

    Mizrak Kaya, Dilsa; Harada, Kazuto; Amlashi, Fatemeh G; Vasilakopoulou, Maria; Ajani, Jaffer A

    2018-03-01

    Gastroesophageal adenocarcinomas (GEACs) remain a global health problem. These are most often diagnosed at advanced stage and the estimated 5-year relative survival rate is about 5%. Although cure is not possible for patients with advanced GEAC, systemic therapy (chemotherapy or biochemotherapy) can palliate symptoms, improve survival and provide a better quality of life. One of the most promising options for some patients with advanced stage GEAC is immunotherapy, which can result in durable responses. Numerous phase III trials evaluating targeted therapies in different lines are ongoing and it is hoped that better biomarkers will emerge to identify patients who can benefit from targeted agents and immunotherapy in the future. Surgery remains as the corner stone for localized GEAC and adjunctive therapies can increase the survival rates by about 10%. The high toxicity and low completion rates of adjuvant therapy led to the strategies of preoperative treatment. With the results of ongoing pre-operative therapy trials we will be able to determine the optimal adjunctive approach for resectable GEAC.

  13. Iron chelation therapy in transfusion-dependent thalassemia patients: current strategies and future directions

    PubMed Central

    Saliba, Antoine N; Harb, Afif R; Taher, Ali T

    2015-01-01

    Transfusional iron overload is a major target in the care of patients with transfusion-dependent thalassemia (TDT) and other refractory anemias. Iron accumulates in the liver, heart, and endocrine organs leading to a wide array of complications. In this review, we summarize the characteristics of the approved iron chelators, deferoxamine, deferiprone, and deferasirox, and the evidence behind the use of each, as monotherapy or as part of combination therapy. We also review the different guidelines on iron chelation in TDT. This review also discusses future prospects and directions in the treatment of transfusional iron overload in TDT whether through innovation in chelation or other therapies, such as novel agents that improve transfusion dependence. PMID:26124688

  14. Strategy of Cancer Targeting Gene-Viro-Therapy (CTGVT) a trend in both cancer gene therapy and cancer virotherapy.

    PubMed

    Liu, Xin-Yuan; Li, Hua-Guang; Zhang, Kang-Jian; Gu, Jin-Fa

    2012-07-01

    Cancer Targeting Gene-Viro-Therapy (CTGVT) and Gene Armed Oncolytic Virus Therapy (GAOVT) both are identical by inserting an antitumor gene into an oncolytic virus. This approach has gradually become a hot topic in cancer therapy, because that CTGVT (GAOVT) has much higher antitumor than that of either gene therapy alone or oncolytic virotherapy alone. We proposed the CTGVT strategy in 1999-2001, insisted it as a long term systematic approach to be examined over 10 years and have published 68 SCI papers some in good Journals. The CD gene armed oncolytic adenovirus therapy (GAOVT) for cancer treatment with potent antitumor effect was also named in our laboratory in 2003. Several modifications to CTGVT will be carried out by our group and will be introduced briefly in this paper. Most importantly, the modifications of CTGVT usually resulted in complete eradication of xenograft tumors in nude mice. In future best antitumor drugs may emerge from the modified CTGVT strategy and not from either gene therapy or virotherapy alone.

  15. Lung capillary injury and repair in left heart disease: a new target for therapy?

    PubMed

    Azarbar, Sayena; Dupuis, Jocelyn

    2014-07-01

    The lungs are the primary organs affected in LHD (left heart disease). Increased left atrial pressure leads to pulmonary alveolar-capillary stress failure, resulting in cycles of alveolar wall injury and repair. The reparative process causes the proliferation of MYFs (myofibroblasts) with fibrosis and extracellular matrix deposition, resulting in thickening of the alveolar wall. Although the resultant reduction in vascular permeability is initially protective against pulmonary oedema, the process becomes maladaptive causing a restrictive lung syndrome with impaired gas exchange. This pathological process may also contribute to PH (pulmonary hypertension) due to LHD. Few clinical trials have specifically evaluated lung structural remodelling and the effect of related therapies in LHD. Currently approved treatment for chronic HF (heart failure) may have direct beneficial effects on lung structural remodelling. In the future, novel therapies specifically targeting the remodelling processes may potentially be utilized. In the present review, we summarize data supporting the clinical importance and pathophysiological mechanisms of lung structural remodelling in LHD and propose that this pathophysiological process should be explored further in pre-clinical studies and future therapeutic trials.

  16. RNA-Targeted Therapeutics.

    PubMed

    Crooke, Stanley T; Witztum, Joseph L; Bennett, C Frank; Baker, Brenda F

    2018-04-03

    RNA-targeted therapies represent a platform for drug discovery involving chemically modified oligonucleotides, a wide range of cellular RNAs, and a novel target-binding motif, Watson-Crick base pairing. Numerous hurdles considered by many to be impassable have been overcome. Today, four RNA-targeted therapies are approved for commercial use for indications as diverse as Spinal Muscular Atrophy (SMA) and reduction of low-density lipoprotein cholesterol (LDL-C) and by routes of administration including subcutaneous, intravitreal, and intrathecal delivery. The technology is efficient and supports approaching "undruggable" targets. Three additional agents are progressing through registration, and more are in clinical development, representing several chemical and structural classes. Moreover, progress in understanding the molecular mechanisms by which these drugs work has led to steadily better clinical performance and a wide range of mechanisms that may be exploited for therapeutic purposes. Here we summarize the progress, future challenges, and opportunities for this drug discovery platform. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    PubMed

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology.

  18. Reducing myocardial infarct size: challenges and future opportunities

    PubMed Central

    Bulluck, Heerajnarain; Yellon, Derek M; Hausenloy, Derek J

    2016-01-01

    Despite prompt reperfusion by primary percutaneous coronary intervention (PPCI), the mortality and morbidity of patients presenting with an acute ST-segment elevation myocardial infarction (STEMI) remain significant with 9% death and 10% heart failure at 1 year. In these patients, one important neglected therapeutic target is ‘myocardial reperfusion injury’, a term given to the cardiomyocyte death and microvascular dysfunction which occurs on reperfusing ischaemic myocardium. A number of cardioprotective therapies (both mechanical and pharmacological), which are known to target myocardial reperfusion injury, have been shown to reduce myocardial infarct (MI) size in small proof-of-concept clinical studies—however, being able to demonstrate improved clinical outcomes has been elusive. In this article, we review the challenges facing clinical cardioprotection research, and highlight future therapies for reducing MI size and preventing heart failure in patients presenting with STEMI at risk of myocardial reperfusion injury. PMID:26674987

  19. mTOR Inhibitors in Children: Current Indications and Future Directions in Neurology.

    PubMed

    Jeong, Anna; Wong, Michael

    2016-12-01

    The mammalian/mechanistic target of rapamycin (mTOR) pathway is a key signaling pathway that has been implicated in genetic epilepsy syndromes, neurodegenerative diseases, and conditions associated with autism spectrum disorder and cognitive impairment. The mTOR pathway has become an exciting treatment target for these various disorders, with mTOR inhibitors such as rapamycin being studied for their potential therapeutic applications. In particular, tuberous sclerosis complex (TSC) is a genetic disorder resulting from overactivation of the mTOR pathway, and pharmacologic therapy with mTOR inhibitors has emerged as a viable treatment option for the systemic manifestations of the disease. In this review, we discuss the approved indications for mTOR inhibitors in TSC, the potential future applications of mTOR inhibitors in TSC and other neurological conditions, and the safety considerations applicable to mTOR therapy in the pediatric population.

  20. Drug resistance in leishmaniasis: current drug-delivery systems and future perspectives.

    PubMed

    Yasinzai, Masoom; Khan, Momin; Nadhman, Akhtar; Shahnaz, Gul

    2013-10-01

    Leishmaniasis is a complex of diseases with numerous clinical manifestations for instance harshness from skin lesions to severe disfigurement and chronic systemic infection in the liver and spleen. So far, the most classical leishmaniasis therapy, despite its documented toxicities, remains pentavalent antimonial compounds. The arvailable therapeutic modalities for leishmaniasis are overwhelmed with resistance to leishmaniasis therapy. Mechanisms of classical drug resistance are often related with the lower drug uptake, increased efflux, the faster drug metabolism, drug target modifications and over-expression of drug transporters. The high prevalence of leishmaniasis and the appearance of resistance to classical drugs reveal the demand to develop and explore novel, less toxic, low cost and more promising therapeutic modalities. The review describes the mechanisms of classical drug resistance and potential drug targets in Leishmania infection. Moreover, current drug-delivery systems and future perspectives towards Leishmaniasis treatment are also covered.

  1. Molecular biology of anal squamous cell carcinoma: implications for future research and clinical intervention.

    PubMed

    Bernardi, Maria-Pia; Ngan, Samuel Y; Michael, Michael; Lynch, A Craig; Heriot, Alexander G; Ramsay, Robert G; Phillips, Wayne A

    2015-12-01

    Anal squamous cell carcinoma is a human papillomavirus-related disease, in which no substantial advances in treatment have been made in over 40 years, especially for those patients who develop disease relapse and for whom no surgical options exist. HPV can evade the immune system and its role in disease progression can be exploited in novel immunotherapy platforms. Although several studies have investigated the expression and inactivation (through loss of heterozygosity) of tumour suppressor genes in the pathways to cancer, no clinically valuable biomarkers have emerged. Regulators of apoptosis, including survivin, and agents targeting the PI3K/AKT pathway, offer opportunities for targeted therapy, although robust data are scarce. Additionally, antibody therapy targeting EGFR may prove effective, although its safety profile in combination with standard chemoradiotherapy has proven to be suboptimal. Finally, progress in the treatment of anal cancer has remained stagnant due to a lack of preclinical models, including cell lines and mouse models. In this Review, we discuss the molecular biology of anal squamous cell carcinoma, clinical trials in progress, and implications for novel therapeutic targets. Future work should focus on preclinical models to provide a resource for investigation of new molecular pathways and for testing novel targets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Targeting c-Met in Cancer by MicroRNAs: Potential Therapeutic Applications in Hepatocellular Carcinoma.

    PubMed

    Karagonlar, Zeynep F; Korhan, Peyda; Atabey, Neşe

    2015-11-01

    Preclinical Research Cancer is one of the world's deadliest diseases, with very low survival rates and increased occurrence in the future. Successfully developed target-based therapies have significantly changed cancer treatment. However, primary and/or acquired resistance in the tumor is a major challenge in current therapies and novel combinational therapies are required. RNA interference-mediated gene inactivation, alone or in combination with other current therapies, provides novel promising therapeutics that can improve cure rate and overcome resistance mechanisms to conventional therapeutics. Hepatocyte Growth Factor/c-Met signaling is one of the most frequently dysregulated pathways in human cancers and abnormal c-Met activation is correlated with poor clinical outcomes and drug resistance in hepatocellular carcinoma (HCC). In recent years, a growing number of studies have identified several inhibitors and microRNAs (miRNAs), specifically targeting c-Met in various cancers, including HCC. In this review, we discuss current knowledge regarding miRNAs, focusing on their involvement in cancer and their potential as research tools and therapeutics. Then, we focus on the potential use of c-Met targeting miRNAs for suppressing aberrant c-Met signaling in HCC treatment. © 2015 Wiley Periodicals, Inc.

  3. Nanoparticle-mediated inhibition of survivin to overcome drug resistance in cancer therapy.

    PubMed

    Wang, Shengpeng; Xu, Yingqi; Chan, Hon Fai; Kim, Hae-Won; Wang, Yitao; Leong, Kam W; Chen, Meiwan

    2016-10-28

    The acquired resistance of human cancer cells to apoptosis is one of the defining hallmarks of cancer. Upregulated expression of inhibitors of apoptosis proteins (IAP) has been implicated in drug resistance in several cancers. Survivin (encoded by BIRC5), the smallest member of the IAP family, has been correlated with both the control of cell apoptosis and regulation of cell mitosis in cancer. Owing to its critical role in regulation of cell survival and development of cancer resistance, as well as its distinguishingly high level of expression in many types of cancer, survivin has long been regarded as a promising therapeutic target for cancer therapy. This review first presents an overview of the mechanism by which survivin regulates cell function, followed by a discussion of the current state of survivin-targeted therapies. We focus on the application of nanoparticulate systems to deliver survivin inhibitors, co-delivery of survivin inhibitors with chemotherapeutic agents, synchronous targeting of survivin, other drug resistant molecules, and survivin regulators. We conclude by highlighting the current limitations associated with survivin-targeted therapies and speculating on the future strategies to surmount these impediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The prospect of gene therapy for prostate cancer: update on theory and status.

    PubMed

    Koeneman, K S; Hsieh, J T

    2001-09-01

    Molecularly based novel therapeutic agents are needed to address the problem of locally recurrent, or metastatic, advanced hormone-refractory prostate cancer. Recent basic science advances in mechanisms of gene expression, vector delivery, and targeting have rendered clinically relevant gene therapy to the prostatic fossa and distant sites feasible in the near future. Current research and clinical investigative efforts involving methods for more effective vector delivery and targeting, with enhanced gene expression to selected (specific) sites, are reviewed. These areas of research involve tissue-specific promoters, transgene exploration, vector design and delivery, and selective vector targeting. The 'vectorology' involved mainly addresses selective tissue homing with ligands, mechanisms of innate immune system evasion for durable transgene expression, and the possibility of repeat administration.

  5. Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: New discoveries and practical insights for drug development.

    PubMed

    Costa, Ricardo; Shah, Ami N; Santa-Maria, Cesar A; Cruz, Marcelo R; Mahalingam, Devalingam; Carneiro, Benedito A; Chae, Young Kwang; Cristofanilli, Massimo; Gradishar, William J; Giles, Francis J

    2017-02-01

    Triple negative breast cancer (TNBC) accounts for 10-20% of cases in breast cancer. Despite recent advances in the treatment of hormonal receptor+ and HER2+ breast cancers, there are no targeted therapies available for TNBC. Evidence supports that most patients with TNBC express the transmembrane Epidermal Growth Factor Receptor (EGFR). However, early phase clinical trials failed to demonstrate significant activity of EGFR-targeted monoclonal antibodies and/or tyrosine kinase inhibitors. Here, we review the recent discoveries related to the underlying biology of the EGFR pathway in TNBC, clinical progress to date and suggest rational future approaches for investigational therapies in TNBC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Advances in Bone-targeted Drug Delivery Systems for Neoadjuvant Chemotherapy for Osteosarcoma.

    PubMed

    Li, Cheng-Jun; Liu, Xiao-Zhou; Zhang, Lei; Chen, Long-Bang; Shi, Xin; Wu, Su-Jia; Zhao, Jian-Ning

    2016-05-01

    Targeted therapy for osteosarcoma includes organ, cell and molecular biological targeting; of these, organ targeting is the most mature. Bone-targeted drug delivery systems are used to concentrate chemotherapeutic drugs in bone tissues, thus potentially resolving the problem of reaching the desired foci and minimizing the toxicity and adverse effects of neoadjuvant chemotherapy. Some progress has been made in bone-targeted drug delivery systems for treatment of osteosarcoma; however, most are still at an experimental stage and there is a long transitional period to clinical application. Therefore, determining how to combine new, polymolecular and multi-pathway targets is an important research aspect of designing new bone-targeted drug delivery systems in future studies. The purpose of this article was to review the status of research on targeted therapy for osteosarcoma and to summarize the progress made thus far in developing bone-targeted drug delivery systems for neoadjuvant chemotherapy for osteosarcoma with the aim of providing new ideas for highly effective therapeutic protocols with low toxicity for patients with osteosarcoma. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  7. Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies.

    PubMed

    Hojjat-Farsangi, Mohammad

    2014-08-08

    Chemotherapeutic and cytotoxic drugs are widely used in the treatment of cancer. In spite of the improvements in the life quality of patients, their effectiveness is compromised by several disadvantages. This represents a demand for developing new effective strategies with focusing on tumor cells and minimum side effects. Targeted cancer therapies and personalized medicine have been defined as a new type of emerging treatments. Small molecule inhibitors (SMIs) are among the most effective drugs for targeted cancer therapy. The growing number of approved SMIs of receptor tyrosine kinases (RTKs) i.e., tyrosine kinase inhibitors (TKIs) in the clinical oncology imply the increasing attention and application of these therapeutic tools. Most of the current approved RTK-TKIs in preclinical and clinical settings are multi-targeted inhibitors with several side effects. Only a few specific/selective RTK-TKIs have been developed for the treatment of cancer patients. Specific/selective RTK-TKIs have shown less deleterious effects compared to multi-targeted inhibitors. This review intends to highlight the importance of specific/selective TKIs for future development with less side effects and more manageable agents. This article provides an overview of: (1) the characteristics and function of RTKs and TKIs; (2) the recent advances in the improvement of specific/selective RTK-TKIs in preclinical or clinical settings; and (3) emerging RTKs for targeted cancer therapies by TKIs.

  8. Achondroplasia: pathogenesis and implications for future treatment.

    PubMed

    Laederich, Melanie B; Horton, William A

    2010-08-01

    Although the genetic defect underlying achondroplasia has been known for over a decade, no effective therapies to stimulate bone growth have emerged. Here we review the recent literature and summarize the molecular mechanisms underlying disease pathology and examine their potential as therapeutic targets. Currently used preclinical models are discussed in the context of recent advances with a special focus on C-type natriuretic peptide. Research on the mutation in Fibroblast Growth Factor Receptor 3 (FGFR3) that causes achondroplasia suggests that disease results from increased signal transduction from the mutant receptor. Thus, current therapeutic strategies have focused on reducing signals emanating from FGFR3. First-generation therapies directly targeting FGFR3, such as kinase inhibitors and neutralizing antibodies, designed for targeting FGFR3 in cancer, are still in the preclinical phase and have yet to translate into the management of achondroplasia. Counteracting signal transduction pathways downstream of FGFR3 holds promise with the discovery that administration of C-type natriuretic peptide to achondroplastic mice ameliorates their clinical phenotype. However, more research into long-term effectiveness and safety of this strategy is needed. Direct targeting of therapeutic agents to growth plate cartilage may enhance efficacy and minimize side effects of these and future therapies. Current research into the pathogenesis of achondroplasia has expanded our understanding of the mechanisms of FGFR3-induced disease and has increased the number of approaches that we may use to potentially correct it. Further research is needed to validate these approaches in preclinical models of achondroplasia.

  9. Current Status and Prospects of Gene Therapy for the Inner Ear

    PubMed Central

    Huang, Aji

    2011-01-01

    Abstract Inner ear diseases are common and often result in hearing disability. Sensorineural hearing loss is the main cause of hearing disability. So far, no effective treatment is available although some patients may benefit from a hearing aid equipped with a hearing amplifier or from cochlear implantation. Inner ear gene therapy has become an emerging field of study for the treatment of hearing disability. Numerous new discoveries and tremendous advances have been made in inner ear gene therapy including gene vectors, routes of administration, and therapeutic genes and targets. Gene therapy may become a treatment option for inner ear diseases in the near future. In this review, we summarize the current state of inner ear gene therapy including gene vectors, delivery routes, and therapeutic genes and targets by examining and analyzing publications on inner ear gene therapy from the literature and patent documents, and identify promising patents, novel techniques, and vital research projects. We also discuss the progress and prospects of inner ear gene therapy, the advances and shortcomings, with possible solutions in this field of research. PMID:21338273

  10. Micro-RNAs as Potential Predictors of Response to Breast Cancer Systemic Therapy: Future Clinical Implications

    PubMed Central

    Campos-Parra, Alma D.; Cuamani Mitznahuatl, Gerardo; Pedroza-Torres, Abraham; Vázquez Romo, Rafael; Porras Reyes, Fany Iris; López-Urrutia, Eduardo; Pérez-Plasencia, Carlos

    2017-01-01

    Despite advances in diagnosis and new treatments such as targeted therapies, breast cancer (BC) is still the most prevalent tumor in women worldwide and the leading cause of death. The principal obstacle for successful BC treatment is the acquired or de novo resistance of the tumors to the systemic therapy (chemotherapy, endocrine, and targeted therapies) that patients receive. In the era of personalized treatment, several studies have focused on the search for biomarkers capable of predicting the response to this therapy; microRNAs (miRNAs) stand out among these markers due to their broad spectrum or potential clinical applications. miRNAs are conserved small non-coding RNAs that act as negative regulators of gene expression playing an important role in several cellular processes, such as cell proliferation, autophagy, genomic stability, and apoptosis. We reviewed recent data that describe the role of miRNAs as potential predictors of response to systemic treatments in BC. Furthermore, upon analyzing the collected published information, we noticed that the overexpression of miR-155, miR-222, miR-125b, and miR-21 predicts the resistance to the most common systemic treatments; nonetheless, the function of these particular miRNAs must be carefully studied and further analyses are still necessary to increase knowledge about their role and future potential clinical uses in BC. PMID:28574440

  11. Micro-RNAs as Potential Predictors of Response to Breast Cancer Systemic Therapy: Future Clinical Implications.

    PubMed

    Campos-Parra, Alma D; Mitznahuatl, Gerardo Cuamani; Pedroza-Torres, Abraham; Romo, Rafael Vázquez; Reyes, Fany Iris Porras; López-Urrutia, Eduardo; Pérez-Plasencia, Carlos

    2017-06-02

    Despite advances in diagnosis and new treatments such as targeted therapies, breast cancer (BC) is still the most prevalent tumor in women worldwide and the leading cause of death. The principal obstacle for successful BC treatment is the acquired or de novo resistance of the tumors to the systemic therapy (chemotherapy, endocrine, and targeted therapies) that patients receive. In the era of personalized treatment, several studies have focused on the search for biomarkers capable of predicting the response to this therapy; microRNAs (miRNAs) stand out among these markers due to their broad spectrum or potential clinical applications. miRNAs are conserved small non-coding RNAs that act as negative regulators of gene expression playing an important role in several cellular processes, such as cell proliferation, autophagy, genomic stability, and apoptosis. We reviewed recent data that describe the role of miRNAs as potential predictors of response to systemic treatments in BC. Furthermore, upon analyzing the collected published information, we noticed that the overexpression of miR-155, miR-222, miR-125b, and miR-21 predicts the resistance to the most common systemic treatments; nonetheless, the function of these particular miRNAs must be carefully studied and further analyses are still necessary to increase knowledge about their role and future potential clinical uses in BC.

  12. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene.

    PubMed

    Hong, Hao; Yang, Kai; Zhang, Yin; Engle, Jonathan W; Feng, Liangzhu; Yang, Yunan; Nayak, Tapas R; Goel, Shreya; Bean, Jero; Theuer, Charles P; Barnhart, Todd E; Liu, Zhuang; Cai, Weibo

    2012-03-27

    Herein we demonstrate that nanographene can be specifically directed to the tumor neovasculature in vivo through targeting of CD105 (i.e., endoglin), a vascular marker for tumor angiogenesis. The covalently functionalized nanographene oxide (GO) exhibited excellent stability and target specificity. Pharmacokinetics and tumor targeting efficacy of the GO conjugates were investigated with serial noninvasive positron emission tomography imaging and biodistribution studies, which were validated by in vitro, in vivo, and ex vivo experiments. The incorporation of an active targeting ligand (TRC105, a monoclonal antibody that binds to CD105) led to significantly improved tumor uptake of functionalized GO, which was specific for the neovasculature with little extravasation, warranting future investigation of these GO conjugates for cancer-targeted drug delivery and/or photothermal therapy to enhance therapeutic efficacy. Since poor extravasation is a major hurdle for nanomaterial-based tumor targeting in vivo, this study also establishes CD105 as a promising vascular target for future cancer nanomedicine. © 2012 American Chemical Society

  13. Brain metastasis and treatment

    PubMed Central

    Ahluwalia, Manmeet S.; Vogelbaum, Michael V.; Chao, Samuel T.

    2014-01-01

    Despite major therapeutic advances in the management of patients with systemic malignancies, management of brain metastases remains a significant challenge. These patients often require multidisciplinary care that includes surgical resection, radiation therapy, chemotherapy, and targeted therapies. Complex decisions about the sequencing of therapies to control extracranial and intracranial disease require input from neurosurgeons, radiation oncologists, and medical/neuro-oncologists. With advances in understanding of the biology of brain metastases, molecularly defined disease subsets and the advent of targeted therapy as well as immunotherapeutic agents offer promise. Future care of these patients will entail tailoring treatment based on host (performance status and age) and tumor (molecular cytogenetic characteristics, number of metastases, and extracranial disease status) factors. Considerable work involving preclinical models and better clinical trial designs that focus not only on effective control of tumor but also on quality of life and neurocognition needs to be done to improve the outcome of these patients. PMID:25580268

  14. Future and Advances in Endoscopy

    PubMed Central

    Elahi, Sakib F.; Wang, Thomas D.

    2012-01-01

    The future of endoscopy will be dictated by rapid technological advances in the development of light sources, optical fibers, and miniature scanners that will allow for images to be collected in multiple spectral regimes, with greater tissue penetration, and in three dimensions. These engineering breakthroughs will be integrated with novel molecular probes that are highly specific for unique proteins to target diseased tissues. Applications include early cancer detection by imaging molecular changes that occur before gross morphological abnormalities, personalized medicine by visualizing molecular targets specific to individual patients, and image guided therapy by localizing tumor margins and monitoring for recurrence. PMID:21751414

  15. The rationale for microcirculatory guided fluid therapy.

    PubMed

    Ince, Can

    2014-06-01

    The ultimate purpose of fluid administration in states of hypovolemia is to correct cardiac output to improve microcirculatory perfusion and tissue oxygenation. Observation of the microcirculation using handheld microscopes gives insight into the nature of convective and diffusive defect in hypovolemia. The purpose of this article is to introduce a new platform for hemodynamic-targeted fluid therapy based on the correction of tissue and microcirculatory perfusion assumed to be at risk during hypovolemia. Targeting systemic hemodynamic targets and/or clinical surrogates of hypovolemia gives inadequate guarantee for the correction of tissue perfusion by fluid therapy especially in conditions of distributive shock as occur in inflammation and sepsis. Findings are presented, which support the idea that only clinical signs of hypovolemia associated with low microcirculatory flow can be expected to benefit from fluid therapy and that fluid overload causes a defect in the diffusion of oxygen transport. We hypothesized that the optimal amount of fluid needed for correction of hypovolemia is defined by a physiologically based functional microcirculatory hemodynamic platform where convection and diffusion need to be optimized. Future clinical trials using handheld microscopes able to automatically evaluate the microcirculation at the bedside will show whether such a platform will indeed optimize fluid therapy.

  16. Technological Advances In The Surgical Treatment Of Movement Disorders

    PubMed Central

    Gross, Robert E.; McDougal, Margaret E.

    2013-01-01

    Technological innovations have driven the advancement of the surgical treatment of movement disorders, from the invention of the stereotactic frame to the adaptation of deep brain stimulation (DBS). Along these lines, this review will describe recent advances in getting neuromodulation modalities, including DBS, to the target; and in the delivery of therapy at the target. Recent radiological advances are altering the way that DBS leads are targeted and inserted, by refining the ability to visualize the subcortical targets using high-field strength MRI and other innovations such as diffusion tensor imaging, and the development of novel targeting devices enabling purely anatomical implantations without the need for neurophysiological monitoring. New portable CT scanners also are facilitating lead implantation without monitoring as well as improving radiological verification of DBS lead location. Advances in neurophysiological mapping include efforts to develop automatic target verification algorithms, and probabilistic maps to guide target selection. The delivery of therapy at the target is being improved by the development of the next generation of internal pulse generators (IPGs). These include constant current devices that mitigate the variability introduced by impedance changes of the stimulated tissue, and in the near future, devices that deliver novel stimulation patterns with improved efficiency. Closed-loop adaptive IPGs are being tested, which may tailor stimulation to ongoing changes in the nervous system reflected in Œbiomarkers1 continuously recorded by the devices. Finer grained DBS leads, in conjunction with new IPGs and advanced programming tools, may offer improved outcomes via Œcurrent steering1 algorithms. Finally, even thermocoagulation - essentially replaced by DBS - is being advanced by new Œminimally-invasive1 approaches that may improve this therapy for selected patients in whom it may be preferred. Functional neurosurgery has a history of being driven by technological innovation, a tradition that continues into its future. PMID:23812894

  17. MUC4 mucin- a therapeutic target for pancreatic ductal adenocarcinoma.

    PubMed

    Gautam, Shailendra K; Kumar, Sushil; Cannon, Andrew; Hall, Bradley; Bhatia, Rakesh; Nasser, Mohd Wasim; Mahapatra, Sidharth; Batra, Surinder K; Jain, Maneesh

    2017-07-01

    Pancreatic cancer (PC) is characterized by mucin overexpression. MUC4 is the most differentially overexpressed membrane-bound mucin that plays a functional role in disease progression and therapy resistance. Area covered: We describe the clinicopathological significance of MUC4, summarize mechanisms contributing to its deregulated expression, review preclinical studies aimed at inhibiting MUC4, and discuss how MUC4 overexpression provides opportunities for developing targeted therapies. Finally, we discuss the challenges for developing MUC4-based therapeutics, and identify areas where efforts should be directed to effectively exploit MUC4 as a therapeutic target for PC. Expert opinion: Studies demonstrating that abrogation of MUC4 expression reduces proliferation and metastasis of PC cells and enhances sensitivity to therapeutic agents affirm its utility as a therapeutic target. Emerging evidence also supports the suitability of MUC4 as a potential immunotherapy target. However, these studies have been limited to in vitro, ex vivo or in vivo approaches using xenograft tumors in immunodeficient murine models. For translational relevance, MUC4-targeted therapies should be evaluated in murine models with intact immune system and accurate tumor microenvironment. Additionally, future studies evaluating MUC4 as a target for immunotherapy must entail characterization of immune response in PC patients and investigate its association with immunosuppression and survival.

  18. Practical and molecular evaluation of colorectal cancer: new roles for the pathologist in the era of targeted therapy.

    PubMed

    De Hertogh, Gert; Geboes, Karen Paula

    2010-06-01

    Colorectal cancer is the third most common cancer and the fourth most common cause of cancer death worldwide. Patient cases are discussed in multidisciplinary meetings to decide on the best management on an individual basis. Until recently, the main task of the pathologist in such teams was to provide clinically useful reports comprising staging of colorectal cancer in surgical specimens. The advent of total mesorectal excision and the application of anti-epidermal growth factor receptor (EGFR)-targeted therapies for selected patients with metastasized colorectal cancer have changed the role of the pathologist. To present the traditional role of the pathologist in the multidisciplinary team treating patients with colorectal cancer, to address the technique of total mesorectal excision and its implications for the evaluation of surgical specimens, to offer background information on the various EGFR-targeted therapies, and to review the currently investigated tissue biomarkers assumed to be predictive for efficacy of such therapies, with a focus on the role of the pathologist in determining the status of such biomarkers in individual tumors. This article is based on selected articles pertaining to biopsy evaluation of colorectal carcinoma and reviews of EGFR-targeted therapies for this cancer. All references are accessible via the PubMed database (US National Library of Medicine and the National Institutes of Health). Pathologists play an increasingly important role in the diagnosis and management of colorectal cancer because of the advent of new surgical techniques and of targeted therapies. It is expected that this role will increase further in the near future.

  19. Nanocarriers for nuclear imaging and radiotherapy of cancer.

    PubMed

    Mitra, Amitava; Nan, Anjan; Line, Bruce R; Ghandehari, Hamidreza

    2006-01-01

    Several nanoscale carriers (nanoparticles, liposomes, water-soluble polymers, micelles and dendrimers) have been developed for targeted delivery of cancer diagnostic and therapeutic agents. These carriers can selectively target cancer sites and carry large payloads, thereby improving cancer detection and therapy effectiveness. Further, the combination of newer nuclear imaging techniques providing high sensitivity and spatial resolution such as dual modality imaging with positron emission tomography/computed tomography (PET/CT) and use of nanoscale devices to carry diagnostic and therapeutic radionuclides with high target specificity can enable more accurate detection, staging and therapy planning of cancer. The successful clinical applications of radiolabeled monoclonal antibodies for cancer detection and therapy bode well for the future of nanoscale carrier systems in clinical oncology. Several radiolabeled multifunctional nanocarriers have been effective in detecting and treating cancer in animal models. Nonetheless, further preclinical, clinical and long-term toxicity studies will be required to translate this technology to the care of patients with cancer. The objective of this review is to present a brief but comprehensive overview of the various nuclear imaging techniques and the use of nanocarriers to deliver radionuclides for the diagnosis and therapy of cancer.

  20. Se@SiO2-FA-CuS nanocomposites for targeted delivery of DOX and nano selenium in synergistic combination of chemo-photothermal therapy.

    PubMed

    Wang, Yeying; Liu, Xijian; Deng, Guoying; Sun, Jian; Yuan, Haikuan; Li, Qi; Wang, Qiugeng; Lu, Jie

    2018-02-08

    In this study, a versatile tumor-targeted and multi-stimuli-responsive drug delivery vehicle (Se particle@porous silica-folic acid-copper sulfide/doxorubicin (Se@SiO 2 -FA-CuS/DOX)) was fabricated for combined photothermal therapy with chemotherapy in cancer treatment. Due to excellent targeting ability, the Se@SiO 2 -FA-CuS/DOX nanocomposites actively accumulated in tumor tissues and thus provided photothermal therapy under NIR irradiation and chemotherapy through the release of DOX and Se. Owing to the synergistic effect of chemotherapy (Se and DOX) and photothermal therapy, the Se@SiO 2 -FA-CuS/DOX nanocomposites could efficiently inhibit cancer cells both in vitro and in vivo and even completely eliminate tumors. Moreover, as the toxicity of DOX could be reduced by Se, the treatment using Se@SiO 2 -FA-CuS/DOX nanocomposites exhibited no appreciable adverse reactions. Thus, the Se@SiO 2 -FA-CuS/DOX nanocomposites have great potential as a multifunctional nanoplatform in future clinical applications.

  1. The necessity of nuclear reactors for targeted radionuclide therapies.

    PubMed

    Krijger, Gerard C; Ponsard, Bernard; Harfensteller, Mark; Wolterbeek, Hubert T; Nijsen, Johannes W F

    2013-07-01

    Nuclear medicine has been contributing towards personalized therapies. Nuclear reactors are required for the working horses of both diagnosis and treatment, i.e., Tc-99m and I-131. In fact, reactors will remain necessary to fulfill the demand for a variety of radionuclides and are essential in the expanding field of targeted radionuclide therapies for cancer. However, the main reactors involved in the global supply are ageing and expected to shut down before 2025. Therefore, the fields of (nuclear) medicine, nuclear industry and politics share a global responsibility, faced with the task to secure future access to suitable nuclear reactors. At the same time, alternative production routes should be industrialized. For this, a coordinating entity should be put into place. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. iPSCs-based anti-aging therapies: Recent discoveries and future challenges.

    PubMed

    Pareja-Galeano, Helios; Sanchis-Gomar, Fabián; Pérez, Laura M; Emanuele, Enzo; Lucia, Alejandro; Gálvez, Beatriz G; Gallardo, María Esther

    2016-05-01

    The main biological hallmarks of the aging process include stem cell exhaustion and cellular senescence. Consequently, research efforts to treat age-related diseases as well as anti-aging therapies in general have recently focused on potential 'reprogramming' regenerative therapies. These new approaches are based on induced pluripotent stem cells (iPSCs), including potential in vivo reprogramming for tissue repair. Another possibility is targeting pathways of cellular senescence, e.g., through modulation of p16INK4a signaling and especially inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Here, we reviewed and discussed these recent developments together with their possible usefulness for future treatments against sarcopenia, a major age-related condition. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality

    PubMed Central

    McIntyre, Alan; Harris, Adrian L

    2015-01-01

    Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6–8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy. PMID:25700172

  4. Femara® and the future: tailoring treatment and combination therapies with Femara

    PubMed Central

    Ma, Cynthia

    2007-01-01

    Long-term estrogen deprivation treatment for breast cancer can, in some patients, lead to the activation of alternate cellular pathways, resulting in the re-emergence of the disease. This is a distressing scenario for oncologists and patients, but recent intensive molecular and biochemical studies are beginning to unravel these pathways, revealing opportunities for new targeted treatments. Far from making present therapies redundant, these new discoveries open the door to novel combination therapies that promise to provide enhanced efficacy or overcome treatment resistance. Letrozole, one of the most potent aromatase inhibitors, is the ideal candidate for combination therapy; indeed, it is one of the most intensively studied aromatase inhibitors in the evolving combinatorial setting. Complementary to the use of combination therapy is the development of molecular tools to identify patients who will benefit the most from these new treatments. Microarray gene profiling studies, designed to detect letrozole-responsive targets, are currently under way to understand how the use of the drug can be tailored more efficiently to specific patient needs. PMID:17912640

  5. Osteogenesis imperfecta: from diagnosis and multidisciplinary treatment to future perspectives.

    PubMed

    Bregou Bourgeois, Aline; Aubry-Rozier, Bérengère; Bonafé, Luisa; Laurent-Applegate, Lee; Pioletti, Dominique P; Zambelli, Pierre-Yves

    2016-01-01

    Osteogenesis imperfecta is an inherited connective tissue disorder with wide phenotypic and molecular heterogeneity. A common issue associated with the molecular abnormality is a disturbance in bone matrix synthesis and homeostasis inducing bone fragility. In very early life, this can lead to multiple fractures and progressive bone deformities, including long bone bowing and scoliosis. Multidisciplinary management improves quality of life for patients with osteogenesis imperfecta. It consists of physical therapy, medical treatment and orthopaedic surgery as necessary. Medical treatment consists of bone-remodelling drug therapy. Bisphosphonates are widely used in the treatment of moderate to severe osteogenesis imperfecta, from infancy to adulthood. Other more recent drug therapies include teriparatide and denosumab. All these therapies target the symptoms and have effects on the mechanical properties of bone due to modification of bone remodelling, therefore influencing skeletal outcome and orthopaedic surgery. Innovative therapies, such as progenitor and mesenchymal stem cell transplantation, targeting the specific altered pathway rather than the symptoms, are in the process of development.

  6. The RON Receptor Tyrosine Kinase in Pancreatic Cancer Pathogenesis and Its Potential Implications for Future Targeted Therapies

    PubMed Central

    Kang, Chang Moo; Babicky, Michele L.; Lowy, Andrew M.

    2014-01-01

    Pancreatic cancer remains a devastating disease with a mortality rate that has not changed substantially in decades. Novel therapies are therefore desperately needed. The RON receptor tyrosine kinase has been identified as an important mediator of KRAS oncogene addiction and is over-expressed in the majority of pancreatic cancers. Preclinical studies that inhibition of RON function decrease pancreatic cancer cell migration, invasion and survival and can sensitize pancreatic cancer cells to chemotherapy. This article reviews the current state of knowledge regarding RON biology and pancreatic cancer and discusses its potential as a therapeutic target. PMID:24518495

  7. Targeted Nanoparticles for Image-guided Treatment of Triple Negative Breast Cancer: Clinical Significance and Technological Advances

    PubMed Central

    Miller-Kleinhenz, Jasmine M.; Bozeman, Erica N.

    2015-01-01

    Effective treatment of triple negative breast cancer (TNBC) with its aggressive tumor biology, highly heterogeneous tumor cells, and poor prognosis requires an integrated therapeutic approach that addresses critical issues in cancer therapy. Multifunctional nanoparticles with the abilities of targeted drug delivery and non-invasive imaging for monitoring drug delivery and responses to therapy, such as theranostic nanoparticles, hold great promise towards the development of novel therapeutic approaches for the treatment of TNBC using a single therapeutic platform. The biological and pathological characteristics of TNBC provide insight into several potential molecular targets for current and future nanoparticle based therapeutics. Extensive tumor stroma, highly proliferative cells, and a high rate of drug-resistance are all barriers that must be appropriately addressed in order for these nanotherapeutic platforms to be effective. Utilization of the enhanced permeability and retention (EPR) effect coupled with active targeting of cell surface receptors expressed by TNBC cells, and tumor associated endothelial cells, stromal fibroblasts and macrophages is likely to overcome such barriers to facilitate more effective drug delivery. An in depth summary of current studies investigating targeted nanoparticles in preclinical TNBC mouse and human xenograft models is presented. This review aims to outline the current status of nanotherapeutic options for TNBC patients, identification of promising molecular targets, challenges associated with the development of targeted nanotherapeutics, the research done by our group as well as others and future perspectives on the nanomedicine field and ways to translate current preclinical studies into the clinic. PMID:25966677

  8. Ultralow-Power Near Infrared Lamp Light Operable Targeted Organic Nanoparticle Photodynamic Therapy.

    PubMed

    Huang, Ling; Li, Zhanjun; Zhao, Yang; Zhang, Yuanwei; Wu, Shuang; Zhao, Jianzhang; Han, Gang

    2016-11-09

    Tissue penetration depth is a major challenge in practical photodynamic therapy (PDT). A biocompatible and highly effective near infrared (NIR)-light-absorbing carbazole-substituted BODIPY (Car-BDP) molecule is reported as a class of imaging-guidable deep-tissue activatable photosensitizers for PDT. Car-BDP possesses an intense, broad NIR absorption band (600-800 nm) with a remarkably high singlet oxygen quantum yield (Φ Δ = 67%). After being encapsulated with biodegradable PLA-PEG-FA polymers, Car-BDP can form uniform and small organic nanoparticles that are water-soluble and tumor-targetable. Rather than using laser light, such nanoparticles offer an unprecedented deep-tissue, tumor targeting photodynamic therapeutic effect by using an exceptionally low-power-density and cost-effective lamp light (12 mW cm -2 ). In addition, these nanoparticles can be simultaneously traced in vivo due to their excellent NIR fluorescence. This study signals a major step forward in photodynamic therapy by developing a new class of NIR-absorbing biocompatible organic nanoparticles for effective targeting and treatment of deep-tissue tumors. This work also provides a potential new platform for precise tumor-targeting theranostics and novel opportunities for future affordable clinical cancer treatment.

  9. Anti-EGFR Agents: Current Status, Forecasts and Future Directions.

    PubMed

    Kwapiszewski, Radoslaw; Pawlak, Sebastian D; Adamkiewicz, Karolina

    2016-12-01

    The epidermal growth factor receptor (EGFR) is one of the most important and attractive targets for specific anticancer therapies. It is a robust regulator of pathways involved in cancer pathogenesis and progression. Thus far, clinical trials have demonstrated the benefits of monoclonal antibodies and synthetic tyrosine kinase inhibitors in targeting this receptor; however, novel strategies are still being developed. This article reviews the current state of efforts in targeting the EGFR in cancer therapy. Following a brief characterization of EGFR, we will present a complete list of anti-EGFR agents that are already approved, and available in clinical practice. Aside from the indications, we will present the sales forecasts and expiry dates of product patents for the selected agents. Finally, we discuss the novel anti-EGFR strategies that are currently in preclinical development.

  10. Future prospects in dermatologic applications of lasers, nanotechnology, and other new technologies.

    PubMed

    Boixeda, P; Feltes, F; Santiago, J L; Paoli, J

    2015-04-01

    We review novel technologies with diagnostic and therapeutic applications in dermatology. Among the diagnostic techniques that promise to become part of dermatologic practice in the future are optical coherence tomography, multiphoton laser scanning microscopy, Raman spectroscopy, thermography, and 7-T magnetic resonance imaging. Advances in therapy include novel light-based treatments, such as those applying lasers to new targets and in new wavelengths. Devices for home therapy are also appearing. We comment on the therapeutic uses of plasma, ultrasound, radiofrequency energy, total reflection amplification of spontaneous emission of radiation, light stimulation, and transepidermal drug delivery. Finally, we mention some basic developments in nanotechnology with prospects for future application in dermatology. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  11. Republished review: Gene therapy for ocular diseases.

    PubMed

    Liu, Melissa M; Tuo, Jingsheng; Chan, Chi-Chao

    2011-07-01

    The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.

  12. Gene therapy for ocular diseases.

    PubMed

    Liu, Melissa M; Tuo, Jingsheng; Chan, Chi-Chao

    2011-05-01

    The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.

  13. Targeted therapy in biliary tract cancers-current limitations and potentials in the future.

    PubMed

    Sahu, Selley; Sun, Weijing

    2017-04-01

    Biliary tract cancers (BTC)/Cholangiocarcinoma (CCA) is an aggressive biliary tract epithelial malignancy from varying locations within the biliary tree with cholangiocyte depreciation., including intrahepatic cholangiocarcinoma (iCCA) (iCCA), extrahepatic cholangiocarcinoma (eCCA) and gallbladder carcinoma (GBC). The disease is largely heterogeneous in etiology, epidemiology, and molecular profile. There are limited treatment options and low survival rates for those patients with advanced or metastatic disease. Systemic treatment is confined to cytotoxic chemotherapy with the combination of gemcitabine and cisplatin. Lack of a stereotype genetic signature makes difficult in identification of potential actionable target directly, which may also explain lack of obvious clinic benefit with target oriented agents from current studies. It is crucial to understand of BTC carcinogenesis, tumor-stroma interactions, and key molecular pathways, and herald to establish targeted, individualized therapies for the heterogeneous disease, and eventually to improve the survival and overall outcome of patients.

  14. Towards a balanced value business model for personalized medicine: an outlook.

    PubMed

    Koelsch, Christof; Przewrocka, Joanna; Keeling, Peter

    2013-01-01

    Novel targeted drugs, mainly in oncology, have commanded substantial price premiums in the recent past. Consequently, the attention of pharmaceutical companies has shifted away from the traditional low-price and high-volume blockbuster business model to drugs that command high, and sometimes extremely high, prices in limited markets defined by targeted patient populations. This model may have already passed its zenith, as the impact of more and more high-priced drugs coming to market substantially increases their combined burden on payors and public health finances. This article introduces a new 'balanced value' business model for personalized medicine, leveraging the emerging opportunities to reduce drug development cost and time for targeted therapies. This model allows pharmaceutical companies to charge prices for targeted therapy below the likely future thresholds for payors' willingness to pay, at the same time preserving attractive margins for the drug developers.

  15. Tyrosine kinase inhibitor induced growth factor receptor upregulation enhances the efficacy of near-infrared targeted photodynamic therapy in esophageal adenocarcinoma cell lines.

    PubMed

    Hartmans, Elmire; Linssen, Matthijs D; Sikkens, Claire; Levens, Afra; Witjes, Max J H; van Dam, Gooitzen M; Nagengast, Wouter B

    2017-05-02

    Esophageal carcinoma (EC) is a global health problem, with disappointing 5-year survival rates of only 15-25%. Near-infrared targeted photodynamic therapy (NIR-tPDT) is a novel strategy in which cancer-targeted phototoxicity is able to selectively treat malignant cells. In this in vitro report we demonstrate the applicability of antibody-based NIR-tPDT in esophageal adenocarcinoma (EAC), using the phototoxic compounds cetuximab-IRDye700DX and trastuzumab-IRDye700DX, targeting respectively epidermal growth factor receptor 1 (EGFR) and 2 (HER2). Furthermore, we demonstrate that NIR-tPDT can be made more effective by tyrosine kinase inhibitor (TKI) induced growth receptor upregulation. Together, these results unveil a novel strategy for non-invasive EAC treatment, and by pretreatment-induced receptor upregulation its future clinical application may be optimized.

  16. Combining Dopaminergic Facilitation with Robot-Assisted Upper Limb Therapy in Stroke Survivors

    PubMed Central

    Tran, Duc A.; Pajaro-Blazquez, Marta; Daneault, Jean-Francois; Gallegos, Jaime G.; Pons, Jose; Fregni, Felipe; Bonato, Paolo; Zafonte, Ross

    2016-01-01

    ABSTRACT Despite aggressive conventional therapy, lasting hemiplegia persists in a large percentage of stroke survivors. The aim of this article is to critically review the rationale behind targeting multiple sites along the motor learning network by combining robotic therapy with pharmacotherapy and virtual reality–based reward learning to alleviate upper extremity impairment in stroke survivors. Methods for personalizing pharmacologic facilitation to each individual’s unique biology are also reviewed. At the molecular level, treatment with levodopa was shown to induce long-term potentiation-like and practice-dependent plasticity. Clinically, trials combining conventional therapy with levodopa in stroke survivors yielded statistically significant but clinically unconvincing outcomes because of limited personalization, standardization, and reproducibility. Robotic therapy can induce neuroplasticity by delivering intensive, reproducible, and functionally meaningful interventions that are objective enough for the rigors of research. Robotic therapy also provides an apt platform for virtual reality, which boosts learning by engaging reward circuits. The future of stroke rehabilitation should target distinct molecular, synaptic, and cortical sites through personalized multimodal treatments to maximize motor recovery. PMID:26829074

  17. Pharmacologic therapy for acute pancreatitis

    PubMed Central

    Kambhampati, Swetha; Park, Walter; Habtezion, Aida

    2014-01-01

    While conservative management such as fluid, bowel rest, and antibiotics is the mainstay of current acute pancreatitis management, there is a lot of promise in pharmacologic therapies that target various aspects of the pathogenesis of pancreatitis. Extensive review of preclinical studies, which include assessment of therapies such as anti-secretory agents, protease inhibitors, anti-inflammatory agents, and anti-oxidants are discussed. Many of these studies have shown therapeutic benefit and improved survival in experimental models. Based on available preclinical studies, we discuss potential novel targeted pharmacologic approaches that may offer promise in the treatment of acute pancreatitis. To date a variety of clinical studies have assessed the translational potential of animal model effective experimental therapies and have shown either failure or mixed results in human studies. Despite these discouraging clinical studies, there is a great clinical need and there exist several preclinical effective therapies that await investigation in patients. Better understanding of acute pancreatitis pathophysiology and lessons learned from past clinical studies are likely to offer a great foundation upon which to expand future therapies in acute pancreatitis. PMID:25493000

  18. Ovarian stimulation in young adult cancer survivors on targeted cancer therapies

    PubMed Central

    Su, H. Irene; Connell, Meghan W.; Bazhenova, Lyudmila A.

    2016-01-01

    Objective To describe a clinical approach to and outcomes of in vitro fertilization in reproductive-aged cancer survivors on targeted cancer therapies. Design Case report Setting Academic fertility preservation program Patients The first case is of a female patient with metastatic lung cancer on long-term crizotinib, an ALK inhibitor. The second case is of a female patient with metastatic colon cancer on long-term denosumab, a RANKL antibody. Both patients presented desiring fertility. Interventions In vitro fertilization Main outcome measures Live birth and embryo banking Results The potential impact of targeted therapy on oocytes and pregnancy was investigated via literature review and pharmaceutical company inquiries. Following oncologic, fertility and psychological counseling, both survivors underwent ovarian stimulation, in vitro fertilization and preimplantation genetic screening. One couple achieved live births of dizygotic twins via gestational surrogacy. The second couple froze one euploid blastocyst for future fertility. Both survivors are stable from their cancer standpoints. Conclusion Successful fertility treatments are possible in the context of exposure to crizotinib, and denosumab. PMID:27565250

  19. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Han; Sonoda, Koh-Hei, E-mail: sonodak@med.kyushu-u.ac.jp; Hijioka, Kuniaki

    2009-04-17

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8{sup +} T cells reduced pathological preretinal NV,more » with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8{sup +} T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.« less

  20. Targeting Endothelial Function to Treat Heart Failure with Preserved Ejection Fraction: The Promise of Exercise Training

    PubMed Central

    Lemmens, Katrien; Vrints, Christiaan J.

    2017-01-01

    Although the burden of heart failure with preserved ejection fraction (HFpEF) is increasing, there is no therapy available that improves prognosis. Clinical trials using beta blockers and angiotensin converting enzyme inhibitors, cardiac-targeting drugs that reduce mortality in heart failure with reduced ejection fraction (HFrEF), have had disappointing results in HFpEF patients. A new “whole-systems” approach has been proposed for designing future HFpEF therapies, moving focus from the cardiomyocyte to the endothelium. Indeed, dysfunction of endothelial cells throughout the entire cardiovascular system is suggested as a central mechanism in HFpEF pathophysiology. The objective of this review is to provide an overview of current knowledge regarding endothelial dysfunction in HFpEF. We discuss the molecular and cellular mechanisms leading to endothelial dysfunction and the extent, presence, and prognostic importance of clinical endothelial dysfunction in different vascular beds. We also consider implications towards exercise training, a promising therapy targeting system-wide endothelial dysfunction in HFpEF. PMID:28706575

  1. Drugs targeting high-density lipoprotein cholesterol for coronary artery disease management.

    PubMed

    Katz, Pamela M; Leiter, Lawrence A

    2012-01-01

    Many patients remain at high risk for future cardiovascular events despite levels of low-density lipoprotein cholesterol (LDL-C) at, or below, target while taking statin therapy. Much effort is therefore being focused on strategies to reduce this residual risk. High-density lipoprotein cholesterol (HDL-C) is a strong, independent, inverse predictor of coronary heart disease risk and is therefore an attractive therapeutic target. Currently available agents that raise HDL-C have only modest effects and there is limited evidence of additional cardiovascular risk reduction on top of background statin therapy associated with their use. It was hoped that the use of cholesteryl ester transfer protein (CETP) inhibitors would provide additional benefit, but the results of clinical outcome studies to date have been disappointing. The results of ongoing trials with other CETP inhibitors that raise HDL-C to a greater degree and also lower LDL-C, as well as with other emerging therapies are awaited. Copyright © 2012 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  2. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization.

    PubMed

    Zhang, Han; Sonoda, Koh-Hei; Hijioka, Kuniaki; Qiao, Hong; Oshima, Yuji; Ishibashi, Tatsuro

    2009-04-17

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8+ T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8+ T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  3. Targeting cancer metabolism: dietary and pharmacological interventions

    PubMed Central

    Vernieri, Claudio; Casola, Stefano; Foiani, Marco; Pietrantonio, Filippo; de Braud, Filippo; Longo, Valter

    2016-01-01

    Most tumors display oncogene-driven reprogramming of several metabolic pathways, which are crucial to sustain their growth and proliferation. In recent years, both dietary and pharmacological approaches that target deregulated tumor metabolism are beginning to be considered for clinical applications. Dietary interventions exploit the ability of nutrient-restricted conditions to exert broad biological effects, protecting normal cells, organs and systems, while sensitizing a wide variety of cancer cells to cytotoxic therapies. On the other hand, drugs targeting enzymes or metabolites of crucial metabolic pathways can be highly specific and effective, but must be matched with a responsive tumor, which might rapidly adapt. In this Review, we illustrate how dietary and pharmacological therapies differ in their effect on tumor growth, proliferation and metabolism, and discuss the available preclinical and clinical evidence in favor or against each of them. We also indicate, when appropriate, how to optimize future investigations on metabolic therapies on the basis of tumor- and patient-related characteristics. PMID:27872127

  4. Magnetically targeted delivery of DOX loaded Cu9S5@mSiO2@Fe3O4-PEG nanocomposites for combined MR imaging and chemo/photothermal synergistic therapy

    NASA Astrophysics Data System (ADS)

    Liu, Bei; Zhang, Xinyang; Li, Chunxia; He, Fei; Chen, Yinyin; Huang, Shanshan; Jin, Dayong; Yang, Piaoping; Cheng, Ziyong; Lin, Jun

    2016-06-01

    The combination of multi-theranostic modes in a controlled fashion has received tremendous attention for the construction of cooperative therapeutic systems in nanomedicine. Herein, we have synthesized a smart magnetically targeted nanocarrier system, Cu9S5@mSiO2@Fe3O4-PEG (labelled as CMF), which integrates NIR triggered photothermal therapy, pH/NIR-responsive chemotherapy and MR imaging into one nanoplatform to enhance the therapeutic efficacy. This new multifunctional paradigm has a uniform and monodisperse sesame ball-like structure by decorating tiny Fe3O4 nanoparticles on the surface of Cu9S5@mSiO2 before a further PEG modification to improve its hydrophilicity and biocompatibility. With doxorubicin (DOX) payload, the as-obtained CMF-DOX composites can simultaneously provide an intense heating effect and enhanced DOX release upon 980 nm NIR light exposure, achieving a combined chemo/photothermal therapy. Under the influence of an external magnetic field, the magnetically targeted synergistic therapeutic effect of CMF-DOX can lead to highly superior inhibition of animal H22 tumor in vivo when compared to any of the single approaches alone. The results revealed that this Cu9S5 based magnetically targeted chemo/photothermal synergistic nanocarrier system has great promise in future MR imaging assisted tumor targeted therapy of cancer.

  5. Targeted Therapeutics in Patients With High-Grade Gliomas: Past, Present, and Future.

    PubMed

    Chen, Ricky; Cohen, Adam L; Colman, Howard

    2016-08-01

    High-grade gliomas remain incurable despite current therapies, which are plagued by high morbidity and mortality. Molecular categorization of glioma subtypes using mutations in isocitrate dehydrogenase 1/2 (IDH1/2), TP53, and ATRX; codeletion of chromosomes 1p and 19q; DNA methylation; and amplification of genes such as epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor, alpha polypeptide provides a more accurate prognostication and biologic classification than classical histopathological diagnoses, and a number of molecular markers are being incorporated in the new World Health Organization classification of gliomas. However, despite the improved understanding of the molecular subtypes of gliomas and the underlying alterations in specific signaling pathways, these observations have so far failed to result in the successful application of targeted therapies, as has occurred in other solid tumors. To date, the only targeted therapy for gliomas approved by the US Food and Drug Administration is bevacizumab, which targets vascular endothelial growth factor. EGFR remains a dominant molecular alteration in specific glioma subtypes and represents a potentially promising target, with drugs of multiple types targeting EGFR in development including vaccines, antibody drug conjugates, and chimeric antigen receptor (CAR) T cells, despite the prior failures of EGFR tyrosine kinase inhibitors. Immune therapies under investigation include checkpoint inhibitors, vaccines against tumor-associated antigens and tumor-specific antigens, pulsed dendritic cells, heat shock protein-tumor conjugates, and CAR T cells. Mutations in the IDH1/2 genes are central to gliomagenesis in a high proportion of grade II and III gliomas, and ongoing trials are examining vaccines against IDH1, small molecular inhibitors of IDH1 and IDH2, and metabolic components including NAD+ depletion to target IDH-mutated gliomas. The central role of DNA methylation in a subset of gliomas may be targetable, but better understanding of the relation between epigenetic alterations and resulting tumor biology appears necessary. Ultimately, given the prior failure of single-agent targeted therapy in high-grade gliomas, it appears that novel combinatorial therapy or targeted drugs with immunomodulatory or epigenetic approaches will likely be necessary to successfully combat these challenging tumors.

