Sample records for future technological innovations

  1. Innovation network

    PubMed Central

    Acemoglu, Daron; Akcigit, Ufuk; Kerr, William R.

    2016-01-01

    Technological progress builds upon itself, with the expansion of invention in one domain propelling future work in linked fields. Our analysis uses 1.8 million US patents and their citation properties to map the innovation network and its strength. Past innovation network structures are calculated using citation patterns across technology classes during 1975–1994. The interaction of this preexisting network structure with patent growth in upstream technology fields has strong predictive power on future innovation after 1995. This pattern is consistent with the idea that when there is more past upstream innovation for a particular technology class to build on, then that technology class innovates more. PMID:27681628

  2. Technological Innovation of Thin-Film Transistors: Technology Development, History, and Future

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshitaka

    2012-06-01

    The scale of the liquid crystal display industry has expanded rapidly, driven by technological innovations for thin-film transistors (TFTs). The TFT technology, which started from amorphous silicon (a-Si), has produced large TVs, and low-temperature polycrystalline silicon (poly-Si) has become a core technology for small displays, such as mobile phones. Recently, various TFT technological seeds have been realized, indicating that new information appliances that match new lifestyles and information infrastructures will be available in the near future. In this article, I review the history of TFT technology and discuss the future of TFT technological development from the technological innovation viewpoint.

  3. Consumer acceptance of technology-based food innovations: lessons for the future of nutrigenomics.

    PubMed

    Ronteltap, A; van Trijp, J C M; Renes, R J; Frewer, L J

    2007-07-01

    Determinants of consumer adoption of innovations have been studied from different angles and from the perspectives of various disciplines. In the food area, the literature is dominated by a focus on consumer concern. This paper reviews previous research into acceptance of technology-based innovation from both inside and outside the food domain, extracts key learnings from this literature and integrates them into a new conceptual framework for consumer acceptance of technology-based food innovations. The framework distinguishes 'distal' and 'proximal' determinants of acceptance. Distal factors (characteristics of the innovation, the consumer and the social system) influence consumers' intention to accept an innovation through proximal factors (perceived cost/benefit considerations, perceptions of risk and uncertainty, social norm and perceived behavioural control). The framework's application as a tool to anticipate consumer reaction to future innovations is illustrated for an actual technology-based innovation in food science, nutrigenomics (the interaction between nutrition and human genetics).

  4. Innovation in Technology-Enhanced Assessment in the UK and the USA: Future Scenarios and Critical Considerations

    ERIC Educational Resources Information Center

    Perrotta, Carlo

    2014-01-01

    This paper uses methods derived from the field of futures studies to explore the future of technology-enhanced assessment. Drawing on interviews and consultation activities with experts, the paper aims to discuss the conditions that can impede or foster "innovation" in assessment and education more broadly. Through a review of relevant…

  5. Innovations in Practice: An Examination of Technological Impacts in the Field

    ERIC Educational Resources Information Center

    Angus, Jim

    2012-01-01

    Technological innovation is sweeping the world into an unimaginable future. These forces are affecting all aspects of how people live and work. What will be the role of museums and museum educators in this future? This article surveys some of the technologies that have profoundly affected museums and museum education and poses some questions: what…

  6. The Investigation of Pre-Service Teachers' Concerns about Integrating Web 2.0 Technologies into Instruction

    ERIC Educational Resources Information Center

    Hao, Yungwei; Wang, Shiou-ling; Chang, Su-jen; Hsu, Yin-hung; Tang, Ren-yen

    2013-01-01

    Studies indicated Web 2.0 technologies can support learning. Then, integration of innovation may create concerns among teachers because of the innovative features. In this study, the innovation refers to Web 2.0 technology integration into instruction. To help pre-service teachers make the best use of the innovation in their future instruction, it…

  7. SITE PROGRAM CURRENT AND FUTURE INNOVATIVE TECHNIQUES FOR GROUNDWATER TREATMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) conducts research related to the demonstration and evaluation of innovative cleanup technologies. One of the mechanisms for the evaluation of innovative field-scale technologies for hazardous ...

  8. The influence of government actions on innovative activities in the development of environmental technologies to control sulfur dioxide emissions from stationary sources

    NASA Astrophysics Data System (ADS)

    Taylor, Margaret R.

    2001-12-01

    A better understanding of the influence of government actions on innovation is needed to inform future policy endeavors in areas ranging from industrial competitiveness to environmentally sustainable growth. Environmental control technology is a rich area for the study of this influence, since government has stronger incentives to promote innovation in these technologies than does the private sector. This dissertation investigated the case of sulfur dioxide (SO2) control technologies for electric power plants. In studying innovation in these technologies, it was very important to understand the details of these technologies as well as their long organizational history. These technologies have been affected by government actions ranging from government-sponsored research and technology transfer mechanisms to national regulatory events. The dissertation integrated insights from several complementary and repeatable innovation evaluation methods; this approach supported a fuller understanding of innovation while it structured the research results for potential future comparative analysis. Innovative activities were investigated through: patent activity analysis; technical content analysis and researcher co-authorship network analysis in a conference held for over twenty years; learning curve analysis for eighty-eight U.S. power plants; and a dozen expert interviews from a variety of innovative actors. Innovative outcomes were investigated through: analysis of observed improvements in newly installed technologies over time; evaluation of historic cost studies on standardized systems; and expert interviews. Several policy-relevant findings resulted from this dissertation. (1) The existence of national government regulation stimulated inventive activity more than government research support alone. (2) The existence and the anticipation of government regulation appeared to spur inventive activity, while regulatory stringency appeared to drive inventive activity and the communication process underlying knowledge transfer and diffusion. (3) The regulatory-forced adoption of SO2 control technologies led to a learning curve effect in which operating experience with the equipment resulted in significant cost improvements. This learning curve effect is comparable with findings in many other industries and is likely to be useful in predictions of the costs of future environmental technologies. (4) Performance improvements and cost reductions occurred in a quantifiable fashion as the technology became more widely adopted.

  9. Navy/Marine Corps innovative science and technology developments for future enhanced mine detection capabilities

    NASA Astrophysics Data System (ADS)

    Holloway, John H., Jr.; Witherspoon, Ned H.; Miller, Richard E.; Davis, Kenn S.; Suiter, Harold R.; Hilton, Russell J.

    2000-08-01

    JMDT is a Navy/Marine Corps 6.2 Exploratory Development program that is closely coordinated with the 6.4 COBRA acquisition program. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. Prior to transition to acquisition, the COBRA ATD was extremely successful in demonstrating a passive airborne multispectral video sensor system operating in the tactical Pioneer unmanned aerial vehicle (UAV), combined with an integrated ground station subsystem to detect and locate minefields from surf zone to inland areas. JMDT is investigating advanced technology solutions for future enhancements in mine field detection capability beyond the current COBRA ATD demonstrated capabilities. JMDT has recently been delivered next- generation, innovative hardware which was specified by the Coastal System Station and developed under contract. This hardware includes an agile-tuning multispectral, polarimetric, digital video camera and advanced multi wavelength laser illumination technologies to extend the same sorts of multispectral detections from a UAV into the night and over shallow water and other difficult littoral regions. One of these illumination devices is an ultra- compact, highly-efficient near-IR laser diode array. The other is a multi-wavelength range-gateable laser. Additionally, in conjunction with this new technology, algorithm enhancements are being developed in JMDT for future naval capabilities which will outperform the already impressive record of automatic detection of minefields demonstrated by the COBAR ATD.

  10. Biomedical Technology. Innovations: The Social Consequences of Science and Technology Program.

    ERIC Educational Resources Information Center

    McInerney, Joseph D.; And Others

    This module is part of an interdisciplinary program designed to educate the general citizenry regarding the issues of science/technology/society that have important consequences for both present and future social policies. Specifically, the program provides an opportunity for students to assess the effects of selected technological innovations in…

  11. Technology and the Future of Healthcare

    PubMed Central

    Thimbleby, Harold

    2013-01-01

    Healthcare changes dramatically because of technological developments, from anesthetics and antibiotics to magnetic resonance imaging scanners and radiotherapy. Future technological innovation is going to keep transforming healthcare, yet while technologies (new drugs and treatments, new devices, new social media support for healthcare, etc) will drive innovation, human factors will remain one of the stable limitations of breakthroughs. No predictions can satisfy everybody; instead, this article explores fragments of the future to see how to think more clearly about how to get where we want to go. Significance for public health Technology drives healthcare more than any other force, and in the future it will continue to develop in dramatic ways. While we can glimpse and debate the details of future trends in healthcare, we need to be clear about the drivers so we can align with them and actively work to ensure the best outcomes for society as a whole. PMID:25170499

  12. The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gur, Ilan

    2014-03-07

    The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.

  13. The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology

    ScienceCinema

    Gur, Ilan (Program Director and Senior Advisor, ARPA-E)

    2018-02-02

    The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.

  14. Advanced Education and Technology Business Plan, 2010-13. Highlights

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2010

    2010-01-01

    The Ministry of Advanced Education and Technology envisions Alberta's prosperity through innovation and lifelong learning. Advanced Education and Technology's mission is to lead the development of a knowledge-driven future through a dynamic and integrated advanced learning and innovation system. This paper presents the highlights of the business…

  15. NREL Briefs Congressional Committee on Impact of Scientific Innovations on

    Science.gov Websites

    Transportation Future | News | NREL Briefs Congressional Committee on Impact of Scientific Innovations on Transportation Future NREL Briefs Congressional Committee on Impact of Scientific Innovations impact of new technologies will indeed be wide-ranging, it is also true that vehicles with conventional

  16. Human Reproduction: Social and Technological Aspects. Innovations: The Social Consequences of Science and Technology Program.

    ERIC Educational Resources Information Center

    McConnell, Mary C.; And Others

    This module is part of an interdisciplinary program designed to educate the general citizenry regarding the issues of science/technology/society that have important consequences for both present and future social policies. Specifically, the program provides an opportunity for students to assess the effects of selected technological innovations in…

  17. Geography, Images and Technology. Innovations in Education and Publishing at the National Geographic Society.

    ERIC Educational Resources Information Center

    Peterson, George

    1986-01-01

    This paper discusses the role of the National Geographic Society (NGS) in providing educational materials on geography, from the National Geographic magazine to future innovative educational technologies. The changing nature of technology, communications, and the role of the creative mind are described in remarks quoted from the Society's…

  18. The Value of Wind Technology Innovation: Implications for the U.S. Power System, Wind Industry, Electricity Consumers, and Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu T; Lantz, Eric J; Mowers, Matthew

    Improvements to wind technologies have, in part, led to substantial deployment of U.S. wind power in recent years. The degree to which technology innovation will continue is highly uncertain adding to uncertainties in future wind deployment. We apply electric sector modeling to estimate the potential wind deployment opportunities across a range of technology advancement projections. The suite of projections considered span a wide range of possible cost and technology innovation trajectories, including those from a recent expert elicitation of wind energy experts, a projection based on the broader literature, and one reflecting estimates based on a U.S. DOE research initiative.more » In addition, we explore how these deployment pathways may impact the electricity system, electricity consumers, the environment, and the wind-related workforce. Overall, our analysis finds that wind technology innovation can have consequential implications for future wind power development throughout the United States, impact the broader electricity system, lower electric system and consumer costs, provide potential environmental benefits, and grow the U.S. wind workforce.« less

  19. Imagining value, imagining users: academic technology transfer for health innovation.

    PubMed

    Miller, Fiona Alice; Sanders, Carrie B; Lehoux, Pascale

    2009-04-01

    Governments have invested heavily in the clinical and economic promise of health innovation and express increasing concern with the efficacy and efficiency of the health innovation system. In considering strategies for 'better' health innovation, policy makers and researchers have taken a particular interest in the work of universities and related public research organizations: How do these organizations identify and transfer promising innovations to market, and do these efforts make best use of public sector investments? We conducted an ethnographic study of technology transfer offices (TTOs) in Ontario and British Columbia, Canada, to consider the place of health and health system imperatives in judgments of value in early-stage health innovation. Our analysis suggests that the valuation process is poorly specified as a set of task-specific judgments. Instead, we argue that technology transfer professionals are active participants in the construction of the innovation and assign value by 'imagining' the end product in its 'context of use'. Oriented as they are to the commercialization of health technology, TTOs understand users primarily as market players. The immediate users of TTOs' efforts are commercial partners (i.e., licensees, investors) who are capable of translating current discoveries into future commodities. The ultimate end users - patients, clinicians, health systems - are the future consumers of the products to be sold. Attention to these proximate and more distal users in the valuation process is a complex and constitutive feature of the work of health technology transfer. At the same time, judgements about individual technologies are made in relation to a broader imperative through which TTOs seek to imagine and construct sustainable innovation systems. Judgments of value are rendered sensible in relation to the logic of valuation for systems of innovation that, in turn, configure users of health innovation in systemic ways.

  20. A Review of Worldwide Patents: Innovations in Peak Flow Meters for Asthma.

    PubMed

    Klingman, Karen J; Castner, Jessica; Titus, Albert H

    2016-01-01

    Contemporary healthcare nurses increasingly rely on innovative technology for assessment, treatment, and patient self-management. Funding opportunities as well are increasingly steering toward technology development and innovation. Health researchers, including nursing scientists, who are engaged in medical device innovation need to assess the state of the art of current technology. This requires an intellectual property analysis, or patent search, which is not covered by the types of literature reviews customarily used in health science research. The purposes of this article are to illustrate a methodical review of worldwide patents and to show how those results can be used to identify possible products available for use. An application of peak flow meters for use by patients with asthma is used to illustrate the process. The Derwent Innovations Index interface with keyword searching is illustrated, as is the use of Google Patents. From the 14 patent document results, six possible technologies were identified. The patent search revealed innovations in asthma peak flow meters for use in future research and identified future directions for device development. These results support the claim that patent literature must be included in reviews that seek to identify technology state-of-the-art healthcare applications and that advances in the nursing research paradigm should include patents as background and scholarly products.

  1. Building a Future for Technological Innovation

    DTIC Science & Technology

    2010-08-17

    breakthroughs in health IT • Address scientific “grand challenges” Promote Competitive Markets that Spur Productive Entrepreneurship • Promote... entrepreneurship • Improve public sector innovation and support community innovation Source: http://www.whitehouse.gov/administration/eop/nec/reports

  2. Impact of information technology reliance and innovativeness on rural healthcare services: study of dindigul district in Tamilnadu, India.

    PubMed

    Lakshmi, K Bhagya; Rajaram, M

    2012-06-01

    The aim of this report was to analyze the influence of information technology (IT) applications and innovativeness on the acceptance of rural healthcare services. The impact of IT application, domain-specific innovativeness, and technology acceptance model (TAM) variables on future health IT (HIT) utilization intention has been tested through structural equation modeling techniques. The sample consisted of 465 rural health personnel from the Dindigul District of Tamilnadu, India, who had never had access to IT. Data analysis showed that health workers' innovativeness and IT application have a direct and positive influence on future HIT utilization intention and that the basic TAM hypotheses are fulfilled. IT application can be increased with interfaces that are easier to use, but only if perceived usefulness remains high. Health personnel's innovativeness positively influences technology exposure and the ease of use perception of the IT medium, referred to throughout this article as the "health channel." This research enables health departments to know which aspects of their communication strategies to highlight in order to get health personnel and other service providers to adopt IT. Perceived ease of use and IT application has a significant influence on health personnel's willingness to adopt HIT. This shows that health information and adoption by health personnel are key tools in the increase of future HIT. It is also recommended that health directors target some of their health campaigns to the more innovative beneficiaries. There are still too few studies that have analyzed the effects of innovativeness and IT adoption on behavior of health personnel. This work aimed to combine the influence of IT adoption, innovativeness, and the traditional TAM in order to construct an improved model for HIT acceptance. It will require an integrated model to do so.

  3. The future of irrigation on the High Plains

    USDA-ARS?s Scientific Manuscript database

    The future of irrigation on the U.S. High Plains was examined through the lens of past changes in water supply and innovations in irrigation technology, management and agronomy. The innovations have greatly increased the efficiency of water application and use, and the agricultural productivity of t...

  4. Toward Sustainable Anticipatory Governance: Analyzing and Assessing Nanotechnology Innovation Processes

    NASA Astrophysics Data System (ADS)

    Foley, Rider Williams

    Cities around the globe struggle with socio-economic disparities, resource inefficiency, environmental contamination, and quality-of-life challenges. Technological innovation, as one prominent approach to problem solving, promises to address these challenges; yet, introducing new technologies, such as nanotechnology, into society and cities has often resulted in negative consequences. Recent research has conceptually linked anticipatory governance and sustainability science: to understand the role of technology in complex problems our societies face; to anticipate negative consequences of technological innovation; and to promote long-term oriented and responsible governance of technologies. This dissertation advances this link conceptually and empirically, focusing on nanotechnology and urban sustainability challenges. The guiding question for this dissertation research is: How can nanotechnology be innovated and governed in responsible ways and with sustainable outcomes? The dissertation: analyzes the nanotechnology innovation process from an actor- and activities-oriented perspective (Chapter 2); assesses this innovation process from a comprehensive perspective on sustainable governance (Chapter 3); constructs a small set of future scenarios to consider future implications of different nanotechnology governance models (Chapter 4); and appraises the amenability of sustainability problems to nanotechnological interventions (Chapter 5). The four studies are based on data collected through literature review, document analysis, participant observation, interviews, workshops, and walking audits, as part of process analysis, scenario construction, and technology assessment. Research was conducted in collaboration with representatives from industry, government agencies, and civic organizations. The empirical parts of the four studies focus on Metropolitan Phoenix. Findings suggest that: predefined mandates and economic goals dominate the nanotechnology innovation process; normative responsibilities identified by risk governance, sustainability-oriented governance, and anticipatory governance are infrequently considered in the nanotechnology innovation process; different governance models will have major impacts on the role and effects of nanotechnology in cities in the future; and nanotechnologies, currently, do not effectively address the root causes of urban sustainability challenges and require complementary solution approaches. This dissertation contributes to the concepts of anticipatory governance and sustainability science on how to constructively guide nanotechnological innovation in order to harvest its positive potential and safeguard against negative consequences.

  5. Defense Labs: The Innovation Engine for Sustaining Our Quality Edge

    DTIC Science & Technology

    2015-10-01

    LRRDPP) and, more broadly, the Defense Innovation Initiative ( DII ), aim to shape these investments by pursuing leap-ahead technologies that give us...this advantage. The DII supports the first pillar of the Force of the Future, Com- petitiveness through Technological and Operational Supe- riority

  6. What Next?: Educational Innovation and Philadelphia's School of the Future. Educational Innovations Series

    ERIC Educational Resources Information Center

    Cullinane, Mary, Ed.; Hess, Frederick M., Ed.

    2010-01-01

    "What Next?" offers a detailed study of the School of the Future's first three years (2006-2009) revealing what the School of the Future can teach us about high school redesign, public-private partnerships, and the use of technology in school reform. When the school district of Philadelphia teamed up with the Microsoft Corporation in…

  7. Future Educators' Explaining Voices

    ERIC Educational Resources Information Center

    de Oliveira, Janaina Minelli; Caballero, Pablo Buenestado; Camacho, Mar

    2013-01-01

    Teacher education programs must offer pre-service students innovative technology-supported learning environments, guiding them in the revision of their preconceptions on literacy and technology. This present paper presents a case study that uses podcast to inquiry into future educators' views on technology and the digital age. Results show future…

  8. Fermilab Friends for Science Education | Support Us

    Science.gov Websites

    economy are driven by scientific and technological innovations. We want a strong future and must support our future scientists and their teachers now. We need a scientifically literate and aware society create new, innovative science education programs and make the best use of unique Fermilab resources

  9. Creating a Nation of Innovators. A Brief Report

    ERIC Educational Resources Information Center

    Fluellen, Jerry E., Jr.

    2011-01-01

    The Learning and Brain Conference for 2011 featured talks on a handful of themes including creativity, technology, education tomorrow, five minds for the future and innovation. Of these, innovation took center stage. Tony Wagner's opening plenary session became the conference prologue, examining innovation from several perspectives including seven…

  10. An Examination of the Navy’s Future Naval Capability Technology Transition Process

    DTIC Science & Technology

    2004-12-01

    managing innovation , innovation is a lot of art and a little science. b. Innovation Skills The President of the small manufacturing company...34 managing innovation ", the breakthroughs do not come from managed, tightly structured programs. The development of those breakthroughs into truly useful

  11. Innovation in Surgery

    PubMed Central

    Riskin, Daniel J.; Longaker, Michael T.; Gertner, Michael; Krummel, Thomas M.

    2006-01-01

    Objective: To describe the field of surgical innovation from a historical perspective, applying new findings from research in technology innovation. Background: While surgical innovation has a rich tradition, as a field of study it is embryonic. Only a handful of academic centers of surgical innovation exist, all of which have arisen within the last 5 years. To this point, the field has not been well defined, nor have future options to promote surgical innovation been thoroughly explored. It is clear that surgical innovation is fundamental to surgical progress and has significant health policy implications. A process of systematically evaluating and promoting innovation in surgery may be critical in the evolving practice of medicine. Methods: A review of the academic literature in technology innovation was undertaken. Articles and books were identified through technical, medical, and business sources. Luminaries in surgical innovation were interviewed to develop further relevance to surgical history. The concepts in technology innovation were then applied to innovation in surgery, using the historical example of surgical endoscopy as a representative area, which encompasses millennia of learning and spans multiple specialties of care. Results: The history of surgery is comprised largely of individual, widely respected surgeon innovators. While respecting individual accomplishments, surgeons as a group have at times hindered critical innovation to the detriment of our profession and patients. As a clinical discipline, surgery relies on a tradition of research and attracting the brightest young minds. Innovation in surgery to date has been impressive, but inconsistently supported. Conclusion: A body of knowledge on technology innovation has been developed over the last decade but has largely not been applied to surgery. New surgical innovation centers are working to define the field and identify critical aspects of surgical innovation promotion. It is our responsibility as a profession to work to understand innovation in surgery, discover, translate, and commercialize advances to address major clinical problems, and to support the future of our profession consistently and rationally. PMID:17060760

  12. The Report of the Committee on Technology and Innovation. 1986 Commission on the Future of the South.

    ERIC Educational Resources Information Center

    Rosenfeld, Stuart, Ed.

    This report is intended to identify opportunities for rebuilding the South's economy on the foundations of technology and innovation; to describe some of the conditions in the region that affect the creation, transfer, and commercialization of technology; and to present specific recommendations to help the South make more effective use of its…

  13. Naval Science & Technology: Enabling the Future Force

    DTIC Science & Technology

    2013-04-01

    corn for disruptive technologies Laser Cooling Spintronics Bz 1st U.S. Intel satellite GRAB Semiconductors GaAs, GaN, SiC GPS...Payoff • Innovative and game-changing • Approved by Corporate Board • Delivers prototype Innovative Naval Prototypes (5-10 Year) Disruptive ... Technologies Free Electron Laser Integrated Topside EM Railgun Sea Base Enablers Tactical Satellite Large Displacement UUV AACUS Directed

  14. Advanced Education and Technology Business Plan, 2011-14

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    Advanced Education and Technology's mission is to lead the development of a knowledge-driven future through a dynamic and integrated advanced learning and innovation system. Its core businesses are to: (1) provide strategic leadership for Campus Alberta and Alberta Innovates; and (2) engage learners, industry and the community in learning…

  15. 75 FR 17375 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... submit to the Office of Management and Budget (OMB) for clearance the following proposal for collection... Papers to the Technology Innovation Program (TIP). OMB Control Number: None. Form Number(s): None. Type... develop new areas for future competitions for the Technology Innovation Program (TIP) by offering ideas in...

  16. FY10 Engineering Innovations, Research and Technology Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, M A; Aceves, S M; Paulson, C N

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&Dmore » 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less

  17. The Innovation Deficit in Urban Water: The Need for an Integrated Perspective on Institutions, Organizations, and Technology.

    PubMed

    Kiparsky, Michael; Sedlak, David L; Thompson, Barton H; Truffer, Bernhard

    2013-08-01

    Interaction between institutional change and technological change poses important constraints on transitions of urban water systems to a state that can meet future needs. Research on urban water and other technology-dependent systems provides insights that are valuable to technology researchers interested in assuring that their efforts will have an impact. In the context of research on institutional change, innovation is the development, application, diffusion, and utilization of new knowledge and technology. This definition is intentionally inclusive: technological innovation will play a key role in reinvention of urban water systems, but is only part of what is necessary. Innovation usually depends on context, such that major changes to infrastructure include not only the technological inventions that drive greater efficiencies and physical transformations of water treatment and delivery systems, but also the political, cultural, social, and economic factors that hinder and enable such changes. On the basis of past and present changes in urban water systems, institutional innovation will be of similar importance to technological innovation in urban water reinvention. To solve current urban water infrastructure challenges, technology-focused researchers need to recognize the intertwined nature of technologies and institutions and the social systems that control change.

  18. Nursing operations automation and health care technology innovations: 2025 and beyond.

    PubMed

    Suby, ChrysMarie

    2013-01-01

    This article reviews why nursing operations automation is important, reviews the impact of computer technology on nursing from a historical perspective, and considers the future of nursing operations automation and health care technology innovations in 2025 and beyond. The increasing automation in health care organizations will benefit patient care, staffing and scheduling systems and central staffing offices, census control, and measurement of patient acuity.

  19. Usability and accessibility in consumer health informatics current trends and future challenges.

    PubMed

    Goldberg, Larry; Lide, Bettijoyce; Lowry, Svetlana; Massett, Holly A; O'Connell, Trisha; Preece, Jennifer; Quesenbery, Whitney; Shneiderman, Ben

    2011-05-01

    It is a truism that, for innovative eHealth systems to have true value and impact, they must first and foremost be usable and accessible by clinicians, consumers, and other stakeholders. In this paper, current trends and future challenges in the usability and accessibility of consumer health informatics will be described. Consumer expectations of their healthcare providers and healthcare records in this new era of consumer-directed care will be explored, and innovative visualizations, assistive technologies, and other ways that healthcare information is currently being provided and/or shared will be described. Challenges for ensuring the usability of current and future systems will also be discussed. An innovative model for conducting systematic, timely, user-centered research on consumer-facing websites at the National Cancer Institute (NCI) and the ongoing efforts at the National Institute of Standards and Technology (NIST) to promote health information technology (HIT) usability standards and evaluation criteria will also be presented. Copyright © 2011 American Journal of Preventive Medicine. All rights reserved.

  20. Innovative hazard detection and avoidance strategy for autonomous safe planetary landing

    NASA Astrophysics Data System (ADS)

    Jiang, Xiuqiang; Li, Shuang; Tao, Ting

    2016-09-01

    Autonomous hazard detection and avoidance (AHDA) is one of the key technologies for future safe planetary landing missions. In this paper, we address the latest progress on planetary autonomous hazard detection and avoidance technologies. First, the innovative autonomous relay hazard detection and avoidance strategy adopted in Chang'e-3 lunar soft landing mission and its flight results are reported in detail. Second, two new conceptual candidate schemes of hazard detection and avoidance are presented based on the Chang'e-3 AHDA system and the latest developing technologies for the future planetary missions, and some preliminary testing results are also given. Finally, the related supporting technologies for the two candidate schemes above are analyzed.

  1. ARPA-E: Transforming Our Energy Future

    ScienceCinema

    Williams, Ellen; Raman, Aaswath

    2018-06-22

    ARPA-E helps to translate cutting-edge inventions into technological innovations that could change how we use, generate and store energy. In just seven years, ARPA-E technologies are demonstrating technical and commercial progress, surpassing $1.25 billion in private sector follow on funding. In this video, ARPA-E Director Dr. Ellen D. Williams highlights an exciting project from Stanford University that is developing a radiative cooling technology that could enable buildings, power plants, solar cells and even clothing to cool without using electric power or loss of water. This project is just one example among ARPA-E’s 400+ innovative technologies that are reimagining energy and helping to create a more secure, affordable and sustainable American energy future.

  2. Strategic Future Directions for Developing STEM Education in Higher Education in Egypt as a Driver of Innovation Economy

    ERIC Educational Resources Information Center

    Ahmed, Hanaa Ouda Khadri

    2016-01-01

    STEM (Science, Technology, Engineering and Mathematics) education has been achieving growing international attention. As the world economy is becoming more diversified and dependent on innovation, Science, Technology, Engineering, and Math (STEM) skills and expertise are progressively more needed for competition and development. Egyptian students…

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perl, Martin L.; /SLAC

    In this talk I discuss a range of topics on developing creativity and innovation in engineering and science: the constraints on creativity and innovation such as the necessity of a fitting into the realities of the physical world; necessary personal qualities; getting a good idea in engineering and science; the art of obsession; the technology you use; and the technology of the future.

  4. The Revolution in Military Affairs and Conflict Short of War

    DTIC Science & Technology

    1994-07-25

    an RMA in that portion of .the spectrum of conflict between peace and war. They conclude that .while the impact of purely military innovation will...combination of emerging technology and innovative ideas seen in the Gulf War seem to herald a genuine revolution in military affairs. The victory of... innovations . Rather than attempt to match the technological prowess of U.S. forces, future enemies will probably seek asymmetrical countermeasures designed

  5. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Michael Donovan, technology consultant, New Services Development, Hewlett-Packard Company talks during the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  6. Obama Emphasizes Science and Innovation in State of the Union Address

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-02-01

    U.S. president Barack Obama emphasized innovation and competitiveness in his State of the Union address on 25 January. He also raised science and technology early in the hour-long speech, noting that nations like China and India are focusing on math and science education and investing in research and technology. To be competitive with those countries, “we need to out-innovate, out-educate, and out-build the rest of the world,” Obama said. “The first step in winning the future is encouraging American innovation.”