  6. Antibody-drug conjugates: Promising and efficient tools for targeted cancer therapy.

    PubMed

    Nasiri, Hadi; Valedkarimi, Zahra; Aghebati-Maleki, Leili; Majidi, Jafar

    2018-09-01

    Over the recent decades, the use of antibody-drug conjugates (ADCs) has led to a paradigm shift in cancer chemotherapy. Antibody-based treatment of various human tumors has presented dramatic efficacy and is now one of the most promising strategies used for targeted therapy of patients with a variety of malignancies, including hematological cancers and solid tumors. Monoclonal antibodies (mAbs) are able to selectively deliver cytotoxic drugs to tumor cells, which express specific antigens on their surface, and has been suggested as a novel category of agents for use in the development of anticancer targeted therapies. In contrast to conventional treatments that cause damage to healthy tissues, ADCs use mAbs to specifically attach to antigens on the surface of target cells and deliver their cytotoxic payloads. The therapeutic success of future ADCs depends on closely choosing the target antigen, increasing the potency of the cytotoxic cargo, improving the properties of the linker, and reducing drug resistance. If appropriate solutions are presented to address these issues, ADCs will play a more important role in the development of targeted therapeutics against cancer in the next years. We review the design of ADCs, and focus on how ADCs can be exploited to overcome multiple drug resistance (MDR). © 2018 Wiley Periodicals, Inc.

  7. Translational Research on the Way to Effective Therapy for Alzheimer Disease

    PubMed Central

    Rosenberg, Roger N.

    2006-01-01

    Context Alzheimer disease (AD) is a major public health issue with a prediction of 12 million Americans being affected by 2025 from the present 4 million. Molecular and genetic findings have provided significant insights into the roles that amyloid, tau, and apolipoprotein E isoforms have in the causation of AD. A central issue in AD pathogenesis is the amyloid cascade hypothesis. It states that abnormal amyloid processing and accumulation is the primary causative factor of AD and other associated neuropathologic abnormalities are of secondary consequence. It is presented to provide the rationale for novel drug and vaccination therapeutic strategies. Future research directed at prediction and prevention of AD through a genomic and proteomic analysis with identification of multiple polymorphic genes that interact, resulting in increased risk for late-onset AD, are the realistic and ultimate goals. A new approach for drug development is required, one that will emphasize a genomic and proteomic analysis to identify at-risk gene sets whose genetic expression is sufficient to cause late onset, sporadic AD. Prediction and prevention of disease prior to clinical signs and symptoms are the goals. Objective A review and analysis from electronic literature databases and subsequent reference searches of the molecular genetic data including pertinent genetic mutations and abnormal biochemical findings causal of AD, are cited. The amyloid cascade hypothesis, the contributions of apolipoprotein E, and hyperphosphorylated tau are discussed as to their roles in pathogenesis. Molecular targets for potential drug and vaccination therapies are cited from a critical assessment of the molecular and biomedical data. These data form the basis for rational, target-specific drug and vaccination therapies currently employed and planned for the near future. Phase 2 and 3 clinical trial results of drug and vaccination therapies are cited. Conclusions A new approach is needed as current pharmacologic therapy directed at symptomatic relief has proved to be marginally effective. The genomic and proteomic basis of AD will be defined in the near future, and corresponding molecular therapeutic targets will be identified. Genomic neurology has arrived and its application to resolving AD is our best hope. PMID:16275806

  8. Translational research on the way to effective therapy for Alzheimer disease.

    PubMed

    Rosenberg, Roger N

    2005-11-01

    Alzheimer disease (AD) is a major public health issue with a prediction of 12 million Americans being affected by 2025 from the present 4 million. Molecular and genetic findings have provided significant insights into the roles that amyloid, tau, and apolipoprotein E isoforms have in the causation of AD. A central issue in AD pathogenesis is the amyloid cascade hypothesis. It states that abnormal amyloid processing and accumulation is the primary causative factor of AD and other associated neuropathologic abnormalities are of secondary consequence. It is presented to provide the rationale for novel drug and vaccination therapeutic strategies. Future research directed at prediction and prevention of AD through a genomic and proteomic analysis with identification of multiple polymorphic genes that interact, resulting in increased risk for late-onset AD, are the realistic and ultimate goals. A new approach for drug development is required, one that will emphasize a genomic and proteomic analysis to identify at-risk gene sets whose genetic expression is sufficient to cause late onset, sporadic AD. Prediction and prevention of disease prior to clinical signs and symptoms are the goals. A review and analysis from electronic literature databases and subsequent reference searches of the molecular genetic data. including pertinent genetic mutations and abnormal biochemical findings causal of AD, are cited. The amyloid cascade hypothesis, the contributions of apolipoprotein E, and hyperphosphorylated tau are discussed as to their roles in pathogenesis. Molecular targets for potential drug and vaccination therapies are cited from a critical assessment of the molecular and biomedical data. These data form the basis for rational, target-specific drug and vaccination therapies currently employed and planned for the near future. Phase 2 and 3 clinical trial results of drug and vaccination therapies are cited. A new approach is needed as current pharmacologic therapy directed at symptomatic relief has proved to be marginally effective. The genomic and proteomic basis of AD will be defined in the near future, and corresponding molecular therapeutic targets will be identified. Genomic neurology has arrived and its application to resolving AD is our best hope.

  9. [Biological therapies in systemic lupus erythematosus].

    PubMed

    Cairoli, Ernesto; Espinosa, Gerard; Cervera, Ricard

    2010-07-01

    The immunosuppressive agents used in patients with systemic lupus erythematosus (SLE) have significantly improved prognosis. However, it is necessary to develop more specific immunosuppressive treatments with less toxicity. Better understanding of the mechanisms involved in the loss of tolerance in autoimmune diseases has contributed to the development of potential new treatments called biologic therapies. The targets of these biological therapies are directed toward the B cell depletion, interference in the co-stimulation signals and the blockade of cytokines. Therapies using anti-CD20 monoclonal antibodies have shown satisfactory results especially in patients with SLE refractory to conventional treatment. The biological therapies provide encouraging results that represent a possible option in the treatment of refractory patients as well as a potential therapy in the future management of SLE.

  10. RNA interference therapy: a new solution for intracranial atherosclerosis?

    PubMed Central

    Tang, Tao; Wong, Ka-Sing

    2014-01-01

    Intracranial atherosclerotic stenosis (ICAS) of a major intracranial artery, especially middle cerebral artery (MCA), is reported to be one leading cause of ischemic stroke throughout the world. Compared with other stroke subtypes, ICAS is associated with a higher risk of recurrent stroke despite aggressive medical therapy. Increased understanding of the pathophysiology of ICAS has highlighted several possible targets for therapeutic interventions. Both luminal stenosis and plaque components of ICAS have been found to be associated with ischemic stroke based a post-mortem study. Recent application of high-resolution magnetic resonance imaging (HRMRI) in evaluating ICAS provides new insight into the vascular biology of plaque morphology and component. High signal on T1-weighted fat-suppressed images (HST1) within MCA plaque of HRMRI, highly suggested of fresh or recent intraplaque hemorrhage, has been found to be associated with ipsilateral brain infarction. Thus, the higher prevalence of intraplaque hemorrhage and neovasculature in symptomatic patients with MCA stenosis may provide a potential target for plaque stabilization. We hypothesize that RNA interference (RNAi) therapy delivered by modified nanoparticles may achieve in vivo biomedical imaging and targeted therapy. With the rapid developments in studies about therapeutic and diagnostic nanomaterials, future studies further exploring the molecular biology of atherosclerosis may provide more drug targets for plaque stabilization. PMID:25333054

  11. Therapies targeting cancer stem cells: Current trends and future challenges

    PubMed Central

    Dragu, Denisa L; Necula, Laura G; Bleotu, Coralia; Diaconu, Carmen C; Chivu-Economescu, Mihaela

    2015-01-01

    Traditional therapies against cancer, chemo- and radiotherapy, have multiple limitations that lead to treatment failure and cancer recurrence. These limitations are related to systemic and local toxicity, while treatment failure and cancer relapse are due to drug resistance and self-renewal, properties of a small population of tumor cells called cancer stem cells (CSCs). These cells are involved in cancer initiation, maintenance, metastasis and recurrence. Therefore, in order to develop efficient treatments that can induce a long-lasting clinical response preventing tumor relapse it is important to develop drugs that can specifically target and eliminate CSCs. Recent identification of surface markers and understanding of molecular feature associated with CSC phenotype helped with the design of effective treatments. In this review we discuss targeting surface biomarkers, signaling pathways that regulate CSCs self-renewal and differentiation, drug-efflux pumps involved in apoptosis resistance, microenvironmental signals that sustain CSCs growth, manipulation of miRNA expression, and induction of CSCs apoptosis and differentiation, with specific aim to hamper CSCs regeneration and cancer relapse. Some of these agents are under evaluation in preclinical and clinical studies, most of them for using in combination with traditional therapies. The combined therapy using conventional anticancer drugs with CSCs-targeting agents, may offer a promising strategy for management and eradication of different types of cancers. PMID:26516409

  12. Pathogenesis and treatment of psoriasis: exploiting pathophysiological pathways for precision medicine.

    PubMed

    Alwan, Wisam; Nestle, Frank O

    2015-01-01

    Psoriasis is a common, chronic inflammatory skin disease associated with multi-system manifestations including arthritis and obesity. Our knowledge of the aetiology of the condition, including the key genomic, immune and environmental factors, has led to the development of targeted, precision therapies that alleviate patient morbidity. This article reviews the key pathophysiological pathways and therapeutic targets and highlights future areas of interest in psoriasis research.

  13. Molecular characteristics of endometrial cancer coexisting with peritoneal malignant mesothelioma in Li-Fraumeni-like syndrome.

    PubMed

    Chao, Angel; Lai, Chyong-Huey; Lee, Yun-Shien; Ueng, Shir-Hwa; Lin, Chiao-Yun; Wang, Tzu-Hao

    2015-01-15

    Endometrial cancer that occurs concurrently with peritoneal malignant mesothelioma (PMM) is difficult to diagnose preoperatively. A postmenopausal woman had endometrial cancer extending to the cervix, vagina and pelvic lymph nodes, and PMM in bilateral ovaries, cul-de-sac, and multiple peritoneal sites. Adjuvant therapies included chemotherapy and radiotherapy. Targeted, massively parallel DNA sequencing and molecular inversion probe microarray analysis revealed a germline TP53 mutation compatible with Li-Fraumeni-like syndrome, somatic mutations of PIK3CA in the endometrial cancer, and a somatic mutation of GNA11 and JAK3 in the PMM. Large-scale genomic amplifications and some deletions were found in the endometrial cancer. The patient has been stable for 24 months after therapy. One of her four children was also found to carry the germline TP53 mutation. Molecular characterization of the coexistent tumors not only helps us make the definite diagnosis, but also provides information to select targeted therapies if needed in the future. Identification of germline TP53 mutation further urged us to monitor future development of malignancies in this patient and encourage cancer screening in her family.

  14. Pharmacological enhancement of drug cue extinction learning: translational challenges

    PubMed Central

    Kantak, K.M.; Nic Dhonnchadha, B.Á.

    2010-01-01

    Augmentation of cue exposure (extinction) therapy with cognitive-enhancing pharmacotherapy may constitute a rational strategy for the clinical management of drug relapse. While certain success has been reported for this form of therapy in anxiety disorders, in this article we highlight several obstacles that may undermine the efficacy of exposure therapy for substance use disorders. We also review translational studies that have evaluated the facilitative effects of the cognitive enhancer D-cycloserine on extinction targeting drug-related cues. Finally, important considerations for the design and implementation of future studies evaluating exposure therapy combined with pharmacotherapy for substance use disorders are discussed. PMID:21272016

  15. Glycosylated Triterpenoids as Endosomal Escape Enhancers in Targeted Tumor Therapies

    PubMed Central

    Fuchs, Hendrik; Niesler, Nicole; Trautner, Alexandra; Sama, Simko; Jerz, Gerold; Panjideh, Hossein; Weng, Alexander

    2017-01-01

    Protein-based targeted toxins play an increasingly important role in targeted tumor therapies. In spite of their high intrinsic toxicity, their efficacy in animal models is low. A major reason for this is the limited entry of the toxin into the cytosol of the target cell, which is required to mediate the fatal effect. Target receptor bound and internalized toxins are mostly either recycled back to the cell surface or lysosomally degraded. This might explain why no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date although more than 500 targeted toxins have been developed within the last decades. To overcome the problem of insufficient endosomal escape, a number of strategies that make use of diverse chemicals, cell-penetrating or fusogenic peptides, and light-induced techniques were designed to weaken the membrane integrity of endosomes. This review focuses on glycosylated triterpenoids as endosomal escape enhancers and throws light on their structure, the mechanism of action, and on their efficacy in cell culture and animal models. Obstacles, challenges, opportunities, and future prospects are discussed. PMID:28536357

  16. Endoradiotherapy in cancer treatment--basic concepts and future trends.

    PubMed

    Zoller, Frederic; Eisenhut, Michael; Haberkorn, Uwe; Mier, Walter

    2009-12-25

    Endoradiotherapy represents an alternative therapeutic method in cancer treatment with advantageous features compared to chemotherapy and radiation therapy. Intelligent dose delivery concepts using small drugs, peptides or antibodies as radionuclide carriers enable the verification of a selective accumulation in the tumour lesion and to reduce radiation toxicity for the peripheral organs. The development of endoradiotherapeutic agents, especially chelator-conjugated biomolecules, for example ibritumomab tiuxetan or DOTATOC, gains importance due to the stable complexation of versatile radiometals, such as (90)Y or (177)Lu. The rational design of novel target binding sides and their grafting into a drug scaffold is a highly promising strategy, which may promote further implication in endoradiotherapy. This review highlights the basic concepts of endoradiotherapy and discusses the potential of targeted therapy and the properties of energy-rich particles emitted by radionuclides for tumour therapy.

  17. Adaptive Radiation for Lung Cancer

    PubMed Central

    Gomez, Daniel R.; Chang, Joe Y.

    2011-01-01

    The challenges of lung cancer radiotherapy are intra/inter-fraction tumor/organ anatomy/motion changes and the need to spare surrounding critical structures. Evolving radiotherapy technologies, such as four-dimensional (4D) image-based motion management, daily on-board imaging and adaptive radiotherapy based on volumetric images over the course of radiotherapy, have enabled us to deliver higher dose to target while minimizing normal tissue toxicities. The image-guided radiotherapy adapted to changes of motion and anatomy has made the radiotherapy more precise and allowed ablative dose delivered to the target using novel treatment approaches such as intensity-modulated radiation therapy, stereotactic body radiation therapy, and proton therapy in lung cancer, techniques used to be considered very sensitive to motion change. Future clinical trials using real time tracking and biological adaptive radiotherapy based on functional images are proposed. PMID:20814539

  18. Crizotinib for the Treatment of ALK-Rearranged Non-Small Cell Lung Cancer: A Success Story to Usher in the Second Decade of Molecular Targeted Therapy in Oncology

    PubMed Central

    Bartlett, Cynthia Huang; Mino-Kenudson, Mari; Cui, Jean; Iafrate, A. John

    2012-01-01

    Crizotinib, an ALK/MET/ROS1 inhibitor, was approved by the U.S. Food and Drug Administration for the treatment of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) in August 2011, merely 4 years after the first publication of ALK-rearranged NSCLC. The crizotinib approval was accompanied by the simultaneous approval of an ALK companion diagnostic fluorescent in situ hybridization assay for the detection of ALK-rearranged NSCLC. Crizotinib continued to be developed as an ALK and MET inhibitor in other tumor types driven by alteration in ALK and MET. Crizotinib has recently been shown to be an effective ROS1 inhibitor in ROS1-rearranged NSCLC, with potential future clinical applications in ROS1-rearranged tumors. Here we summarize the heterogeneity within the ALK- and ROS1-rearranged molecular subtypes of NSCLC. We review the past and future clinical development of crizotinib for ALK-rearranged NSCLC and the diagnostic assays to detect ALK-rearranged NSCLC. We highlight how the success of crizotinib has changed the paradigm of future drug development for targeted therapies by targeting a molecular-defined subtype of NSCLC despite its rarity and affected the practice of personalized medicine in oncology, emphasizing close collaboration between clinical oncologists, pathologists, and translational scientists. PMID:22989574

  19. Proteomic study of acute respiratory distress syndrome: current knowledge and implications for drug development

    PubMed Central

    Levitt, Joseph E.; Rogers, Angela J.

    2017-01-01

    The acute respiratory distress syndrome (ARDS) is a common cause of acute respiratory failure, and is associated with substantial mortality and morbidity. Dozens of clinical trials targeting ARDS have failed, with no drug specifically targeting lung injury in widespread clinical use. Thus, the need for drug development in ARDS is great. Targeted proteomic studies in ARDS have identified many key pathways in the disease, including inflammation, epithelial injury, endothelial injury or activation, and disordered coagulation and repair. Recent studies reveal the potential for proteomic changes to identify novel subphenotypes of ARDS patients who may be most likely to respond to therapy and could thus be targeted for enrollment in clinical trials. Nontargeted studies of proteomics in ARDS are just beginning and have the potential to identify novel drug targets and key pathways in the disease. Proteomics will play an important role in phenotyping of patients and developing novel therapies for ARDS in the future. PMID:27031735

  20. Anti-Angiogenics: Current Situation and Future Perspectives.

    PubMed

    Zirlik, Katja; Duyster, Justus

    2018-01-01

    Angiogenesis, the process leading to the formation of new blood vessels, is one of the hallmarks of cancer. Extensive studies established that i) vascular endothelial growth factor (VEGF) is a key driver of sprouting angiogenesis, ii) VEGF is overexpressed in most solid cancers, and iii) inhibition of VEGF can suppress tumor growth in animal models. This has led to the development of pharmacological agents for anti-angiogenesis to disrupt the vascular supply and starve the tumor of nutrients and oxygen, primarily through the blockade of VEGF/VEGF receptor signaling. This effort has resulted in 11 anti-VEGF drugs approved for certain advanced cancers, either alone or in combination with chemotherapy and other targeted therapies. However, inhibition of VEGF signaling is not effective in all cancers, and anti-angiogenics have often only limited impact on overall survival of cancer patients. This review focuses on the current status of FDA-approved anti-angiogenic antibodies and tyrosine kinase inhibitors and summarizes the progress and future directions of VEGF-targeted therapy. © 2018 S. Karger GmbH, Freiburg.

  1. Personalizing health care: feasibility and future implications.

    PubMed

    Godman, Brian; Finlayson, Alexander E; Cheema, Parneet K; Zebedin-Brandl, Eva; Gutiérrez-Ibarluzea, Inaki; Jones, Jan; Malmström, Rickard E; Asola, Elina; Baumgärtel, Christoph; Bennie, Marion; Bishop, Iain; Bucsics, Anna; Campbell, Stephen; Diogene, Eduardo; Ferrario, Alessandra; Fürst, Jurij; Garuoliene, Kristina; Gomes, Miguel; Harris, Katharine; Haycox, Alan; Herholz, Harald; Hviding, Krystyna; Jan, Saira; Kalaba, Marija; Kvalheim, Christina; Laius, Ott; Lööv, Sven-Ake; Malinowska, Kamila; Martin, Andrew; McCullagh, Laura; Nilsson, Fredrik; Paterson, Ken; Schwabe, Ulrich; Selke, Gisbert; Sermet, Catherine; Simoens, Steven; Tomek, Dominik; Vlahovic-Palcevski, Vera; Voncina, Luka; Wladysiuk, Magdalena; van Woerkom, Menno; Wong-Rieger, Durhane; Zara, Corrine; Ali, Raghib; Gustafsson, Lars L

    2013-08-13

    Considerable variety in how patients respond to treatments, driven by differences in their geno- and/ or phenotypes, calls for a more tailored approach. This is already happening, and will accelerate with developments in personalized medicine. However, its promise has not always translated into improvements in patient care due to the complexities involved. There are also concerns that advice for tests has been reversed, current tests can be costly, there is fragmentation of funding of care, and companies may seek high prices for new targeted drugs. There is a need to integrate current knowledge from a payer's perspective to provide future guidance. Multiple findings including general considerations; influence of pharmacogenomics on response and toxicity of drug therapies; value of biomarker tests; limitations and costs of tests; and potentially high acquisition costs of new targeted therapies help to give guidance on potential ways forward for all stakeholder groups. Overall, personalized medicine has the potential to revolutionize care. However, current challenges and concerns need to be addressed to enhance its uptake and funding to benefit patients.

  2. Personalizing health care: feasibility and future implications

    PubMed Central

    2013-01-01

    Considerable variety in how patients respond to treatments, driven by differences in their geno- and/ or phenotypes, calls for a more tailored approach. This is already happening, and will accelerate with developments in personalized medicine. However, its promise has not always translated into improvements in patient care due to the complexities involved. There are also concerns that advice for tests has been reversed, current tests can be costly, there is fragmentation of funding of care, and companies may seek high prices for new targeted drugs. There is a need to integrate current knowledge from a payer’s perspective to provide future guidance. Multiple findings including general considerations; influence of pharmacogenomics on response and toxicity of drug therapies; value of biomarker tests; limitations and costs of tests; and potentially high acquisition costs of new targeted therapies help to give guidance on potential ways forward for all stakeholder groups. Overall, personalized medicine has the potential to revolutionize care. However, current challenges and concerns need to be addressed to enhance its uptake and funding to benefit patients. PMID:23941275

  3. Targeting EGFR in lung cancer: Lessons learned and future perspectives

    PubMed Central

    Steuer, Conor E.; Ramalingam, Suresh S.

    2016-01-01

    The development of individualized therapies has become the focus of current oncology research. Precision medicine has demonstrated great potential for bringing safe and effective drugs to those patients stricken with cancer, and is becoming a reality as more oncogenic drivers of malignancy are discovered. The discovery of Epidermal Growth Factor Receptor (EGFR) mutations as a driving mutation in non-small cell lung cancer (NSCLC) and the subsequent success of the tyrosine kinase inhibitors (TKI) have led the way for NSCLC to be at the forefront of biomarker-based drug development. However, this direction was not always so clear, and this article describes the lessons learned in targeted therapy development from EGFR in NSCLC. PMID:26022942

  4. VEGF inhibitors in metastatic renal cell carcinoma: current therapies and future perspective.

    PubMed

    Choueiri, Toni K

    2011-08-01

    Metastatic renal cell carcinoma (RCC) is predominantly refractory to treatment with traditional cytotoxic chemotherapies, and until recently management options were limited to immunotherapy, palliative care, or phase I trials. The past five years have witnessed a major change in the treatment of advanced RCC with the introduction of targeted therapies that derive their efficacy through affecting angiogenesis. The main class of agents involves drugs that target the vascular endothelial growth factor (VEGF). Several VEGF inhibitors are now approved for the treatment of metastatic RCC. The field is expanding rapidly with goals including 1) developing novel more potent and better tolerated agents and 2) defining the role of combination and sequential anti-VEGF regimens.

  5. Advances in the diagnosis and treatment of cystic fibrosis.

    PubMed

    Martiniano, Stacey L; Hoppe, Jordana E; Sagel, Scott D; Zemanick, Edith T

    2014-08-01

    CF is a genetic, life-shortening, multisystem disease that is most commonly diagnosed through newborn screen performed in all 50 states in the United States. In the past, therapies for CF lung disease have primarily targeted the downstream effects of a dysfunctional CFTR protein. Newer CFTR modulator therapies, targeting the basic defect in CF, are available for a limited group of people with CF, and offer the hope of improved treatment options for many more people with CF in the near future. Best practice is directed by consensus clinical care guidelines from the CFF and is provided with a multidisciplinary approach by the team at the CF care center and the primary care office.

  6. Identifying therapeutic targets in gastric cancer: the current status and future direction

    PubMed Central

    Yu, Beiqin; Xie, Jingwu

    2016-01-01

    Gastric cancer is the third leading cause of cancer-related death worldwide. Our basic understanding of gastric cancer biology falls behind that of many other cancer types. Current standard treatment options for gastric cancer have not changed for the last 20 years. Thus, there is an urgent need to establish novel strategies to treat this deadly cancer. Successful clinical trials with Gleevec in CML and gastrointestinal stromal tumors have set up an example for targeted therapy of cancer. In this review, we will summarize major progress in classification, therapeutic options of gastric cancer. We will also discuss molecular mechanisms for drug resistance in gastric cancer. In addition, we will attempt to propose potential future directions in gastric cancer biology and drug targets. PMID:26373844

  7. Targeted nanoparticles for image-guided treatment of triple-negative breast cancer: clinical significance and technological advances.

    PubMed

    Miller-Kleinhenz, Jasmine M; Bozeman, Erica N; Yang, Lily

    2015-01-01

    Effective treatment of triple-negative breast cancer (TNBC) with its aggressive tumor biology, highly heterogeneous tumor cells, and poor prognosis requires an integrated therapeutic approach that addresses critical issues in cancer therapy. Multifunctional nanoparticles with the abilities of targeted drug delivery and noninvasive imaging for monitoring drug delivery and responses to therapy, such as theranostic nanoparticles, hold great promise toward the development of novel therapeutic approaches for the treatment of TNBC using a single therapeutic platform. The biological and pathological characteristics of TNBC provide insight into several potential molecular targets for current and future nanoparticle-based therapeutics. Extensive tumor stroma, highly proliferative cells, and a high rate of drug resistance are all barriers that must be appropriately addressed in order for these nanotherapeutic platforms to be effective. Utilization of the enhanced permeability and retention effect coupled with active targeting of cell surface receptors expressed by TNBC cells, and tumor-associated endothelial cells, stromal fibroblasts, and macrophages is likely to overcome such barriers to facilitate more effective drug delivery. An in-depth summary of current studies investigating targeted nanoparticles in preclinical TNBC mouse and human xenograft models is presented. This review aims to outline the current status of nanotherapeutic options for TNBC patients, identification of promising molecular targets, challenges associated with the development of targeted nanotherapeutics, the research done by our group as well as by others, and future perspectives on the nanomedicine field and ways to translate current preclinical studies into the clinic. © 2015 Wiley Periodicals, Inc.

  8. Fe3O4@Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells.

    PubMed

    Lu, Qianling; Dai, Xinyu; Zhang, Peng; Tan, Xiao; Zhong, Yuejiao; Yao, Cheng; Song, Mei; Song, Guili; Zhang, Zhenghai; Peng, Gang; Guo, Zhirui; Ge, Yaoqi; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    Thermoresponsive nanoparticles have become an attractive candidate for designing combined multimodal therapy strategies because of the onset of hyperthermia and their advantages in synergistic cancer treatment. In this paper, novel cetuximab (C225)-encapsulated core-shell Fe 3 O 4 @Au magnetic nanoparticles (Fe 3 O 4 @Au-C225 composite-targeted MNPs) were created and applied as a therapeutic nanocarrier to conduct targeted magneto-photothermal therapy against glioma cells. The core-shell Fe 3 O 4 @Au magnetic nanoparticles (MNPs) were prepared, and then C225 was further absorbed to synthesize Fe 3 O 4 @Au-C225 composite-targeted MNPs. Their morphology, mean particle size, zeta potential, optical property, magnetic property and thermal dynamic profiles were characterized. After that, the glioma-destructive effect of magnetic fluid hyperthermia (MFH) combined with near-infrared (NIR) hyperthermia mediated by Fe 3 O 4 @Au-C225 composite-targeted MNPs was evaluated through in vitro and in vivo experiments. The inhibitory and apoptotic rates of Fe 3 O 4 @Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group were significantly higher than other groups in vitro and the marked upregulation of caspase-3, caspase-8, and caspase-9 expression indicated excellent antitumor effect by inducing intrinsic apoptosis. Furthermore, Fe 3 O 4 @Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group exhibited significant tumor growth suppression compared with other groups in vivo. Our studies illustrated that Fe 3 O 4 @Au-C225 composite-targeted MNPs have great potential as a promising nanoplatform for human glioma therapy and could be of great value in medical use in the future.

  9. Fe3O4@Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells

    PubMed Central

    Tan, Xiao; Zhong, Yuejiao; Yao, Cheng; Song, Mei; Song, Guili; Zhang, Zhenghai; Peng, Gang; Guo, Zhirui; Ge, Yaoqi; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    Background Thermoresponsive nanoparticles have become an attractive candidate for designing combined multimodal therapy strategies because of the onset of hyperthermia and their advantages in synergistic cancer treatment. In this paper, novel cetuximab (C225)-encapsulated core-shell Fe3O4@Au magnetic nanoparticles (Fe3O4@Au-C225 composite-targeted MNPs) were created and applied as a therapeutic nanocarrier to conduct targeted magneto-photothermal therapy against glioma cells. Methods The core-shell Fe3O4@Au magnetic nanoparticles (MNPs) were prepared, and then C225 was further absorbed to synthesize Fe3O4@Au-C225 composite-targeted MNPs. Their morphology, mean particle size, zeta potential, optical property, magnetic property and thermal dynamic profiles were characterized. After that, the glioma-destructive effect of magnetic fluid hyperthermia (MFH) combined with near-infrared (NIR) hyperthermia mediated by Fe3O4@Au-C225 composite-targeted MNPs was evaluated through in vitro and in vivo experiments. Results The inhibitory and apoptotic rates of Fe3O4@Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group were significantly higher than other groups in vitro and the marked upregulation of caspase-3, caspase-8, and caspase-9 expression indicated excellent antitumor effect by inducing intrinsic apoptosis. Furthermore, Fe3O4@Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group exhibited significant tumor growth suppression compared with other groups in vivo. Conclusion Our studies illustrated that Fe3O4@Au-C225 composite-targeted MNPs have great potential as a promising nanoplatform for human glioma therapy and could be of great value in medical use in the future. PMID:29719396

  10. Gene therapy to target ER stress in brain diseases.

    PubMed

    Valenzuela, Vicente; Martínez, Gabriela; Duran-Aniotz, Claudia; Hetz, Claudio

    2016-10-01

    Gene therapy based on the use of Adeno-associated viruses (AAVs) is emerging as a safe and stable strategy to target molecular pathways involved in a variety of brain diseases. Endoplasmic reticulum (ER) stress is proposed as a transversal feature of most animal models and clinical samples from patients affected with neurodegenerative diseases. Manipulation of the unfolded protein response (UPR), a major homeostatic reaction under ER stress conditions, had proved beneficial in diverse models of neurodegeneration. Although increasing number of drugs are available to target ER stress, the use of small molecules to treat chronic brain diseases is challenging because of poor blood brain barrier permeability and undesirable side effects due to the role of the UPR in the physiology of peripheral organs. Gene therapy is currently considered a possible future alternative to circumvent these problems by the delivery of therapeutic agents to selective regions and cell types of the nervous system. Here we discuss current efforts to design gene therapy strategies to alleviate ER stress on a disease context. This article is part of a Special Issue entitled SI:ER stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Nanoparticles for imaging and treatment of metastatic breast cancer

    PubMed Central

    Mu, Qingxin; Wang, Hui; Zhang, Miqin

    2017-01-01

    Introduction Metastatic breast cancer is one of the most devastating cancers that have no cure. Many therapeutic and diagnostic strategies have been extensively studied in the past decade. Among these strategies, cancer nanotechnology has emerged as a promising strategy in preclinical studies by enabling early identification of primary tumors and metastases, and by effective killing of cancer cells. Areas covered This review covers the recent progress made in targeting and imaging of metastatic breast cancer with nanoparticles, and treatment using nanoparticle-enabled chemo-, gene, photothermal- and radio-therapies. This review also discusses recent developments of nanoparticle-enabled stem cell therapy and immunotherapy. Expert opinion Nanotechnology is expected to play important roles in modern therapy for cancers, including metastatic breast cancer. Nanoparticles are able to target and visualize metastasis in various organs, and deliver therapeutic agents. Through targeting cancer stem cells, nanoparticles are able to treat resistant tumors with minimal toxicity to healthy tissues/organs. Nanoparticles are also able to activate immune cells to eliminate tumors. Owing to their multifunctional, controllable and trackable features, nanotechnology-based imaging and therapy could be a highly potent approach for future cancer research and treatment. PMID:27401941

  12. Armed Therapeutic Viruses – A Disruptive Therapy on the Horizon of Cancer Immunotherapy

    PubMed Central

    Bauzon, Maxine; Hermiston, Terry

    2014-01-01

    For the past 150 years cancer immunotherapy has been largely a theoretical hope that recently has begun to show potential as a highly impactful treatment for various cancers. In particular, the identification and targeting of immune checkpoints have given rise to exciting data suggesting that this strategy has the potential to activate sustained antitumor immunity. It is likely that this approach, like other anti-cancer strategies before it, will benefit from co-administration with an additional therapeutic and that it is this combination therapy that may generate the greatest clinical outcome for the patient. In this regard, oncolytic viruses are a therapeutic moiety that is well suited to deliver and augment these immune-modulating therapies in a highly targeted and economically advantageous way over current treatment. In this review, we discuss the blockade of immune checkpoints, how oncolytic viruses complement and extend these therapies, and speculate on how this combination will uniquely impact the future of cancer immunotherapy. PMID:24605114

  13. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease

    PubMed Central

    Mora, Ana L.; Rojas, Mauricio; Pardo, Annie; Selman, Moises

    2018-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fatal age-associated disease that is characterized by progressive and irreversible scarring of the lung. The pathogenesis of IPF is not completely understood and current therapies are limited to those that reduce the rate of functional decline in patients with mild-to-moderate disease. In this context, new therapeutic approaches that substantially improve the survival time and quality of life of these patients are urgently needed. Our incomplete understanding of the pathogenic mechanisms of IPF and the lack of appropriate experimental models that reproduce the key characteristics of the human disease are major challenges. As ageing is a major risk factor for IPF, age-related cell perturbations such as telomere attrition, senescence, epigenetic drift, stem cell exhaustion, loss of proteostasis and mitochondrial dysfunction are becoming targets of interest for IPF therapy. In this Review, we discuss current and emerging therapies for IPF, particularly those targeting age-related mechanisms, and discuss future therapeutic approaches. PMID:29081515

  14. Fighting fire with fire: attacking the complexity of human tumors with armed therapeutic viruses.

    PubMed

    Hermiston, Terry

    2002-08-01

    Cancer gene therapies have centered on the use of a single gene, directed against a particular property or single aspect of tumor biology, to treat neoplastic disease. These therapies have met with limited clinical success. This is, perhaps, not surprising given the complex and heterogeneous nature of solid tumors. Treatments targeted at confronting multiple dimensions of human tumors are needed. Armed therapeutic viruses (oncolytic viruses carrying therapeutic genes) represent a system where the concerted action of multiple therapeutics can be joined into a single agent, and represent a promising avenue for developing future cancer therapies.

  15. A Multi-targeted Approach to Suppress Tumor-Promoting Inflammation

    PubMed Central

    Samadi, Abbas K.; Georgakilas, Alexandros G.; Amedei, Amedeo; Amin, Amr; Bishayee, Anupam; Lokeshwar, Bal L.; Grue, Brendan; Panis, Carolina; Boosani, Chandra S.; Poudyal, Deepak; Stafforini, Diana M.; Bhakta, Dipita; Niccolai, Elena; Guha, Gunjan; Rupasinghe, H.P. Vasantha; Fujii, Hiromasa; Honoki, Kanya; Mehta, Kapil; Aquilano, Katia; Lowe, Leroy; Hofseth, Lorne J.; Ricciardiello, Luigi; Ciriolo, Maria Rosa; Singh, Neetu; Whelan, Richard L.; Chaturvedi, Rupesh; Ashraf, S. Salman; Kumara, HMC Shantha; Nowsheen, Somaira; Mohammed, Sulma I.; Helferich, William G.; Yang, Xujuan

    2015-01-01

    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-kappaB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes. PMID:25951989

  16. Progress in Rectal Cancer Treatment

    PubMed Central

    Ceelen, Wim P.

    2012-01-01

    The dramatic improvement in local control of rectal cancer observed during the last decades is to be attributed to attention to surgical technique and to the introduction of neoadjuvant therapy regimens. Nevertheless, systemic relapse remains frequent and is currently insufficiently addressed. Intensification of neoadjuvant therapy by incorporating chemotherapy with or without targeted agents before the start of (chemo)radiation or during the waiting period to surgery may present an opportunity to improve overall survival. An increasing number of patients can nowadays undergo sphincter preserving surgery. In selected patients, local excision or even a “wait and see” approach may be feasible following active neoadjuvant therapy. Molecular and genetic biomarkers as well as innovative imaging techniques may in the future allow better selection of patients for this treatment option. Controversy persists concerning the selection of patients for adjuvant chemotherapy and/or targeted therapy after neoadjuvant regimens. The currently available evidence suggests that in complete pathological responders long-term outcome is excellent and adjuvant therapy may be omitted. The results of ongoing trials will help to establish the ideal tailored approach in resectable rectal cancer. PMID:22970381

  17. Update on the evaluation of repeated stone formers.

    PubMed

    Kadlec, Adam O; Turk, Thomas M

    2013-12-01

    Office management of stone disease is an important component of a urologist's practice. Evaluation should include analysis of stone composition, 24-hour urine studies, identification of modifiable risk factors, and targeted dietary, lifestyle, and/or medical therapy. A sizeable portion of investigated etiologies and risk factors for stone disease have centered on the complex interplay between obesity, diabetes, and other disease states that comprise the metabolic syndrome. Alternatives to traditional preventive therapy, such as probiotics and various fruit juices, are still being studied but may prove useful adjuncts to traditional preventive therapy, where the mainstays remain increased fluid intake, dietary modification, and pharmacologic therapy. Future studies on preventive therapy of urolithiasis are likely to focus on strategies to increase compliance, cost-effectiveness, and systems-based implementation.

  18. Evolving targeted therapies for right ventricular failure.

    PubMed

    Di Salvo, Thomas G

    2015-01-01

    Although right and left ventricular embryological origins, morphology and cardiodynamics differ, the notion of selectively targeted right ventricular therapies remains controversial. This review focuses on both the currently evolving pharmacologic agents targeting right ventricular failure (metabolic modulators, phosphodiesterase type V inhibitors) and future therapeutic approaches including epigenetic modulation by miRNAs, chromatin binding complexes, long non-coding RNAs, genomic editing, adoptive gene transfer and gene therapy, cell regeneration via cell transplantation and cell reprogramming and cardiac tissue engineering. Strategies for adult right ventricular regeneration will require a more holistic approach than strategies for adult left ventricular failure. Instances of right ventricular failure requiring global reconstitution of right ventricular myocardium, attractive approaches include: i) myocardial patches seeded with cardiac fibroblasts reprogrammed into cardiomyocytes in vivo by small molecules, miRNAs or other epigenetic modifiers; and ii) administration of miRNAs, lncRNAs or small molecules by non-viral vector delivery systems targeted to fibroblasts (e.g., episomes) to stimulate in vivo reprogramming of fibroblasts into cardiomyocytes. For selected heritable genetic myocardial diseases, genomic editing affords exciting opportunities for allele-specific silencing by site-specific directed silencing, mutagenesis or gene excision. Genomic editing by adoptive gene transfer affords similarly exciting opportunities for restoration of myocardial gene expression.

  19. Folate-targeted nanoparticles for rheumatoid arthritis therapy.

    PubMed

    Nogueira, Eugénia; Gomes, Andreia C; Preto, Ana; Cavaco-Paulo, Artur

    2016-05-01

    Rheumatoid arthritis (RA) is the most common inflammatory rheumatic disease, affecting almost 1% of the world population. Although the cause of RA remains unknown, the complex interaction between immune mediators (cytokines and effector cells) is responsible for the joint damage that begins at the synovial membrane. Activated macrophages are critical in the pathogenesis of RA and showed specifically express a receptor for the vitamin folic acid (FA), folate receptor β (FRβ). This particular receptor allows internalization of FA-coupled cargo. In this review we will address the potential of nanoparticles as an effective drug delivery system for therapies that will directly target activated macrophages. Special attention will be given to stealth degree of the nanoparticles as a strategy to avoid clearance by macrophages of the mononuclear phagocytic system (MPS). This review summarizes the application of FA-target nanoparticles as drug delivery systems for RA and proposes prospective future directions. Rheumatoid arthritis is a debilitating autoimmune disease of the joints which affects many people worldwide. Up till now, there is a lack of optimal therapy against this disease. In this review article, the authors outlined in depth the current mechanism of disease for rheumatoid arthritis and described the latest research in using folic acid-targeted nanoparticles to target synovial macrophages in the fight against rheumatoid arthritis. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Biological and targeted therapies of systemic lupus erythematosus: evidence and the state of the art.

    PubMed

    Mok, Chi Chiu

    2017-07-01

    Systemic lupus erythematosus (SLE) is a multi-systemic disease characterized by an unpredictable disease course and periods of remission and flare, leading to organ damage and mortality. Novel biological agents are being developed (targeting the lymphocytes, accessory molecules and cytokines) that aim to enhance the therapeutic efficacy when combined with standard therapies. Areas covered: This article updates recent data on the use of biological and targeted therapies in SLE. Expert commentary: B cells remain the main target of development of novel therapeutics in SLE. Similar to the intravenous preparation, subcutaneous belimumab has been shown to be superior to placebo when added to the standard of care in SLE. However, two phase III trials of epratuzumab and blisibimod did not meet their primary endpoints. Recent data on the inhibition of type I interferons (anifrolumab) appear promising. Newer calcineurin inhibitors and combination strategies using conventional immunosuppressive agents are being tested in lupus nephritis. Finally, international groups are developing consensus definitions on disease remission and low disease activity state to explore the benefits of the treat-to-target strategy in SLE. Hopefully, the armamentarium for the treatment of SLE can be expanded in the near future, so that the longevity and quality of life of patients can be further improved.

  1. New protein kinase inhibitors in breast cancer: afatinib and neratinib.

    PubMed

    Zhang, Xiaosong; Munster, Pamela N

    2014-06-01

    Human epidermal growth factor receptor (HER) 2 is overexpressed in 20 - 25% of breast cancers, and has historically been a poor prognostic marker. The introduction of trastuzumab, the first fully humanized monoclonal antibody targeting HER2, has drastically changed the outcomes of metastatic breast cancers. However, despite initial response, most patients develop resistance. Recent data suggest that strategies targeting more than one member of HER family may circumvent trastuzumab resistance and confer synergistic effects. Following a literature search on PubMed, national meetings and clinicaltrials.gov using 'afatinib', 'neratinib', 'HER2' and 'breast cancer' as keywords, we critically analyzed the different HER2-targeted therapies for their drug development and evidence-based therapeutic strategies. Afatinib and neratinib, two second-generation tyrosine kinase inhibitors (TKIs) that irreversibly inhibit more than one HER family member, are being actively investigated in clinical trials either as monotherapy or in combination. We reviewed the efficacy and optimal use of these agents in various settings, such as systemic therapy for advanced breast cancer including brain metastases, and neoadjuvant therapy in early-stage breast cancer. HER2-targeted therapies have been widely used and greatly improved the outcome of HER2-positive breast cancer. Despite the accelerated advancement in recent years, several crucial questions remain unanswered, such as how to treat a prior resistance or affect a sanctuary site, that is, CNS metastasis. The novel next-generation TKIs, afatinib and neratinib, were rationally designed to overcome the resistance by targeting multiple HER family members and irreversibly binding the targets. In spite of the encouraging results of the afatinib and neratinib monotherapies, they have not been proven more efficacious in the combination therapies yet, even though multicenter international trials are still ongoing. The key tasks in the future are to study resistance pathways, design novel strategies to more efficiently test combinations for synergistic effects and identify biomarkers and novel imaging tools to guide individualized therapies.

  2. Use and outcomes of targeted therapies in early and metastatic HER2-positive breast cancer in Australia: protocol detailing observations in a whole of population cohort

    PubMed Central

    Daniels, Benjamin; Lord, Sarah J; Kiely, Belinda E; Houssami, Nehmat; Haywood, Philip; Lu, Christine Y; Ward, Robyn L; Pearson, Sallie-Anne

    2017-01-01

    Background The management of human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) has changed dramatically with the introduction and widespread use of HER2-targeted therapies. However, there is relatively limited real-world information on patterns of use, effectiveness and safety in whole of population cohorts. The research programme detailed in this protocol will generate evidence on the prescribing patterns, safety monitoring and outcomes of patients with BC treated with HER2-targeted therapies in Australia. Methods/design Our ongoing research programme will involve a series of retrospective cohort studies that include every patient accessing Commonwealth-funded HER2-targeted therapies for the treatment of early BC and advanced BC in Australia. At the time of writing, our cohorts consist of 11 406 patients with early BC and 5631 with advanced BC who accessed trastuzumab and lapatinib between 2001 and 2014. Pertuzumab and trastuzumab emtansine were publicly funded for metastatic BC in 2015, and future data updates will include patients accessing these medicines. We will use dispensing claims for cancer and other medicines, medical service claims and demographics data for each patient accessing HER2-targeted therapies to undertake this research. Ethics and dissemination Ethics approval has been granted by the Population Health Service Research Ethics Committee and data access approval has been granted by the Australian Department of Human Services (DHS) External Review Evaluation Committee. Our findings will be reported in peer-reviewed publications, conference presentations and policy forums. By providing detailed information on the use and outcomes associated with HER2-targeted therapies in a national cohort treated in routine clinical care, our research programme will better inform clinicians and patients about the real-world use of these treatments and will assist third-party payers to better understand the use and economic costs of these treatments. PMID:28119394

  3. Frontline treatment of acute myeloid leukemia in adults

    PubMed Central

    Tamamyan, Gevorg; Kadia, Tapan; Ravandi, Farhad; Borthakur, Gautam; Cortes, Jorge; Jabbour, Elias; Daver, Naval; Ohanian, Maro; Kantarjian, Hagop; Konopleva, Marina

    2017-01-01

    Recent years have highlighted significant progress in understanding the underlying genetic and epigenetic signatures of acute myeloid leukemia(AML). Most importantly, novel chemotherapy and targeted strategies have led to improved outcomes in selected genetic subsets. AML is a remarkably heterogeneous disease, and individualized therapies for disease-specific characteristics (considering patients’ age, cytogenetics, and mutations) could yield better outcomes. Compared with the historical 5-to 10-year survival rate of 10%, the survival of patients who undergo modern treatment approaches reaches up to 40–50%, and for specific subsets, the improvements are even more dramatic; for example, in acute promyelocytic leukemia, the use of all-trans retinoic acid and arsenic trioxide improved survival from 30–40% up to 80–90%. Similar progress has been documented in core-binding-factor-AML, with an increase in survival from 30% to 80% upon the use of high-dose cytarabine/fludarabine/granulocyte colony-stimulating factor combination regimens. AML treatment was also recently influenced by the discovery of the superiority of regimens with higher dose Ara-C and nucleoside analogues compared with the “7+3” regimen, with about a 20% improvement in overall survival. Despite these significant differences, most centers continue to use the “7+3” regimen, and greater awareness will improve the outcome. The discovery of targetable molecular abnormalities and recent studies of targeted therapies (gemtuzumab ozagomycin, FLT3 inhibitors, isocitrate dehydrogenase inhibitors, and epigenetic therapies), future use of checkpoint inhibitors and other immune therapies such as chimeric antigen receptor T-cells, and maintenance strategies based on the minimal residual disease evaluation represent novel, exciting clinical leads aimed to improve AML outcomes in the near future. PMID:28109402

  4. New advances in focal therapy for early stage prostate cancer.

    PubMed

    Tay, Kae Jack; Schulman, Ariel A; Sze, Christina; Tsivian, Efrat; Polascik, Thomas J

    2017-08-01

    Prostate focal therapy offers men the opportunity to achieve oncological control while preserving sexual and urinary function. The prerequisites for successful focal therapy are to accurately identify, localize and completely ablate the clinically significant cancer(s) within the prostate. We aim to evaluate the evidence for current and upcoming technologies that could shape the future of prostate cancer focal therapy in the next five years. Areas covered: Current literature on advances in patient selection using imaging, biopsy and biomarkers, ablation techniques and adjuvant treatments for focal therapy are summarized. A literature search of major databases was performed using the search terms 'focal therapy', 'focal ablation', 'partial ablation', 'targeted ablation', 'image guided therapy' and 'prostate cancer'. Expert commentary: Advanced radiological tools such as multiparametric magnetic resonance imaging (mpMRI), multiparametric ultrasound (mpUS), prostate-specific-membrane-antigen positron emission tomography (PSMA-PET) represent a revolution in the ability to understand cancer function and biology. Advances in ablative technologies now provide a menu of modalities that can be rationalized based on lesion location, size and perhaps in the near future, pre-determined resistance to therapy. However, these need to be carefully studied to establish their safety and efficacy parameters. Adjuvant strategies to enhance focal ablation are under development.

  5. At the Bench: Chimeric antigen receptor (CAR) T cell therapy for the treatment of B cell malignancies.

    PubMed

    Daniyan, Anthony F O; Brentjens, Renier J

    2016-12-01

    The chimeric antigen receptor (CAR) represents the epitome of cellular engineering and is one of the best examples of rational biologic design of a synthetic molecule. The CAR is a single polypeptide with modular domains, consisting of an antibody-derived targeting moiety, fused in line with T cell-derived signaling domains, allowing for T cell activation upon ligand binding. T cells expressing a CAR are able to eradicate selectively antigen-expressing tumor cells in a MHC-independent fashion. CD19, a tumor-associated antigen (TAA) present on normal B cells, as well as most B cell-derived malignancies, was an early target of this technology. Through years of experimental refinement and preclinical optimization, autologously derived CD19-targeting CAR T cells have been successfully, clinically deployed, resulting in dramatic and durable antitumor responses but not without therapy-associated toxicity. As CD19-targeted CAR T cells continue to show clinical success, work at the bench continues to be undertaken to increase further the efficacy of this therapy, while simultaneously minimizing the risk for treatment-related morbidities. In this review, we cover the history and evolution of CAR technology and its adaptation to targeting CD19. Furthermore, we discuss the future of CAR T cell therapy and the need to ask, as well as answer, critical questions as this treatment modality is being translated to the clinic. © Society for Leukocyte Biology.

  6. The Insulin Receptor: A New Target for Cancer Therapy

    PubMed Central

    Malaguarnera, Roberta; Belfiore, Antonino

    2011-01-01

    A large body of evidences have shown that both the IGF-I receptor (IGF-IR) and the insulin receptor (IR) play a role in cancer development and progression. In particular, IR overactivation by IGF-II is common in cancer cells, especially in dedifferentiated/stem-like cells. In spite of these findings, until very recently, only IGF-IR but not IR has been considered a target in cancer therapy. Although several preclinical studies have showed a good anti-cancer activity of selective anti-IGF-IR drugs, the results of the clinical first trials have been disappointing. In fact, only a small subset of malignant tumors has shown an objective response to these therapies. Development of resistance to anti-IGF-IR drugs may include upregulation of IR isoform A (IR-A) in cancer cells and its overactivation by increased secretion of autocrine IGF-II. These findings have led to the concept that co-targeting IR together with IGF-IR may increase therapy efficacy and prevent adaptive resistance to selective anti-IGF-IR drugs. IR blockade should be especially considered in tumors with high IR-A:IGF-IR ratio and high levels of autocrine IGF-II. Conversely, insulin sensitizers, which ameliorate insulin resistance associated with metabolic disorders and cancer treatments, may have important implications for cancer prevention and management. Only few drugs co-targeting the IR and IGF-IR are currently available. Ideally, future IR targeting strategies should be able to selectively inhibit the tumor promoting effects of IR without impairing its metabolic effects. PMID:22654833

  7. HAI-178 antibody-conjugated fluorescent magnetic nanoparticles for targeted imaging and simultaneous therapy of gastric cancer

    NASA Astrophysics Data System (ADS)

    Wang, Can; Bao, Chenchen; Liang, Shujing; Zhang, Lingxia; Fu, Hualin; Wang, Yutian; Wang, Kan; Li, Chao; Deng, Min; Liao, Qiande; Ni, Jian; Cui, Daxiang

    2014-05-01

    The successful development of safe and highly effective nanoprobes for targeted imaging and simultaneous therapy of in vivo gastric cancer is a great challenge. Herein we reported for the first time that anti-α-subunit of ATP synthase antibody, HAI-178 monoclonal antibody-conjugated fluorescent magnetic nanoparticles, was successfully used for targeted imaging and simultaneous therapy of in vivo gastric cancer. A total of 172 specimens of gastric cancer tissues were collected, and the expression of α-subunit of ATP synthase in gastric cancer tissues was investigated by immunohistochemistry method. Fluorescent magnetic nanoparticles were prepared and conjugated with HAI-178 monoclonal antibody, and the resultant HAI-178 antibody-conjugated fluorescent magnetic nanoparticles (HAI-178-FMNPs) were co-incubated with gastric cancer MGC803 cells and gastric mucous GES-1 cells. Gastric cancer-bearing nude mice models were established, were injected with prepared HAI-178-FMNPs via tail vein, and were imaged by magnetic resonance imaging and small animal fluorescent imaging system. The results showed that the α-subunit of ATP synthase exhibited high expression in 94.7% of the gastric cancer tissues. The prepared HAI-178-FMNPs could target actively MGC803 cells, realized fluorescent imaging and magnetic resonance imaging of in vivo gastric cancer, and actively inhibited growth of gastric cancer cells. In conclusion, HAI-178 antibody-conjugated fluorescent magnetic nanoparticles have a great potential in applications such as targeted imaging and simultaneous therapy of in vivo early gastric cancer cells in the near future.

  8. Novel therapeutic options for relapsed hairy cell leukemia.

    PubMed

    Jain, Preetesh; Polliack, Aaron; Ravandi, Farhad

    2015-01-01

    The majority of patients with hairy cell leukemia (HCL) achieve a response to therapy with cladribine or pentostatin with or without rituximab. However, late relapses can occur. Treatment of relapsed HCL can be difficult due to a poor tolerance to chemotherapy, increased risk of infections and decreased responsiveness to chemotherapy. The identification of BRAFV600E mutations and the role of aberrant MEK kinase and Bruton's tyrosine kinase (BTK) pathways in the pathogenesis of HCL have helped to develop novel targeted therapies for these patients. Currently, the most promising therapeutic strategies for relapsed or refractory HCL include recombinant immunoconjugates targeting CD22 (e.g. moxetumomab pasudotox), BRAF inhibitors such as vemurafenib and B cell receptor signaling kinase inhibitors such as ibrutinib. Furthermore, the VH4-34 molecular variant of classic HCL has been identified to be less responsive to chemotherapy. Herein, we review the results of the ongoing clinical trials and potential future therapies for relapsed/refractory HCL.

  9. Expert Consensus on Metrics to Assess the Impact of Patient-Level Antimicrobial Stewardship Interventions in Acute-Care Settings

    PubMed Central

    Anderson, Deverick J.; Cochran, Ronda L.; Hicks, Lauri A.; Srinivasan, Arjun; Dodds Ashley, Elizabeth S.

    2017-01-01

    Antimicrobial stewardship programs (ASPs) positively impact patient care, but metrics to assess ASP impact are poorly defined. We used a modified Delphi approach to select relevant metrics for assessing patient-level interventions in acute-care settings for the purposes of internal program decision making. An expert panel rated 90 candidate metrics on a 9-point Likert scale for association with 4 criteria: improved antimicrobial prescribing, improved patient care, utility in targeting stewardship efforts, and feasibility in hospitals with electronic health records. Experts further refined, added, or removed metrics during structured teleconferences and re-rated the retained metrics. Six metrics were rated >6 in all criteria: 2 measures of Clostridium difficile incidence, incidence of drug-resistant pathogens, days of therapy over admissions, days of therapy over patient days, and redundant therapy events. Fourteen metrics rated >6 in all criteria except feasibility were identified as targets for future development. PMID:27927866

  10. Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy

    PubMed Central

    Kasala, Dayananda; Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-01-01

    Viral vectors are promising gene carriers for cancer therapy. However, virus-mediated gene therapies have demonstrated insufficient therapeutic efficacy in clinical trials due to rapid dissemination to nontarget tissues and to the immunogenicity of viral vectors, resulting in poor retention at the disease locus and induction of adverse inflammatory responses in patients. Further, the limited tropism of viral vectors prevents efficient gene delivery to target tissues. In this regard, modification of the viral surface with nanomaterials is a promising strategy to augment vector accumulation at the target tissue, circumvent the host immune response, and avoid nonspecific interactions with the reticuloendothelial system or serum complement. In the present review, we discuss various chemical modification strategies to enhance the therapeutic efficacy of viral vectors delivered either locally or systemically. We conclude by highlighting the salient features of various nanomaterial-coated viral vectors and their prospects and directions for future research. PMID:27348247

  11. Angiogenesis inhibitors: current strategies and future prospects.

    PubMed

    Cook, Kristina M; Figg, William D

    2010-01-01

    Angiogenesis has become an attractive target for drug therapy because of its key role in tumor growth. An extensive array of compounds is currently in preclinical development, with many now entering the clinic and/or achieving approval from the US Food and Drug Administration. Several regulatory and signaling molecules governing angiogenesis are of interest, including growth factors (eg, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factor, and epidermal growth factor), receptor tyrosine kinases, and transcription factors such as hypoxia inducible factor, as well as molecules involved in mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling. Pharmacologic agents have been identified that target these pathways, yet for some agents (notably thalidomide), an understanding of the specific mechanisms of antitumor action has proved elusive. The following review describes key molecular mechanisms and novel therapies that are on the horizon for antiangiogenic tumor therapy. (c) 2010 American Cancer Society, Inc.

  12. Biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy.

    PubMed

    Spyratou, E; Makropoulou, M; Mourelatou, E A; Demetzos, C

    2012-12-31

    Reactive oxygen species (ROS) are usually involved in two opposite procedures related to cancer: initiation, progression and metastasis of cancer, as well as in all non-surgical therapeutic approaches for cancer, including chemotherapy, radiotherapy and photodynamic therapy. This review is concentrated in new therapeutic strategies that take advantage of increased ROS in cancer cells to enhance therapeutic activity and selectivity. Novel biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy are discussed, including optical tweezers and atomic force microscopy. This review highlights how these techniques are playing a critical role in recent and future cancer fighting applications. We can conclude that Biophotonics and nanomedicine are the future for cancer biology and disease management, possessing unique potential for early detection, accurate diagnosis, dosimetry and personalized treatment of biomedical applications targeting cancer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Surface engineering of graphene-based nanomaterials for biomedical applications.

    PubMed

    Shi, Sixiang; Chen, Feng; Ehlerding, Emily B; Cai, Weibo

    2014-09-17

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications.

  14. Surface Engineering of Graphene-Based Nanomaterials for Biomedical Applications

    PubMed Central

    2015-01-01

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications. PMID:25117569

  15. Biomarkers and patient selection for PI3K/Akt/mTOR targeted therapies: current status and future directions.

    PubMed

    Bartlett, John M S

    2010-11-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt/ mammalian target of rapamycin (mTOR) pathway regulates a broad spectrum of physiologic and pathologic processes. In breast cancer mutation, amplification, deletion, methylation, and posttranslational modifications lead to significant dysregulation of this pathway leading to more aggressive and potentially drug-resistant disease. Multiple novel agents, targeting different nodes within the pathway are currently under development by both commercial and academic partners. The key to the successful validation of these markers is selection of the appropriate patient groups using biomarkers. This article reviews current progress in this area, highlighting the key molecular alterations described in genes within the PI3K/Akt/mTOR pathway that may have an effect on response to current and future therapeutic interventions. Herein, gaps in current knowledge are highlighted and suggestions for future research directions given that may facilitate biomarker development in partnership with current drug development.

  16. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance.

    PubMed

    Bar-Zeev, Maya; Livney, Yoav D; Assaraf, Yehuda G

    2017-03-01

    Intrinsic anticancer drug resistance appearing prior to chemotherapy as well as acquired resistance due to drug treatment, remain the dominant impediments towards curative cancer therapy. Hence, novel targeted strategies to overcome cancer drug resistance constitute a key aim of cancer research. In this respect, targeted nanomedicine offers innovative therapeutic strategies to overcome the various limitations of conventional chemotherapy, enabling enhanced selectivity, early and more precise cancer diagnosis, individualized treatment as well as overcoming of drug resistance, including multidrug resistance (MDR). Delivery systems based on nanoparticles (NPs) include diverse platforms enabling a plethora of rationally designed therapeutic nanomedicines. Here we review NPs designed to enhance antitumor drug uptake and selective intracellular accumulation using strategies including passive and active targeting, stimuli-responsive drug activation or target-activated release, triggered solely in the cancer cell or in specific organelles, cutting edge theranostic multifunctional NPs delivering drug combinations for synergistic therapy, while facilitating diagnostics, and personalization of therapeutic regimens. In the current paper we review the recent findings of the past four years and discuss the advantages and limitations of the various novel NPs-based drug delivery systems. Special emphasis is put on in vivo study-based evidences supporting significant therapeutic impact in chemoresistant cancers. A future perspective is proposed for further research and development of complex targeted, multi-stage responsive nanomedical drug delivery systems for personalized cancer diagnosis and efficacious therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Analysis of Hypericin-Mediated Effects and Implications for Targeted Photodynamic Therapy

    PubMed Central

    Mühleisen, Laura; Alev, Magdalena; Unterweger, Harald; Subatzus, Daniel; Pöttler, Marina; Friedrich, Ralf P.; Alexiou, Christoph; Janko, Christina

    2017-01-01

    The phototoxic effect of hypericin can be utilized for Photodynamic Therapy (PDT) of cancer. After intravenous application and systemic distribution of the drug in the patient’s body, the tumor site is exposed to light. Subsequently, toxic reactive oxygen species (ROS) are generated, inducing tumor cell death. To prevent unwanted activation of the drug in other regions of the body, patients have to avoid light during and after the treatment cycles, consequently impairing quality of life. Here, we characterize toxicity and hypericin-mediated effects on cancer cells in vitro and confirm that its effect clearly depends on concentration and illumination time. To reduce side effects and to increase therapy success, selective accumulation of hypericin in the tumor region is a promising solution. Loading hypericin on superparamagnetic iron oxide nanoparticles (SPIONs) and guiding them to the desired place using an external magnetic field might accomplish this task (referred to as Magnetic Drug Targeting (MDT)). Thus, using a double targeting strategy, namely magnetic accumulation and laser induced photoactivation, might improve treatment effectivity as well as specificity and reduce toxic side effects in future clinical applications. PMID:28661430

  18. Analysis of Hypericin-Mediated Effects and Implications for Targeted Photodynamic Therapy.

    PubMed

    Mühleisen, Laura; Alev, Magdalena; Unterweger, Harald; Subatzus, Daniel; Pöttler, Marina; Friedrich, Ralf P; Alexiou, Christoph; Janko, Christina

    2017-06-29

    The phototoxic effect of hypericin can be utilized for Photodynamic Therapy (PDT) of cancer. After intravenous application and systemic distribution of the drug in the patient's body, the tumor site is exposed to light. Subsequently, toxic reactive oxygen species (ROS) are generated, inducing tumor cell death. To prevent unwanted activation of the drug in other regions of the body, patients have to avoid light during and after the treatment cycles, consequently impairing quality of life. Here, we characterize toxicity and hypericin-mediated effects on cancer cells in vitro and confirm that its effect clearly depends on concentration and illumination time. To reduce side effects and to increase therapy success, selective accumulation of hypericin in the tumor region is a promising solution. Loading hypericin on superparamagnetic iron oxide nanoparticles (SPIONs) and guiding them to the desired place using an external magnetic field might accomplish this task (referred to as Magnetic Drug Targeting (MDT)). Thus, using a double targeting strategy, namely magnetic accumulation and laser induced photoactivation, might improve treatment effectivity as well as specificity and reduce toxic side effects in future clinical applications.

  19. Evidence for the importance of personalized molecular profiling in pancreatic cancer.

    PubMed

    Lili, Loukia N; Matyunina, Lilya V; Walker, L DeEtte; Daneker, George W; McDonald, John F

    2014-03-01

    There is a growing body of evidence that targeted gene therapy holds great promise for the future treatment of cancer. A crucial step in this therapy is the accurate identification of appropriate candidate genes/pathways for targeted treatment. One approach is to identify variant genes/pathways that are significantly enriched in groups of afflicted individuals relative to control subjects. However, if there are multiple molecular pathways to the same cancer, the molecular determinants of the disease may be heterogeneous among individuals and possibly go undetected by group analyses. In an effort to explore this question in pancreatic cancer, we compared the most significantly differentially expressed genes/pathways between cancer and control patient samples as determined by group versus personalized analyses. We found little to no overlap between genes/pathways identified by gene expression profiling using group analyses relative to those identified by personalized analyses. Our results indicate that personalized and not group molecular profiling is the most appropriate approach for the identification of putative candidates for targeted gene therapy of pancreatic and perhaps other cancers with heterogeneous molecular etiology.

  20. DNA repair targeted therapy: the past or future of cancer treatment?

    PubMed Central

    Gavande, Navnath S.; VanderVere-Carozza, Pamela S.; Hinshaw, Hilary D.; Jalal, Shadia I.; Sears, Catherine R.; Pawelczak, Katherine S.; Turchi, John J.

    2016-01-01

    The repair of DNA damage is a complex process that relies on particular pathways to remedy specific types of damage to DNA. The range of insults to DNA includes small, modest changes in structure including mismatched bases and simple methylation events to oxidized bases, intra- and interstrand DNA crosslinks, DNA double strand breaks and protein-DNA adducts. Pathways required for the repair of these lesions include mismatch repair, base excision repair, nucleotide excision repair, and the homology directed repair/Fanconi anemia pathway. Each of these pathways contributes to genetic stability, and mutations in genes encoding proteins involved in these pathways have been demonstrated to promote genetic instability and cancer. In fact, it has been suggested all cancers display defects in DNA repair. It has also been demonstrated that the ability of cancer cells to repair therapeutically induced DNA damage impacts therapeutic efficacy. This has led to targeting DNA repair pathways and proteins to develop anti-cancer agents that will increase sensitivity to traditional chemotherapeutics. While initial studies languished and were plagued by a lack of specificity and a defined mechanism of action, more recent approaches to exploit synthetic lethal interaction and develop high affinity chemical inhibitors have proven considerably more effective. In this review we will highlight recent advances and discuss previous failures in targeting DNA repair to pave the way for future DNA repair targeted agents and their use in cancer therapy. PMID:26896565

  1. Prostanoid receptor EP2 as a therapeutic target.

    PubMed

    Ganesh, Thota

    2014-06-12

    Cycoloxygenase-2 (COX-2) induction is prevalent in a variety of (brain and peripheral) injury models where COX-2 levels correlate with disease progression. Thus, COX-2 has been widely explored for anti-inflammatory therapy with COX-2 inhibitors, which proved to be effective in reducing the pain and inflammation in patients with arthritis and menstrual cramps, but they have not provided any benefit to patients with chronic inflammatory neurodegenerative disease. Recently, two COX-2 drugs, rofecoxib and valdecoxib, were withdrawn from the United States market due to cardiovascular side effects. Thus, future anti-inflammatory therapy could be targeted through a specific prostanoid receptor downstream of COX-2. The PGE2 receptor EP2 is emerging as a pro-inflammatory target in a variety of CNS and peripheral diseases. Here we highlight the latest developments on the role of EP2 in diseases, mechanism of activation, and small molecule discovery targeted either to enhance or to block the function of this receptor.

  2. Cell cycle proteins as promising targets in cancer therapy.

    PubMed

    Otto, Tobias; Sicinski, Piotr

    2017-01-27

    Cancer is characterized by uncontrolled tumour cell proliferation resulting from aberrant activity of various cell cycle proteins. Therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrate that some of these proteins are not essential for proliferation of non-transformed cells and development of most tissues. By contrast, many cancers are uniquely dependent on these proteins and hence are selectively sensitive to their inhibition. After decades of research on the physiological functions of cell cycle proteins and their relevance for cancer, this knowledge recently translated into the first approved cancer therapeutic targeting of a direct regulator of the cell cycle. In this Review, we focus on proteins that directly regulate cell cycle progression (such as cyclin-dependent kinases (CDKs)), as well as checkpoint kinases, Aurora kinases and Polo-like kinases (PLKs). We discuss the role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as the future therapeutic potential of various cell cycle inhibitors.

  3. Potential and problems in ultrasound-responsive drug delivery systems

    PubMed Central

    Zhao, Ying-Zheng; Du, Li-Na; Lu, Cui-Tao; Jin, Yi-Guang; Ge, Shu-Ping

    2013-01-01

    Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future. PMID:23637531

  4. Molecular mechanisms in therapy of acid-related diseases

    PubMed Central

    Shin, J. M.; Vagin, O.; Munson, K.; Kidd, M.; Modlin, I. M.; Sachs, G.

    2011-01-01

    Inhibition of gastric acid secretion is the mainstay of the treatment of gastroesophageal reflux disease and peptic ulceration; therapies to inhibit acid are among the best-selling drugs worldwide. Highly effective agents targeting the histamine H2 receptor were first identified in the 1970s. These were followed by the development of irreversible inhibitors of the parietal cell hydrogen-potassium ATPase (the proton pump inhibitors) that inhibit acid secretion much more effectively. Reviewed here are the chemistry, biological targets and pharmacology of these drugs, with reference to their current and evolving clinical utilities. Future directions in the development of acid inhibitory drugs include modifications of current agents and the emergence of a novel class of agents, the acid pump antagonists. PMID:17928953

  5. Stopping bacterial adhesion: a novel approach to treating infections.

    PubMed

    Bavington, C; Page, C

    2005-01-01

    Adhesion and colonization are prerequisites for the establishment of bacterial pathogenesis. The prevention of adhesion is an attractive target for the development of new therapies in the prevention of infection. Bacteria have developed a multiplicity of adhesion mechanisms commonly targeting surface carbohydrate structures, but our ability to rationally design effective antiadhesives is critically affected by the limitations of our knowledge of the human 'glycome' and of the bacterial function in relation to it. The potential for the future development of carbohydrate-based antiadhesives has been demonstrated by a significant number of in vitro and in vivo studies. Such therapies will be particularly relevant for infections of mucosal surfaces where topical application or delivery is possible. (c) 2005 S. Karger AG, Basel

  6. Death receptors as targets in cancer.

    PubMed

    Micheau, O; Shirley, S; Dufour, F

    2013-08-01

    Anti-tumour therapies based on the use pro-apoptotic receptor agonists, including TNF-related apoptosis-inducing ligand (TRAIL) or monoclonal antibodies targeting TRAIL-R1 or TRAIL-R2, have been disappointing so far, despite clear evidence of clinical activity and lack of adverse events for the vast majority of these compounds, whether combined or not with conventional or targeted anti-cancer therapies. This brief review aims at discussing the possible reasons for the lack of apparent success of these therapeutic approaches and at providing hints in order to rationally design optimal protocols based on our current understanding of TRAIL signalling regulation or resistance for future clinical trials. This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8. © 2013 The British Pharmacological Society.

  7. A Phase II Study of Intensity Modulated Radiation Therapy to the Pelvis for Postoperative Patients With Endometrial Carcinoma: Radiation Therapy Oncology Group Trial 0418

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jhingran, Anuja, E-mail: ajhingra@mdanderson.org; Winter, Kathryn; Portelance, Lorraine

    2012-09-01

    Purpose: To determine the feasibility of pelvic intensity modulated radiation therapy (IMRT) for patients with endometrial cancer in a multi-institutional setting and to determine whether this treatment is associated with fewer short-term bowel adverse events than standard radiation therapy. Methods: Patients with adenocarcinoma of the endometrium treated with pelvic radiation therapy alone were eligible. Guidelines for target definition and delineation, dose prescription, and dose-volume constraints for the targets and critical normal structures were detailed in the study protocol and a web-based atlas. Results: Fifty-eight patients were accrued by 25 institutions; 43 were eligible for analysis. Forty-two patients (98%) had anmore » acceptable IMRT plan; 1 had an unacceptable variation from the prescribed dose to the nodal planning target volume. The proportions of cases in which doses to critical normal structures exceeded protocol criteria were as follows: bladder, 67%; rectum, 76%; bowel, 17%; and femoral heads, 33%. Twelve patients (28%) developed grade {>=}2 short-term bowel adverse events. Conclusions: Pelvic IMRT for endometrial cancer is feasible across multiple institutions with use of a detailed protocol and centralized quality assurance (QA). For future trials, contouring of vaginal and nodal tissue will need continued monitoring with good QA and better definitions will be needed for organs at risk.« less

  8. Pseudo-Fovea Formation After Gene Therapy for RPE65-LCA

    PubMed Central

    Cideciyan, Artur V.; Aguirre, Geoffrey K.; Jacobson, Samuel G.; Butt, Omar H.; Schwartz, Sharon B.; Swider, Malgorzata; Roman, Alejandro J.; Sadigh, Sam; Hauswirth, William W.

    2015-01-01

    Purpose. The purpose of this study was to evaluate fixation location and oculomotor characteristics of 15 patients with Leber congenital amaurosis (LCA) caused by RPE65 mutations (RPE65-LCA) who underwent retinal gene therapy. Methods. Eye movements were quantified under infrared imaging of the retina while the subject fixated on a stationary target. In a subset of patients, letter recognition under retinal imaging was performed. Cortical responses to visual stimulation were measured using functional magnetic resonance imaging (fMRI) in two patients before and after therapy. Results. All patients were able to fixate on a 1° diameter visible target in the dark. The preferred retinal locus of fixation was either at the anatomical fovea or at an extrafoveal locus. There were a wide range of oculomotor abnormalities. Natural history showed little change in oculomotor abnormalities if target illuminance was increased to maintain target visibility as the disease progressed. Eleven of 15 study eyes treated with gene therapy showed no differences from baseline fixation locations or instability over an average of follow-up of 3.5 years. Four of 15 eyes developed new pseudo-foveas in the treated retinal regions 9 to 12 months after therapy that persisted for up to 6 years; patients used their pseudo-foveas for letter identification. fMRI studies demonstrated that preservation of light sensitivity was restricted to the cortical projection zone of the pseudo-foveas. Conclusions. The slow emergence of pseudo-foveas many months after the initial increases in light sensitivity points to a substantial plasticity of the adult visual system and a complex interaction between it and the progression of underlying retinal disease. The visual significance of pseudo-foveas suggests careful consideration of treatment zones for future gene therapy trials. (ClinicalTrials.gov number, NCT00481546.) PMID:25537204

  9. Retargeted human avidin-CAR T cells for adoptive immunotherapy of EGFRvIII expressing gliomas and their evaluation via optical imaging.

    PubMed

    Liu, Kaiyu; Liu, Xujie; Peng, Zhiping; Sun, Haojie; Zhang, Mingzhi; Zhang, Jianning; Liu, Shuang; Hao, Limin; Lu, Guoqiu; Zheng, Kangcheng; Gong, Xikui; Wu, Di; Wang, Fan; Shen, Li

    2015-09-15

    There has been significant progress in the design of chimeric antigen receptors (CAR) for adoptive immunotherapy targeting tumor-associated antigens. However, the challenge of monitoring the therapy in real time has been continually ignored. To address this issue, we developed optical molecular imaging approaches to evaluate a recently reported novel CAR strategy for adoptive immunotherapy against glioma xenografts expressing EGFRvIII. We initially biotinylated a novel anti-EGFRvIII monoclonal antibody (biotin-4G1) to pre-target EGFRvIII+ gliomas and then redirect activated avidin-CAR expressing T cells against the pre-targeted biotin-4G1. By optical imaging study and bio-distribution analysis, we confirmed the specificity of pre-target and target and determined the optimal time for T cells adoptive transfer in vivo. The results showed this therapeutic strategy offered efficient therapy effect to EGFRvIII+ glioma-bearing mice and implied that optical imaging is a highly useful tool in aiding in the instruction of clinical CAR-T cells adoptive transfer in future.

  10. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics.

    PubMed

    Zhou, Yinjian; Zhang, Chunling; Liang, Wei

    2014-11-10

    RNA interference (RNAi) was intensively studied in the past decades due to its potential in therapy of diseases. The target specificity and universal treatment spectrum endowed siRNA advantages over traditional small molecules and protein drugs. However, barriers exist in the blood circulation system and the diseased tissues blocked the actualization of RNAi effect, which raised function versatility requirements to siRNA therapeutic agents. Appropriate functionalization of siRNAs is necessary to break through these barriers and target diseased tissues in local or systemic targeted application. In this review, we summarized that barriers exist in the delivery process and popular functionalized technologies for siRNA such as chemical modification and physical encapsulation. Preclinical targeted siRNA delivery and the current status of siRNA based RNAi therapeutic agents in clinical trial were reviewed and finally the future of siRNA delivery was proposed. The valuable experience from the siRNA agent delivery study and the RNAi therapeutic agents in clinical trial paved ways for practical RNAi therapeutics to emerge early. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Alport syndrome from bench to bedside: the potential of current treatment beyond RAAS blockade and the horizon of future therapies.

    PubMed

    Gross, Oliver; Perin, Laura; Deltas, Constantinos

    2014-09-01

    The hereditary type IV collagen disease Alport syndrome (AS) always leads to end-stage renal failure. Yesterday, for the past 90 years, this course was described as 'inevitable'. Today, RAAS blockade has changed the 'inevitable' course to a treatable disease. Tomorrow, researchers hope to erase the 'always' from 'always leads to renal failure' in the textbooks. This review elucidates therapeutic targets that evolve from research: (i) kidney embryogenesis and pathogenesis; (ii) phenotype-genotype correlation and the role of collagen receptors and podocytes; (iii) the malfunctioning Alport-GBM; (iv) tubulointerstitial fibrosis; (v) the role of proteinuria in pathogenesis and prognosis; and (vi) secondary events such as infections, hyperparathyroidism and hypercholesterolaemia. Therefore, moderate lifestyle, therapy of bacterial infections, Paricalcitol in adult patients with hyperparathyroidism and HMG-CoA-reductase inhibitors in adult patients with dyslipoproteinemia might contribute to a slower progression of AS and less cardiovascular events. In the future, upcoming treatments including stem cells, chaperon therapy, collagen receptor blockade and anti-microRNA therapy will expand our perspective in protecting the kidneys of Alport patients from further damage. This perspective on current and future therapies is naturally limited by our personal focus in research, but aims to motivate young scientists and clinicians to find a multimodal cure for AS. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  12. Multidrug-Resistant Enterococcal Infections: New Compounds, Novel Antimicrobial Therapies?

    PubMed

    van Harten, Roel M; Willems, Rob J L; Martin, Nathaniel I; Hendrickx, Antoni P A

    2017-06-01

    Over the past two decades infections due to antibiotic-resistant bacteria have escalated world-wide, affecting patient morbidity, mortality, and health care costs. Among these bacteria, Enterococcus faecium and Enterococcus faecalis represent opportunistic nosocomial pathogens that cause difficult-to-treat infections because of intrinsic and acquired resistance to a plethora of antibiotics. In recent years, a number of novel antimicrobial compound classes have been discovered and developed that target Gram-positive bacteria, including E. faecium and E. faecalis. These new antibacterial agents include teixobactin (targeting lipid II and lipid III), lipopeptides derived from nisin (targeting lipid II), dimeric vancomycin analogues (targeting lipid II), sortase transpeptidase inhibitors (targeting the sortase enzyme), alanine racemase inhibitors, lipoteichoic acid synthesis inhibitors (targeting LtaS), various oxazolidinones (targeting the bacterial ribosome), and tarocins (interfering with teichoic acid biosynthesis). The targets of these novel compounds and mode of action make them very promising for further antimicrobial drug development and future treatment of Gram-positive bacterial infections. Here we review current knowledge of the most favorable anti-enterococcal compounds along with their implicated modes of action and efficacy in animal models to project their possible future use in the clinical setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. [Genetic basis of head and neck cancers and gene therapy].

    PubMed

    Özel, Halil Erdem; Özkırış, Mahmut; Gencer, Zeliha Kapusuz; Saydam, Levent

    2013-01-01

    Surgery and combinations of traditional treatments are not successful enough particularly for advanced stage head and neck cancer. The major disadvantages of chemotherapy and radiation therapy are the lack of specificity for the target tissue and toxicity to the patient. As a result, gene therapy may offer a more specific approach. The aim of gene therapy is to present therapeutic genes into cancer cells which selectively eliminate malignant cells with no systemic toxicity to the patient. This article reviews the genetic basis of head and neck cancers and important concepts in cancer gene therapy: (i) inhibition of oncogenes; (ii) tumor suppressor gene replacement; (iii) regulation of immune response against malignant cells; (iv) genetic prodrug activation; and (v) antiangiogenic gene therapy. Currently, gene therapy is not sufficient to replace the traditional treatments of head and neck cancers, however there is no doubt that it will have an important role in the near future.

  14. Chimaeric antigen receptor T-cell therapy for tumour immunotherapy

    PubMed Central

    Sha, Huan-huan; Wang, Dan-dan; Yan, Da-li; Hu, Yong; Yang, Su-jin; Liu, Si-wen

    2017-01-01

    Chimaeric antigen receptor (CAR) T-cell therapies, as one of the cancer immunotherapies, have heralded a new era of treating cancer. The accumulating data, especially about CAR-modified T cells against CD19 support that CAR T-cell therapy is a highly effective immune therapy for B-cell malignancies. Apart from CD19, there have been many trials of CAR T cells directed other tumour specific or associated antigens (TSAs/TAAs) in haematologic malignancies and solid tumours. This review will briefly summarize basic CAR structure, parts of reported TSAs/TAAs, results of the clinical trials of CAR T-cell therapies as well as two life-threatening side effects. Experiments in vivo or in vitro, ongoing clinical trials and the outlook for CAR T-cell therapies also be included. Our future efforts will focus on identification of more viable cancer targets and more strategies to make CAR T-cell therapy safer. PMID:28053197

  15. Proton therapy in clinical practice

    PubMed Central

    Liu, Hui; Chang, Joe Y.

    2011-01-01

    Radiation dose escalation and acceleration improves local control but also increases toxicity. Proton radiation is an emerging therapy for localized cancers that is being sought with increasing frequency by patients. Compared with photon therapy, proton therapy spares more critical structures due to its unique physics. The physical properties of a proton beam make it ideal for clinical applications. By modulating the Bragg peak of protons in energy and time, a conformal radiation dose with or without intensity modulation can be delivered to the target while sparing the surrounding normal tissues. Thus, proton therapy is ideal when organ preservation is a priority. However, protons are more sensitive to organ motion and anatomy changes compared with photons. In this article, we review practical issues of proton therapy, describe its image-guided treatment planning and delivery, discuss clinical outcome for cancer patients, and suggest challenges and the future development of proton therapy. PMID:21527064

  16. Drugs and Targets in Fibrosis

    PubMed Central

    Li, Xiaoyi; Zhu, Lixin; Wang, Beibei; Yuan, Meifei; Zhu, Ruixin

    2017-01-01

    Fibrosis contributes to the development of many diseases and many target molecules are involved in fibrosis. Currently, the majority of fibrosis treatment strategies are limited to specific diseases or organs. However, accumulating evidence demonstrates great similarities among fibroproliferative diseases, and more and more drugs are proved to be effective anti-fibrotic therapies across different diseases and organs. Here we comprehensively review the current knowledge on the pathological mechanisms of fibrosis, and divide factors mediating fibrosis progression into extracellular and intracellular groups. Furthermore, we systematically summarize both single and multiple component drugs that target fibrosis. Future directions of fibrosis drug discovery are also proposed. PMID:29218009

  17. Optimal Management of Metastatic Melanoma: Current Strategies and Future Directions

    PubMed Central

    Batus, Marta; Waheed, Salman; Ruby, Carl; Petersen, Lindsay; Bines, Steven D.; Kaufman, Howard L.

    2013-01-01

    Melanoma is increasing in incidence and remains a major public health threat. Although the disease may be curable when identified early, advanced melanoma is characterized by widespread metastatic disease and a median survival of less than 10 months. In recent years, however, major advances in our understanding of the molecular nature of melanoma and the interaction of melanoma cells with the immune system have resulted in several new therapeutic strategies that are showing significant clinical benefit. Current therapeutic approaches include surgical resection of metastatic disease, chemotherapy, immunotherapy, and targeted therapy. Dacarbazine, interleukin-2, ipilimumab, and vemurafenib are now approved for the treatment of advanced melanoma. In addition, new combination chemotherapy regimens, monoclonal antibodies blocking the programmed death-1 (PD-1)/PD-ligand 1 pathway, and targeted therapy against CKIT, mitogen-activated protein/extracellular signal-regulated kinase (MEK), and other putative signaling pathways in melanoma are beginning to show promise in early-phase clinical trials. Further research on these modalities alone and in combination will likely be the focus of future clinical investigation and may impact the outcomes for patients with advanced melanoma. PMID:23677693

  18. [Treatment of Behçet's disease].

    PubMed

    Comarmond, C; Wechsler, B; Cacoub, P; Saadoun, D

    2014-02-01

    Behçet's disease (BD) is a systemic large-vessel vasculitis characterized by a wide clinical spectrum including recurrent oral and genital ulcerations, uveitis, vascular, neurological, articular, and gastrointestinal manifestations. Therapeutic management of BD depends on the clinical presentation and organ involved. Although colchicine, non-steroidal anti-inflammatory agents and topical treatments with corticosteroids are often sufficient for mucocutaneous and joint involvement, a more aggressive approach with immunosuppressive agents is warranted for severe manifestations such as posterior uveitis, retinal vasculitis, vascular, neurological and gastrointestinal involvement. However, some patients still have refractory disease, relapses, sight threatening eye disease, or irreversible organ damage. Recent improvements in the understanding of the pathogenic mechanisms have led to the identification of potential targets and future therapies for BD. In contrast to current non-specific immunosuppressive agents, the emergence of immunomodulatory drugs provides the possibility of interfering with specific pathogenic pathways. Novel targeted immunosuppressive therapies might be used in the future for BD. Copyright © 2013 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  19. Multifunctional Gold Nanostars for Molecular Imaging and Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew; Register, Janna; Vo-Dinh, Tuan

    2015-08-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL) and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy. This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed.

  20. Targeting Epidermal Growth Factor Receptor-Related Signaling Pathways in Pancreatic Cancer.

    PubMed

    Philip, Philip A; Lutz, Manfred P

    2015-10-01

    Pancreatic cancer is aggressive, chemoresistant, and characterized by complex and poorly understood molecular biology. The epidermal growth factor receptor (EGFR) pathway is frequently activated in pancreatic cancer; therefore, it is a rational target for new treatments. However, the EGFR tyrosine kinase inhibitor erlotinib is currently the only targeted therapy to demonstrate a very modest survival benefit when added to gemcitabine in the treatment of patients with advanced pancreatic cancer. There is no molecular biomarker to predict the outcome of erlotinib treatment, although rash may be predictive of improved survival; EGFR expression does not predict the biologic activity of anti-EGFR drugs in pancreatic cancer, and no EGFR mutations are identified as enabling the selection of patients likely to benefit from treatment. Here, we review clinical studies of EGFR-targeted therapies in combination with conventional cytotoxic regimens or multitargeted strategies in advanced pancreatic cancer, as well as research directed at molecules downstream of EGFR as alternatives or adjuncts to receptor targeting. Limitations of preclinical models, patient selection, and trial design, as well as the complex mechanisms underlying resistance to EGFR-targeted agents, are discussed. Future clinical trials must incorporate translational research end points to aid patient selection and circumvent resistance to EGFR inhibitors.

  1. FGFR a promising druggable target in cancer: Molecular biology and new drugs.

    PubMed

    Porta, Rut; Borea, Roberto; Coelho, Andreia; Khan, Shahanavaj; Araújo, António; Reclusa, Pablo; Franchina, Tindara; Van Der Steen, Nele; Van Dam, Peter; Ferri, Jose; Sirera, Rafael; Naing, Aung; Hong, David; Rolfo, Christian

    2017-05-01

    The Fibroblast Growth Factor Receptor (FGFR) family consists of Tyrosine Kinase Receptors (TKR) involved in several biological functions. Recently, alterations of FGFR have been reported to be important for progression and development of several cancers. In this setting, different studies are trying to evaluate the efficacy of different therapies targeting FGFR. This review summarizes the current status of treatments targeting FGFR, focusing on the trials that are evaluating the FGFR profile as inclusion criteria: Multi-Target, Pan-FGFR Inhibitors and anti-FGF (Fibroblast Growth Factor)/FGFR Monoclonal Antibodies. Most of the TKR share intracellular signaling pathways; therefore, cancer cells tend to overcome the inhibition of one tyrosine kinase receptor by activating another. The future of TKI (Tyrosine Kinase Inhibitor) therapy will potentially come from multi-targeted TKIs that target different TKR simultaneously. It is crucial to understand the interaction of the FGF-FGFR axis with other known driver TKRs. Based on this, it is possible to develop therapeutic strategies targeting multiple connected TKRs at once. One correct step in this direction is the reassessment of multi target inhibitors considering the FGFR status of the tumor. Another opportunity arises from assessing the use of FGFR TKI on patients harboring FGFR alterations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Emerging pharmaceutical therapies for COPD.

    PubMed

    Lakshmi, Sowmya P; Reddy, Aravind T; Reddy, Raju C

    2017-01-01

    COPD, for which cigarette smoking is the major risk factor, remains a worldwide burden. Current therapies provide only limited short-term benefit and fail to halt progression. A variety of potential therapeutic targets are currently being investigated, including COPD-related proinflammatory mediators and signaling pathways. Other investigational compounds target specific aspects or complications of COPD such as mucus hypersecretion and pulmonary hypertension. Although many candidate therapies have shown no significant effects, other emerging therapies have improved lung function, pulmonary hypertension, glucocorticoid sensitivity, and/or the frequency of exacerbations. Among these are compounds that inhibit the CXCR2 receptor, mitogen-activated protein kinase/Src kinase, myristoylated alanine-rich C kinase substrate, selectins, and the endothelin receptor. Activation of certain transcription factors may also be relevant, as a large retrospective cohort study of COPD patients with diabetes found that the peroxisome proliferator-activated receptor γ (PPARγ) agonists rosiglitazone and pioglitazone were associated with reduced COPD exacerbation rate. Notably, several therapies have shown efficacy only in identifiable subgroups of COPD patients, suggesting that subgroup identification may become more important in future treatment strategies. This review summarizes the status of emerging therapeutic pharmaceuticals for COPD and highlights those that appear most promising.

  3. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy

    NASA Astrophysics Data System (ADS)

    Hynynen, Kullervo; Jones, Ryan M.

    2016-09-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  4. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy.

    PubMed

    Hynynen, Kullervo; Jones, Ryan M

    2016-09-07

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  5. Targeted alpha therapy using Radium-223: From physics to biological effects.

    PubMed

    Marques, I A; Neves, A R; Abrantes, A M; Pires, A S; Tavares-da-Silva, E; Figueiredo, A; Botelho, M F

    2018-05-25

    With the advance of the use of ionizing radiation in therapy, targeted alpha therapy (TAT) has assumed an important role around the world. This kind of therapy can potentially reduce side effects caused by radiation in normal tissues and increased destructive radiobiological effects in tumor cells. However, in many countries, the use of this therapy is still in a pioneering phase. Radium-223 ( 223 Ra), an alpha-emitting radionuclide, has been the first of its kind to be approved for the treatment of bone metastasis in metastatic castration-resistant prostate cancer. Nevertheless, the interaction mechanism and the direct effects of this radiopharmaceutical in tumor cells are not fully understood neither characterized at a molecular level. In fact, the ways how TAT is linked to radiobiological effects in cancer is not yet revised. Therefore, this review introduces some physical properties of TAT that leads to biological effects and links this information to the hallmarks of cancer. The authors also collected the studies developed with 223 Ra to correlate with the three categories reviewed - properties of TAT, 5 R's of radiobiology and hallmarks of cancer- and with the promising future to this radiopharmaceutical. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Cancer Systems Biology: a peak into the future of patient care?

    PubMed Central

    Werner, Henrica M. J.; Mills, Gordon B.; Ram, Prahlad T.

    2015-01-01

    Traditionally, scientific research has focused on studying individual events, such as single mutations, gene function or the effect of the manipulation of one protein on a biological phenotype. A range of technologies, combined with the ability to develop robust and predictive mathematical models, is beginning to provide information that will enable a holistic view of how the genomic and epigenetic aberrations in cancer cells can alter the homeostasis of signalling networks within these cells, between cancer cells and the local microenvironment, at the organ and organism level. This systems biology process needs to be integrated with an iterative approach wherein hypotheses and predictions that arise from modelling are refined and constrained by experimental evaluation. Systems biology approaches will be vital for developing and implementing effective strategies to deliver personalized cancer therapy. Specifically, these approaches will be important to select those patients most likely to benefit from targeted therapies as well as for the development and implementation of rational combinatorial therapies. Systems biology can help to increase therapy efficacy or bypass the emergence of resistance, thus converting the current (often short term) effects of targeted therapies into durable responses, ultimately to improve quality of life and provide a cure. PMID:24492837

  7. Emerging pharmaceutical therapies for COPD

    PubMed Central

    Lakshmi, Sowmya P; Reddy, Aravind T; Reddy, Raju C

    2017-01-01

    COPD, for which cigarette smoking is the major risk factor, remains a worldwide burden. Current therapies provide only limited short-term benefit and fail to halt progression. A variety of potential therapeutic targets are currently being investigated, including COPD-related proinflammatory mediators and signaling pathways. Other investigational compounds target specific aspects or complications of COPD such as mucus hypersecretion and pulmonary hypertension. Although many candidate therapies have shown no significant effects, other emerging therapies have improved lung function, pulmonary hypertension, glucocorticoid sensitivity, and/or the frequency of exacerbations. Among these are compounds that inhibit the CXCR2 receptor, mitogen-activated protein kinase/Src kinase, myristoylated alanine-rich C kinase substrate, selectins, and the endothelin receptor. Activation of certain transcription factors may also be relevant, as a large retrospective cohort study of COPD patients with diabetes found that the peroxisome proliferator-activated receptor γ (PPARγ) agonists rosiglitazone and pioglitazone were associated with reduced COPD exacerbation rate. Notably, several therapies have shown efficacy only in identifiable subgroups of COPD patients, suggesting that subgroup identification may become more important in future treatment strategies. This review summarizes the status of emerging therapeutic pharmaceuticals for COPD and highlights those that appear most promising. PMID:28790817

  8. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy

    PubMed Central

    Hynynen, Kullervo; Jones, Ryan M.

    2016-01-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy. PMID:27494561

  9. Human genetics as a model for target validation: finding new therapies for diabetes.

    PubMed

    Thomsen, Soren K; Gloyn, Anna L

    2017-06-01

    Type 2 diabetes is a global epidemic with major effects on healthcare expenditure and quality of life. Currently available treatments are inadequate for the prevention of comorbidities, yet progress towards new therapies remains slow. A major barrier is the insufficiency of traditional preclinical models for predicting drug efficacy and safety. Human genetics offers a complementary model to assess causal mechanisms for target validation. Genetic perturbations are 'experiments of nature' that provide a uniquely relevant window into the long-term effects of modulating specific targets. Here, we show that genetic discoveries over the past decades have accurately predicted (now known) therapeutic mechanisms for type 2 diabetes. These findings highlight the potential for use of human genetic variation for prospective target validation, and establish a framework for future applications. Studies into rare, monogenic forms of diabetes have also provided proof-of-principle for precision medicine, and the applicability of this paradigm to complex disease is discussed. Finally, we highlight some of the limitations that are relevant to the use of genome-wide association studies (GWAS) in the search for new therapies for diabetes. A key outstanding challenge is the translation of GWAS signals into disease biology and we outline possible solutions for tackling this experimental bottleneck.

  10. Microbiota-targeted therapies on the intensive care unit.

    PubMed

    Haak, Bastiaan W; Levi, Marcel; Wiersinga, W Joost

    2017-04-01

    The composition and diversity of the microbiota of the human gut, skin, and several other sites is severely deranged in critically ill patients on the ICU, and it is likely that these disruptions can negatively affect outcome. We here review new and ongoing studies that investigate the use of microbiota-targeted therapeutics in the ICU, and provide recommendations for future research. Practically every intervention in the ICU as well as the physiological effects of critical illness itself can have a profound impact on the gut microbiota. Therapeutic modulation of the microbiota, aimed at restoring the balance between 'pathogenic' and 'health-promoting' microbes is therefore of significant interest. Probiotics have shown to be effective in the treatment of ventilator-associated pneumonia, and the first fecal microbiota transplantations have recently been safely and successfully performed in the ICU. However, all-encompassing data in this vulnerable patient group remain sparse, and only a handful of novel studies that study microbiota-targeted therapies in the ICU are currently ongoing. Enormous strides have been made in characterizing the gut microbiome of critically ill patients in the ICU, and an increasing amount of preclinical data reveals the huge potential of microbiota-targeted therapies. Further understanding of the causes and consequences of dysbiosis on ICU-related outcomes are warranted to push the field forward.

  11. The clinical landscape for SMA in a new therapeutic era

    PubMed Central

    Talbot, K; Tizzano, E F

    2017-01-01

    Despite significant advances in basic research, the treatment of degenerative diseases of the nervous system remains one of the greatest challenges for translational medicine. The childhood onset motor neuron disorder spinal muscular atrophy (SMA) has been viewed as one of the more tractable targets for molecular therapy due to a detailed understanding of the molecular genetic basis of the disease. In SMA, inactivating mutations in the SMN1 gene can be partially compensated for by limited expression of SMN protein from a variable number of copies of the SMN2 gene, which provides both a molecular explanation for phenotypic severity and a target for therapy. The advent of the first tailored molecular therapy for SMA, based on modulating the splicing behaviour of the SMN2 gene provides, for the first time, a treatment which alters the natural history of motor neuron degeneration. Here we consider how this will change the landscape for diagnosis, clinical management and future therapeutic trials in SMA, as well as the implications for the molecular therapy of other neurological diseases. PMID:28644430

  12. Adoptive cellular therapy for chronic lymphocytic leukemia and B cell malignancies. CARs and more.

    PubMed

    Castro, Januario E; Kipps, Thomas J

    2016-03-01

    Treatment of patients with chronic lymphocytic leukemia and other B cell malignancies is evolving very rapidly. We have observed the quick transition during the last couple of years, from chemo-immunotherapy based treatments to oral targeted therapies based on B cell receptor signaling and Bcl-2 inhibitors, as well as the increasing use of second generation glyco-engineered antibodies. The next wave of revolution in the treatment for this conditions is approaching and it will be based on strategies that harness the power of the immune system to fight cancer. In the center of this biotechnological revolution is cellular engineering, the field that had made possible to redirect the immune system effector cells to achieve a more effective and targeted adoptive cellular therapy. In this chapter, we will review the historical context of these scientific developments, the most recent basic and clinical research in the field and some opinions regarding the future of adoptive cellular therapy in CLL and other B cell malignancies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Gene therapy for PIDs: progress, pitfalls and prospects.

    PubMed

    Mukherjee, Sayandip; Thrasher, Adrian J

    2013-08-10

    Substantial progress has been made in the past decade in treating several primary immunodeficiency disorders (PIDs) with gene therapy. Current approaches are based on ex-vivo transfer of therapeutic transgene via viral vectors to patient-derived autologous hematopoietic stem cells (HSCs) followed by transplantation back to the patient with or without conditioning. The overall outcome from all the clinical trials targeting different PIDs has been extremely encouraging but not without caveats. Malignant outcomes from insertional mutagenesis have featured prominently in the adverse events associated with these trials and have warranted intense pre-clinical investigation into defining the tendencies of different viral vectors for genomic integration. Coupled with issues pertaining to transgene expression, the therapeutic landscape has undergone a paradigm shift in determining safety, stability and efficacy of gene therapy approaches. In this review, we aim to summarize the progress made in the gene therapy trials targeting ADA-SCID, SCID-X1, CGD and WAS, review the pitfalls, and outline the recent advancements which are expected to further enhance favourable risk benefit ratios for gene therapeutic approaches in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Current situation and future usage of anticancer drug databases.

    PubMed

    Wang, Hongzhi; Yin, Yuanyuan; Wang, Peiqi; Xiong, Chenyu; Huang, Lingyu; Li, Sijia; Li, Xinyi; Fu, Leilei

    2016-07-01

    Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug-target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug-drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes.

  15. Gene and cell therapy for pancreatic cancer.

    PubMed

    Singh, Hans Martin; Ungerechts, Guy; Tsimberidou, Apostolia M

    2015-04-01

    The clinical outcomes of patients with pancreatic cancer are poor, and the limited success of classical chemotherapy underscores the need for new, targeted approaches for this disease. The delivery of genetic material to cells allows for a variety of therapeutic concepts. Engineered agents based on synthetic biology are under clinical investigation in various cancers, including pancreatic cancer. This review focuses on Phase I - III clinical trials of gene and cell therapy for pancreatic cancer and on future implications of recent translational research. Trials available in the US National Library of Medicine (www.clinicaltrials.gov) until February 2014 were reviewed and relevant published results of preclinical and clinical studies were retrieved from www.pubmed.gov . In pancreatic cancer, gene and cell therapies are feasible and may have synergistic antitumor activity with standard treatment and/or immunotherapy. Challenges are related to application safety, manufacturing costs, and a new spectrum of adverse events. Further studies are needed to evaluate available agents in carefully designed protocols and combination regimens. Enabling personalized cancer therapy, insights from molecular diagnostic technologies will guide the development and selection of new gene-based drugs. The evolving preclinical and clinical data on gene-based therapies can lay the foundation for future avenues improving patient care in pancreatic cancer.

  16. Anti–PD-1/PD-L1 therapy of human cancer: past, present, and future

    PubMed Central

    Chen, Lieping; Han, Xue

    2015-01-01

    Major progress has been made toward our understanding of the programmed death-1/programmed death ligand-1 (PD-1/PD-L1) pathway (referred to as the PD pathway). mAbs are already being used to block the PD pathway to treat human cancers (anti-PD therapy), especially advanced solid tumors. This therapy is based on principles that were discovered through basic research more than a decade ago, but the great potential of this pathway to treat a broad spectrum of advanced human cancers is just now becoming apparent. In this Review, we will briefly review the history and development of anti-PD therapy, from the original benchwork to the most up-to-date clinical results. We will then focus the discussion on three basic principles that define this unique therapeutic approach and highlight how anti-PD therapy is distinct from other immunotherapeutic approaches, namely tumor site immune modulation, targeting tumor-induced immune defects, and repairing ongoing (rather than generating de novo) tumor immunity. We believe that these fundamental principles set the standard for future immunotherapies and will guide our efforts to develop more efficacious and less toxic immune therapeutics to treat human cancers. PMID:26325035

  17. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators.

    PubMed

    Le Mercier, Isabelle; Lines, J Louise; Noelle, Randolph J

    2015-01-01

    In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.

  18. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators

    PubMed Central

    Le Mercier, Isabelle; Lines, J. Louise; Noelle, Randolph J.

    2015-01-01

    In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy. PMID:26347741

  19. QSAR studies in the discovery of novel type-II diabetic therapies.

    PubMed

    Abuhammad, Areej; Taha, Mutasem O

    2016-01-01

    Type-II diabetes mellitus (T2DM) is a complex chronic disease that represents a major therapeutic challenge. Despite extensive efforts in T2DM drug development, therapies remain unsatisfactory. Currently, there are many novel and important antidiabetic drug targets under investigation by many research groups worldwide. One of the main challenges to develop effective orally active hypoglycemic agents is off-target effects. Computational tools have impacted drug discovery at many levels. One of the earliest methods is quantitative structure-activity relationship (QSAR) studies. QSAR strategies help medicinal chemists understand the relationship between hypoglycemic activity and molecular properties. Hence, QSAR may hold promise in guiding the synthesis of specifically designed novel ligands that demonstrate high potency and target selectivity. This review aims to provide an overview of the QSAR strategies used to model antidiabetic agents. In particular, this review focuses on drug targets that raised recent scientific interest and/or led to successful antidiabetic agents in the market. Special emphasis has been made on studies that led to the identification of novel antidiabetic scaffolds. Computer-aided molecular design and discovery techniques like QSAR have a great potential in designing leads against complex diseases such as T2DM. Combined with other in silico techniques, QSAR can provide more useful and rational insights to facilitate the discovery of novel compounds. However, since T2DM is a complex disease that includes several faulty biological targets, multi-target QSAR studies are recommended in the future to achieve efficient antidiabetic therapies.

  20. Emerging targets and therapeutic approaches for the treatment of osteoarthritis pain.

    PubMed

    Rahman, Wahida; Dickenson, Anthony H

    2015-06-01

    Osteoarthritis is a complex and often painful disease that is inadequately controlled with current analgesics. This review discusses emerging targets and therapeutic approaches that may lead to the development of better analgesics. Aberrant excitability in peripheral and central pain pathways drives osteoarthritis pain, reversing this via modulation of nerve growth factor, voltage-gated sodium channel, voltage-gated calcium channel and transient receptor potential vanilloid one activity, and increasing inhibitory mechanisms through modulation of cannabinoid and descending modulatory systems hold promise for osteoarthritis pain therapy. Somatosensory phenotyping of chronic pain patients, as a surrogate of putative pain generating mechanisms, may predict patient response to treatment. Identification of new targets will inform and guide future research, aiding the development of more effective analgesics. Future clinical trial designs should implement sensory phenotyping of patients, as an inclusion or stratification criterion, in order to establish an individualized, mechanism-based treatment of osteoarthritis pain.

  1. Targeted radiotherapy with gold nanoparticles: current status and future perspectives

    PubMed Central

    Ngwa, Wilfred; Kumar, Rajiv; Sridhar, Srinivas; Korideck, Houari; Zygmanski, Piotr; Cormack, Robert A; Berbeco, Ross; Makrigiorgos, G Mike

    2014-01-01

    Radiation therapy (RT) is the treatment of cancer and other diseases with ionizing radiation. The ultimate goal of RT is to destroy all the disease cells while sparing healthy tissue. Towards this goal, RT has advanced significantly over the past few decades in part due to new technologies including: multileaf collimator-assisted modulation of radiation beams, improved computer-assisted inverse treatment planning, image guidance, robotics with more precision, better motion management strategies, stereotactic treatments and hypofractionation. With recent advances in nanotechnology, targeted RT with gold nanoparticles (GNPs) is actively being investigated as a means to further increase the RT therapeutic ratio. In this review, we summarize the current status of research and development towards the use of GNPs to enhance RT. We highlight the promising emerging modalities for targeted RT with GNPs and the corresponding preclinical evidence supporting such promise towards potential clinical translation. Future prospects and perspectives are discussed. PMID:24978464

  2. Treatment of renal cell carcinoma: Current status and future directions.

    PubMed

    Barata, Pedro C; Rini, Brian I

    2017-11-01

    Answer questions and earn CME/CNE Over the past 12 years, medical treatment for renal cell carcinoma (RCC) has transitioned from a nonspecific immune approach (in the cytokine era), to targeted therapy against vascular endothelial growth factor (VEGF), and now to novel immunotherapy agents. Multiple agents-including molecules against vascular endothelial growth factor, platelet-derived growth factor, and related receptors; inhibitors of other targets, such as the mammalian target of rapamycin and the MET and AXL tyrosine-protein kinase receptors; and an immune-checkpoint inhibitor-have been approved based on significant activity in patients with advanced RCC. Despite these advances, important questions remain regarding biomarkers of efficacy, patient selection, and the optimal combination and sequencing of agents. The purpose of this review is to summarize present management and future directions in the treatment of metastatic RCC. CA Cancer J Clin 2017;67:507-524. © 2017 American Cancer Society. © 2017 American Cancer Society.

  3. Design of therapeutic vaccines as a novel antibody therapy for cardiovascular diseases.

    PubMed

    Nakagami, Hironori

    2017-09-01

    Vaccines are primarily used worldwide as a preventive medicine for infectious diseases and have recently been applied to cancer. We and others have developed therapeutic vaccines designed for cardiovascular diseases that are notably different from previous vaccines. In the case of cancer vaccines, a specific protein in cancer cells is a target antigen, and the activation of cytotoxic T cells (CTL) is required to kill and remove the antigen-presenting cancer cells. Our therapeutic vaccines work against hypertension by targeting angiotensin II (Ang II) as the antigen, which is an endogenous hormone. Therapeutic vaccines must avoid CTL activation and induce the blocking antibodies for Ang II. The goal of our therapeutic vaccine for cardiovascular diseases is to induce the specific antibody response toward the target protein without inducing T-cell or antibody-mediated inflammation through the careful selection of the target antigen, carrier protein and adjuvants. The goal of our therapeutic vaccine is similar to that of antibody therapy. Recently, multiple antibody-based drugs have been developed for cancer, immune-related diseases, and dyslipidemia, which are efficient but expensive. If the effect of a therapeutic vaccine is nearly equivalent to antibody therapy as an alternative approach, the lower medical cost and improvement in drug adherence can be advantages of therapeutic vaccines. In this review, we will describe our concept of therapeutic vaccines for cardiovascular diseases and the future directions of therapeutic vaccines as novel antibody therapies. Copyright © 2017. Published by Elsevier Ltd.

  4. A Broad-Spectrum Integrative Design for Cancer Prevention and Therapy

    PubMed Central

    Block, Keith I.; Gyllenhaal, Charlotte; Lowe, Leroy; Amedei, Amedeo; Amin, A.R.M. Ruhul; Amin, Amr; Aquilano, Katia; Arbiser, Jack; Arreola, Alexandra; Arzumanyan, Alla; Ashraf, S. Salman; Azmi, Asfar S.; Benencia, Fabian; Bhakta, Dipita; Bilsland, Alan; Bishayee, Anupam; Blain, Stacy W.; Block, Penny B.; Boosani, Chandra S.; Carey, Thomas E.; Carnero, Amancio; Carotenuto, Marianeve; Casey, Stephanie C.; Chakrabarti, Mrinmay; Chaturvedi, Rupesh; Chen, Georgia Zhuo; Chen, Helen; Chen, Sophie; Chen, Yi Charlie; Choi, Beom K.; Ciriolo, Maria Rosa; Coley, Helen M.; Collins, Andrew R.; Connell, Marisa; Crawford, Sarah; Curran, Colleen S.; Dabrosin, Charlotta; Damia, Giovanna; Dasgupta, Santanu; DeBerardinis, Ralph J.; Decker, William K.; Dhawan, Punita; Diehl, Anna Mae E.; Dong, Jin-Tang; Dou, Q. Ping; Drew, Janice E.; Elkord, Eyad; El-Rayes, Bassel; Feitelson, Mark A.; Felsher, Dean W.; Ferguson, Lynnette R; Fimognari, Carmela; Firestone, Gary L.; Frezza, Christian; Fujii, Hiromasa; Fuster, Mark M.; Generali, Daniele; Georgakilas, Alexandros G.; Gieseler, Frank; Gilbertson, Michael; Green, Michelle F.; Grue, Brendan; Guha, Gunjan; Halicka, Dorota; Helferich, William G.; Heneberg, Petr; Hentosh, Patricia; Hirschey, Matthew D.; Hofseth, Lorne J.; Holcombe, Randall F.; Honoki, Kanya; Hsu, Hsue-Yin; Huang, Gloria S.; Jensen, Lasse D.; Jiang, Wen G.; Jones, Lee W.; Karpowicz, Phillip A.; Keith, W Nicol; Kerkar, Sid P.; Khan, Gazala N.; Khatami, Mahin; Ko, Young H.; Kucuk, Omer; Kulathinal, Rob J.; Kumar, Nagi B.; Kumara, H.M.C. Shantha; Kwon, Byoung S.; Le, Anne; Lea, Michael A.; Lee, Ho-Young; Lichtor, Terry; Lin, Liang-Tzung; Locasale, Jason W.; Lokeshwar, Bal L.; Longo, Valter D.; Lyssiotis, Costas A.; MacKenzie, Karen L.; Malhotra, Meenakshi; Marino, Maria; Martinez-Chantar, Maria L.; Matheu, Ander; Maxwell, Christopher; McDonnell, Eoin; Meeker, Alan K.; Mehrmohamadi, Mahya; Mehta, Kapil; Michelotti, Gregory A.; Mohammad, Ramzi M.; Mohammed, Sulma I.; Morre, D. James; Muqbil, Irfana; Muralidhar, Vinayak; Murphy, Michael P.; Nagaraju, Ganji Purnachandra; Nahta, Rita; Niccolai, Elena; Nowsheen, Somaira; Panis, Carolina; Pantano, Francesco; Parslow, Virginia R.; Pawelec, Graham; Pedersen, Peter L.; Poore, Brad; Poudyal, Deepak; Prakash, Satya; Prince, Mark; Raffaghello, Lizzia; Rathmell, Jeffrey C.; Rathmell, W. Kimryn; Ray, Swapan K.; Reichrath, Jörg; Rezazadeh, Sarallah; Ribatti, Domenico; Ricciardiello, Luigi; Robey, R. Brooks; Rodier, Francis; Rupasinghe, H.P. Vasantha; Russo, Gian Luigi; Ryan, Elizabeth P.; Samadi, Abbas K.; Sanchez-Garcia, Isidro; Sanders, Andrew J.; Santini, Daniele; Sarkar, Malancha; Sasada, Tetsuro; Saxena, Neeraj K.; Shackelford, Rodney E; Sharma, Dipali; Shin, Dong M.; Sidransky, David; Siegelin, Markus David; Signori, Emanuela; Singh, Neetu; Sivanand, Sharanya; Sliva, Daniel; Smythe, Carl; Spagnuolo, Carmela; Stafforini, Diana M.; Stagg, John; Subbarayan, Pochi R.; Sundin, Tabetha; Talib, Wamidh H.; Thompson, Sarah K.; Tran, Phuoc T.; Ungefroren, Hendrik; Vander Heiden, Matthew G.; Venkateswaran, Vasundara; Vinay, Dass S.; Vlachostergios, Panagiotis J.; Wang, Zongwei; Wellen, Kathryn E.; Whelan, Richard L.; Yang, Eddy S.; Yang, Huanjie; Yang, Xujuan; Yaswen, Paul; Yedjou, Clement; Yin, Xin; Zhu, Jiyue; Zollo, Massimo

    2016-01-01

    Targeted therapies and the consequent adoption of “personalized” oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity “broad-spectrum” therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested; many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment. Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to help us address disease relapse, which is a substantial and longstanding problem, so a proposed agenda for future research is offered. PMID:26590477

  5. PSMA-PET based radiotherapy: a review of initial experiences, survey on current practice and future perspectives.

    PubMed

    Zschaeck, Sebastian; Lohaus, Fabian; Beck, Marcus; Habl, Gregor; Kroeze, Stephanie; Zamboglou, Constantinos; Koerber, Stefan Alexander; Debus, Jürgen; Hölscher, Tobias; Wust, Peter; Ganswindt, Ute; Baur, Alexander D J; Zöphel, Klaus; Cihoric, Nikola; Guckenberger, Matthias; Combs, Stephanie E; Grosu, Anca Ligia; Ghadjar, Pirus; Belka, Claus

    2018-05-11

    68 Gallium prostate specific membrane antigen (PSMA) ligand positron emission tomography (PET) is an increasingly used imaging modality in prostate cancer, especially in cases of tumor recurrence after curative intended therapy. Owed to the novelty of the PSMA-targeting tracers, clinical evidence on the value of PSMA-PET is moderate but rapidly increasing. State of the art imaging is pivotal for radiotherapy treatment planning as it may affect dose prescription, target delineation and use of concomitant therapy.This review summarizes the evidence on PSMA-PET imaging from a radiation oncologist's point of view. Additionally a short survey containing twelve examples of patients and 6 additional questions was performed in seven mayor academic centers with experience in PSMA ligand imaging and the findings are reported here.

  6. Aging and stem cell therapy: AMPK as an applicable pharmacological target for rejuvenation of aged stem cells and achieving higher efficacy in stem cell therapy.

    PubMed

    Khorraminejad-Shirazi, Mohammadhossein; Farahmandnia, Mohammad; Kardeh, Bahareh; Estedlal, Alireza; Kardeh, Sina; Monabati, Ahmad

    2017-10-19

    In recent years, tissue regeneration has become a promising field for developing stem cell-based transplantation therapies for human patients. Adult stem cells are affected by the same aging mechanisms that involve somatic cells. One of the mechanisms involved in cellular aging is hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and disruption of 5' adenosine monophosphate-activated protein kinase (AMPK). Aging of stem cells results in their impaired regenerative capacity and depletion of stem cell pools in adult tissue, which results in lower efficacy of stem cell therapy. By utilizing an effective therapeutic intervention for aged stem cells, stem cell therapy can become more promising for future application. mTORC1 inhibition is a practical approach to preserve the stem cell pool. In this article, we review the dynamic interaction between sirtuin (silent mating type information regulation 2 homolog) 1, AMPK, and mTORC1. We propose that using AMPK activators such as 5-aminoimidazole-4-carboxamide ribonucleotide, A769662, metformin, and oxidized nicotinamide adenine dinucleotide (NAD + ) are practical ways to be employed for achieving better optimized results in stem cell-based transplantation therapies. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  7. Rehabilitation therapy services for stroke patients living at home: systematic review of randomised trials.