  7. From translational research to open technology innovation systems.

    PubMed

    Savory, Clive; Fortune, Joyce

    2015-01-01

    The purpose of this paper is to question whether the emphasis placed within translational research on a linear model of innovation provides the most effective model for managing health technology innovation. Several alternative perspectives are presented that have potential to enhance the existing model of translational research. A case study is presented of innovation of a clinical decision support system. The paper concludes from the case study that an extending the triple helix model of technology transfer, to one based on a quadruple helix, present a basis for improving the performance translational research. A case study approach is used to help understand development of an innovative technology within a teaching hospital. The case is then used to develop and refine a model of the health technology innovation system. The paper concludes from the case study that existing models of translational research could be refined further through the development of a quadruple helix model of heath technology innovation that encompasses greater emphasis on user-led and open innovation perspectives. The paper presents several implications for future research based on the need to enhance the model of health technology innovation used to guide policy and practice. The quadruple helix model of innovation that is proposed can potentially guide alterations to the existing model of translational research in the healthcare sector. Several suggestions are made for how innovation activity can be better supported at both a policy and operational level. This paper presents a synthesis of the innovation literature applied to a theoretically important case of open innovation in the UK National Health Service. It draws in perspectives from other industrial sectors and applies them specifically to the management and organisation of innovation activities around health technology and the services in which they are embedded.

  8. 35 Years of Innovation - Leading the Way to a Clean Energy Future (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The U.S. Department of Energy (DOE) National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is at the forefront of energy innovation. For more than three decades, our researchers have built unparalleled expertise in renewable energy technologies while supporting the nation's vision that wind and water can provide clean, reliable, and cost-effective electricity. The NWTC strives to be an essential partner to companies, other DOE laboratories, government agencies, and universities around the world seeking to create a better, more sustainable future.

  9. From the primordial soup to self-driving cars: standards and their role in natural and technological innovation

    PubMed Central

    Wagner, Andreas; Ortman, Scott; Maxfield, Robert

    2016-01-01

    Standards are specifications to which the elements of a technology must conform. Here, we apply this notion to the biochemical ‘technologies' of nature, where objects like DNA and proteins, as well as processes like the regulation of gene activity are highly standardized. We introduce the concept of standards with multiple examples, ranging from the ancient genetic material RNA, to Palaeolithic stone axes, and digital electronics, and we discuss common ways in which standards emerge in nature and technology. We then focus on the question of how standards can facilitate technological and biological innovation. Innovation-enhancing standards include those of proteins and digital electronics. They share common features, such as that few standardized building blocks can be combined through standard interfaces to create myriad useful objects or processes. We argue that such features will also characterize the most innovation-enhancing standards of future technologies. PMID:26864893

  10. From the primordial soup to self-driving cars: standards and their role in natural and technological innovation.

    PubMed

    Wagner, Andreas; Ortman, Scott; Maxfield, Robert

    2016-02-01

    Standards are specifications to which the elements of a technology must conform. Here, we apply this notion to the biochemical 'technologies' of nature, where objects like DNA and proteins, as well as processes like the regulation of gene activity are highly standardized. We introduce the concept of standards with multiple examples, ranging from the ancient genetic material RNA, to Palaeolithic stone axes, and digital electronics, and we discuss common ways in which standards emerge in nature and technology. We then focus on the question of how standards can facilitate technological and biological innovation. Innovation-enhancing standards include those of proteins and digital electronics. They share common features, such as that few standardized building blocks can be combined through standard interfaces to create myriad useful objects or processes. We argue that such features will also characterize the most innovation-enhancing standards of future technologies. © 2016 The Author(s).

  11. Shaping the Future with Math, Science, and Technology: Solutions and Lesson Plans to Prepare Tomorrow's Innovators

    ERIC Educational Resources Information Center

    Adams, Dennis; Hamm, Mary

    2011-01-01

    "Shaping the Future with Math, Science, and Technology" examines how ingenuity, creativity, and teamwork skills are part of an intellectual toolbox associated with math, science, and technology. The book provides new ideas, proven processes, practical tools, and examples useful to educators who want to encourage students to solve problems and…

  12. Comparative Analysis of Pedagogical Technologies in the Context of Future Agrarians' Multicultural Education in the USA

    ERIC Educational Resources Information Center

    Kravets, Ruslan

    2015-01-01

    In the article the comparative analysis of pedagogical technologies in the USA has been carried out in the context of future agrarians' multicultural education. The essence of traditional and innovative pedagogical technologies and the peculiarities of their realization at higher educational establishments have been viewed. The expediency of…

  13. ARPA-E: Transforming Our Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ellen; Raman, Aaswath

    2016-03-02

    ARPA-E helps to translate cutting-edge inventions into technological innovations that could change how we use, generate and store energy. In just seven years, ARPA-E technologies are demonstrating technical and commercial progress, surpassing $1.25 billion in private sector follow on funding. In this video, ARPA-E Director Dr. Ellen D. Williams highlights an exciting project from Stanford University that is developing a radiative cooling technology that could enable buildings, power plants, solar cells and even clothing to cool without using electric power or loss of water. This project is just one example among ARPA-E’s 400+ innovative technologies that are reimagining energy andmore » helping to create a more secure, affordable and sustainable American energy future.« less

  14. The duality of health technology in chronic illness: how designers envision our future.

    PubMed

    Lehoux, Pascale

    2008-06-01

    This essay critically explores the role of technological innovation in the constitution of chronic states and illness. Drawing on the co-construction of technology and society perspective, it focuses more specifically on the way in which innovation designers envisage the enhancement of the chronically ill and build certain kinds of socio-technical configuration to deal with chronic illness. Using the case of ;intelligent distance patient monitoring' as an illustration, the paper argues that technology creates as much as it solves the problem of chronic illness. Technology is recursively embedded in chronic illness and it generates dual effects: it constrains and sustains users' daily practices. Only by recognizing technology's duality and eventually transcending it will research and policy initiatives be able to deal creatively and responsibly with the design of our future health experiences.

  15. What drives innovation in renewable energy technology? Evidence based on patent counts

    NASA Astrophysics Data System (ADS)

    McCormick, Jesse

    America's future economic growth and international competitiveness depend on our capacity to innovate, particularly in emerging global markets. This paper analyzes the forces that drive innovation in one such market, renewable energy technologies, utilizing the theory of induced technological innovation. Specifically, this paper operationalizes the determinants of innovation to consist of: 1) private market forces, 2) public policy that influences price and market size, and 3) public policy that catalyzes R&D investment. Analysis is conducted using a negative binomial regression to determine which of the three foundational determinants has the greatest impact on renewable energy innovation. In so doing this paper builds off of work conducted by Johnstone et al. (2010). Innovation is measured using European Patent Office data on a panel of 24 countries spanning the period from 1978-2005. The implications of this study are straightforward; policies, not market forces, are responsible for driving innovation in renewable energy technologies. Market-oriented policies are effective for mature technologies, particularly hydro, and to a lesser extent wind and solar power. R&D-oriented policy is effective for a broader technology set. In short, the United States needs a comprehensive policy environment to support renewable energy innovation; market forces alone will not provide the pace and breadth of innovations needed. That environment can and should be strategically targeted, however, to effectively allocate scare resources.

  16. The Innovation Deficit in Urban Water: The Need for an Integrated Perspective on Institutions, Organizations, and Technology

    PubMed Central

    Kiparsky, Michael; Sedlak, David L.; Thompson, Barton H.; Truffer, Bernhard

    2013-01-01

    Abstract Interaction between institutional change and technological change poses important constraints on transitions of urban water systems to a state that can meet future needs. Research on urban water and other technology-dependent systems provides insights that are valuable to technology researchers interested in assuring that their efforts will have an impact. In the context of research on institutional change, innovation is the development, application, diffusion, and utilization of new knowledge and technology. This definition is intentionally inclusive: technological innovation will play a key role in reinvention of urban water systems, but is only part of what is necessary. Innovation usually depends on context, such that major changes to infrastructure include not only the technological inventions that drive greater efficiencies and physical transformations of water treatment and delivery systems, but also the political, cultural, social, and economic factors that hinder and enable such changes. On the basis of past and present changes in urban water systems, institutional innovation will be of similar importance to technological innovation in urban water reinvention. To solve current urban water infrastructure challenges, technology-focused researchers need to recognize the intertwined nature of technologies and institutions and the social systems that control change. PMID:23983450

  17. Future Choices, Future Trends in Technology in Kinesiology and Physical Education

    ERIC Educational Resources Information Center

    Finkenberg, Mel E.

    2008-01-01

    This lecture focuses on recent innovations in technology since the era of Dudley Allen Sargent, with an analysis of contemporary use of technology in the field of human performance, as well as a vision of where it appears we are heading in terms of technology. de la Pena argued that those who maintain sport science began in the 20th century have…

  18. Digitalization and the global technology trends

    NASA Astrophysics Data System (ADS)

    Ignat, V.

    2017-08-01

    Digitalization, connected products and services, and shortening innovation cycles are widely discussed topics in management practice and theory and demand for new concepts. We analysed how companies innovated their business models and how are the new the technology trends. We found out, that have a positive approach to digitalization but the technology strategy still runs its original business model. Digitalization forces to new solution orientation. For companies it is necessary to master the digital transformation, new innovations have to be developed. Furthermore, digitalization / Industry 4.0 linking the real-life factory with virtual reality, will play an increasingly important role in global manufacturing. Companies have to obtain new digital capabilities, in order to make their company sustainable for the future. A long term growth and welfare in Europe could be guaranteed only by new technology innovation.

  19. Enabling the SMART Wind Power Plant of the Future Through Science-Based Innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L.; Hand, M. M.; Lantz, Eric J.

    This report describes the scientific challenges facing wind energy today and the recent scientific advancements that position the research community to tackle those challenges, as well as the new U.S. Department of Energy applied research program Atmosphere to Electrons that takes an integrated approach to addressing those challenges. It also ties these resulting scientific accomplishments to future technological innovation and quantifies the impact of that collection of innovations on 2030 wind power cost of energy.

  20. Horizon Mission Methodology - A tool for the study of technology innovation and new paradigms

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1993-01-01

    The Horizon Mission (HM) methodology was developed to provide a means of identifying and evaluating highly innovative, breakthrough technology concepts (BTCs) and for assessing their potential impact on advanced space missions. The methodology is based on identifying new capabilities needed by hypothetical 'horizon' space missions having performance requirements that cannot be met even by extrapolating known space technologies. Normal human evaluation of new ideas such as BTCs appears to be governed (and limited) by 'inner models of reality' defined as paradigms. Thus, new ideas are evaluated by old models. This paper describes the use of the HM Methodology to define possible future paradigms that would provide alternatives to evaluation by current paradigms. The approach is to represent a future paradigm by a set of new BTC-based capabilities - called a paradigm abstract. The paper describes methods of constructing and using the abstracts for evaluating BTCs for space applications and for exploring the concept of paradigms and paradigm shifts as a representation of technology innovation.

  1. Responsible healthcare innovation: anticipatory governance of nanodiagnostics for theranostics medicine.

    PubMed

    Fisher, Erik; Boenink, Marianne; van der Burg, Simone; Woodbury, Neal

    2012-11-01

    Theranostics signals the integrated application of molecular diagnostics, therapeutic treatment and patient response monitoring. Such integration has hitherto neglected another crucial dimension: coproduction of theranostic scientific knowledge, novel technological development and broader sociopolitical systems whose boundaries are highly porous. Nanodiagnostics applications to theranostics are one of the most contested and potentially volatile postgenomics innovation trajectories as they build on past and current tensions and promises surrounding both nanotechnology and personalized medicine. Recent science policy research suggests that beneficial outcomes of innovations do not simply flow from the generation of scientific knowledge and technological capability in a linear or automatic fashion. Thus, attempts to offset public concerns about controversial emerging technologies by expert risk assurances can be unproductive. Anticipation provides a more robust basis for governance that supports genuine healthcare progress. This article presents a synthesis of novel policy approaches that directly inform theranostics medicine and the future(s) of postgenomics healthcare.

  2. Future Vision - Emerging Technologies and Their Transformational Potential on the Energy Industry

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2015-01-01

    Where will Digital Energy be in ten years? To look that far ahead, we need to broadly consider how artificial intelligence, robotics, big data, nanotechnology, internet-of-things and other rapidly evolving and interrelated technologies will shape mankind's future. A panel of innovative visionary leaders from inside and outside the energy industry will discuss the emerging technologies that will shape the future of industrial operations over the next decade.

  3. Ideas from Future Technologies Workshop Held by ARL/TARDEC in Aberdeen Proving Ground, Maryland on 9-11 June, 1993

    DTIC Science & Technology

    1994-08-01

    goalie moving his stick to block a puck. The first estimates of the predicted impact point may be available around 1 s before impact, and positioning...Innovation thrives in a "technology push" environment, not in a "demand pull " siruation. • Micromanagement is lethal to innovation. • Very few...strongest of "demand pull " conditions imaginable-a management method that reduces innovation. This could be counterbalanced with a strong "Tech Base

  4. Aerospace Oil and Gas: Technologies for New Horizons

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael A.

    2014-01-01

    Innovative partnerships will enable NASA to achieve more of its technological goals with less resources Cooperative development with other industries will expand the scope of advanced technologies that will be available to future missions.

  5. Technology Innovation of Power Transmission Gearing in Aviation

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2009-01-01

    An overview of rotary wing evolution and innovations over the last 20 years was presented. This overview is provided from a drive system perspective. Examples of technology innovations that have changed and advanced drive systems of rotary wing vehicles will be provided. These innovations include full 6-axis CNC gear manufacture, face gear development to aerospace standards, health and usage monitoring, and gear geometry and bearing improvements. Also, an overview of current state-of-the-art activities being conducted at NASA Glenn is presented with a short look to fixed and rotary wing aircraft and systems needed for the future.

  6. Identifying and Nurturing Future Innovators in Science, Technology, Engineering, and Mathematics: A Review of Findings from the Study of Mathematically Precocious Youth

    ERIC Educational Resources Information Center

    Benbow, Camilla Persson

    2012-01-01

    Calls to strengthen education in science, technology, engineering, and mathematics (STEM) are underscored by employment trends and the importance of STEM innovation for the economy. The Study of Mathematically Precocious Youth (SMPY) has been tracking over 5,000 talented individuals longitudinally for 40 years, throwing light on critical questions…

  7. 78 FR 43959 - Announcement of the 2013 Innovation in Arms Control Challenge Under the America Competes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... DEPARTMENT OF STATE [Public Notice 8387] Announcement of the 2013 Innovation in Arms Control... Information Technology Tools and Concepts Can Support Future Arms Control Inspections? The 2013 Innovation in Arms Control Challenge will engage the public to develop tools and processes for 21st century arms...

  8. Engineering innovation in healthcare: technology, ethics and persons.

    PubMed

    Bowen, W Richard

    2011-01-01

    Engineering makes profound contributions to our health. Many of these contributions benefit whole populations, such as clean water and sewage treatment, buildings, dependable sources of energy, efficient harvesting and storage of food, and pharmaceutical manufacture. Thus, ethical assessment of these and other engineering activities has often emphasized benefits to communities. This is in contrast to medical ethics, which has tended to emphasize the individual patient affected by a doctor's actions. However technological innovation is leading to an entanglement of the activities, and hence ethical responsibilities, of healthcare professionals and engineering professionals. The article outlines three categories of innovation: assistive technologies, telehealthcare and quasi-autonomous systems. Approaches to engineering ethics are described and applied to these innovations. Such innovations raise a number of ethical opportunities and challenges, especially as the complexity of the technology increases. In particular the design and operation of the technologies require engineers to seek closer involvement with the persons benefiting from their work. Future innovation will require engineers to have a good knowledge of human biology and psychology. More particularly, healthcare engineers will need to prioritize each person's wellbeing, agency, human relationships and ecological self rather than technology, in the same way that doctors prioritize the treatment of persons rather than their diseases.

  9. Innovative surgery and the precautionary principle.

    PubMed

    Meyerson, Denise

    2013-12-01

    Surgical innovation involves practices, such as new devices, technologies, procedures, or applications, which are novel and untested. Although innovative practices are believed to offer an improvement on the standard surgical approach, they may prove to be inefficacious or even dangerous. This article considers how surgeons considering innovation should reason in the conditions of uncertainty that characterize innovative surgery. What attitude to the unknown risks of innovative surgery should they take? The answer to this question involves value judgments about the acceptability of risk taking when satisfactory scientific information is not available. This question has been confronted in legal contexts, where risk aversion in the form of the precautionary principle has become increasingly influential as a regulatory response to innovative technologies that pose uncertain future hazards. This article considers whether it is appropriate to apply a precautionary approach when making decisions about innovative surgery.

  10. Material scarcity: a reason for responsibility in technology development and product design.

    PubMed

    Köhler, Andreas R

    2013-09-01

    There are warning signs for impending scarcity of certain technology metals that play a critical role in high-tech products. The scarce elements are indispensable for the design of modern technologies with superior performance. Material scarcity can restrain future innovations and presents therefore a serious risk that must be counteracted. However, the risk is often underrated in the pursuit of technological progress. Many innovators seem to be inattentive to the limitations in availability of critical resources and the possible implications thereof. The present shortages in industrial supply with technology metals may be interpreted as a wake-up call for technology developers to tackle the issue with due consideration. The article reviews the materials scarcity phenomenon from the viewpoint of sustainable development ethics. The following questions are discussed: 'Should preventative actions be taken today in order to mitigate resource scarcity in future?' and 'Should technology developers feel responsible to do this?' The discussion presents arguments for industrial designers and engineers to create a sense of responsibility for the proactive mitigation of material scarcity. Being protagonists of the innovation system, they have the opportunity to lead change towards resource-aware technology development. The paper concludes by outlining ideas on how they can pioneer sustainable management of critical materials.

  11. Multimedia and the Future of Distance Learning Technology.

    ERIC Educational Resources Information Center

    Barnard, John

    1992-01-01

    Describes recent innovations in distance learning technology, including the use of video technology; personal computers, including computer conferencing, computer-mediated communication, and workstations; multimedia, including hypermedia; Integrated Services Digital Networks (ISDN); and fiber optics. Research implications for multimedia and…

  12. Future Research, Research Futures. Proceedings of the National Conference of the Australian Vocational Education and Training Research Association (AVETRA) (3rd, Canberra, Australia, March 23-24, 2000).

    ERIC Educational Resources Information Center

    Australian Vocational Education and Training Research Association, Alexandria.

    These proceedings consist of 66 conference papers on these themes: changing nature of work; emerging technologies; internationalization of vocational education and training (VET); enterprise and educational innovation; flexible delivery approaches; and research and technology and using technology in research. The papers are "Training Needs of…

  13. Technology, Learning Communities and Young People: The Future Something Project

    ERIC Educational Resources Information Center

    Herne, Steve; Adams, Jeff; Atkinson, Dennis; Dash, Paul; Jessel, John

    2013-01-01

    The "Future Something Project" ("FSP"), a two-year action research project, was devised to nurture the creative and technological talent of small groups of young people at risk by creating a structured network, mentored and driven by creative professionals exploring innovative ways for the two distinct target groups to work…

  14. Students' Literary Theater as an Educational Innovation in the Context of Ukrainian and Foreign Experience

    ERIC Educational Resources Information Center

    Koval, Taisiia

    2017-01-01

    The article analyzes the process of future teachers-philologists' training in an innovative educational environment. The novelty of educational technology which includes the implementation of innovative ideas of modern education by introducing competency based approach has been justified. It has been stated that the purpose of the students'…

  15. Spatial Patterns and Design Policies for Future American Cities

    ERIC Educational Resources Information Center

    Dutt, Ashok K.; Costa, Frank J.

    1977-01-01

    Describes plans for future urban development which take into account energy needs, mass transportation, technological innovations, high density settlement along the rapid transit spine, and rational decision making. (Author/DB)

  16. ARPA-E: Innovating Today. Transforming Tomorrow.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohlfing, Eric; Brown, Kristen; Gerbi, Jennifer

    Innovation and entrepreneurism are integral parts of America’s national fiber and driving forces behind many of the technologies that define our modern lives. It’s this entrepreneurial spirit – in conjunction with world-class institutions and talent – that enable the United States to develop advanced energy technologies that can solve the many challenges we face. Featuring remarks from multiple ARPA-E staff, this video explores how ARPA-E leverages our nation’s resources to help nurture and grow America’s energy innovation community. The video also incorporates footage shot onsite with several ARPA-E awardees who are innovating solutions to transform tomorrow’s energy future.

  17. Inventing our future: training the next generation of surgeon innovators.

    PubMed

    Krummel, Thomas M; Gertner, Michael; Makower, Josh; Milroy, Craig; Gurtner, Geoff; Woo, Russell; Riskin, Daniel J; Binyamin, Gary; Connor, Jessica Anne; Mery, Carlos M; Shafi, Bilal M; Yock, Paul G

    2006-11-01

    Current surgical care and technology has evolved over the centuries from the interplay between creative surgeons and new technologies. As both fields become more specialized, that interplay is threatened. A 2-year educational fellowship is described which teaches both the process and the discipline of medical/surgical device innovation. Multi-disciplinary teams (surgeons, engineers, business grads) are assembled to educate a generation of translators, who can bridge the gap between scientific and technologic advances and the needs of the physician and the patient.

  18. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Jordan Hansell, chairman and CEO, NetJets Inc. talks during the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  19. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Laurie Leshin, dean of the School of Science, Rensselaer Polytechnic Institute, moderates the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  20. Canadian regulatory perspectives on genome engineered crops

    PubMed Central

    Smyth, Stuart J.

    2017-01-01

    ABSTRACT New breeding techniques in plant agriculture exploded upon the scene about two years ago, in 2014. While these innovative plant breeding techniques, soon to be led by CRISPR/Cas9, initially appear to hold tremendous promise for plant breeding, if not a revolution for the industry, the question of how the products of these technologies will be regulated is rapidly becoming a key aspect of the technology's future potential. Regulation of innovative technologies and products has always lagged that of the science, but in the past decade, regulatory systems in many jurisdictions have become gridlocked as they try to regulate genetically modified (GM) crops. This regulatory incapability to efficiently assess and approve innovative new agricultural products is particularly important for new plant breeding techniques as if these techniques are classified as genetically modified breeding techniques, then their acceptance and future will diminish considerably as they will be rejected by the European Union. Conversely, if the techniques are accepted as conventional plant breeding, then the future is blindingly bright. This article examines the international debate about the regulation of new plant breeding techniques and then assesses how the Canadian regulatory system has approached the regulation of these technologies through two more public product approvals, GM apples and GM potatoes, then discusses other crop variety approval and those in the regulatory pipeline. PMID:27858499

  1. The future of neurotechnology innovation.

    PubMed

    Lynch, Zack

    2009-06-01

    Advances across several areas of neurotechnology research including stem cells treatments, new imaging technologies, drug delivery technologies and novel neuromodulation platforms promise to accelerate the development of treatments and cures for brain-related illnesses.

  2. Technology and the Nature of Man: Biological Considerations. An Occasional Paper on Man/Society/Technology.

    ERIC Educational Resources Information Center

    Sherwood, Lauralee

    This seminar paper explores biological aspects of the man-technology relationship. From man's beginning and continuing into the future, technology is interwoven extensively in the biological fabric of man. Five facets of the biology-technology interaction are examined: (1) technological innovations enabling man to learn about his biological…

  3. The option value of innovative treatments in the context of chronic myeloid leukemia.

    PubMed

    Sanchez, Yuri; Penrod, John R; Qiu, Xiaoli Lily; Romley, John; Thornton Snider, Julia; Philipson, Tomas

    2012-11-01

    To quantify in the context of chronic myeloid leukemia (CML) the additional value patients receive when innovative treatments enable them to survive until the advent of even more effective future treatments (ie, the "option value"). Observational study using data from the Surveillance, Epidemiology and End Results (SEER) cancer registry comprising all US patients with CML diagnosed between 2000 and 2008 (N = 9,760). We quantified the option value of recent breakthroughs in CML treatment by first conducting retrospective survival analyses on SEER data to assess the effectiveness of TKI treatments, and then forecasting survival from CML and other causes to measure expected future medical progress. We then developed an analytical framework to calculate option value of innovative CML therapies, and used an economic model to value these gains. We calculated the option value created both by future innovations in CML treatment and by medical progress in reducing background mortality. For a recently diagnosed CML patient, the option value of innovative therapies from future medical innovation amounts to 0.76 life-years. This option value is worth $63,000, equivalent to 9% of the average survival gains from existing treatments. Future innovations in CML treatment jointly account for 96% of this benefit. The option value of innovative treatments has significance in the context of CML and, more broadly, in disease areas with rapid innovation. Incorporating option value into traditional valuations of medical innovations is both a feasible and a necessary practice in health technology assessment.

  4. Application of IT-technologies in visualization of innovation project life-cycle stages during the study of the course "Management of innovation projects"

    NASA Astrophysics Data System (ADS)

    Kolychev, V. D.; Prokhorov, I. V.

    2017-01-01

    The article presents a methodology for the application of IT-technologies in teaching discipline "Management of innovation projects," which helps students to be more competitive and gather the useful skills for their future specialization in high-tech areas. IT-technologies are widely used nowadays in educational and training spheres especially in knowledge-intensive disciplines such as systems analysis, the theory of games, operations research, theory of risks, innovation management etc. For studying such courses it is necessary to combine both mathematical models and information technology approaches for the clear understanding of the investigated object. That is why this article comprises both the framework of research and the IT-tools for investigation in the educational process. Taking into consideration the importance of the IT-system implementation especially for the university we assume to suggest the methods of research in the area of innovation projects with the help of IT-support.

  5. Technology Innovations from NASA's Next Generation Launch Technology Program

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  6. Innovative Technologies in Transportation

    DOT National Transportation Integrated Search

    2004-12-01

    An historical overview of the transportation infrastructure of the United States and Texas is provided. Data for trends in transportation is analyzed and projections for the future are postulated. A survey of current technologies in transportation is...

  7. Shaping the operating room and perioperative systems of the future: innovating for improved competitiveness.

    PubMed

    Seim, Andreas R; Sandberg, Warren S

    2010-12-01

    To review the current state of anesthesiology for operative and invasive procedures, with an eye toward possible future states. Anesthesiology is at once a mature specialty and in a crisis--requiring breakthrough to move forward. The cost of care now approaches reimbursement, and outcomes as commonly measured approach perfection. Thus, the cost of further improvements seems ready to topple the field, just as the specialty is realizing that seemingly innocuous anesthetic choices have long-term consequences, and better practice is required. Anesthesiologists must create more headroom between costs and revenues in order to sustain the academic vigor and creativity required to create better clinical practice. We outline three areas in which technological and organizational innovation in anesthesiology can improve competitiveness and become a driving force in collaborative efforts to develop the operating rooms and perioperative systems of the future: increasing the profitability of operating rooms; increasing the efficiency of anesthesia; and technological and organizational innovation to foster improved patient flow, communication, coordination, and organizational learning.

  8. A Rapid History of Futures Thought: From Montgolfier to the Manhattan Project.

    ERIC Educational Resources Information Center

    Clarke, I. F.

    1984-01-01

    The literature of future studies has grown up rapidly in times of technological innovation and social change. Particular events and publications that have contributed most to the development of the futures movement around the world are highlighted. (Author/RM)

  9. Technology-based suicide prevention: current applications and future directions.

    PubMed

    Luxton, David D; June, Jennifer D; Kinn, Julie T

    2011-01-01

    This review reports on current and emerging technologies for suicide prevention. Technology-based programs discussed include interactive educational and social networking Web sites, e-mail outreach, and programs that use mobile devices and texting. We describe innovative applications such as virtual worlds, gaming, and text analysis that are currently being developed and applied to suicide prevention and outreach programs. We also discuss the benefits and limitations of technology-based applications and discuss future directions for their use.

  10. The Coevolution of Society and Multimedia Technology: Issues in Predicting the Future Innovation and Use of a Ubiquitous Technology.

    ERIC Educational Resources Information Center

    Stewart, James; Williams, Robin

    1998-01-01

    Criticizes "technologically deterministic" approaches, which seek to extrapolate social change from technological potential. Shows how a three-layer model of component, system, and application technologies can be used to integrate findings from the use and development of technology in specific sectors. Examines three cases of…

  11. Technology for hearing loss--as We Know it, and as We Dream it.

    PubMed

    Clark, Jackie L; Swanepoel, De Wet

    2014-09-01

    Worldwide demand for accessible hearing health technology continues to increase while the numbers of hearing healthcare specialists are grossly inadequate to meet this demand. Proliferation of innovative technology and the advent of greater access to global connectivity are providing an opportunity to identify and harness new resources that may change current audiological service delivery methods to maximize access, efficiency and impact. By searching through the most current literature and engaging in discussions with industry experts, it is possible to identify avenues that could increase services to those who have hearing loss with innovative healthcare technology. This article aims to review the current state as well as future trends of hearing health technology by addressing: Technology as We Know it; and Technology as We Dream it. Some of the newer technologies we have recently witnessed include: micro processors; personalized computing devices (e.g. smartphones); web-based applications; an expanding clinical repertoire with integrated test equipment; and globalization of telecommunications that opens the door to telehealth; and self-fitting of hearing aids. Yet, innovation continues scaffolding on recent successes with innovations for hearing healthcare expected to increase into the future. As technology and connectivity continue to evolve so should the practice of audiology adapt to the global needs by capitalizing on these advances to optimize service delivery access and sustainability. Capital investment in equipment will be dramatically reduced with smaller, lighter, less costly and more portable equipment. Individuals who live in remote regions with little or no hearing healthcare access can undergo valid assessments by a professional via telehealth. Web-based applications allow clinicians to expand their repertoire and reach of services.