    PubMed

    Legg, L; Langhorne, P

    2004-01-31

    Stroke-unit care can be valuable for stroke patients in hospital, but effectiveness of outpatient care is less certain. We aimed to assess the effects of therapy-based rehabilitation services targeted at stroke patients resident in the community within 1 year of stroke onset or discharge from hospital. We did a systematic review of randomised trials of outpatient services, including physiotherapy, occupational therapy, and multidisciplinary teams. We used Cochrane collaboration methodology. We identified a heterogeneous group of 14 trials (1617 patients). Therapy-based rehabilitation services for stroke patients living at home reduced the odds of deteriorating in personal activities of daily living (odds ratio 0.72 [95% CI 0.57-0.92], p=0.009) and increased ability of patients to do personal activities of daily living (standardised mean difference 0.14 [95% CI 0.02-0.25], p=0.02). For every 100 stroke patients resident in the community receiving therapy-based rehabilitation services, seven (95% CI 2-11) would not deteriorate. Therapy-based rehabilitation services targeted at selected patients resident in the community after stroke improve ability to undertake personal activities of daily living and reduce risk of deterioration in ability. These findings should be considered in future service planning.

  8. Current and future strategies for the nutritional management of cardiometabolic complications of androgen deprivation therapy for prostate cancer.

    PubMed

    Turner, Lauren; Poole, Karen; Faithfull, Sara; Griffin, Bruce A

    2017-12-01

    Androgen deprivation therapy (ADT) is used widely as part of a combined modality for the treatment of prostate cancer. However, ADT has also been associated with the development of cardiometabolic complications that can increase mortality from cardiovascular events. There is emerging evidence to suggest that ADT-related cardiometabolic risk can be mitigated by diet and lifestyle modification. While the clinical focus for a nutritional approach for achieving this effect is unclear, it may depend upon the timely assessment and targeting of dietary changes to the specific risk phenotype of the patient. The present review aims to address the metabolic origins of ADT-related cardiometabolic risk, existing evidence for the effects of dietary intervention in modifying this risk, and the priorities for future dietary strategies.

  9. Gene delivery for cancer therapy.

    PubMed

    Zhang, Teng

    2014-01-01

    Gene therapy has potential in the treatment of human cancers. However, its clinical implication has only achieved little success due to the lack of an efficient gene delivery system. A major hurdle in the current available approaches is in the ability to transduce target tissues at very high efficiencies that ultimately lead to therapeutic levels of transgene expression. This review outlines the characteristics and utilities of several available gene delivery systems, including their advantages and drawbacks in the context of cancer treatment. A perspective of existing challenges and future directions is also included.

  10. Targeting oncogenic vulnerabilities in triple negative breast cancer: biological bases and ongoing clinical studies

    PubMed Central

    Ocana, Alberto; Pandiella, Atanasio

    2017-01-01

    Triple negative breast cancer (TNBC) is still an incurable disease despite the great scientific effort performed during the last years. The huge heterogeneity of this disease has motivated the evaluation of a great number of therapies against different molecular alterations. In this article, we review the biological bases of this entity and how the known molecular evidence supports the current preclinical and clinical development of new therapies. Special attention will be given to ongoing clinical studies and potential options for future drug combinations. PMID:28108739

  11. The Future of Molecular Analysis in Melanoma: Diagnostics to Direct Molecularly Targeted Therapy.

    PubMed

    Akabane, Hugo; Sullivan, Ryan J

    2016-02-01

    Melanoma is a malignancy of pigment-producing cells that is driven by a variety of genetic mutations and aberrations. In most cases, this leads to upregulation of the mitogen-activated protein kinase (MAPK) pathway through activating mutations of upstream mediators of the pathway including BRAF and NRAS. With the advent of effective MAPK pathway inhibitors, including the US FDA-approved BRAF inhibitors vemurafenib and dabrafenib and MEK inhibitor trametinib, molecular analysis has become an integral part of the care of patients with metastatic melanoma. In this article, the key molecular targets and strategies to inhibit these targets therapeutically are presented, and the techniques of identifying these targets, in both tissue and blood, are discussed.

  12. Systemic therapy in muscle-invasive and metastatic bladder cancer: current trends and future promises.

    PubMed

    Aragon-Ching, Jeanny B; Trump, Donald L

    2016-09-01

    Bladder urothelial cancers remain an important urologic cancer with limited treatment options in the locally advanced and metastatic setting. While neoadjuvant chemotherapy for locally advanced muscle-invasive cancers has shown overall survival benefit, clinical uptake in practice have lagged behind. Controversies surrounding adjuvant chemotherapy use are also ongoing. Systemic therapies for metastatic bladder cancer have largely used platinum-based therapies without effective standard second-line therapy options for those who fail, although vinflunine is approved in Europe as a second-line therapy based on a Phase III trial, and most recently, atezolizumab, a checkpoint inhibitor, was approved by the US FDA. Given increasing recognition of mutational signatures expressed in urothelial carcinomas, several promising agents with use of VEGF-targeted therapies, HER2-directed agents and immunotherapies with PD-1/PD-L1 antibodies in various settings are discussed herein.

  13. Current applications and future prospects of nanomaterials in tumor therapy.

    PubMed

    Huang, Yu; Fan, Chao-Qiang; Dong, Hui; Wang, Su-Min; Yang, Xiao-Chao; Yang, Shi-Ming

    2017-01-01

    Tumors are one of the most serious human diseases and cause numerous global deaths per year. In spite of many strategies applied in tumor therapy, such as radiation therapy, chemotherapy, surgery, and a combination of these treatments, tumors are still the foremost killer worldwide among human diseases, due to their specific limitations, such as multidrug resistance and side effects. Therefore, it is urgent and necessary to develop new strategies for tumor therapy. Recently, the fast development of nanoscience has paved the way for designing new strategies to treat tumors. Nanomaterials have shown great potential in tumor therapy, due to their unique properties, including passive targeting, hyperthermia effects, and tumor-specific inhibition. This review summarizes the recent progress using the innate antitumor properties of metallic and nonmetallic nanomaterials to treat tumors, and related challenges and prospects are discussed.

  14. Osteoporosis in older persons: current pharmacotherapy and future directions.

    PubMed

    Duque, Gustavo

    2013-10-01

    Osteopororic fractures are highly prevalent in older persons having catastrophic consequences in their quality of life and increasing disability and mortality in this population. The mechanisms of osteoporosis in older persons are unique in terms of cellular changes and response to osteoporosis treatment. Therefore, specifically targeted treatments are required in this particular population. This paper provides an overview on the particular mechanisms of osteoporosis in older persons and the current and future therapeutic strategies to improve bone mass and prevent fractures in this population. Osteoporosis in older persons (especially in the old-old) has a unique pathophysiology that predisposes them to fractures thus having catastrophic consequences. Identification of patients at risk followed by therapies targeted to their cellular changes is pivotal to close the care gap observed in osteoporosis, predominantly in the older population. The treatment of osteoporosis has evolved from daily to yearly dosing thus facilitating compliance and effectiveness. It is expected that future biologically targeted treatments will have a similar separate dosing regime with better anti-fracture efficacy and lower incidence of side effects.

  15. The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment

    PubMed Central

    Shi, Jinjin; Ma, Rourou; Wang, Lei; Zhang, Jing; Liu, Ruiyuan; Li, Lulu; Liu, Yan; Hou, Lin; Yu, Xiaoyuan; Gao, Jun; Zhang, Zhenzhong

    2013-01-01

    Carbon nanotubes (CNTs) have shown great potential in both photothermal therapy and drug delivery. In this study, a CNT derivative, hyaluronic acid-derivatized CNTs (HA-CNTs) with high aqueous solubility, neutral pH, and tumor-targeting activity, were synthesized and characterized, and then a new photodynamic therapy agent, hematoporphyrin monomethyl ether (HMME), was adsorbed onto the functionalized CNTs to develop HMME-HA-CNTs. Tumor growth inhibition was investigated both in vivo and in vitro by a combination of photothermal therapy and photodynamic therapy using HMME-HA-CNTs. The ability of HMME-HA-CNT nanoparticles to combine local specific photodynamic therapy with external near-infrared photothermal therapy significantly improved the therapeutic efficacy of cancer treatment. Compared with photodynamic therapy or photothermal therapy alone, the combined treatment demonstrated a synergistic effect, resulting in higher therapeutic efficacy without obvious toxic effects to normal organs. Overall, it was demonstrated that HMME-HA-CNTs could be successfully applied to photodynamic therapy and photothermal therapy simultaneously in future tumor therapy. PMID:23843694

  16. Current and future medical treatments for patients with acromegaly.

    PubMed

    Maffezzoni, Filippo; Formenti, Anna Maria; Mazziotti, Gherardo; Frara, Stefano; Giustina, Andrea

    2016-08-01

    Acromegaly is a relatively rare condition of growth hormone (GH) excess associated with significant morbidity and, when left untreated, high mortality. Therapy for acromegaly is targeted at decreasing GH and insulin-like growth hormone 1 levels, ameliorating patients' symptoms and decreasing any local compressive effects of the pituitary adenoma. The therapeutic options for acromegaly include surgery, medical therapies (such as dopamine agonists, somatostatin receptor ligands and the GH receptor antagonist pegvisomant) and radiotherapy. However, despite all these treatments option, approximately 50% of patients are not adequately controlled. In this paper, the authors discuss: 1) efficacy and safety of current medical therapy 2) the efficacy and safety of the new multireceptor-targeted somatostatin ligand pasireotide 3) medical treatments currently under clinical investigation (oral octreotide, ITF2984, ATL1103), and 4) preliminary data on the use of new injectable and transdermal/transmucosal formulations of octreotide. This expert opinion supports the need for new therapeutic agents and modalities for patients with acromegaly.

  17. Advances in the Engineering of the Gene Editing Enzymes and the Genomes: Understanding and Handling the Off-Target Effects of CRISPR/Cas9.

    PubMed

    Yin, Yufang; Wang, Qian; Xiao, Li; Wang, Fengjiao; Song, Zhuo; Zhou, Cuilan; Liu, Xuan; Xing, Chungen; He, Nongyue; Li, Kai; Feng, Yan; Zhang, Jia

    2018-03-01

    In the past decades, significant progresses have been achieved in genetic engineering of nucleases. Among the genetically engineered nucleases, zinc finger nucleases, transcription activator-like (TAL) effector nucleases, and CRIPSPR/Cas9 system form a new field of gene editing. The gene editing efficiency or targeting effect and the off-target effect are the two major determinant factors in evaluating the usefulness of a new enzyme. Engineering strategies in improving these gene editing enzymes, particularly in minimizing their off-target effects, are the focus of this paper. Examples of using these genetically engineered enzymes in genome modification are discussed in order to better understand the requirement of engineering efforts in obtaining more powerful and useful gene editing enzymes. In addition, the identification of naturally existed anti-Cas proteins has been employed in minimizing off-target effects. Considering the future application in human gene therapy, optimization of these well recognized gene editing enzymes and exploration of more novel enzymes are both required. Before people find an ideal gene editing system having virtually no off-target effect, technologies used to screen and identify off-target effects are of importance in clinical trials employing gene therapy.

  18. Targeting the IL-23/IL-17 axis for the treatment of psoriasis and psoriatic arthritis.

    PubMed

    Alunno, Alessia; Carubbi, Francesco; Cafaro, Giacomo; Pucci, Giacomo; Battista, Francesca; Bartoloni, Elena; Giacomelli, Roberto; Schillaci, Giuseppe; Gerli, Roberto

    2015-01-01

    A growing amount of data supporting the pathogenic role of the IL-23/IL-17 axis in inflammatory/autoimmune disorders has provided the rationale to target the system for therapeutic purpose. Several compounds have been and are currently under intense investigation in psoriasis and psoriatic arthritis (PsA) yielding impressive results. In this review article, we provide an overview of currently available data on the IL-23/IL-17 system as a target for treatment for psoriasis and PsA. We searched MEDLINE for articles on drug therapy for psoriasis and PsA published between 1 January 2010 and 31 May 2015. One of these agents, ustekinumab, has been recently approved for the treatment of psoriasis and PsA, and a number of IL-23/IL-17-targeted compounds under investigation in these diseases. As our knowledge of the role of the IL-23/IL-17 axis in the pathogenesis of psoriasis and PsA deepens, it enables the development of more targeted therapies in the management of these conditions. Early data on IL-23/IL-17 targeting drugs appear promising, although incomplete. Given the key role IL-23/IL-17 in host defence, the safety profile of targeted drugs should be thoroughly assessed in future studies.

  19. Cognitive rehabilitation for patients with schizophrenia in Korea.

    PubMed

    Lee, Won Hye; Lee, Woo Kyeong

    2017-02-01

    Psychosocial rehabilitation programs received mental health professional support in addition to traditional medication therapy. Many psychosocial programs were developed since the 1990s, including cognitive remediation therapy. In this review, we focus on cognitive remediation therapy in Korea since the 1990s. We review several cognitive rehabilitation programs developed in Korea and their outcome studies and suggest future research directions and prospects. We reviewed cognitive rehabilitation programs including social cognitive training as well as more recent forms of computerized cognitive rehabilitation. Although there are differences in cognitive domains by training targets, almost all neurocognitive remediation trainings in Korea have beneficial effects on early visual processing, various attention types, and executive function. Future studies need to investigate the mechanisms and various mediators underlying the relationships between cognitive functions and functional outcomes. With more comprehensive cognitive and social cognitive programs, we can enhance both cognition and functional outcomes of the patients with schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies

    PubMed Central

    Scheel, Troels K H; Rice, Charles M

    2014-01-01

    More than two decades of intense research has provided a detailed understanding of hepatitis C virus (HCV), which chronically infects 2% of the world's population. This effort has paved the way for the development of antiviral compounds to spare patients from life-threatening liver disease. An exciting new era in HCV therapy dawned with the recent approval of two viral protease inhibitors, used in combination with pegylated interferon-α and ribavirin; however, this is just the beginning. Multiple classes of antivirals with distinct targets promise highly efficient combinations, and interferon-free regimens with short treatment duration and fewer side effects are the future of HCV therapy. Ongoing and future trials will determine the best antiviral combinations and whether the current seemingly rich pipeline is sufficient for successful treatment of all patients in the face of major challenges, such as HCV diversity, viral resistance, the influence of host genetics, advanced liver disease and other co-morbidities. PMID:23836234

  1. Investigating the underlying mechanisms of aberrant behaviors in bipolar disorder from patients to models

    PubMed Central

    van Enkhuizen, Jordy; Geyer, Mark A.; Minassian, Arpi; Perry, William; Henry, Brook L.; Young, Jared W.

    2015-01-01

    Psychiatric patients with bipolar disorder suffer from states of depression and mania, during which a variety of symptoms are present. Current treatments are limited and neurocognitive deficits in particular often remain untreated. Targeted therapies based on the biological mechanisms of bipolar disorder could fill this gap and benefit patients and their families. Developing targeted therapies would benefit from appropriate animal models which are challenging to establish, but remain a vital tool. In this review, we summarize approaches to create a valid model relevant to bipolar disorder. We focus on studies that use translational tests of multivariate exploratory behavior, sensorimotor gating, decision-making under risk, and attentional functioning to discover profiles that are consistent between patients and rodent models. Using this battery of translational tests, similar behavior profiles in bipolar mania patients and mice with reduced dopamine transporter activity have been identified. Future investigations should combine other animal models that are biologically relevant to the neuropsychiatric disorder with translational behavioral assessment as outlined here. This methodology can be utilized to develop novel targeted therapies that relieve symptoms for more patients without common side effects caused by current treatments. PMID:26297513

  2. Nanomedicine Meets microRNA: Current Advances in RNA-Based Nanotherapies for Atherosclerosis.

    PubMed

    Gadde, Suresh; Rayner, Katey J

    2016-09-01

    Cardiovascular disease (CVD) accounts for almost half of all deaths worldwide and has now surpassed infectious disease as the leading cause of death and disability in developing countries. At present, therapies such as low-density lipoprotein-lowering statins and antihypertensive drugs have begun to bend the morality curve for coronary artery disease (CAD); yet, as we come to appreciate the more complex pathophysiological processes in the vessel wall, there is an opportunity to fine-tune therapies to more directly target mechanisms that drive CAD. MicroRNAs (miRNAs) have been identified that control vascular cell homeostasis,(1-3) lipoprotein metabolism,(4-9) and inflammatory cell function.(10) Despite the importance of these miRNAs in driving atherosclerosis and vascular dysfunction, therapeutic modulation of miRNAs in a cell- and context-specific manner has been a challenge. In this review, we summarize the emergence of miRNA-based therapies as an approach to treat CAD by specifically targeting the pathways leading to the disease. We focus on the latest development of nanoparticles (NPs) as a means to specifically target the vessel wall and what the future of these nanomedicines may hold for the treatment of CAD. © 2016 American Heart Association, Inc.

  3. Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease.

    PubMed

    Gunay, Mine Silindir; Ozer, A Yekta; Chalon, Sylvie

    2016-01-01

    Although a variety of therapeutic approaches are available for the treatment of Parkinson's disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson's disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α -synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson's disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson's Disease therapy and reduce its side effects.

  4. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome): part II. Prognosis, management, and future directions.

    PubMed

    Jawed, Sarah I; Myskowski, Patricia L; Horwitz, Steven; Moskowitz, Alison; Querfeld, Christiane

    2014-02-01

    Both mycosis fungoides (MF) and Sézary syndrome (SS) have a chronic, relapsing course, with patients frequently undergoing multiple, consecutive therapies. Treatment is aimed at the clearance of skin disease, the minimization of recurrence, the prevention of disease progression, and the preservation of quality of life. Other important considerations are symptom severity, including pruritus and patient age/comorbidities. In general, for limited patch and plaque disease, patients have excellent prognosis on ≥1 topical formulations, including topical corticosteroids and nitrogen mustard, with widespread patch/plaque disease often requiring phototherapy. In refractory early stage MF, transformed MF, and folliculotropic MF, a combination of skin-directed therapy plus low-dose immunomodulators (eg, interferon or bexarotene) may be effective. Patients with advanced and erythrodermic MF/SS can have profound immunosuppression, with treatments targeting tumor cells aimed for immune reconstitution. Biologic agents or targeted therapies either alone or in combination--including immunomodulators and histone-deacetylase inhibitors--are tried first, with more immunosuppressive therapies, such as alemtuzumab or chemotherapy, being generally reserved for refractory or rapidly progressive disease or extensive lymph node and metastatic involvement. Recently, an increased understanding of the pathogenesis of MF and SS with identification of important molecular markers has led to the development of new targeted therapies that are currently being explored in clinical trials in advanced MF and SS. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  5. Driving gene-engineered T cell immunotherapy of cancer

    PubMed Central

    Johnson, Laura A; June, Carl H

    2017-01-01

    Chimeric antigen receptor (CAR) gene-engineered T cell therapy holds the potential to make a meaningful difference in the lives of patients with terminal cancers. For decades, cancer therapy was based on biophysical parameters, with surgical resection to debulk, followed by radiation and chemotherapy to target the rapidly growing tumor cells, while mostly sparing quiescent normal tissues. One breakthrough occurred with allogeneic bone-marrow transplant for patients with leukemia, which provided a sometimes curative therapy. The field of adoptive cell therapy for solid tumors was established with the discovery that tumor-infiltrating lymphocytes could be expanded and used to treat and even cure patients with metastatic melanoma. Tumor-specific T-cell receptors (TCRs) were identified and engineered into patient peripheral blood lymphocytes, which were also found to treat tumors. However, these were limited by patient HLA-restriction. Close behind came generation of CAR, combining the exquisite recognition of an antibody with the effector function of a T cell. The advent of CD19-targeted CARs for treating patients with multiple forms of advanced B-cell malignancies met with great success, with up to 95% response rates. Applying CAR treatment to solid tumors, however, has just begun, but already certain factors have been made clear: the tumor target is of utmost importance for clinicians to do no harm; and solid tumors respond differently to CAR therapy compared with hematologic ones. Here we review the state of clinical gene-engineered T cell immunotherapy, its successes, challenges, and future. PMID:28025979

  6. Drug Delivery in Cancer Therapy, Quo Vadis?

    PubMed

    Lu, Zheng-Rong; Qiao, Peter

    2018-03-22

    The treatment of malignancies has undergone dramatic changes in the past few decades. Advances in drug delivery techniques and nanotechnology have allowed for new formulations of old drugs, so as to improve the pharmacokinetics, to enhance accumulation in solid tumors, and to reduce the significant toxic effects of these important therapeutic agents. Here, we review the published clinical data in cancer therapy of several major drug delivery systems, including targeted radionuclide therapy, antibody-drug conjugates, liposomes, polymer-drug conjugates, polymer implants, micelles, and nanoparticles. The clinical outcomes of these delivery systems from various phases of clinical trials are summarized. The success and limitations of the drug delivery strategies are discussed based on the clinical observations. In addition, the challenges in applying drug delivery for efficacious cancer therapy, including physical barriers, tumor heterogeneity, drug resistance, and metastasis, are discussed along with future perspectives of drug delivery in cancer therapy. In doing so, we intend to underscore that efficient delivery of cancer therapeutics to solid malignancies remains a major challenge in cancer therapy, and requires a multidisciplinary approach that integrates knowledge from the diverse fields of chemistry, biology, engineering, and medicine. The overall objective of this review is to improve our understanding of the clinical fate of commonly investigated drug delivery strategies, and to identify the limitations that must be addressed in future drug delivery strategies, toward the pursuit of curative therapies for cancer.

  7. An update on radiation therapy in head and neck cancers.

    PubMed

    Mazzola, Rosario; Fiorentino, Alba; Ricchetti, Francesco; Gregucci, Fabiana; Corradini, Stefanie; Alongi, Filippo

    2018-04-01

    Technological and technical improvements allowed for significant advances in the field of radiation therapy (RT) of head and neck cancer (HNC). Several organ-sparing strategies have been investigated with the objective to decrease acute and long-term adverse effects and, subsequently, to assure a better quality of life in patients affected by HNC. In this context, intensity modulated irradiation and the use of multimodality-imaging could help clinicians to obtain a rapid dose fall off towards surrounding healthy tissues and a better delineation of targets volumes and organs at risk. Areas covered: A literature review was performed with the aim to offer an update on radiation therapy in HNC. Expert commentary: During these last years, radiation oncologists have observed a continuous changing regarding radiation treatment for HNC. The adoption of intensity-modulated RT (IMRT) and the use of multimodality-imaging for tumor volume definition and organs at risk or delineation have improved the clinical outcomes of HNC patients. In the future, a better integration of functional imaging for target volume delineation as well as adaptive delivery strategies will allow to further personalize radiation oncology in HNC. Furthermore, the latest breakthrough technologies, such as magnetic resonance imaging (MRI)-linacs and heavy particles technologies have a great potential to improve treatment-related quality of life in HNC. Future studies are needed to demonstrate the clinical advantages of these new RT technologies in HNC.

  8. Microdosimetry in ion-beam therapy

    NASA Astrophysics Data System (ADS)

    Magrin, Giulio; Mayer, Ramona

    2015-06-01

    The information of the dose is not sufficiently describing the biological effects of ions on tissue since it does not express the radiation quality, i.e. the heterogeneity of the processes due to the slowing-down and the fragmentation of the particles when crossing a target. Depending on different circumstances, the radiation quality can be determined using measurements, calculations, or simulations. Microdosimeters are the primary tools used to provide the experimental information of the radiation quality and their role is becoming crucial for the recent clinical developments in particular with carbon ion therapy. Microdosimetry is strongly linked to the biological effectiveness of the radiation since it provides the physical parameters which explicitly distinguish the radiation for its capability of damaging cells. In the framework of ion-beam therapy microdosimetry can be used in the preparation of the treatment to complement radiobiological experiments and to analyze the modification of the radiation quality in phantoms. A more ambitious goal is to perform the measurements during the irradiation procedure to determine the non-targeted radiation and, more importantly, to monitor the modification of the radiation quality inside the patient. These procedures provide the feedback of the treatment directly beneficial for the single patient but also for the characterization of the biological effectiveness in general with advantages for all future treatment. Traditional and innovative tools are currently under study and an outlook of present experience and future development is presented here.

  9. [The role of neurotrophic factors in regeneration of the nervous system].

    PubMed

    Machaliński, Bogusław; Lażewski-Banaszak, Piotr; Dąbkowska, Elżbieta; Paczkowska, Edyta; Gołąb-Janowska, Monika; Nowacki, Przemysław

    2012-01-01

    Neurotrophic factors regulate survival, development, and function of nervous tissue. They act via two different classes of receptors and activation of various signaling pathways in the target cells. Illumination of their physiological role in the maintenance of central nervous system homeostasis as well as regeneration of damaged tissue have ignited expectations to heal neurodegenerative diseases, including amyotrophic late-ral sclerosis and Parkinson disease. Advances in pharmaco-therapy, gene therapy, and stem cell biology have enabled development of novel therapies with application of regenerating cell transplantation. In the foreseeable future, it may lead to the establishment of safe and effective ways of treatment of these severe and currently incurable diseases.

  10. Targeted genetic and viral therapy for advanced head and neck cancers.

    PubMed

    Huang, Pin-I; Chang, Ju-Fang; Kirn, David H; Liu, Ta-Chiang

    2009-06-01

    Head and neck cancers usually present with advanced disease and novel therapies are urgently needed. Genetic therapy aims at restoring malfunctioned tumor suppressor gene(s) or introducing proapoptotic genes. Oncolytic virotherapeutics induce multiple cycles of cancer-specific virus replication, followed by oncolysis, virus spreading and infection of adjacent cancer cells. Oncolytic viruses can also be armed to express therapeutic transgene(s). Recent advances in preclinical and clinical studies are revealing the potential of both therapeutic classes for advanced head and neck cancers, including the approval of two products (Gendicine and H101) by a governmental agency. This review summarizes the available clinical data to date and discusses the challenges and future directions.

  11. Inflammatory pathways of importance for management of inflammatory bowel disease.

    PubMed

    Pedersen, Jannie; Coskun, Mehmet; Soendergaard, Christoffer; Salem, Mohammad; Nielsen, Ole Haagen

    2014-01-07

    Inflammatory bowel disease (IBD) is a group of chronic disorders of the gastrointestinal tract comprising Crohn's disease (CD) and ulcerative colitis (UC). Their etiologies are unknown, but they are characterised by an imbalanced production of pro-inflammatory mediators, e.g., tumor necrosis factor (TNF)-α, as well as increased recruitment of leukocytes to the site of inflammation. Advantages in understanding the role of the inflammatory pathways in IBD and an inadequate response to conventional therapy in a large portion of patients, has over the last two decades lead to new therapies which includes the TNF inhibitors (TNFi), designed to target and neutralise the effect of TNF-α. TNFi have shown to be efficient in treating moderate to severe CD and UC. However, convenient alternative therapeutics targeting other immune pathways are needed for patients with IBD refractory to conventional therapy including TNFi. Indeed, several therapeutics are currently under development, and have shown success in clinical trials. These include antibodies targeting and neutralising interleukin-12/23, small pharmacologic Janus kinase inhibitors designed to block intracellular signaling of several pro-inflammatory cytokines, antibodies targeting integrins, and small anti-adhesion molecules that block adhesion between leukocytes and the intestinal vascular endothelium, reducing their infiltration into the inflamed mucosa. In this review we have elucidated the major signaling pathways of clinical importance for IBD therapy and highlighted the new promising therapies available. As stated in this paper several new treatment options are under development for the treatment of CD and UC, however, no drug fits all patients. Hence, optimisations of treatment regimens are warranted for the benefit of the patients either through biomarker establishment or other rationales to maximise the effect of the broad range of mode-of-actions of the present and future drugs in IBD.

  12. Targeted Immune Therapy of Ovarian Cancer

    PubMed Central

    Knutson, Keith L.; Karyampudi, Lavakumar; Lamichhane, Purushottam; Preston, Claudia

    2014-01-01

    Clinical outcomes, such as recurrence free survival and overall survival, in ovarian cancer are quite variable, independent of common characteristics such as stage, response to therapy and grade. This disparity in outcomes warrants further exploration and therapeutic targeting into the interaction between the tumor and host. One compelling host characteristic that contributes both to the initiation and progression of ovarian cancer is the immune system. Hundreds of studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease. Recent studies also show that anti-tumor immunity is often negated by immune regulatory cells present in the tumor microenvironment. Regulatory immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathologic network. Thus, in the future, research into immunotherapy targeting ovarian cancer will probably become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression. In this article, we summarize important immunological targets that influence ovarian cancer outcome as well as include an update on newer immunotherapeutic strategies. PMID:25544369

  13. Bench-to-bedside review: Angiopoietin signalling in critical illness – a future target?

    PubMed Central

    van Meurs, Matijs; Kümpers, Philipp; Ligtenberg, Jack JM; Meertens, John HJM; Molema, Grietje; Zijlstra, Jan G

    2009-01-01

    Multiple organ dysfunction syndrome (MODS) occurs in response to major insults such as sepsis, severe haemorrhage, trauma, major surgery and pancreatitis. The mortality rate is high despite intensive supportive care. The pathophysiological mechanism underlying MODS are not entirely clear, although several have been proposed. Overwhelming inflammation, immunoparesis, occult oxygen debt and other mechanisms have been investigated, and – despite many unanswered questions – therapies targeting these mechanisms have been developed. Unfortunately, only a few interventions, usually those targeting multiple mechanisms at the same time, have appeared to be beneficial. We clearly need to understand better the mechanisms that underlie MODS. The endothelium certainly plays an active role in MODS. It functions at the intersection of several systems, including inflammation, coagulation, haemodynamics, fluid and electrolyte balance, and cell migration. An important regulator of these systems is the angiopoietin/Tie2 signalling system. In this review we describe this signalling system, giving special attention to what is known about it in critically ill patients and its potential as a target for therapy. PMID:19435476

  14. Dual targeting luminescent gold nanoclusters for tumor imaging and deep tissue therapy.

    PubMed

    Chen, Dan; Li, Bowen; Cai, Songhua; Wang, Peng; Peng, Shuwen; Sheng, Yuanzhi; He, Yuanyuan; Gu, Yueqing; Chen, Haiyan

    2016-09-01

    Dual targeting towards both extracellular and intracellular receptors specific to tumor is a significant approach for cancer diagnosis and therapy. In the present study, a novel nano-platform (AuNC-cRGD-Apt) with dual targeting function was initially established by conjugating gold nanocluster (AuNC) with cyclic RGD (cRGD) that is specific to αvβ3integrins over-expressed on the surface of tumor tissues and aptamer AS1411 (Apt) that is of high affinity to nucleolin over-expressed in the cytoplasm and nucleus of tumor cells. Then, AuNC-cRGD-Apt was further functionalized with near infrared (NIR) fluorescence dye (MPA), giving a NIR fluorescent dual-targeting probe AuNC-MPA-cRGD-Apt. AuNC-MPA-cRGD-Apt displays low cytotoxicity and favorable tumor-targeting capability at both in vitro and in vivo level, suggesting its clinical potential for tumor imaging. Additionally, Doxorubicin (DOX), a widely used clinical chemotherapeutic drug that kill cancer cells by intercalating DNA in cellular nucleus, was immobilized onto AuNC-cRGD-Apt forming a pro-drug, AuNC-DOX-cRGD-Apt. The enhanced tumor affinity, deep tumor penetration and improved anti-tumor activity of this pro-drug were demonstrated in different tumor cell lines, tumor spheroid and tumor-bearing mouse models. Results in this study suggest not only the prospect of non-toxic AuNC modified with two targeting ligands for tumor targeted imaging, but also confirm the promising future of dual targeting AuNC as a core for the design of prodrug in the field of cancer therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Stem cell-based therapies for tumors in the brain: are we there yet?

    PubMed Central

    Shah, Khalid

    2016-01-01

    Advances in understanding adult stem cell biology have facilitated the development of novel cell-based therapies for cancer. Recent developments in conventional therapies (eg, tumor resection techniques, chemotherapy strategies, and radiation therapy) for treating both metastatic and primary tumors in the brain, particularly glioblastoma have not resulted in a marked increase in patient survival. Preclinical studies have shown that multiple stem cell types exhibit inherent tropism and migrate to the sites of malignancy. Recent studies have validated the feasibility potential of using engineered stem cells as therapeutic agents to target and eliminate malignant tumor cells in the brain. This review will discuss the recent progress in the therapeutic potential of stem cells for tumors in the brain and also provide perspectives for future preclinical studies and clinical translation. PMID:27282399

  16. Advances in the use of nanocarriers for cancer diagnosis and treatment

    PubMed Central

    Vieira, Débora Braga; Gamarra, Lionel Fernel

    2016-01-01

    ABSTRACT The use of nanocarriers as drug delivery systems for therapeutic or imaging agents can improve the pharmacological properties of commonly used compounds in cancer diagnosis and treatment. Advances in the surface engineering of nanoparticles to accommodate targeting ligands turned nanocarriers attractive candidates for future work involving targeted drug delivery. Although not targeted, several nanocarriers have been approved for clinical use and they are currently used to treat and/or diagnosis various types of cancers. Furthermore, there are several formulations, which are now in various stages of clinical trials. This review examined some approved formulations and discussed the advantages of using nanocarriers in cancer therapy. PMID:27074238

  17. Aptamer-siRNA Chimeras: Discovery, Progress, and Future Prospects

    PubMed Central

    Kruspe, Sven; Giangrande, Paloma H.

    2017-01-01

    Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery tools for many therapeutic oligonucleotide-based drugs, including small interfering RNAs (siRNAs). In this review, we summarize recent progress in the aptamer selection technology that has made possible the identification of cell-specific, cell-internalizing aptamers for the cell-targeted delivery of therapeutic oligonucleotides. In addition, we review the original, proof-of-concept aptamer-siRNA delivery studies and discuss recent advances in aptamer-siRNA conjugate designs for applications ranging from cancer therapy to the development of targeted antivirals. Challenges and prospects of aptamer-targeted siRNA drugs for clinical development are further highlighted. PMID:28792479

  18. Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature.

    PubMed

    Poornima, Paramasivan; Kumar, Jothi Dinesh; Zhao, Qiaoli; Blunder, Martina; Efferth, Thomas

    2016-09-01

    Despite massive investments in drug research and development, the significant decline in the number of new drugs approved or translated to clinical use raises the question, whether single targeted drug discovery is the right approach. To combat complex systemic diseases that harbour robust biological networks such as cancer, single target intervention is proved to be ineffective. In such cases, network pharmacology approaches are highly useful, because they differ from conventional drug discovery by addressing the ability of drugs to target numerous proteins or networks involved in a disease. Pleiotropic natural products are one of the promising strategies due to their multi-targeting and due to lower side effects. In this review, we discuss the application of network pharmacology for cancer drug discovery. We provide an overview of the current state of knowledge on network pharmacology, focus on different technical approaches and implications for cancer therapy (e.g. polypharmacology and synthetic lethality), and illustrate the therapeutic potential with selected examples green tea polyphenolics, Eleutherococcus senticosus, Rhodiola rosea, and Schisandra chinensis). Finally, we present future perspectives on their plausible applications for diagnosis and therapy of cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Sleep- and circadian rhythm-associated pathways as therapeutic targets in bipolar disorder.

    PubMed

    Bellivier, Frank; Geoffroy, Pierre-Alexis; Etain, Bruno; Scott, Jan

    2015-06-01

    Disruptions in sleep and circadian rhythms are observed in individuals with bipolar disorders (BD), both during acute mood episodes and remission. Such abnormalities may relate to dysfunction of the molecular circadian clock and could offer a target for new drugs. This review focuses on clinical, actigraphic, biochemical and genetic biomarkers of BDs, as well as animal and cellular models, and highlights that sleep and circadian rhythm disturbances are closely linked to the susceptibility to BDs and vulnerability to mood relapses. As lithium is likely to act as a synchronizer and stabilizer of circadian rhythms, we will review pharmacogenetic studies testing circadian gene polymorphisms and prophylactic response to lithium. Interventions such as sleep deprivation, light therapy and psychological therapies may also target sleep and circadian disruptions in BDs efficiently for treatment and prevention of bipolar depression. We suggest that future research should clarify the associations between sleep and circadian rhythm disturbances and alterations of the molecular clock in order to identify critical targets within the circadian pathway. The investigation of such targets using human cellular models or animal models combined with 'omics' approaches are crucial steps for new drug development.

  20. Castration-resistant prostate cancer: targeted therapies.

    PubMed

    Leo, S; Accettura, C; Lorusso, V

    2011-01-01

    Castration-resistant prostate cancer (CRPC) refers to patients who no longer respond to surgical or medical castration. Standard treatment options are limited. To review the concepts and rationale behind targeted agents currently in late-stage clinical testing for patients with CRPC. Novel targeted therapies in clinical trials were identified from registries. The Medline database was searched for all relevant reports published from 1996 to October 2009. Bibliographies of the retrieved articles and major international meeting abstracts were hand-searched to identify additional studies. Advances in our understanding of the molecular mechanisms underlying prostate cancer (PCa) progression have translated into a variety of treatment approaches. Agents targeting androgen receptor activation and local steroidogenesis, angiogenesis, immunotherapy, apoptosis, chaperone proteins, the insulin-like growth factor (IGF) pathway, RANK ligand, endothelin receptors, and the Src family kinases are entering or have recently completed accrual to phase III trials for patients with CRPC. There has been an increase in the understanding of the mechanisms of progression of CRPC. A number of new agents targeting mechanisms of PCa progression with early promising results are in clinical trials and have the potential to provide novel treatment options for CRPC in the near future. Copyright © 2011 S. Karger AG, Basel.

  1. Combination Platinum-based and DNA Damage Response-targeting Cancer Therapy: Evolution and Future Directions

    PubMed Central

    Basourakos, Spyridon P.; Li, Likun; Aparicio, Ana M.; Corn, Paul G.; Kim, Jeri; Thompson, Timothy C.

    2017-01-01

    Maintenance of genomic stability is a critical determinant of cell survival and is necessary for growth and progression of malignant cells. Interstrand crosslinking (ICL) agents, including platinum-based agents, are first-line chemotherapy treatment for many solid human cancers. In malignant cells, ICL triggers the DNA damage response (DDR). When the damage burden is high and lesions cannot be repaired, malignant cells are unable to divide and ultimately undergo cell death either through mitotic catastrophe or apoptosis. The activities of ICL agents, in particular platinum-based therapies, establish a “molecular landscape,” i.e., a pattern of DNA damage that can potentially be further exploited therapeutically with DDR-targeting agents. If the molecular landscape created by platinum-based agents could be better defined at the molecular level, a systematic, mechanistic rationale(s) could be developed for the use of DDR-targeting therapies in combination/maintenance protocols for specific, clinically advanced malignancies. New therapeutic drugs such as poly(ADP-ribose) polymerase (PARP) inhibitors are examples of DDR-targeting therapies that could potentially increase the DNA damage and replication stress imposed by platinum-based agents in tumor cells and provide therapeutic benefit for patients with advanced malignancies. Recent studies have shown that the use of PARP inhibitors together with platinum-based agents is a promising therapy strategy for ovarian cancer patients with ”BRCAness”, i.e., a phenotypic characteristic of tumors that not only can involve loss-of-function mutations in either BRCA1 or BRCA2, but also encompasses the molecular features of BRCA-mutant tumors. On the basis of these promising results, additional mechanism-based studies focused on the use of various DDR-targeting therapies in combination with platinum-based agents should be considered. This review discusses, in general, (1) ICL agents, primarily platinum-based agents, that establish a molecular landscape that can be further exploited therapeutically; (2) multiple points of potential intervention after ICL agent–induced crosslinking that further predispose to cell death and can be incorporated into a systematic, therapeutic rationale for combination/maintenance therapy using DDR-targeting agents; and (3) available agents that can be considered for use in combination/maintenance clinical protocols with platinum-based agents for patients with advanced malignancies. PMID:27978798

  2. Combination Platinum-based and DNA Damage Response-targeting Cancer Therapy: Evolution and Future Directions.

    PubMed

    Basourakos, Spyridon P; Li, Likun; Aparicio, Ana M; Corn, Paul G; Kim, Jeri; Thompson, Timothy C

    2017-01-01

    Maintenance of genomic stability is a critical determinant of cell survival and is necessary for growth and progression of malignant cells. Interstrand crosslinking (ICL) agents, including platinum-based agents, are first-line chemotherapy treatment for many solid human cancers. In malignant cells, ICL triggers the DNA damage response (DDR). When the damage burden is high and lesions cannot be repaired, malignant cells are unable to divide and ultimately undergo cell death either through mitotic catastrophe or apoptosis. The activities of ICL agents, in particular platinum-based therapies, establish a "molecular landscape," i.e., a pattern of DNA damage that can potentially be further exploited therapeutically with DDR-targeting agents. If the molecular landscape created by platinum-based agents could be better defined at the molecular level, a systematic, mechanistic rationale(s) could be developed for the use of DDR-targeting therapies in combination/maintenance protocols for specific, clinically advanced malignancies. New therapeutic drugs such as poly(ADP-ribose) polymerase (PARP) inhibitors are examples of DDR-targeting therapies that could potentially increase the DNA damage and replication stress imposed by platinum-based agents in tumor cells and provide therapeutic benefit for patients with advanced malignancies. Recent studies have shown that the use of PARP inhibitors together with platinum-based agents is a promising therapy strategy for ovarian cancer patients with "BRCAness", i.e., a phenotypic characteristic of tumors that not only can involve loss-of-function mutations in either BRCA1 or BRCA2, but also encompasses the molecular features of BRCA-mutant tumors. On the basis of these promising results, additional mechanism-based studies focused on the use of various DDR-targeting therapies in combination with platinum-based agents should be considered. This review discusses, in general, (1) ICL agents, primarily platinum-based agents, that establish a molecular landscape that can be further exploited therapeutically; (2) multiple points of potential intervention after ICL agent-induced crosslinking that further predispose to cell death and can be incorporated into a systematic, therapeutic rationale for combination/ maintenance therapy using DDR-targeting agents; and (3) available agents that can be considered for use in combination/maintenance clinical protocols with platinum-based agents for patients with advanced malignancies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. A perspective on B-cell-targeting therapy for SLE.

    PubMed

    Looney, R John; Anolik, Jennifer; Sanz, Inaki

    2010-02-01

    In recent years, large controlled trials have tested several new agents for systemic lupus erythematosus (SLE). Unfortunately, none of these trials has met its primary outcome. This does not mean progress has not been made. In fact, a great deal has been learned about doing clinical trials in lupus and about the biological and clinical effects of the drugs being tested. Many of these drugs were designed to target B cells directly, e.g., rituximab, belimumab, epratuzumab, and transmembrane activator and calcium modulator and cyclophilin ligand interactor-immunoglobulin (TACI-Ig). The enthusiasm for targeting B cells derives from substantial evidence showing the critical role of B cells in murine models of SLE, as well promising results from multiple open trials with rituximab, a chimeric anti-CD20 monoclonal antibody that specifically depletes B cells (Martin and Chan in Immunity 20(5):517-527, 2004; Sobel et al. in J Exp Med 173:1441-1449, 1991; Silverman and Weisman in Arthritis Rheum 48:1484-1492, 2003; Silverman in Arthritis Rheum 52(4):1342, 2005; Shlomchik et al. in Nat Rev Immunol 1:147-153, 2001; Looney et al. in Arthritis Rheum 50:2580-2589, 2004; Lu et al. in Arthritis Rheum 61(4):482-487, 2009; Saito et al. in Lupus 12(10):798-800, 2003; van Vollenhoven et al. in Scand J Rheumatol 33(6):423-427, 2004; Sfikakis et al. Arthritis Rheum 52(2):501-513, 2005). Why have the controlled trials of B-cell-targeting therapies failed to demonstrate efficacy? Were there flaws in design or execution of these trials? Or, were promising animal studies and open trials misleading, as so often happens? This perspective discusses the current state of B-cell-targeting therapies for human lupus and the future development of these therapies.

  4. Targeted therapy in advanced gastric carcinoma: the future is beginning.

    PubMed

    Schinzari, G; Cassano, A; Orlandi, A; Basso, M; Barone, C

    2014-01-01

    Gastric cancer represents one of the most common cancer worldwide. Unfortunately, the majority of patients present in advanced stage and outcome still remains poor with high mortality rate despite decreasing incidence and new diagnostic and therapeutic strategies. Although utility of classical chemotherapy agents has been widely explored, advances have been slow and the efficacy of these agents has reached a plateau of median overall survival not higher than 12 months. Therefore, researchers focused their attention on better understanding molecular biology of carcinogenesis and deeper knowledge of the cancer cell phenotype, as well on development of rationally designed drugs that would target specific molecular aberrancies in signal transduction pathways. These targets include cell surface receptors, circulating growth and angiogenic factors and other molecules involved in downstream intracellular signaling pathways, including receptor tyrosine kinases. However, therapeutic advances in gastric cancer are not so encouraging when compared to other solid organ malignancies such as breast and colorectal cancer. This article reviews the role of targeted agents in gastric cancer as single-agent therapy or in combination regimens, including their rational and emerging mechanism of action, current and emerging data. We focused our attention mainly on published phase III studies, therefore cornerstone clinical trials with trastuzumab and bevacizumab have been largely discussed. Phase III studies presented in important international meetings are also reviewed as well phase II published studies and promising new therapies investigated in preclinical or phase I studies. Today, in first-line treatment only trastuzumab has shown significantly increased survival in combination with chemotherapy, whereas ramucirumab as single agent resulted effective in progressing patients, but - despite several disappointing results - these are the proof of principle that targeting the proper molecular aberration is the best way for implementing outcome of therapy.

  5. Nanotechnology Based Theranostic Approaches in Alzheimer's Disease Management: Current Status and Future Perspective.

    PubMed

    Ahmad, Javed; Akhter, Sohail; Rizwanullah, Md; Khan, Mohammad Ahmed; Pigeon, Lucie; Addo, Richard T; Greig, Nigel H; Midoux, Patrick; Pichon, Chantal; Kamal, Mohammad Amjad

    2017-01-01

    Alzheimer's disease (AD), a cognitive dysfunction/dementia state amongst the elders is characterized by irreversible neurodegeneration due to varied pathophysiology. Up till now, anti-AD drugs having different pharmacology have been developed and used in clinic. Yet, these medications are not curative and only lowering the AD associated symptoms. Improvement in treatment outcome required drug targeting across the blood-brain barrier (BBB) to the central nervous system (CNS) in optimal therapeutic concentration. Nanotechnology based diagnostic tools, drug carriers and theranostics offer highly sensitive molecular detection, effective drug targeting and their combination. Over the past decade, significant works have been done in this area and we have seen very remarkable outocome in AD therapy. Various nanoparticles from organic and inorganic nanomaterial category have successfully been investigated against AD. This paper discussed the role of nanoparticles in early detection of AD, effective drug targeting to brain and theranostic (diagnosis and therapy) approaches in AD's management. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Effects of video-based therapy preparation targeting experiential acceptance or the therapeutic alliance.

    PubMed

    Johansen, Ayna B; Lumley, Mark; Cano, Annmarie

    2011-06-01

    Preparation for psychotherapy may enhance the psychotherapeutic process, reduce drop-outs, and improve outcomes, but the effective mechanisms of such preparation are poorly understood. Previous studies have rarely targeted specific processes that are associated with positive therapy outcomes. This randomized experiment compared the effects of preparatory videos that targeted either the Therapeutic Alliance, Experiential Acceptance, or a Control video on early therapeutic process variables in 105 patients seen in individual therapy. Participants watched the videos just before their first therapy session. No significant differences were found between the Alliance and Experiential Acceptance videos on patient recommendations, immediate affective reactions, or working alliance and attrition after the first session. However, the Therapeutic Alliance video produced an immediate increase in negative mood relative to the Control video, whereas the Experiential acceptance video produced a slight increase in positive mood relative to the Alliance video. Surprisingly, patients who viewed the Alliance video were rated significantly lower than the control group on therapist-rated alliance after the first session. These findings suggest there may be specific process effects in the early phase of treatment based on the type of pretraining material used, and also indicate that video-based pretraining efforts could be counterproductive. Furthermore, this research contributes to the literature by providing insights into methodological considerations for future work on the use of technology in psychotherapy and challenges associated with preparing people for successful psychotherapy.

  7. Newer Gene Editing Technologies toward HIV Gene Therapy

    PubMed Central

    Manjunath, N.; Yi, Guohua; Dang, Ying; Shankar, Premlata

    2013-01-01

    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy. PMID:24284874

  8. Genetic Testing in the Multidisciplinary Management of Melanoma.

    PubMed

    Rashid, Omar M; Zager, Jonathan S

    2015-10-01

    Melanoma is increasing in incidence and represents an aggressive type of cancer. Efforts have focused on identifying genetic factors in melanoma carcinogenesis to guide prevention, screening, early detection, and targeted therapy. This article reviews the hereditary risk factors associated with melanoma and the known molecular pathways and genetic mutations associated with this disease. This article also explores the controversies associated with genetic testing and the latest advances in identifying genetic targets in melanoma, which offer promise for future application in the multidisciplinary management of melanoma. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Inhibiting the HIV Integration Process: Past, Present, and the Future

    PubMed Central

    2013-01-01

    HIV integrase (IN) catalyzes the insertion into the genome of the infected human cell of viral DNA produced by the retrotranscription process. The discovery of raltegravir validated the existence of the IN, which is a new target in the field of anti-HIV drug research. The mechanism of catalysis of IN is depicted, and the characteristics of the inhibitors of the catalytic site of this viral enzyme are reported. The role played by the resistance is elucidated, as well as the possibility of bypassing this problem. New approaches to block the integration process are depicted as future perspectives, such as development of allosteric IN inhibitors, dual inhibitors targeting both IN and other enzymes, inhibitors of enzymes that activate IN, activators of IN activity, as well as a gene therapy approach. PMID:24025027

  10. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy

    PubMed Central

    Myers, Stephanie M.; Collins, Ian

    2016-01-01

    The kinesin class of microtubule-associated motor proteins present attractive anti-cancer targets owing to their roles in key functions in dividing cells. Two interpolar mitotic kinesins Eg5 and HSET have opposing motor functions in mitotic spindle assembly with respect to microtubule movement, but both offer opportunities to develop cancer selective therapeutic agents. Here, we summarize the progress to date in developing inhibitors of Eg5 and HSET, with an emphasis on structural biology insights into the binding modes of allosteric inhibitors, compound selectivity and mechanisms of action of different chemical scaffolds. We discuss translation of preclinical studies to clinical experience with Eg5 inhibitors, recent findings on potential resistance mechanisms, and explore the implications for future anticancer drug development against these targets. PMID:26976726

  11. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy.

    PubMed

    Myers, Stephanie M; Collins, Ian

    2016-01-01

    The kinesin class of microtubule-associated motor proteins present attractive anticancer targets owing to their roles in key functions in dividing cells. Two interpolar mitotic kinesins Eg5 and HSET have opposing motor functions in mitotic spindle assembly with respect to microtubule movement, but both offer opportunities to develop cancer selective therapeutic agents. Here, we summarize the progress to date in developing inhibitors of Eg5 and HSET, with an emphasis on structural biology insights into the binding modes of allosteric inhibitors, compound selectivity and mechanisms of action of different chemical scaffolds. We discuss translation of preclinical studies to clinical experience with Eg5 inhibitors, recent findings on potential resistance mechanisms and explore the implications for future anticancer drug development against these targets.

  12. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN.

    PubMed

    Ul Ain, Qurrat; Chung, Jee Young; Kim, Yong-Hee

    2015-05-10

    Gene therapy by engineered nucleases is a genetic intervention being investigated for curing the hereditary disorders by targeting selected genes with specific nucleotides for establishment, suppression, abolishment of a function or correction of mutation. Here, we review the fast developing technology of targeted genome engineering using site specific programmable nucleases zinc finger nucleases (ZFNs), transcription activator like nucleases (TALENs) and cluster regulatory interspaced short palindromic repeat/CRISPR associated proteins (CRISPR/Cas) based RNA-guided DNA endonucleases (RGENs) and their different characteristics including pros and cons of genome modifications by these nucleases. We have further discussed different types of delivery methods to induce gene editing, novel development in genetic engineering other than nucleases and future prospects. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Anti-HIV-1 nanotherapeutics: promises and challenges for the future

    PubMed Central

    Mahajan, Supriya D; Aalinkeel, Ravikumar; Law, Wing-Cheung; Reynolds, Jessica L; Nair, Bindukumar B; Sykes, Donald E; Yong, Ken-Tye; Roy, Indrajit; Prasad, Paras N; Schwartz, Stanley A

    2012-01-01

    The advent of highly active antiretroviral therapy (HAART) has significantly improved the prognosis for human immunodeficiency virus (HIV)-infected patients, however the adverse side effects associated with prolonged HAART therapy use continue. Although systemic viral load can be undetectable, the virus remains sequestered in anatomically privileged sites within the body. Nanotechnology-based delivery systems are being developed to target the virus within different tissue compartments and are being evaluated for their safety and efficacy. The current review outlines the various nanomaterials that are becoming increasingly used in biomedical applications by virtue of their robustness, safety, multimodality, and multifunctionality. Nanotechnology can revolutionize the field of HIV medicine by not only improving diagnosis, but also by improving delivery of antiretrovirals to targeted regions in the body and by significantly enhancing the efficacy of the currently available antiretroviral medications. PMID:23055735

  14. Structural and functional imaging for vascular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Li, Buhong; Gu, Ying; Wilson, Brian C.

    2017-02-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely used for the prevention or treatment of vascular-related diseases, such as localized prostate cancer, wet age-related macular degeneration, port wine stains, esophageal varices and bleeding gastrointestinal mucosal lesions. In this study, the fundamental mechanisms of vascular responses during and after V-PDT will be introduced. Based on the V-PDT treatment of blood vessels in dorsal skinfold window chamber model, the structural and functional imaging, which including white light microscopy, laser speckle imaging, singlet oxygen luminescence imaging, and fluorescence imaging for evaluating vascular damage will be presented, respectively. The results indicate that vessel constriction and blood flow dynamics could be considered as the crucial biomarkers for quantitative evaluation of vascular damage. In addition, future perspectives of non-invasive optical imaging for evaluating vascular damage of V-PDT will be discussed.

  15. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies.

    PubMed

    Lim, Sun Min; Syn, Nicholas L; Cho, Byoung Chul; Soo, Ross A

    2018-04-01

    The tyrosine kinase inhibitors (TKIs) directed at sensitizing mutations in the epidermal growth factor receptor (EGFR) gene represents a critical pillar in non-small cell lung cancer treatment. Despite the excellent disease control with initial EGFR TKI therapy, acquired resistance is ubiquitous and remains a key challenge. Investigations into the mechanisms which foster resistance to EGFR TKIs has led to the discovery of novel biomarkers and drug targets, and in turn has enabled the development of third-generation TKIs and proposals for rational therapeutic combinations. The threonine-to-methionine substitution mutation at position 790 (T790M) is clinically validated to engender refractoriness to first- and second-generation TKIs, and is a standard-of-care predictive biomarker used in therapeutic stratification. Clinical use of liquid biopsy approaches for assessment of T790M mutations continues to increase, with growing advocacy for serial monitoring of tumor evolution. For patients who are T790M-negative, cytotoxic chemotherapy or protracted EGFR TKI treatment are acceptable treatment standards after disease progression, although combinations of targeted therapies and checkpoint blockade immunotherapy may offer promising alternatives in the future. Among T790M-positive patients, the third-generation EGFR TKI, osimertinib, has shown superiority over both platinum-doublet chemotherapy and 1st generation EGFR TKI in randomized clinical trials, and exhibits enhanced in vitro selectivity for mutant EGFR receptors and pharmacokinetics compared to earlier-generation TKIs. This article appraises the key literature on the contemporary management of non-small cell lung cancer patients with acquired resistance to EGFR TKIs, and envisions future directions in translational and clinical research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Targeting the cyclin D-cyclin-dependent kinase (CDK) 4/6-retinoblastoma pathway with selective CDK 4/6 inhibitors in hormone receptor-positive breast cancer: rationale, current status, and future directions.

    PubMed

    Spring, Laura; Bardia, Aditya; Modi, Shanu

    2016-01-01

    Dysregulation of the cyclin D-cyclin-dependent kinase (CDK) 4/6-INK4-retinoblastoma (Rb) pathway is an important contributor to endocrine therapy resistance. Recent clinical development of selective inhibitors of CDK4 and CDK6 kinases has led to renewed interest in cell cycle regulators, following experience with relatively non-selective pan-CDK inhibitors that often resulted in limited activity and poor safety profiles in the clinic. The highly selective oral CDK 4/6 inhibitors palbociclib (PD0332991), ribociclib (LEE011), and abemaciclib (LY2835219) are able to inhibit the proliferation of Rb-positive tumor cells and have demonstrated dose-dependent growth inhibition in ER+ breast cancer models. In metastatic breast cancer, all three agents are being explored in combination with endocrine therapy in Phase III studies. Results so far indicated promising efficacy and manageable safety profiles, and led to the FDA approval of palbociclib. Phase II-III studies of these agents, in combination with endocrine therapy, are also underway in early breast cancer in the neoadjuvant and adjuvant settings. Selective CDK 4/6 inhibitors are also being investigated with other targeted agents or chemotherapy in the advanced setting. This article reviews the rationale for targeting cyclin D-CDK 4/6 in hormone receptor-positive (HR+) breast cancer, provides an overview of the available preclinical and clinical data with CDK 4/6 inhibitors in breast cancer to date, and summarizes the main features of ongoing clinical trials of these new agents in breast cancer. Future trials evaluating further combination strategies with CDK 4/6 backbone and translational studies refining predictive biomarkers are needed to help personalize the optimal treatment regimen for individual patients with ER+ breast cancer.

  17. Targeting fibroblast growth factor receptor in breast cancer: a promise or a pitfall?

    PubMed

    Bedussi, Francesca; Bottini, Alberto; Memo, Maurizio; Fox, Stephen B; Sigala, Sandra; Generali, Daniele

    2014-06-01

    Fibroblast growth factors (FGFs) along with their receptors (FGFRs) are involved in several cellular functions, from embryogenesis to metabolism. Because of the ability of FGFR signalling to induce cell proliferation, migration and survival in cancer, these have been found to become overactivated by several mechanisms, including gene amplification, chromosomal translocation and mutations. New evidences indicate that FGFs and FGFRs may act in an oncogenic fashion to promote multiple steps of cancer progression by inducing mitogenic and survival signals, as well as promoting epithelial-to-mesenchymal transition, invasion and tumour angiogenesis. This review focuses on the predictive and prognostic role of FGFRs, the role of FGFR signalling and how it may be most appropriately therapeutically targeted in breast cancer. Activation of the FGFR pathway is a common event in many cancer types and for this reason FGFR is an important potential target in cancer treatment. Relevant literature was reviewed to identify current and future role of FGFR family as a possible guide for selecting those patients who would be poor or good responders to the available or the upcoming target therapies for breast cancer treatment. The success of a personalised medicine approach using targeted therapies ultimately depends on being capable of identifying the patients who will benefit the most from any given drug. Outlining the molecular mechanisms of FGFR signalling and discussing the role of this pathway in breast cancer, we would like to endorse the incorporation of specific patient selection biomakers with the rationale for therapeutic intervention with FGFR-targeted therapy in breast cancer.

  18. Sci-Thur AM: YIS – 01: New technologies for astatine-211 targeted alpha therapy research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Jason; Yang, Hua; Schaffer, Paul

    Purpose: The short-range, densely ionizing α-particles emitted by {sup 211}At (t{sub 1/2}=7.2h) are well suited for the treatment of diffuse microscopic disease, using cancer targeting biomolecules. {sup 211}At availability is limited by the rarity of α-cyclotrons required for standard production. Image-based dosimetry is also limited for {sup 211}At, which emits low intensity X-rays. Our goal was to leverage state-of-the-art infrastructure at TRIUMF to produce and evaluate two related isotopes, {sup 211}Rn (t{sub 1/2}=14.6h, 73% decay to {sup 211}At) as a generator for {sup 211}At, and {sup 209}At (t{sub 1/2}=5.4h, X-ray/gamma-ray emitter) as a novel 211At surrogate for preclinical imaging studies.more » Methods: Produced by spallation of uranium with 480 MeV protons, mass separated ion beams of short-lived francium isotopes were implanted into NaCl targets where {sup 211}Rn or {sup 209}At were produced by radioactive decay, in situ. {sup 211}Rn was transferred to dodecane from which {sup 211}At was efficiently extracted and evaluated for clinical applicability. High energy SPECT/CT was evaluated for measuring {sup 209}At activity distributions in mice and phantoms. Results: Our small scale {sup 211}Rn/{sup 211}At generator system provided high purity {sup 211}At samples. The methods are immediately scalable to the level of radioactivity required for in vivo experiments with {sup 211}At. {sup 209}At-based high energy SPECT imaging was determined suitable for pursuing image-based dosimetry in mouse tumour models. In the future, we will utilize quantitative {sup 209}At-SPECT for image-based dose calculations. Conclusion: These early studies provided a foundation for future endeavours with {sup 211}At-based α-therapy. Canada is now significantly closer to clinical targeted α-therapy of cancer.« less

  19. Gene Therapy in Cardiac Surgery: Clinical Trials, Challenges, and Perspectives

    PubMed Central

    Katz, Michael G.; Fargnoli, Anthony S.; Kendle, Andrew P.; Hajjar, Roger J.; Bridges, Charles R.

    2016-01-01

    The concept of gene therapy was introduced in the 1970s after the development of recombinant DNA technology. Despite the initial great expectations, this field experienced early setbacks. Recent years have seen a revival of clinical programs of gene therapy in different fields of medicine. There are many promising targets for genetic therapy as an adjunct to cardiac surgery. The first positive long-term results were published for adenoviral administration of vascular endothelial growth factor with coronary artery bypass grafting. In this review we analyze the past, present, and future of gene therapy in cardiac surgery. The articles discussed were collected through PubMed and from author experience. The clinical trials referenced were found through the Wiley clinical trial database (http://www.wiley.com/legacy/wileychi/genmed/clinical/) as well as the National Institutes of Health clinical trial database (Clinicaltrials.gov). PMID:26801060

  20. Inhaled gene therapy in lung cancer: proof-of-concept for nano-oncology and nanobiotechnology in the management of lung cancer.

    PubMed

    Zarogoulidis, Paul; Darwiche, Kaid; Hohenforst-Schmidt, Wolfgang; Huang, Haidong; Li, Qiang; Freitag, Lutz; Zarogoulidis, Konstantinos

    2013-08-01

    Lung cancer still remains one of the leading causes of death among cancer patients. Although novel targeted therapies have been established in everyday treatment practice, and conventional platinum-based doublets have demonstrated effective results regarding overall and progression-free survival, we have still failed to achieve long-term survival. Therefore, several strategies of applying locoregional therapy are under investigation. Aerosol chemotherapy is already under investigation and, taking this a step further, aerosol gene therapies with multiple delivery systems are being developed. Several efforts have demonstrated its efficiency and effectiveness, but there are still multiple factors that have to be considered and combined to achieve an overall more effective multifunctional treatment. In the current review, we present data regarding aerosol delivery systems, transporters, carriers, vectors, genes, toxicity, efficiency, specificity, lung microenvironment and delivery gene therapy systems. Finally, we present current studies and future perspectives.

  1. Drug nanocarrier, the future of atopic diseases: Advanced drug delivery systems and smart management of disease.

    PubMed

    Shao, Mei; Hussain, Zahid; Thu, Hnin Ei; Khan, Shahzeb; Katas, Haliza; Ahmed, Tarek A; Tripathy, Minaketan; Leng, Jing; Qin, Hua-Li; Bukhari, Syed Nasir Abbas

    2016-11-01

    Atopic dermatitis (AD) is a chronically relapsing skin inflammatory disorder characterized by perivascular infiltration of immunoglobulin-E (IgE), T-lymphocytes and mast cells. The key pathophysiological factors causing this disease are immunological disorders and the compromised epidermal barrier integrity. Pruritus, intense itching, psychological stress, deprived physical and mental performance and sleep disturbance are the hallmark features of this dermatological complication. Preventive interventions which include educational programs, avoidance of allergens, exclusive care towards skin, and the rational selection of therapeutic regimen play key roles in the treatment of dermatosis. In last two decades, it is evident from a plethora of studies that scientific focus is being driven from conventional therapies to the advanced nanocarrier-based regimen for an effective management of AD. These nanocarriers which include polymeric nanoparticles (NPs), hydrogel NPs, liposomes, ethosomes, solid lipid nanoparticles (SLNs) and nanoemulsion, provide efficient roles for the target specific delivery of the therapeutic payload. The success of these targeted therapies is due to their pharmaceutical versatility, longer retention time at the target site, avoiding off-target effects and preventing premature degradation of the incorporated drugs. The present review was therefore aimed to summarise convincing evidence for the therapeutic superiority of advanced nanocarrier-mediated strategies over the conventional therapies used in the treatment of AD. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Molecular signature of pancreatic adenocarcinoma: an insight from genotype to phenotype and challenges for targeted therapy

    PubMed Central

    Sahin, Ibrahim H; Iacobuzio-Donahue, Christine A; O’Reilly, Eileen M

    2016-01-01

    Introduction Pancreatic adenocarcinoma remains one of the most clinically challenging cancers despite an in-depth characterization of the molecular underpinnings and biology of this disease. Recent whole-genome-wide studies have elucidated the diverse and complex genetic alterations which generate a unique oncogenic signature for an individual pancreatic cancer patient and which may explain diverse disease behavior in a clinical setting. Areas covered In this review article, we discuss the key oncogenic pathways of pancreatic cancer including RAS-MAPK, PI3KCA and TGF-β signaling, as well as the impact of these pathways on the disease behavior and their potential targetability. The role of tumor suppressors particularly BRCA1 and BRCA2 genes and their role in pancreatic cancer treatment are elaborated upon. We further review recent genomic studies and their impact on future pancreatic cancer treatment. Expert opinion Targeted therapies inhibiting pro-survival pathways have limited impact on pancreatic cancer outcomes. Activation of pro-apoptotic pathways along with suppression of cancer-stem-related pathways may reverse treatment resistance in pancreatic cancer. While targeted therapy or a ‘precision medicine’ approach in pancreatic adenocarcinoma remains an elusive challenge for the majority of patients, there is a real sense of optimism that the strides made in understanding the molecular underpinnings of this disease will translate into improved outcomes. PMID:26439702

  3. [Clinical and health economic challenges of personalized medicine].

    PubMed

    Brüggenjürgen, B; Kornbluth, L; Ferrara, J V; Willich, S N

    2012-05-01

    Healthcare systems across the globe are currently challenged by aging populations, increases in chronic diseases and the difficult task of managing a healthcare budget. In this health economic climate, personalized medicine promises not only an improvement in healthcare delivery but also the possibility of more cost-effective therapies. It is important to remember, however, that personalized medicine has the potential to both increase and decrease costs. Each targeted therapy must be evaluated individually. However, standard clinical trial design is not suitable for personalized therapies. Therefore, both scientists and regulatory authorities will need to accept innovative study designs in order to validate personalized therapies. Hence correct economic evaluations are difficult to carry out due to lack of clear clinical evidence, longitudinal accounting and experience with patient/clinician behavior in the context of personalized medicine. In terms of reimbursement, payers, pharmaceutical companies and companion diagnostic manufacturers will also need to explore creative risk-sharing concepts. Germany is no exception to the challenges that face personalized medicine and for personalized medicine to really become the future of medicine many health economic challenges first need to be overcome. The health economic implications of personalized medicine remain unclear but it is certain that the expansion of targeted therapies in current healthcare systems will create a host of challenges.

  4. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities.

    PubMed

    Gajarsa, Jason J; Kloner, Robert A

    2011-01-01

    As more patients survive myocardial infarctions, the incidence of heart failure increases. After an infarction, the human heart undergoes a series of structural changes, which are governed by cellular and molecular mechanisms in a pathological metamorphosis termed "remodeling." This review will discuss the current developments in our understanding of these molecular and cellular events in remodeling and the various pharmacological, cellular and device therapies used to treat, and potentially retard, this condition. Specifically, this paper will examine the neurohormonal activity of the renin-angiotensin-aldosterone axis and its molecular effects on the heart. The emerging understanding of the extra-cellular matrix and the various active molecules within it, such as the matrix metalloproteinases, elicits new appreciation for their role in cardiac remodeling and as possible future therapeutic targets. Cell therapy with stem cells is another recent therapy with great potential in improving post-infarcted hearts. Lastly, the cellular and molecular effects of left ventricular assist devices on remodeling will be reviewed. Our increasing knowledge of the cellular and molecular mechanisms underlying cardiac remodeling enables us not only to better understand how our more successful therapies, like angiotensin-converting enzyme inhibitors, work, but also to explore new therapies of the future.

  5. The HOME network: an Australian national initiative for home therapies.

    PubMed

    Chow, Josephine; Fortnum, Debbie; Moodie, Jo-Anne; Simmonds, Rosemary; Tomlins, Melinda

    2013-01-01

    Longer, more frequent dialysis at home can improve life expectancy for patients with chronic kidney disease. Increased use of home dialysis therapies also benefits the hospital system, allowing for more efficient allocation of clinic resources. However, the Australian and New Zealand Data Registry statistics highlight the low uptake of home haemodialysis and peritoneal dialysis across Australia. In August 2009, the Australia's HOME Network was established as a national initiative to engage and empower healthcare professionals working in the home dialysis specialty. The aim was to develop solutions to advocate for and ultimately increase the use of home therapies. This paper describes the development, achievement and future plan of the Australian HOME Network. Achievements to date include: a survey of HOME Network members to assess the current state of patient and healthcare professional-targeted education resources; development of two patient case studies and activities addressing how to overcome the financial burden experienced by patients on home dialysis. Future projects aim to improve patient and healthcare professional education, and advocacy for home dialysis therapies. The HOME Network is supporting healthcare professionals working in the home dialysis specialty to develop solutions and tools that will help to facilitate greater utilisation of home dialysis therapies. © 2013 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  6. A Review of Microbiota and Irritable Bowel Syndrome: Future in Therapies.

    PubMed

    Rodiño-Janeiro, Bruno K; Vicario, María; Alonso-Cotoner, Carmen; Pascua-García, Roberto; Santos, Javier

    2018-03-01

    Irritable bowel syndrome (IBS), one of the most frequent digestive disorders, is characterized by chronic and recurrent abdominal pain and altered bowel habit. The origin seems to be multifactorial and is still not well defined for the different subtypes. Genetic, epigenetic and sex-related modifications of the functioning of the nervous and immune-endocrine supersystems and regulation of brain-gut physiology and bile acid production and absorption are certainly involved. Acquired predisposition may act in conjunction with infectious, toxic, dietary and life event-related factors to enhance epithelial permeability and elicit mucosal microinflammation, immune activation and dysbiosis. Notably, strong evidence supports the role of bacterial, viral and parasitic infections in triggering IBS, and targeting microbiota seems promising in view of the positive response to microbiota-related therapies in some patients. However, the lack of highly predictive diagnostic biomarkers and the complexity and heterogeneity of IBS patients make management difficult and unsatisfactory in many cases, reducing patient health-related quality of life and increasing the sanitary burden. This article reviews specific alterations and interventions targeting the gut microbiota in IBS, including prebiotics, probiotics, synbiotics, non-absorbable antibiotics, diets, fecal transplantation and other potential future approaches useful for the diagnosis, prevention and treatment of IBS.

  7. Seaweed Polysaccharides - New Therapeutic Insights Against the Inflammatory Response in Diabetic Nephropathy.

    PubMed

    Vaishnudevi, Durairaj; Viswanathan, Pragasam

    2017-01-01

    The higher risk of diabetic nephropathy (DN) leads to end stage renal diseases worldwide, which is associated with chronic inflammation. Currently, the available treatments are limited, lack of efficacy and safety. Therefore, we are in need of novel targets and advanced treatments to reduce the necessity for the renal replacement therapy and burden of this disease management. Object/Methods: In this review, we performed through an inflammatory mechanism that contribute to DN, will provide a key point to the finding off novel therapeutic agents. In addition, we discuss the current anti-inflammatory drugs, an alternative approach of seaweed polysaccharides and also exploring the future perspective of anti-inflammatory natural seaweed compounds. Currently, seaweeds are taking majority of attention from scientists for targeting the various diseases. This will become a more significant part of the pipeline and alternate medicines for anti-inflammatory and chronic diseases. The potential benefits of natural seaweed novel compounds in inhibiting inflammatory pathways would be useful for the prevention of diabetic nephropathy. Thus, this therapy manifests the clinical benefits of these compounds in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Modularly Constructed Synthetic Granzyme B Molecule Enables Interrogation of Intracellular Proteases for Targeted Cytotoxicity.

    PubMed

    Ho, Patrick; Ede, Christopher; Chen, Yvonne Y

    2017-08-18

    Targeted therapies promise to increase the safety and efficacy of treatments against diseases ranging from cancer to viral infections. However, the vast majority of targeted therapeutics relies on the recognition of extracellular biomarkers, which are rarely restricted to diseased cells and are thus prone to severe and sometimes-fatal off-target toxicities. In contrast, intracellular antigens present a diverse yet underutilized repertoire of disease markers. Here, we report a protein-based therapeutic platform-termed Cytoplasmic Oncoprotein VErifier and Response Trigger (COVERT)-which enables the interrogation of intracellular proteases to trigger targeted cytotoxicity. COVERT molecules consist of the cytotoxic protein granzyme B (GrB) fused to an inhibitory N-terminal peptide, which can be removed by researcher-specified proteases to activate GrB function. We demonstrate that fusion of a small ubiquitin-like modifier 1 (SUMO1) protein to GrB yields a SUMO-GrB molecule that is specifically activated by the cancer-associated sentrin-specific protease 1 (SENP1). SUMO-GrB selectively triggers apoptotic phenotypes in HEK293T cells that overexpress SENP1, and it is highly sensitive to different SENP1 levels across cell lines. We further demonstrate the rational design of additional COVERT molecules responsive to enterokinase (EK) and tobacco etch virus protease (TEVp), highlighting the COVERT platform's modularity and adaptability to diverse protease targets. As an initial step toward engineering COVERT-T cells for adoptive T-cell therapy, we verified that primary human T cells can express, package, traffic, and deliver engineered GrB molecules in response to antigen stimulation. Our findings set the foundation for future intracellular-antigen-responsive therapeutics that can complement surface-targeted therapies.

  9. Targeted Adenoviral Vector Demonstrates Enhanced Efficacy for In Vivo Gene Therapy of Uterine Leiomyoma

    PubMed Central

    Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P.; Al-Hendy, Ayman

    2016-01-01

    Background: Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. Study design: An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Materials and methods: Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. Results: In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P < 0.05), reduced expression of proliferation marker (PCNA) (P < 0.05), induced expression of apoptotic protein, c-PARP-1, (P < 0.05) and inhibited expression of extracellular matrix-related genes (TGF beta 3) and angiogenesis-related genes (VEGF & IGF-1) (P < 0.01). There were no detectable adenovirus in tested tissues other than leiomyoma lesions with both targeted and untargeted adenovirus. Conclusion: Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. PMID:26884457

  10. Targeted Adenoviral Vector Demonstrates Enhanced Efficacy for In Vivo Gene Therapy of Uterine Leiomyoma.

    PubMed

    Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P; Al-Hendy, Ayman

    2016-04-01

    Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P < 0.05), reduced expression of proliferation marker (PCNA) (P < 0.05), induced expression of apoptotic protein, c-PARP-1, (P < 0.05) and inhibited expression of extracellular matrix-related genes (TGF beta 3) and angiogenesis-related genes (VEGF & IGF-1) (P < 0.01). There were no detectable adenovirus in tested tissues other than leiomyoma lesions with both targeted and untargeted adenovirus. Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. © The Author(s) 2016.

  11. Advances in evidence-based cancer adoptive cell therapy.

    PubMed

    Ge, Chunlei; Li, Ruilei; Song, Xin; Qin, Shukui

    2017-04-01

    Adoptive cell therapy (ACT) has been developed in cancer treatment by transferring/infusing immune cells into cancer patients, which are able to recognize, target, and destroy tumor cells. Recently, sipuleucel-T and genetically-modified T cells expressing chimeric antigen receptors (CAR) show a great potential to control metastatic castration-resistant prostate cancer and hematologic malignancies in clinic. This review summarized some of the major evidence-based ACT and the challenges to improve cell quality and reduce the side effects in the field. This review also provided future research directions to make sure ACT widely available in clinic.

  12. Advantages, Disadvantages, and Trend of Integrative Medicine in the Treatment of Heart Failure.

    PubMed

    Zhang, PeiYing

    2015-06-01

    Integrative medicine therapy using traditional Chinese medicine (TCM) combined with western medicine has shown some advantages in treating heart failure (HF), such as holistic concept; multi-target treatment; dialectical logic; personalized therapy; formulae compatibility; and reduction of side effects of western medicine. However, problems still exist in TCM treatment of HF, including non-uniformed categorization of TCM, lack of standardized syndrome differentiation and lack of an evidence base. The future of treatment of HF seems to be focused on reversing ventricular remodeling, improving cardiac rehabilitation, and accelerating experimental research and drug discovery in TCM.

  13. From Molecular Biology to Clinical Trials: Toward Personalized Colorectal Cancer Therapy.

    PubMed

    Palma, Sabina; Zwenger, Ariel O; Croce, María V; Abba, Martín C; Lacunza, Ezequiel

    2016-06-01

    During the past years, molecular studies through high-throughput technologies have led to the confirmation of critical alterations in colorectal cancer (CRC) and the discovery of some new ones, including mutations, DNA methylations, and structural chromosomal changes. These genomic alterations might act in concert to dysregulate specific signaling pathways that normally exert their functions on critical cell phenotypes, including the regulation of cellular metabolism, proliferation, differentiation, and survival. Targeted therapy against key components of altered signaling pathways has allowed an improvement in CRC treatment. However, a significant percentage of patients with CRC and metastatic CRC will not benefit from these targeted therapies and will be restricted to systemic chemotherapy. Mechanisms of resistance have been associated with specific gene alterations. To fully understand the nature and significance of the genetic and epigenetic defects in CRC that might favor a tumor evading a given therapy, much work remains. Therefore, a dynamic link between basic molecular research and preclinical studies, which ultimately constitute the prelude to standardized therapies, is very important to provide better and more effective treatments against CRC. We present an updated revision of the main molecular features of CRC and their associated therapies currently under study in clinical trials. Moreover, we performed an unsupervised classification of CRC clinical trials with the aim of obtaining an overview of the future perspectives of preclinical studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Antibody-cytokine fusion proteins for treatment of cancer: engineering cytokines for improved efficacy and safety.

    PubMed

    Young, Patricia A; Morrison, Sherie L; Timmerman, John M

    2014-10-01

    The true potential of cytokine therapies in cancer treatment is limited by the inability to deliver optimal concentrations into tumor sites due to dose-limiting systemic toxicities. To maximize the efficacy of cytokine therapy, recombinant antibody-cytokine fusion proteins have been constructed by a number of groups to harness the tumor-targeting ability of monoclonal antibodies. The aim is to guide cytokines specifically to tumor sites where they might stimulate more optimal anti-tumor immune responses while avoiding the systemic toxicities of free cytokine therapy. Antibody-cytokine fusion proteins containing interleukin (IL)-2, IL-12, IL-21, tumor necrosis factor (TNF)α, and interferons (IFNs) α, β, and γ have been constructed and have shown anti-tumor activity in preclinical and early-phase clinical studies. Future priorities for development of this technology include optimization of tumor targeting, bioactivity of the fused cytokine, and choice of appropriate agents for combination therapies. This review is intended to serve as a framework for engineering an ideal antibody-cytokine fusion protein, focusing on previously developed constructs and their clinical trial results. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Nanotechnology applications in thoracic surgery

    PubMed Central

    Hofferberth, Sophie C.; Grinstaff, Mark W.; Colson, Yolonda L.

    2016-01-01

    Nanotechnology is an emerging, rapidly evolving field with the potential to significantly impact care across the full spectrum of cancer therapy. Of note, several recent nanotechnological advances show particular promise to improve outcomes for thoracic surgical patients. A variety of nanotechnologies are described that offer possible solutions to existing challenges encountered in the detection, diagnosis and treatment of lung cancer. Nanotechnology-based imaging platforms have the ability to improve the surgical care of patients with thoracic malignancies through technological advances in intraoperative tumour localization, lymph node mapping and accuracy of tumour resection. Moreover, nanotechnology is poised to revolutionize adjuvant lung cancer therapy. Common chemotherapeutic drugs, such as paclitaxel, docetaxel and doxorubicin, are being formulated using various nanotechnologies to improve drug delivery, whereas nanoparticle (NP)-based imaging technologies can monitor the tumour microenvironment and facilitate molecularly targeted lung cancer therapy. Although early nanotechnology-based delivery systems show promise, the next frontier in lung cancer therapy is the development of ‘theranostic’ multifunctional NPs capable of integrating diagnosis, drug monitoring, tumour targeting and controlled drug release into various unifying platforms. This article provides an overview of key existing and emerging nanotechnology platforms that may find clinical application in thoracic surgery in the near future. PMID:26843431

  16. First Evaluation of a Contingency Management Intervention Addressing Adolescent Substance Use and Sexual Risk Behaviors: Risk Reduction Therapy for Adolescents.

    PubMed

    Letourneau, Elizabeth J; McCart, Michael R; Sheidow, Ashli J; Mauro, Pia M

    2017-01-01

    There is a need for interventions that comprehensively address youth substance use disorders (SUD) and sexual risk behaviors. Risk Reduction Therapy for Adolescents (RRTA) adapts a validated family-focused intervention for youth SUD to include sexual risk reduction components in a single intervention. In this first evaluation of RRTA, drug court involved youth were randomly assigned to RRTA (N=45) or usual services (US; N=60) and followed through 12-months post-baseline. RRTA included weekly cognitive behavior therapy and behavior management training and contingency-contracting with a point earning system managed by caregivers targeting drug use and sexual risk antecedents. Longitudinal models estimated within-group change and between-group differences through 6- and 12-month follow-up on outcomes for substance use, sexual risk behaviors, and protective HIV behaviors. Robust effects of the intervention were not detected under conditions of the study that included potent background interventions by the juvenile drug court. Considerations about future development and testing of sexual risk reduction therapy for youth are discussed, including the potential role of contingency management in future interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. First Evaluation of a Contingency Management Intervention Addressing Adolescent Substance Use and Sexual Risk Behaviors: Risk Reduction Therapy for Adolescents

    PubMed Central

    Letourneau, Elizabeth J.; McCart, Michael R.; Sheidow, Ashli J.; Mauro, Pia M.

    2016-01-01

    There is a need for interventions that comprehensively address youth substance use disorders (SUD) and sexual risk behaviors. Risk Reduction Therapy for Adolescents (RRTA) adapts a validated family-focused intervention for youth SUD to include sexual risk reduction components in a single intervention. In this first evaluation of RRTA, drug court involved youth were randomly assigned to RRTA (N = 45) or usual services (US; N = 60) and followed through 12-months post-baseline. RRTA included weekly cognitive behavior therapy and behavior management training and contingency-contracting with a point earning system managed by caregivers targeting drug use and sexual risk antecedents. Longitudinal models estimated within-group change and between-group differences through 6- and 12-month follow-up on outcomes for substance use, sexual risk behaviors, and protective HIV behaviors. Robust effects of the intervention were not detected under conditions of the study that included potent background interventions by the juvenile drug court. Considerations about future development and testing of sexual risk reduction therapy for youth are discussed, including the potential role of contingency management in future interventions. PMID:27629581

  18. Management of refractory anti-phospholipid syndrome.

    PubMed

    Scoble, Tina; Wijetilleka, Sonali; Khamashta, Munther A

    2011-09-01

    Anti-phospholipid syndrome (APS) is an autoimmune prothrombotic disorder characterised by the predisposition to venous and/or arterial thrombosis and obstetric morbidity. Management of APS centres on attenuating the procoagulant state whilst balancing the risks of anticoagulant therapy. Cases of recurrent thromboses and obstetric complications occur despite optimum therapy. Alternative therapies for refractory cases are subject to disparity among clinicians due to the current lack of clinical evidence present. This review aims to address the current management strategies for refractory thrombotic and obstetric cases and future therapeutic interventions. The role and current clinical evidence of using long term low molecular weight heparin (LMWH) as an alternative to warfarin therapy for refractory thromboses is evaluated. Potential alternatives for thromboses including statins, hydroxychloroquine, Rituximab are reviewed as well as the additional avenues to target in the future as the pathogenic mechanisms of APS are unveiled. The optimal management for refractory obstetric APS cases is subject to controversy. This review focuses and assesses the current evidence for the uses of low dose prednisolone, intravenous immunoglobulin and hydroxycholoroquine in obstetric cases. The treatment modalities for the management of refractory APS require further clinical evidence. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Musical stairs: the impact of audio feedback during stair-climbing physical therapies for children.

    PubMed

    Khan, Ajmal; Biddiss, Elaine

    2015-05-01

    Enhanced biofeedback during rehabilitation therapies has the potential to provide a therapeutic environment optimally designed for neuroplasticity. This study investigates the impact of audio feedback on the achievement of a targeted therapeutic goal, namely, use of reciprocal steps. Stair-climbing therapy sessions conducted with and without audio feedback were compared in a randomized AB/BA cross-over study design. Seventeen children, aged 4-7 years, with various diagnoses participated. Reports from the participants, therapists, and a blinded observer were collected to evaluate achievement of the therapeutic goal, motivation and enjoyment during the therapy sessions. Audio feedback resulted in a 5.7% increase (p = 0.007) in reciprocal steps. Levels of participant enjoyment increased significantly (p = 0.031) and motivation was reported by child participants and therapists to be greater when audio feedback was provided. These positive results indicate that audio feedback may influence the achievement of therapeutic goals and promote enjoyment and motivation in young patients engaged in rehabilitation therapies. This study lays the groundwork for future research to determine the long term effects of audio feedback on functional outcomes of therapy. Stair-climbing is an important mobility skill for promoting independence and activities of daily life and is a key component of rehabilitation therapies for physically disabled children. Provision of audio feedback during stair-climbing therapies for young children may increase their achievement of a targeted therapeutic goal (i.e., use of reciprocal steps). Children's motivation and enjoyment of the stair-climbing therapy was enhanced when audio feedback was provided.

  20. Cost-effectiveness of precision medicine in the fourth-line treatment of metastatic lung adenocarcinoma: An early decision analytic model of multiplex targeted sequencing.

    PubMed

    Doble, Brett; John, Thomas; Thomas, David; Fellowes, Andrew; Fox, Stephen; Lorgelly, Paula

    2017-05-01

    To identify parameters that drive the cost-effectiveness of precision medicine by comparing the use of multiplex targeted sequencing (MTS) to select targeted therapy based on tumour genomic profiles to either no further testing with chemotherapy or no further testing with best supportive care in the fourth-line treatment of metastatic lung adenocarcinoma. A combined decision tree and Markov model to compare costs, life-years, and quality-adjusted life-years over a ten-year time horizon from an Australian healthcare payer perspective. Data sources included the published literature and a population-based molecular cohort study (Cancer 2015). Uncertainty was assessed using deterministic sensitivity analyses and quantified by estimating expected value of perfect/partial perfect information. Uncertainty due to technological/scientific advancement was assessed through a number of plausible future scenario analyses. Point estimate incremental cost-effective ratios indicate that MTS is not cost-effective for selecting fourth-line treatment of metastatic lung adenocarcinoma. Lower mortality rates during testing and for true positive patients, lower health state utility values for progressive disease, and targeted therapy resulting in reductions in inpatient visits, however, all resulted in more favourable cost-effectiveness estimates for MTS. The expected value to decision makers of removing all current decision uncertainty was estimated to be between AUD 5,962,843 and AUD 13,196,451, indicating that additional research to reduce uncertainty may be a worthwhile investment. Plausible future scenarios analyses revealed limited improvements in cost-effectiveness under scenarios of improved test performance, decreased costs of testing/interpretation, and no biopsy costs/adverse events. Reductions in off-label targeted therapy costs, when considered together with the other scenarios did, however, indicate more favourable cost-effectiveness of MTS. As more clinical evidence is generated for MTS, the model developed should be revisited and cost-effectiveness re-estimated under different testing scenarios to further understand the value of precision medicine and its potential impact on the overall health budget. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Focal therapy as primary treatment for localized prostate cancer: definition, needs and future.

    PubMed

    Ouzzane, Adil; Betrouni, Nacim; Valerio, Massimo; Rastinehad, Ardeshir; Colin, Pierre; Ploussard, Guillaume

    2017-04-01

    Focal therapy (FT) may offer a promising treatment option in the field of low to intermediate risk localized prostate cancer. The aim of this concept is to combine minimal morbidity with cancer control as well as maintain the possibility of retreatment. Recent advances in MRI and targeted biopsy has improved the diagnostic pathway of prostate cancer and increased the interest in FT. However, before implementation of FT in routine clinical practice, several challenges are still to overcome including patient selection, treatment planning, post-therapy monitoring and definition of oncologic outcome surrogates. In this article, relevant questions regarding the key steps of FT are critically discussed and the main available energy modalities are analyzed taking into account their advantages and unmet needs.

  2. Role of Chemotherapy and Targeted Therapy in Early-Stage Non-Small Cell Lung Cancer.

    PubMed

    Gadgeel, Shirish M

    2017-01-01

    On the basis of several randomized trials and meta-analyses, adjuvant chemotherapy is the accepted standard of care for certain patients with early-stage non-small cell lung cancer (NSCLC). Patients with stage II, IIIA, or large (≥ 4 cm) IB tumors are candidates for adjuvant chemotherapy. The survival improvement with adjuvant chemotherapy is approximately 5% at 5 years, though certain trials have suggested that it can be 8% to 10%. Neoadjuvant chemotherapy also has shown a survival advantage, though the volume of data with this approach is far less than that of adjuvant chemotherapy. The combination of cisplatin and vinorelbine is the most well-studied regimen, but current consensus is to use four cycles of any of the platinum-based chemotherapy regimens commonly used as front-line therapy for patients with advanced-stage NSCLC. Trials to define biomarkers that can predict benefit from adjuvant chemotherapy have not been successful, but results of other such trials are still awaited. On the basis of the benefit observed with targeted agents in patients with advanced-stage disease and driver genetic alterations in their tumors, ongoing trials are evaluating the utility of these targeted agents as adjuvant therapy. Similarly, clinical benefit observed with checkpoint inhibitors has prompted assessment of these drugs in patients with early-stage NSCLC. It is very likely, in the future, that factors other than the anatomy of the tumor will be used to select patients with early-stage NSCLC for systemic therapy and that the choice of systemic therapy will extend beyond platinum-based chemotherapy.

  3. Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease

    PubMed Central

    Gunay, Mine Silindir; Ozer, A. Yekta; Chalon, Sylvie

    2016-01-01

    Background: Although a variety of therapeutic approaches are available for the treatment of Parkinson’s disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. Methods: This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. Results: It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson’s disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α-synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Conclusion: Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson’s disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson’s Disease therapy and reduce its side effects. PMID:26714584

  4. Blood Pressure Management in Patients with Type 2 Diabetes.

    PubMed

    Eguchi, Kazuo

    2015-01-01

    In patients with type 2 diabetes (T2DM), the coexistence of hypertension enhances the cardiovascular risk, and the prevention of future cardiovascular disease is an important component of T2DM management. Antihypertensive therapy has been shown to be an effective method of reducing the micro- and macrovascular complications of T2DM, however, the optimal target blood pressure (BP) levels are still under debate. Most of the international guidelines have raised the target clinic BP from 130/80 to 140/90 mmHg, however, the Japanese Society of Hypertension 2014 guidelines kept the target BP level at 130/80 mmHg. However, individualized BP-lowering treatments should be considered in patients with T2DM, especially in high-risk individuals such as those with a history of stroke or retinopathy, and aggressive antihypertensive therapy below 130 mmHg should be initiated even when the initial systolic BP level is <140 mmHg. The authors performed two studies concerning the BP target levels of home BP. In the first study, the authors found that a home BP target <125/75 mmHg was effective in improving the measures of vascular stiffness and kidney damage. In the second study, when the clinic BP target was set at 130/80 mmHg, the home BP could be approximately 130/80 mmHg. More data are needed to individualize the target BP levels of T2DM patients.

  5. [Drug delivery systems using nano-sized drug carriers].

    PubMed

    Nakayama, Masamichi; Okano, Teruo

    2005-07-01

    Nanotechnology has attracted great attention all over the world in recent several years and has led to the establishment of the novel technical field of "nanomedicine" through collaboration with advanced medical technology. Particularly, site-specific drug targeting using particle drug carrier systems has made substantial progress and been actively developed. This review explains the essential factors (size and chemical character) of drug carriers to allow long circulation in the bloodstream avoiding the reticuloendothelial system, and shows the present status and future perspective of several types of nano-carrier systems (water-soluble polymer, liposome and polymeric micelle). We also introduce the novel concept of multi-targeting system (combination of two or more targeting methodologies) for ideal drug therapies.

  6. The Operating Room of the Future Versus the Future of the Operating Room.

    PubMed

    Kassam, Amin B; Rovin, Richard A; Walia, Sarika; Chakravarthi, Srikant; Celix, Juanita; Jennings, Jonathan; Khalili, Sammy; Gonen, Lior; Monroy-Sosa, Alejandro; Fukui, Melanie B

    2017-06-01

    Technological advancement in the operating room is evolving into a dynamic system mirroring that of the aeronautics industry. Through data visualization, information is continuously being captured, collected, and stored on a scalable informatics platform for rapid, intuitive, iterative learning. The authors believe this philosophy (paradigm) will feed into an intelligent informatics domain fully accessible to all and geared toward precision, cell-based therapy in which tissue can be targeted and interrogated in situ. In the future, the operating room will be a venue that facilitates this real-time tissue interrogation, which will guide in situ therapeutics to restore the state of health. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A New Green Titania with Enhanced NIR Absorption for Mitochondria-Targeted Cancer Therapy.

    PubMed

    Mou, Juan; Lin, Tianquan; Huang, Fuqiang; Shi, Jianlin; Chen, Hangrong

    2017-01-01

    A new kind of green titania ( G -TiO 2- x ) with obvious green color was facilely synthesized from black titania ( B -TiO 2- x ) through subsequently strong ultrasonication. Comparatively, this stable G -TiO 2- x shows much enhanced near infrared (NIR) absorption, especially around 920 nm, which can be ascribed to the obvious change of TiO 2- x lattice order owing to the effect of ultrasonication. This feature enables G -TiO 2- x to be stimulated with 980 nm laser in the combined photodynamic therapy (PDT) and photothermal therapy (PTT), which is greatly beneficial for improving tissue penetration depth. Furthermore, since mitochondria are preferred subcellular organelles for PDT/PTT, G -TiO 2- x was further designed to conjugate with triphenylphosphonium (TPP) ligand for mitochondria-targeted PDT/PTT to obtain precise cancer treatment. Attributing to the high mitochondria-targeting efficiency and simultaneously synergistic PDT/PTT, high phototherapeutic efficacy and safety with a much lower laser power density (980 nm, 0.72 W cm -2 ) and low materials dosage were achieved both in vitro and in vivo . In addition, negligible toxicity was found, indicating high biocompatibility. This novel G -TiO 2- x could provide new strategies for future precise minimal/non-invasive tumor treatment.

  8. ALK-targeted therapy for lung cancer: ready for prime time.

    PubMed

    Husain, Hatim; Rudin, Charles M

    2011-06-01

    Lung cancer remains the leading cause of cancer-related death in the United States. Ongoing research into the molecular basis of lung cancer has yielded insight into various critical pathways that are deregulated in lung tumorigenesis, and in particular key driver mutations integral to cancer cell survival and proliferation. One of the most recent examples of this has been definition of translocations and functional dysregulation of the anaplastic lymphoma kinase (ALK) gene in a subset of patients with non-small-cell lung cancer. The pace of research progress in this area has been remarkable: chromosomal rearrangements involving this gene in lung cancer were first reported in 2007 by a team of investigators in Japan. Less than 3 years later, an early-phase clinical trial of a targeted ALK inhibitor has yielded impressive responses in patients with advanced lung cancer containing ALK rearrangements, and mechanisms of acquired resistance to ALK-targeted therapy are being reported. A definitive study randomizing patients with ALK-mutant lung cancer to crizotinib (also known as PF-02341066 or 1066) versus standard therapy has recently completed enrollment.Taken together, these data describe a trajectory of research progress from basic discovery science to real-world implementation that should serve as a model for future integration of preclinical and clinical therapeutic research.

  9. Biomimetic HDL nanoparticle mediated tumor targeted delivery of indocyanine green for enhanced photodynamic therapy.

    PubMed

    Wang, Yazhe; Wang, Cheng; Ding, Yang; Li, Jing; Li, Min; Liang, Xiao; Zhou, Jianping; Wang, Wei

    2016-12-01

    Photodynamic therapy has emerged as a promising strategy for cancer treatment. To ensure the efficient delivery of a photosensitizer to tumor for anticancer effect, a safe and tumor-specific delivery system is highly desirable. Herein, we introduce a novel biomimetic nanoparticle named rHDL/ICG (rHDL/I), by loading amphiphilic near-infrared (NIR) fluorescent dye indocyanine green (ICG) into reconstituted high density lipoproteins (rHDL). In this system, rHDL can mediate photoprotection effect and receptor-guided tumor-targeting transportation of cargos into cells. Upon NIR irradiation, ICG can generate fluorescent imaging signals for diagnosis and monitoring therapeutic activity, and produce singlet oxygen to trigger photodynamic therapy (PDT). Our studies demonstrated that rHDL/I exhibited excellent size and fluorescence stability, light-triggered controlled release feature, and neglectable hemolytic activity. It also showed equivalent NIR response compared to free ICG under laser irradiation. Importantly, the fluorescent signal of ICG loaded in rHDL/I could be visualized subcellularly in vitro and exhibited metabolic distribution in vivo, presenting superior tumor targeting and internalization. This NIR-triggered image-guided nanoparticle produced outstanding therapeutic outcomes against cancer cells, demonstrating great potential of biomimetic delivery vehicles in future clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Lipid nanoparticles for cancer therapy: state of the art and future prospects.

    PubMed

    Lasa-Saracibar, Beatriz; Estella-Hermoso de Mendoza, Ander; Guada, Melissa; Dios-Vieitez, Carmen; Blanco-Prieto, María J

    2012-10-01

    Cancer is a leading cause of death worldwide and it is estimated that deaths from this disease will rise to over 11 million in 2030. Most cases of cancer can be cured with surgery, radiotherapy or chemotherapy if they are detected at an early stage. However, current cancer therapies are commonly associated with undesirable side effects, as most chemotherapy treatments are cytotoxic and present poor tumor targeting. Lipid nanoparticles (LN) are one of the most promising options in this field. LN are made up of biodegradable generally recognized as safe (GRAS) lipids, their formulation includes different techniques, and most are easily scalable to industrial manufacture. LN overcome the limitations imposed by the need for intravenous administration, as they are mainly absorbed via the lymphatic system when they are administered orally, which improves drug bioavailability. Furthermore, depending on their composition, LN present the ability to cross the blood-brain barrier, thus opening up the possibility of targeting brain tumors. The drawbacks of chemotherapeutic agents make it necessary to invest in research to find safer and more effective therapies. Nanotechnology has opened the door to new therapeutic options through the design of formulations that include a wide range of materials and formulations at the nanometer range, which improve drug efficacy through direct or indirect tumor targeting, increased bioavailability and diminished toxicity.

  11. A New Green Titania with Enhanced NIR Absorption for Mitochondria-Targeted Cancer Therapy

    PubMed Central

    Mou, Juan; Lin, Tianquan; Huang, Fuqiang; Shi, Jianlin; Chen, Hangrong

    2017-01-01

    A new kind of green titania (G-TiO2-x) with obvious green color was facilely synthesized from black titania (B-TiO2-x) through subsequently strong ultrasonication. Comparatively, this stable G-TiO2-x shows much enhanced near infrared (NIR) absorption, especially around 920 nm, which can be ascribed to the obvious change of TiO2-x lattice order owing to the effect of ultrasonication. This feature enables G-TiO2-x to be stimulated with 980 nm laser in the combined photodynamic therapy (PDT) and photothermal therapy (PTT), which is greatly beneficial for improving tissue penetration depth. Furthermore, since mitochondria are preferred subcellular organelles for PDT/PTT, G-TiO2-x was further designed to conjugate with triphenylphosphonium (TPP) ligand for mitochondria-targeted PDT/PTT to obtain precise cancer treatment. Attributing to the high mitochondria-targeting efficiency and simultaneously synergistic PDT/PTT, high phototherapeutic efficacy and safety with a much lower laser power density (980 nm, 0.72 W cm-2) and low materials dosage were achieved both in vitro and in vivo. In addition, negligible toxicity was found, indicating high biocompatibility. This novel G-TiO2-x could provide new strategies for future precise minimal/non-invasive tumor treatment. PMID:28529636

  12. Harnessing system models of cell death signalling for cytotoxic chemotherapy: towards personalised medicine approaches?

    PubMed

    Huber, Heinrich J; McKiernan, Ross G; Prehn, Jochen H M

    2014-03-01

    Most cytotoxic chemotherapeutics are believed to kill cancer cells by inducing apoptosis. Understanding the factors that contribute to impairment of apoptosis in cancer cells is therefore critical for the development of novel therapies that circumvent the widespread chemoresistance. Apoptosis, however, is a complex and tightly controlled process that can be induced by different classes of chemotherapeutics targeting different signalling nodes and pathways. Moreover, apoptosis initiation and apoptosis execution strongly depend on patient-specific, genomic and proteomic signatures. Here, we will review recent translational studies that suggest a critical link between the sensitivity of cancer cells to initiate apoptosis and clinical outcome. Next we will discuss recent advances in the field of system modelling of apoptosis pathways for the prediction of treatment responses. We propose that initiation of mitochondrial apoptosis, defined as the process of mitochondrial outer membrane permeabilisation (MOMP), is a dose-dependent decision process that allows for a prediction of individual therapy responses and therapeutic windows. We provide evidence in contrast that apoptosis execution post-MOMP may be a binary decision that dictates whether apoptosis is executed or not. We will discuss the implications of this concept for the future use of novel adjuvant therapeutics that specifically target apoptosis signalling pathways or which may be used to reduce the impact of cell-to-cell heterogeneity on therapy responses. Finally, we will discuss the technical and regulatory requirements surrounding the use and implications of system-based patient stratification tools for the future of personalised oncology.

  13. Irreversible pan-ErbB tyrosine kinase inhibitors and breast cancer: current status and future directions.

    PubMed

    Ocaña, Alberto; Amir, Eitan

    2009-12-01

    Aberrant activation of HER2 through overexpression has been shown to play an important role in some breast cancers. Therapies against this receptor including the monoclonal antibody, trastuzumab, or the small tyrosine kinase inhibitor, lapatinib have shown to improve the prognosis of such patients. Despite overexpressing HER2, some patients do not respond to these targeted treatments or progress after a short period of time. Irreversible tyrosine kinase inhibitors have been developed to bypass several pathways that could be involved in this resistance. In vitro, these agents have been shown to be more potent and to prolong target inhibition. Clinical development of these agents is ongoing and early results are promising. This review will describe the biologic rationale that justifies the development of these agents in breast cancer focusing on the current status and future directions.

  14. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    PubMed

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Present and future of metastatic colorectal cancer treatment: A review of new candidate targets

    PubMed Central

    Martini, Giulia; Troiani, Teresa; Cardone, Claudia; Vitiello, Pietropaolo; Sforza, Vincenzo; Ciardiello, Davide; Napolitano, Stefania; Della Corte, Carminia Maria; Morgillo, Floriana; Raucci, Antonio; Cuomo, Antonio; Selvaggi, Francesco; Ciardiello, Fortunato; Martinelli, Erika

    2017-01-01

    In the last two decades, great efforts have been made in the treatment of metastatic colorectal cancer (mCRC) due to the approval of new target agents for cytotoxic drugs. Unfortunately, a large percentage of patients present with metastasis at the time of diagnosis or relapse after a few months. The complex molecular heterogeneity of this disease is not completely understood; to date, there is a lack of predictive biomarkers that can be used to select subsets of patients who may respond to target drugs. Only the RAS-mutation status is used to predict resistance to anti-epidermal growth factor receptor agents in patients with mCRC. In this review, we describe approved targeted therapies for the management of metastatic mCRC and discuss new candidate targets on the horizon. PMID:28765689

  16. Ligand-based targeted therapy: a novel strategy for hepatocellular carcinoma

    PubMed Central

    Li, Min; Zhang, Weiyue; Wang, Birong; Gao, Yang; Song, Zifang; Zheng, Qi Chang

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer with high morbidity and mortality worldwide. Chemotherapy is recommended to patients with intermediate or advanced stage cancer. However, the conventional chemotherapy yields low desired response rates due to multidrug resistance, fast clearance rate, nonspecific delivery, severe side effects, low drug concentration in cancer cells, and so on. Nanoparticle-mediated targeted drug delivery system can surmount the aforementioned obstacles through enhanced permeability and retention effect and active targeting as a novel approach of therapeutics for HCC in recent years. The active targeting is triggered by ligands on the delivery system, which recognize with and internalize into hepatoma cells with high specificity and efficiency. This review focuses on the latest targeted delivery systems for HCC and summarizes the ligands that can enhance the capacity of active targeting, to provide some insight into future research in nanomedicine for HCC. PMID:27920520

  17. Efficient monoenergetic proton beam from ultra-fast laser interaction with nanostructured targets

    NASA Astrophysics Data System (ADS)

    Fazeli, R.

    2018-03-01

    The broad energy spectrum of laser-accelerated proton beams is the most important difficulty associated with such particle sources on the way to future applications such as medical therapy, proton imaging, inertial fusion, and high-energy physics. The generation of proton beams with enhanced monoenergetic features through an ultra-intense laser interaction with optimized nanostructured targets is reported. Targets were irradiated by 40 fs laser pulses of intensity 5.5 ×1020 W c m -2 and wavelength 1 μm. The results of multi-parametric Particle-in-Cell calculations showed that proton beams with considerably reduced energy spread can be obtained by using the proposed nanostructured target. At optimized target dimensions, the proton spectrum was found to exhibit a narrow peak at about 63 MeV with a relative energy spread of ΔE /Epeak˜ 5 % which is efficiently lower than what is expected for unstructured double layer targets (˜70%).

  18. On future's doorstep: RNA interference and the pharmacopeia of tomorrow.

    PubMed

    Gewirtz, Alan M

    2007-12-01

    Small molecules and antibodies have revolutionized the treatment of malignant diseases and appear promising for the treatment of many others. Nonetheless, there are many candidate therapeutic targets that are not amenable to attack by the current generation of targeted therapies, and in a small but growing number of patients, resistance to initially successful treatments evolves. This Review Series on the medicinal promise of posttranscriptional gene silencing with small interfering RNA and other molecules capable of inducing RNA interference (RNAi) is motivated by the hypothesis that effectors of RNAi can be developed into effective drugs for treating malignancies as well as many other types of disease. As this Review Series points out, there is still much to do, but many in the field now hope that the time has finally arrived when "antisense" therapies will finally come of age and fulfill their promise as the magic bullets of the 21st century.

  19. Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions.

    PubMed

    Lacivita, Enza; Perrone, Roberto; Margari, Lucia; Leopoldo, Marcello

    2017-11-22

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests, and activities. Various factors are involved in the etiopathogenesis of ASD, including genetic factors, environmental toxins and stressors, impaired immune responses, mitochondrial dysfunction, and neuroinflammation. The heterogeneity in the phenotype among ASD patients and the complex etiology of the condition have long impeded the advancement of the development of pharmacological therapies. In the recent years, the integration of findings from mouse models to human genetics resulted in considerable progress toward the understanding of ASD pathophysiology. Currently, strategies to treat core symptoms of ASD are directed to correct synaptic dysfunctions, abnormalities in central oxytocin, vasopressin, and serotonin neurotransmission, and neuroinflammation. Here, we present a survey of the studies that have suggested molecular targets for drug development for ASD and the state-of-the-art of medicinal chemistry efforts in related areas.

  20. Immune-modulating therapy in acute pancreatitis: Fact or fiction

    PubMed Central

    Akinosoglou, Karolina; Gogos, Charalambos

    2014-01-01

    Acute pancreatitis (AP) is one of the most common diseases of the gastrointestinal tract, bearing significant morbidity and mortality worldwide. Current treatment of AP remains unspecific and supportive and is mainly targeted to aggressively prevent systemic complications and organ failure by intensive care. As acute pancreatitis shares an indistinguishable profile of inflammation with sepsis, therapeutic approaches have turned towards modulating the systemic inflammatory response. Targets, among others, have included pro- and anti-inflammatory modulators, cytokines, chemokines, immune cells, adhesive molecules and platelets. Even though, initial results in experimental models have been encouraging, clinical implementation of immune-regulating therapies in acute pancreatitis has had a slow progress. Main reasons include difficulty in clinical translation of experimental data, poor understanding of inflammatory response time-course, flaws in experimental designs, need for multimodal approaches and commercial drawbacks. Whether immune-modulation in acute pancreatitis remains a fact or just fiction remains to be seen in the future. PMID:25386069

  1. Psychosocial treatments for schizophrenia.

    PubMed

    Mueser, Kim T; Deavers, Frances; Penn, David L; Cassisi, Jeffrey E

    2013-01-01

    The current state of the literature regarding psychosocial treatments for schizophrenia is reviewed within the frameworks of the recovery model of mental health and the expanded stress-vulnerability model. Interventions targeting specific domains of functioning, age groups, stages of illness, and human service system gaps are classified as evidence-based practices or promising practices according to the extent to which their efficacy is currently supported by meta-analyses and individual randomized controlled trials (RCTs). Evidence-based practices include assertive community treatment (ACT), cognitive behavior therapy (CBT) for psychosis, cognitive remediation, family psychoeducation, illness self-management training, social skills training, and supported employment. Promising practices include cognitive adaptive therapy, CBT for posttraumatic stress disorder, first-episode psychosis intervention, healthy lifestyle interventions, integrated treatment for co-occurring disorders, interventions targeting older individuals, peer support services, physical disease management, prodromal stage intervention, social cognition training, supported education, and supported housing. Implications and future directions are discussed.

  2. Host-pathogen interplay in the respiratory environment of Cystic Fibrosis

    PubMed Central

    Hurley, Bryan P.; Bragonzi, Alessandra

    2015-01-01

    Significant advances have been made in the understanding of disease progression in cystic fibrosis (CF), revealing a complex interplay between host and pathogenic organisms. The diverse CF microbiota within the airway activates an aberrant immune response that is ineffective in clearing infection. An appreciation of how the CF host immune system interacts with these organisms is crucial to understanding the pathogenesis of CF pulmonary disease. Here we discuss the microbial complexity present in the lungs of individuals with CF, review emerging concepts of innate and adaptive immune responses to pathogens that chronically inhabit the CF lung, and discuss therapies that target the aberrant inflammatory response that characterizes CF. A greater understanding of the underlying mechanisms will shed light on pathogenesis and guide more targeted therapies in the future that serve to reduce infection, minimize lung pathology, and improve the quality of life for patients with CF. PMID:25800687

  3. The future of EPAC-targeted therapies: agonism versus antagonism.

    PubMed

    Parnell, Euan; Palmer, Timothy M; Yarwood, Stephen J

    2015-04-01

    Pharmaceutical manipulation of cAMP levels exerts beneficial effects through the regulation of the exchange protein activated by cAMP (EPAC) and protein kinase A (PKA) signalling routes. Recent attention has turned to the specific regulation of EPAC isoforms (EPAC1 and EPAC2) as a more targeted approach to cAMP-based therapies. For example, EPAC2-selective agonists could promote insulin secretion from pancreatic β cells, whereas EPAC1-selective agonists may be useful in the treatment of vascular inflammation. By contrast, EPAC1 and EPAC2 antagonists could both be useful in the treatment of heart failure. Here we discuss whether the best way forward is to design EPAC-selective agonists or antagonists and the current strategies being used to develop isoform-selective, small-molecule regulators of EPAC1 and EPAC2 activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Antiplatelet treatment of cardiovascular disease: a translational research perspective.

    PubMed

    Gurbel, Paul A; Antonino, Mark J; Tantry, Udaya S

    2008-05-01

    Platelet mediated thrombosis is the primary cause of ischemic event occurrence in patients with cardiovascular disease. The P2Y12 receptor plays a central role in thrombus generation and is therefore a major target for pharmacologic therapy. Although various clinical trials have demonstrated the efficacy of dual antiplatelet therapy with aspirin and clopidogrel, recurrent ischemic events occur in approximately 10% of patients with acute coronary artery syndromes. Recent translational research studies have explored the various limitations of dual antiplatelet therapy including wide response variability and resistance. The association of ischemic event occurrence with high on-treatment platelet reactivity to adenosine diphosphate has been reported in recent small studies suggesting that the latter may be a quantifiable and modifiable risk factor. Recent studies have identified a potential therapeutic target for P2Y12 inhibitors that may influence the future development of personalized antiplatelet treatment strategies aimed at the reduction of ischemic event occurrence in high risk patients. Finally, based on the current evidence platelet reactivity may become a standard of care risk factor measured in all patients with cardiovascular disease.

  5. Role of Reactive Oxygen Species in Neonatal Pulmonary Vascular Disease

    PubMed Central

    Steinhorn, Robin H.

    2014-01-01

    Abstract Significance: Abnormal lung development in the perinatal period can result in severe neonatal complications, including persistent pulmonary hypertension (PH) of the newborn and bronchopulmonary dysplasia. Reactive oxygen species (ROS) play a substantive role in the development of PH associated with these diseases. ROS impair the normal pulmonary artery (PA) relaxation in response to vasodilators, and ROS are also implicated in pulmonary arterial remodeling, both of which can increase the severity of PH. Recent Advances: PA ROS levels are elevated when endogenous ROS-generating enzymes are activated and/or when endogenous ROS scavengers are inactivated. Animal models have provided valuable insights into ROS generators and scavengers that are dysregulated in different forms of neonatal PH, thus identifying potential therapeutic targets. Critical Issues: General antioxidant therapy has proved ineffective in reversing PH, suggesting that it is necessary to target specific signaling pathways for successful therapy. Future Directions: Development of novel selective pharmacologic inhibitors along with nonantioxidant therapies may improve the treatment outcomes of patients with PH, while further investigation of the underlying mechanisms may enable earlier detection of the disease. Antioxid. Redox Signal. 21, 1926–1942. PMID:24350610

  6. Liposarcoma: multimodality management and future targeted therapies

    PubMed Central

    Crago, Aimee M.; Dickson, Mark A.