  12. Telecommunications Policy Research Conference. Future of the Telecommunications Network Section. Papers.

    ERIC Educational Resources Information Center

    Telecommunications Policy Research Conference, Inc., Washington, DC.

    The paper for which an abstract is presented here, "Future Network Architectures" (Anthony Rutowski), discussed innovations in processing/switching and transmission technologies, including the development of new broadband optical transfer modes using label and position multiplexing techniques. It is suggested that future network…

  13. Critical materials: a reason for sustainable education of industrial designers and engineers

    NASA Astrophysics Data System (ADS)

    Köhler, Andreas R.; Bakker, Conny; Peck, David

    2013-08-01

    Developed economies have become highly dependent on a range of technology metals with names such as neodymium and terbium. Stakeholders have warned of the impending scarcity of these critical materials. Difficulties in materials supply can affect the high-tech industries as well as the success of sustainable innovation strategies that are based on sophisticated technology. Industrial designers and engineers should therefore increase their awareness of the limits in availability of critical materials. In this paper, it is argued that materials' criticality can give a fresh impetus to the higher education of industrial design engineers. It is important to train future professionals to apply a systems perspective to the process of technology innovation, enabling them to thrive under circumstances of constrained material choices. The conclusions outline ideas on how to weave the topic into existing educational programmes of future technology developers.

  14. Sociology of Low Expectations: Recalibration as Innovation Work in Biomedicine.

    PubMed

    Gardner, John; Samuel, Gabrielle; Williams, Clare

    2015-11-01

    Social scientists have drawn attention to the role of hype and optimistic visions of the future in providing momentum to biomedical innovation projects by encouraging innovation alliances. In this article, we show how less optimistic, uncertain, and modest visions of the future can also provide innovation projects with momentum. Scholars have highlighted the need for clinicians to carefully manage the expectations of their prospective patients. Using the example of a pioneering clinical team providing deep brain stimulation to children and young people with movement disorders, we show how clinicians confront this requirement by drawing on their professional knowledge and clinical expertise to construct visions of the future with their prospective patients; visions which are personalized, modest, and tainted with uncertainty. We refer to this vision-constructing work as recalibration, and we argue that recalibration enables clinicians to manage the tension between the highly optimistic and hyped visions of the future that surround novel biomedical interventions, and the exigencies of delivering those interventions in a clinical setting. Drawing on work from science and technology studies, we suggest that recalibration enrolls patients in an innovation alliance by creating a shared understanding of how the "effectiveness" of an innovation shall be judged.

  15. A Survey of Telecommunications Technology. Part I. President's Task Force on Communications Policy. Staff Paper One, Part I.

    ERIC Educational Resources Information Center

    Rostow, Eugene V.

    A staff paper submitted to the President's Task Force on Communications Policy surveys the range of present and future innovations in communications techniques, assesses their feasibility and costs, and projects the rate and manner in which they will be deployed in the future. In general, the many technological possibilities--including…

  16. The Future of Hearing Aid Technology

    PubMed Central

    Edwards, Brent

    2007-01-01

    Hearing aids have advanced significantly over the past decade, primarily due to the maturing of digital technology. The next decade should see an even greater number of innovations to hearing aid technology, and this article attempts to predict in which areas the new developments will occur. Both incremental and radical innovations in digital hearing aids will be driven by research advances in the following fields: (1) wireless technology, (2) digital chip technology, (3) hearing science, and (4) cognitive science. The opportunities and limitations for each of these areas will be discussed. Additionally, emerging trends such as connectivity and individualization will also drive new technology, and these are discussed within the context of the areas given here. PMID:17301336

  17. Technology in Marketing. A Special Report.

    ERIC Educational Resources Information Center

    Harris, Ronald R.

    New technologies transform the world, creating implications for marketing education. How should marketing educators educate students in order to prepare them for occupations in the future marketing field? Answers to this and similar questions depend on point of view. Technological innovations have implications for marketing educators in all…

  18. MINE WASTE TECHNOLOGY PROGRAM:HISTORICAL PERSPECTIVES. CURRENT HIGHLIGHTS, FUTURE OPPORTUNITIES

    EPA Science Inventory

    For the past 13 years, the Mine Waste Technology Program has been technically driven by the National Risk Management Research Lab. A portion of the MWTP funding has been used to perform field demonstrations of innovative technologies with the potential to address mine waste issue...

  19. The Future of Music Education: Continuing the Dialogue about Curricular Reform

    ERIC Educational Resources Information Center

    Miksza, Peter

    2013-01-01

    Professional discussion of curricular change and innovation is essential for maintaining and increasing the positive effects that music education can have on schoolchildren. Much recent discourse about curricular change has focused on critiques of the traditional large-ensemble model of music education, technological innovation applied to teaching…

  20. Basic Requirements for Systems Software Research and Development

    NASA Technical Reports Server (NTRS)

    Kuszmaul, Chris; Nitzberg, Bill

    1996-01-01

    Our success over the past ten years evaluating and developing advanced computing technologies has been due to a simple research and development (R/D) model. Our model has three phases: (a) evaluating the state-of-the-art, (b) identifying problems and creating innovations, and (c) developing solutions, improving the state- of-the-art. This cycle has four basic requirements: a large production testbed with real users, a diverse collection of state-of-the-art hardware, facilities for evalua- tion of emerging technologies and development of innovations, and control over system management on these testbeds. Future research will be irrelevant and future products will not work if any of these requirements is eliminated. In order to retain our effectiveness, the numerical aerospace simulator (NAS) must replace out-of-date production testbeds in as timely a fashion as possible, and cannot afford to ignore innovative designs such as new distributed shared memory machines, clustered commodity-based computers, and multi-threaded architectures.

  1. Sandia National Laboratories Strategic Context Workshop Series 2017: National Security Futures for Strategic Thinking.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Elizabeth James Kistin; Roll, Elizabeth; Aamir, Munaf Syed

    In August 2017, Sandia convened five workshops to explore the future of advanced technologies and global peace and security through the lenses of deterrence, information, innovation, nonproliferation, and population and Earth systems.

  2. The NIHR Invention for Innovation (i4i) Programme: A Review of Progress and Contributions to Innovation in Healthcare Technologies.

    PubMed

    Marjanovic, Sonja; Krapels, Joachim; Sousa, Sonia; Castle-Clarke, Sophie; Horvath, Veronika; Chataway, Joanna

    2015-11-30

    The National Institute for Health Research (NIHR) Invention for Innovation (i4i) programme supports the development of innovative medical technologies for patient benefit. The i4i product development stream involves collaborative projects between at least two partners from academia, the NHS and industry. Medical technology innovators apply for funding for one to three years, through a peer review-based process that includes presentation to a selection panel. The funding and business advice provided by i4i support the development of early-stage innovations, generally at proof of concept and prototype stages. Since its inception the product development stream has identified and supported 170 projects, led by 146 principal investigators (PIs). RAND Europe evaluated the programme, with the aim of identifying its outputs and impacts and examining the factors influencing performance. The evaluation findings should help inform the future of the programme. The evaluation used a multi-method approach, including a focused review of background information from i4i, scoping interviews with key informants, a survey of programme participants and case studies of projects representing diverse technologies and health needs.

  3. Transformational Systems Concepts and Technologies for Our Future in Space

    NASA Technical Reports Server (NTRS)

    Howell, J. T.; George,P.; Mankins, J. C. (Editor); Christensen, C. B.

    2004-01-01

    NASA is constantly searching for new ideas and approaches yielding opportunities for assuring maximum returns on space infrastructure investments. Perhaps the idea of transformational innovation in developing space systems is long overdue. However, the concept of utilizing modular space system designs combined with stepping-stone development processes has merit and promises to return several times the original investment since each new space system or component is not treated as a unique and/or discrete design and development challenge. New space systems can be planned and designed so that each builds on the technology of previous systems and provides capabilities to support future advanced systems. Subsystems can be designed to use common modular components and achieve economies of scale, production, and operation. Standards, interoperability, and "plug and play" capabilities, when implemented vigorously and consistently, will result in systems that can be upgraded effectively with new technologies. This workshop explored many building-block approaches via way of example across a broad spectrum of technology discipline areas for potentially transforming space systems and inspiring future innovation. Details describing the workshop structure, process, and results are contained in this Conference Publication.

  4. Innovative Long Wavelength Infrared Detector Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.

    1990-01-01

    The focus of the workshop was on innovative long wavelength (lambda less than 17 microns) infrared (LWIR) detectors with the potential of meeting future NASA and DoD long-duration space application needs. Requirements are for focal plane arrays which operate near 65K using active refrigeration with mission lifetimes of five to ten years. The workshop addressed innovative concepts, new material systems, novel device physics, and current progress in relation to benchmark technology. It also provided a forum for discussion of performance characterization, producibility, reliability, and fundamental limitations of device physics. It covered the status of the incumbent HgCdTe technology, which shows encouraging progress towards LWIR arrays, and provided a snapshot of research and development in several new contender technologies.

  5. A historical overview of magnetic resonance imaging, focusing on technological innovations.

    PubMed

    Ai, Tao; Morelli, John N; Hu, Xuemei; Hao, Dapeng; Goerner, Frank L; Ager, Bryan; Runge, Val M

    2012-12-01

    Magnetic resonance imaging (MRI) has now been used clinically for more than 30 years. Today, MRI serves as the primary diagnostic modality for many clinical problems. In this article, historical developments in the field of MRI will be discussed with a focus on technological innovations. Topics include the initial discoveries in nuclear magnetic resonance that allowed for the advent of MRI as well as the development of whole-body, high field strength, and open MRI systems. Dedicated imaging coils, basic pulse sequences, contrast-enhanced, and functional imaging techniques will also be discussed in a historical context. This article describes important technological innovations in the field of MRI, together with their clinical applicability today, providing critical insights into future developments.

  6. Innovative Competencies of Mining engineers in Transition to the Sustainable Development

    NASA Astrophysics Data System (ADS)

    Krechetov, Andrey; Khoreshok, Alexey; Blumenstein, Valery

    2017-11-01

    The transition to the sustainable development posed new challenges to the system of mining higher education. They are determined by the acceleration of scientific and technological progress and widespread introduction of innovations, convergence of technologies from various industries. On the one hand, globalization and rapid technology development are constantly increasing quality requirements for the labor resources of the mineral and raw materials complex and constant improvement of their skills. On the other hand, the transition to the sustainable development provides the necessity for rational use of raw materials and environmental protection. This requires the improvement of staff support system for mining operations and the interaction of enterprises with universities training mining engineers, aimed at the innovative competencies development of future miners.

  7. Accelerating Innovation that Enhances Resource Recovery in the Wastewater Sector: Advancing a National Testbed Network.

    PubMed

    Mihelcic, James R; Ren, Zhiyong Jason; Cornejo, Pablo K; Fisher, Aaron; Simon, A J; Snyder, Seth W; Zhang, Qiong; Rosso, Diego; Huggins, Tyler M; Cooper, William; Moeller, Jeff; Rose, Bob; Schottel, Brandi L; Turgeon, Jason

    2017-07-18

    This Feature examines significant challenges and opportunities to spur innovation and accelerate adoption of reliable technologies that enhance integrated resource recovery in the wastewater sector through the creation of a national testbed network. The network is a virtual entity that connects appropriate physical testing facilities, and other components needed for a testbed network, with researchers, investors, technology providers, utilities, regulators, and other stakeholders to accelerate the adoption of innovative technologies and processes that are needed for the water resource recovery facility of the future. Here we summarize and extract key issues and developments, to provide a strategy for the wastewater sector to accelerate a path forward that leads to new sustainable water infrastructures.

  8. Implementing Innovation: The Creation of an iUnit and the Role of Nursing.

    PubMed

    Tiase, Victoria L; Ventura, Rosemary; Sorbello, Daniel; Robinson, Kenya

    2016-01-01

    NewYork-Presbyterian Hospital took on the challenge of thinking about innovation differently with the implementation of an innovation unit or iUnit to create the patient care unit of the future. Goals were to understand more about the innovation process and to test new service models, technology platforms, devices, and deployment models. Key findings from the focus groups included the need for additional training and technical support. In general, the initiative was felt to improve overall communication and represents a starting point for further innovation programs.

  9. Naval S and T Strategy: Innovations for the Future Force

    DTIC Science & Technology

    2015-01-20

    NAVAL RESEARCH 5 “The naval science and technology community is the pre-eminent source for good ideas and innovative concepts that provide the...In fiscally austere times like today, there is great pressure to tie S&T more closely to R&D technology maturation or use it as a source for fixing...Repeated occurrences can cause whole chunks of metal to wear away, leading to frequent repairs and replacements. The waterjets’ new design is

  10. Waste-to-Energy and Fuel Cell Technologies Overview

    DTIC Science & Technology

    2011-01-13

    Integration of stationary fuel cells with biomass gasification is a developing technology that is in need of demonstration. Innovation for Our...the PureCell®400 Innovation for Our Energy Future Gasification of wood wastes is another potential source of useful fuel gas. Wood waste... Gasification → Cleanup → Fuel Cell Gasification uses high temperature to convert cellulosic materials to fuel gas • Hydrogen (H2) • Carbon monoxide (CO

  11. Research on collaborative innovation mechanism of green construction supply chain based on united agency

    NASA Astrophysics Data System (ADS)

    Zhang, Min; He, Weiyi

    2018-06-01

    Under the guidance of principal-agent theory and modular theory, the collaborative innovation of green technology-based companies, design contractors and project builders based on united agency will provide direction for the development of green construction supply chain in the future. After analyzing the existing independent agencies, this paper proposes the industry-university-research bilateral collaborative innovation network architecture and modularization with the innovative function of engineering design in the context of non-standard transformation interfaces, analyzes the innovation responsibility center, and gives some countermeasures and suggestions to promote the performance of bilateral cooperative innovation network.

  12. NASA Game Changing Development Program Manufacturing Innovation Project

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  13. An App for Every Psychological Problem: Vision for the Future

    ERIC Educational Resources Information Center

    Brown, Alicia M.

    2016-01-01

    Innovations in mobile technology are occurring at a rapid pace. Mobile phone software applications (apps) in particular have great potential within the field of mental health. Lack of organizational oversight and hesitancy from providers to utilize mobile technology has delayed technological advancement--consequently limiting the ability of the…

  14. Technological Innovation and Change: A Case Study in the Formation of Organizational Conscience.

    ERIC Educational Resources Information Center

    McMillan, Jill J.; Hyde, Michael J.

    2000-01-01

    Discusses how Wake Forest university's adoption of campus-wide computer technology exhibited critical elements of conscience formation. Details how the computer revolution challenged the customary morality of the university; describes how the community engaged in moral deliberation about its technological future; and discusses how the…

  15. Towards artificial tissue models: past, present, and future of 3D bioprinting.

    PubMed

    Arslan-Yildiz, Ahu; El Assal, Rami; Chen, Pu; Guven, Sinan; Inci, Fatih; Demirci, Utkan

    2016-03-01

    Regenerative medicine and tissue engineering have seen unprecedented growth in the past decade, driving the field of artificial tissue models towards a revolution in future medicine. Major progress has been achieved through the development of innovative biomanufacturing strategies to pattern and assemble cells and extracellular matrix (ECM) in three-dimensions (3D) to create functional tissue constructs. Bioprinting has emerged as a promising 3D biomanufacturing technology, enabling precise control over spatial and temporal distribution of cells and ECM. Bioprinting technology can be used to engineer artificial tissues and organs by producing scaffolds with controlled spatial heterogeneity of physical properties, cellular composition, and ECM organization. This innovative approach is increasingly utilized in biomedicine, and has potential to create artificial functional constructs for drug screening and toxicology research, as well as tissue and organ transplantation. Herein, we review the recent advances in bioprinting technologies and discuss current markets, approaches, and biomedical applications. We also present current challenges and provide future directions for bioprinting research.

  16. Innovation and technology transfer in the health sciences: a cross-sectional perspective.

    PubMed

    Blanch, L; Guerra, L; Lanuza, A; Palomar, G

    2014-11-01

    This article is based on the strategic reflection and discussion that took place on occasion of the first conference on innovation and technology transfer in the health sciences organized by the REGIC-ENS-FENIN-SEMICYUC and held in Madrid in the Instituto de Salud Carlos III on May 7th, 2013, with the aim of promoting the transfer of technological innovation in medicine and health care beyond the European program "Horizon 2020". The presentations dealt with key issues such as evaluation of the use of new technologies, the need to impregnate the decisions related to adoption and innovation with the concepts of value and sustainability, and the implication of knowledge networks in the need to strengthen their influence upon the creation of a "culture of innovation" among health professionals. But above all, emphasis was placed on the latent innovation potential of hospitals, and the fact that these, being the large companies that they are, should seriously consider that much of their future sustainability may depend on proper management of their ability to generate innovation, which is not only the generation of ideas but also their transformation into products or processes that create value and economic returns. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  17. NREL Spectrum of Innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-02-25

    There are many voices calling for a future of abundant clean energy. The choices are difficult and the challenges daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation including fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. The innovation process at NREL is interdependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

  18. NREL Spectrum of Innovation

    ScienceCinema

    None

    2018-05-11

    There are many voices calling for a future of abundant clean energy. The choices are difficult and the challenges daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation including fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. The innovation process at NREL is interdependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

  19. The future of predictive microbiology: strategic research, innovative applications and great expectations.

    PubMed

    McMeekin, Tom; Bowman, John; McQuestin, Olivia; Mellefont, Lyndal; Ross, Tom; Tamplin, Mark

    2008-11-30

    This paper considers the future of predictive microbiology by exploring the balance that exists between science, applications and expectations. Attention is drawn to the development of predictive microbiology as a sub-discipline of food microbiology and of technologies that are required for its applications, including a recently developed biological indicator. As we move into the era of systems biology, in which physiological and molecular information will be increasingly available for incorporation into models, predictive microbiologists will be faced with new experimental and data handling challenges. Overcoming these hurdles may be assisted by interacting with microbiologists and mathematicians developing models to describe the microbial role in ecosystems other than food. Coupled with a commitment to maintain strategic research, as well as to develop innovative technologies, the future of predictive microbiology looks set to fulfil "great expectations".

  20. ARPA-E: Celebrating the Energy Entrepreneur

    ScienceCinema

    Williams, Ellen; Henshall, Dave; Babinec, Sue; Wessells, Colin; Zakhor, Avideh; Mockler, Todd

    2018-01-16

    The world faces urgent energy challenges brought on by projected population increases, aging infrastructure and the global threat of climate change. ARPA-E is investing in some of the country’s brightest energy entrepreneurs that are developing innovative technological options to help meet future energy needs. Featuring remarks from ARPA-E Director Dr. Ellen D. Williams, as well as interviews with the Deputy Director of Commercialization Dave Henshall, Senior Technology-to-Market Advisor Sue Babinec, and a number of ARPA-E awardees, this video highlights the energy entrepreneur, and the critical role they play in creating solutions to address future energy challenges and ensure a secure energy future. The video also incorporates footage shot on site with several ARPA-E awardees who are spurring innovation, much of which will be highlighted in other videos shown throughout the Summit.

  1. ARPA-E: Celebrating the Energy Entrepreneur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ellen; Henshall, Dave; Babinec, Sue

    The world faces urgent energy challenges brought on by projected population increases, aging infrastructure and the global threat of climate change. ARPA-E is investing in some of the country’s brightest energy entrepreneurs that are developing innovative technological options to help meet future energy needs. Featuring remarks from ARPA-E Director Dr. Ellen D. Williams, as well as interviews with the Deputy Director of Commercialization Dave Henshall, Senior Technology-to-Market Advisor Sue Babinec, and a number of ARPA-E awardees, this video highlights the energy entrepreneur, and the critical role they play in creating solutions to address future energy challenges and ensure a securemore » energy future. The video also incorporates footage shot on site with several ARPA-E awardees who are spurring innovation, much of which will be highlighted in other videos shown throughout the Summit.« less

  2. Women as a resource for the flexibility required for high technology innovation

    NASA Technical Reports Server (NTRS)

    Marlaire, Ruth Dasso

    1994-01-01

    What do women scientists need to know for career advancement into senior level positions? Our declining economic conditions have been the cause for major political and technological changes. The U.S. Congress is turning toward technology to increase our competitive edge in the world. Allowing women scientists, and women engineers in particular, more voice in the decision making process may be an innovative alternative for the diversity and flexibility needed for the unknown technological problems of the future. But first women scientists need to know how the system measures scientific achievement and how to identify the processes needed to increase our technological capability in order for them to formidably compete and win higher ranking positions.

  3. A Future-Focus for Teaching and Learning: Technology Education in Two New Zealand Secondary Schools

    ERIC Educational Resources Information Center

    Reinsfield, Elizabeth

    2016-01-01

    Technology education has been a part of the New Zealand curriculum in many forms since its inception as a craft subject. With a global push towards technological innovation and an increased awareness of the impact of technology on society, it is reasonable to assume that technology education has an established role in student learning around the…

  4. Materials, Chemistry, and Simulation for Future Energy Technology.

    PubMed

    Aguey-Zinsou, Kondo-Francois; Wang, Da-Wei; Su, Dang-Sheng

    2015-09-07

    Special Issue: The Future of Energy. The science and engineering of clean energy now is becoming a multidisciplinary area, typically when new materials, chemistry, or mechanisms are met. "Trial and error" is the past. Exploration of new concepts for future clean energy can be accomplished through computer-aided materials design and reaction simulation, thanks to innovations in information technologies. This special issue, a fruit of the Energy Future Conference organized by UNSW Australia, has compiled some excellent examples of such approaches. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 47 CFR 32.2 - Basis of the accounts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., because of the anticipated effects of future innovations, the telecommunications plant accounts are intended to permit technological distinctions. Similarly, the primary bases of plant operations, customer... technological view of the telecommunications industry. This view will provide a stable and consistent foundation...

  6. Current and Future Challenges in Point-of-Care Technologies: A Paradigm-Shift in Affordable Global Healthcare With Personalized and Preventive Medicine

    PubMed Central

    Heetderks, William J.; Pavel, Misha; Acharya, Soumyadipta; Akay, Metin; Mairal, Anurag; Wheeler, Bruce; Dacso, Clifford C.; Sunder, T.; Lovell, Nigel; Gerber, Martin; Shah, Milind; Senthilvel, S. G.; Wang, May D.; Bhargava, Balram

    2015-01-01

    This paper summarizes the panel discussion at the IEEE Engineering in Medicine and Biology Point-of-Care Healthcare Technology Conference (POCHT 2013) held in Bangalore India from Jan 16–18, 2013. Modern medicine has witnessed interdisciplinary technology innovations in healthcare with a continuous growth in life expectancy across the globe. However, there is also a growing global concern on the affordability of rapidly rising healthcare costs. To provide quality healthcare at reasonable costs, there has to be a convergence of preventive, personalized, and precision medicine with the help of technology innovations across the entire spectrum of point-of-care (POC) to critical care at hospitals. The first IEEE EMBS Special Topic POCHT conference held in Bangalore, India provided an international forum with clinicians, healthcare providers, industry experts, innovators, researchers, and students to define clinical needs and technology solutions toward commercialization and translation to clinical applications across different environments and infrastructures. This paper presents a summary of discussions that took place during the keynote presentations, panel discussions, and breakout sessions on needs, challenges, and technology innovations in POC technologies toward improving global healthcare. Also presented is an overview of challenges and trends in developing and developed economies with respect to priority clinical needs, technology innovations in medical devices, translational engineering, information and communication technologies, infrastructure support, and patient and clinician acceptance of POC healthcare technologies. PMID:27170902

  7. Integrating Technology into the Online Classroom through Collaboration to Increase Student Motivation

    ERIC Educational Resources Information Center

    Dyer, Thomas; Larson, Elizabeth; Steele, John; Holbeck, Rick

    2015-01-01

    Technology is one of the most important components in the future of online learning. Instructors in online classes should lead the charge of innovation and integration of technology into the online classroom to ensure that students achieve the best learning outcomes. This article chronicles a theoretical model towards integrating technology as a…

  8. JPL Advanced Thermal Control Technology Roadmap - 2012

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Rodriguez, Jose I.

    2012-01-01

    NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.

  9. Preparing Preservice Teachers for 21st Century Classrooms: Transforming Attitudes and Behaviors about Innovative Technology

    ERIC Educational Resources Information Center

    Williams, Mia Kim; Foulger, Teresa S.; Wetzel, Keith

    2009-01-01

    Keeping-up with progressing technology tools has been a troublesome issue for educational technology instructors for over ten years as they endeavor to prepare beginning teachers to integrate technology in their future classrooms. This paper promotes instructors' ideas about behaviors of 21st century teachers, and explores efforts to support their…

  10. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Ron Sega, Vice president and enterprise executive for Energy and the Environment, The Ohio State University and Colorado State University talks during the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  11. A Complexity Perspective on Innovation Processes for Subsea Technology Development

    ERIC Educational Resources Information Center

    Aasen, Tone Merethe Berg

    2009-01-01

    In today's business thinking, innovation is commonly equated with progress, indicating an underlying assumption that company management have the power to choose a specific future and control the way into it. Drawing on examples from a longitudinal research initiative in the Norwegian petroleum company StatoilHydro, this article raises some of the…

  12. NASA Chief Technologist Speaks at Massachusetts Institute of Technology

    NASA Image and Video Library

    2018-02-15

    NASA Chief Technologist Douglas Terrier joined students, faculty and experts in Boston as part of MIT's "Better MIT Innovation Week 2018," a week-long program promoting leadership, entrepreneurship and action for a better future. During the February event, Terrier spoke about a culture of innovation at America's Space Program. (Photo: Damian Barabonkov/MIT Technique)

  13. Innovative experimental particle physics through technological advances: Past, present and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Harry W.K.; /Fermilab

    This mini-course gives an introduction to the techniques used in experimental particle physics with an emphasis on the impact of technological advances. The basic detector types and particle accelerator facilities will be briefly covered with examples of their use and with comparisons. The mini-course ends with what can be expected in the near future from current technology advances. The mini-course is intended for graduate students and post-docs and as an introduction to experimental techniques for theorists.

  14. NASA Future Forum

    NASA Image and Video Library

    2011-08-11

    A member of the audience asks a question to the technology and innovation panel at the 2011 NASA Future Forum, Thursday, Aug. 11, 2011, at the Riggs Alumni Center on the campus of the University of Maryland in College Park, Md. Photo Credit: (NASA/Paul E. Alers)

  15. Innovation and the growth of human population.

    PubMed

    Weinberger, V P; Quiñinao, C; Marquet, P A

    2017-12-05

    Biodiversity is sustained by and is essential to the services that ecosystems provide. Different species would use these services in different ways, or adaptive strategies, which are sustained in time by continuous innovations. Using this framework, we postulate a model for a biological species ( Homo sapiens ) in a finite world where innovations, aimed at increasing the flux of ecosystem services (a measure of habitat quality), increase with population size, and have positive effects on the generation of new innovations (positive feedback) as well as costs in terms of negatively affecting the provision of ecosystem services. We applied this model to human populations, where technological innovations are driven by cumulative cultural evolution. Our model shows that depending on the net impact of a technology on the provision of ecosystem services ( θ ), and the strength of technological feedback ( ξ ), different regimes can result. Among them, the human population can fill the entire planet while maximizing their well-being, but not exhaust ecosystem services. However, this outcome requires positive or green technologies that increase the provision of ecosystem services with few negative externalities or environmental costs, and that have a strong positive feedback in generating new technologies of the same kind. If the feedback is small, then the technological stock can collapse together with the human population. Scenarios where technological innovations generate net negative impacts may be associated with a limited technological stock as well as a limited human population at equilibrium and the potential for collapse. The only way to fill the planet with humans under this scenario of negative technologies is by reducing the technological stock to a minimum. Otherwise, the only feasible equilibrium is associated with population collapse. Our model points out that technological innovations per se may not help humans to grow and dominate the planet. Instead, different possibilities unfold for our future depending on their impact on the environment and on further innovation.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'. © 2017 The Author(s).

  16. Social Networking and the Affective Domain of Learning

    ERIC Educational Resources Information Center

    Carrigan, Robert L.

    2013-01-01

    In 2006, the U.S. Department of Education commissioned a report called, "Charting the Future of U.S. Higher Education", asking educators to, "...test new teaching methods, content deliveries, and innovative pedagogies using technology-based collaborative applications" (p. 6). Fittingly, technology-based collaborative…

  17. Increasing Corporate Philanthropy to Enrich Technology Innovation in Higher Education

    ERIC Educational Resources Information Center

    Stewart, Meg E.

    2010-01-01

    Always a fraught topic in higher education, funding solutions for technology that supports teaching and learning prompt intense debate whenever the subject comes up. Given the necessity of integrating technologies more fully into the curriculum to prepare graduates for the future, one needs imaginative funding solutions to bridge the persistent…

  18. Toward a Vision of the Future Role of Technology in Literacy Education.

    ERIC Educational Resources Information Center

    Labbo, Linda D.

    This paper examines how technological innovations are likely to play a role in effective literacy education. The first section introduces three key factors, i.e., definition of literacy, predominate learning theory, and classroom communicative technologies. The second section lays the groundwork with brief glimpses of how the three key factors…

  19. Ten Timeless Tips for Keeping on Top of Teaching Technology

    ERIC Educational Resources Information Center

    Poling, Devereaux A.; LoSchiavo, Frank M.

    2014-01-01

    We provide tips for helping psychology faculty effectively seek, select, and place new technology into pedagogical practice. We also provide tips to help psychology departments position themselves for a future that includes teaching technologies that have not yet been created. Instead of discussing today's top innovations in teaching (which…

  20. Present Place and the Future of Computing and Technology on the College Campus.

    ERIC Educational Resources Information Center

    Powell, James L.