    2016-01-01

    SYNOPSIS There are three biologic groups of liposarcoma: well- and dedifferentiated liposarcoma (WD/DDLS), myxoid/round cell liposarcoma (M/RCLS) and pleomorphic liposarcoma. WD/DDLS is characterized by amplification of 12q13-15 (including the oncogenes MDM2 and CDK4), M/RCLS by FUS-DDIT3 translocations, and pleomorphic liposarcoma by loss of p53 and Rb. In all three groups, complete surgical resection is central in treatment aimed at cure and is based on grade. Radiation can reduce risk of local recurrence in high-grade lesions or minimize surgical morbidity in the highly radiosensitive M/RCLS group. The biologic groups differ greatly in their chemosensitivity, so adjuvant chemotherapy is selectively utilized in chemosensitive histologies with metastatic potential (i.e. round cell and pleomorphic liposarcomas) but not in the relatively resistant subtype DDLS. An improved understanding of the genetic aberrations that lead to liposarcoma initiation is also allowing for the rapid development of targeted therapies for liposarcoma. Among such therapies are CDK4 inhibitors in WD/DDLS and trabectedin, which prevents FUS-DDIT3 binding to DNA, in M/RCLS. PMID:27591497

  7. New therapeutic possibilities for vein graft disease in the post-edifoligide era.

    PubMed

    Cai, Xinjiang; Freedman, Neil J

    2006-07-01

    Vein graft neointimal hyperplasia involves proliferation and migration of vascular smooth muscle cells into the vessel intima, and ultimately engenders accelerated atherosclerosis and vein graft failure. Since a myriad of stimuli provoke smooth muscle cell proliferation, molecular therapies for vein graft disease have targeted mechanisms fundamental to all cell proliferation - the 'cell-cycle' machinery. Preclinically, the most successful of these therapies has been edifoligide (E2F decoy), a double-stranded oligodeoxynucleotide that binds to the transcription factor known as E2F. Recently, PRoject of Ex vivo vein GRaft Engineering via Transfection (PREVENT) III and IV demonstrated that edifoligide failed to benefit human vein grafts employed to treat lower-extremity ischemia and coronary heart disease, respectively. The clinical failure of edifoligide calls into question previous models of vein graft disease and lends credence to recent animal studies demonstrating that vein graft arterialization substantially involves the immigration into the vein graft of a variety of vascular progenitor cells. Future vein graft disease therapies will likely target not only proliferation of graft-intrinsic cells, but also immigration of graft-extrinsic cells.

  8. Advances in the Diagnosis of Neuroendocrine Neoplasms.

    PubMed

    Kulkarni, Harshad R; Singh, Aviral; Baum, Richard P

    2016-09-01

    Somatostatin receptor PET/CT using (68)Ga-labeled somatostatin analogs, is a mainstay for the evaluation of the somatostatin receptor status in neuroendocrine neoplasms. In addition, the assessment of glucose metabolism by (18)F-FDG PET/CT at diagnosis can overcome probable shortcomings of histopathologic grading. This offers a systematic theranostic approach for the management of neuroendocrine neoplasms, that is, patient selection for the appropriate treatment-surgery, somatostatin analogs, peptide receptor radionuclide therapy, targeted therapies like everolimus and sunitinib, or chemotherapy-and also for therapy response monitoring. Novel targets, for example, the chemokine receptor CXCR4 in higher-grade tumors and glucagon like peptide-1 receptor in insulinomas, appear promising for imaging. Scandium-44 and Copper-64, especially on account of their longer half-life (for pretherapeutic dosimetry) and cyclotron production (which favors mass production), might be the potential alternatives to (68)Ga for PET/CT imaging. The future of molecular imaging lies in Radiomics, that is, qualitative and quantitative characterization of tumor phenotypes in correlation with tumor genomics and proteomics, for a personalized cancer management. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Natural extracellular nanovesicles and photodynamic molecules: is there a future for drug delivery?

    PubMed

    Kusuzaki, Katsuyuki; Matsubara, Takao; Murata, Hiroaki; Logozzi, Mariantonia; Iessi, Elisabetta; Di Raimo, Rossella; Carta, Fabrizio; Supuran, Claudiu T; Fais, Stefano

    2017-12-01

    Photodynamic molecules represent an alternative approach for cancer therapy for their property (i) to be photo-reactive; (ii) to be not-toxic for target cells in absence of light; (iii) to accumulate specifically into tumour tissues; (iv) to be activable by a light beam only at the tumour site and (v) to exert cytotoxic activity against tumour cells. However, to date their clinical use is limited by the side effects elicited by systemic administration. Extracellular vesicles are endogenous nanosized-carriers that have been recently introduced as a natural delivery system for therapeutic molecules. We have recently shown the ability of human exosomes to deliver photodynamic molecules. Therefore, this review focussed on extracellular vesicles as a novel strategy for the delivery of photodynamic molecules at cancer sites. This completely new approach may enhance the delivery and decrease the toxicity of photodynamic molecules, therefore, represent the future for photodynamic therapy for cancer treatment.

  10. A call for sustainable practice in occupational therapy.

    PubMed

    Dennis, Carole W; Dorsey, Julie A; Gitlow, Lynn

    2015-06-01

    The ability of the earth to sustain health among humans and in the natural world is under threat from overpopulation, environmental degradation, and climate change. These global threats are anticipated to harm health and human occupation in many direct and indirect ways. Strategies are needed to mitigate the effects of these threats and to build individual and community capacities to foster resilience. This paper links issues of sustainability with occupational therapy philosophy and discusses how employing a sustainability lens with professional reasoning can help practitioners integrate sustainability into their practice. Human occupation is inseparable from the environments in which people live. Human occupation has caused the current environmental crisis, and targeted human action is required to safeguard future health and well-being. Occupational therapists have an ethical obligation to use professional reasoning strategies that, taken collectively, can help to build a sustainable and resilient future.

  11. CRISPR in the Retina: Evaluation of Future Potential.

    PubMed

    Cho, Galaxy Y; Justus, Sally; Sengillo, Jesse D; Tsang, Stephen H

    2017-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) has been gaining widespread attention for its ability for targeted genome surgery. In treating inherited retinal degenerations, gene therapies have had varied results; the ones effective in restoring eye sight are limited by transiency in its effect. Genome surgery, however, is a solution that could potentially provide the eye with permanent healthy cells. As retinal degenerations are irreversible and the retina has little regenerative potential, permanent healthy cells are vital for vision. Since the retina is anatomically accessible and capable of being monitored in vivo, the retina is a prime location for novel therapies. CRISPR technology can be used to make corrections directly in vivo as well as ex vivo of stem cells for transplantation. Current standard of care includes genetic testing for causative mutations in expectation of this potential. This chapter explores future potential and strategies for retinal degenerative disease correction via CRISPR and its limitations.

  12. Special report: workshop on 4D-treatment planning in actively scanned particle therapy--recommendations, technical challenges, and future research directions.

    PubMed

    Knopf, Antje; Bert, Christoph; Heath, Emily; Nill, Simeon; Kraus, Kim; Richter, Daniel; Hug, Eugen; Pedroni, Eros; Safai, Sairos; Albertini, Francesca; Zenklusen, Silvan; Boye, Dirk; Söhn, Matthias; Soukup, Martin; Sobotta, Benjamin; Lomax, Antony

    2010-09-01

    This article reports on a 4D-treatment planning workshop (4DTPW), held on 7-8 December 2009 at the Paul Scherrer Institut (PSI) in Villigen, Switzerland. The participants were all members of institutions actively involved in particle therapy delivery and research. The purpose of the 4DTPW was to discuss current approaches, challenges, and future research directions in 4D-treatment planning in the context of actively scanned particle radiotherapy. Key aspects were addressed in plenary sessions, in which leaders of the field summarized the state-of-the-art. Each plenary session was followed by an extensive discussion. As a result, this article presents a summary of recommendations for the treatment of mobile targets (intrafractional changes) with actively scanned particles and a list of requirements to elaborate and apply these guidelines clinically.

  13. Rational Design of Iron Oxide Nanoparticles as Targeted Nanomedicines for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Kievit, Forrest M.

    2011-07-01

    Nanotechnology provides a flexible platform for the development of effective therapeutic nanomaterials that can interact specifically with a target in a biological system and provoke a desired biological response. Of the nanomaterials studied, superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as one of top candidates for cancer therapy due to their intrinsic superparamagnetism that enables non-invasive magnetic resonance imaging (MRI) and biodegradability favorable for in vivo application. This dissertation is aimed at development of SPION-based nanomedicines to overcome the current limitations in cancer therapy. These limitations include non-specificity of therapy which can harm healthy tissue, the difficulty in delivering nucleic acids for gene therapy, the formation of drug resistance, and the inability to detect and treat micrometastases. First, a SPION-based non-viral gene delivery vehicle was developed through functionalization of the SPION core with a co-polymer designed to provide stable binding of DNA and low toxicity which showed excellent gene delivery in vitro and in vivo. This SPION-based non-viral gene delivery vehicle was then activated with a targeting agent to improve gene delivery throughout a xenograft tumor of brain cancer. It was found that targeting did not promote the accumulation of SPIONs at the tumor site, but rather improved the distribution of SPIONs throughout the tumor so a higher proportion of cells received treatment. Next, the high surface area of SPIONs was utilized for loading large amounts of drug which was shown to overcome the multidrug resistance acquired by many cancer cells. Drug bound to SPIONs showed significantly higher multidrug resistant cell uptake as compared to free drug which translated into improved cell kill. Also, an antibody activated SPION was developed and was shown to be able to target micrometastases in a transgenic animal model of metastatic breast cancer. These SPION-based nanomedicines provide a platform for the future development of therapies that are hoped to overcome the current limitations in cancer therapy. Finally, a three-dimensional in vitro tumor tissue culture model was developed for mimicking the tumor microenvironment in which cultured cells showed higher malignancy than traditional two-dimensional and three-dimensional models. This in vitro model should provided researches with a better tool for testing novel nanomedicines in vitro before moving to the more costly in vivo experiments.

  14. Methods for Surgical Targeting of the STN in Early-Stage Parkinson’s Disease

    PubMed Central

    Camalier, Corrie R.; Konrad, Peter E.; Gill, Chandler E.; Kao, Chris; Remple, Michael R.; Nasr, Hana M.; Davis, Thomas L.; Hedera, Peter; Phibbs, Fenna T.; Molinari, Anna L.; Neimat, Joseph S.; Charles, David

    2013-01-01

    Patients with Parkinson’s disease (PD) experience progressive neurological decline, and future interventional therapies are thought to show most promise in early stages of the disease. There is much interest in therapies that target the subthalamic nucleus (STN) with surgical access. While locating STN in advanced disease patients (Hoehn–Yahr Stage III or IV) is well understood and routinely performed at many centers in the context of deep brain stimulation surgery, the ability to identify this nucleus in early-stage patients has not previously been explored in a sizeable cohort. We report surgical methods used to target the STN in 15 patients with early PD (Hoehn–Yahr Stage II), using a combination of image guided surgery, microelectrode recordings, and clinical responses to macrostimulation of the region surrounding the STN. Measures of electrophysiology (firing rates and root mean squared activity) have previously been found to be lower than in later-stage patients, however, the patterns of electrophysiology seen and dopamimetic macrostimulation effects are qualitatively similar to those seen in advanced stages. Our experience with surgical implantation of Parkinson’s patients with minimal motor symptoms suggest that it remains possible to accurately target the STN in early-stage PD using traditional methods. PMID:24678307

  15. Study of low energy neutron beam formation based on GEANT4 simulations

    NASA Astrophysics Data System (ADS)

    Avagyan, R.; Avetisyan, R.; Ivanyan, V.; Kerobyan, I.

    2017-07-01

    The possibility of obtaining thermal/epithermal energy neutron beams using external protons from cyclotron C18/18 is studied based on GEANT4 simulations. This study will be the basis of the Beam Shaped Assembly (BSA) development for future Boron Neutron Capture Therapy (BNCT). Proton induced reactions on 9Be target are considered as a neutron source, and dependence of neutron yield on target thickness is investigated. The problem of reducing the ratio of gamma to neutron yields by inserting a lead sheet after the beryllium target is studied as well. By GEANT4 modeling the optimal thicknesses of 9Be target and lead absorber are determined and the design characteristics of beam shaping assembly, including the materials and thicknesses of reflector and moderator are considered.

  16. Drug delivery across length scales.

    PubMed

    Delcassian, Derfogail; Patel, Asha K; Cortinas, Abel B; Langer, Robert

    2018-02-20

    Over the last century, there has been a dramatic change in the nature of therapeutic, biologically active molecules available to treat disease. Therapies have evolved from extracted natural products towards rationally designed biomolecules, including small molecules, engineered proteins and nucleic acids. The use of potent drugs which target specific organs, cells or biochemical pathways, necessitates new tools which can enable controlled delivery and dosing of these therapeutics to their biological targets. Here, we review the miniaturisation of drug delivery systems from the macro to nano-scale, focussing on controlled dosing and controlled targeting as two key parameters in drug delivery device design. We describe how the miniaturisation of these devices enables the move from repeated, systemic dosing, to on-demand, targeted delivery of therapeutic drugs and highlight areas of focus for the future.

  17. Companion diagnostics for the targeted therapy of gastric cancer.

    PubMed

    Yoo, Changhoon; Park, Young Soo

    2015-10-21

    Gastric cancer is the fourth most common type of cancer and represents a major cause of cancer-related deaths worldwide. With recent biomedical advances in our understanding of the molecular characteristics of gastric cancer, many genetic alterations have been identified as potential targets for its treatment. Multiple novel agents are currently under development as the demand for active agents that improve the survival of gastric cancer patients constantly increases. Based on lessons from previous trials of targeted agents, it is now widely accepted that the establishment of an optimal diagnostic test to select molecularly defined patients is of equal importance to the development of active agents against targetable genetic alterations. Herein, we highlight the current status and future perspectives of companion diagnostics in the treatment of gastric cancer.

  18. Fusion genes in solid tumors: an emerging target for cancer diagnosis and treatment.

    PubMed

    Parker, Brittany C; Zhang, Wei

    2013-11-01

    Studies over the past decades have uncovered fusion genes, a class of oncogenes that provide immense diagnostic and therapeutic advantages because of their tumor-specific expression. Originally associated with hemotologic cancers, fusion genes have recently been discovered in a wide array of solid tumors, including sarcomas, carcinomas, and tumors of the central nervous system. Fusion genes are attractive as both therapeutic targets and diagnostic tools due to their inherent expression in tumor tissue alone. Therefore, the discovery and elucidation of fusion genes in various cancer types may provide more effective therapies in the future for cancer patients.

  19. DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles’ Heel of Cancer

    PubMed Central

    Velic, Denis; Couturier, Anthony M.; Ferreira, Maria Tedim; Rodrigue, Amélie; Poirier, Guy G.; Fleury, Fabrice; Masson, Jean-Yves

    2015-01-01

    For decades, radiotherapy and chemotherapy were the two only approaches exploiting DNA repair processes to fight against cancer. Nowadays, cancer therapeutics can be a major challenge when it comes to seeking personalized targeted medicine that is both effective and selective to the malignancy. Over the last decade, the discovery of new targeted therapies against DNA damage signalling and repair has offered the possibility of therapeutic improvements in oncology. In this review, we summarize the current knowledge of DNA damage signalling and repair inhibitors, their molecular and cellular effects, and future therapeutic use. PMID:26610585

  20. Therapeutic monoclonal antibodies for multiple myeloma: an update and future perspectives

    PubMed Central

    Yang, Jing; Yi, Qing

    2011-01-01

    Multiple myeloma (MM) still remains incurable in most of the patients. Despite of treatments with high-dose chemotherapy, stem cell transplantation and other novel therapies, most patients will become refractory to the therapies and relapse. Thus, it is urgent to develop new approaches for MM treatment. Currently, antibody-targeted therapy has been extensively utilized in hematological malignancies, including MM. Several novel monoclonal antibodies (mAbs) against MM have been generated and developed over the past several years. These mAbs aim to target not only tumor cells alone but also tumor microenvironment, including interaction of tumor-bone marrow stromal cells and the components of bone marrow milieu, such as cytokines or chemokines that support myeloma cell growth and survival. These include mAbs specific for CD38, CS1, CD40, CD74, CD70, HM1.24, interleukin-6 and β2-microglobulin (β2M). We have shown that anti-β2M mAbs may be a potential antitumor agent for MM therapy due to their remarkable efficacy to induce myeloma cell apoptosis in tumor cell lines and primary myeloma cells from patients in vitro and in established myeloma mouse models. In this article, we will review advances in the development and mechanisms of MM-targeted mAbs and especially, anti-β2M mAbs. We will also discuss the potential application of the mAbs as therapeutic agents to treat MM. PMID:22065141

  1. The role of JAK1/2 inhibitors in the treatment of chronic myeloproliferative neoplasms.

    PubMed

    Keohane, Clodagh; Mesa, Ruben; Harrison, Claire

    2013-01-01

    In 2005, the description of the JAK2V617F mutation for the first time provided a molecular key to enable more rapid diagnosis and target for novel therapeutics in the myeloproliferative neoplasms. In 2007, the first-in-class agent INC18424, ruxolitinib, JAKafi, or JAKAVI was first tested in patients with intermediate-risk 2 or high-risk myelofibrosis regardless of whether they possessed the JAK2V617F mutation. Patients treated with this agent had major reduction in splenomegaly as well as impressive reduction, and in some cases resolution, of symptoms. This study was followed by the two Controlled Myelofibrosis Study with Oral JAK Inhibitor Therapy (COMFORT) trials (the first-ever phase III trials in myelofibrosis), which confirmed results in these aspects were superior to either placebo or standard care, and updated results show a survival advantage with this therapy. This paper discusses these results and data from other JAK inhibitors while speculating on the future of these therapies. It also reflects on the fact that the true targets and agents' mode of action are uncertain. Unlike targeted therapy for chronic myeloid leukemia (CML), these agents do not deliver molecular remission, and it is not clear whether their predominant benefit is mediated via JAK2, JAK1, or both. Nonetheless, the advent of the JAK inhibitor is a welcome advance and has made a dramatic improvement to the therapeutic landscape of these conditions.

  2. How Imaging Can Impact Clinical Trial Design: Molecular Imaging as a Biomarker for Targeted Cancer Therapy.

    PubMed

    Mankoff, David A; Farwell, Michael D; Clark, Amy S; Pryma, Daniel A

    2015-01-01

    The ability to measure biochemical and molecular processes to guide cancer treatment represents a potentially powerful tool for trials of targeted cancer therapy. These assays have traditionally been performed by analysis of tissue samples. However, more recently, functional and molecular imaging has been developed that is capable of in vivo assays of cancer biochemistry and molecular biology and is highly complementary to tissue-based assays. Cancer imaging biomarkers can play a key role in increasing the efficacy and efficiency of therapeutic clinical trials and also provide insight into the biologic mechanisms that bring about a therapeutic response. Future progress will depend on close collaboration between imaging scientists and cancer physicians and on public and commercial sponsors, to take full advantage of what imaging has to offer for clinical trials of targeted cancer therapy. This review will provide examples of how molecular imaging can inform targeted cancer clinical trials and clinical decision making by (1) measuring regional expression of the therapeutic target, (2) assessing early (pharmacodynamic) response to treatment, and (3) predicting therapeutic outcome. The review includes a discussion of basic principles of molecular imaging biomarkers in cancer, with an emphasis on those methods that have been tested in patients. We then review clinical trials designed to evaluate imaging tests as integrated markers embedded in a therapeutic clinical trial with the goal of validating the imaging tests as integral markers that can aid patient selection and direct response-adapted treatment strategies. Examples of recently completed multicenter trials using imaging biomarkers are highlighted.

  3. A New Strategy to Control and Eradicate "Undruggable" Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology.

    PubMed

    Van Sciver, Robert E; Lee, Michael P; Lee, Caroline Dasom; Lafever, Alex C; Svyatova, Elizaveta; Kanda, Kevin; Colliver, Amber L; Siewertsz van Reesema, Lauren L; Tang-Tan, Angela M; Zheleva, Vasilena; Bwayi, Monicah N; Bian, Minglei; Schmidt, Rebecca L; Matrisian, Lynn M; Petersen, Gloria M; Tang, Amy H

    2018-05-14

    Oncogenic K-RAS mutations are found in virtually all pancreatic cancers, making K-RAS one of the most targeted oncoproteins for drug development in cancer therapies. Despite intense research efforts over the past three decades, oncogenic K-RAS has remained largely "undruggable". Rather than targeting an upstream component of the RAS signaling pathway (i.e., EGFR/HER2) and/or the midstream effector kinases (i.e., RAF/MEK/ERK/PI3K/mTOR), we propose an alternative strategy to control oncogenic K-RAS signal by targeting its most downstream signaling module, Seven-In-Absentia Homolog (SIAH). SIAH E3 ligase controls the signal output of oncogenic K-RAS hyperactivation that drives unchecked cell proliferation, uncontrolled tumor growth, and rapid cancer cell dissemination in human pancreatic cancer. Therefore, SIAH is an ideal therapeutic target as it is an extraordinarily conserved downstream signaling gatekeeper indispensable for proper RAS signaling. Guided by molecular insights and core principles obtained from developmental and evolutionary biology, we propose an anti-SIAH-centered anti-K-RAS strategy as a logical and alternative anticancer strategy to dampen uncontrolled K-RAS hyperactivation and halt tumor growth and metastasis in pancreatic cancer. The clinical utility of developing SIAH as both a tumor-specific and therapy-responsive biomarker, as well as a viable anti-K-RAS drug target, is logically simple and conceptually innovative. SIAH clearly constitutes a major tumor vulnerability and K-RAS signaling bottleneck in pancreatic ductal adenocarcinoma (PDAC). Given the high degree of evolutionary conservation in the K-RAS/SIAH signaling pathway, an anti-SIAH-based anti-PDAC therapy will synergize with covalent K-RAS inhibitors and direct K-RAS targeted initiatives to control and eradicate pancreatic cancer in the future.

  4. Modeling patterns of anatomical deformations in prostate patients undergoing radiation therapy with an endorectal balloon

    NASA Astrophysics Data System (ADS)

    Brion, Eliott; Richter, Christian; Macq, Benoit; Stützer, Kristin; Exner, Florian; Troost, Esther; Hölscher, Tobias; Bondar, Luiza

    2017-03-01

    External beam radiation therapy (EBRT) treats cancer by delivering daily fractions of radiation to a target volume. For prostate cancer, the target undergoes day-to-day variations in position, volume, and shape. For stereotactic photon and for proton EBRT, endorectal balloons (ERBs) can be used to limit variations. To date, patterns of non-rigid variations for patients with ERB have not been modeled. We extracted and modeled the patient-specific patterns of variations, using regularly acquired CT-images, non-rigid point cloud registration, and principal component analysis (PCA). For each patient, a non-rigid point-set registration method, called Coherent Point Drift, (CPD) was used to automatically generate landmark correspondences between all target shapes. To ensure accurate registrations, we tested and validated CPD by identifying parameter values leading to the smallest registration errors (surface matching error 0.13+/-0.09 mm). PCA demonstrated that 88+/-3.2% of the target motion could be explained using only 4 principal modes. The most dominant component of target motion is a squeezing and stretching in the anterior-posterior and superior-inferior directions. A PCA model of daily landmark displacements, generated using 6 to 10 CT-scans, could explain well the target motion for the CT-scans not included in the model (modeling error decreased from 1.83+/-0.8 mm for 6 CT-scans to 1.6+/-0.7 mm for 10 CT-scans). PCA modeling error was smaller than the naive approximation by the mean shape (approximation error 2.66+/-0.59 mm). Future work will investigate the use of the PCA-model to improve the accuracy of EBRT techniques that are highly susceptible to anatomical variations such as, proton therapy

  5. Transgenic Clustered Regularly Interspaced Short Palindromic Repeat/Cas9-Mediated Viral Gene Targeting for Antiviral Therapy of Bombyx mori Nucleopolyhedrovirus.

    PubMed

    Chen, Shuqing; Hou, Chengxiang; Bi, Honglun; Wang, Yueqiang; Xu, Jun; Li, Muwang; James, Anthony A; Huang, Yongping; Tan, Anjiang

    2017-04-15

    We developed a novel antiviral strategy by combining transposon-based transgenesis and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system for the direct cleavage of Bombyx mori nucleopolyhedrovirus (BmNPV) genome DNA to promote virus clearance in silkworms. We demonstrate that transgenic silkworms constitutively expressing Cas9 and guide RNAs targeting the BmNPV immediate early-1 ( ie-1 ) and me53 genes effectively induce target-specific cleavage and subsequent mutagenesis, especially large (∼7-kbp) segment deletions in BmNPV genomes, and thus exhibit robust suppression of BmNPV proliferation. Transgenic animals exhibited higher and inheritable resistance to BmNPV infection than wild-type animals. Our approach will not only contribute to modern sericulture but also shed light on future antiviral therapy. IMPORTANCE Pathogen genome targeting has shown its potential in antiviral research. However, transgenic CRISPR/Cas9 system-mediated viral genome targeting has not been reported as an antiviral strategy in a natural animal host of a virus. Our data provide an effective approach against BmNPV infection in a real-world biological system and demonstrate the potential of transgenic CRISPR/Cas9 systems in antiviral research in other species. Copyright © 2017 Chen et al.

  6. Integrin-Targeted Hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography for Imaging Tumor Progression and Early Response in Non-Small Cell Lung Cancer.

    PubMed

    Ma, Xiaopeng; Phi Van, Valerie; Kimm, Melanie A; Prakash, Jaya; Kessler, Horst; Kosanke, Katja; Feuchtinger, Annette; Aichler, Michaela; Gupta, Aayush; Rummeny, Ernst J; Eisenblätter, Michel; Siveke, Jens; Walch, Axel K; Braren, Rickmer; Ntziachristos, Vasilis; Wildgruber, Moritz

    2017-01-01

    Integrins play an important role in tumor progression, invasion and metastasis. Therefore we aimed to evaluate a preclinical imaging approach applying ανβ3 integrin targeted hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography (FMT-XCT) for monitoring tumor progression as well as early therapy response in a syngeneic murine Non-Small Cell Lung Cancer (NSCLC) model. Lewis Lung Carcinomas were grown orthotopically in C57BL/6 J mice and imaged in-vivo using a ανβ3 targeted near-infrared fluorescence (NIRF) probe. ανβ3-targeted FMT-XCT was able to track tumor progression. Cilengitide was able to substantially block the binding of the NIRF probe and suppress the imaging signal. Additionally mice were treated with an established chemotherapy regimen of Cisplatin and Bevacizumab or with a novel MEK inhibitor (Refametinib) for 2 weeks. While μCT revealed only a moderate slowdown of tumor growth, ανβ3 dependent signal decreased significantly compared to non-treated mice already at one week post treatment. ανβ3 targeted imaging might therefore become a promising tool for assessment of early therapy response in the future. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Transgenic Clustered Regularly Interspaced Short Palindromic Repeat/Cas9-Mediated Viral Gene Targeting for Antiviral Therapy of Bombyx mori Nucleopolyhedrovirus

    PubMed Central

    Chen, Shuqing; Hou, Chengxiang; Bi, Honglun; Wang, Yueqiang; Xu, Jun; Li, Muwang; James, Anthony A.

    2017-01-01

    ABSTRACT We developed a novel antiviral strategy by combining transposon-based transgenesis and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system for the direct cleavage of Bombyx mori nucleopolyhedrovirus (BmNPV) genome DNA to promote virus clearance in silkworms. We demonstrate that transgenic silkworms constitutively expressing Cas9 and guide RNAs targeting the BmNPV immediate early-1 (ie-1) and me53 genes effectively induce target-specific cleavage and subsequent mutagenesis, especially large (∼7-kbp) segment deletions in BmNPV genomes, and thus exhibit robust suppression of BmNPV proliferation. Transgenic animals exhibited higher and inheritable resistance to BmNPV infection than wild-type animals. Our approach will not only contribute to modern sericulture but also shed light on future antiviral therapy. IMPORTANCE Pathogen genome targeting has shown its potential in antiviral research. However, transgenic CRISPR/Cas9 system-mediated viral genome targeting has not been reported as an antiviral strategy in a natural animal host of a virus. Our data provide an effective approach against BmNPV infection in a real-world biological system and demonstrate the potential of transgenic CRISPR/Cas9 systems in antiviral research in other species. PMID:28122981

  8. Genetic therapy in gliomas: historical analysis and future perspectives.

    PubMed

    Mattei, Tobias Alécio; Ramina, Ricardo; Miura, Flavio Key; Aguiar, Paulo Henrique; Valiengo, Leandro da Costa

    2005-03-01

    High-grade gliomas are relatively frequent in adults, and consist of the most malignant kind of primary brain tumor. Being resistant to standard treatment modalities such as surgery, radiation, and chemotherapy, it is fatal within 1 to 2 years of onset of symptoms. Although several gene therapy systems proved to be efficient in controlling or eradicating these tumors in animal models, the clinical studies performed so far were not equally successful. Most clinical studies showed that methodologies that increase tumor infection/transduction and, consequently confer more permanent activity against the tumor, will lead to enhanced therapeutic results. Due to the promising practical clinical benefits that can be expected for the near future, an exposition to the practicing neurosurgeon about the basic issues in genetic therapy of gliomas seems convenient. Among the main topics, we shall discuss anti-tumoral mechanisms of various genes that can be transfected, the advantages and drawbacks of the different vectors utilized, the possibilities of tumor targeting by modifications in the native tropism of virus vectors, as well as the different physical methods for vector delivery to the tumors. Along with the exposition we will also review of the history of the genetic therapy for gliomas, with special focus on the main problems found during the advancement of scientific discoveries in this area. A general analysis is also made of the present state of this promising therapeutic modality, with reference to the problems that still must be solved and the new paradigms for future research in this area.

  9. Urine colorimetry to detect Low rifampin exposure during tuberculosis therapy: a proof-of-concept study.

    PubMed

    Zentner, Isaac; Schlecht, Hans P; Khensouvann, Lorna; Tamuhla, Neo; Kutzler, Michele; Ivaturi, Vijay; Pasipanodya, Jotam G; Gumbo, Tawanda; Peloquin, Charles A; Bisson, Gregory P; Vinnard, Christopher

    2016-06-01

    The cost and complexity of current approaches to therapeutic drug monitoring during tuberculosis (TB) therapy limits widespread use in areas of greatest need. We sought to determine whether urine colorimetry could have a novel application as a form of therapeutic drug monitoring during anti-TB therapy. Among healthy volunteers, we evaluated 3 dose sizes of rifampin (150 mg, 300 mg, and 600 mg), performed intensive pharmacokinetic sampling, and collected a timed urine void at 4 h post-dosing. The absorbance peak at 475 nm was measured after rifamycin extraction. The optimal cutoff was evaluated in a study of 39 HIV/TB patients undergoing TB treatment in Botswana. In the derivation study, a urine colorimetric assay value of 4.0 × 10(-2) Abs, using a timed void 4 h after dosing, demonstrated a sensitivity of 92 % and specificity of 60 % to detect a peak rifampin concentration (Cmax) under 8 mg/L, with an area under the ROC curve of 0.92. In the validation study, this cutoff was specific (100 %) but insensitive (28 %). We observed similar test characteristics for a target Cmax target of 6.6 mg/L, and a target area under the drug concentration-versus-time curve (AUC0-8) target of 24.1 mg•hour/L. The urine colorimetric assay was specific but insensitive to detect low rifampin serum concentrations among HIV/TB patients. In future work we will attempt to optimize sampling times and assay performance, with the goal of delivering a method that can translate into a point-of-care assessment of rifampin exposure during anti-TB therapy.

  10. Magnetic Resonance Imaging-Guided Focused Laser Interstitial Thermal Therapy for Intracranial Lesions: Single-Institution Series

    PubMed Central

    Hawasli, Ammar H.; Bagade, Swapnil; Shimony, Joshua S.; Miller-Thomas, Michelle

    2013-01-01

    BACKGROUND: Surgical treatments for deep-seated intracranial lesions have been limited by morbidities associated with resection. Real-time magnetic resonance imaging–guided focused laser interstitial thermal therapy (LITT) offers a minimally invasive surgical treatment option for such lesions. OBJECTIVE: To review treatments and results of patients treated with LITT for intracranial lesions at Washington University School of Medicine. METHODS: In a review of 17 prospectively recruited LITT patients (34-78 years of age; mean, 59 years), we report demographics, treatment details, postoperative imaging characteristics, and peri- and postoperative clinical courses. RESULTS: Targets included 11 gliomas, 5 brain metastases, and 1 epilepsy focus. Lesions were lobar (n = 8), thalamic/basal ganglia (n = 5), insular (n = 3), and corpus callosum (n = 1). Mean target volume was 11.6 cm3, and LITT produced 93% target ablation. Patients with superficial lesions had shorter intensive care unit stays. Ten patients experienced no perioperative morbidities. Morbidities included transient aphasia, hemiparesis, hyponatremia, deep venous thrombosis, and fatal meningitis. Postoperative magnetic resonance imaging showed blood products within the lesion surrounded by new thin uniform rim of contrast enhancement and diffusion restriction. In conjunction with other therapies, LITT targets often showed stable or reduced local disease. Epilepsy focus LITT produced seizure freedom at 8 months. Preliminary overall median progression-free survival and survival from LITT in tumor patients were 7.6 and 10.9 months, respectively. However, this small cohort has not been followed for a sufficient length of time, necessitating future outcomes studies. CONCLUSION: Early peri- and postoperative clinical data demonstrate that LITT is a safe and viable ablative treatment option for intracranial lesions, and may be considered for select patients. ABBREVIATION: LITT, laser interstitial thermal therapy PMID:24056317

  11. Targeted therapy with apatinib in a patient with relapsed small cell lung cancer

    PubMed Central

    Zhao, Jun; Zhang, Xiaoling; Gong, Chaojie; Zhang, Jialei

    2017-01-01

    Abstract Rationale: Small cell lung cancer (SCLC) is a lethal malignancy. Once relapsed, the disease is irreversible and most of the patients will die of cancer aggravation in 1 to 2 months. In the past several decades, little progress has been made in the systemic treatment of SCLC. Apatinib, as a novel small-molecule tyrosine kinase inhibitor specifically targeting the vascular endothelial growth factor receptor 2 (VEGFR2), has achieved progress in treatment of a variety of cancers. However, there has been no report of the targeted therapy with apatinib in SCLC yet. Patient concerns: A 63-year-old man, an ex-smoker, presented with a slight hoarseness and cough. The patient was admitted to our department with a primary diagnosis of SCLC at an extensive stage (ES-SCLC). After 17 months of successful first-, second-, and third-line chemotherapy, the disease eventually became relapsed. Then, apatinib treatment started promptly on demand by the patient and his family. Intervention: After presenting an informed consent, the patient received apatinib treatment immediately at a dose of 250 mg/day orally. Outcomes: (1) On the 28th day of apatinib therapy, the symptoms of dyspnea and poor appetite of the patient were notably improved. (2) The CT scan taken on the 70th day showed that the pleural effusion in the left lung almost disappeared. (3) The elevated serum neuron-specific enolase (NSE) level was decreased. The patient died of acute respiratory failure on the 172nd day of apatinib treatment. Importantly, the tumor mass did not enlarge obviously during apatinib treatment. Lessons: Here, we presented a case with relapsed SCLC who unexpectedly responded to single-agent apatinib treatment. Therefore, this report will shed light on future studies of targeted therapy with apatinib in SCLC at different stages. PMID:29390367

  12. Current application and future perspectives of PSMA PET imaging in prostate cancer.

    PubMed

    Ceci, Francesco; Castellucci, Paolo; Fanti, Stefano

    2018-03-08

    As precision medicine evolves, the contribution of molecular imaging to the management of prostate cancer (PCa) patients, especially for Positron Emission Tomography (PET) imaging, is gaining importance. Highly successful approaches to measure the expression of the prostate specific membrane antigen (PSMA) have been introduced recently. PSMA, the glutamate carboxypeptidase II (GCP-II), is a membrane bound metallo-peptidase that is overexpressed in 90-100% of PCa cells. Due to its selective over-expression, PSMA is a reliable tissue marker for prostate cancer and is considered an ideal target for tumor specific imaging and therapy. A variety of PET and SPECT probes targeting this peptide receptor have been introduced. These are undergoing extensive clinical evaluations. Initial results attest to a high accuracy for disease detection compared conventional radiology (CT or MRI) and other nuclear medicine procedure (choline PET or fluciclovine PET). However, prospective evaluation of the impact on patient management for PSMA-ligand PET and its impact on patient outcome is currently missing. Finally, PSMA inhibitors can be radio-labeled with diagnostic (68Ga-PSMA-11), or therapeutic nuclides (177Lu/225Ac PSMA-617) to be used as theranostic agent. Initial results showed that PSMA-targeted radioligand therapy (RLT) can potentially delay disease progression in metastatic castrate-resistant PCa. This review aims to explore the current application of PSMA based imaging in prostate cancer, reporting about main advantages and limitations of this new theranostic procedure. The future perspectives and potential the applications of this agent will be also discussed.

  13. Rapid Pharmacokinetic and Biodistribution Studies Using Cholorotoxin-Conjugated Iron Oxide Nanoparticles: A Novel Non-Radioactive Method

    PubMed Central

    Lee, Michelle Jeung-Eun; Veiseh, Omid; Bhattarai, Narayan; Sun, Conroy; Hansen, Stacey J.; Ditzler, Sally; Knoblaugh, Sue; Lee, Donghoon; Ellenbogen, Richard; Zhang, Miqin; Olson, James M.

    2010-01-01

    Background Recent advances in nanotechnology have led to the development of biocompatible nanoparticles for in vivo molecular imaging and targeted therapy. Many nanoparticles have undesirable tissue distribution or unacceptably low serum half-lives. Pharmacokinetic (PK) and biodistribution studies can help inform decisions determining particle size, coatings, or other features early in nanoparticle development. Unfortunately, these studies are rarely done in a timely fashion because many nanotechnology labs lack the resources and expertise to synthesize radioactive nanoparticles and evaluate them in mice. Methodology/Principal Findings To address this problem, we developed an economical, radioactivity-free method for assessing serum half-life and tissue distribution of nanoparticles in mice. Iron oxide nanoparticles coated with chitosan and polyethylene glycol that utilize chlorotoxin as a targeting molecule have a serum half-life of 7–8 hours and the particles remain stable for extended periods of time in physiologic fluids and in vivo. Nanoparticles preferentially distribute to spleen and liver, presumably due to reticuloendothelial uptake. Other organs have very low levels of nanoparticles, which is ideal for imaging most cancers in the future. No acute toxicity was attributed to the nanoparticles. Conclusions/Significance We report here a simple near-infrared fluorescence based methodology to assess PK properties of nanoparticles in order to integrate pharmacokinetic data into early nanoparticle design and synthesis. The nanoparticles tested demonstrate properties that are excellent for future clinical imaging strategies and potentially suitable for targeted therapy. PMID:20209054

  14. Fluorescent CSC models evidence that targeted nanomedicines improve treatment sensitivity of breast and colon cancer stem cells.

    PubMed

    Gener, Petra; Gouveia, Luis Pleno; Sabat, Guillem Romero; de Sousa Rafael, Diana Fernandes; Fort, Núria Bergadà; Arranja, Alexandra; Fernández, Yolanda; Prieto, Rafael Miñana; Ortega, Joan Sayos; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2015-11-01

    To be able to study the efficacy of targeted nanomedicines in marginal population of highly aggressive cancer stem cells (CSC), we have developed a novel in vitro fluorescent CSC model that allows us to visualize these cells in heterogeneous population and to monitor CSC biological performance after therapy. In this model tdTomato reporter gene is driven by CSC specific (ALDH1A1) promoter and contrary to other similar models, CSC differentiation and un-differentiation processes are not restrained and longitudinal studies are feasible. We used this model for preclinical validation of poly[(d,l-lactide-co-glycolide)-co-PEG] (PLGA-co-PEG) micelles loaded with paclitaxel. Further, active targeting against CD44 and EGFR receptors was validated in breast and colon cancer cell lines. Accordingly, specific active targeting toward surface receptors enhances the performance of nanomedicines and sensitizes CSC to paclitaxel based chemotherapy. Many current cancer therapies fail because of the failure to target cancer stem cells. This surviving population soon proliferates and differentiates into more cancer cells. In this interesting article, the authors designed an in vitro cancer stem cell model to study the effects of active targeting using antibody-labeled micelles containing chemotherapeutic agent. This new model should allow future testing of various drug/carrier platforms before the clinical phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Glioblastoma multiforme targeted therapy: The Chlorotoxin story.

    PubMed

    Cohen-Inbar, Or; Zaaroor, Menashe

    2016-11-01

    Glioblastoma multiforme (GBM) is the most common malignant primary brain neoplasm having a mean survival of <24months. Scorpion toxins are considered promising cancer drug candidates, primarily due to the discovery of hlorotoxin, derived from the venom of the Israeli yellow scorpion. This intriguing short peptide of only 36 amino-acids length and tight configuration, possess the ability to bind to GBM cells in a grade-related manner with ∼100% of GBM cells staining positive and no cross reactivity to normal brain. Chlorotoxin has an anti-angiogenic effect as well. Molecular targets for Chlorotoxin include voltage gated chloride channels (GCC), calcium-dependent phospholipid-binding protein Annexin-2, and the inducible extracellular enzyme Matrix Metalloproteinase-2 (MMP-2). Of all its targets, MMP-2 seems to bear the most anti-neoplastic potential. Chlorotoxin is a promising tumortargeting peptide. Its small size and compact shape are convenient for intracranial delivery. We present a short discussion on Chlorotoxin. The structure, biological activity, molecular targets and possible clinical role of Chlorotoxin are discussed. Chlorotoxin can be utilized as a targeting domain as well, attaching different effector functions to it. Clinical applications in GBM therapy, intraoperative imaging, nano-probes and nano-vectors based technology; targeted chemotherapy and immunotherapy are discussed as well. Chlorotoxin is likely to play a significant role in effective GBM immunotherapy in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Role of chemotherapy and molecularly targeted agents in the treatment of adenoid cystic carcinoma of the lacrimal gland.

    PubMed

    Le Tourneau, Christophe; Razak, Albiruni R A; Levy, Christine; Calugaru, Valentin; Galatoire, Olivier; Dendale, Rémi; Desjardins, Laurence; Gan, Hui K

    2011-11-01

    Adenoid cystic carcinoma (ACC) is the most common malignant epithelial cancer of the lacrimal gland. Despite a slow rate of growth, ACCs are ultimately associated with poor clinical outcome. Given the rarity of this disease, most recommendations regarding therapy are guided by expert opinion and retrospective data rather than level 1 evidence. Surgery and postoperative radiation therapy are commonly used as initial local treatment. In patients at high risk of recurrence, concomitant platinum-based chemotherapy may be added to postoperative radiotherapy in an attempt to enhance radio-sensitivity. While encouraging responses have been reported with intra-arterial neoadjuvant chemotherapy, this strategy is associated with substantial toxicity and should be considered investigational. For patients with metastatic disease not amenable to surgery or radiotherapy, chemotherapy may have a role based on its modest efficacy in non-lacrimal ACC. Similarly, molecular targeted agents may have a role, although the agents tested to date in non-lacrimal ACC have been disappointing. A better understanding of the biology of ACC will be crucial to the future success of developing targeted agents for this disease.

  17. Use of polyclonal/monoclonal antibody therapies in transplantation.

    PubMed

    Yeung, Melissa Y; Gabardi, Steven; Sayegh, Mohamed H

    2017-03-01

    For over thirty years, antibody (mAb)-based therapies have been a standard component of transplant immunosuppression, and yet much remains to be learned in order for us to truly harness their therapeutic capabilities. Current mAbs used in transplant directly target and destroy graft-destructive immune cells, interrupt cytokine and costimulation-dependent T and B cell activation, and prevent down-stream complement activation. Areas covered: This review summarizes our current approaches to using antibody-based therapies to prevent and treat allograft rejection. It also provides examples of promising novel mAb therapies, and discusses the potential for future mAb development in transplantation. Expert opinion: The broad capability of antibodies, in parallel with our growing ability to synthetically modulate them, offers exciting opportunities to develop better biologic therapeutics. In order to do so, we must further our understanding about the basic biology underlying allograft rejection, and gain better appreciation of how characteristics of therapeutic antibodies affect their efficacy.

  18. New strategies for improving stem cell therapy in ischemic heart disease.

    PubMed

    Huang, Peisen; Tian, Xiaqiu; Li, Qing; Yang, Yuejin

    2016-11-01

    Stem cell therapy is a promising approach to the treatment of ischemic heart disease via replenishing cell loss after myocardial infarction. Both preclinical studies and clinical trials have indicated that cardiac function improved consistently, but very modestly after cell-based therapy. This mainly attributed to low cell survival rate, engraftment and functional integration, which became the major challenges to regenerative medicine. In recent years, several new cell types have been developed to regenerate cardiomyocytes and novel delivery approaches helped to increase local cell retention. New strategies, such as cell pretreatment, gene-based therapy, tissue engineering, extracellular vesicles application and immunologic regulation, have surged and brought about improved cell survival and functional integration leading to better therapeutic effects after cell transplantation. In this review, we summarize these new strategies targeting at challenges of cardiac regenerative medicine and discuss recent evidences that may hint their effectiveness in the future clinical settings.

  19. From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing.

    PubMed

    Hotta, Akitsu; Yamanaka, Shinya

    2015-01-01

    The advent of induced pluripotent stem (iPS) cells has opened up numerous avenues of opportunity for cell therapy, including the initiation in September 2014 of the first human clinical trial to treat dry age-related macular degeneration. In parallel, advances in genome-editing technologies by site-specific nucleases have dramatically improved our ability to edit endogenous genomic sequences at targeted sites of interest. In fact, clinical trials have already begun to implement this technology to control HIV infection. Genome editing in iPS cells is a powerful tool and enables researchers to investigate the intricacies of the human genome in a dish. In the near future, the groundwork laid by such an approach may expand the possibilities of gene therapy for treating congenital disorders. In this review, we summarize the exciting progress being made in the utilization of genomic editing technologies in pluripotent stem cells and discuss remaining challenges toward gene therapy applications.

  20. PET imaging: implications for the future of therapy monitoring with PET/CT in oncology.

    PubMed

    Tomasi, Giampaolo; Rosso, Lula

    2012-10-01

    Among the methods based on molecular imaging, the measure of the tracer uptake variation between a baseline and follow-up scan with the SUV and [(18)F]FDG-PET/CT is a very powerful tool for assessing response to treatment in oncology. However, the development of new targeted therapeutics and tissue pharmacokinetic evaluation of existing ones are increasingly requiring therapy monitoring with alternative tracers and indicators. In parallel, the potential predictive and prognostic value of other image-derived parameters, such as tumour volume and textural features, relating to tumoral heterogeneity, has recently emerged from several works. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Metabolic and nutritional aspects of cancer.

    PubMed

    Krawczyk, Joanna; Kraj, Leszek; Ziarkiewicz, Mateusz; Wiktor-Jędrzejczak, Wiesław

    2014-08-22

    Cancer, being in fact a generalized disease involving the whole organism, is most frequently associated with metabolic deregulation, a latent inflammatory state and anorexia of various degrees. The pathogenesis of this disorder is complex, with multiple dilemmas remaining unsolved. The clinical consequences of the above-mentioned disturbances include cancer-related cachexia and anorexia-cachexia syndrome. These complex clinical entities worsen the prognosis, and lead to deterioration of the quality of life and performance status, and thus require multimodal treatment. Optimal therapy should include nutritional support coupled with pharmacotherapy targeted at underlying pathomechanisms of cachexia. Nevertheless, many issues still need explanation, and efficacious and comprehensive therapy of cancer-related cachexia remains a future objective.

  2. Stem cell therapy: MRI guidance and monitoring.

    PubMed

    Kraitchman, Dara L; Gilson, Wesley D; Lorenz, Christine H

    2008-02-01

    With the recent advances in magnetic resonance (MR) labeling of cellular therapeutics, it is natural that interventional MRI techniques for targeting would be developed. This review provides an overview of the current methods of stem cell labeling and the challenges that are created with respect to interventional MRI administration. In particular, stem cell therapies will require specialized, MR-compatible devices as well as integration of graphical user interfaces with pulse sequences designed for interactive, real-time delivery in many organs. Specific applications that are being developed will be reviewed as well as strategies for future translation to the clinical realm. (Copyright) 2008 Wiley-Liss, Inc.

  3. The Impact of ESR1 Mutations on the Treatment of Metastatic Breast Cancer.

    PubMed

    Pejerrey, Sasha M; Dustin, Derek; Kim, Jin-Ah; Gu, Guowei; Rechoum, Yassine; Fuqua, Suzanne A W

    2018-05-07

    After nearly 20 years of research, it is now established that mutations within the estrogen receptor (ER) gene, ESR1, frequently occur in metastatic breast cancer and influence response to hormone therapy. Though early studies presented differing results, sensitive sequencing techniques now show that ESR1 mutations occur at a frequency between 20 and 40% depending on the assay method. Recent studies have focused on several "hot spot mutations," a cluster of mutations found in the hormone-binding domain of the ESR1 gene. Throughout the course of treatment, tumor evolution can occur, and ESR1 mutations emerge and become enriched in the metastatic setting. Sensitive techniques to continually monitor mutant burden in vivo are needed to effectively treat patients with mutant ESR1. The full impact of these mutations on tumor response to different therapies remains to be determined. However, recent studies indicate that mutant-bearing tumors may be less responsive to specific hormonal therapies, and suggest that aromatase inhibitor (AI) therapy may select for the emergence of ESR1 mutations. Additionally, different mutations may respond discretely to targeted therapies. The need for more preclinical mechanistic studies on ESR1 mutations and the development of better agents to target these mutations are urgently needed. In the future, sequential monitoring of ESR1 mutational status will likely direct personalized therapeutic regimens appropriate to each tumor's unique mutational landscape.

  4. Gold Nanostructures as a Platform for Combinational Therapy in Future Cancer Therapeutics

    PubMed Central

    Jelveh, Salomeh; Chithrani, Devika B.

    2011-01-01

    The field of nanotechnology is currently undergoing explosive development on many fronts. The technology is expected to generate innovations and play a critical role in cancer therapeutics. Among other nanoparticle (NP) systems, there has been tremendous progress made in the use of spherical gold NPs (GNPs), gold nanorods (GNRs), gold nanoshells (GNSs) and gold nanocages (GNCs) in cancer therapeutics. In treating cancer, radiation therapy and chemotherapy remain the most widely used treatment options and recent developments in cancer research show that the incorporation of gold nanostructures into these protocols has enhanced tumor cell killing. These nanostructures further provide strategies for better loading, targeting, and controlling the release of drugs to minimize the side effects of highly toxic anticancer drugs used in chemotherapy and photodynamic therapy. In addition, the heat generation capability of gold nanostructures upon exposure to UV or near infrared light is being used to damage tumor cells locally in photothermal therapy. Hence, gold nanostructures provide a versatile platform to integrate many therapeutic options leading to effective combinational therapy in the fight against cancer. In this review article, the recent progress in the development of gold-based NPs towards improved therapeutics will be discussed. A multifunctional platform based on gold nanostructures with targeting ligands, therapeutic molecules, and imaging contrast agents, holds an array of promising directions for cancer research. PMID:24212654

  5. Beyond BRAF: where next for melanoma therapy?

    PubMed Central

    Fedorenko, I V; Gibney, G T; Sondak, V K; Smalley, K S M

    2015-01-01

    In recent years, melanoma has become a poster-child for the development of oncogene-directed targeted therapies. This approach, which has been exemplified by the development of small-molecule BRAF inhibitors and the BRAF/MEK inhibitor combination for BRAF-mutant melanoma, has brought new hope to patients. Despite these successes, treatment failure seems near inevitable in the majority of cases—even in individuals treated with the BRAF/MEK inhibitor doublet. In the current review, we discuss the future of combination strategies for patients with BRAF-mutant melanoma as well as the emerging therapeutic options for patients with NRAS-mutant and BRAF/NRAS-wild-type melanoma. We also outline some of the newest developments in the in-depth personalisation of therapy that should allow melanoma treatment to continue shaping the field precision cancer medicine. PMID:25180764

  6. Progression in attenuating myocardial reperfusion injury: an overview.

    PubMed

    Bernink, F J P; Timmers, L; Beek, A M; Diamant, M; Roos, S T; Van Rossum, A C; Appelman, Y

    2014-01-01

    Reperfusion by means of percutaneous coronary intervention or thrombolytic therapy is the most effective treatment for acute myocardial infarction, markedly reducing mortality and morbidity. Reperfusion however induces necrotic and apoptotic damages to cardiomyocytes, that were viable prior to reperfusion, a process called lethal reperfusion injury. This process, consisting of many single processes, may be responsible of up to half of the final infarct size. A myriad of therapies as an adjunct to reperfusion have been studied with the purpose to attenuate reperfusion injury. The majority of these studies have been disappointing or contradicting, but recent proof-of-concept trials show that reperfusion injury still is a legitimate target. This overview will discuss these trials, the progression in attenuating myocardial reperfusion injury, promising therapies, and future perspectives. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. NTS-polyplex: A potential nanocarrier for neurotrophic therapy of Parkinson’s disease

    PubMed Central

    Martinez-Fong, Daniel; Bannon, Michael J.; Trudeau, Louis-Eric; Gonzalez-Barrios, Juan A.; Arango-Rodriguez, Martha L.; Hernandez-Chan, Nancy G.; Reyes-Corona, David; Armendáriz-Borunda, Juan; Navarro-Quiroga, Ivan

    2012-01-01

    Nanomedicine has focused on targeted neurotrophic gene delivery to the brain as a strategy to stop and reverse neurodegeneration in Parkinson’s disease. Because of improved transfection ability, synthetic nanocarriers have become candidates for neurotrophic therapy. Neurotensin (NTS)-polyplex is a “Trojan horse” synthetic nanocarrier system that enters dopaminergic neurons through NTS receptor internalization to deliver a genetic cargo. The success of preclinical studies with different neurotrophic genes supports the possibility of using NTS-polyplex in nanomedicine. In this review, we describe the mechanism of NTS-polyplex transfection. We discuss the concept that an effective neurotrophic therapy requires a simultaneous effect on the axon terminals and soma of the remaining dopaminergic neurons. We also discuss the future of this strategy for the treatment of Parkinson’s disease. PMID:22406187

  8. Suppression of Peroxiredoxin 4 in Glioblastoma Cells Increases Apoptosis and Reduces Tumor Growth

    PubMed Central

    Kim, Tae Hyong; Song, Jieun; Alcantara Llaguno, Sheila R.; Murnan, Eric; Liyanarachchi, Sandya; Palanichamy, Kamalakannan; Yi, Ji-Yeun; Viapiano, Mariano Sebastian; Nakano, Ichiro; Yoon, Sung Ok; Wu, Hong; Parada, Luis F.; Kwon, Chang-Hyuk

    2012-01-01

    Glioblastoma multiforme (GBM), the most common and aggressive primary brain malignancy, is incurable despite the best combination of current cancer therapies. For the development of more effective therapies, discovery of novel candidate tumor drivers is urgently needed. Here, we report that peroxiredoxin 4 (PRDX4) is a putative tumor driver. PRDX4 levels were highly increased in a majority of human GBMs as well as in a mouse model of GBM. Reducing PRDX4 expression significantly decreased GBM cell growth and radiation resistance in vitro with increased levels of ROS, DNA damage, and apoptosis. In a syngenic orthotopic transplantation model, Prdx4 knockdown limited GBM infiltration and significantly prolonged mouse survival. These data suggest that PRDX4 can be a novel target for GBM therapies in the future. PMID:22916164

  9. Designing a broad-spectrum integrative approach for cancer prevention and treatment.

    PubMed

    Block, Keith I; Gyllenhaal, Charlotte; Lowe, Leroy; Amedei, Amedeo; Amin, A R M Ruhul; Amin, Amr; Aquilano, Katia; Arbiser, Jack; Arreola, Alexandra; Arzumanyan, Alla; Ashraf, S Salman; Azmi, Asfar S; Benencia, Fabian; Bhakta, Dipita; Bilsland, Alan; Bishayee, Anupam; Blain, Stacy W; Block, Penny B; Boosani, Chandra S; Carey, Thomas E; Carnero, Amancio; Carotenuto, Marianeve; Casey, Stephanie C; Chakrabarti, Mrinmay; Chaturvedi, Rupesh; Chen, Georgia Zhuo; Chen, Helen; Chen, Sophie; Chen, Yi Charlie; Choi, Beom K; Ciriolo, Maria Rosa; Coley, Helen M; Collins, Andrew R; Connell, Marisa; Crawford, Sarah; Curran, Colleen S; Dabrosin, Charlotta; Damia, Giovanna; Dasgupta, Santanu; DeBerardinis, Ralph J; Decker, William K; Dhawan, Punita; Diehl, Anna Mae E; Dong, Jin-Tang; Dou, Q Ping; Drew, Janice E; Elkord, Eyad; El-Rayes, Bassel; Feitelson, Mark A; Felsher, Dean W; Ferguson, Lynnette R; Fimognari, Carmela; Firestone, Gary L; Frezza, Christian; Fujii, Hiromasa; Fuster, Mark M; Generali, Daniele; Georgakilas, Alexandros G; Gieseler, Frank; Gilbertson, Michael; Green, Michelle F; Grue, Brendan; Guha, Gunjan; Halicka, Dorota; Helferich, William G; Heneberg, Petr; Hentosh, Patricia; Hirschey, Matthew D; Hofseth, Lorne J; Holcombe, Randall F; Honoki, Kanya; Hsu, Hsue-Yin; Huang, Gloria S; Jensen, Lasse D; Jiang, Wen G; Jones, Lee W; Karpowicz, Phillip A; Keith, W Nicol; Kerkar, Sid P; Khan, Gazala N; Khatami, Mahin; Ko, Young H; Kucuk, Omer; Kulathinal, Rob J; Kumar, Nagi B; Kwon, Byoung S; Le, Anne; Lea, Michael A; Lee, Ho-Young; Lichtor, Terry; Lin, Liang-Tzung; Locasale, Jason W; Lokeshwar, Bal L; Longo, Valter D; Lyssiotis, Costas A; MacKenzie, Karen L; Malhotra, Meenakshi; Marino, Maria; Martinez-Chantar, Maria L; Matheu, Ander; Maxwell, Christopher; McDonnell, Eoin; Meeker, Alan K; Mehrmohamadi, Mahya; Mehta, Kapil; Michelotti, Gregory A; Mohammad, Ramzi M; Mohammed, Sulma I; Morre, D James; Muralidhar, Vinayak; Muqbil, Irfana; Murphy, Michael P; Nagaraju, Ganji Purnachandra; Nahta, Rita; Niccolai, Elena; Nowsheen, Somaira; Panis, Carolina; Pantano, Francesco; Parslow, Virginia R; Pawelec, Graham; Pedersen, Peter L; Poore, Brad; Poudyal, Deepak; Prakash, Satya; Prince, Mark; Raffaghello, Lizzia; Rathmell, Jeffrey C; Rathmell, W Kimryn; Ray, Swapan K; Reichrath, Jörg; Rezazadeh, Sarallah; Ribatti, Domenico; Ricciardiello, Luigi; Robey, R Brooks; Rodier, Francis; Rupasinghe, H P Vasantha; Russo, Gian Luigi; Ryan, Elizabeth P; Samadi, Abbas K; Sanchez-Garcia, Isidro; Sanders, Andrew J; Santini, Daniele; Sarkar, Malancha; Sasada, Tetsuro; Saxena, Neeraj K; Shackelford, Rodney E; Shantha Kumara, H M C; Sharma, Dipali; Shin, Dong M; Sidransky, David; Siegelin, Markus David; Signori, Emanuela; Singh, Neetu; Sivanand, Sharanya; Sliva, Daniel; Smythe, Carl; Spagnuolo, Carmela; Stafforini, Diana M; Stagg, John; Subbarayan, Pochi R; Sundin, Tabetha; Talib, Wamidh H; Thompson, Sarah K; Tran, Phuoc T; Ungefroren, Hendrik; Vander Heiden, Matthew G; Venkateswaran, Vasundara; Vinay, Dass S; Vlachostergios, Panagiotis J; Wang, Zongwei; Wellen, Kathryn E; Whelan, Richard L; Yang, Eddy S; Yang, Huanjie; Yang, Xujuan; Yaswen, Paul; Yedjou, Clement; Yin, Xin; Zhu, Jiyue; Zollo, Massimo

    2015-12-01

    Targeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested, many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment. Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to be relatively inexpensive, it should help us address stages and types of cancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for future research is offered. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. New approaches to the pharmacological treatment of obesity: can they break through the efficacy barrier?