    Serious budgetary and administrative questions concerning educational computing and technology confront liberal arts college administrators. What will be the impact of microcomputers and other technologies on a liberal arts education? Since monies are less and less apt to come from outside grants, especially for non-innovative institutions, and…

  1. Future Workforce: NSF's Advanced Technological Education Program Celebrates 20 Years of Connecting Students with STEM Careers

    ERIC Educational Resources Information Center

    Patton, Madeline

    2014-01-01

    With the leadership of community college educators and their industry partners, the National Science Foundation's Advanced Technological Education (ATE) program has achieved an impressive record of incubating innovative science, technology, engineering, and mathematics (STEM) programs. ATE's mission to increase the quality of technicians working…

  2. Advanced Thermoplastic Polymers and Additive Manufacturing Applied to ISS Columbus Toolbox: Lessons Learnt and Results

    NASA Astrophysics Data System (ADS)

    Ferrino, Marinella; Secondo, Ottaviano; Sabbagh, Amir; Della Sala, Emilio

    2014-06-01

    In the frame of the International Space Station (ISS) Exploitation Program a new toolbox has been realized by TAS-I to accommodate the tools currently in use on the ISS Columbus Module utilizing full-scale prototypes obtained with 3D rapid prototyping. The manufacturing of the flight hardware by means of advanced thermoplastic polymer UL TEM 9085 and additive manufacturing Fused Deposition Modelling (FDM) technology represent innovative elements. In this paper, the results achieved and the lessons learned are analyzed to promote future technology know-how. The acquired experience confirmed that the additive manufacturing process allows to save time/cost and to realize new shapes/features to introduce innovation in products and future design processes for space applications.

  3. Re-thinking Innovation in Organizations in the Industry 4.0 Scenario: New Challenges in a Primary Prevention Perspective.

    PubMed

    Palazzeschi, Letizia; Bucci, Ornella; Di Fabio, Annamaria

    2018-01-01

    In organizations, innovation is considered a relevant aspect of success and long-term survival. Organizations recognize that innovation contributes to creating competitive advantages in a more competitive, challenging and changing labor market. The present contribution addresses innovation in organizations in the scenario of Industry 4.0, including technological innovation and psychological innovation. Innovation is a core concept in this framework to face the challenge of globalized and fluid labor market in the 21st century. Reviewing the definition of innovation, the article focuses on innovative work behaviors and the relative measures. This perspective article also suggests new directions in a primary prevention perspective for future research and intervention relative to innovation and innovative work behaviors in the organizational context.

  4. Re-thinking Innovation in Organizations in the Industry 4.0 Scenario: New Challenges in a Primary Prevention Perspective

    PubMed Central

    Palazzeschi, Letizia; Bucci, Ornella; Di Fabio, Annamaria

    2018-01-01

    In organizations, innovation is considered a relevant aspect of success and long-term survival. Organizations recognize that innovation contributes to creating competitive advantages in a more competitive, challenging and changing labor market. The present contribution addresses innovation in organizations in the scenario of Industry 4.0, including technological innovation and psychological innovation. Innovation is a core concept in this framework to face the challenge of globalized and fluid labor market in the 21st century. Reviewing the definition of innovation, the article focuses on innovative work behaviors and the relative measures. This perspective article also suggests new directions in a primary prevention perspective for future research and intervention relative to innovation and innovative work behaviors in the organizational context. PMID:29445349

  5. TU-E-BRD-01: President’s Symposium: The Necessity of Innovation in Medical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayouth, J; Siewerdsen, J; Wahl, E

    This abstract will not blow you away, but speed-painting presenter Erik Wahl will certainly make a truly unique AAPM symposium that you will not want to miss. Along with clinical director John Bayouth and scientific leader Jeff Siewerdsen, this session will highlight innovation. To avoid being button pushers and irrelevant investigators of yesterday’s science, we must innovate. This is particularly challenging in the changing landscape of declining research funding and healthcare reimbursement. But all hope is not lost, Medical Physics is a field born out of innovation. As scientists we quickly translated the man-made and natural phenomena of radiation intomore » a tool that could diagnose broken bones, locate foreign objects imbedded within the body, and treat a spectrum of diseases. As hyperbolae surrounding the curative powers of radiation overcame society, physicists continued their systematic pursuit of a fundamental understanding of radiation and applied their knowledge to enable the diagnostic and therapeutic power of this new tool. Health economics and the decline in research funding have put the Medical Physicist in a precarious position: how do we optimally participate in medical research and advanced patient care in the face of many competing needs? Today's diagnostic imaging and therapeutic approaches are tremendously sophisticated. Researchers and commercial vendors are producing technologies at a remarkable rate; to enable their safe and effective implementation Medical Physicists must work from a fundamental understanding of these technologies. This requires all of us, clinically practicing Medical Physicists, Researchers and Educators alike, to combine our training in scientific methods with innovation. Innovation is the key to our past, a necessity for our contemporary challenges, and critical for the future of Medical Physics. The keynote speakers for the 2014 AAPM Presidential Symposium session will address the way we approach these vitally important technologies for diagnosis and therapy into opportunities to innovate. The speed-painting artist and lecturer Erik Wahl will finish the symposium with a fast-paced and entertaining presentation on embracing the future by creating disruptive innovation strategies. Learning Objectives: Identify connection between Medical Physics and Innovation. Understand how Innovation enables Clinical Medical Physicists to implement novel technologies. Learn how innovative Medical Physics solutions can address significant and relevant challenges in science. Become inspired to pursue a new scientific understanding, positive change in clinical practice, and benefit to patients.« less

  6. How ARPA-e is "Winning the Future"

    ScienceCinema

    Obama, Barack; Chu, Steven; Majumdar, Arun

    2018-02-14

    The Advanced Research Projects Agency - Energy (ARPA-E) is answering the President's call to "Win the Future". By directly funding some of the most groundbreaking discoveries in science and technology, we're encouraging the development of the most advanced clean tech innovations out there today.

  7. How ARPA-e is "Winning the Future"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obama, Barack; Chu, Steven; Majumdar, Arun

    2011-02-27

    The Advanced Research Projects Agency - Energy (ARPA-E) is answering the President's call to "Win the Future". By directly funding some of the most groundbreaking discoveries in science and technology, we're encouraging the development of the most advanced clean tech innovations out there today.

  8. Innovation Network Development Model in Telemedicine: A Change in Participation.

    PubMed

    Goodarzi, Maryam; Torabi, Mashallah; Safdari, Reza; Dargahi, Hossein; Naeimi, Sara

    2015-10-01

    This paper introduces a telemedicine innovation network and reports its implementation in Tehran University of Medical Sciences. The required conditions for the development of future projects in the field of telemedicine are also discussed; such projects should be based on the common needs and opportunities in the areas of healthcare, education, and technology. The development of the telemedicine innovation network in Tehran University of Medical Sciences was carried out in two phases: identifying the beneficiaries of telemedicine, and codification of the innovation network memorandum; and brainstorming of three workgroup members, and completion and clustering ideas. The present study employed a qualitative survey by using brain storming method. Thus, the ideas of the innovation network members were gathered, and by using Freeplane software, all of them were clustered and innovation projects were defined. In the services workgroup, 87 and 25 ideas were confirmed in phase 1 and phase 2, respectively. In the education workgroup, 8 new programs in the areas of telemedicine, tele-education and teleconsultation were codified. In the technology workgroup, 101 and 11 ideas were registered in phase 1 and phase 2, respectively. Today, innovation is considered a major infrastructural element of any change or progress. Thus, the successful implementation of a telemedicine project not only needs funding, human resources, and full equipment. It also requires the use of innovation models to cover several different aspects of change and progress. The results of the study can provide a basis for the implementation of future telemedicine projects using new participatory, creative, and innovative models.

  9. Innovation Network Development Model in Telemedicine: A Change in Participation

    PubMed Central

    Goodarzi, Maryam; Safdari, Reza; Dargahi, Hossein; Naeimi, Sara

    2015-01-01

    Objectives This paper introduces a telemedicine innovation network and reports its implementation in Tehran University of Medical Sciences. The required conditions for the development of future projects in the field of telemedicine are also discussed; such projects should be based on the common needs and opportunities in the areas of healthcare, education, and technology. Methods The development of the telemedicine innovation network in Tehran University of Medical Sciences was carried out in two phases: identifying the beneficiaries of telemedicine, and codification of the innovation network memorandum; and brainstorming of three workgroup members, and completion and clustering ideas. The present study employed a qualitative survey by using brain storming method. Thus, the ideas of the innovation network members were gathered, and by using Freeplane software, all of them were clustered and innovation projects were defined. Results In the services workgroup, 87 and 25 ideas were confirmed in phase 1 and phase 2, respectively. In the education workgroup, 8 new programs in the areas of telemedicine, tele-education and teleconsultation were codified. In the technology workgroup, 101 and 11 ideas were registered in phase 1 and phase 2, respectively. Conclusions Today, innovation is considered a major infrastructural element of any change or progress. Thus, the successful implementation of a telemedicine project not only needs funding, human resources, and full equipment. It also requires the use of innovation models to cover several different aspects of change and progress. The results of the study can provide a basis for the implementation of future telemedicine projects using new participatory, creative, and innovative models. PMID:26618033

  10. Forging the Solution to the Energy Challenge: The Role of Materials Science and Materials Scientists

    NASA Astrophysics Data System (ADS)

    Wadsworth, Jeffrey

    2010-04-01

    The energy challenge is central to the most important strategic problems facing the United States and the world. It is increasingly clear that even large-scale deployments of the best technologies available today cannot meet the rising energy demands of a growing world population. Achieving a secure and sustainable energy future will require full utilization of, and substantial improvements in, a comprehensive portfolio of energy systems and technologies. This goal is complicated by several factors. First, energy strategies are inextricably linked to national security and health issues. Second, in developing and deploying energy technologies, it is vital to consider not only environmental issues, such as global climate change, but also economic considerations, which strongly influence both public and political views on energy policy. Third, a significant and sustained effort in basic and applied research and development (R&D) will be required to deliver the innovations needed to ensure a desirable energy future. Innovations in materials science and engineering are especially needed to overcome the limits of essentially all energy technologies. A wealth of historical evidence demonstrates that such innovations are also the key to economic prosperity. From the development of the earliest cities around flint-trading centers, to the Industrial Revolution, to today’s silicon-based global economy, the advantage goes to those who lead in exploiting materials. I view our challenge by considering the rate of innovation and the transition of discovery to the marketplace as the relationship among R&D investment, a skilled and talented workforce, business innovations, and the activities of competitors. Most disturbing in analyzing this relationship is the need for trained workers in science, technology, engineering, and mathematics (STEM). To develop the STEM workforce needed for innovation, we need sustainable, positive change in STEM education at all levels from preschool through postgraduate. Materials sciences can be a significant magnet in attracting students to STEM areas, and a focused effort is needed to ensure that it is included in STEM programs. From this effort will come the next generation of materials scientists and the innovations that will enable us to overcome the energy challenge.

  11. Forging the Solution to the Energy Challenge: The Role of Materials Science and Materials Scientists

    NASA Astrophysics Data System (ADS)

    Wadsworth, Jeffrey

    2010-05-01

    The energy challenge is central to the most important strategic problems facing the United States and the world. It is increasingly clear that even large-scale deployments of the best technologies available today cannot meet the rising energy demands of a growing world population. Achieving a secure and sustainable energy future will require full utilization of, and substantial improvements in, a comprehensive portfolio of energy systems and technologies. This goal is complicated by several factors. First, energy strategies are inextricably linked to national security and health issues. Second, in developing and deploying energy technologies, it is vital to consider not only environmental issues, such as global climate change, but also economic considerations, which strongly influence both public and political views on energy policy. Third, a significant and sustained effort in basic and applied research and development (R&D) will be required to deliver the innovations needed to ensure a desirable energy future. Innovations in materials science and engineering are especially needed to overcome the limits of essentially all energy technologies. A wealth of historical evidence demonstrates that such innovations are also the key to economic prosperity. From the development of the earliest cities around flint-trading centers, to the Industrial Revolution, to today’s silicon-based global economy, the advantage goes to those who lead in exploiting materials. I view our challenge by considering the rate of innovation and the transition of discovery to the marketplace as the relationship among R&D investment, a skilled and talented workforce, business innovations, and the activities of competitors. Most disturbing in analyzing this relationship is the need for trained workers in science, technology, engineering, and mathematics (STEM). To develop the STEM workforce needed for innovation, we need sustainable, positive change in STEM education at all levels from preschool through postgraduate. Materials sciences can be a significant magnet in attracting students to STEM areas, and a focused effort is needed to ensure that it is included in STEM programs. From this effort will come the next generation of materials scientists and the innovations that will enable us to overcome the energy challenge.

  12. Tackling Africa's digital divide

    NASA Astrophysics Data System (ADS)

    Lavery, Martin P. J.; Abadi, Mojtaba Mansour; Bauer, Ralf; Brambilla, Gilberto; Cheng, Ling; Cox, Mitchell A.; Dudley, Angela; Ellis, Andrew D.; Fontaine, Nicolas K.; Kelly, Anthony E.; Marquardt, Christoph; Matlhane, Selaelo; Ndagano, Bienvenu; Petruccione, Francesco; Slavík, Radan; Romanato, Filippo; Rosales-Guzmán, Carmelo; Roux, Filippus S.; Roux, Kobus; Wang, Jian; Forbes, Andrew

    2018-05-01

    Innovations in `sustainable' photonics technologies such as free-space optical links and solar-powered equipment provide developing countries with new cost-effective opportunities for deploying future-proof telecommunication networks.

  13. DRG-based hospital payment systems and technological innovation in 12 European countries.

    PubMed

    Scheller-Kreinsen, David; Quentin, Wilm; Busse, Reinhard

    2011-12-01

    To assess how diagnosis-related group-based (DRG-based) hospital payment systems in 12 European countries participating in the EuroDRG project pay and incorporate technological innovation. A standardized questionnaire was used to guide comprehensive DRG system descriptions. Researchers from each country reviewed relevant materials to complete the questionnaire and drafted standardized country reports. Two characteristics of DRG-based hospital payment systems were identified as particularly important: the existence of short-term payment instruments encouraging technological innovation in different countries, and the characteristics of long-term updating mechanisms that assure technological innovation is ultimately incorporated into DRG-based hospital payment systems. Short-term payment instruments and long-term updating mechanisms differ greatly among the 12 European countries included in this study. Some countries operate generous short-term payment instruments that provide additional payments to hospitals for making use of technological innovation (e.g., France). Other countries update their DRG-based hospital payment systems very frequently and use more recent data for updates. Generous short-term payment instruments to promote technological innovation should be applied carefully as they may imply rapidly increasing health-care expenditures. In general, they should be granted only if rigorous analyses have demonstrated their benefits. If the evidence remains uncertain, coverage with evidence development frameworks or frequent updates of the DRG-based hospital systems may provide policy alternatives. Once the data and evidence base is substantially improved, future research should empirically investigate how different policy arrangements affect the adoption and use of technological innovation and health-care expenditures. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  14. Building Design Guidelines for Solar Energy Technologies

    DOE R&D Accomplishments Database

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of "solar architecture" and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings.

  15. Space information technologies: future agenda

    NASA Astrophysics Data System (ADS)

    Flournoy, Don M.

    2005-11-01

    Satellites will operate more like wide area broadband computer networks in the 21st Century. Space-based information and communication technologies will therefore be a lot more accessible and functional for the individual user. These developments are the result of earth-based telecommunication and computing innovations being extended to space. The author predicts that the broadband Internet will eventually be available on demand to users of terrestrial networks wherever they are. Earth and space communication assets will be managed as a single network. Space networks will assure that online access is ubiquitous. No matter whether users are located in cities or in remote locations, they will always be within reach of a node on the Internet. Even today, scalable bandwidth can be delivered to active users when moving around in vehicles on the ground, or aboard ships at sea or in the air. Discussion of the innovative technologies produced by NASA's Advanced Communications Technology Satellite (1993-2004) demonstrates future capabilities of satellites that make them uniquely suited to serve as nodes on the broadband Internet.

  16. Assessing the relationship between technology readiness and continuance intention in an E-appointment system: relationship quality as a mediator.

    PubMed

    Chen, Shih-Chih; Jong, Din; Lai, Min-Tsai

    2014-09-01

    Numerous types of self-service technologies have prevailed due to innovations in network and information technology. To hospitals, patient intentions to continue to use the e-appointment system are crucial. Previous investigations discussed only the relationships between the technology readiness of users and their continuance intentions, and ignored the most important mediator, relationship quality. This study explored the relationships among technology readiness, relationship quality, and continuance intention. The research results demonstrated that both optimism and innovativeness significantly and positively influenced continuance intention through the mediating effect of relationship quality. However, discomfort and insecurity hid not significantly influence relationship quality or continuance intention. Finally, theoretical contributions, managerial implications and future research directions were discussed.

  17. The impact of science and technology on the civilization.

    PubMed

    Arber, Werner

    2009-01-01

    The rapid increase of available scientific knowledge is largely due to the introduction of novel research strategies. The application of these strategies, both in fundamental and in translational scientific research, leads to bursts of technological innovations. In order to fulfill the justified public request for sustainability of technological innovations that contribute to the shaping of the future, increasing attention should be given to science-based technology and policy assessment. These requests are illustrated by benefit/risk evaluations of relevance for the use of genetic engineering as an efficient and effective research strategy. Expected benefits of a responsibly planned introduction of GM crops are outlined as a prospective example for the guiding theme "Biotechnology for sustainability of human society".

  18. Technological innovations in digital data management and changing roles of imaging specialists in Japan.

    PubMed

    Ehara, Shigeru

    2010-11-28

    Technical innovations in digital data management pose a threat to radiologists in that can we remain in the process of clinical decision making or be assigned to a secondary role in future clinical practice. The value added to the imaging studies by diagnostic radiologists, or imaging specialists, has never been questioned more seriously.

  19. Increasing Early Opportunities in Engineering for Advanced Learners in Elementary Classrooms: A Review of Recent Literature

    ERIC Educational Resources Information Center

    Dailey, Debbie; Cotabish, Alicia; Jackson, Nykela

    2018-01-01

    Present and future challenges in our society demand a solid science, technology, engineering, and mathematics (STEM) knowledge base, innovative thinking, and the ability to ask the right questions to generate multiple solutions. To prepare innovators to meet these challenges, we must recognize and develop their talents. This advancement and growth…

  20. Working Paper on the Future of Library Automation at Stanford.

    ERIC Educational Resources Information Center

    Weber, David C.

    A number of important factors require Stanford University to review the progress and future implications of technological innovations in the library for the community of scholars which it serves. These factors include: The general economic climate of the University in 1971 and in the immediate years ahead; The problem of future funding of the…

  1. The X-20 space plane: Past innovation, future vision

    NASA Astrophysics Data System (ADS)

    Sunday, Terry L.; London, John R.

    In November 1957, the U.S. Air Force initiated an aerospace project that was one of the most innovative concepts of its day, and also provided an accurate glimpse into the future. The X-20 space plane, known as Dyna-Soar, never reached operational status—it was cancelled in December 1963, before the first prototype was built. But even though the diminutive vehicle never flew, technological advances made during its development laid the foundation for many later manned space systems, including some as new as tomorrow's headlines. The paper examines both the history and the technology of Dyna-Soar. The space plane's unique design and its proposed missions are examined, along with the ever-changing political, economic and programmatic environments that led to its conception, its long, painful gestation period, and its demise. The X-20 premiered many innovations to solve the challenges of launch, manned orbital operations and re-entry for a re-usable spacecraft. Many of these technologies did not reach fruition until decades later. Based largely on recently declassified material, this paper places Dyna-Soar into a broad historical context as an interesting research vehicle concept from three decades past, and as the purveyor of a technological legacy whose impacts are still being felt today.

  2. Industrial Technologies Program - A Clean, Secure Energy Future via Industrial Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Industrial Technologies Program (ITP) leads the national effort to save energy and reduce greenhouse gas emissions in the largest energy-using sector of the U.S. economy. ITP drives energy efficiency improvements and carbon dioxide reductions throughout the manufacturing supply chain, helping develop and deploy innovative technologies that transform the way industry uses energy.

  3. The Future Is in the Margins: The Role of Technology and Disability in Educational Reform.

    ERIC Educational Resources Information Center

    Rose, David; Meyer, Anne

    This paper posits that when new technologies in education move beyond their initial stages of development, innovations in curriculum design, teaching strategies, and policies will be driven by the needs of students "at the margin," those for whom present technologies are least effective, students with disabilities, and that all students…

  4. The Creation and Application of Two Innovative Real-Time Delphi and Cross-Impact Simulation Approaches to Forecast the Future: Forecasting High-Speed Broadband Developments for the State of Hawai`i

    ERIC Educational Resources Information Center

    Bergo, Rolv Alexander

    2013-01-01

    Technology development is moving rapidly and our dependence on information services is growing. Building a broadband infrastructure that can support future demand and change is therefore critical to social, political, economic and technological developments. It is often up to local policy makers to find the best solutions to support this demand…

  5. Aerospace Communications at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    The Communications Division at the NASA Glenn Research Center in Cleveland Ohio has as its charter to provide NASA and the Nation with our expertise and services in innovative communications technologies that address future missions in Aerospace Technology, Spaceflight, Space Science, Earth Science, Life Science and Exploration.

  6. Infusion of innovative technologies for mission operations

    NASA Astrophysics Data System (ADS)

    Donati, Alessandro

    2010-11-01

    The Advanced Mission Concepts and Technologies Office (Mission Technologies Office, MTO for short) at the European Space Operations Centre (ESOC) of ESA is entrusted with research and development of innovative mission operations concepts systems and provides operations support to special projects. Visions of future missions and requests for improvements from currently flying missions are the two major sources of inspiration to conceptualize innovative or improved mission operations processes. They include monitoring and diagnostics, planning and scheduling, resource management and optimization. The newly identified operations concepts are then proved by means of prototypes, built with embedded, enabling technology and deployed as shadow applications in mission operations for an extended validation phase. The technology so far exploited includes informatics, artificial intelligence and operational research branches. Recent outstanding results include artificial intelligence planning and scheduling applications for Mars Express, advanced integrated space weather monitoring system for the Integral space telescope and a suite of growing client applications for MUST (Mission Utilities Support Tools). The research, development and validation activities at the Mission technologies office are performed together with a network of research institutes across Europe. The objective is narrowing the gap between enabling and innovative technology and space mission operations. The paper first addresses samples of technology infusion cases with their lessons learnt. The second part is focused on the process and the methodology used at the Mission technologies office to fulfill its objectives.

  7. Global assessment of technological innovation for climate change adaptation and mitigation in developing world.

    PubMed

    Adenle, Ademola A; Azadi, Hossein; Arbiol, Joseph

    2015-09-15

    Concerns about mitigating and adapting to climate change resulted in renewing the incentive for agricultural research investments and developing further innovation priorities around the world particularly in developing countries. In the near future, development of new agricultural measures and proper diffusion of technologies will greatly influence the ability of farmers in adaptation and mitigation to climate change. Using bibliometric approaches through output of academic journal publications and patent-based data, we assess the impact of research and development (R&D) for new and existing technologies within the context of climate change mitigation and adaptation. We show that many developing countries invest limited resources for R&D in relevant technologies that have great potential for mitigation and adaption in agricultural production. We also discuss constraints including weak infrastructure, limited research capacity, lack of credit facilities and technology transfer that may hinder the application of innovation in tackling the challenges of climate change. A range of policy measures is also suggested to overcome identified constraints and to ensure that potentials of innovation for climate change mitigation and adaptation are realized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Technical and Sociological Approaches for Curriculum Innovation on Clothing Education Department

    NASA Astrophysics Data System (ADS)

    Tristantie, N.

    2018-02-01

    Education in the context of social and technical development is defined as the main factor in the learning process which is implied into curriculum. It needs to be anticipated responsively how the goals of Clothing Education Department should be achieved. The sociological and technological through curriculum innovation at Clothing Education Department aims to gain good profile of the professional graduates in the future. By using the literature study, it is found out that sociological development and technological approach are the main foundation for sustainability of Clothing Education Department.

  9. Penetrating the Fog: Analytics in Learning and Education

    ERIC Educational Resources Information Center

    Siemens, George; Long, Phil

    2011-01-01

    Attempts to imagine the future of education often emphasize new technologies--ubiquitous computing devices, flexible classroom designs, and innovative visual displays. But the most dramatic factor shaping the future of higher education is something that people cannot actually touch or see: "big data and analytics." Learning analytics is still in…

  10. Times Past, Times to Come: The Influence of the Past on Visions of the Future.

    ERIC Educational Resources Information Center

    Masson, Sophie

    1997-01-01

    Discussion of visions of the future that are based on past history highlights imaginative literature that deals with the human spirit rather than strictly technological innovations. Medieval society, the Roman Empire, mythological atmospheres, and the role of writers are also discussed. (LRW)

  11. The Future of Private Practice in Audiology

    PubMed Central

    Fabry, David A.

    2016-01-01

    Although private practice in audiology has evolved during the past 40 years, hearing aids have remained as a central component to success. This article will discuss present and future trends for the next 40 years, including parallels to other professions and the need to innovate beyond technology. PMID:28028329

  12. Vehicle Modeling for Future Generation Transportation Simulation

    DOT National Transportation Integrated Search

    2009-05-10

    Recent development of inter-vehicular wireless communication technologies have motivated many innovative applications aiming at significantly increasing traffic throughput and improving highway safety. Powerful traffic simulation is an indispensable ...

  13. The Effect of Government Actions on Environmental Technology Innovation: Applications to the Integrated Assessment of Carbon Sequestration Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, E. S.; Hounshell, D. A.; Yeh, S.

    2004-01-15

    This project seeks to improve the ability of integrated assessment models (IA) to incorporate changes in technology, especially environmental technologies, cost and performance over time. In this report, we present results of research that examines past experience in controlling other major power plant emissions that might serve as a reasonable guide to future rates of technological progress in carbon capture and sequestration (CCS) systems. In particular, we focus on U.S. and worldwide experience with sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) control technologies over the past 30 years, and derive empirical learning rates for these technologies. The patternsmore » of technology innovation are captured by our analysis of patent activities and trends of cost reduction over time. Overall, we found learning rates of 11% for the capital costs of flue gas desulfurization (FGD) system for SO{sub 2} control, and 13% for selective catalytic reduction (SCR) systems for NO{sub x} control. We explore the key factors responsible for the observed trends, especially the development of regulatory policies for SO{sub 2} and NO{sub x} control, and their implications for environmental control technology innovation.« less

  14. Reflections on Partner Violence: 20 Years of Research and Beyond

    ERIC Educational Resources Information Center

    Rhatigan, Deborah L.; Moore, Todd M.; Street, Amy E.

    2005-01-01

    The authors reflect on past research and technology as well as their hopes for future innovations within the field of intimate partner violence. They review work that has contributed to current conceptual definitions of partner violence, particularly those that have shaped the fields broadened perspective. They discuss technological and…

  15. Leading Practice in Space Education: Successful Approaches by Specialist Schools

    ERIC Educational Resources Information Center

    Schools Network, 2010

    2010-01-01

    The aim of the Government's Science, Technology, Engineering and Mathematics (STEM) programme is to ensure Britain's future success as a major centre for science, engineering and innovation. Specialist science, technology, engineering and maths & computing colleges help to drive this programme by becoming centres of excellence in STEM…

  16. TRIZ Innovative Technology of Design Used in the Development of a Technology Roadmap for Space Soil Penetrator Probes Including a Mini Air Bag Concept

    NASA Technical Reports Server (NTRS)

    Blusiu, Julian O.

    1997-01-01

    Many Future NASA missions will be designed to robotically explore planets, moons and asteroids by collecting soil samples and conducting in-situ analyses to establish ground composition and look for the presence of specific components.

  17. Technological innovations in digital data management and changing roles of imaging specialists in Japan

    PubMed Central

    Ehara, Shigeru

    2010-01-01

    Technical innovations in digital data management pose a threat to radiologists in that can we remain in the process of clinical decision making or be assigned to a secondary role in future clinical practice. The value added to the imaging studies by diagnostic radiologists, or imaging specialists, has never been questioned more seriously. PMID:21179309

  18. Reframing and Articulating Socio-scientific Classroom Discourses on Genetic Testing from an STS Perspective

    NASA Astrophysics Data System (ADS)

    Boerwinkel, Dirk Jan; Swierstra, Tsjalling; Waarlo, Arend Jan

    2012-08-01

    In recent decades, Science & Technology Studies (STS) have revealed the dynamic interaction between science and technology and society. Technology development is not an autonomous process and its artifacts are not socially inert. Society and technology shape each other. Technologies often have `soft impacts' in terms of unpredicted side effects on individuals and society. Nevertheless, current societal discourse on technological innovations is still dominated by `hard impacts' such as quantifiable risks for health, safety and the environment. Furthermore, participants in socio-scientific discourses often underestimate their agency in influencing technological innovations, and at the same time overestimate their freedom of choice to use a technology. Past debates on technological innovations have shown how these debates were framed and often caught in fruitless discourse patterns or arguments. Interventionist STS research experiments with solutions to this problem. Assuming that an STS perspective is helpful in reframing and articulating socio-scientific classroom discourses, the case of genetic testing is used to explore this. An important positive `hard impact' of genetic testing is disease prevention. However, this is put into perspective by addressing `soft impacts' such as limited access to certain careers based on genetic risk and changes in the conception of health and the perception of responsibility for one's health. Discussion stoppers such as `playing God' or `We can't stop technological advancement' can be challenged through uncovering underlying assumptions. The use of narratives and future scenarios in classrooms seems fruitful in provoking imagination and engaging students in public debates on technological innovations.