    PubMed

    Kennett, G A; Clifton, P G

    2010-11-01

    In this review we assess the range of centrally active anorectics that are either in human clinical trials, or are likely to be so in the near future. We describe their weight loss efficacy, mode of action at both pharmacological and behavioural levels, where understood, together with the range of side effects that might be expected in clinical use. We have however evaluated these compounds against the considerably more rigorous criteria that are now being used by the Federal Drugs Agency and European Medicines Agency to decide approvals and market withdrawals. Several trends are evident. Recent advances in the understanding of energy balance control have resulted in the exploitation of a number of new targets, some of which have yielded promising data in clinical trials for weight loss. A second major trend is derived from the hypothesis that improved weight loss efficacy over current therapy is most likely to emerge from treatments targeting multiple mechanisms of energy balance control. This reasoning has led to the development of a number of new treatments for obesity where multiple mechanisms are targeted, either by a single molecule, such as tesofensine, or through drug combinations such as qnexa, contrave, empatic, and pramlintide+metreleptin. Many of these approaches also utilise advances in formulation technology to widen safety margins. Finally, the practicality of peptide therapies for obesity has become better validated in recent studies and this may allow more rapid exploitation of novel targets, rather than awaiting the development of orally available small molecules. We conclude that novel, more efficacious and better tolerated treatments for obesity may become available in the near future. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Dual-therapy with αvβ3-targeted Sn2 lipase-labile fumagillin-prodrug nanoparticles and zoledronic acid in the Vx2 rabbit tumor model.

    PubMed

    Esser, Alison K; Schmieder, Anne H; Ross, Michael H; Xiang, Jingyu; Su, Xinming; Cui, Grace; Zhang, Huiying; Yang, Xiaoxia; Allen, John S; Williams, Todd; Wickline, Samuel A; Pan, Dipanjan; Lanza, Gregory M; Weilbaecher, Katherine N

    2016-01-01

    Fumagillin, an unstable anti-angiogenesis mycotoxin, was synthesized into a stable lipase-labile prodrug and incorporated into integrin-targeted lipid-encapsulated nanoparticles (αvβ3-Fum-PD NP). Dual anti-angiogenic therapy combining αvβ3-Fum-PD NP with zoledronic acid (ZA), a long-acting osteoclast inhibitor with proposed anti-angiogenic effects, was evaluated. In vitro, αvβ3-Fum-PD NP reduced (P<0.05) endothelial cell viability without impacting macrophage viability. ZA suppressed (P<0.05) macrophage viability at high dosages but not endothelial cell proliferation. 3D MR neovascular imaging of rabbit Vx2 tumors showed no effect with ZA, whereas αvβ3-Fum-PD NP alone and with ZA decreased angiogenesis (P<0.05). Immunohistochemistry revealed decreased (P<0.05) microvascularity with αvβ3-Fum-PD NP and ZA and further microvascular reduction (P<0.05) with dual-therapy. In vivo, ZA did not decrease tumor macrophage numbers nor cancer cell proliferation, whereas αvβ3-Fum-PD-NPs reduced both measures. Dual-therapy with ZA and αvβ3-Fum-PD-NP may provide enhanced neo-adjuvant utility if macrophage ZA uptake is increased. From the Clinical Editor: Although anti-angiogenesis is one of the treatment modalities in the fight against cancer, many cancers become resistant to VEGF pathway inhibitors. In this article, the authors investigated the use of dual therapy using fumagillin, integrin-targeted lipid-encapsulated nanoparticles (αvβ3- Fum-PD NP) and zoledronic acid (ZA), in both in-vitro and in-vivo experiments. This combination approach may provide an insight to the design of future drugs against cancers. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Nanotechnology applications in thoracic surgery.

    PubMed

    Hofferberth, Sophie C; Grinstaff, Mark W; Colson, Yolonda L

    2016-07-01

    Nanotechnology is an emerging, rapidly evolving field with the potential to significantly impact care across the full spectrum of cancer therapy. Of note, several recent nanotechnological advances show particular promise to improve outcomes for thoracic surgical patients. A variety of nanotechnologies are described that offer possible solutions to existing challenges encountered in the detection, diagnosis and treatment of lung cancer. Nanotechnology-based imaging platforms have the ability to improve the surgical care of patients with thoracic malignancies through technological advances in intraoperative tumour localization, lymph node mapping and accuracy of tumour resection. Moreover, nanotechnology is poised to revolutionize adjuvant lung cancer therapy. Common chemotherapeutic drugs, such as paclitaxel, docetaxel and doxorubicin, are being formulated using various nanotechnologies to improve drug delivery, whereas nanoparticle (NP)-based imaging technologies can monitor the tumour microenvironment and facilitate molecularly targeted lung cancer therapy. Although early nanotechnology-based delivery systems show promise, the next frontier in lung cancer therapy is the development of 'theranostic' multifunctional NPs capable of integrating diagnosis, drug monitoring, tumour targeting and controlled drug release into various unifying platforms. This article provides an overview of key existing and emerging nanotechnology platforms that may find clinical application in thoracic surgery in the near future. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  13. Proposed definition of the vaginal cuff and paracolpium clinical target volume in postoperative uterine cervical cancer.

    PubMed

    Murakami, Naoya; Norihisa, Yoshiki; Isohashi, Fumiaki; Murofushi, Keiko; Ariga, Takuro; Kato, Tomoyasu; Inaba, Koji; Okamoto, Hiroyuki; Ito, Yoshinori; Toita, Takafumi; Itami, Jun

    2016-01-01

    The aim of this study was to develop an appropriate definition for vaginal cuff and paracolpium clinical target volume (CTV) for postoperative intensity modulated radiation therapy in patients with uterine cervical cancer. A working subgroup was organized within the Radiation Therapy Study Group of the Japan Clinical Oncology Group to develop a definition for the postoperative vaginal cuff and paracolpium CTV in December 2013. The group consisted of 5 radiation oncologists who specialized in gynecologic oncology and a gynecologic oncologist. A comprehensive literature review that included anatomy, surgery, and imaging fields was performed and was followed by multiple discreet face-to-face discussions and e-mail messages before a final consensus was reached. Definitions for the landmark structures in all directions that demarcate the vaginal cuff and paracolpium CTV were decided by consensus agreement of the working group. A table was created that showed boundary structures of the vaginal cuff and paracolpium CTV in each direction. A definition of the postoperative cervical cancer vaginal cuff and paracolpium CTV was developed. It is expected that this definition guideline will serve as a template for future radiation therapy clinical trial protocols, especially protocols involving intensity modulated radiation therapy. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  14. Emerging applications of nanotechnology for diagnosis and therapy of disease: a review.

    PubMed

    Bayford, Richard; Rademacher, Tom; Roitt, Ivan; Wang, Scarlet Xiaoyan

    2017-07-24

    Nanotechnology is of increasing interest in the fields of medicine and physiology over recent years. Its application could considerably improve disease detection and therapy, and although the potential is considerable, there are still many challenges that need to be addressed before it is accepted in routine clinical use. This review focuses on emerging applications that nanotechnology could enhance or provide new approaches in diagnoses and therapy. The main focus of recent research centres on targeted therapies and enhancing imaging; however, the introduction of nanomaterial into the human body must be controlled, as there are many issues with possible toxicity and long-term effects. Despite these issues, the potential for nanotechnology to provide new methods of combating cancer and other disease conditions is considerable. There are still key challenges for researchers in this field, including the means of delivery and targeting in the body to provide effective treatment for specific disease conditions. Nanoparticles are difficult to measure due to their size and physical properties; hence there is still a great need to improve physiological measurement methods in the field to ascertain how effective their use is in the human subject. This review is a brief snapshot into the fast changing research field of measurement and physiological links to nanoparticle use and its potential in the future.

  15. Advanced nanocarriers based on heparin and its derivatives for cancer management.

    PubMed

    Yang, Xiaoye; Du, Hongliang; Liu, Jiyong; Zhai, Guangxi

    2015-02-09

    To obtain a satisfying anticancer effect, rationally designed nanocarriers are intensively studied. In this field, heparin and its derivatives have been widely attempted recently as potential component of nanocarriers due to their unique biological and physiochemical features, especially the anticancer activity. This review focuses on state-of-the-art nanocarriers with heparin/heparin derivatives as backbone or coating material. At the beginning, the unique advantages of heparin used in cancer nanotechnology are discussed. After that, different strategies of heparin chemical modification are reviewed, laying the foundation of developing various nanocarriers. Then a systematic summary of diverse nanoparticles with heparin as component is exhibited, involving heparin-drug conjugate, polymeric nanoparticles, nanogels, polyelectrolyte complex nanoparticles, and heparin-coated organic and inorganic nanoparticles. The application of these nanoparticles in various novel cancer therapy (containing targeted therapy, magnetic therapy, photodynamic therapy, and gene therapy) will be highlighted. Finally, future challenges and opportunities of heparin-based biomaterials in cancer nanotechnology are discussed.

  16. Targeting BET bromodomain proteins in solid tumors

    PubMed Central

    Sahai, Vaibhav; Redig, Amanda J.; Collier, Katharine A.; Eckerdt, Frank D.; Munshi, Hidayatullah G.

    2016-01-01

    There is increasing interest in inhibitors targeting BET (bromodomain and extra-terminal) proteins because of the association between this family of proteins and cancer progression. BET inhibitors were initially shown to have efficacy in hematologic malignancies; however, a number of studies have now shown that BET inhibitors can also block progression of non-hematologic malignancies. In this Review, we summarize the efficacy of BET inhibitors in select solid tumors; evaluate the role of BET proteins in mediating resistance to current targeted therapies; and consider potential toxicities of BET inhibitors. We also evaluate recently characterized mechanisms of resistance to BET inhibitors; summarize ongoing clinical trials with these inhibitors; and discuss potential future roles of BET inhibitors in patients with solid tumors. PMID:27283767

  17. Coronary artery disease concomitant with chronic obstructive pulmonary disease.

    PubMed

    Roversi, Sara; Roversi, Pietro; Spadafora, Giuseppe; Rossi, Rosario; Fabbri, Leonardo M

    2014-01-01

    Numerous epidemiologic studies have linked the presence of chronic obstructive pulmonary disease (COPD) to coronary artery disease (CAD). However, prevalence, pathological processes, clinical manifestations and therapy are still debated, as progress towards uncovering the link between these two disorders has been hindered by the complex nature of multimorbidity. Articles targeting CAD in patients with COPD were identified from the searches of MEDLINE and EMBASE databases in July 2013. Three authors reviewed available evidence, focusing on the latest development on disease prevalence, pathogenesis, clinical manifestations and therapeutic strategies. Both clinical trial and previous reviews have been included in this work. The most accredited hypothesis asserts that the main common risk factors, that is, cigarette smoke and ageing, elicit a chronic low-grade systemic inflammatory response, which affects both cardiovascular endothelial cells and airways/lung parenchyma. The development of CAD in patients with COPD potentiates the morbidity of COPD, leading to increased hospitalizations, mortality and health costs. Moreover, correct diagnosis is challenging and therapies are not clearly defined. Evidence from recently published articles highlights the importance of multimorbidity in patient management and future research. Moreover, many authors emphasize the importance of low-grade systemic inflammation as a common pathological mechanism and a possible future therapeutic target. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  18. Mesenchymal Stromal Cells for Antineoplastic Drug Loading and Delivery.

    PubMed

    Petrella, Francesco; Rimoldi, Isabella; Rizzo, Stefania; Spaggiari, Lorenzo

    2017-11-23

    Mesenchymal stromal cells are a population of undifferentiated multipotent adult cells possessing extensive self-renewal properties and the potential to differentiate into a variety of mesenchymal lineage cells. They express broad anti-inflammatory and immunomodulatory activity on the immune system and after transplantation can interact with the surrounding microenvironment, promoting tissue healing and regeneration. For this reason, mesenchymal stromal cells have been widely used in regenerative medicine, both in preclinical and clinical settings. Another clinical application of mesenchymal stromal cells is the targeted delivery of chemotherapeutic agents to neoplastic cells, maximizing the cytotoxic activity against cancer cells and minimizing collateral damage to non-neoplastic tissues. Mesenchymal stem cells are home to the stroma of several primary and metastatic neoplasms and hence can be used as vectors for targeted delivery of antineoplastic drugs to the tumour microenvironment, thereby reducing systemic toxicity and maximizing antitumour effects. Paclitaxel and gemcitabine are the chemotherapeutic drugs best loaded by mesenchymal stromal cells and delivered to neoplastic cells, whereas other agents, like pemetrexed, are not internalized by mesenchymal stromal cells and therefore are not suitable for advanced antineoplastic therapy. This review focuses on the state of the art of advanced antineoplastic cell therapy and its future perspectives, emphasizing in vitro and in vivo preclinical results and future clinical applications.

  19. Clinical implications of the IMPROVE-IT trial in the light of current and future lipid-lowering treatment options.

    PubMed

    Serban, Maria-Corina; Banach, Maciej; Mikhailidis, Dimitri P

    2016-01-01

    A residual risk of morbidity and mortality from cardiovascular (CV) disease remains despite statin therapy. This situation has generated an interest in finding novel approaches of combining statins with other lipid-lowering agents, or finding new lipid and non-lipid targets, such as triglycerides, high-density lipoprotein cholesterol (HDL-C), non-HDL-C, proprotein convertase subtilisin/kexin type 9 (PCSK9) gene, cholesterol ester transfer protein (CETP), lipoprotein (a), fibrinogen or C-reactive protein. The recent results from the IMProved Reduction of Outcomes: Vytorin Efficacy International Trial (IMPROVE-IT) demonstrated an incremental clinical benefit when ezetimibe, a non-statin agent, was added to simvastatin therapy. The results from IMPROVE-IT revalidated the concept that low-density lipoprotein cholesterol (LDL-C) levels are a clinically relevant treatment goal. This trial also suggested that further decrease of LDL-C levels (53 vs. 70 mg/dl; 1.4 vs. 1.8 mmol/l) was more beneficial in lowering CV events. This "even lower is even better" evidence for LDL-C levels may influence future guidelines and the use of new drugs. Furthermore, these findings make ezetimibe a more realistic option to treat patients with statin intolerance or those who cannot achieve LDL-C targets with statin monotherapy.

  20. In Vivo Biomarkers for Targeting Colorectal Neoplasms

    PubMed Central

    Hsiung, Pei-Lin; Wang, Thomas

    2011-01-01

    Summary Colorectal carcinoma continues to be a leading cause of cancer morbidity and mortality despite widespread adoption of screening methods. Targeted detection and therapy using recent advances in our knowledge of in vivo cancer biomarkers promise to significantly improve methods for early detection, risk stratification, and therapeutic intervention. The behavior of molecular targets in transformed tissues is being comprehensively assessed using new techniques of gene expression profiling and high throughput analyses. The identification of promising targets is stimulating the development of novel molecular probes, including significant progress in the field of activatable and peptide probes. These probes are being evaluated in small animal models of colorectal neoplasia and recently in the clinic. Furthermore, innovations in optical imaging instrumentation are resulting in the scaling down of size for endoscope compatibility. Advances in target identification, probe development, and novel instruments are progressing rapidly, and the integration of these technologies has a promising future in molecular medicine. PMID:19126961

  1. Efficacy of anti-RON antibody Zt/g4-drug maytansinoid conjugation (Anti-RON ADC) as a novel therapeutics for targeted colorectal cancer therapy.

    PubMed

    Feng, Liang; Yao, Hang-Ping; Wang, Wei; Zhou, Yong-Qing; Zhou, Jianwei; Zhang, Ruiwen; Wang, Ming-Hai

    2014-12-01

    The receptor tyrosine kinase RON is critical in epithelial tumorigenesis and a drug target for cancer therapy. Here, we report the development and therapeutic efficacy of a novel anti-RON antibody Zt/g4-maytansinoid (DM1) conjugates for targeted colorectal cancer (CRC) therapy. Zt/g4 (IgG1a/κ) was conjugated to DM1 via thioether linkage to form Zt/g4-DM1 with a drug-antibody ratio of 4:1. CRC cell lines expressing different levels of RON were tested in vitro to determine Zt/g4-DM1-induced RON endocytosis, cell-cycle arrest, and cytotoxicity. Efficacy of Zt/g4-DM1 in vivo was evaluated in mouse xenograft CRC tumor model. Zt/g4-DM1 rapidly induced RON endocytosis, arrested cell cycle at G2-M phase, reduced cell viability, and caused massive cell death within 72 hours. In mouse xenograft CRC models, Zt/g4-DM1 at a single dose of 20 mg/kg body weight effectively delayed CRC cell-mediated tumor growth up to 20 days. In a multiple dose-ranging study with a five injection regimen, Zt/g4-DM1 inhibited more than 90% tumor growth at doses of 7, 10, and 15 mg/kg body weight. The minimal dose achieving 50% of tumor inhibition was approximately 5.0 mg/kg. The prepared Zt/g4-DM1 is stable at 37°C for up to 30 days. At 60 mg/kg, Zt/g4-DM1 had a moderate toxicity in vivo with an average of 12% reduction in mouse body weight. Zt/g4-DM1 is highly effective in targeted inhibition of CRC cell-derived tumor growth in mouse xenograft models. This work provides the basis for development of humanized Zt/g4-DM1 for RON-targeted CRC therapy in the future. ©2014 American Association for Cancer Research.

  2. Immunotherapy Targets in Pediatric Cancer

    PubMed Central

    Orentas, Rimas J.; Lee, Daniel W.; Mackall, Crystal

    2011-01-01

    Immunotherapy for cancer has shown increasing success and there is ample evidence to expect that progress gleaned in immune targeting of adult cancers can be translated to pediatric oncology. This manuscript reviews principles that guide selection of targets for immunotherapy of cancer, emphasizing the similarities and distinctions between oncogene-inhibition targets and immune targets. It follows with a detailed review of molecules expressed by pediatric tumors that are already under study as immune targets or are good candidates for future studies of immune targeting. Distinctions are made between cell surface antigens that can be targeted in an MHC independent manner using antibodies, antibody derivatives, or chimeric antigen receptors versus intracellular antigens which must be targeted with MHC restricted T cell therapies. Among the most advanced immune targets for childhood cancer are CD19 and CD22 on hematologic malignancies, GD2 on solid tumors, and NY-ESO-1 expressed by a majority of synovial sarcomas, but several other molecules reviewed here also have properties which suggest that they too could serve as effective targets for immunotherapy of childhood cancer. PMID:22645714

  3. [Pulmonary hypertension: the future has begun].

    PubMed

    Olschewski, Horst

    2006-04-15

    In recent years, pulmonary hypertension got into the focus of research due to the development of efficacious medications and the discovery of important pathologic mechanisms of disease. Currently, prostanoids, endothelin receptor antagonists and phosphodiesterase 5 inhibitors are the most important substance groups used for treatment. Substances that are emerging in tumor therapy (tyrosine kinase inhibitors, epidermal growth factor [EGF] und platelet-derived growth factor [PDGF] receptor blockers), vasoactive intestinal peptide (VIP), rho-kinase inhibitors and targeted drugs for endothelial dysfunction will be evaluated as future drugs for pulmonary hypertension. Improving early diagnosis of pulmonary hypertension will be an important task in the future. Both the development of diagnostic methods with increased sensitivity and specificity and a broad awareness program will be necessary to achieve this goal.

  4. miRNAs as potential therapeutic targets for age-related macular degeneration.

    PubMed

    Wang, Shusheng; Koster, Kyle M; He, Yuguang; Zhou, Qinbo

    2012-03-01

    Since their recent discovery, miRNAs have been shown to play critical roles in a variety of pathophysiological processes. Such processes include pathological angiogenesis, the oxidative stress response, immune response and inflammation, all of which have been shown to have important and interdependent roles in the pathogenesis and progression of age-related macular degeneration (AMD). Here we present a brief review of the pathological processes involved in AMD and review miRNAs and other noncoding RNAs involved in regulating these processes. Specifically, we discuss several candidate miRNAs that show promise as AMD therapeutic targets due to their direct involvement in choroidal neovascularization or retinal pigment epithelium atrophy. We discuss potential miRNA-based therapeutics and delivery methods for AMD and provide future directions for the field of miRNA research with respect to AMD. We believe the future of miRNAs in AMD therapy is promising.

  5. Antiangiogenic Therapy for Glioblastoma: Current Status and Future Prospects

    PubMed Central

    Batchelor, Tracy T.; Reardon, David A.; de Groot, John F.; Wick, Wolfgang; Weller, Michael

    2014-01-01

    Glioblastoma is characterized by high expression levels of pro-angiogenic cytokines and microvascular proliferation, highlighting the potential value of treatments targeting angiogenesis. Antiangiogenic treatment likely achieves a beneficial impact through multiple mechanisms of action. Ultimately, however, alternative pro-angiogenic signal transduction pathways are activated leading to the development of resistance, even in tumors that initially respond. The identification of biomarkers or imaging parameters to predict response and to herald resistance is of high priority. Despite promising phase 2 clinical trial results and patient benefit in terms of clinical improvement and longer progression-free survival, an overall survival benefit has not been demonstrated in 4 randomized phase 3 trials of bevacizumab or cilengitide in newly diagnosed glioblastoma or cediranib or enzastaurin recurrent glioblastoma. However, future studies are warranted: predictive markers may allow appropriate patient enrichment, combination with chemotherapy may ultimately prove successful in improving overall survival, and novel agents targeting multiple pro-angiogenic pathways may prove effective. PMID:25398844

  6. Beyond Monoamines-Novel Targets for Treatment-Resistant Depression: A Comprehensive Review

    PubMed Central

    Rosenblat, Christian; McIntyre, Roger S.; Alves, Gilberto S.; Fountoulakis, Konstantinos N.; Carvalho, André F.

    2015-01-01

    Major depressive disorder (MDD) is a leading cause of disability worldwide. Current first line therapies target modulation of the monoamine system. A large variety of agents are currently available that effectively alter monoamine levels; however, approximately one third of MDD patients remain treatment refractory after adequate trials of multiple monoamine based therapies. Therefore, patients with treatment-resistant depression (TRD) may require modulation of pathways outside of the classic monoamine system. The purpose of this review was thus to discuss novel targets for TRD, to describe their potential mechanisms of action, the available clinical evidence for these targets, the limitations of available evidence as well as future research directions. Several alternate pathways involved in the patho-etiology of TRD have been uncovered including the following: inflammatory pathways, the oxidative stress pathway, the hypothalamic-pituitary-adrenal (HPA) axis, the metabolic and bioenergetics system, neurotrophic pathways, the glutamate system, the opioid system and the cholinergic system. For each of these systems, several targets have been assessed in preclinical and clinical models. Preclinical models strongly implicate these pathways in the patho-etiology of MDD. Clinical trials for TRD have been conducted for several novel targets; however, most of the trials discussed are small and several are uncontrolled. Therefore, further clinical trials are required to assess the true efficacy of these targets for TRD. As well, several promising novel agents have been clinically tested in MDD populations, but have yet to be assessed specifically for TRD. Thus, their applicability to TRD remains unknown. PMID:26467412

  7. A novel cognitive behaviour therapy for bipolar disorders (Think Effectively About Mood Swings or TEAMS): study protocol for a randomized controlled trial.

    PubMed

    Mansell, Warren; Tai, Sara; Clark, Alexandra; Akgonul, Savas; Dunn, Graham; Davies, Linda; Law, Heather; Morriss, Richard; Tinning, Neil; Morrison, Anthony P

    2014-10-24

    Existing psychological therapies for bipolar disorders have been found to have mixed results, with a consensus that they provide a significant, but modest, effect on clinical outcomes. Typically, these approaches have focused on promoting strategies to prevent future relapse. An alternative treatment approach, termed 'Think Effectively About Mood Swings' (TEAMS) addresses current symptoms, including subclinical hypomania, depression and anxiety, and promotes long-term recovery. Following the publication of a theoretical model, a range of research studies testing the model and a case series have demonstrated positive results. The current study reports the protocol of a feasibility randomized controlled trial to inform a future multi-centre trial. A target number of 84 patients with a diagnosis of bipolar I or II disorder, or bipolar disorder not-otherwise-specified are screened, allocated to a baseline assessment and randomized to either 16 sessions of TEAMS therapy plus treatment-as-usual (TAU) or TAU. Patients complete self-report inventories of depression, anxiety, recovery status and bipolar cognitions targeted by TEAMS. Assessments of diagnosis, bipolar symptoms, medication, access to services and quality of life are conducted by assessors blind to treatment condition at 3, 6, 12 and 18 months post-randomization. The main aim is to evaluate recruitment and retention of participants into both arms of the study, as well as adherence to therapy, to determine feasibility and acceptability. It is predicted that TEAMS plus TAU will reduce self-reported depression in comparison to TAU alone at six months post-randomization. The secondary hypotheses are that TEAMS will reduce the severity of hypomanic symptoms and anxiety, reduce bipolar cognitions, improve social functioning and promote recovery compared to TAU alone at post-treatment and follow-up. The study also incorporates semi-structured interviews about the experiences of previous treatment and the experience of TEAMS therapy that will be subject to qualitative analyses to inform future developments of the approach. The design will provide preliminary evidence of efficacy, feasibility, acceptability, uptake, attrition and barriers to treatment to design a definitive trial of this novel intervention compared to treatment as usual. This trial was registered with Current Controlled Trials (ISRCTN83928726) on registered 25 July 2014.

  8. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    PubMed Central

    Riaz, Muhammad Kashif; Riaz, Muhammad Adil; Zhang, Xue; Lin, Congcong; Wong, Ka Hong; Chen, Xiaoyu; Lu, Aiping

    2018-01-01

    Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed. PMID:29315231

  9. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies.

    PubMed

    Ulbrich, Karel; Holá, Kateřina; Šubr, Vladimir; Bakandritsos, Aristides; Tuček, Jiří; Zbořil, Radek

    2016-05-11

    Targeted delivery combined with controlled drug release has a pivotal role in the future of personalized medicine. This review covers the principles, advantages, and drawbacks of passive and active targeting based on various polymer and magnetic iron oxide nanoparticle carriers with drug attached by both covalent and noncovalent pathways. Attention is devoted to the tailored conjugation of targeting ligands (e.g., enzymes, antibodies, peptides) to drug carrier systems. Similarly, the approaches toward controlled drug release are discussed. Various polymer-drug conjugates based, for example, on polyethylene glycol (PEG), N-(2-hydroxypropyl)methacrylamide (HPMA), polymeric micelles, and nanoparticle carriers are explored with respect to absorption, distribution, metabolism, and excretion (ADME scheme) of administrated drug. Design and structure of superparamagnetic iron oxide nanoparticles (SPION) and condensed magnetic clusters are classified according to the mechanism of noncovalent drug loading involving hydrophobic and electrostatic interactions, coordination chemistry, and encapsulation in porous materials. Principles of covalent conjugation of drugs with SPIONs including thermo- and pH-degradable bonds, amide linkage, redox-cleavable bonds, and enzymatically-cleavable bonds are also thoroughly described. Finally, results of clinical trials obtained with polymeric and magnetic carriers are analyzed highlighting the potential advantages and future directions in targeted anticancer therapy.

  10. AXL kinase as a novel target for cancer therapy

    PubMed Central

    Lee, Chang Youl; Zhang, Zhenfeng; Halmos, Balazs

    2014-01-01

    The AXL receptor tyrosine kinase and its major ligand, GAS6 have been demonstrated to be overexpressed and activated in many human cancers (such as lung, breast, and pancreatic cancer) and have been correlated with poor prognosis, promotion of increased invasiveness/metastasis, the EMT phenotype and drug resistance. Targeting AXL in different model systems with specific small molecule kinase inhibitors or antibodies alone or in combination with other drugs can lead to inactivation of AXL-mediated signaling pathways and can lead to regained drug sensitivity and improved therapeutic efficacy, defining AXL as a promising novel target for cancer therapeutics. This review highlights the data supporting AXL as a novel treatment candidate in a variety of cancers as well as the current status of drug development targeting the AXL/GAS6 axis and future perspectives in this emerging field. PMID:25337673

  11. Future of medical physics: Real-time MRI-guided proton therapy.

    PubMed

    Oborn, Bradley M; Dowdell, Stephen; Metcalfe, Peter E; Crozier, Stuart; Mohan, Radhe; Keall, Paul J

    2017-08-01

    With the recent clinical implementation of real-time MRI-guided x-ray beam therapy (MRXT), attention is turning to the concept of combining real-time MRI guidance with proton beam therapy; MRI-guided proton beam therapy (MRPT). MRI guidance for proton beam therapy is expected to offer a compelling improvement to the current treatment workflow which is warranted arguably more than for x-ray beam therapy. This argument is born out of the fact that proton therapy toxicity outcomes are similar to that of the most advanced IMRT treatments, despite being a fundamentally superior particle for cancer treatment. In this Future of Medical Physics article, we describe the various software and hardware aspects of potential MRPT systems and the corresponding treatment workflow. Significant software developments, particularly focused around adaptive MRI-based planning will be required. The magnetic interaction between the MRI and the proton beamline components will be a key area of focus. For example, the modeling and potential redesign of a magnetically compatible gantry to allow for beam delivery from multiple angles towards a patient located within the bore of an MRI scanner. Further to this, the accuracy of pencil beam scanning and beam monitoring in the presence of an MRI fringe field will require modeling, testing, and potential further development to ensure that the highly targeted radiotherapy is maintained. Looking forward we envisage a clear and accelerated path for hardware development, leveraging from lessons learnt from MRXT development. Within few years, simple prototype systems will likely exist, and in a decade, we could envisage coupled systems with integrated gantries. Such milestones will be key in the development of a more efficient, more accurate, and more successful form of proton beam therapy for many common cancer sites. © 2017 American Association of Physicists in Medicine.

  12. SU-E-T-589: Optimization of Patient Head Angle Position to Spare Hippocampus During the Brain Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheon, G; Kang, Y; Kang, S

    Purpose: Hippocampus is one of the important organs which controls emotions, behaviors, movements the memorizing and learning ability. In the conventional head & neck therapy position, it is difficult to perform the hippocampal-sparing brain radiation therapy. The purpose of this study is to investigate optimal head angle which can save the hippocampal-sparing and organ at risk (OAR) in conformal radiation therapy (CRT), Intensity modulation radiation therapy (IMRT) and helical tomotherapy (HT). Methods: Three types of radiation treatment plans, CRT, IMRT and Tomotherapy plans, were performed for 10 brain tumor patients. The image fusion between CT and MRI data were usedmore » in the contour due to the limited delineation of the target and OAR in the CT scan. The optimal condition plan was determined by comparing the dosimetric performance of the each plan with the use of various parameters which include three different techniques (CRT, IMRT, HT) and 4 angle (0, 15, 30, 40 degree). The each treatment plans of three different techniques were compared with the following parameters: conformity index (CI), homogeneity index (HI), target coverage, dose in the OARs, monitor units (MU), beam on time and the normal tissue complication probability (NTCP). Results: HI, CI and target coverage was most excellent in head angle 30 degree among all angle. When compared by modality, target coverage and CI showed good results in IMRT and TOMO than compared to the CRT. HI at the head angle 0 degrees is 1.137±0.17 (CRT), 1.085±0.09 (IMRT) and 1.077±0.06 (HT). HI at the head angle 30 degrees is 1.056±0.08 (CRT), 1.020±0.05 (IMRT) and 1.022±0.07 (HT). Conclusion: The results of our study show that when head angle tilted at 30 degree, target coverage, HI, CI were improved, and the dose delivered to OAR was reduced compared with conventional supine position in brain radiation therapy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less

  13. Inflammation and Immune Regulation as Potential Drug Targets in Antidepressant Treatment

    PubMed Central

    Schmidt, Frank M.; Kirkby, Kenneth C.; Lichtblau, Nicole

    2016-01-01

    Growing evidence supports a mutual relationship between inflammation and major depression. A variety of mechanisms are outlined, indicating how inflammation may be involved in the pathogenesis, course and treatment of major depression. In particular, this review addresses 1) inflammatory cytokines as markers of depression and potential predictors of treatment response, 2) findings that cytokines interact with antidepressants and non-pharmacological antidepressive therapies, such as electroconvulsive therapy, deep brain stimulation and physical activity, 3) the influence of cytokines on the cytochrome (CYP) p450-system and drug efflux transporters, and 4) how cascades of inflammation might serve as antidepressant drug targets. A number of clinical trials have focused on agents with immunmodulatory properties in the treatment of depression, of which this review covers nonsteroidal anti-inflammatory drugs (NSAIDs), cytokine inhibitors, ketamine, polyunsaturated fatty acids, statins and curcumin. A perspective is also provided on possible future immune targets for antidepressant therapy, such as toll-like receptor-inhibitors, glycogen synthase kinase-3 inhibitors, oleanolic acid analogs and minocycline. Concluding from the available data, markers of inflammation may become relevant factors for more personalised planning and prediction of response of antidepressant treatment strategies. Agents with anti-inflammatory properties have the potential to serve as clinically relevant antidepressants. Further studies are required to better define and identify subgroups of patients responsive to inflammatory agents as well as to define optimal time points for treatment onset and duration. PMID:26769225

  14. Recent advances in intensity modulated radiotherapy and proton therapy for esophageal cancer.

    PubMed

    Xi, Mian; Lin, Steven H

    2017-07-01

    Radiotherapy is an important component of the standard of care for esophageal cancer. In the past decades, significant improvements in the planning and delivery of radiation techniques have led to better dose conformity to the target volume and improved normal tissue sparing. Areas covered: This review focuses on the advances in radiotherapy techniques and summarizes the availably dosimetric and clinical outcomes of intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy, proton therapy, and four-dimensional radiotherapy for esophageal cancer, and discusses the challenges and future development of proton therapy. Expert commentary: Although three-dimensional conformal radiotherapy is the standard radiotherapy technique in esophageal cancer, the retrospectively comparative studies strongly suggest that the dosimetric advantage of IMRT over three-dimensional conformal radiotherapy can translate into improved clinical outcomes, despite the lack of prospective randomized evidence. As a novel form of conventional IMRT technique, volumetric modulated arc therapy can produce equivalent or superior dosimetric quality with significantly higher treatment efficiency in esophageal cancer. Compared with photon therapy, proton therapy has the potential to achieve further clinical improvement due to their physical properties; however, prospective clinical data, long-term results, and cost-effectiveness are needed.

  15. Spatial resolution properties of digital autoradiography systems for pre-clinical alpha particle imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tanguay, Jesse; Benard, Francois; Celler, Anna; Ruth, Thomas; Schaffer, Paul

    2017-03-01

    Attaching alpha-emitting radionuclides to cancer-targeting agents increases the anti-tumor effects of targeted cancer therapies. The success of alpha therapy for treating bone metastases has increased interest in using targeted alpha therapy (TAT) to treat a broad spectrum of metastatic cancers. Estimating radiation doses to targeted tumors, including small (<250 μm) clusters of cancer cells, and to non-targeted tissues is critical in the pre-clinical development of TATs. However, accurate quantification of heterogeneous distributions of alpha-emitters in small metastases is not possible with existing pre-clinical in-vivo imaging systems. Ex-vivo digital autoradiography using a scintillator in combination with an image intensifier and a charged coupled device (CCD) has gained interest for pre-clinical ex-vivo alpha particle imaging. We present a simulation-based analysis of the fundamental spatial resolution limits of digital autoradiography systems. Spatial resolution was quantified in terms of the modulation transfer function (MTF) and Wagner's equivalent aperture. We modeled systems operating in either particle-counting (PC) or energy-integrating (EI) mode using a cascaded systems approach that accounts for: 1) the stopping power of alpha particles; 2) the distance alpha particles travel within the scintillator; 3) optical blur, and; 4) binning in detector elements. We applied our analysis to imaging of astatine-211 using an LYSO scintillator with thickness ranging from 10 μm to 20 μm. Our analysis demonstrates that when these systems are operated in particle-counting mode with a centroid-calculation algorithm, the effective apertures of 35 μm can be achieved, which suggests that digital autoradiography may enable quantifying the uptake of alpha emitters in tumors consisting of a few cancer cells. Future work will investigate the image noise and energy-resolution properties of digital autoradiography systems.

  16. Antineutrophil cytoplasmic antibody associated vasculitides with renal involvement: Open challenges in the remission induction therapy.

    PubMed

    Salvadori, Maurizio; Tsalouchos, Aris

    2018-05-06

    Renal involvement with rapidly progressive glomerulonephritis is a common manifestation of antineutrophil cytoplasmic antibody (ANCA) associated vasculitides, which is characterized by end-stage renal disease and high mortality rates in untreated and/or late referral patients. The long-term renal survival has improved dramatically since the addition of cyclophosphamide (CYC) and recently of rituximab (RTX) in association with corticosteroids in the remission induction therapeutic regimens. However, renal prognosis remains unfavorable for many patients and the mortality rate is still significantly high. In this review, we analyze the open challenges to be addressed to optimize the induction remission therapy, principally in patients with advanced kidney failure. This concern the first-line therapy (CYC or RTX) based on different parameters (estimated glomerular filtration rate at baseline, new or relapsed disease, ANCA specificity, tissue injury, safety), the role of plasma exchange and the role of new therapies. Indeed, we discuss future perspectives in induction remission therapy by reporting recent advances in new targeted therapies with particular reference to avacopan, an orally administered selective C5a receptor inhibitor.

  17. Antineutrophil cytoplasmic antibody associated vasculitides with renal involvement: Open challenges in the remission induction therapy

    PubMed Central

    Salvadori, Maurizio; Tsalouchos, Aris

    2018-01-01

    Renal involvement with rapidly progressive glomerulonephritis is a common manifestation of antineutrophil cytoplasmic antibody (ANCA) associated vasculitides, which is characterized by end-stage renal disease and high mortality rates in untreated and/or late referral patients. The long-term renal survival has improved dramatically since the addition of cyclophosphamide (CYC) and recently of rituximab (RTX) in association with corticosteroids in the remission induction therapeutic regimens. However, renal prognosis remains unfavorable for many patients and the mortality rate is still significantly high. In this review, we analyze the open challenges to be addressed to optimize the induction remission therapy, principally in patients with advanced kidney failure. This concern the first-line therapy (CYC or RTX) based on different parameters (estimated glomerular filtration rate at baseline, new or relapsed disease, ANCA specificity, tissue injury, safety), the role of plasma exchange and the role of new therapies. Indeed, we discuss future perspectives in induction remission therapy by reporting recent advances in new targeted therapies with particular reference to avacopan, an orally administered selective C5a receptor inhibitor. PMID:29736379

  18. Cardiotoxicity of the new cancer therapeutics- mechanisms of, and approaches to, the problem

    PubMed Central

    Force, Thomas; Kerkelä, Risto

    2009-01-01

    Cardiotoxicity of some targeted therapeutics, including monoclonal antibodies and small molecule inhibitors, is a reality. Herein we will examine why it occurs, focusing on molecular mechanisms to better understand the issue. We will also examine how big the problem is and, more importantly, how big it may become in the future. We will review models for detecting cardiotoxicity in the pre-clinical phase. We will also focus on two key areas that drive cardiotoxicity- multi-targeting and the inherent lack of selectivity of ATP-competitive antagonists. Finally, we will examine the issue of reversibility and discuss possible approaches to keeping patients on therapy. PMID:18617014

  19. Defining Clinical Response Criteria and Early Response Criteria for Precision Oncology: Current State-of-the-Art and Future Perspectives.

    PubMed

    Subbiah, Vivek; Chuang, Hubert H; Gambhire, Dhiraj; Kairemo, Kalevi

    2017-02-15

    In this era of precision oncology, there has been an exponential growth in the armamentarium of genomically targeted therapies and immunotherapies. Evaluating early responses to precision therapy is essential for "go" versus "no go" decisions for these molecularly targeted drugs and agents that arm the immune system. Many different response assessment criteria exist for use in solid tumors and lymphomas. We reviewed the literature using the Medline/PubMed database for keywords "response assessment" and various known response assessment criteria published up to 2016. In this article we review the commonly used response assessment criteria. We present a decision tree to facilitate selection of appropriate criteria. We also suggest methods for standardization of various response assessment criteria. The relevant response assessment criteria were further studied for rational of development, key features, proposed use and acceptance by various entities. We also discuss early response evaluation and provide specific case studies of early response to targeted therapy. With high-throughput, advanced computing programs and digital data-mining it is now possible to acquire vast amount of high quality imaging data opening up a new field of "omics in radiology"-radiomics that complements genomics for personalized medicine. Radiomics is rapidly evolving and is still in the research arena. This cutting-edge technology is poised to move soon to the mainstream clinical arena. Novel agents with new mechanisms of action require advanced molecular imaging as imaging biomarkers. There is an urgent need for development of standardized early response assessment criteria for evaluation of response to precision therapy.

  20. Pathogenesis, Experimental Models and Contemporary Pharmacotherapy of Irritable Bowel Syndrome: Story About the Brain-Gut Axis

    PubMed Central

    Tsang, S.W.; Auyeung, K.K.W.; Bian, Z.X.; Ko, J.K.S.

    2016-01-01

    Background Although the precise pathophysiology of irritable bowel syndrome (IBS) remains unknown, it is generally considered to be a disorder of the brain-gut axis, representing the disruption of communication between the brain and the digestive system. The present review describes advances in understanding the pathophysiology and experimental approaches in studying IBS, as well as providing an update of the therapies targeting brain-gut axis in the treatment of the disease. Methods Causal factors of IBS are reviewed. Following this, the preclinical experimental models of IBS will be introduced. Besides, both current and future therapeutic approaches of IBS will be discussed. Results When signal of the brain-gut axis becomes misinterpreted, it may lead to dysregulation of both central and enteric nervous systems, altered intestinal motility, increased visceral sensitivity and consequently contributing to the development of IBS. Interference of the brain-gut axis can be modulated by various psychological and environmental factors. Although there is no existing animal experiment that can represent this complex multifactorial disease, these in vivo models are clinically relevant readouts of gastrointestinal functions being essential to the identification of effective treatments of IBS symptoms as well as their molecular targets. Understanding the brain-gut axis is essential in developing the effective therapy for IBS. Therapies include improvement of GI motor functions, relief of visceral hypersensitivity and pain, attenuation of autonomic dysfunctions and suppression of mucosal immune activation. Conclusion Target-oriented therapies that provide symptomatic, psychological and physiological benefits could surely help to improve the quality of life of IBS patients. PMID:27009115

  1. Immune checkpoint inhibitors in advanced renal cell carcinoma: experience to date and future directions.

    PubMed

    Atkins, M B; Clark, J I; Quinn, D I

    2017-07-01

    In recent years, there has been dramatic expansion of the treatment armamentarium for patients with advanced renal cell carcinoma (aRCC), including drugs targeting vascular endothelial growth factor and mammalian target of rapamycin (mTOR) pathways. Despite these advances, patient outcomes remain suboptimal, underscoring the need for therapeutic interventions with novel mechanisms of action. The advent of immunotherapy with checkpoint inhibitors has led to significant changes in the treatment landscape for several solid malignancies. Specifically, drugs targeting the programmed death 1 (PD-1) and cytotoxic T-lymphocyte associated antigen (CTLA-4) pathways have demonstrated considerable clinical efficacy and gained regulatory approval as single-agent or combination therapy for the treatment of patients with metastatic melanoma, non-small cell lung cancer, aRCC, advanced squamous cell carcinoma of the head and neck, urothelial cancer and Hodgkin lymphoma. In aRCC, the PD-1 inhibitor nivolumab was approved in both the United States and Europe for the treatment of patients who have received prior therapy, based on improved overall survival compared with the mTOR inhibitor everolimus. Other checkpoint inhibitors, including the CTLA-4 inhibitor ipilimumab in combination with several agents, and the PD-L1 inhibitor atezolizumab, are in various stages of clinical development in patients with aRCC. In this review, current evidence related to the clinical use of checkpoint inhibitors for the treatment of patients with aRCC is discussed, including information on the frequency and management of unconventional responses and the management of immune-related adverse events. In addition, perspectives on the future use of checkpoint inhibitors are discussed, including the potential value of treatment beyond progression, the potential use in earlier lines of care or in combination with other agents, and the identification of biomarkers to guide patient selection and enable individualization of therapy. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Targeting the cyclin D–cyclin-dependent kinase (CDK)4/6–retinoblastoma pathway with selective CDK 4/6 inhibitors in hormone receptor-positive breast cancer: rationale, current status, and future directions

    PubMed Central

    Spring, Laura; Bardia, Aditya; Modi, Shanu

    2017-01-01

    Dysregulation of the cyclin D–cyclin-dependent kinase (CDK)4/6–INK4–retinoblastoma (Rb) pathway is an important contributor to endocrine therapy resistance. Recent clinical development of selective inhibitors of CDK4 and CDK6 kinases has led to renewed interest in cell cycle regulators, following experience with relatively nonselective pan-CDK inhibitors that often resulted in limited activity and poor safety profiles in the clinic. The highly selective oral CDK 4/6 inhibitors palbociclib (PD0332991), ribociclib (LEE011), and abemaciclib (LY2835219) are able to inhibit the proliferation of Rb-positive tumor cells and have demonstrated dose-dependent growth inhibition in ER+ breast cancer models. In metastatic breast cancer, all three agents are being explored in combination with endocrine therapy in Phase III studies. Results so far indicate promising efficacy and manageable safety profiles, and led to the FDA approval of palbociclib. Phase II–III studies of these agents, in combination with endocrine therapy, are also underway in early breast cancer in the neoadjuvant and adjuvant settings. Selective CDK 4/6 inhibitors are also being investigated with other targeted agents or chemotherapy in the advanced setting. This article reviews the rationale for targeting cyclin D–CDK 4/6 in hormone receptor-positive (HR+) breast cancer, provides an overview of the available preclinical and clinical data with CDK 4/6 inhibitors in breast cancer to date, and summarizes the main features of ongoing clinical trials of these new agents in breast cancer. Future trials evaluating further combinations strategies with CDK 4/6 backbone and translational studies refining predictive biomarkers are needed to help personalize the optimal treatment regimen for individual patients with ER+ breast cancer. PMID:26896604

  3. Pharmacotherapy for childhood obesity: present and future prospects

    PubMed Central

    Sherafat-Kazemzadeh, Roya; Yanovski, Susan Z.; Yanovski, Jack A.

    2012-01-01

    Pediatric obesity is a serious medical condition associated with significant comorbidities during childhood and adulthood. Lifestyle modifications are essential for treating children with obesity, yet many have insufficient response to improve health with behavioral approaches alone. This review summarizes the relatively sparse data on pharmacotherapy for pediatric obesity and presents information on obesity medications in development. Most previously studied medications demonstrated, at best, modest effects on body weight and obesity-related conditions. It is to be hoped that the future will bring new drugs targeting specific obesity phenotypes that will allow clinicians to use etiology-specific, and therefore more effective, anti-obesity therapies. PMID:22929210

  4. ASHA-Life Intervention Perspectives Voiced by Rural Indian Women Living With AIDS.

    PubMed

    Nyamathi, Adeline; Ekstrand, Maria; Srivastava, Neha; Carpenter, Catherine L; Salem, Benissa E; Al-Harrasi, Shawana; Ramakrishnan, Padma; Sinha, Sanjeev

    2016-01-01

    In this focus group study, we explored the experiences of 16 rural women living with AIDS (WLA) who participated in the Asha-Life (AL) intervention to gain an understanding of the environmental, psychosocial, and cultural impact of the AL on their lives. Four themes emerged among AL participants: (a) the importance of tangible support, (b) need for social support, (c) ongoing challenges to accessing antiretroviral therapy (ART), and (d) perspectives on future programs. Our research findings support the development of future programs targeting mother-child dyads which emphasize nutritional knowledge, while reducing barriers to receiving ART, and physical, emotional, and financial support.

  5. The past, present and future of renin–angiotensin aldosterone system inhibition☆

    PubMed Central

    Mentz, Robert J.; Bakris, George L.; Waeber, Bernard; McMurray, John J.V.; Gheorghiade, Mihai; Ruilope, Luis M.; Maggioni, Aldo P.; Swedberg, Karl; Piña, Ileana L.; Fiuzat, Mona; O’Connor, Christopher M.; Zannad, Faiez; Pitt, Bertram

    2014-01-01

    The renin–angiotensin aldosterone system (RAAS) is central to the pathogenesis of cardiovascular disease. RAAS inhibition can reduce blood pressure, prevent target organ damage in hypertension and diabetes, and improve outcomes in patients with heart failure and/or myocardial infarction. This review presents the history of RAAS inhibition including a summary of key heart failure, myocardial infarction, hypertension and atrial fibrillation trials. Recent developments in RAAS inhibition are discussed including implementation and optimization of current drug therapies. Finally, ongoing clinical trials, opportunities for future trials and issues related to the barriers and approvability of novel RAAS inhibitors are highlighted. PMID:23121914

  6. Drug targets for resistant malaria: Historic to future perspectives.

    PubMed

    Kumar, Sahil; Bhardwaj, T R; Prasad, D N; Singh, Rajesh K

    2018-05-11

    New antimalarial targets are the prime need for the discovery of potent drug candidates. In order to fulfill this objective, antimalarial drug researches are focusing on promising targets in order to develop new drug candidates. Basic metabolism and biochemical process in the malaria parasite, i.e. Plasmodium falciparum can play an indispensable role in the identification of these targets. But, the emergence of resistance to antimalarial drugs is an escalating comprehensive problem with the progress of antimalarial drug development. The development of resistance has highlighted the need for the search of novel antimalarial molecules. The pharmaceutical industries are committed to new drug development due to the global recognition of this life threatening resistance to the currently available antimalarial therapy. The recent developments in the understanding of parasite biology are exhilarating this resistance issue which is further being ignited by malaria genome project. With this background of information, this review was aimed to highlights and provides useful information on various present and promising treatment approaches for resistant malaria, new progresses, pursued by some innovative targets that have been explored till date. This review also discusses modern and futuristic multiple approaches to antimalarial drug discovery and development with pictorial presentations highlighting the various targets, that could be exploited for generating promising new drugs in the future for drug resistant malaria. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Epidermal Growth Factor Receptor Tyrosine Kinase: A Potential Target in Treatment of Non-Small-Cell Lung Carcinoma.

    PubMed

    Prabhu, Venugopal Vinod; Devaraj, Niranjali

    2017-01-01

    Lung cancer is responsible for 1.6 million deaths. Approximately 80%-85% of lung cancers are of the non-small-cell variety, which includes squamous cell carcinoma, adenocarcinoma, and large-cell carcinoma. Knowing the stage of cancer progression is a requisite for determining which management approach-surgery, chemotherapy, radiotherapy, and/or immunotherapy-is optimal. Targeted therapeutic approaches with antiangiogenic monoclonal antibodies or tyrosine kinase inhibitors are one option if tumors harbor oncogene mutations. Another, newer approach is directed against cancer-specific molecules and signaling pathways and thus has more limited nonspecific toxicities. This approach targets the epidermal growth factor receptor (EGFR, HER-1/ErbB1), a receptor tyrosine kinase of the ErbB family, which consists of four closely related receptors: HER-1/ErbB1, HER-2/neu/ErbB2, HER-3/ErbB3, and HER-4/ErbB4. Because EGFR is expressed at high levels on the surface of some cancer cells, it has been recognized as an effective anticancer target. EGFR-targeted therapies include monoclonal antibodies (mAbs) and small-molecule tyrosine kinase inhibitors. Tyrosine kinases are an especially important target because they play an important role in the modulation of growth factor signaling. This review highlights various classes of synthetically derived molecules that have been reported in the last few years as potential EGFR-TK inhibitors (TKIs) and their targeted therapies in NSCLC, along with effective strategies for overcoming EGFR-TKI resistance and efforts to develop a novel potent EGFR-TKI as an efficient target of NSCLC treatment in the foreseeable future.

  8. Targeted Therapy for Cancer

    Cancer.gov

    Targeted therapy is a type of cancer treatment that targets the changes in cancer cells that help them grow, divide, and spread. Learn how targeted therapy works against cancer and about side effects that may occur.

  9. A critical assessment of boron target compounds for boron neutron capture therapy.

    PubMed

    Hawthorne, M Frederick; Lee, Mark W

    2003-01-01

    Boron neutron capture therapy (BNCT) has undergone dramatic developments since its inception by Locher in 1936 and the development of nuclear energy during World War II. The ensuing Cold War spawned the entirely new field of polyhedral borane chemistry, rapid advances in nuclear reactor technology and a corresponding increase in the number to reactors potentially available for BNCT. This effort has been largely oriented toward the eradication of glioblastoma multiforme (GBM) and melanoma with reduced interest in other types of malignancies. The design and synthesis of boron-10 target compounds needed for BNCT was not channeled to those types of compounds specifically required for GBM or melanoma. Consequently, a number of potentially useful boron agents are known which have not been biologically evaluated beyond a cursory examination and only three boron-10 enriched target species are approved for human use following their Investigational New Drug classification by the US Food and Drug Administration; BSH, BPA and GB-10. All ongoing clinical trials with GBM and melanoma are necessarily conducted with one of these three species and most often with BPA. The further development of BNCT is presently stalled by the absence of strong support for advanced compound evaluation and compound discovery driven by recent advances in biology and chemistry. A rigorous demonstration of BNCT efficacy surpassing that of currently available protocols has yet to be achieved. This article discusses the past history of compound development, contemporary problems such as compound classification and those problems which impede future advances. The latter include means for biological evaluation of new (and existing) boron target candidates at all stages of their development and the large-scale synthesis of boron target species for clinical trials and beyond. The future of BNCT is bright if latitude is given to the choice of clinical disease to be treated and if a recognized study demonstrating improved efficacy is completed. Eventually, BNCT in some form will be commercialized.

  10. Photodynamic therapy targeting neuropilin-1: Interest of pseudopeptides with improved stability properties.

    PubMed

    Thomas, Noémie; Pernot, Marlène; Vanderesse, Régis; Becuwe, Philippe; Kamarulzaman, Ezatul; Da Silva, David; François, Aurélie; Frochot, Céline; Guillemin, François; Barberi-Heyob, Muriel

    2010-07-15

    The general strategy developed aims to favor the vascular effect of photodynamic therapy by targeting tumor vasculature. Since angiogenic endothelial cells represent an interesting target to potentiate this vascular effect, we previously described the conjugation of a photosensitizer to a peptide targeting neuropilins (NRPs) over-expressed specially in tumor angiogenic vessels and we recently characterized the mechanism of photosensitization-induced thrombogenic events. Nevertheless, in glioma-bearing nude mice, we demonstrated that the peptide moiety was degraded to various rates according to time after intravenous administration. In this study, new peptidases-resistant pseudopeptides were tested, demonstrating a molecular affinity for NRP-1 and NRP-2 recombinant chimeric proteins and devoid of affinity for VEGF receptor type 1 (Flt-1). To argue the involvement of NRP-1, MDA-MB-231 breast cancer cells were used, strongly over-expressing NRP-1 receptor. We evidenced a statistically significant decrease of the different peptides-conjugated photosensitizers uptake after RNA interference-mediated silencing of NRP-1. Peptides-conjugated photosensitizers allowed a selective accumulation into cells. In mice, no degradation was observed in plasma in vivo 4h after intravenous injection by MALDI-TOF mass spectrometry. This study draws attention to this potential problem with peptides, especially in the case of targeting strategies, and provides useful information for the future design of more stable molecules. 2010 Elsevier Inc. All rights reserved.

  11. Evaluation of Human Adipose Tissue Stromal Heterogeneity in Metabolic Disease Using Single Cell RNA-Seq

    DTIC Science & Technology

    2016-09-01

    results are hypothesis-generating and provide the foundation for future studies that will 1) validate the role for newly identified mediators of obesity ...and insulin resistance in animal models and 2) examine novel targets against which we can design therapies to combat obesity and its related...complications. 15. SUBJECT TERMS Obesity , Type 2 Diabetes Mellitus, Insulin resistance, Adipose, Stromal vascular fraction 16. SECURITY CLASSIFICATION OF

  12. Psoriasis

    PubMed Central

    Di Meglio, Paola; Villanova, Federica; Nestle, Frank O.

    2014-01-01

    Psoriasis is a common chronic inflammatory skin disease with a spectrum of clinical phenotypes and results from the interplay of genetic, environmental, and immunological factors. Four decades of clinical and basic research on psoriasis have elucidated many of the pathogenic mechanisms underlying disease and paved the way to effective targeted therapies. Here, we review this progress and identify future directions of study that are supported by a more integrative research approach and aim at further improving the patients' life. PMID:25085957

  13. The Innate and Adaptive Immune System as Targets for Biologic Therapies in Inflammatory Bowel Disease.

    PubMed

    Holleran, Grainne; Lopetuso, Loris; Petito, Valentina; Graziani, Cristina; Ianiro, Gianluca; McNamara, Deirdre; Gasbarrini, Antonio; Scaldaferri, Franco

    2017-09-21

    Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition causing inflammation of gastrointestinal and systemic cells, with an increasing prevalence worldwide. Many factors are known to trigger and maintain inflammation in IBD including the innate and adaptive immune systems, genetics, the gastrointestinal microbiome and several environmental factors. Our knowledge of the involvement of the immune system in the pathophysiology of IBD has advanced rapidly over the last two decades, leading to the development of several immune-targeted treatments with a biological source, known as biologic agents. The initial focus of these agents was directed against the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) leading to dramatic changes in the disease course for a proportion of patients with IBD. However, more recently, it has been shown that a significant proportion of patients do not respond to anti-TNF-α directed therapies, leading a shift to other inflammatory pathways and targets, including those of both the innate and adaptive immune systems, and targets linking both systems including anti-leukocyte trafficking agents-integrins and adhesion molecules. This review briefly describes the molecular basis of immune based gastrointestinal inflammation in IBD, and then describes how several current and future biologic agents work to manipulate these pathways, and their clinical success to date.