  19. Firms navigating through innovation spaces: a conceptualization of how firms search and perceive technological, market and productive opportunities globally.

    PubMed

    McKelvey, Maureen

    2016-01-01

    The main contribution of this paper is a theory-based conceptual framework of innovation spaces, and how firms must navigate through them to innovate. The concept of innovation systems - at the regional, sectoral and national levels - have been highly influential. Previous literature developing the concept of innovation systems has stressed the importance of institutions, networks and knowledge bases at the regional, sectoral and national levels. This paper primarily draws upon an evolutionary and Schumpeterian economics perspective, in the following three senses. The conceptualization of 'innnovation spaces' focuses upon how and why firm search for innovations is influenced the opportunities within certain geographical contexts. This means that the firm create opportunities and can span different context, but they are influence by the context in term of the access, flow and co-evolution of ideas, resources, technology, people and knowledge, which help stimulate business innovation in terms of products, process and services. The paper concludes with an agenda for future research and especially the need to focus on globalization as a process of intensifying linkages across the globe.

  20. Patient-Driven Innovation for Mobile Mental Health Technology: Case Report of Symptom Tracking in Schizophrenia.

    PubMed

    Torous, John; Roux, Spencer

    2017-07-06

    This patient perspective piece presents an important case at the intersection of mobile health technology, mental health, and innovation. The potential of digital technologies to advance mental health is well known, although the challenges are being increasingly recognized. Making mobile health work for mental health will require broad collaborations. We already know that those who experience mental illness are excited by the potential technology, with many actively engaged in research, fundraising, advocacy, and entrepreneurial ventures. But we don't always hear their voice as often as others. There is a clear advantage for their voice to be heard: so we can all learn from their experiences at the direct intersection of mental health and technology innovation. The case is cowritten with an individual with schizophrenia, who openly shares his name and personal experience with mental health technology in order to educate and inspire others. This paper is the first in JMIR Mental Health's patient perspective series, and we welcome future contributions from those with lived experience. ©John Torous, Spencer Roux. Originally published in JMIR Mental Health (http://mental.jmir.org), 06.07.2017.

  1. NASA's Advanced TPS Materials and Technology Development: Multi-Functional Materials and Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Feldman, Jay; Ellerby, Donald T.; Wercinski, Paul F.; Beck, Robin A S.

    2017-01-01

    NASA's future missions will be more demanding. They require materials to be mass efficient, robust, multi-functional, scalable and able to be integrated with other subsystems to enable innovative missions to accomplish future science missions. Thermal protection systems and materials (TPSM) are critical for the robotic and human exploration of the solar system when it involves entry. TPSM is a single string system with no back-up. Mass efficiency and robustness are required. Integration of TPSM with the aeroshell is both a challenge and an opportunity. Since 2010, NASA's Space Technology Mission Directorate has invested in innovative new materials and systems across a spectrum of game changing technologies. In this keynote address, we plan to highlight and present our successful approaches utilized in developing four different materials and system technologies that use innovative new manufacturing techniques to meet mission needs. 3-D weaving and felt manufacturing allowed us to successfully propose new ways of addressing TPSM challenges. In the 3-D MAT project, we developed and delivered a multi-functional TPS materials solution, in under three years that is an enabler for Lunar Capable Orion Spacecraft. Under the HEEET project, we are developing a robust heat-shield that can withstand extreme entry conditions, both thermally and mechanically, for entry at Venus, Saturn or higher speed sample return missions. The improved efficiency of HEEET allows science missions entry at much reduced G'loads enabling delicate science instruments to be used. The ADEPT concept is a foldable and deployable entry system and the critical component is a multi-functional fabric that is foldable and deployable and also functions as a mechanical aeroshell and a TPS. The fourth technology we will highlight involves felt to address integration challenges of rigid ablative system such as PICA that was used on MSL. The felt technology allows us to develop a compliant TPS for easy integration. The above four technology developments have focused on mission infusion as the success criteria. These technologies are in different stages of mission infusion. These innovations have led to new mission concepts to be proposed in the future. In our keynote address we will present approaches we have employed throughout the project to create the bridge to transition from low TRL to mission infusion and to overcome the traditional TRL valley of death.

  2. The Pharma Summit 2010: competing in the future healthcare system.

    PubMed

    Kibble, Alexandra

    2010-04-01

    The Pharma Summit 2010, held in London, included topics covering the future changes and developments that are expected in the pharmaceutical industry. This conference report highlights selected presentations on various visions for the future of the pharma industry, the expected revolution in healthcare, changes with patients driving healthcare innovation, the future of healthcare technology, and the outlook for the global economy and emerging markets in the pharma industry.

  3. Way Forward for High Performance Payload Processing Development

    NASA Astrophysics Data System (ADS)

    Notebaert, Olivier; Franklin, John; Lefftz, Vincent; Moreno, Jose; Patte, Mathieu; Syed, Mohsin; Wagner, Arnaud

    2012-08-01

    Payload processing is facing technological challenges due to the large increase of performance requirements of future scientific, observation and telecom missions as well as the future instruments technologies capturing much larger amount of data. For several years, with the perspective of higher performance together with the planned obsolescence of solutions covering the current needs, ESA and the European space industry has been developing several technology solutions. Silicon technologies, radiation mitigation techniques and innovative functional architectures are developed with the goal of designing future space qualified processing devices with a much higher level of performance than today. The fast growing commercial market application have developed very attractive technologies but which are not fully suitable with respect to their tolerance to space environment. Without the financial capacity to explore and develop all possible technology paths, a specific and global approach is required to cover the future mission needs and their necessary performance targets with effectiveness.The next sections describe main issues and priorities and provides further detailed relevant for this approach covering the high performance processing technology.

  4. Driving into the future: how imaging technology is shaping the future of cars

    NASA Astrophysics Data System (ADS)

    Zhang, Buyue

    2015-03-01

    Fueled by the development of advanced driver assistance system (ADAS), autonomous vehicles, and the proliferation of cameras and sensors, automotive is becoming a rich new domain for innovations in imaging technology. This paper presents an overview of ADAS, the important imaging and computer vision problems to solve for automotive, and examples of how some of these problems are solved, through which we highlight the challenges and opportunities in the automotive imaging space.

  5. Innovation in Education--Inclusion of 3D-Printing Technology in Modern Education System of Pakistan: Case from Pakistani Educational Institutes

    ERIC Educational Resources Information Center

    Waseem, Kainat; Kazmi, Hasnain Alam; Qureshi, Ovais Hussain

    2017-01-01

    On this research, the traditional education system of Pakistan has been analyzed in comparison to international modern education system with 3D printing technology. Also how this technology results in revolutionizing current education system and its future aspects. The study adopted semi-structured interviews to solicit an understanding of…

  6. Innovation in Education--Inclusion of 3D-Printing Technology in Modern Education System of Pakistan: Case from Pakistani Educational Institutes

    ERIC Educational Resources Information Center

    Waseem, Kainat; Kainat, Hasnain Alam; Qureshi, Ovais Hussain

    2016-01-01

    On this research, the traditional education system of Pakistan has been analyzed in comparison to international modern education system with 3D printing technology. Also how this technology results in revolutionizing current education system and its future aspects. The study adopted semi-structured interviews to solicit an understanding of…

  7. When technologies makes good people do bad things: another argument against the value-neutrality of technologies.

    PubMed

    Morrow, David R

    2014-06-01

    Although many scientists and engineers insist that technologies are value-neutral, philosophers of technology have long argued that they are wrong. In this paper, I introduce a new argument against the claim that technologies are value-neutral. This argument complements and extends, rather than replaces, existing arguments against value-neutrality. I formulate the Value-Neutrality Thesis, roughly, as the claim that a technological innovation can have bad effects, on balance, only if its users have "vicious" or condemnable preferences. After sketching a microeconomic model for explaining or predicting a technology's impact on individuals' behavior, I argue that a particular technological innovation can create or exacerbate collective action problems, even in the absence of vicious preferences. Technologies do this by increasing the net utility of refusing to cooperate. I also argue that a particular technological innovation can induce short-sighted behavior because of humans' tendency to discount future benefits too steeply. I suggest some possible extensions of my microeconomic model of technological impacts. These extensions would enable philosophers of technology to consider agents with mixed motives-i.e., agents who harbor some vicious preferences but also some aversion to acting on them-and to apply the model to questions about the professional responsibilities of engineers, scientists, and other inventors.

  8. Wicked problems in space technology development at NASA

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.; Stevens, John

    2016-01-01

    Technological innovation is key to enable future space exploration missions at NASA. Technology development, however, is not only driven by performance and resource considerations, but also by a broad range of directly or loosely interconnected factors. These include, among others, strategy, policy and politics at various levels, tactics and programmatics, interactions between stakeholders, resource requirements, performance goals from component to system level, mission infusion targets, portfolio execution and tracking, and technology push or mission pull. Furthermore, at NASA, these influences occur on varying timescales and at diverse geographic locations. Such a complex and interconnected system could impede space technology innovation in this examined segment of the government environment. Hence, understanding the process through NASA's Planning, Programming, Budget and Execution cycle could benefit strategic thinking, planning and execution. Insights could be gained through suitable models, for example assessing the key drivers against the framework of Wicked Problems. This paper discusses NASA specific space technology innovation and innovation barriers in the government environment through the characteristics of Wicked Problems; that is, they do not have right or wrong solutions, only improved outcomes that can be reached through authoritative, competitive, or collaborative means. We will also augment the Wicked Problems model to account for the temporally and spatially coupled, and cyclical nature of this NASA specific case, and propose how appropriate models could improve understanding of the key influencing factors. In turn, such understanding may subsequently lead to reducing innovation barriers, and stimulating technology innovation at NASA. Furthermore, our approach can be adopted for other government-directed environments to gain insights into their structures, hierarchies, operational flow, and interconnections to facilitate circular dialogs towards preferred outcomes.

  9. Chapter 3 innovations in the en route care of combat casualties.

    PubMed

    Hatzfeld, Jennifer J; Dukes, Susan; Bridges, Elizabeth

    2014-01-01

    The en route care environment is dynamic and requires constant innovation to ensure appropriate nursing care for combat casualties. Building on experiences in Iraq and Afghanistan, there have been tremendous innovations in the process of transporting patients, including the movement of patients with spinal injuries. Advances have also been made in pain management and noninvasive monitoring, particularly for trauma and surgical patients requiring close monitoring of their hemodynamic and perfusion status. In addition to institutionalizing these innovations, future efforts are needed to eliminate secondary insults to patients with traumatic brain injuries and technologies to provide closed-loop sedation and ventilation.

  10. Assistive technology products: a position paper from the first global research, innovation, and education on assistive technology (GREAT) summit.

    PubMed

    Smith, Roger O; Scherer, Marcia; Cooper, Rory; Bell, Diane; Hobbs, David A; Pettersson, Cecilia; Seymour, Nicky; Borg, Johan; Johnson, Michelle J; Lane, Joseph P; Srinivasan, S Sujatha; Rao, Pvm; Obiedat, Qussai M; MacLachlan, Mac; Bauer, Stephen

    2018-06-06

    This paper is based on work from the Global Research, Innovation, and Education on Assistive Technology (GREAT) Summit that was coordinated by WHO's Global Cooperation on Assistive Technology (GATE). The purpose of this paper is to describe the needs and opportunities embedded in the assistive product lifecycle as well as issues relating to the various stages of assistive product mobilization worldwide. The paper discusses assistive technology product terminology and the dangers of focusing on products outside the context and rolling out products without a plan. Additionally, the paper reviews concepts and issues around technology transfer, particularly in relation to meeting global needs and among countries with limited resources. Several opportunities are highlighted including technology advancement and the world nearing a state of readiness through a developing capacity of nations across the world to successfully adopt and support the assistive technology products and applications. The paper is optimistic about the future of assistive technology products reaching the people that can use it the most and the excitement across large and small nations in increasing their own capacities for implementing assistive technology. This is expressed as hope in future students as they innovate and in modern engineering that will enable assistive technology to pervade all corners of current and potential marketplaces. Importantly, the paper poses numerous topics where discussions are just superficially opened. The hope is that a set of sequels will follow to continue this critical dialog. Implications for Rehabilitation Successful assistive technology product interventions are complex and include much more than the simple selection of the right product. Assistive technology product use is highly context sensitive in terms of an individual user's environment. The development of assistive technology products is tricky as it must be contextually sensitive to the development environment and market as well. As a field we have much to study and develop around assistive technology product interventions from a global perspective.

  11. Composites for Exploration Upper Stage

    NASA Technical Reports Server (NTRS)

    Fikes, J. C.; Jackson, J. R.; Richardson, S. W.; Thomas, A. D.; Mann, T. O.; Miller, S. G.

    2016-01-01

    The Composites for Exploration Upper Stage (CEUS) was a 3-year, level III project within the Technology Demonstration Missions program of the NASA Space Technology Mission Directorate. Studies have shown that composites provide important programmatic enhancements, including reduced weight to increase capability and accelerated expansion of exploration and science mission objectives. The CEUS project was focused on technologies that best advanced innovation, infusion, and broad applications for the inclusion of composites on future large human-rated launch vehicles and spacecraft. The benefits included near- and far-term opportunities for infusion (NASA, industry/commercial, Department of Defense), demonstrated critical technologies and technically implementable evolvable innovations, and sustained Agency experience. The initial scope of the project was to advance technologies for large composite structures applicable to the Space Launch System (SLS) Exploration Upper Stage (EUS) by focusing on the affordability and technical performance of the EUS forward and aft skirts. The project was tasked to develop and demonstrate critical composite technologies with a focus on full-scale materials, design, manufacturing, and test using NASA in-house capabilities. This would have demonstrated a major advancement in confidence and matured the large-scale composite technology to a Technology Readiness Level 6. This project would, therefore, have bridged the gap for providing composite application to SLS upgrades, enabling future exploration missions.

  12. Locating the fourth helix: Rethinking the role of civil society in developing smart learning cities

    NASA Astrophysics Data System (ADS)

    Borkowska, Katarzyna; Osborne, Michael

    2018-06-01

    In the Global North and increasingly in the Global South, smart city technologies are enthusiastically seen as a solution to urban problems and as an alternative to austerity. However, to move beyond a narrow technological focus, it is necessary to explore the degree to which smart initiatives are committed to building socially inclusive innovation with learning at its core. Using the particular case of the Future City Demonstrator Initiative in Glasgow, United Kingdom, the most high-profile initiative of its kind funded by government, the authors of this article assess the extent to which this smart city adopts such an inclusive approach. They use the quadruple helix model (government - academia - industry - civil society) as a starting point and develop an analytic framework composed of four strands: (1) supporting participation of citizens in decision-making; (2) implementing technological innovation which positions citizens as active users; (3) implementing technological innovation to benefit the community; and (4) evaluating technological innovation in the light of the experiences and needs of citizens. Unlike most analyses, the principal focus of this article is on the fourth element of the helix, civil society. The authors argue that Glasgow's rhetoric of smart urbanism, while aspiring to problem-solving, devalues certain principles of human agency. They emphasise that urban change, including the city's desire to become technologically innovative, would more fully facilitate active citizenship, social inclusion and learning opportunities for all if it were underpinned by the broader conceptions and frameworks of learning cities.

  13. Design and operations technologies - Integrating the pieces. [for future space systems design

    NASA Technical Reports Server (NTRS)

    Eldred, C. H.

    1979-01-01

    As major elements of life-cycle costs (LCC) having critical impacts on the initiation and utilization of future space programs, the areas of vehicle design and operations are reviewed in order to identify technology requirements. Common to both areas is the requirement for efficient integration of broad, complex systems. Operations technologies focus on the extension of space-based capabilities and cost reduction through the combination of innovative design, low-maintenance hardware, and increased manpower productivity. Design technologies focus on computer-aided techniques which increase productivity while maintaining a high degree of flexibility which enhances creativity and permits graceful design changes.

  14. Are autonomous cities our urban future?

    PubMed

    Norman, Barbara

    2018-05-29

    Cities are rapidly expanding in size, wealth and power, with some now larger than nation states. Smart city solutions and strong global urban networks are developing to manage massive urban growth. However, cities exist within a wider system and it may take more than technological advances, innovation and city autonomy to develop a sustainable urban future.

  15. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Laurie Leshin, dean of the School of Science, Rensselaer Polytechnic Institute, left, Mason Peck, NASA Chief Technologist, 2nd from left, Ron Sega, Vice president and enterprise executive for Energy and the Environment, The Ohio State University and Colorado State University, Michael Donovan, technology consultant, New Services Development, Hewlett-Packard Company, and, Jordan Hansell, chairman and CEO, NetJets Inc., right, participate in the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  16. Is Online Learning a Disruptive Innovation?

    ERIC Educational Resources Information Center

    Meyer, Katrina A.

    2011-01-01

    In their desire to plan for the future, planners must assess the role of both internal and external influences on the institution. What then should people make of the idea that technology is disruptive? This perception fuels the views of Barone and Hagner (2001), who claimed that technology would "transform" higher education; Duderstadt (2000),…

  17. The Digital Work Force: Building Infotech Skills at the Speed of Innovation.

    ERIC Educational Resources Information Center

    Meares, Carol Ann; Sargent, John F., Jr.

    This report is the product of an effort by the Office of Technology Policy to assess current and future needs for information technology (IT) workers through a comprehensive information-gathering project that included the following three activities: (1) nationwide regional meetings that included discussions with industry executives,…

  18. When Bigger Is Not Better

    ERIC Educational Resources Information Center

    Smith, Abby

    2004-01-01

    Recent innovations in information technology have met, and in many cases, exceeded all but the most utopian visions for increasing access to research materials. Although the costs of the technology are high and the risks of losing access to digital information in the future because of hardware and software obsolescence are now widely recognized,…

  19. 78 FR 40084 - Proposed Requirement-Migrant Education Program Consortium Incentive Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... techniques may include ``identifying changing future compliance costs that might result from technological innovation or anticipated behavioral changes.'' We are issuing this proposed requirement only on a reasoned...

  20. 78 FR 18933 - Proposed Priority-National Institute on Disability and Rehabilitation Research-Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... techniques may include ``identifying changing future compliance costs that might result from technological innovation or anticipated behavioral changes.'' We are issuing this proposed priority only upon a reasoned...

  1. NIST Role in Advancing Innovation

    NASA Astrophysics Data System (ADS)

    Semerjian, Hratch

    2006-03-01

    According to the National Innovation Initiative, a report of the Council on Competitiveness, innovation will be the single most important factor in determining America's success through the 21^st century. NIST mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology -- in ways that enhance economic security and improve the quality of life for all Americans. NIST innovations in measurement science and technology often become the basis for new industrial capabilities. Several examples of such developments will be discussed, including the development of techniques for manipulation and measurement of biomolecules which may become the building blocks for molecular electronics; expansion of the frontiers of quantum theory to develop the field of quantum computing and communication; development of atomic scale measurement capabilities for future nano- and molecular scale electronic devices; development of a lab-on-a-chip that can detect within seconds trace amounts of toxic chemicals in water, or can be used for rapid DNA analysis; and standards to facilitate supply chain interoperability.

  2. NASA technology investments: building America's future

    NASA Astrophysics Data System (ADS)

    Peck, Mason

    2013-03-01

    Investments in technology and innovation enable new space missions, stimulate the economy, contribute to the nation's global competitiveness, and inspire America's next generation of scientists, engineers and astronauts. Chief Technologist Mason Peck will provide an overview of NASA's ambitious program of space exploration that builds on new technologies, as well as proven capabilities, as it expands humanity's reach into the solar system while providing broadly-applicable benefits here on Earth. Peck also will discuss efforts of the Office of the Chief Technologist to coordinate the agency's overall technology portfolio, identifying development needs, ensuring synergy and reducing duplication, while furthering the national initiatives as outlined by President Obama's Office of Science and Technology Policy. By coordinating technology programs within NASA, Peck's office facilitates integration of available and new technology into operational systems that support specific human-exploration missions, science missions, and aeronautics. The office also engages other government agencies and the larger aerospace community to develop partnerships in areas of mutual interest that could lead to new breakthrough capabilities. NASA technology transfer translates our air and space missions into societal benefits for people everywhere. Peck will highlight NASA's use of technology transfer and commercialization to help American entrepreneurs and innovators develop technological solutions that stimulate the growth of the innovation economy by creating new products and services, new business and industries and high quality, sustainable jobs.

  3. Hurdling barriers through market uncertainty: Case studies ininnovative technology adoption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Christopher T.; Radspieler Jr., Anthony; Payne, Jack

    The crisis atmosphere surrounding electricity availability in California during the summer of 2001 produced two distinct phenomena in commercial energy consumption decision-making: desires to guarantee energy availability while blackouts were still widely anticipated, and desires to avoid or mitigate significant price increases when higher commercial electricity tariffs took effect. The climate of increased consideration of these factors seems to have led, in some cases, to greater willingness on the part of business decision-makers to consider highly innovative technologies. This paper examines three case studies of innovative technology adoption: retrofit of time-and-temperature signs on an office building; installation of fuel cellsmore » to supply power, heating, and cooling to the same building; and installation of a gas-fired heat pump at a microbrewery. We examine the decision process that led to adoption of these technologies. In each case, specific constraints had made more conventional energy-efficient technologies inapplicable. We examine how these barriers to technology adoption developed over time, how the California energy decision-making climate combined with the characteristics of these innovative technologies to overcome the barriers, and what the implications of hurdling these barriers are for future energy decisions within the firms.« less

  4. Battlefield innovation: a case-study of remote sensor development

    NASA Astrophysics Data System (ADS)

    Orson, Jay A.; Hague, Tyler N.

    2007-10-01

    Evolving threats encountered by coalition forces in Operation Iraqi Freedom drive the need for innovations in airborne intelligence, surveillance, and reconnaissance capabilities. In many cases, disruptive capabilities are created by linking existing technologies and new radical technologies in a novel way. Some of the radical technologies used in achieving these disruptive capabilities are existing prototypes or one-of-a-kind systems that are thrust into the field to quickly react to emerging threats. Horned Owl is one such rapidly developed innovative technical solution designed to meet immediate battlefield needs. This paper focuses on two key areas of this initiative. The first is the innovation champion establishing a collaborative environment which fosters creativity and allows the project to mature the disruptive capability. The second is the practical implication, or challenges of deploying experimental systems in a battlefield environment. Discussions of these two areas provide valuable lessons to guide future innovation champions when presented with the dual task of balancing system maturation with meeting operational demand. Contents of this paper are not necessarily the official views of, or endorsed by the U.S. Government, the Department of Defense, or the Department of the Air Force.

  5. [Technological convergence will quickly generate disruptive innovations in oncology].

    PubMed

    Coucke, Ph A

    2016-06-01

    Convergence between information and communication technology and recent developments in medical care will totally change the health care sector. The way we perform diagnosis, treatment and follow-up will undergo disruptive changes in a very near future. We intend to highlight this statement by a limited selection of examples of radical innovations, especially in the field of oncology. To be totally disruptive and to illustrate the concept of "lateral power" - especially cognitive distribution - the list of references is only made up of internet links. Anyone - patients included - can easily and instantly access to this information everywhere.

  6. Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge.

    PubMed

    Xu, Ying; Zhang, Chaosheng; Zhao, Meihua; Rong, Hongwei; Zhang, Kefang; Chen, Qiuli

    2017-02-01

    Heavy metals prevent the growing amount of sewage sludge from being disposed as fertilizeron land. The electrokinetic remediation and bioleaching technology are the promising methods to remove heavy metals. In recent years, some innovation has been made to achieve better efficiency, including the innovation of processes and agents. This paper reviews the development of the electrokinetic remediation and bioleaching technology and analyses their advantages and limitation, pointing out the need of the future research for the heavy metals-contaminated sewage sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Designing a Digital Future: Federally Funded Research and Development in Networking and Information Technology. Report to the President and Congress

    ERIC Educational Resources Information Center

    Executive Office of the President, 2010

    2010-01-01

    This report is prepared by the President's Council of Advisors on Science and Technology (PCAST) acting in its role as the President's Innovation and Technology Advisory Council (PITAC). This report fulfills PCAST's responsibilities under Executive Order 13539 and the High-Performance Computing Act of 1991 (Public Law 102-194) as amended by the…

  8. An exploration of neuromorphic systems and related design issues/challenges in dark silicon era

    NASA Astrophysics Data System (ADS)

    Chandaliya, Mudit; Chaturvedi, Nitin; Gurunarayanan, S.

    2018-03-01

    The current microprocessors has shown a remarkable performance and memory capacity improvement since its innovation. However, due to power and thermal limitations, only a fraction of cores can operate at full frequency at any instant of time irrespective of the advantages of new technology generation. This phenomenon of under-utilization of microprocessor is called as dark silicon which leads to distraction in innovative computing. To overcome the limitation of utilization wall, IBM technologies explored and invented neurosynaptic system chips. It has opened a wide scope of research in the field of innovative computing, technology, material sciences, machine learning etc. In this paper, we first reviewed the diverse stages of research that have been influential in the innovation of neurosynaptic architectures. These, architectures focuses on the development of brain-like framework which is efficient enough to execute a broad set of computations in real time while maintaining ultra-low power consumption as well as area considerations in mind. We also reveal the inadvertent challenges and the opportunities of designing neuromorphic systems as presented by the existing technologies in the dark silicon era, which constitute the utmost area of research in future.

  9. Outcomes from a postgraduate biomedical technology innovation training program: the first 12 years of Stanford Biodesign.

    PubMed

    Brinton, Todd J; Kurihara, Christine Q; Camarillo, David B; Pietzsch, Jan B; Gorodsky, Julian; Zenios, Stefanos A; Doshi, Rajiv; Shen, Christopher; Kumar, Uday N; Mairal, Anurag; Watkins, Jay; Popp, Richard L; Wang, Paul J; Makower, Josh; Krummel, Thomas M; Yock, Paul G

    2013-09-01

    The Stanford Biodesign Program began in 2001 with a mission of helping to train leaders in biomedical technology innovation. A key feature of the program is a full-time postgraduate fellowship where multidisciplinary teams undergo a process of sourcing clinical needs, inventing solutions and planning for implementation of a business strategy. The program places a priority on needs identification, a formal process of selecting, researching and characterizing needs before beginning the process of inventing. Fellows and students from the program have gone on to careers that emphasize technology innovation across industry and academia. Biodesign trainees have started 26 companies within the program that have raised over $200 million and led to the creation of over 500 new jobs. More importantly, although most of these technologies are still at a very early stage, several projects have received regulatory approval and so far more than 150,000 patients have been treated by technologies invented by our trainees. This paper reviews the initial outcomes of the program and discusses lessons learned and future directions in terms of training priorities.

  10. Technology for Innovation in Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetty, Indrin J.; Martel, Mary K., E-mail: mmartel@mdanderson.org; Jaffray, David A.

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled “Technology for Innovation in Radiation Oncology,” which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14,more » 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic.« less

  11. Technology for Innovation in Radiation Oncology.

    PubMed

    Chetty, Indrin J; Martel, Mary K; Jaffray, David A; Benedict, Stanley H; Hahn, Stephen M; Berbeco, Ross; Deye, James; Jeraj, Robert; Kavanagh, Brian; Krishnan, Sunil; Lee, Nancy; Low, Daniel A; Mankoff, David; Marks, Lawrence B; Ollendorf, Daniel; Paganetti, Harald; Ross, Brian; Siochi, Ramon Alfredo C; Timmerman, Robert D; Wong, John W

    2015-11-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled "Technology for Innovation in Radiation Oncology," which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Satellite Broadband Revolution: How Latest Ka-Band Systems Will Change the Rules of the Industry. An Interpretation of the Technological Trajectory

    NASA Astrophysics Data System (ADS)

    Valle, Fabio

    The paper analyzes the satellite broadband systems for consumer from the perspective of technological innovation. The suggested interpretation relies upon such concepts as technological paradigm, technological trajectory and salient points. Satellite technology for broadband is a complex system on which each component (i.e. the satellite, the end-user equipment, the on-ground systems and related infrastructure) develops at different speed. Innovation in this industry concentrates recently on satellite space aircraft that seemed to be the component with the highest perceived opportunity for improvement. The industry has designed recently satellite systems with continuous dimensional increase of capacity available, suggesting that there is a technological trajectory in this area, similar to Moore’s law in the computer industry. The implications for industry players, Ka-band systems, and growth of future applications are also examined.

  13. [Urotechnology: a new interdisciplinary platform for promoting and managing of technical innovations in urology].

    PubMed

    Miernik, A; Becker, C; Wullich, B; Schoenthaler, M; Arnolds, B J; Wetterauer, U

    2015-01-01

    The innovative power in medical engineering and technology development requires a close cooperation between universities and non-university research institutions and a collaboration with industrial partners. German knowledge in the fields of video and micro-optics, microsystem technology and of informational technology and software applications seem to be highly competitive at international level. Germany's previous leadership in the development of technical equipment will be challenged by today's requirements and difficulties in medical engineering. Research and expenses demands for the development of novel medical instruments, products and applications will increase continuously. Transparency and coordinated collaboration between universities and industrial partners will contribute to a substantial improvement in surgical therapy. Medical technology of the future, including urotechnology, requires professional structures and coordination and will have to be based on evidence.