  14. Engineering mesenchymal stem cells for regenerative medicine and drug delivery.

    PubMed

    Park, Ji Sun; Suryaprakash, Smruthi; Lao, Yeh-Hsing; Leong, Kam W

    2015-08-01

    Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The Innate and Adaptive Immune System as Targets for Biologic Therapies in Inflammatory Bowel Disease

    PubMed Central

    Holleran, Grainne; Lopetuso, Loris; Petito, Valentina; Graziani, Cristina; Ianiro, Gianluca; McNamara, Deirdre; Gasbarrini, Antonio; Scaldaferri, Franco

    2017-01-01

    Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition causing inflammation of gastrointestinal and systemic cells, with an increasing prevalence worldwide. Many factors are known to trigger and maintain inflammation in IBD including the innate and adaptive immune systems, genetics, the gastrointestinal microbiome and several environmental factors. Our knowledge of the involvement of the immune system in the pathophysiology of IBD has advanced rapidly over the last two decades, leading to the development of several immune-targeted treatments with a biological source, known as biologic agents. The initial focus of these agents was directed against the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) leading to dramatic changes in the disease course for a proportion of patients with IBD. However, more recently, it has been shown that a significant proportion of patients do not respond to anti-TNF-α directed therapies, leading a shift to other inflammatory pathways and targets, including those of both the innate and adaptive immune systems, and targets linking both systems including anti-leukocyte trafficking agents-integrins and adhesion molecules. This review briefly describes the molecular basis of immune based gastrointestinal inflammation in IBD, and then describes how several current and future biologic agents work to manipulate these pathways, and their clinical success to date. PMID:28934123

  16. Mouse Models of Human T Lymphotropic Virus Type-1–Associated Adult T-Cell Leukemia/Lymphoma

    PubMed Central

    Zimmerman, B.; Niewiesk, S.; Lairmore, M. D.

    2011-01-01

    Human T-lymphotropic virus type-1 (HTLV-1), the first human retrovirus discovered, is the causative agent of adult T-cell leukemia/lymphoma (ATL) and a number of lymphocyte-mediated inflammatory conditions including HTLV-1–associated myelopathy/tropical spastic paraparesis. Development of animal models to study the pathogenesis of HTLV-1–associated diseases has been problematic. Mechanisms of early infection and cell-to-cell transmission can be studied in rabbits and nonhuman primates, but lesion development and reagents are limited in these species. The mouse provides a cost-effective, highly reproducible model in which to study factors related to lymphoma development and the preclinical efficacy of potential therapies against ATL. The ability to manipulate transgenic mice has provided important insight into viral genes responsible for lymphocyte transformation. Expansion of various strains of immunodeficient mice has accelerated the testing of drugs and targeted therapy against ATL. This review compares various mouse models to illustrate recent advances in the understanding of HTLV-1–associated ATL development and how improvements in these models are critical to the future development of targeted therapies against this aggressive T-cell lymphoma. PMID:20442421

  17. Review of the progress toward achieving heat confinement-the holy grail of photothermal therapy

    NASA Astrophysics Data System (ADS)

    Sheng, Wangzhong; He, Sha; Seare, William J.; Almutairi, Adah

    2017-08-01

    Photothermal therapy (PTT) involves the application of normally benign light wavelengths in combination with efficient photothermal (PT) agents that convert the absorbed light to heat to ablate selected cancers. The major challenge in PTT is the ability to confine heating and thus direct cellular death to precisely where PT agents are located. The dominant strategy in the field has been to create large libraries of PT agents with increased absorption capabilities and to enhance their delivery and accumulation to achieve sufficiently high concentrations in the tissue targets of interest. While the challenge of material confinement is important for achieving "heat and lethality confinement," this review article suggests another key prospective strategy to make this goal a reality. In this approach, equal emphasis is placed on selecting parameters of light exposure, including wavelength, duration, power density, and total power supplied, based on the intrinsic properties and geometry of tissue targets that influence heat dissipation, to truly achieve heat confinement. This review highlights significant milestones researchers have achieved, as well as examples that suggest future research directions, in this promising technique, as it becomes more relevant in clinical cancer therapy and other noncancer applications.

  18. Histological, molecular and functional subtypes of breast cancers

    PubMed Central

    Malhotra, Gautam K; Zhao, Xiangshan; Band, Hamid

    2010-01-01

    Increased understanding of the molecular heterogeneity that is intrinsic to the various subtypes of breast cancer will likely shape the future of breast cancer diagnosis, prognosis and treatment. Advances in the field over the last several decades have been remarkable and have clearly translated into better patient care as evidenced by the earlier detection, better prognosis and new targeted therapies. There have been two recent advances in the breast cancer research field that have lead to paradigm shifts: first, the identification of intrinsic breast tumor subtypes, which has changed the way we think about breast cancer and second, the recent characterization of cancer stem cells (CSCs), which are suspected to be responsible for tumor initiation, recurrence and resistance to therapy. These findings have opened new exciting avenues to think about breast cancer therapeutic strategies. While these advances constitute major paradigm shifts within the research realm, the clinical arena has yet to adopt and apply our understanding of the molecular basis of the disease to early diagnosis, prognosis and therapy of breast cancers. Here, we will review the current clinical approach to classification of breast cancers, newer molecular-based classification schemes and potential future of biomarkers representing a functional classification of breast cancer. PMID:21057215

  19. Clinically Evaluated Cancer Drugs Inhibiting Redox Signaling.

    PubMed

    Kirkpatrick, D Lynn; Powis, Garth

    2017-02-20

    There are a number of redox-active anticancer agents currently in development based on the premise that altered redox homeostasis is necessary for cancer cell's survival. Recent Advances: This review focuses on the relatively few agents that target cellular redox homeostasis to have entered clinical trial as anticancer drugs. The success rate of redox anticancer drugs has been disappointing compared to other classes of anticancer agents. This is due, in part, to our incomplete understanding of the functions of the redox targets in normal and cancer tissues, leading to off-target toxicities and low therapeutic indexes of the drugs. The field also lags behind in the use biomarkers and other means to select patients who are most likely to respond to redox-targeted therapy. If we wish to derive clinical benefit from agents that attack redox targets, then the future will require a more sophisticated understanding of the role of redox targets in cancer and the increased application of personalized medicine principles for their use. Antioxid. Redox Signal. 26, 262-273.

  20. Geographic Variations and Time Trends in Cancer Treatments in Taiwan.

    PubMed

    Hsu, Jason C; Chang, Sheng-Mao; Lu, Christine Y

    2017-08-02

    Targeted therapies have become important treatment options for cancer care in many countries. This study aimed to examine recent trends in utilization of antineoplastic drugs, particularly the use of targeted therapies for treatment of cancer, by geographic region in Taiwan (northern, midwestern, southern, and eastern regions and the outer islands). This was a retrospective observational study of antineoplastic agents using 2009-2012 quarterly claims data from Taiwan's National Health Insurance Research Database. Yearly market shares by prescription volume and costs for targeted therapies among total antineoplastic agents by region were estimated. We used multivariate regression model and ANOVA to examine variations in utilization of targeted therapies between geographic regions and used ARIMA models to estimate longitudinal trends. Population-adjusted use and costs of antineoplastic drugs (including targeted therapies) were highest in the southern region of Taiwan and lowest in the outer islands. We found a 4-fold difference in use of antineoplastic drugs and a 49-fold difference in use of targeted therapies between regions if the outer islands were included. There were minimal differences in use of antineoplastic drugs between other regions with about a 2-fold difference in use of targeted therapies. Without considering the outer islands, the market share by prescription volume and costs of targeted therapies increased almost 2-fold (1.84-1.90) and 1.5-fold (1.26-1.61) respectively between 2009 and 2012. Furthermore, region was not significantly associated with use of antineoplastic agents or use of targeted therapies after adjusting for confounders. Region was associated with costs of antineoplastic agents but it was not associated with costs of targeted therapies after confounding adjustments. Use of antineoplastic drugs overall and use of targeted therapies for treatment of cancer varied somewhat between regions in Taiwan; use was notably low in the outer islands. Strategies might be needed to ensure access to cancer care in each region as economic burden of cancer care increase due to growing use of targeted therapies.

  1. Immunologic Approaches for the Treatment of Multiple Myeloma

    PubMed Central

    Rasche, Leo; Weinhold, Niels; Morgan, Gareth J; van Rhee, Frits; Davies, Faith E

    2017-01-01

    The FDA approval of two monoclonal antibodies in 2015 has heralded a new era of targeted immunotherapies for multiple myeloma (MM). In this review we discuss the recent approaches using different immunological components to treat MM. In particular, we review current monoclonal antibody based therapies, engineered T- and NK cell products, ‘off-target’ immunomodulation, and strategies utilizing allogeneic cell transplantation in MM. We discuss how an immunologic approach offers promise for the treatment of this genetically heterogeneous disease, and how patients with acquired drug resistance may particularly benefit from these therapies. We also describe some of the limitations of the current strategies and speculate on the future of personalized immunotherapies for MM. PMID:28431262

  2. Modern retinal laser therapy

    PubMed Central

    Kozak, Igor; Luttrull, Jeffrey K.

    2014-01-01

    Medicinal lasers are a standard source of light to produce retinal tissue photocoagulation to treat retinovascular disease. The Diabetic Retinopathy Study and the Early Treatment Diabetic Retinopathy Study were large randomized clinical trials that have shown beneficial effect of retinal laser photocoagulation in diabetic retinopathy and have dictated the standard of care for decades. However, current treatment protocols undergo modifications. Types of lasers used in treatment of retinal diseases include argon, diode, dye and multicolor lasers, micropulse lasers and lasers for photodynamic therapy. Delivery systems include contact lens slit-lamp laser delivery, indirect ophthalmocope based laser photocoagulation and camera based navigated retinal photocoagulation with retinal eye-tracking. Selective targeted photocoagulation could be a future alternative to panretinal photocoagulation. PMID:25892934

  3. The future of uveitis treatment.

    PubMed

    Lin, Phoebe; Suhler, Eric B; Rosenbaum, James T

    2014-01-01

    Uveitis is a heterogeneous collection of diseases with polygenic and environmental influences. This heterogeneity presents challenges in trial design and selection of end points. Despite the multitude of causes, therapeutics targeting common inflammatory pathways are effective in treating diverse forms of uveitis. These treatments, including corticosteroids and immunomodulatory agents, although often effective, can have untoward side effects, limiting their utility. The search for drugs with equal or improved efficacy that are safe is therefore paramount. A mechanism-based approach is most likely to yield the future breakthroughs in the treatment of uveitis. We review the literature and provide examples of the nuances of immune regulation and dysregulation that can be targeted for therapeutic benefit. As our understanding of the causes of uveitis grows we will learn how to better apply antibodies designed to block interaction between inflammatory cytokines and their receptors. T-lymphocyte activation can be targeted by blocking co-stimulatory pathways or inhibiting major histocompatibility complex protein interactions. Furthermore, intracellular downstream molecules from cytokine or other pathways can be inhibited using small molecule inhibitors, which have the benefit of being orally bioavailable. An emerging field is the lipid-mediated inflammatory and regulatory pathways. Alternatively, anti-inflammatory cytokines can be provided by administering recombinant protein, and intracellular "brakes" of inflammatory pathways can be introduced potentially by gene therapy. Novel approaches of delivering a therapeutic substance include, but are not limited to, the use of small interfering RNA, viral and nonviral gene therapy, and microparticle or viscous gel sustained-release drug-delivery platforms. Copyright © 2014. Published by Elsevier Inc.

  4. Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine

    PubMed Central

    Lee, Cody S.; Bishop, Elliot S.; Zhang, Ruyi; Yu, Xinyi; Farina, Evan M.; Yan, Shujuan; Zhao, Chen; Zheng, Zongyue; Shu, Yi; Wu, Xingye; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Yang, Chao; Wu, Ke; Wu, Ying; Ho, Sherwin; Athiviraham, Aravind; Lee, Michael J.; Wolf, Jennifer Moriatis; Reid, Russell R.; He, Tong-Chuan

    2017-01-01

    With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology, it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies. Despite numerous setbacks, efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases. It is wildly recognized that poor gene delivery is the limiting factor for most in vivo gene therapies. There has been a long-lasting interest in using viral vectors, especially adenoviral vectors, to deliver therapeutic genes for the past two decades. Among all currently available viral vectors, adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types. The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development. In fact, among over 2,000 gene therapy clinical trials approved worldwide since 1989, a significant portion of the trials have utilized adenoviral vectors. This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors, including adenoviral biology, approaches to engineering adenoviral vectors, and their applications in clinical and pre-clinical studies with an emphasis in the areas of cancer treatment, vaccination and regenerative medicine. Current challenges and future directions regarding the use of adenoviral vectors are also discussed. It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine. PMID:28944281

  5. p53 as the focus of gene therapy: past, present and future.

    PubMed

    Valente, Joana Fa; Queiroz, Joao A; Sousa, Fani

    2018-01-15

    Several gene deviations can be responsible for triggering oncogenic processes. However, mutations in tumour suppressor genes are usually more associated to malignant diseases, being p53 one of the most affected and studied element. p53 is implicated in a number of known cellular functions, including DNA damage repair, cell cycle arrest in G1/S and G2/M and apoptosis, being an interesting target for cancer treatment. Considering these facts, the development of gene therapy approaches focused on p53 expression and regulation seems to be a promising strategy for cancer therapy. Several studies have shown that transfection of cancer cells with wild-type p53 expressing plasmids could directly drive cells into apoptosis and/or growth arrest, suggesting that a gene therapy approach for cancer treatment can be based on the re-establishment of the normal p53 expression levels and function. Up until now, several clinical research studies using viral and non-viral vectors delivering p53 genes, isolated or combined with other therapeutic agents, have been accomplished and there are already in the market therapies based on the use of this gene. This review summarizes the different methods used to deliver and/or target the p53 as well as the main results of therapeutic effect obtained with the different strategies applied. Finally, the ongoing approaches are described, also focusing the combinatorial therapeutics to show the increased therapeutic potential of combining gene therapy vectors with chemo or radiotherapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. The Pathway From Genes to Gene Therapy in Glaucoma: A Review of Possibilities for Using Genes as Glaucoma Drugs

    PubMed Central

    Borrás, Teresa

    2018-01-01

    Treatment of diseases with gene therapy is advancing rapidly. The use of gene therapy has expanded from the original concept of replacing the mutated gene causing the disease to the use of genes to control nonphysiological levels of expression or to modify pathways known to affect the disease. Genes offer numerous advantages over conventional drugs. They have longer duration of action and are more specific. Genes can be delivered to the target site by naked DNA, cells, nonviral, and viral vectors. The enormous progress of the past decade in molecular biology and delivery systems has provided ways for targeting genes to the intended cell/tissue and safe, long-term vectors. The eye is an ideal organ for gene therapy. It is easily accessible and it is an immune-privileged site. Currently, there are clinical trials for diseases affecting practically every tissue of the eye, including those to restore vision in patients with Leber congenital amaurosis. However, the number of eye trials compared with those for systemic diseases is quite low (1.8%). Nevertheless, judging by the vast amount of ongoing preclinical studies, it is expected that such number will increase considerably in the near future. One area of great need for eye gene therapy is glaucoma, where a long-term gene drug would eliminate daily applications and compliance issues. Here, we review the current state of gene therapy for glaucoma and the possibilities for treating the trabecular meshwork to lower intraocular pressure and the retinal ganglion cells to protect them from neurodegeneration. PMID:28161916

  7. Patient and Organizational Factors Associated With Delays in Antimicrobial Therapy for Septic Shock.

    PubMed

    Amaral, Andre C K B; Fowler, Robert A; Pinto, Ruxandra; Rubenfeld, Gordon D; Ellis, Paul; Bookatz, Brian; Marshall, John C; Martinka, Greg; Keenan, Sean; Laporta, Denny; Roberts, Daniel; Kumar, Anand

    2016-12-01

    To identify clinical and organizational factors associated with delays in antimicrobial therapy for septic shock. In a retrospective cohort of critically ill patients with septic shock. Twenty-four ICUs. A total of 6,720 patients with septic shock. None. Higher Acute Physiology Score (+24 min per 5 Acute Physiology Score points; p < 0.0001); older age (+16 min per 10 yr; p < 0.0001); presence of comorbidities (+35 min; p < 0.0001); hospital length of stay before hypotension: less than 3 days (+50 min; p < 0.0001), between 3 and 7 days (+121 min; p < 0.0001), and longer than 7 days (+130 min; p < 0.0001); and a diagnosis of pneumonia (+45 min; p < 0.01) were associated with longer times to antimicrobial therapy. Two variables were associated with shorter times to antimicrobial therapy: community-acquired infections (-53 min; p < 0.001) and higher temperature (-15 min per 1°C; p < 0.0001). After adjusting for confounders, admissions to academic hospitals (+52 min; p< 0.05), and transfers from medical wards (medical vs surgical ward admission; +39 min; p < 0.05) had longer times to antimicrobial therapy. Admissions from the emergency department (emergency department vs surgical ward admission, -47 min; p< 0.001) had shorter times to antimicrobial therapy. We identified clinical and organizational factors that can serve as evidence-based targets for future quality-improvement initiatives on antimicrobial timing. The observation that academic hospitals are more likely to delay antimicrobials should be further explored in future trials.

  8. Pathobiology of liver fibrosis: a translational success story

    PubMed Central

    Lee, Youngmin A; Wallace, Michael C; Friedman, Scott L

    2015-01-01

    Reversibility of hepatic fibrosis and cirrhosis following antiviral therapy for hepatitis B or C has advanced the prospect of developing antifibrotic therapies for patients with chronic liver diseases, especially non-alcoholic steatohepatitis. Mechanisms of fibrosis have focused on hepatic stellate cells, which become fibrogenic myofibroblasts during injury through ‘activation’, and are at the nexus of efforts to define novel drug targets. Recent studies have clarified pathways of stellate cell gene regulation and epigenetics, emerging pathways of fibrosis regression through the recruitment and amplification of fibrolytic macrophages, nuanced responses of discrete inflammatory cell subsets and the identification of the ‘ductular reaction’ as a marker of severe injury and repair. Based on our expanded knowledge of fibrosis pathogenesis, attention is now directed towards strategies for antifibrotic therapies and regulatory challenges for conducting clinical trials with these agents. New therapies are attempting to: 1) Control or cure the primary disease or reduce tissue injury; 2) Target receptor-ligand interactions and intracellular signaling; 3) Inhibit fibrogenesis; and 4) Promote resolution of fibrosis. Progress is urgently needed in validating non-invasive markers of fibrosis progression and regression that can supplant biopsy and shorten the duration of clinical trials. Both scientific and clinical challenges remain, however the past three decades of steady progress in understanding liver fibrosis have contributed to an emerging translational success story, with realistic hopes for antifibrotic therapies to treat patients with chronic liver disease in the near future. PMID:25681399

  9. Tumor Therapeutics Work as Stress Inducers to Enhance Tumor Sensitivity to Natural Killer (NK) Cell Cytolysis by Up-regulating NKp30 Ligand B7-H6.

    PubMed

    Cao, Guoshuai; Wang, Jian; Zheng, Xiaodong; Wei, Haiming; Tian, Zhigang; Sun, Rui

    2015-12-11

    Immune cells are believed to participate in initiating anti-tumor effects during regular tumor therapy such as chemotherapy, radiation, hyperthermia, and cytokine injection. One of the mechanisms underlying this process is the expression of so-called stress-inducible immunostimulating ligands. Although the activating receptor NKG2D has been proven to play roles in tumor therapy through targeting its ligands, the role of NKp30, another key activating receptor, is seldom addressed. In this study, we found that the NKp30 ligand B7-H6 was widely expressed in tumor cells and closely correlated to their susceptibility to NK cell lysis. Further studies showed that treatment of tumor cells with almost all standard tumor therapeutics, including chemotherapy (cisplatin, 5-fluorouracil), radiation therapy, non-lethal heat shock, and cytokine therapy (TNF-α), could up-regulate the expression of B7-H6 in tumor cells and enhance tumor sensitivity to NK cell cytolysis. B7-H6 shRNA treatment effectively dampened sensitization of tumor cells to NK-mediated lysis. Our study not only reveals the possibility that tumor therapeutics work as stress inducers to enhance tumor sensitivity to NK cell cytolysis but also suggests that B7-H6 could be a potential target for tumor therapy in the future. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease

    PubMed Central

    Gourdie, Robert G.; Dimmeler, Stefanie; Kohl, Peter

    2016-01-01

    Our understanding of cardiac fibroblast functions has moved beyond their roles in heart structure and extracellular matrix generation, and now includes contributions to paracrine, mechanical and electrical signalling during ontogenesis and normal cardiac activity. Fibroblasts have central roles in pathogenic remodelling during myocardial ischaemia, hypertension and heart failure. As key contributors to scar formation, they are crucial for tissue repair after interventions including surgery and ablation. Novel experimental approaches targeting cardiac fibroblasts are promising potential therapies for heart disease. Indeed, several existing drugs act, at least partially, through effects on cardiac connective tissue. This Review outlines the origins and roles of fibroblasts in cardiac development, homeostasis and disease; illustrates the involvement of fibroblasts in current and emerging clinical interventions; and identifies future targets for research and development. PMID:27339799

  11. Update on the management of ulcerative colitis.

    PubMed

    Taba Taba Vakili, Sahar; Taher, Mohammad; Ebrahimi Daryani, Nasser

    2012-01-01

    The present treatment goals for inflammatory bowel diseases (IBD) especially ulcerative colitis (UC) include rapid induction of clinical remission, steroid-free maintenance of clinical remission, mucosal healing and improvement of quality of life in UC patients. Immunomodulators have been reserved for steroid- dependent or steroid- refractory UC patients. Among these agents, azathioprine/6-mercaptopurine should be used for maintenance of remission in quiescent UC. Calcineurin inhibitors can be prescribed as a short-term rescue therapy in steroid- refractory UC patients, but the long term efficacy of these agents remains unclear. According to retrospective studies, methotraxate is not recommended for inducing and maintaining remission in UC. Novel biological therapies targeting different specific immunological pathways continue to be developed and introduced for a variety of clinical scenarios in IBD. Infliximab is currently used for induction and maintenance therapy in patients who have moderately to severely active UC with an inadequate response to conventional agents such as aminosalicylates, corticosteroids, or immunomodulators. Other anti-TNF agents and biologic therapies are undergoing evaluation in clinical trials for their efficacy in IBD. Most patients who start biologics should continue treatment for the foreseeable future and potential consequences of discontinuation should be discussed with individual patients. Currently, data do not exist to administer biologics as first-line therapy in UC. Emerging data suggest that biologics may have the potential to prevent complications and limit disease progression. If such benefits are proven, biologics may be used in the future to modulate subclinical inflammation and to prevent the development of clinical disease.

  12. Controlling the Seedbeds of Tuberculosis: Diagnosis and Treatment of Tuberculosis Infection

    PubMed Central

    Rangaka, Molebogeng X.; Cavalcante, Solange C.; Marais, Ben J.; Thim, Sok; Martinson, Neil A.; Swaminathan, Soumya; Chaisson, Richard E.

    2015-01-01

    The billions of people with latent tuberculosis infection serve as the seedbeds for future cases of active tuberculosis. Virtually all episodes of tuberculosis disease are preceded by a period of asymptomatic Mycobacterium tuberculosis infection; therefore, identifying infected individuals most likely to progress to disease and treating such subclinical infections to prevent future disease provides a critical opportunity to interrupt tuberculosis transmission and reduce the global burden of tuberculosis disease. Programs focusing on single strategies rather than comprehensive programs that deliver an integrated arsenal for tuberculosis control may continue to struggle. Tuberculosis preventive therapy is a poorly utilized tool that is essential for controlling the reservoirs of disease that drive the current epidemic. Comprehensive control strategies that combine preventive therapy for the most high-risk populations and communities with improved case-finding and treatment, control of transmission and health systems strengthening could ultimately lead to worldwide tuberculosis elimination. This paper outlines challenges to implementation of preventive therapy and provides pragmatic suggestions for overcoming them. It further advocates for tuberculosis preventive therapy as the core of a renewed global focus to implement a comprehensive epidemic control strategy that would reduce new tuberculosis cases to elimination targets. This strategy would be underpinned by accelerated research to further understand the biology of subclinical tuberculosis infections, develop novel diagnostics, and drug regimens specifically for subclinical tuberculosis infection, strengthen health systems, community engagement, and enhance sustainable large scale implementation of preventive therapy programs. PMID:26515679

  13. Host genetic determinants of HIV pathogenesis: an immunologic perspective.

    PubMed

    Hunt, Peter W; Carrington, Mary

    2008-05-01

    The purpose of this review is to highlight recent advances in our understanding of host genetic determinants of HIV pathogenesis and to provide a theoretical framework for interpreting these studies in the context of our evolving understanding of HIV immunopathogenesis. The first genome-wide association analysis of host determinants of HIV pathogenesis and other recent studies evaluating the interaction between killer cell immunoglobulin-like receptors and human leukocyte antigen alleles have implicated both adaptive and innate immune responses in the control of HIV replication. Furthermore, genetic variation associated with the expression of CCR5 and its ligand have been strongly associated with both decreased susceptibility to HIV infection and delayed clinical progression, independent of their effects on viral replication, suggesting a potential role for CCR5 inhibitors as immune-based therapies in HIV disease. Host factors associated with the control of HIV replication may help identify important targets for vaccine design, while those associated with delayed clinical progression provide targets for future immune-based therapies against HIV infection.

  14. Dosimetry in nuclear medicine therapy: radiobiology application and results.

    PubMed

    Strigari, L; Benassi, M; Chiesa, C; Cremonesi, M; Bodei, L; D'Andrea, M

    2011-04-01

    The linear quadratic model (LQM) has largely been used to assess the radiobiological damage to tissue by external beam fractionated radiotherapy and more recently has been extended to encompass a general continuous time varying dose rate protocol such as targeted radionuclide therapy (TRT). In this review, we provide the basic aspects of radiobiology, from a theoretical point of view, starting from the "four Rs" of radiobiology and introducing the biologically effective doses, which may be used to quantify the impact of a treatment on both tumors and normal tissues. We also present the main parameters required in the LQM, and illustrate the main models of tumor control probability and normal tissue complication probability and summarize the main dose-effect responses, reported in literature, which demonstrate the tentative link between targeted radiotherapy doses and those used in conventional radiotherapy. A better understanding of the radiobiology and mechanisms of action of TRT could contribute to describe the clinical data and guide the development of future compounds and the designing of prospective clinical trials.

  15. Intramuscular injection of AAV8 in mice and macaques is associated with substantial hepatic targeting and transgene expression.

    PubMed

    Greig, Jenny A; Peng, Hui; Ohlstein, Jason; Medina-Jaszek, C Angelica; Ahonkhai, Omua; Mentzinger, Anne; Grant, Rebecca L; Roy, Soumitra; Chen, Shu-Jen; Bell, Peter; Tretiakova, Anna P; Wilson, James M

    2014-01-01

    Intramuscular (IM) administration of adeno-associated viral (AAV) vectors has entered the early stages of clinical development with some success, including the first approved gene therapy product in the West called Glybera. In preparation for broader clinical development of IM AAV vector gene therapy, we conducted detailed pre-clinical studies in mice and macaques evaluating aspects of delivery that could affect performance. We found that following IM administration of AAV8 vectors in mice, a portion of the vector reached the liver and hepatic gene expression contributed significantly to total expression of secreted transgenes. The contribution from liver could be controlled by altering injection volume and by the use of traditional (promoter) and non-traditional (tissue-specific microRNA target sites) expression control elements. Hepatic distribution of vector following IM injection was also noted in rhesus macaques. These pre-clinical data on AAV delivery should inform safe and efficient development of future AAV products.

  16. Pentalysine β-Carbonylphthalocyanine Zinc: An Effective Tumor-Targeting Photosensitizer for Photodynamic Therapy

    PubMed Central

    Chen, Zhuo; Zhou, Shanyong; Chen, Jincan; Deng, Yicai; Luo, Zhipu; Chen, Hongwei; Hamblin, Michael R.

    2010-01-01

    Unsymmetrical phthalocyanine derivatives have been widely studied as photosensitizers for photodynamic therapy (PDT), targeting various tumor types. However, the preparation of unsymmetrical phthalocyanines is always a challenge due to the presence of many possible structural isomers. Herein we report a new unsymmetrical zinc phthalocyanine, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys)5), that was prepared in large quantity and high purity. This is a water-soluble cationic photosensitizer and maintains a high quantum yield of singlet oxygen generation similar to that of unsubstituted zinc phthalocyanine (ZnPc). Compared with anionic ZnPc counterparts, ZnPc-(Lys)5 shows a higher level cellular uptake and 20-fold higher phototoxicity toward tumor cells. Pharmacokinetics and PDT studies of ZnPc-(Lys)5 in S180 tumor-bearing mice showed a high ratio of tumor versus skin retention and significant tumor inhibition. This new molecular framework will allow synthetic diversity in the number of lysine residues incorporated and will facilitate future QSAR studies. PMID:20458713

  17. Genetic approaches for the study of PTSD: Advances and challenges

    PubMed Central

    Banerjee, Sunayana B.; Morrison, Filomene G.; Ressler, Kerry J.

    2017-01-01

    Post-traumatic stress disorder (PTSD) is a highly debilitating stress and anxiety-related disorder that occurs in response to specific trauma or abuse. Genetic risk factors may account for up to 30–40% of the heritability of PTSD. Understanding the gene pathways that are associated with PTSD, and how those genes interact with the fear and stress circuitry to mediate risk and resilience for PTSD will enable the development of targeted therapies to prevent the occurrence of or decrease the severity of this complex multi-gene disorder. This review will summarize recent research on genetic approaches to understanding PTSD risk and resilience in human populations, including candidate genes and their epigenetic modifications, genome-wide association studies and neural imaging genetics approaches. Despite challenges faced within this field of study such as inconsistent results and replications, genetic approaches still offer exciting opportunities for the identification and development of novel therapeutic targets and therapies in the future. PMID:28242325

  18. Emerging Antiepileptic Drugs for Severe Pediatric Epilepsies.

    PubMed

    Mudigoudar, Basanagoud; Weatherspoon, Sarah; Wheless, James W

    2016-05-01

    The medical management of the epilepsy syndromes of early childhood (eg, infantile spasms, Dravet syndrome, and Lennox-Gastaut syndrome) is challenging; and requires careful evaluation, classification, and treatment. Pharmacologic therapy continues to be the mainstay of management for these children, and as such it is important for the clinician to be familiar with the role of new antiepileptic drugs. This article reports the clinical trial data and personal experience in treating the severe epilepsies of childhood with the recently Food and Drug Administration-approved new antiepileptic drugs (vigabatrin, rufinamide, perampanel, and clobazam) and those in clinical trials (cannabidiol, stiripentol, and fenfluramine). Genetic research has also identified an increasing number of pediatric developmental and seizure disorders that are possibly treatable with targeted drug therapies, focused on correcting underlying neural dysfunction. We highlight recent genetic advances, and how they affect our treatment of some of the genetic epilepsies, and speculate on the use of targeted genetic treatment (precision medicine) in the future. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. CRISPR/Cas9-based tools for targeted genome editing and replication control of HBV.

    PubMed

    Peng, Cheng; Lu, Mengji; Yang, Dongliang

    2015-10-01

    Hepatitis B virus (HBV) infection remains a major global health problem because current therapies rarely eliminate HBV infections to achieve a complete cure. A different treatment paradigm to effectively clear HBV infection and eradicate latent viral reservoirs is urgently required. In recent years, the development of a new RNA-guided gene-editing tool, the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) system, has greatly facilitated site-specific mutagenesis and represents a very promising potential therapeutic tool for diseases, including for eradication of invasive pathogens such as HBV. Here, we review recent advances in the use of CRISPR/Cas9, which is designed to target HBV specific DNA sequences to inhibit HBV replication and to induce viral genome mutation, in cell lines or animal models. Advantages, limitations and possible solutions, and proposed directions for future research are discussed to highlight the opportunities and challenges of CRISPR/Cas9 as a new, potentially curative therapy for chronic hepatitis B infection.

  20. Host-pathogen interplay in the respiratory environment of cystic fibrosis.

    PubMed

    Yonker, Lael M; Cigana, Cristina; Hurley, Bryan P; Bragonzi, Alessandra

    2015-07-01

    Significant advances have been made in the understanding of disease progression in cystic fibrosis (CF), revealing a complex interplay between host and pathogenic organisms. The diverse CF microbiota within the airway activates an aberrant immune response that is ineffective in clearing infection. An appreciation of how the CF host immune system interacts with these organisms is crucial to understanding the pathogenesis of CF pulmonary disease. Here we discuss the microbial complexity present in the lungs of individuals with CF, review emerging concepts of innate and adaptive immune responses to pathogens that chronically inhabit the CF lung, and discuss therapies that target the aberrant inflammatory response that characterizes CF. A greater understanding of the underlying mechanisms will shed light on pathogenesis and guide more targeted therapies in the future that serve to reduce infection, minimize lung pathology, and improve the quality of life for patients with CF. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  1. The Fat of the Matter: Obesity and Visceral Adiposity in Treated HIV Infection.

    PubMed

    Lake, Jordan E

    2017-12-01

    The aim of this review is to summarize knowledge of the prevalence, relevant physiology, and consequences of obesity and visceral adiposity in HIV-infected adults, including highlighting gaps in current knowledge and future research directions. Similar to the general population, obesity prevalence is increasing among HIV-infected persons, and obesity and visceral adiposity are associated with numerous metabolic and inflammatory sequelae. However, HIV- and antiretroviral therapy (ART)-specific factors may contribute to fat gain and fat quality in treated HIV infection, particularly to the development of visceral adiposity, and sex differences may exist. Obesity and visceral adiposity commonly occur in HIV-infected persons and have significant implications for morbidity and mortality. Future research should aim to better elucidate the HIV- and ART-specific contributors to obesity and visceral adiposity in treated HIV infection, with the goal of developing targeted therapies for the prevention and treatment of obesity and visceral adiposity in the modern ART era.

  2. Stem cell technology for tendon regeneration: current status, challenges, and future research directions

    PubMed Central

    Lui, Pauline Po Yee

    2015-01-01

    Tendon injuries are a common cause of physical disability. They present a clinical challenge to orthopedic surgeons because injured tendons respond poorly to current treatments without tissue regeneration and the time required for rehabilitation is long. New treatment options are required. Stem cell-based therapies offer great potential to promote tendon regeneration due to their high proliferative, synthetic, and immunomodulatory activities as well as their potential to differentiate to the target cell types and undergo genetic modification. In this review, I first recapped the challenges of tendon repair by reviewing the anatomy of tendon. Next, I discussed the advantages and limitations of using different types of stem cells compared to terminally differentiated cells for tendon tissue engineering. The safety and efficacy of application of stem cells and their modified counterparts for tendon tissue engineering were then summarized after a systematic literature search in PubMed. The challenges and future research directions to enhance, optimize, and standardize stem cell-based therapies for augmenting tendon repair were then discussed. PMID:26715856

  3. Anaplastic lymphoma kinase inhibitors in brain metastases from ALK+ non-small cell lung cancer: hitting the target even in the CNS.

    PubMed

    Klempner, Samuel J; Ou, Sai-Hong Ignatius

    2015-06-01

    The paradigm shift occurring in non-small cell lung cancer (NSCLC) is encapsulated by the management of patients harboring oncogenic anaplastic lymphoma kinase (ALK) rearrangements. The unprecedented improvements in patient outcomes resulting from ALK-directed therapy have led to the appreciation of patterns of disease progression. Early studies have suggested that some tyrosine kinase inhibitors (TKIs), including ALK TKIs, inefficiently penetrated the blood brain barrier. With the increasing appreciation of the CNS as a sanctuary site in ALK TKI-treated patients, there is increasing focus and importance on the prevention and control of CNS metastases in ALK-rearranged NSCLC. The spectrum of CNS activity is variable among the currently available ALK TKI therapies and further studies are ongoing. In the following review we discuss the ability of current and future ALK inhibitors (ALK-i) to control and prevent CNS progression in patients with ALK-rearranged NSCLC. The potential implications for TKI sequencing and important future research directions are discussed.

  4. Integrated motivational interviewing and cognitive-behavioural therapy for bipolar disorder with comorbid substance use.

    PubMed

    Jones, Steven H; Barrowclough, Christine; Allott, Rory; Day, Christine; Earnshaw, Paul; Wilson, Ian

    2011-01-01

    Although comorbid substance use is a common problem in bipolar disorder, there has been little research into options for psychological therapy. Studies to date have concentrated on purely cognitive-behavioural approaches, which are not equipped to deal with the ambivalence to change exhibited by many towards therapy designed to change substance use. This paper provides the first report of an integrated psychological treatment approach for bipolar disorder with comorbid substance use. The intervention reported combines motivational interviewing and cognitive-behavioural therapy to address ambivalence and equips individuals with strategies to address substance use. Across five individual case studies, preliminary evidence is reported to support the acceptability and the feasibility of this approach. Despite most participants not highlighting their substance use as a primary therapy target, all but one exhibited reduced use of drugs or alcohol at the end of therapy, sustained at 6 months' follow-up. There was some evidence for improvements in mood symptoms and impulsiveness, but this was less clear-cut. The impact of social and relationship issues on therapy process and outcome is discussed. The implications of the current findings for future intervention research in this area are considered. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Clearance Pathways and Tumor Targeting of Imaging Nanoparticles

    PubMed Central

    Yu, Mengxiao; Zheng, Jie

    2016-01-01

    A basic understanding of how imaging nanoparticles are removed from the normal organs/tissues but retained in the tumors is important for their future clinical applications in early cancer diagnosis and therapy. In this review, we discuss current understandings of clearance pathways and tumor targeting of small-molecule- and inorganic-nanoparticle-based imaging probes with an emphasis on molecular nanoprobes, a class of inorganic nanoprobes that can escape reticuloendothelial system (RES) uptake and be rapidly eliminated from the normal tissues/organs via kidneys but can still passively target the tumor with high efficiency through the enhanced permeability permeability and retention (EPR) effect. The impact of nanoparticle design (size, shape, and surface chemistry) on their excretion, pharmacokinetics, and passive tumor targeting were quantitatively discussed. Synergetic integration of effective renal clearance and EPR effect offers a promising pathway to design low-toxicity and high-contrast-enhancement imaging nanoparticles that could meet with the clinical translational requirements of regulatory agencies. PMID:26149184

  6. Genetics and epigenetics of liver cancer.

    PubMed

    Ozen, Cigdem; Yildiz, Gokhan; Dagcan, Alper Tunga; Cevik, Dilek; Ors, Aysegul; Keles, Umur; Topel, Hande; Ozturk, Mehmet

    2013-05-25

    Hepatocellular carcinoma (HCC) represents a major form of primary liver cancer in adults. Chronic infections with hepatitis B (HBV) and C (HCV) viruses and alcohol abuse are the major factors leading to HCC. This deadly cancer affects more than 500,000 people worldwide and it is quite resistant to conventional chemo- and radiotherapy. Genetic and epigenetic studies on HCC may help to understand better its mechanisms and provide new tools for early diagnosis and therapy. Recent literature on whole genome analysis of HCC indicated a high number of mutated genes in addition to well-known genes such as TP53, CTNNB1, AXIN1 and CDKN2A, but their frequencies are much lower. Apart from CTNNB1 mutations, most of the other mutations appear to result in loss-of-function. Thus, HCC-associated mutations cannot be easily targeted for therapy. Epigenetic aberrations that appear to occur quite frequently may serve as new targets. Global DNA hypomethylation, promoter methylation, aberrant expression of non-coding RNAs and dysregulated expression of other epigenetic regulatory genes such as EZH2 are the best-known epigenetic abnormalities. Future research in this direction may help to identify novel biomarkers and therapeutic targets for HCC. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. DNA Duplex-Based Photodynamic Molecular Beacon for Targeted Killing of Retinoblastoma Cell.

    PubMed

    Wei, Yanchun; Lu, Cuixia; Chen, Qun; Xing, Da

    2016-11-01

    Retinoblastoma (RB) is the most common primary intraocular malignancy of infancy. An alternative RB treatment protocol is proposed and tested. It is based on a photodynamic therapy (PDT) with a designed molecular beacon that specifically targets the murine double minute x (MDMX) high-expressed RB cells. A MDMX mRNA triggered photodynamic molecular beacon is designed by binding a photosensitizer molecule (pyropheophorbide-a, or PPa) and a black hole quencher-3 (BHQ3) through a complementary oligonucleotide sequence. Cells with and without MDMX high-expression are incubated with the beacon and then irradiated with a laser. The fluorescence and reactive oxygen species are detected in solution to verify the specific activation of PPa by the perfectly matched DNA targets. The cell viabilities are evaluated with CCK-8 and flow cytometry assay. The fluorescence and photo-cytoxicity of PPa is recovered and significantly higher in the MDMX high-expressed Y79 and WERI-Rb1 cells, compared to that with the MDMX low-expressed cells. The synthesized beacon exhibits high PDT efficiency toward MDMX high-expressed RB cells. The data suggest that the designed beacon may provide a potential alternative for RB therapy and secures the ground for future investigation.

  8. Meganucleases and Other Tools for Targeted Genome Engineering: Perspectives and Challenges for Gene Therapy

    PubMed Central

    Silva, George; Poirot, Laurent; Galetto, Roman; Smith, Julianne; Montoya, Guillermo; Duchateau, Philippe; Pâques, Frédéric

    2011-01-01

    The importance of safer approaches for gene therapy has been underscored by a series of severe adverse events (SAEs) observed in patients involved in clinical trials for Severe Combined Immune Deficiency Disease (SCID) and Chromic Granulomatous Disease (CGD). While a new generation of viral vectors is in the process of replacing the classical gamma-retrovirus–based approach, a number of strategies have emerged based on non-viral vectorization and/or targeted insertion aimed at achieving safer gene transfer. Currently, these methods display lower efficacies than viral transduction although many of them can yield more than 1% engineered cells in vitro. Nuclease-based approaches, wherein an endonuclease is used to trigger site-specific genome editing, can significantly increase the percentage of targeted cells. These methods therefore provide a real alternative to classical gene transfer as well as gene editing. However, the first endonuclease to be in clinic today is not used for gene transfer, but to inactivate a gene (CCR5) required for HIV infection. Here, we review these alternative approaches, with a special emphasis on meganucleases, a family of naturally occurring rare-cutting endonucleases, and speculate on their current and future potential. PMID:21182466

  9. Immune checkpoint inhibitors in lung cancer: current status and future directions.

    PubMed

    Fan, Yun; Mao, Weimin

    2017-04-01

    Recently, the immune checkpoint inhibitors that target programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) have made a breakthrough in treating advanced non-small cell lung cancer (NSCLC) with the efficacy of approximately 20%; among which, nivolumab has acquired treatment indications in lung squamous cell carcinoma. The inhibitors targeting cytotoxic T lymphocyte associated antigen 4 (CTLA-4) are also undergoing clinical trials. Researches on immune checkpoint inhibitors have been rapidly implemented in a variety of different types of lung cancer, such as small cell lung cancer (SCLC) and locally advanced NSCLC, and these inhibitors began to be applied in combination with some established treatments, including chemotherapy, targeting therapy and radiotherapy. Undoubtedly, the immune checkpoint inhibitors have become a hot spot in the research and treatment of lung cancer. However, many problems wait to be solved, such as searching for ideal biomarkers, constituting the best criteria for curative effect evaluation, exploring different combination treatment models, and clearly understanding the mechanisms of primary or secondary drug resistance. Along with these problems to be successfully solved, the immune checkpoint inhibitors will have more broad applications in lung cancer therapy.

  10. Novel anti-microbial therapies for dental plaque-related diseases.

    PubMed

    Allaker, Robert P; Douglas, C W Ian

    2009-01-01

    Control of dental plaque-related diseases has traditionally relied on non-specific removal of plaque by mechanical means. As our knowledge of oral disease mechanisms increases, future treatment is likely to be more targeted, for example at small groups of organisms, single species or at key virulence factors they produce. The aim of this review is to consider the current status as regards novel treatment approaches. Maintenance of oral hygiene often includes use of chemical agents; however, increasing problems of resistance to synthetic antimicrobials have encouraged the search for alternative natural products. Plants are the source of more than 25% of prescription and over-the-counter preparations, and the potential of natural agents for oral prophylaxis will therefore be considered. Targeted approaches may be directed at the black-pigmented anaerobes associated with periodontitis. Such pigments provide an opportunity for targeted phototherapy with high-intensity monochromatic light. Studies to date have demonstrated selective killing of Porphyromonas gingivalis and Prevotella intermedia in biofilms. Functional inhibition approaches, including the use of protease inhibitors, are also being explored to control periodontitis. Replacement therapy by which a resident pathogen is replaced with a non-pathogenic bacteriocin-producing variant is currently under development with respect to Streptococcus mutans and dental caries.

  11. Small Molecule Sequential Dual-Targeting Theragnostic Strategy (SMSDTTS): from Preclinical Experiments towards Possible Clinical Anticancer Applications

    PubMed Central

    Li, Junjie; Oyen, Raymond; Verbruggen, Alfons; Ni, Yicheng

    2013-01-01

    Hitting the evasive tumor cells proves challenging in targeted cancer therapies. A general and unconventional anticancer approach namely small molecule sequential dual-targeting theragnostic strategy (SMSDTTS) has recently been introduced with the aims to target and debulk the tumor mass, wipe out the residual tumor cells, and meanwhile enable cancer detectability. This dual targeting approach works in two steps for systemic delivery of two naturally derived drugs. First, an anti-tubulin vascular disrupting agent, e.g., combretastatin A4 phosphate (CA4P), is injected to selectively cut off tumor blood supply and to cause massive necrosis, which nevertheless always leaves peripheral tumor residues. Secondly, a necrosis-avid radiopharmaceutical, namely 131I-hypericin (131I-Hyp), is administered the next day, which accumulates in intratumoral necrosis and irradiates the residual cancer cells with beta particles. Theoretically, this complementary targeted approach may biologically and radioactively ablate solid tumors and reduce the risk of local recurrence, remote metastases, and thus cancer mortality. Meanwhile, the emitted gamma rays facilitate radio-scintigraphy to detect tumors and follow up the therapy, hence a simultaneous theragnostic approach. SMSDTTS has now shown promise from multicenter animal experiments and may demonstrate unique anticancer efficacy in upcoming preliminary clinical trials. In this short review article, information about the two involved agents, the rationale of SMSDTTS, its preclinical antitumor efficacy, multifocal targetability, simultaneous theragnostic property, and toxicities of the dose regimens are summarized. Meanwhile, possible drawbacks, practical challenges and future improvement with SMSDTTS are discussed, which hopefully may help to push forward this strategy from preclinical experiments towards possible clinical applications. PMID:23412554

  12. Small Molecule Sequential Dual-Targeting Theragnostic Strategy (SMSDTTS): from Preclinical Experiments towards Possible Clinical Anticancer Applications.

    PubMed

    Li, Junjie; Oyen, Raymond; Verbruggen, Alfons; Ni, Yicheng

    2013-01-01

    Hitting the evasive tumor cells proves challenging in targeted cancer therapies. A general and unconventional anticancer approach namely small molecule sequential dual-targeting theragnostic strategy (SMSDTTS) has recently been introduced with the aims to target and debulk the tumor mass, wipe out the residual tumor cells, and meanwhile enable cancer detectability. This dual targeting approach works in two steps for systemic delivery of two naturally derived drugs. First, an anti-tubulin vascular disrupting agent, e.g., combretastatin A4 phosphate (CA4P), is injected to selectively cut off tumor blood supply and to cause massive necrosis, which nevertheless always leaves peripheral tumor residues. Secondly, a necrosis-avid radiopharmaceutical, namely (131)I-hypericin ((131)I-Hyp), is administered the next day, which accumulates in intratumoral necrosis and irradiates the residual cancer cells with beta particles. Theoretically, this complementary targeted approach may biologically and radioactively ablate solid tumors and reduce the risk of local recurrence, remote metastases, and thus cancer mortality. Meanwhile, the emitted gamma rays facilitate radio-scintigraphy to detect tumors and follow up the therapy, hence a simultaneous theragnostic approach. SMSDTTS has now shown promise from multicenter animal experiments and may demonstrate unique anticancer efficacy in upcoming preliminary clinical trials. In this short review article, information about the two involved agents, the rationale of SMSDTTS, its preclinical antitumor efficacy, multifocal targetability, simultaneous theragnostic property, and toxicities of the dose regimens are summarized. Meanwhile, possible drawbacks, practical challenges and future improvement with SMSDTTS are discussed, which hopefully may help to push forward this strategy from preclinical experiments towards possible clinical applications.

  13. Prostate Cancer Clinical Consortium Clinical Research Site:Targeted Therapies

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-2-0159 TITLE: Prostate Cancer Clinical Consortium Clinical Research Site: Targeted Therapies PRINCIPAL INVESTIGATOR...Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Prostate Cancer Clinical Consortium Clinical Research Site: Targeted Therapies 5b. GRANT NUMBER... therapy resistance/sensitivity, identification of new therapeutic targets through high quality genomic analyses, providing access to the highest quality

  14. Hemophagocytic Lymphohistiocytosis in Children: Pathogenesis and Treatment

    PubMed Central

    Ishii, Eiichi

    2016-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a rare disorder in children that is characterized by persistent fever, splenomegaly with cytopenia, hypertriglyceridemia, and hypofibrinogenemia. Increased levels of various cytokines and soluble interleukin-2 receptor are biological markers of HLH. HLH can be classified into two major forms: primary and secondary. Familial hemophagocytic lymphohistiocytosis (FHL), a type of primary HLH, is an autosomal recessive disorder that typically occurs in infancy and can be classified into five different subtypes (FHL types 1–5). In Japan, >80% of patients with FHL have either PRF1 (FHL type 2) or UNC13D (FHL type 3) defects. FHL is considered to be a disorder of T-cell function because the activity of NK cells or cytotoxic T lymphocytes as target cells is usually impaired. Moreover, Epstein–Barr virus-associated HLH (EBV-HLH) is considered a major subtype of secondary HLH. Any genetic background could have an effect on the pathogenesis of secondary HLH because EBV-HLH is considered to be particularly prevalent in Asian countries. For primary HLH, hematopoietic stem cell transplantation is the only accepted curative therapy, although cord blood transplantation with a reduced-conditioning regimen has been used with superior outcomes. For secondary HLH, including EBV-HLH, immunochemotherapy based on the HLH-2004 protocol has been used. In the near future, the entire mechanism of HLH should be clarified to establish less toxic therapies, including cell therapy and gene targeting therapy. PMID:27242976

  15. Non-small cell lung cancer therapy in the elderly.

    PubMed

    Gridelli, Cesare; Rossi, Antonio; Maione, Paolo; Schettino, Clorinda; Bareschino, Maria Anna; Palazzolo, Giovanni; Zeppa, Rosario; Ambrosio, Rita; Barbato, Valentina; Sacco, Paola Claudia

    2011-05-01

    To date, lung cancer is still the leading cause of cancer-related mortality worldwide, with the majority of lung cancers arising in the elderly. As a consequence, we can expect an increase in the number of older lung cancer patients considered suitable for chemotherapy in the near future. Elderly patients often have comorbid conditions and progressive physiologic reduction of organ function, which can make the selection of proper treatment daunting. Some patients will be able to tolerate chemotherapy as well as their younger counterparts, whereas others will experience severe toxicity and require treatment modifications. Thus, a major issue is effectively selecting patients suitable for standard or attenuated therapy. A comprehensive geriatric assessment performed at baseline is a useful tool that can help select the best treatment regimen to be administered to elderly patients. Until now, few trials have specifically focused on elderly patients affected by non-small cell lung cancer (NSCLC), particularly those with advanced disease; prospective elderly-specific studies in early stages are still lacking. High priority should be given to evaluating the role of new targeted therapies. Unfortunately, to date, clinical trials that include functional status and comorbidity as part of the geriatric assessment are rare. Future trials, specifically in the elderly population, should include these kinds of evaluations. The most recent therapies for the treatment of elderly patients with NSCLC will be discussed here.

  16. Ocrelizumab: a B-cell depleting therapy for multiple sclerosis.

    PubMed

    Jakimovski, Dejan; Weinstock-Guttman, Bianca; Ramanathan, Murali; Kolb, Channa; Hojnacki, David; Minagar, Alireza; Zivadinov, Robert

    2017-09-01

    Multiple sclerosis (MS) is the most common neurological disease responsible for early disability in the young working population. In the last two decades, based on retrospective/prospective data, the use of disease-modifying therapies has been shown to slow the rate of disability progression and prolonged the time to conversion into secondary-progressive MS (SPMS). However, despite the availability of several approved therapies, disability progression cannot be halted significantly in all MS patients. Areas covered: This article reviews the immunopathology of the B-cells, and their role in pathogenesis of MS and their attractiveness as a potential therapeutic target in MS. The review focuses on the recently published ocrelizumab phase III trials in terms of its efficacy, safety, and tolerability as well as its future considerations. Expert opinion: B lymphocyte cell depletion therapy offers a compelling and promising new option for MS patients. Nonetheless, there is a need for heightened vigilance and awareness in detecting potential long-term consequences that currently remain unknown.

  17. Achievements and obstacles of remyelinating therapies in multiple sclerosis.

    PubMed

    Stangel, Martin; Kuhlmann, Tanja; Matthews, Paul M; Kilpatrick, Trevor J

    2017-12-01

    Remyelination in the CNS is the natural process of damage repair in demyelinating diseases such as multiple sclerosis (MS). However, remyelination becomes inadequate in many people with MS, which results in axonal degeneration and clinical disability. Enhancement of remyelination is a logical therapeutic goal; nevertheless, all currently licensed therapies for MS are immunomodulatory and do not support remyelination directly. Several molecular pathways have been identified as potential therapeutic targets to induce remyelination, and some of these have now been assessed in proof-of-concept clinical trials. However, trial design faces several obstacles: optimal clinical or paraclinical outcome measures to assess remyelination remain ill-defined, and identification of the ideal timing of therapy is also a crucial issue. In addition, realistic expectations are needed concerning the probable benefits of such therapies. Nevertheless, approaches that enhance remyelination are likely to be protective for axons and so could prevent long-term neurodegeneration. Future MS treatment paradigms, therefore, are likely to comprise a combinatorial approach that involves both immunomodulatory and regenerative treatments.

  18. Is multiple sclerosis a length-dependent central axonopathy? The case for therapeutic lag and the asynchronous progressive MS hypotheses.

    PubMed

    Giovannoni, Gavin; Cutter, Gary; Sormani, Maria Pia; Belachew, Shibeshih; Hyde, Robert; Koendgen, Harold; Knappertz, Volker; Tomic, Davorka; Leppert, David; Herndon, Robert; Wheeler-Kingshott, Claudia A M; Ciccarelli, Olga; Selwood, David; di Cantogno, Elisabetta Verdun; Ben-Amor, Ali-Frederic; Matthews, Paul; Carassiti, Daniele; Baker, David; Schmierer, Klaus

    2017-02-01

    Trials of anti-inflammatory therapies in non-relapsing progressive multiple sclerosis (MS) have been stubbornly negative except recently for an anti-CD20 therapy in primary progressive MS and a S1P modulator siponimod in secondary progressive MS. We argue that this might be because trials have been too short and have focused on assessing neuronal pathways, with insufficient reserve capacity, as the core component of the primary outcome. Delayed neuroaxonal degeneration primed by prior inflammation is not expected to respond to disease-modifying therapies targeting MS-specific mechanisms. However, anti-inflammatory therapies may modify these damaged pathways, but with a therapeutic lag that may take years to manifest. Based on these observations we propose that clinically apparent neurodegenerative components of progressive MS may occur in a length-dependent manner and asynchronously. If this hypothesis is confirmed it may have major implications for the future design of progressive MS trials. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Applications of Gene Editing Technologies to Cellular Therapies.

    PubMed

    Rein, Lindsay A M; Yang, Haeyoon; Chao, Nelson J

    2018-03-27

    Hematologic malignancies are characterized by genetic heterogeneity, making classic gene therapy with a goal of correcting 1 genetic defect ineffective in many of these diseases. Despite initial tribulations, gene therapy, as a field, has grown by leaps and bounds with the recent development of gene editing techniques including zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR) sequences and CRISPR-associated protein-9 (Cas9) nuclease or CRISPR/Cas9. These novel technologies have been applied to efficiently and specifically modify genetic information in target and effector cells. In particular, CRISPR/Cas9 technology has been applied to various hematologic malignancies and has also been used to modify and improve chimeric antigen receptor-modified T cells for the purpose of providing effective cellular therapies. Although gene editing is in its infancy in malignant hematologic diseases, there is much room for growth and application in the future. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  20. Management of bipolar disorders in women by nonpharmacological methods

    PubMed Central

    Naik, Sujit Kumar

    2015-01-01

    Several reasons justify the need for nonpharmacological interventions for bipolar disorder (BD) in women. This review focuses on psychosocial therapies for BDs in women. The research evidence for a wide range of psychosocial interventions for the management of BDs in women has been presented. All the interventions have some common components like targeting disease management, information regarding illness, and coping skills. There also are distinctive features like cognitive restructuring and self-rated mood charts in cognitive behavior therapy, regulation of sleep/wake cycles and daily routines in interpersonal sleep regulation therapy, and communication skill training in family treatments. Many psychosocial interventions hold promise as adjunctive therapies for bipolar patients. In India, there is a considerable dearth of literature in this area due lack of skilled staff for psychosocial interventions. Future trials need to: Clarify which populations are most likely to benefit from which strategies; identify putative mechanisms of action; systematically evaluate costs, benefits, and generalizability of effects, and record adverse effects. PMID:26330644

Top