  14. Trends in plant virus epidemiology: opportunities from new or improved technologies.

    PubMed

    Jones, R A C

    2014-06-24

    This review focuses on new or improved technologies currently being applied, or likely to be applied in the future, to worldwide research on plant virus epidemiology. Recent technological advances and innovations provide many opportunities to improve understanding of the way diverse types of plant virus epidemics develop and how to manage them. The review starts at the macro level by considering how recent innovations in remote sensing and precision agriculture can provide valuable information about (i) virus epidemics occurring at continental, regional or district scales (via satellites) and within individual crops (mostly via lightweight unmanned aerial vehicles), and (ii) exactly where to target control measures. It then considers recent improvements in information systems and innovations in modelling that improve (i) understanding of virus epidemics and ability to predict them, and (ii) delivery to end-users of critical advice on control measures, such as Internet-based Decision Support Systems. The review goes on to discuss how advances in analysis of spatiotemporal virus spread patterns within crops can help to enhance understanding of how virus epidemics develop and validate potentially useful virus control measures. At the micro level, the review then considers the many insights that advances in molecular epidemiology can provide about genetic variation within plant virus populations involved in epidemics, and how this variation drives what occurs at the macro level. Next, it describes how recent innovations in virus detection technologies are providing many opportunities to collect and analyse new types, and ever increasing amounts, of data about virus epidemics, and the genetic variability of the virus populations involved. Finally, the implications for plant virus epidemiology of technologies likely to be important in the future are considered. To address looming world food insecurity and threats to plant biodiversity resulting from climate change and rapid population growth, it is important that new and improved technologies that help understand and control epidemics of damaging plant viruses are adopted as smoothly and speedily as possible. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Commercial space opportunities - Advanced concepts and technology overview

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.

    1993-01-01

    The paper discusses the status of current and future commercial space opportunities. The goal is to pioneer innovative, customer-focused space concepts and technologies, leveraged through industrial, academic, and government alliance, to ensure U.S. commercial competitiveness and preeminence in space. The strategy is to develop technologies which enable new products and processes, deploy existing technology into commercial and military products and processes, and integrate military and commercial research and production activities. Technology development areas include information infrastructure, electronics design and manufacture, health care technology, environment technology, and aeronautical technologies.

  16. Enabling Professionalism: The Master Technician Program.

    ERIC Educational Resources Information Center

    Wimmer, Doris K.

    1988-01-01

    Describes Virginia's Master Technician Program, which offers a comprehensive coordinated curriculum in electronics/electromechanical technology that spans high school and community college levels of instruction. Highlights innovations of the project, curriculum design, advantages, and future projections. (DMM)

  17. NASA's Research to Support the Airlines

    NASA Technical Reports Server (NTRS)

    Evans, Cody; Mogford, Richard; Wing, David; Stallmann, Summer L.

    2017-01-01

    NASA's working with airlines and industry partners to introduce innovative concepts and new technology. This presentation will describe some of the research efforts at NASA Ames and NASA Langley and discuss future projects and research in aviation.

  18. Medicine.

    ERIC Educational Resources Information Center

    Ingelfinger, Franz J.

    1980-01-01

    Selected for discussion are certain advances in basic research and technologic innovation which shape the past, present, and future of medical care. Included are infectious diseases, especially hepatitis, immunology, clinical disorders of the immune system and the histocompatability system. (Author/SA)

  19. Signal lights - designed light for rear lamps and new upcoming technologies: innovations in automotive lighting

    NASA Astrophysics Data System (ADS)

    Mügge, Martin; Hohmann, Carsten

    2016-04-01

    Signal functions have to fulfill statutory regulations such as ECE or FMVSS108 to provide a clear signal to other road users and satisfy the same standard definitions of lighting parameters. However, as rear combination lamps are very different from one another, and these days are an increasingly powerful design element of cars, automotive manufacturers want an innovative, superior, and contrasting design. Daytime appearances with a new and unusual look and nighttime appearances with unexpected illumination are strong drivers for developing amazing innovative signal functions. The combination of LED technology and different forms of light-guiding optics, new interpretations of common optical systems to develop various styling options, the use of new materials and components for lighting effects, the introduction of OLED technology on the automotive market, and amazing new optical systems, using diffractive or holographic optics in future rear lamps, are paving the way for further, exciting design possibilities. The challenge of new signal functions is to take these possibilities and to develop the appearance and illumination effects the designer wants to reinforce the image of the car manufacturer and to fit harmoniously into the vehicle design. Lighting systems with a three-dimensional design and appearance when unlit and lit, amazing 3D effects, and surprising lighting scenarios will gain in importance. But the signal lights on cars will, in the future, be not only lighting functions in rear lamps; new functions and stylistic illuminations for coming/leaving-home scenarios will support and complete the car's overall lighting appearance. This paper describes current lighting systems realizing the styling requirements and future lighting systems offering new design possibilities and developing further stylistic, visual effects and improved technologies.

  20. Driving Innovation in Radiology: A Summary of the 2015 Intersociety Committee Summer Conference.

    PubMed

    Dodd, Gerald D; Restauri, Nicole L; Kondo, Kimi L; Lewis, Petra J

    2016-12-01

    The membership of the Intersociety Committee convened to consider how best to continue to stimulate, nurture, and support innovation in radiologic research and education in the face of ever increasing clinical demands and financial constraints. The topic was chosen in recognition that the growth and success of radiology over the past 50-plus years have been driven by spectacular technological developments in imaging and intervention and that the future relevance of the specialty will hinge on how the specialty continues to evolve. To keep radiology a dynamic and vital component of the health care enterprise will require continued innovation in technology and the requisite education that goes with it. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  1. Practical skills of the future innovator

    NASA Astrophysics Data System (ADS)

    Kaurov, Vitaliy

    2015-03-01

    Physics graduates face and often are disoriented by the complex and turbulent world of startups, incubators, emergent technologies, big data, social network engineering, and so on. In order to build the curricula that foster the skills necessary to navigate this world, we will look at the experiences at the Wolfram Science Summer School that gathers annually international students for already more than a decade. We will look at the examples of projects and see the development of such skills as innovative thinking, data mining, machine learning, cloud technologies, device connectivity and the Internet of things, network analytics, geo-information systems, formalized computable knowledge, and the adjacent applied research skills from graph theory to image processing and beyond. This should give solid ideas to educators who will build standard curricula adapted for innovation and entrepreneurship education.

  2. Sustainable NREL: From Integration to Innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-01

    NREL's sustainability practices are integrated throughout the laboratory and are essential to our mission to develop clean energy and energy efficiency technologies and practices, advance related science and engineering, and provide knowledge and innovations to integrate energy systems at all scales. Sustainability initiatives are integrated through our campus, our staff, and our environment allowing NREL to provide leadership in modeling a sustainability energy future for companies, organizations, governments, and communities.

  3. Blended Learning and Innovative Technologies in Training of Future Specialists in Foreign Higher Education Institutions

    ERIC Educational Resources Information Center

    Gurevych, Roman; Kademiya, Maya

    2017-01-01

    The article characterizes one of the most promising models of blended learning in higher education institutions. The article describes the peculiarities of improving the education process, the formation of motivational and professional competency of future specialists as well as the usage of one of the models of blended learning--"flipped…

  4. Diversity Initiatives in Higher Education: Multicultural Education as a Tool for Reclaiming Schools Organized as Breeding Grounds for Prisons

    ERIC Educational Resources Information Center

    Clark, Christine

    2004-01-01

    With the still relatively recent advent widespread technological innovation in the global marketplace, leading to the "information age," massive automation, and corporate capital flight to Third World labor markets, future leaders are still needed, but increasingly, future workers are not. As result, students previously educated to be future…

  5. Teaching Teachers for the Future (TTF): Building the ICT in Education Capacity of the Next Generation of Teachers in Australia

    ERIC Educational Resources Information Center

    Romeo, Geoff; Lloyd, Margaret; Downes, Toni

    2012-01-01

    The "Teaching Teachers for the Future" (TTF) project is a unique nationally significant project funded by the Australian Government through the Department of Employment, Education and Workplace Relations (DEEWR, Au$8.8 million) and the Information and Communication Technology Innovation Fund (ICTIF). This 2011-2012 project has…

  6. Promising technological innovations in cognitive training to treat eating-related behavior.

    PubMed

    Forman, Evan M; Goldstein, Stephanie P; Flack, Daniel; Evans, Brittney C; Manasse, Stephanie M; Dochat, Cara

    2018-05-01

    One potential reason for the suboptimal outcomes of treatments targeting appetitive behavior, such as eating and alcohol consumption, is that they do not target the implicit cognitive processes that may be driving these behaviors. Two groups of related neurocognitive processes that are robustly associated with dysregulated eating and drinking are attention bias (AB; selective attention to specific stimuli) and executive function (EF; a set of cognitive control processes such as inhibitory control, working memory, set shifting, that govern goal-directed behaviors). An increasing body of work suggests that EF and AB training programs improve regulation of appetitive behaviors, especially if trainings are frequent and sustained. However, several key challenges, such as adherence to the trainings in the long term, and overall potency of the training, remain. The current manuscript describes five technological innovations that have the potential to address difficulties related to the effectiveness and feasibility of EF and AB trainings: (1) deployment of training in the home, (2) training via smartphone, (3) gamification, (4) virtual reality, and (5) personalization. The drawbacks of these innovations, as well as areas for future research, are also discussed. The above-mentioned innovations are likely to be instrumental in the future empirical work to develop and evaluate effective EF and AB trainings for appetitive behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Overview of the INPRO Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupitz, J.; Depisch, F.; Zou, Y.

    2004-10-03

    During the last fifty years remarkable results are achieved in the application of nuclear technology for the production of electricity. Looking ahead to the next fifty years it is clear that the demand for energy will grow considerably and also the requirements for the way the energy will be supplied. Within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), the future of the energy demand and supply was explored and several scenario's identified. A leading requirement for energy supply is coming up and will play a crucial role: sustainability of the way the energy supply will bemore » realized. Fulfilling the growing need for energy in developing countries is as well an important issue. Based on these scenario's for the next fifty years, an inventory of requirements for the future of nuclear energy systems has been collected as well a methodology developed by INPRO to assess innovative nuclear systems and fuel cycles. On the base of this assessment, the need for innovations and breakthroughs in existing technology can be defined. To facilitate the deployment of innovative nuclear systems also the infrastructure, technical as well as institutional has to be adjusted to the anticipated changes in the world such as the globalization. As a contribution to the conference the main messages of INPRO will be presented.« less

  8. Powering the Future of Science and Exploration

    NASA Technical Reports Server (NTRS)

    Miley, Steven C.

    2009-01-01

    This viewgraph presentation reviews NASA's future of science and space exploration. The topics include: 1) NASA's strategic goals; 2) NASA around the Country; 3) Marshall's History; 4) Marshall's Missions; 5) Marshall Statistics: From Exploration to Opportunity; 6) Propulsion and Transportation Systems; 7) Life Support systems; 8) Earth Science; 9) Space Science; 10) NASA Innovation Creates New Jobs, Markets, and Technologies; 11) NASA Inspires Future Generations of Explorers; and 12) Why Explore?

  9. State strategies of governance in biomedical innovation: aligning conceptual approaches for understanding 'Rising Powers' in the global context

    PubMed Central

    2011-01-01

    Background 'Innovation' has become a policy focus in its own right in many states as they compete to position themselves in the emerging knowledge economies. Innovation in biomedicine is a global enterprise in which 'Rising Power' states figure prominently, and which undoubtedly will re-shape health systems and health economies globally. Scientific and technological innovation processes and policies raise difficult issues in the domains of science/technology, civil society, and the economic and healthcare marketplace. The production of knowledge in these fields is complex, uncertain, inter-disciplinary and inter-institutional, and subject to a continuing political struggle for advantage. As part of this struggle, a wide variety of issues - regulation, intellectual property, ethics, scientific boundaries, healthcare market formation - are raised and policy agendas negotiated. Methods A range of social science disciplines and approaches have conceptualised such innovation processes. Against a background of concepts such as the competition state and the developmental state, and national innovation systems, we give an overview of a range of approaches that have potential for advancing understanding of governance of global life science and biomedical innovation, with special reference to the 'Rising Powers', in order to examine convergences and divergences between them. Conceptual approaches that we focus on include those drawn from political science/political economy, sociology of technology; Innovation Studies and Science & Technology Studies. The paper is part of a project supported by the UK ESRC's Rising Powers programme. Results We show convergences and complementarities between the approaches discussed, and argue that the role of the national state itself has become relatively neglected in much of the relevant theorising. Conclusions We conclude that an approach is required that enables innovation and governance to be seen as 'co-producing' each other in a multi-level, global ecology of innovation, taking account of the particular, differing characteristics of different emerging scientific fields and technologies. We suggest key points to take account of in order in the future to move toward a satisfactory integrative conceptual framework, capable of better understanding the processes of the emergence, state steerage and transnational governance of innovative biomedical sectors in the Rising Powers and global context. PMID:21349182

  10. The Business Engineering Surgical Technologies (BEST) teaching method: incubating talents for surgical innovation.

    PubMed

    de Ruijter, V; Halvax, P; Dallemagne, B; Swanström, L; Marescaux, J; Perretta, S

    2015-01-01

    Technological innovation in surgical science and healthcare is vital and calls for close collaboration between engineering and surgery. To meet this objective, BEST was designed as a free sustainable innovative teaching method for young professionals, combining surgery, engineering, and business in a multidisciplinary, high-quality, low-cost, and learning-by-doing philosophy. This paper reviews the initial outcomes of the program and discusses lessons learned and future directions of this innovative educational method. BEST educational method is delivered in two parts: the first component consisting of live streaming or pre-recorded online lectures, with an interdisciplinary profile focused on surgery, engineering, and business. The second component is an annual 5-day on-site course, organized at IRCAD-IHU, France. The program includes workshops in engineering, entrepreneurship team projects, and in-depth hands-on experience in laparoscopy, robotic surgery, interventional radiology, and flexible endoscopy with special emphasis on the interdisciplinary aspect of the training. A panel of surgeons, engineers, well-established entrepreneurs, and scientists assessed the team projects for potential patent application. From November 2011 till September 2013, 803 individual and institutional users from 79 different countries attended the online course. In total, 134 young professionals from 32 different countries applied to the onsite course. Sixty participants were selected each year for the onsite course. In addition, five participants were selected for a web-based team. Thirteen provisional patents were filed for the most promising projects. BEST proved to be a global talent incubator connecting students to high-quality education despite institutional and economical boundaries. Viable and innovative ideas arose from this revolutionary approach which is likely to spin-off significant technology transfer and lead the way for future interdisciplinary hybrid surgical education programs and career paths.

  11. Innovative Leadership by School Principals: Embedding Information Communication and Technology in Kuwaiti Schools

    ERIC Educational Resources Information Center

    Al Sharija, Mohammed; Watters, James J.

    2012-01-01

    Kuwait is an oil rich country planning for a future that is not dependent on exploiting natural resources. A major policy initiative has been the introduction of Information Communication and Technology (ICT) to schools. However, contextual issues and teacher capabilities in the use of ICT have limited the success of this initiative. The study…

  12. Future Digital Economy: Digital Content Creation, Distribution and Access--Conference Conclusions. OECD Digital Economy Papers No. 118

    ERIC Educational Resources Information Center

    OECD Publishing (NJ1), 2006

    2006-01-01

    This conference, jointly organised by OECD's Department for Science, Technology and Industry and the Italian Ministry for Innovation and Technology, was attended by approximately 350 representatives from industry, academia and government. Rapporteurs presented summaries in terms of issues and areas where there was agreement and/or convergence…

  13. Future applications of electronic-nose technologies in healthcare and biomedicine

    Treesearch

    Alphus D. Wilson

    2011-01-01

    The development and utilization of many new electronic-nose (e-nose) applications in the healthcare and biomedical fields have continued to rapidly accelerate over the past 20 years. Innovative e-nose technologies are providing unique solutions to a diversity of complex problems in biomedicine that are now coming to fruition. A wide range of electronic-nose instrument...

  14. Education for Jobs in a High Tech World: What Has Been Learned from Industry.

    ERIC Educational Resources Information Center

    Long, James P.

    Educators are increasingly turning to employers for advice about educating for future jobs. A recent project involved conducting a series of seven national conferences on high technology to learn about innovations in industry. Experts from industry told educators that industry itself does a great deal of high technology training, computers are the…

  15. Innovations for competitiveness: European views on "better-faster-cheaper"

    NASA Astrophysics Data System (ADS)

    Atzei, A.; Groepper, P.; Novara, M.; Pseiner, K.

    1999-09-01

    The paper elaborates on " lessons learned" from two recent ESA workshops, one focussing on the role of Innovation in the competitiveness of the space sector and the second on technology and engineering aspects conducive to better, faster and cheaper space programmes. The paper focuses primarily on four major aspects, namely: a) the adaptations of industrial and public organisations to the global market needs; b) the understanding of the bottleneck factors limiting competitiveness; c) the trends toward new system architectures and new engineering and production methods; d) the understanding of the role of new technology in the future applications. Under the pressure of market forces and the influence of many global and regional players, applications of space systems and technology are becoming more and more competitive. It is well recognised that without major effort for innovation in industrial practices, organisations, R&D, marketing and financial approaches the European space sector will stagnate and loose its competence as well as its competitiveness. It is also recognised that a programme run according to the "better, faster, cheaper" philosophy relies on much closer integration of system design, development and verification, and draws heavily on a robust and comprehensive programme of technology development, which must run in parallel and off-line with respect to flight programmes. A company's innovation capabilities will determine its future competitive advantage (in time, cost, performance or value) and overall growth potential. Innovation must be a process that can be counted on to provide repetitive, sustainable, long-term performance improvements. As such, it needs not depend on great breakthroughs in technology and concepts (which are accidental and rare). Rather, it could be based on bold evolution through the establishment of know-how, application of best practices, process effectiveness and high standards, performance measurement, and attention to customers and professional marketing. Having a technological lead allows industry to gain a competitive advantage in performance, cost and opportunities. Instrumental to better competitiveness is an R&D effort based on the adaptation of high technology products, capable of capturing new users, increasing production, decreasing the cost and delivery time and integrating high level of intelligence, information and autonomy. New systems will have to take in to account from the start what types of technologies are being developed or are already available in other areas outside space, and design their system accordingly. The future challenge for "faster, better, cheaper" appears to concern primarily "cost-effective", performant autonomous spacecraft, "cost-effective", reliable launching means and intelligent data fusion technologies and robust software serving mass- market real time services, distributed via EHF bands and Internet. In conclusion, it can be noticed that in the past few years new approaches have considerably enlarged the ways in which space missions can be implemented. They are supported by true innovations in mission concepts, system architecture, development and technologies, in particular for the development of initiatives based on multi-mission mini-satellites platforms for communication and Earth observation missions. There are also definite limits to cost cutting (such as lowering heads counts and increasing efficiency), and therefore the strategic perspective must be shifted from the present emphasis on cost-driven enhancement to revenue-driven improvements for growth. And since the product life-cycle is continuously shortening, competitiveness is linked very strongly with the capability to generate new technology products which enhance cost/benefit performance.

  16. Back to the future: personal digital assistants in nursing education.

    PubMed

    McLeod, Renee P; Mays, Mary Z

    2008-12-01

    This article provides an overview of the current state of the art for incorporating personal digital assistants (PDAs) into nursing education. The development of PDA technology and the lessons learned by educators integrating PDA technology into nursing curricula are described. The current cycle of PDA evolution is discussed and contrasted with a proposed model for maximizing the impact of PDAs on technological innovation in nursing education and practice.

  17. Visioning technology for the future of telehealth.

    PubMed

    Brennan, David M; Holtz, Bree E; Chumbler, Neale R; Kobb, Rita; Rabinowitz, Terry

    2008-11-01

    By its very nature, telehealth relies on technology. Throughout history, as new technologies emerged and afforded people the ability to send information across distances, it was not long before this capability was applied to the most basic need of all: maintaining health. While much of the early work in telehealth was driven by technology (e.g., making opportunistic use of the systems and devices that were available at the time), recent trends are beginning to push the demand for and the development of new technologies specific to the individual needs of telehealth applications. The future of telehealth will benefit greatly from this technology innovation, in particular, in areas such as home telehealth and remote monitoring, e-health and patient portal applications, personal health records, interactive Internet technologies, and robotics. Telehealth, while not a panacea for all of the challenges facing modern healthcare systems, has a substantial and ever-expanding potential to revolutionize the ways in which people receive medical care while offering the possibility to contain costs, manage chronic diseases, and prevent secondary complications. By demanding innovative solutions and speaking out in support of the field, the telehealth community can and should be leading the charge for greater attention to human factors in technology development, interoperable medical records, staff training and competencies, standards and guidelines, and support for expanded telehealth coverage at the national, state, and local levels.

  18. Architects of the Future--Managing Change.

    ERIC Educational Resources Information Center

    Conner, Daryl; Hughes, K. Scott

    1988-01-01

    Some of the basic principles involved in successfully managing organizational change in higher education are described. Change factors include: human resources demands, cost containment pressure, global competitive economic society, increasing technological innovation, and increasing capital investment requirements. (MLW)

  19. Beyond Traffic 2045 Reimagining Transportation: Technology, Disruptive Innovation, and the Future of Transportation

    DOT National Transportation Integrated Search

    2016-06-01

    This report summarizes key findings from the Beyond Traffic 2045 Reimagining Transportation thought leadership speaker series held at Volpe, the National Transportation Systems Center, in the fall and winter of 2015.

  20. Addressing challenges of training a new generation of clinician-innovators through an interdisciplinary medical technology design program: Bench-to-Bedside.

    PubMed

    Loftus, Patrick D; Elder, Craig T; D'Ambrosio, Troy; Langell, John T

    2015-01-01

    Graduate medical education has traditionally focused on training future physicians to be outstanding clinicians with basic and clinical science research skills. This focus has resulted in substantial knowledge gains, but a modest return on investment based on direct improvements in clinical care. In today's shifting healthcare landscape, a number of important challenges must be overcome to not only improve the delivery of healthcare, but to prepare future physicians to think outside the box, focus on and create healthcare innovations, and navigate the complex legal, business and regulatory hurdles of bringing innovation to the bedside. We created an interdisciplinary and experiential medical technology design competition to address these challenges and train medical students interested in moving new and innovative clinical solutions to the forefront of medicine. Medical students were partnered with business, law, design and engineering students to form interdisciplinary teams focused on developing solutions to unmet clinical needs. Over the course of six months teams were provided access to clinical and industry mentors, $500 prototyping funds, development facilities, and non-mandatory didactic lectures in ideation, design, intellectual property, FDA regulatory requirements, prototyping, market analysis, business plan development and capital acquisition. After four years of implementation, the program has supported 396 participants, seen the development of 91 novel medical devices, and launched the formation of 24 new companies. From our perspective, medical education programs that develop innovation training programs and shift incentives from purely traditional basic and clinical science research to also include high-risk innovation will see increased student engagement in improving healthcare delivery and an increase in the quality and quantity of innovative solutions to medical problems being brought to market.

  1. The next generation of command post computing

    NASA Astrophysics Data System (ADS)

    Arnold, Ross D.; Lieb, Aaron J.; Samuel, Jason M.; Burger, Mitchell A.

    2015-05-01

    The future of command post computing demands an innovative new solution to address a variety of challenging operational needs. The Command Post of the Future is the Army's primary command and control decision support system, providing situational awareness and collaborative tools for tactical decision making, planning, and execution management from Corps to Company level. However, as the U.S. Army moves towards a lightweight, fully networked battalion, disconnected operations, thin client architecture and mobile computing become increasingly essential. The Command Post of the Future is not designed to support these challenges in the coming decade. Therefore, research into a hybrid blend of technologies is in progress to address these issues. This research focuses on a new command and control system utilizing the rich collaboration framework afforded by Command Post of the Future coupled with a new user interface consisting of a variety of innovative workspace designs. This new system is called Tactical Applications. This paper details a brief history of command post computing, presents the challenges facing the modern Army, and explores the concepts under consideration for Tactical Applications that meet these challenges in a variety of innovative ways.

  2. Foresight Study on the Risk Governance of New Technologies: The Case of Nanotechnology.

    PubMed

    Read, Sheona A K; Kass, Gary S; Sutcliffe, Hilary R; Hankin, Steven M

    2016-05-01

    Technology-led innovation represents an important driver of European economic and industrial competitiveness and offers solutions to societal challenges. In order to facilitate responsible innovation and public acceptance, a need exists to identify and implement oversight approaches focused on the effective risk governance of emerging technologies. This article describes a foresight study on the governance of new technologies, using nanotechnology as a case example. Following a mapping of the governance landscape, four plausible foresight scenarios were developed, capturing critical uncertainties for nanotechnology governance. Key governance elements were then stress tested within these scenarios to see how well they might perform in a range of possible futures and to inform identification of the strengths, weaknesses, opportunities, and threats for nanotechnology governance in Europe. Based on the study outcomes, recommendations are proposed regarding the development of governance associated with the responsible development of new technologies. © 2015 Society for Risk Analysis.

  3. Technological advances in the treatment of trauma: a review of promising practices.

    PubMed

    Paul, Lisa A; Hassija, Christina M; Clapp, Joshua D

    2012-11-01

    Given the availability of empirically supported practices for addressing posttraumatic stress disorder and other forms of trauma-related distress, the development and implementation of new technology to deliver these treatments is exciting. Technological innovations in this literature aim to expand availability of empirically based intervention, increase treatment adherence and acceptability, and overcome barriers commonly encountered with conventional trauma-focused treatment. Much of the current research on these technological developments consists of brief reviews and case studies of the separate therapy modalities. Although this work serves to document the appeal and utility of these innovations, it does not provide comprehensive information about the host of options available. To that end, the three general categories of technological advances in trauma therapy (i.e., videoconferencing, e-Health, virtual reality) are reviewed here, including information regarding their empirical support and suggestions for future research and clinical practice.

  4. Low-cost fabrication technologies for nanostructures: state-of-the-art and potential

    NASA Astrophysics Data System (ADS)

    Santos, A.; Deen, M. J.; Marsal, L. F.

    2015-01-01

    In the last decade, some low-cost nanofabrication technologies used in several disciplines of nanotechnology have demonstrated promising results in terms of versatility and scalability for producing innovative nanostructures. While conventional nanofabrication technologies such as photolithography are and will be an important part of nanofabrication, some low-cost nanofabrication technologies have demonstrated outstanding capabilities for large-scale production, providing high throughputs with acceptable resolution and broad versatility. Some of these nanotechnological approaches are reviewed in this article, providing information about the fundamentals, limitations and potential future developments towards nanofabrication processes capable of producing a broad range of nanostructures. Furthermore, in many cases, these low-cost nanofabrication approaches can be combined with traditional nanofabrication technologies. This combination is considered a promising way of generating innovative nanostructures suitable for a broad range of applications such as in opto-electronics, nano-electronics, photonics, sensing, biotechnology or medicine.

  5. MO-E-BRF-01: Research Opportunities in Technology for Innovation in Radiation Oncology (Highlight of ASTRO NCI 2013 Workshop)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, S; Jaffray, D; Chetty, I

    Radiotherapy is one of the most effective treatments for solid tumors, in large part due to significant technological advances associated with, for instance, the ability to target tumors to very high levels of accuracy (within millimeters). Technological advances have played a central role in the success of radiation therapy as an oncologic treatment option for patients. ASTRO, AAPM and NCI sponsored a workshop “Technology for Innovation in Radiation Oncology” at the NCI campus in Bethesda, MD on June 13–14, 2013. The purpose of this workshop was to bring together expert clinicians and scientists to discuss the role of disruptive technologiesmore » in radiation oncology, in particular with regard to how they are being developed and translated to clinical practice in the face of current and future challenges and opportunities. The technologies discussed encompassed imaging and delivery aspects, along with methods to enable/facilitate application of them in the clinic. Measures for assessment of the performance of these technologies, such as techniques to validate quantitative imaging, were reviewed. Novel delivery technologies, incorporating efficient and safe delivery mechanisms enabled by development of tools for process automation and the associated field of oncology informatics formed one of the central themes of the workshop. The discussion on disruptive technologies was grounded in the need for evidence of efficacy. Scientists in the areas of technology assessment and bioinformatics provided expert views on different approaches toward evaluation of technology efficacy. Clinicians well versed in clinical trials incorporating disruptive technologies (e.g. SBRT for early stage lung cancer) discussed the important role of these technologies in significantly improving local tumor control and survival for these cohorts of patients. Recommendations summary focused on the opportunities associated with translating the technologies into the clinic and assessing their efficacy, and provided a glimpse into the future. Learning Objectives: To understand the impact of technology on the field of radiation therapy To learn about the trends of technology development for the field of radiation oncology To understand the opportunities for in innovative technology research.« less

  6. Pathology resident and fellow education in a time of disruptive technologies.

    PubMed

    Ziai, James M; Smith, Brian R

    2012-12-01

    The development of disruptive technologies is changing the practice of pathology. Their implementation challenges traditional educational paradigms. Training programs must adapt to these heuristic needs. The dual explosion of new medical knowledge and innovative methodologies adds new practice aspects to the pathologist's areas of expertise. This transformation potentially challenges the traditional core model of training. It raises questions as to how pathology should incorporate future expanding subspecialty needs into educational and practice models. This article examines the impact of these disruptive technologies on resident and fellow education and explores alternative educational and practice models that may better accommodate pathology's future. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Lunar Processing Cabinet 2.0: Retrofitting Gloveboxes into the 21st Century

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.

    2015-01-01

    In 2014, the Apollo 16 Lunar Processing Glovebox (cabinet 38) in the Lunar Curation Laboratory at NASA JSC received an upgrade including new technology interfaces. A Jacobs - Technology Innovation Project provided the primary resources to retrofit this glovebox into the 21st century. NASA Astromaterials Acquisition & Curation Office continues the over 40 year heritage of preserving lunar materials for future scientific studies in state-of-the-art facilities. This enhancement has not only modernized the contamination controls, but provides new innovative tools for processing and characterizing lunar samples as well as supports real-time exchange of sample images and information with the scientific community throughout the world.

  8. Innovative technology conserves resources and generates savings: a case study from the Sunnybrook Regional Processing Centre.

    PubMed

    Karim, Abdool Z

    2009-01-01

    The regional processing centre at Sunnybrook Health Sciences Centre recently faced the substantial challenge of increasing cleaning capacity to meet the current workload and anticipated future demand without increasing its operating budget. The solution, upgrading its cleaning and decontamination system to a highly automated system, met both objectives. An analysis of the impact of the change found that the new system provided additional benefits, including improved productivity and cleaning quality; decreased costs; reduced water, electricity and chemical use; improved worker safety and morale; and decreased overtime. Investing in innovative technology improved key departmental outcomes while meeting institutional environmental and cost savings objectives.

  9. Analysis of Ideal Towers for Tall Wind Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Damiani, Rick R; Roberts, Joseph O

    Innovation in wind turbine tower design is of significant interest for future development of wind power plants. First, wind turbine towers account for a large portion of overall capital expenditures for wind power projects. Second, for low wind-resource regions of the world, the use of low-cost tall-tower technology has the potential to open new markets for development. This study investigates the relative potential of various tower configurations in terms of mass and cost. For different market applications and hub heights, idealized tall towers are designed and compared. The results show that innovation in wind turbine controls makes reaching higher hubmore » heights with current technology economically viable. At the same time, new technologies hold promise for reducing tower costs as these technologies mature and hub heights reach twice the current average.« less

  10. Analysis of Ideal Towers for Tall Wind Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Damiani, Rick R; Roberts, Joseph O

    Innovation in wind turbine tower design is of significant interest for future development of wind power plants. First, wind turbine towers account for a large portion of overall capital expenditures for wind power projects. Second, for low wind-resource regions of the world, the use of low-cost tall-tower technology has the potential to open new markets for development. This study investigates the relative potential of various tower configurations in terms of mass and cost. For different market applications and hub heights, idealized tall towers are designed and compared. The results show that innovation in wind turbine controls makes reaching higher hubmore » heights with current technology economically viable. At the same time, new technologies hold promise for reducing tower costs as these technologies mature and hub heights reach twice the current average.« less

  11. Task toward a Realization of Commercial Tokamak Fusion Plants in 2050 -The Role of ITER and the Succeeding Developments- 5.Challenge to Innovative Technologies and the Expected Market Appeal

    NASA Astrophysics Data System (ADS)

    Tobita, Kenji; Konishi, Satoshi; Tokimatsu, Koji; Nishio, Satoshi; Hiwatari, Ryoji

    This section describes the future of fusion energy in terms of its impact on the global energy supply and global warming mitigation, the possible entry scenarios of fusion into future energy market, and innovative technologies for deploying and expanding fusion's share in the market. Section 5.1 shows that fusion energy can contribute to the stabilization of atmospheric CO2 concentration if fusion is introduced into the future energy market at a competitive price. Considerations regarding fusion's entry scenarios into the energy market are presented in Sec. 5.2, suggesting that fusion should replace fossil energy sources and thus contribute to global warming mitigation. In this sense, first generation fusion power plants should be a viable energy source with global appeal and be so attractive as to be employed in developing countries rather than in developed countries. Favorable factors lending to this purpose are fusion's stability as a power source, and its security, safety, and environmental frendliness as well as its cost-of-electricity. The requirements for core plasma to expand the share of fusion in the market in the latter half of this century are given in Sec.5.3, pointing out the importance of high beta access with low aspect ratio and plasma profile control. From this same point of view, innovative fusion technologies worthy of further development are commented on in Sec. 5.4, addressing the high temperature blanket, hydrogen production, high temperature superconductors, and hot cell maintenance.

  12. Process control integration requirements for advanced life support systems applicable to manned space missions

    NASA Technical Reports Server (NTRS)

    Spurlock, Paul; Spurlock, Jack M.; Evanich, Peggy L.

    1991-01-01

    An overview of recent developments in process-control technology which might have applications in future advanced life support systems for long-duration space operations is presented. Consideration is given to design criteria related to control system selection and optimization, and process-control interfacing methodology. Attention is also given to current life support system process control strategies, innovative sensors, instrumentation and control, and innovations in process supervision.

  13. Encouraging Innovation for Assistive Health Technologies in Dementia: Barriers, Enablers and Next Steps to Be Taken.

    PubMed

    Egan, Kieren J; Pot, Anne Margriet

    2016-04-01

    Innovative Assistive Health Technology (AHT) has the potential to improve the quality of life for people with dementia or their families. Although development is in its preliminary stages, research shows first promising results. Despite such progress, we are still to observe widespread integration of technology into communities. If society is to benefit from innovative AHT to assist people with dementia and their caregivers, we must deepen our understanding of the needs, barriers, and enablers of innovative AHT. In March 2015, multinational focus groups were undertaken to identify the barriers, enablers, stakeholder actions, and a future perspective for the use of AHT in dementia. This exploratory study was carried out in preparation of the first World Health Organization Ministerial Conference on the Global Action against Dementia. The focus group study identified that innovative AHT for people with dementia and caregivers is at an early stage of development; however, there is substantial promise across a range of different care needs. Focus group discussions identified internationally relevant barriers and enablers for the development of innovative AHT centring on an improved understanding for needs in dementia. There are many diverse barriers to the development of innovative AHT but none that appear insurmountable regarding the enablers that were mentioned. There is now an overriding imperative for a systematic, coordinated multistakeholder approach with the needs of people with dementia and their caregivers as the centerpiece. Copyright © 2016. Published by Elsevier Inc.

  14. Steering vaccinomics innovations with anticipatory governance and participatory foresight.

    PubMed

    Ozdemir, Vural; Faraj, Samer A; Knoppers, Bartha M

    2011-09-01

    Vaccinomics is the convergence of vaccinology and population-based omics sciences. The success of knowledge-based innovations such as vaccinomics is not only contingent on access to new biotechnologies. It also requires new ways of governance of science, knowledge production, and management. This article presents a conceptual analysis of the anticipatory and adaptive approaches that are crucial for the responsible design and sustainable transition of vaccinomics to public health practice. Anticipatory governance is a new approach to manage the uncertainties embedded on an innovation trajectory with participatory foresight, in order to devise governance instruments for collective "steering" of science and technology. As a contrast to hitherto narrowly framed "downstream impact assessments" for emerging technologies, anticipatory governance adopts a broader and interventionist approach that recognizes the social construction of technology design and innovation. It includes in its process explicit mechanisms to understand the factors upstream to the innovation trajectory such as deliberation and cocultivation of the aims, motives, funding, design, and direction of science and technology, both by experts and publics. This upstream shift from a consumer "product uptake" focus to "participatory technology design" on the innovation trajectory is an appropriately radical and necessary departure in the field of technology assessment, especially given that considerable public funds are dedicated to innovations. Recent examples of demands by research funding agencies to anticipate the broad impacts of proposed research--at a very upstream stage at the time of research funding application--suggest that anticipatory governance with foresight may be one way how postgenomics scientific practice might transform in the future toward responsible innovation. Moreover, the present context of knowledge production in vaccinomics is such that policy making for vaccines of the 21st century is occurring in the face of uncertainties where the "facts are uncertain, values in dispute, stakes high and decisions urgent and where no single one of these dimensions can be managed in isolation from the rest." This article concludes, however, that uncertainty is not an accident of the scientific method, but its very substance. Anticipatory governance with participatory foresight offers a mechanism to respond to such inherent sociotechnical uncertainties in the emerging field of vaccinomics by making the coproduction of scientific knowledge by technology and the social systems explicit. Ultimately, this serves to integrate scientific and social knowledge thereby steering innovations to coproduce results and outputs that are socially robust and context sensitive.

  15. Innovative Information Systems in the Intensive Care Unit, King Saud Medical City in Saudi Arabia.

    PubMed

    Al Saleem, Nouf; Al Harthy, Abdulrahman

    2015-01-01

    The purpose of this paper is to discuss the experience of implementing innovative information technology to improve the quality of services in one of the largest Intensive Care Units in Saudi Arabia. The Intensive Care Units in King Saud Medical City (ICU-KSMC) is the main ICU in the kingdom that represents the Ministry of Health. KSMC's ICU is also considered one of the largest ICU in the world as it consists of six units with 129 beds. Leaders in KSMC's ICU have introduced and integrated three information technologies to produce powerful, accurate, and timely information systems to overcome the challenges of the ICU nature and improve the quality of service to ensure patients' safety. By 2015, ICU in KSMC has noticed a remarkable improvement in: beds' occupation and utilization, staff communication, reduced medical errors, and improved departmental work flow, which created a healthy professional work environment. Yet, ICU in KSMC has ongoing improvement projects that include future plans for more innovative information technologies' implementation in the department.

  16. Science & Technology Review: September 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, Ramona L.; Meissner, Caryn N.; Chinn, Ken B.

    2016-09-30

    This is the September issue of the Lawrence Livermore National Laboratory's Science & Technology Review, which communicates, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. This month, there are features on "Laboratory Investments Drive Computational Advances" and "Laying the Groundwork for Extreme-Scale Computing." Research highlights include "Nuclear Data Moves into the 21st Century", "Peering into the Future of Lick Observatory", and "Facility Drives Hydrogen Vehicle Innovations."

  17. Leading Solar Expertise-A Launch Pad to the Future - Continuum Magazine

    Science.gov Websites

    &D Magazine and identify each technology as one of the top 100 technological innovations of the 1996 for copper indium gallium diselenide (CIGS). One of the more popular thin-film solar cells to be of the world's first solar power towers-Solar One and Solar Two, shown here. CSP systems produce

  18. Uses of ceramics in microelectronics: A survey

    NASA Technical Reports Server (NTRS)

    Bratschun, W. R.; Mountvala, A. J.; Pincus, A. G.

    1971-01-01

    The properties and behavior of ceramic materials used in components for electronic circuitry are examined to appraise the present and future directions for microelectronics, and to suggest further product development, and how innovations may be useful in other technologies. Ceramic and glass insulators, resistors, capacitors, and the use of ceramics and glasses in microcircuitry are discussed along with technology transfer to nonaerospace uses.

  19. Facilitating Engaged Learning in the Interaction Age Taking a Pedagogically-Disciplined Approach to Innovation with Emergent Technologies

    ERIC Educational Resources Information Center

    Brill, Jennifer M.; Park, Yeonjeong

    2008-01-01

    The purposes of this paper are to explore emerging technologies, engaged learning, and features and students of the Interaction Age and to identify connections across these three realms for future research and practice. We begin by highlighting those elements of the Interaction Age that suggest a shift in the affordances and applications of…

  20. Advanced excimer laser technologies enable green semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  1. RFID Tag as a Sensor - A Review on the Innovative Designs and Applications

    NASA Astrophysics Data System (ADS)

    Meng, Zhaozong; Li, Zhen

    2016-12-01

    The Radio Frequency Identification (RFID) technology has gained interests in both academia and industry since its invention. In addition to the applications in access control and supply chain, RFID is also a cost-efficient solution for Non-Destructive Testing (NDT) and pervasive monitoring. The battery free RFID tags are used as independent electromagnetic sensors or energy harvesting and data transmission interface of sensor modules for different measurement purposes. This review paper aims to provide a comprehensive overview of the innovative designs and applications of RFID sensor technology with new insights, identify the technical challenges, and outline the future perspectives. With a brief introduction to the fundamentals of RFID measurement, the enabling technologies and recent technical progress are illustrated, followed by an extensive discussion of the novel designs and applications. Then, based on an in-depth analysis, the potential constraints are identified and the envisaged future directions are suggested, including printable/wearable RFID, System-on-Chip (SoC), ultra-low power, etc. The comprehensive discussion of RFID sensor technology will be inspirational and useful for academic and industrial communities in investigating, developing, and applying RFID for various measurement applications.

  2. "Through the looking glass": optical physics, issues, and the evolution of neuroendoscopy.

    PubMed

    Zada, Gabriel; Liu, Charles; Apuzzo, Michael L J

    2013-02-01

    Although the concept of endoscopy has existed for centuries, a practical, working neuroendoscopic system did not emerge until last century, as a result of numerous contributions and refinements in optical technology, illumination sources, and instrumentation. Modern neuroendoscopy would not be a flourishing field, as it is today, without the dedication, innovation, and implementation of emerging technology by key contributors including Maximilian Nitze, Walter Dandy, and Harold Hopkins. Despite several inherent and unique limitations, neuroendoscopic surgery is now performed for a variety of intraventricular, skull base, and spinal operations. In this review, the history of neuroendoscopy, key players who envisioned how the inner workings of the human body could be visualized "through the looking glass," and current state and future potential for neuroendoscopic surgery are discussed. Future directions of neuroendoscopic surgery will likely be guided by further miniaturization in camera and optical technology, innovations in surgical instrumentation design, the introduction of robotics, multi-port minimally invasive surgery, and an enhanced ability to perform bimanual microdissection. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The innovation policy of nanotechnology development and convergence for the new Korean government

    NASA Astrophysics Data System (ADS)

    Bae, Seoung Hun; Lim, Jung Sun; Shin, Kwang Min; Kim, Chang Woo; Kang, Sang Kyu; Shin, Minsoo

    2013-11-01

    Since 2001, Korea has been establishing and executing policy for the development of nanotechnology in accordance with the National Comprehensive Development Plan of Nanotechnology (NCDPN) periods I, II, and III. NCDPN has been focused on innovation in wide spectrum of technology development, and NT-based convergence technologies are expected to contribute 35 % of the total GDP (about 5.02 billion won) with 1.2 million of job creation in KOREA at 2020. Establishment of new strategies for innovating and commercializing nanotechnology is an emerging global issue in major countries including the United States, Japan, Germany, and Korea, with particular concerns for safety in the implementations of nanotechnology (EHS). Under these circumstances, Korea needs to create a post-catch-up strategy beyond fast-follower approach, to compete effectively with nanotechnology-leading countries. This study analyzes the current status of Korean nanotechnology development and relevant policies, and suggests future policy directions for the new Korean government based on innovative competition theory.

  4. Spatially explicit scenario analysis for hydrologic services in an urbanizing agricultural watershed

    NASA Astrophysics Data System (ADS)

    Qiu, J.; Booth, E.; Carpenter, S. R.; Turner, M.

    2013-12-01

    The sustainability of hydrologic services (benefits to people generated by terrestrial ecosystem effects on freshwater) is challenged by changes in climate and land use. Despite the importance of hydrologic services, few studies have investigated how the provision of ecosystem services related to freshwater quantity and quality may vary in magnitude and spatial pattern for alternative future trajectories. Such analyses may provide useful information for sustaining freshwater resources in the face of a complex and uncertain future. We analyzed the supply of multiple hydrologic services from 2010 to 2070 across a large urbanizing agricultural watershed in the Upper Midwest of the United States, and asked the following: (i) What are the potential trajectories for the supply of hydrologic services under contrasting but plausible future scenarios? (ii) Where on the landscape is the delivery of hydrologic services most vulnerable to future changes? The Nested Watershed scenario represents extreme climate change (warmer temperatures and more frequent extreme events) and a concerted response from institutions, whereas in the Investment in Innovation scenario, climate change is less severe and technological innovations play a major role. Despite more extreme climate in the Nested Watershed scenario, all hydrologic services (i.e., freshwater supply, surface water quality, flood regulation) were maintained or enhanced (~30%) compared to the 2010 baseline, by strict government interventions that prioritized freshwater resources. Despite less extreme climate in the Investment in Innovation scenario and advances in green technology, only surface water quality and flood regulation were maintained or increased (~80%); freshwater supply declined by 25%, indicating a potential future tradeoff between water quality and quantity. Spatially, the locations of greatest vulnerability (i.e., decline) differed by service and among scenarios. In the Nested Watershed scenario, although freshwater supply and surface water quality were sustained or enhanced overall, these hydrologic services declined in ~60% and 20% of the landscape, respectively. The greatest improvement for most hydrologic services corresponded to areas of restored wetland, forest and perennial crops, which were less vulnerable to future degradation. In the Investment in Innovation scenario, freshwater supply declined in almost the entire watershed; improvement of surface water quality and flood regulation occurred mainly in urban areas, where highly engineered systems made them less vulnerable. Overall, our results indicated that hydrologic services will respond differently to future climate and land-use change, and sustaining one may involve tradeoffs of another. Technological progress can conserve particular services but might not be the panacea for the future. How society reacts in the face of changes can have an important role in determining the pathways to the future and the provision and spatial patterns of ecosystem services.

  5. Malthus is still wrong: we can feed a world of 9-10 billion, but only by reducing food demand.

    PubMed

    Smith, Pete

    2015-08-01

    In 1798, Thomas Robert Malthus published 'An essay on the principle of population' in which he concluded that: 'The power of population is so superior to the power of the earth to produce subsistence for man, that premature death must in some shape or other visit the human race.' Over the following century he was criticised for underestimating the potential for scientific and technological innovation to provide positive change. Since then, he has been proved wrong, with a number of papers published during the past few decades pointing out why he has been proved wrong so many times. In the present paper, I briefly review the main changes in food production in the past that have allowed us to continue to meet ever growing demand for food, and I examine the possibility of these same innovations delivering food security in the future. On the basis of recent studies, I conclude that technological innovation can no longer be relied upon to prove Malthus wrong as we strive to feed 9-10 billion people by 2050. Unless we are prepared to accept a wide range of significant, undesirable environmental consequences, technology alone cannot provide food security in 2050. Food demand, particularly the demand for livestock products, will need to be managed if we are to continue to prove Malthus wrong into the future.

  6. Enhancing surgical innovation through a specialized medical school pathway of excellence in innovation and entrepreneurship: Lessons learned and opportunities for the future.

    PubMed

    Cohen, Mark S

    2017-11-01

    The mission of an academic medical center and academic departments of surgery focuses on teaching, scholarship/research, and expertise of clinical care. The standard 4-year medical school curriculum and general surgery residency training are well balanced to expose trainees to these missions in varying degrees, yet the advancement of medicine as a field is predicated on the creation, development, and successful implementation of medical innovations. Surgeons, by virtue of their clinical training, are immersed in medical technology and are continually required to use this technology effectively in combination with their own technical skills and judgment to provide optimal patient care. As such, they routinely face the challenges of current technology and the need for innovation and improvement, leading many to become natural inventors. Having a good idea or innovation to improve patient care, however, is just the starting point of the complex process of implementing that idea in the clinic. Unfortunately, the vast majority of surgeons and medical students have no formal educational training on the innovation process regarding how good ideas can be developed successfully for clinical and commercial implementation. Added to this lack of formal education are the limited resources and time constraints that surgeons, residents, and medical students face in acquiring the educational skill set to adeptly navigate this innovation and entrepreneurial landscape. To address these challenges, the University of Michigan recently created the first pathway of excellence for medical students to focus their passions and interests in medical innovation and entrepreneurship. This program has been transformative for building a new culture of young, motivated medical innovators, many of whom have dedicated their talents already to addressing several key problems in surgical patient care. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everett, M.; Davis, P.

    LLNL and Optiphase resarched fiber optic based fluorescence lifetime instrumentation which, through the incorporation of innovative technology supplied by Optiphase Inc., could lead to a reliable, simplified, and low-cost system mutually compatible with future interests of the company and the long-term stability requirements of ESP sensors.

  8. Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals.

    PubMed

    Pasquali, Irene; Bettini, Ruggero; Giordano, Ferdinando

    2008-02-14

    Solid-state, crystallographic purity and careful monitoring of the polymorphism of drugs and excipients are currently an integral part of the development of modern drug delivery systems. The reproducible preparation of organic crystals in a specific form and size is a major issue that must be addressed. A recent approach for obtaining pharmaceutical materials in pure physical form is represented by the technologies based on supercritical fluids. The present work aims to provide a critical review of the recent advances in the use of supercritical fluids for the preparation and control of the specific physical form of pharmaceutical substances with particular attention to those fluids used for drug delivery systems. These innovative technologies are highly promising for future application in particle design and engineering.

  9. Robotic technology in surgery: past, present, and future.

    PubMed

    Camarillo, David B; Krummel, Thomas M; Salisbury, J Kenneth

    2004-10-01

    It has been nearly 20 years since the first appearance of robotics in the operating room. In that time, much progress has been made in integrating robotic technologies with surgical instrumentation, as evidenced by the many thousands of successful robot-assisted cases. However, to build on past success and to fully leverage the potential of surgical robotics in the future, it is essential to maximize a shared understanding and communication among surgeons, engineers, entrepreneurs, and healthcare administrators. This article provides an introduction to medical robotic technologies, develops a possible taxonomy, reviews the evolution of a surgical robot, and discusses future prospects for innovation. Robotic surgery has demonstrated some clear benefits. It remains to be seen where these benefits will outweigh the associated costs over the long term. In the future, surgical robots should be smaller, less expensive, easier to operate, and should seamlessly integrate emerging technologies from a number of different fields. Such advances will enable continued progress in surgical instrumentation and, ultimately, surgical care.

  10. Editorial Comments, 1974-1986: The Case For and Against the Use of Computer-Assisted Decision Making

    PubMed Central

    Weaver, Robert R.

    1987-01-01

    Journal editorials are an important medium for communicating information about medical innovations. Evaluative statements contained in editorials pertain to the innovation's technical merits, as well as its probable economic, social and political, and ethical consequences. This information will either promote or impede the subsequent diffusion of innovations. This paper analyzes the evaluative information contained in thirty editorials that pertain to the topic of computer-assisted decision making (CDM). Most editorials agree that CDM technology is effective and economical in performing routine clinical tasks; controversy surrounds the use of more sophisticated CDM systems for complex problem solving. A few editorials argue that the innovation should play an integral role in transforming the established health care system. Most, however, maintain that it can or should be accommodated within the existing health care framework. Finally, while few editorials discuss the ethical ramifications of CDM technology, those that do suggest that it will contribute to more humane health care. The editorial analysis suggests that CDM technology aimed at routine clinical task will experience rapid diffusion. In contrast, the diffusion of more sophisticated CDM systems will, in the foreseeable future, likely be sporadic at best.

  11. The Global Climate and Energy Project at Stanford University: Fundamental Research Towards Future Energy Technologies

    NASA Astrophysics Data System (ADS)

    Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.

    The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.

  12. [Preface for genome editing special issue].

    PubMed

    Gu, Feng; Gao, Caixia

    2017-10-25

    Genome editing technology, as an innovative biotechnology, has been widely used for editing the genome from model organisms, animals, plants and microbes. CRISPR/Cas9-based genome editing technology shows its great value and potential in the dissection of functional genomics, improved breeding and genetic disease treatment. In the present special issue, the principle and application of genome editing techniques has been summarized. The advantages and disadvantages of the current genome editing technology and future prospects would also be highlighted.

  13. The German R&D Program for CO2 Utilization-Innovations for a Green Economy.

    PubMed

    Mennicken, Lothar; Janz, Alexander; Roth, Stefanie

    2016-06-01

    Carbon capture and utilization (CCU) is a field of key emerging technologies. CCU can support the economy to decrease the dependency on fossil carbon raw materials, to stabilize electricity grids and markets with respect to a growing share of fluctuating renewable energy. Furthermore, it can contribute to mitigate anthropogenic CO2 emissions. The German Federal Ministry of Education and Research has provided substantial financial support for research and development projects, stimulating research, development, and innovations in the field of CO2 utilization. This review provides an overview over the most relevant funding measures in this field. Examples of successful projects demonstrate that CCU technologies are already economically viable or technologically ready for industrial application. CCU technologies as elements of a future "green economy" can contribute to reach the ambitious German sustainability targets with regard to climate protection as well as raw material productivity.

  14. Patient Outcomes as Transformative Mechanisms to Bring Health Information Technology Industry and Research Informatics Closer Together.

    PubMed

    Krive, Jacob

    2015-01-01

    Despite the fast pace of recent innovation within the health information technology and research informatics domains, there remains a large gap between research and academia, while interest in translating research innovations into implementations in the patient care settings is lacking. This is due to absence of common outcomes and performance measurement targets, with health information technology industry employing financial and operational measures and academia focusing on patient outcome concerns. The paper introduces methodology for and roadmap to introduction of common objectives as a way to encourage better collaboration between industry and academia using patient outcomes as a composite measure of demonstrated success from health information systems investments. Along the way, the concept of economics of health informatics, or "infonomics," is introduced to define a new way of mapping future technology investments in accordance with projected clinical impact.

  15. Ethics and surgical innovation: challenges to the professionalism of surgeons.

    PubMed

    Angelos, Peter

    2013-01-01

    The future of surgical progress depends on surgeons finding innovative solutions to their patients' problems. Surgical innovation is critical to advances in surgery. However, surgical innovation also raises a series of ethical issues that challenge the professionalism of surgeons. The very criteria for defining surgical progress have changed as patients may value more than simply reductions in morbidity and mortality. The requirement for informed consent prior to surgery is difficult when an innovative surgical procedure is planned since the risks of the novel operation may not be known. In addition, even if the risks are known in the hands of the innovator, the actual risks to patients when surgeons are learning the new technique are unknown. New techniques often depend on new technology which may be significantly more expensive than traditional techniques. There are no clear criteria to decide which new innovative techniques are going to turn out to be truly beneficial to patients. Many surgical innovations depend on new products which may have been developed as collaborative efforts between surgical device companies and surgeons. Although many currently accepted therapies were developed in this fashion, the collaboration of surgeons and device companies raises the potential for significant harmful conflicts of interest. In the decades to come, careful attention to these and other ethical issues will help to define the future professional standing of surgeons. Copyright © 2013 Elsevier Ltd and Surgical Associates Ltd. All rights reserved.

  16. Development and innovation of system resources to optimize patient care.

    PubMed

    Johnson, Thomas J; Brownlee, Michael J

    2018-04-01

    Various incremental and disruptive healthcare innovations that are occurring or may occur are discussed, with insights on how multihospital health systems can prepare for the future and optimize the continuity of patient care provided. Innovation in patient care is occurring at an ever-increasing rate, and this is especially true relative to the transition of patients through the care continuum. Health systems must leverage their ability to standardize and develop electronic health record (EHR) systems and other infrastructure necessary to support patient care and optimize outcomes; examples include 3D printing of patient-specific medication dosage forms to enhance precision medicine, the use of drones for medication delivery, and the expansion of telehealth capabilities to improve patient access to the services of pharmacists and other healthcare team members. Disruptive innovations in pharmacy services and delivery will alter how medications are prescribed and delivered to patients now and in the future. Further, technology may also fundamentally alter how and where pharmacists and pharmacy technicians care for patients. This article explores the various innovations that are occurring and that will likely occur in the future, particularly as they apply to multihospital health systems and patient continuity of care. Pharmacy departments that anticipate and are prepared to adapt to incremental and disruptive innovations can demonstrate value in the multihospital health system through strategies such as optimizing the EHR, identifying telehealth opportunities, supporting infrastructure, and integrating services. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  17. Preparing Teachers for Schooling in the Digital Age: A Meta-Perspective on Existing Strategies and Future Challenges

    ERIC Educational Resources Information Center

    Erstad, Ola; Eickelmann, Birgit; Eichhorn, Koos

    2015-01-01

    Recent developments in educational innovation and new technologies have made tensions between old and new models of schooling more apparent, creating new demands upon teachers as agents of change. Looking back at the last 20 years, it is clear that important steps in development have tried to find a good balance between technology- and…

  18. NASA Deputy Administrator Tours Bigelow Aerospace

    NASA Image and Video Library

    2011-02-04

    NASA Deputy Administrator Lori Garver is given a tour of the Bigelow Aerospace facilities by the company's President Robert Bigelow on Friday, Feb. 4, 2011, in Las Vegas. NASA has been discussing potential partnership opportunities with Bigelow for its inflatable habitat technologies as part of NASA's goal to develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  19. R&D control study : plan for future jet fuel distribution quality control and description of fuel properties catalog

    DOT National Transportation Integrated Search

    2014-05-09

    The Broad Agency Announcement Alternative Aviation Fuels was a solicitation released by the U.S. Department of Transportation Research and Innovative Technology Administration (RITA) / John A. Volpe National Transportation Systems Center with funding...

  20. Using the Technology: Introducing Point of View Video Glasses Into the Simulated Clinical Learning Environment.

    PubMed

    Metcalfe, Helene; Jonas-Dwyer, Diana; Saunders, Rosemary; Dugmore, Helen

    2015-10-01

    The introduction of learning technologies into educational settings continues to grow alongside the emergence of innovative technologies into the healthcare arena. The challenge for health professionals such as medical, nursing, and allied health practitioners is to develop an improved understanding of these technologies and how they may influence practice and contribute to healthcare. For nurse educators to remain contemporary, there is a need to not only embrace current technologies in teaching and learning but to also ensure that students are able to adapt to this changing pedagogy. One recent technological innovation is the use of wearable computing technology, consisting of video recording with the capability of playback analysis. The authors of this article discuss the introduction of the use of wearable Point of View video glasses by a cohort of nursing students in a simulated clinical learning laboratory. Of particular interest was the ease of use of the glasses, also termed the usability of this technology, which is central to its success. Students' reflections were analyzed together with suggestions for future use.

  1. Current and Future Opportunities for Wind Power in the Southeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinnesand, Heidi; Roberts, Owen; Lantz, Eric

    This presentation discusses future wind opportunities in the Southeast including factors such as changes in wind turbine technology, historical innovation trends, and forecast demand growth among regions. The presentation covers the current status of wind in the United States at 80-m hub height and the near-future outlook with a hub height at 110 to 140 meters. Future cost reductions in 2030 and beyond are also explored. Heidi Tinnesand presented this information to a utility advisory group meeting in Charlotte, North Carolina, on October 5, 2016.

  2. The role of hydrogen as a future solution to energetic and environmental problems for residential buildings

    NASA Astrophysics Data System (ADS)

    Badea, G.; Felseghi, R. A.; Aşchilean, I.; Rǎboacǎ, S. M.; Şoimoşan, T.

    2017-12-01

    The concept of sustainable development aims to meet the needs of the present without compromising the needs of future generations. In achieving the desideratum "low-carbon energy system", in the domain of energy production, the use of innovative low-carbon technologies providing maximum efficiency and minimum pollution is required. Such technology is the fuel cell; as these will be developed, it will become a reality to obtain the energy based on hydrogen. Thus, hydrogen produced by electrolysis of water using different forms of renewable resources becomes a secure and sustainable energy alternative. In this context, in the present paper, a comparative study of two different hybrid power generation systems for residential building placed in Cluj-Napoca was made. In these energy systems have been integrated renewable energies (photovoltaic panels and wind turbine), backup and storage system based on hydrogen (fuel cell, electrolyser and hydrogen storage tank), and, respectively, backup and storage system based on traditional technologies (diesel generator and battery). The software iHOGA was used to simulate the operating performance of the two hybrid systems. The aim of this study was to compare energy, environmental and economic performances of these two systems and to define possible future scenarios of competitiveness between traditional and new innovative technologies. After analyzing and comparing the results of simulations, it can be concluded that the fuel cells technology along with hydrogen, integrated in a hybrid system, may be the key to energy production systems with high energy efficiency, making possible an increased capitalization of renewable energy which have a low environmental impact.

  3. 2011 Ground Robotics Capabilities Conference and Exhibition

    DTIC Science & Technology

    2011-03-24

    and reconnaissance, urban warfare, first responder, surveillance/ hostage situations and other critical missions. All have hard anodized bodies ... Body  Bomb Tool Kit OBJECTIVE: Develop a set of tools that can  be changed and operated remotely that  address the specific threat of an explosive...Innovation Acquisition Opportunities for Future Scientists & Engineers Requirements Technology & Innovation 5 ATLAS, Cheetah & ARM (DARPA) Conformal

  4. An engineering perspective on 3D printed personalized scaffolds for tracheal suspension technique

    PubMed Central

    An, Jia

    2016-01-01

    3D printing is a large family of many distinct technologies covering a wide range of topics. From an engineering point of view, there should be considerations for selection of design, material, and process when using 3D printing for surgical technique innovation such as personalized scaffolds. Moreover, cost should also be considered if there are equally effective alternatives to the innovation. Furthermore, engineering considerations and options should be clearly communicated and readily available to surgeons for advancement in future. PMID:28149624

  5. An engineering perspective on 3D printed personalized scaffolds for tracheal suspension technique.

    PubMed

    An, Jia; Chua, Chee Kai

    2016-12-01

    3D printing is a large family of many distinct technologies covering a wide range of topics. From an engineering point of view, there should be considerations for selection of design, material, and process when using 3D printing for surgical technique innovation such as personalized scaffolds. Moreover, cost should also be considered if there are equally effective alternatives to the innovation. Furthermore, engineering considerations and options should be clearly communicated and readily available to surgeons for advancement in future.

  6. Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions

    NASA Technical Reports Server (NTRS)

    Beauchamp, Pat; Cutts, James; Quadrelli, Marco B.; Wood, Lincoln J.; Riedel, Joseph E.; McHenry, Mike; Aung, MiMi; Cangahuala, Laureano A.; Volpe, Rich

    2013-01-01

    Future planetary explorations envisioned by the National Research Council's (NRC's) report titled Vision and Voyages for Planetary Science in the Decade 2013-2022, developed for NASA Science Mission Directorate (SMD) Planetary Science Division (PSD), seek to reach targets of broad scientific interest across the solar system. This goal requires new capabilities such as innovative interplanetary trajectories, precision landing, operation in close proximity to targets, precision pointing, multiple collaborating spacecraft, multiple target tours, and advanced robotic surface exploration. Advancements in Guidance, Navigation, and Control (GN&C) and Mission Design in the areas of software, algorithm development and sensors will be necessary to accomplish these future missions. This paper summarizes the key GN&C and mission design capabilities and technologies needed for future missions pursuing SMD PSD's scientific goals.

  7. Promoting healthcare innovation on the demand side.

    PubMed

    Eisenberg, Rebecca S; Price, W Nicholson

    2017-04-01

    Innovation policy often focuses on fortifying the incentives of firms that develop and sell new products by offering them lucrative rights to exclude competitors from the market. Regulators also rely on these same firms-and on similar incentives-to develop information about the effects of their products in patients, despite their obvious conflict of interest. The result may be a distorted understanding that leads to overuse of expensive new medical technologies. Recent technological advances have put healthcare payers in an excellent position to play a larger role in future innovation to improve healthcare and reduce its costs. Insurance companies and integrated healthcare providers have custody of treasure troves of data about healthcare provision and outcomes that can yield valuable insights about the effects of medical treatment without the need to conduct costly clinical trials. Some integrated healthcare systems have seized upon this advantage to make notable discoveries about the effects of particular products that have changed the standard of care. Moreover, to the extent that healthcare payers can profit from reducing costs, they will seek to avoid inappropriate use of costly technologies. Greater involvement of payers in healthcare innovation thus offers a potential counterweight to the incentives of product sellers to promote excessive use of costly new products. In recent years, the federal government has sought to promote innovation through analysis of healthcare records in a series of initiatives; some picture insurers as passive data repositories, while others provide opportunities for insurers to take a more active role in innovation. In this paper, we examine the role of health insurers in developing new knowledge about the provision and effects of healthcare-what we call 'demand-side innovation'. We address the contours of this underexplored area of innovation and describe the behavior of participating firms. We examine the effects of current legal rules on demand-side innovation, including insurance regulation, intellectual property rules, privacy protections, and FDA regulation of new healthcare technologies. Throughout, we highlight many policy tools that government can use and is using to facilitate payer innovation outside the traditional toolkit of patents and exclusive rights.

  8. Sri Lanka's national assessment on innovation and intellectual property for access to medical products.

    PubMed

    Beneragama, Hemantha; Shridhar, Manisha; Ranasinghe, Thushara; Dissanayake, Vajira Hw

    2016-09-01

    In 2008, the Global strategy and plan of action on public health, innovation and intellectual property (GSPA-PHI) was launched by the World Health Organization, to stimulate fresh thinking on innovation in, and access to, medicines and to build sustainable research on diseases disproportionately affecting low- and middle-income countries. As part of the activities of the GSPA-PHI, Sri Lanka has been the first country to date to assess the national environment for medical technology and innovation. This year-long, multistakeholder, participative analysis facilitated identification of clear and implementable policy recommendations, for the government to increase its effectiveness in promoting innovation in health products through institutional development, investment and coordination among all areas relevant to public health. The assessment also highlighted areas for priority action, including closing the technology gap in development of health products, facilitating technology transfer, and building the health-research and allied workforces. The Sri Lankan experience will inform the ongoing independent external evaluation of the GSPA-PHI worldwide. The assessment process coincided with the passing of the National Medicines Regulatory Authority Act in 2015. In addition, there is growing recognition that regional cooperation will be critical to improving access to medical products in the future. Sri Lanka is therefore actively promoting cooperation to establish a regional regulatory affairs network. Lessons learnt from the Sri Lankan assessment may also benefit other countries embarking on a national GSPA-PHI assessment.

  9. Prevention through Design Adoption Readiness Model (PtD ARM): An integrated conceptual model.

    PubMed

    Weidman, Justin; Dickerson, Deborah E; Koebel, Charles T

    2015-01-01

    Prevention through Design (PtD), eliminating hazards at the design-stage of tools and systems, is the optimal method of mitigating occupational health and safety risks. A recent National Institute of Safety and Health initiative has established a goal to increase adoption of PtD innovation in industry. The construction industry has traditionally lagged behind other sectors in the adoption of innovation, in general; and of safety and health prevention innovation, in particular. Therefore, as a first step toward improving adoption trends in this sector, a conceptual model was developed to describe the parameters and causal relationships that influence and predict construction stakeholder "adoption readiness" for PtD technology innovation. This model was built upon three well-established theoretical frameworks: the Health Belief Model, the Diffusion of Innovation Model, and the Technology Acceptance Model. Earp and Ennett's model development methodology was employed to build a depiction of the key constructs and directionality and magnitude of relationships among them. Key constructs were identified from the literature associated with the three theoretical frameworks, with special emphasis given to studies related to construction or OHS technology adoption. A conceptual model is presented. Recommendations for future research are described and include confirmatory structural equation modeling of model parameters and relationships, additional descriptive investigation of barriers to adoption in some trade sectors, and design and evaluation of an intervention strategy.

  10. The future of pharmaceutical manufacturing in the context of the scientific, social, technological and economic evolution.

    PubMed

    Stegemann, Sven

    2016-07-30

    Healthcare provision is one of the import elements of modern societies. Life sciences and technology has made substantial progress over the past century and is continuing to evolve exponentially in many different areas. The use of genotypic and phenotypic information in drug discovery and drug therapy, the increasing wealth around the world, growing patient involvement through information and communication technology and finally innovations in pharmaceutical manufacturing technology are transforming the provision of healthcare. The adoption of this new science and technology is going to happen due to the synergistic effects and visible benefits for the society and healthcare systems. The different aspects driving advanced pharmaceutical manufacturing are reviewed to identify future research direction to assure overall acceptance and adoption into healthcare practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Health technology assessment: research trends and future priorities in Europe.

    PubMed

    Nielsen, Camilla Palmhøj; Funch, Tina Maria; Kristensen, Finn Børlum

    2011-07-01

    To provide an overview of health services research related to health technology assessment (HTA) and to identify research priorities from a European perspective. Several methods were used: systematic review of articles indexed with the MeSH term 'technology assessment' in PubMed from February 1999-2009; online survey among experts; and conference workshop discussions. Research activity in HTA varies considerably across Europe. The research was categorised into six areas: (1) the breadth of analysis in HTA (such as economic, organizational and social aspects); (2) HTA products developed to meet the needs of policy-makers (such as horizon scanning, mini-HTA, and core HTA); (3) handling life-cycle perspectives in relation to technologies; (4) topics that challenge existing methods and for which HTA should be developed to address the themes more comprehensively (such as public health interventions and organizational interventions); (5) development of HTA capacity and programmes; and (6) links between policy and HTA. An online survey showed that the three areas that were given priority were the relationship between HTA and policy-making (71%), the impact of HTA (62%) and incorporating patient aspects in HTA (50%). Policy-makers highlighted HTA and innovation processes as their main research priority (42%). Areas that the systematic review identified as future priorities include issues within the six existing research areas such as disinvestment, developing evidence for new technologies, assessing the wider effects of technology use, and determining how HTA affects decision-making. In addition, relative effectiveness and individualized treatments are areas of growing interest. The research priorities identified are important for obtaining high quality and cost-effective health care in Europe. Managing the introduction, use and phasing out of technologies challenges health services throughout Europe, and these processes need to be improved to successfully manage future more general challenges. An ageing population and a diminishing workforce both require strong efforts to ensure effective and well-organized use of human resources and technologies. Furthermore, Europe needs to focus on innovation. This is closely linked to use of technologies and calls for future research.

  12. Emerged/Emerging Disruptive Technologies (E2DT) (Technologies de rupture apparues/emergentes (E2DT)). Proceedings of the RTO Information Systems Technology Panel (IST) Symposium held in Madrid, Spain on 7-8 May 2011

    DTIC Science & Technology

    2011-05-01

    with the potential to impact future military Information Systems. The second is to explore and identify innovative applications of these emerging or...NATO) BP 25, F-92201 Neuilly- sur -Seine Cedex, France RTO-MP-IST-099 Approved for Public release, distribution unlimited. Supporting documents are...Analysis and Studies Panel • SCI Systems Concepts and Integration Panel • SET Sensors and Electronics Technology Panel These bodies are made up of

  13. Energizing Liberal Education

    ERIC Educational Resources Information Center

    Finley-Brook, Mary; Zanella-Litke, Megan; Ragan, Kyle; Coleman, Breana

    2012-01-01

    Colleges across the country are hosting on-campus renewable energy projects. The general assumption is that trade schools, community colleges, or technology-oriented universities with large engineering departments make the most appropriate sites for training future leaders in renewable energy innovation. While it makes sense to take advantage of…

  14. A joint strategy for European rail research 2020 : towards a single European railway system

    DOT National Transportation Integrated Search

    2001-09-01

    Innovating and harmonising products and technologies are a necessity for the rail market to deploy all its potential, and for its stakeholders to deliver cost-effective services for intermediate and final clients. Rail transport in Europe is a future...

  15. The future of EUV lithography: enabling Moore's Law in the next decade

    NASA Astrophysics Data System (ADS)

    Pirati, Alberto; van Schoot, Jan; Troost, Kars; van Ballegoij, Rob; Krabbendam, Peter; Stoeldraijer, Judon; Loopstra, Erik; Benschop, Jos; Finders, Jo; Meiling, Hans; van Setten, Eelco; Mika, Niclas; Dredonx, Jeannot; Stamm, Uwe; Kneer, Bernhard; Thuering, Bernd; Kaiser, Winfried; Heil, Tilmann; Migura, Sascha

    2017-03-01

    While EUV systems equipped with a 0.33 Numerical Aperture lenses are readying to start volume manufacturing, ASML and Zeiss are ramping up their development activities on a EUV exposure tool with Numerical Aperture greater than 0.5. The purpose of this scanner, targeting a resolution of 8nm, is to extend Moore's law throughout the next decade. A novel, anamorphic lens design, has been developed to provide the required Numerical Aperture; this lens will be paired with new, faster stages and more accurate sensors enabling Moore's law economical requirements, as well as the tight focus and overlay control needed for future process nodes. The tighter focus and overlay control budgets, as well as the anamorphic optics, will drive innovations in the imaging and OPC modelling, and possibly in the metrology concepts. Furthermore, advances in resist and mask technology will be required to image lithography features with less than 10nm resolution. This paper presents an overview of the key technology innovations and infrastructure requirements for the next generation EUV systems.

  16. [Chinese medicine industry 4.0:advancing digital pharmaceutical manufacture toward intelligent pharmaceutical manufacture].

    PubMed

    Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li

    2016-01-01

    A perspective analysis on the technological innovation in pharmaceutical engineering of Chinese medicine unveils a vision on "Future Factory" of Chinese medicine industry in mind. The strategy as well as the technical roadmap of "Chinese medicine industry 4.0" is proposed, with the projection of related core technology system. It is clarified that the technical development path of Chinese medicine industry from digital manufacture to intelligent manufacture. On the basis of precisely defining technical terms such as process control, on-line detection and process quality monitoring for Chinese medicine manufacture, the technical concepts and characteristics of intelligent pharmaceutical manufacture as well as digital pharmaceutical manufacture are elaborated. Promoting wide applications of digital manufacturing technology of Chinese medicine is strongly recommended. Through completely informationized manufacturing processes and multi-discipline cluster innovation, intelligent manufacturing technology of Chinese medicine should be developed, which would provide a new driving force for Chinese medicine industry in technology upgrade, product quality enhancement and efficiency improvement. Copyright© by the Chinese Pharmaceutical Association.

  17. Partnerships between government and industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, G.R.

    1995-12-31

    The author describes the future as one of unprecedented change as industry and other institutions become immersed in a system of global commerce driven by fast moving technologies that had their origin in the United States. These trends are expected to intensify as the pace of scientific and technological discovery and innovation continues unabated. The end of the Cold War is viewed as an opportunity to position the United States for leadership in this rapidly changing environment. The role of science and technology in achieving sustained economic growth and improved competitiveness and to address what government can do to helpmore » the process along is examined in detail. Statistical data on globalization of trade and market shares of various countries is given along with the participation by multi-national corporations. The historical aspects of technology ages and their development are discussed along with the history of government technology policy. New policies will improve the climate for innovation with government, industry, and the academic community developing interactive and supportive roles. 22 figs.« less

  18. Innovative technology in hearing instruments: matching needs in the developing world.

    PubMed

    McPherson, Bradley

    2011-12-01

    Hearing instrument technology research is almost entirely focused on the projected needs of the consumer market in the developed world. However, two thirds of the world's population with hearing impairment live in developing countries and this proportion will increase in future, given present demographic trends. In developing regions, amplification and other hearing health needs may differ from those in industrialized nations, for cultural, health, or economic reasons. World Health Organization estimates indicate that at present only a small percentage of individuals in developing countries who are in need of amplification have access to hearing aid provision. New technologies, such as trainable hearing aids, advanced noise reduction algorithms, feedback reduction circuitry, nano coatings for hearing aid components, and innovative power options, may offer considerable potential benefits, both for individuals with hearing impairment in developing countries and for those who provide hearing health care services in these regions. This article considers the possible supporting role of innovative hearing instrument technologies in the provision of affordable hearing health care services in developing countries and highlights the need for research that considers the requirements of the majority of the world population in need of hearing instrument provision.

  19. The Technology-Enabled Patient Advocate: A Valuable Emerging Healthcare Partner.

    PubMed

    Kent, Susan M; Yellowlees, Peter

    2015-12-01

    The U.S. healthcare system is changing and is becoming more patient-centered and technology-supported, with greater emphasis on population health outcomes and team-based care. The roles of healthcare providers are changing, and new healthcare roles are developing such as that of the patient advocate. This article reviews the history of this type of role, the changes that have taken place over time, the technological innovations in service delivery that further enable the role, and how the role could increasingly be developed in the future. Logical future extensions of the current typical patient advocate are the appearance of a virtual or avatar-driven care navigator, using telemedicine and related information technologies, as healthcare provision moves increasingly in a hybrid direction, with care being given both in-person and online.

  20. Progress in renewable energy.

    PubMed

    Gross, Robert; Leach, Matthew; Bauen, Ausilio

    2003-04-01

    This paper provides an overview of some of the key technological and market developments for leading renewable energy technologies--wind, wave and tidal, photovoltaics (PV) and biomass energy. Market growth, innovation and policy are closely interrelated in the development of renewables and the key issues in each area are explored for each of the main types of renewable energy technology. This enables the prospects for future development and cost reduction to be considered in detail. Key issues for policy are outlined. Copyright 2002 Elsevier Science Ltd.

  1. High density circuit technology, part 3

    NASA Technical Reports Server (NTRS)

    Wade, T. E.

    1982-01-01

    Dry processing - both etching and deposition - and present/future trends in semiconductor technology are discussed. In addition to a description of the basic apparatus, terminology, advantages, glow discharge phenomena, gas-surface chemistries, and key operational parameters for both dry etching and plasma deposition processes, a comprehensive survey of dry processing equipment (via vendor listing) is also included. The following topics are also discussed: fine-line photolithography, low-temperature processing, packaging for dense VLSI die, the role of integrated optics, and VLSI and technology innovations.

  2. Technical Leadership Development Program- Year 4

    DTIC Science & Technology

    2013-02-28

    Marketing ,   Competitive   Proposals),   Business   Operations   (Engineering,   Technology,   and   Innovation...subjects  taught  was  highly  valuable.   • Storytelling  (new  and  interesting)  and  final  activity  were  highly...the  future.    Each  alternative  path  to   future   growth   for   the   company   targets   different   markets

  3. Potential of Cognitive Computing and Cognitive Systems

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2015-01-01

    Cognitive computing and cognitive technologies are game changers for future engineering systems, as well as for engineering practice and training. They are major drivers for knowledge automation work, and the creation of cognitive products with higher levels of intelligence than current smart products. This paper gives a brief review of cognitive computing and some of the cognitive engineering systems activities. The potential of cognitive technologies is outlined, along with a brief description of future cognitive environments, incorporating cognitive assistants - specialized proactive intelligent software agents designed to follow and interact with humans and other cognitive assistants across the environments. The cognitive assistants engage, individually or collectively, with humans through a combination of adaptive multimodal interfaces, and advanced visualization and navigation techniques. The realization of future cognitive environments requires the development of a cognitive innovation ecosystem for the engineering workforce. The continuously expanding major components of the ecosystem include integrated knowledge discovery and exploitation facilities (incorporating predictive and prescriptive big data analytics); novel cognitive modeling and visual simulation facilities; cognitive multimodal interfaces; and cognitive mobile and wearable devices. The ecosystem will provide timely, engaging, personalized / collaborative, learning and effective decision making. It will stimulate creativity and innovation, and prepare the participants to work in future cognitive enterprises and develop new cognitive products of increasing complexity. http://www.aee.odu.edu/cognitivecomp

  4. Temporal Investment Strategy to Enable JPL Future Space Missions

    NASA Technical Reports Server (NTRS)

    Lincoln, William P.; Hua, Hook; Weisbin, Charles R.

    2006-01-01

    The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has the responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future JPL deep space missions are ready as needed; as such he is responsible for the development of a Strategic Plan. As part of the planning effort, he has supported the development of a structured approach to technology prioritization based upon the work of the START (Strategic Assessment of Risk and Technology) team. A major innovation reported here is the addition of a temporal model that supports scheduling of technology development as a function of time. The JPL Strategic Technology Plan divides the required capabilities into 13 strategic themes. The results reported here represent the analysis of an initial seven.

  5. An Innovation Teaching Experience Following Guidelines of European Space of Higher Education in the Interactive Learning

    NASA Astrophysics Data System (ADS)

    Zamorano, M.; Rodríguez, M. L.; Ramos-Ridao, A. F.; Pasadas, M.; Priego, I.

    The Area of Environmental Technology in Department of Civil Engineering has developed an innovation education project, entitled Application of new Information and Communication Technologies in Area of Environmental Technology teaching, to create a Web site that benefits both parties concerned in teaching-learning process, teachers and students. Here teachers conduct a supervised teaching and students have necessary resources to guide their learning process according to their capacities and possibilities. The project has also included a pilot experience to introduce European Space of Higher Education (ESHE) new teaching concept based on student's work, in one subject of Environmental Science degree, considering interactive learning complementary to presence teaching. The experience has showed strength and weakness of the method and it is the beginning in a gradual process to guide e-learning education in future.

  6. Smart packaging systems for food applications: a review.

    PubMed

    Biji, K B; Ravishankar, C N; Mohan, C O; Srinivasa Gopal, T K

    2015-10-01

    Changes in consumer preference for safe food have led to innovations in packaging technologies. This article reviews about different smart packaging systems and their applications in food packaging, packaging research with latest innovations. Active and intelligent packing are such packaging technologies which offer to deliver safer and quality products. Active packaging refers to the incorporation of additives into the package with the aim of maintaining or extending the product quality and shelf life. The intelligent systems are those that monitor the condition of packaged food to give information regarding the quality of the packaged food during transportation and storage. These technologies are designed to the increasing demand for safer foods with better shelf life. The market for active and intelligent packaging systems is expected to have a promising future by their integration into packaging materials or systems.

  7. Future Challenges and Opportunities in Aerodynamics

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay; Hefner, Jerry N.

    2000-01-01

    Investments in aeronautics research and technology have declined substantially over the last decade, in part due to the perception that technologies required in aircraft design are fairly mature and readily available. This perception is being driven by the fact that aircraft configurations, particularly the transport aircraft, have evolved only incrementally, over last several decades. If however, one considers that the growth in air travel is expected to triple in the next 20 years, it becomes quickly obvious that the evolutionary development of technologies is not going to meet the increased demands for safety, environmental compatibility, capacity, and economic viability. Instead, breakthrough technologies will he required both in traditional disciplines of aerodynamics, propulsion, structures, materials, controls, and avionics as well as in the multidisciplinary integration of these technologies into the design of future aerospace vehicles concepts. The paper discusses challenges and opportunities in the field of aerodynamics over the next decade. Future technology advancements in aerodynamics will hinge on our ability, to understand, model, and control complex, three-dimensional, unsteady viscous flow across the speed range. This understanding is critical for developing innovative flow and noise control technologies and advanced design tools that will revolutionize future aerospace vehicle systems and concepts. Specifically, the paper focuses on advanced vehicle concepts, flow and noise control technologies, and advanced design and analysis tools.

  8. Older adult perceptions of smart home technologies: implications for research, policy & market innovations in healthcare.

    PubMed

    Coughlin, J; D'Ambrosio, L A; Reimer, B; Pratt, M R

    2007-01-01

    Advances in information communications technology and related computational power are providing a wide array of systems and related services that form the basis of smart home technologies to support the health, safety and independence of older adults. While these technologies offer significant benefits to older people and their families, they are also transforming older adults into lead adopters of a new 24/7 lifestyle of being monitored, managed, and, at times, motivated, to maintain their health and wellness. To better understand older adult perceptions of smart home technologies and to inform future research a workshop and focus group was conducted with 30 leaders in aging advocacy and aging services from 10 northeastern states. Participants expressed support of technological advance along with a variety of concerns that included usability, reliability, trust, privacy, stigma, accessibility and affordability. Participants also observed that there is a virtual absence of a comprehensive market and policy environment to support either the consumer or the diffusion of these technologies. Implications for research, policy and market innovation are discussed.

  9. The public role in promoting child health information technology.

    PubMed

    Conway, Patrick H; White, P Jonathan; Clancy, Carolyn

    2009-01-01

    The public sector plays an important role in promoting child health information technology. Public sector support is essential in 5 main aspects of child health information technology, namely, data standards, pediatric functions in health information systems, privacy policies, research and implementation funding, and incentives for technology adoption. Some innovations in health information technology for adult populations can be transferred to or adapted for children, but there also are unique needs in the pediatric population. Development of health information technology that addresses children's needs and effective adoption of that technology are critical for US children to receive care of the highest possible quality in the future.

  10. NASA Deputy Administrator Tours Bigelow Aerospace

    NASA Image and Video Library

    2011-02-04

    Bigelow Aerospace President Robert Bigelow talks during a press conference shortly after he and NASA Deputy Administrator Lori Garver toured the Bigelow Aerospace facilities on Friday, Feb. 4, 2011, in Las Vegas. NASA has been discussing potential partnership opportunities with Bigelow for its inflatable habitat technologies as part of NASA's goal to develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  11. Overview of microoptics: Past, present, and future

    NASA Technical Reports Server (NTRS)

    Veldkamp, Wilfrid B.

    1993-01-01

    Through advances in semiconductor miniaturization technology, microrelief patterns, with characteristic dimensions as small as the wavelength of light, can now be mass reproduced to form high-quality and low-cost optical components. In a unique example of technology transfer, from electronics to optics, this capability is allowing optics designers to create innovative optical components that promise to solve key problems in optical sensors, optical communication channels, and optical processors.

  12. Innovation in dental practice in the decade 2000 to 2010: a confluence of science, politics, and social change.

    PubMed

    Rossomando, Edward F

    2010-03-01

    First in a four-part series, this article begins with a consideration of dental technology in the first decade of a given century, placing advances and discoveries in the context of other developments of the day. Throughout the series, these historic comparisons will be used to illuminate 21st century technology and shed light on what the future may hold.

  13. Policy making for vaccine use as a driver of vaccine innovation and development in the developed world.

    PubMed

    Seib, Katherine; Pollard, Andrew J; de Wals, Philippe; Andrews, Ross M; Zhou, Fangjun; Hatchett, Richard J; Pickering, Larry K; Orenstein, Walter A

    2017-03-07

    In the past 200years, vaccines have had unmistakable impacts on public health including declines in morbidity and mortality, most markedly in economically-developed countries. Highly engineered vaccines including vaccines for conditions other than infectious diseases are expected to dominate future vaccine development. We examine immunization vaccine policy as a driver of vaccine innovation and development. The pathways to recommendation for use of licensed vaccines in the US, UK, Canada and Australia have been similar, including: expert review of disease epidemiology, disease burden and severity; vaccine immunogenicity, efficacy and safety; programmatic feasibility; public demand; and increasingly cost-effectiveness. Other attributes particularly important in development of future vaccines are likely to include: duration of immunity for improved vaccines such as pertussis; a greater emphasis on optimizing community protection rather than direct protection only; programmatic implementation, feasibility, improvements (as in the case of development of a universal influenza vaccine); public concerns/confidence/fears related to outbreak pathogens like Ebola and Zika virus; and major societal burden for combating hard to treat diseases like HIV and antimicrobial resistant pathogens. Driving innovation and production of future vaccines faces enormous economic hurdles as available approaches, technologies and regulatory pathways become more complex. As such, cost-mitigating strategies and focused, aligned efforts (by governments, private organizations, and private-public partnerships) will likely be needed to continue to spur major advances in vaccine technologies and development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Innovative technologies and social inequalities in health: A scoping review of the literature

    PubMed Central

    Jensen, Magnus Rom; Solhaug, Solvor; Krokstad, Steinar

    2018-01-01

    The aim of this study was to systematically review the range, nature, and extent of current research activity exploring the influence of innovative health-related technologies on social inequalities in health, with specific focus on a deeper understanding of the variables used to measure this connection and the pathways leading to the (re)production of inequalities. A review process was conducted, based on scoping review techniques, searching literature published from January 1, 1996 to November 25, 2016 using MEDLINE, Scopus, and ISI web of science. Search, sorting, and data extraction processes were conducted by a team of researchers and experts using a dynamic, reflexive examination process. Of 4139 studies collected from the search process, a total of 33 were included in the final analysis. Results of this study include the classification of technologies based on how these technologies are accessed and used by end users. In addition to the factors and mechanisms that influence unequal access to technologies, the results of this study highlight the importance of variations in use that importantly shape social inequalities in health. Additionally, focus on health care services technologies must be accompanied by investigating emerging technologies influencing healthy lifestyle, genomics, and personalized devices in health. Findings also suggest that choosing one measure of social position over another has important implications for the interpretation of research results. Furthermore, understanding the pathways through which various innovative health technologies reduce or (re)produce social inequalities in health is context dependent. In order to better understand social inequalities in health, these contextual variations draw attention to the need for critical distinctions between technologies based on how these various technologies are accessed and used. The results of this study provide a comprehensive starting point for future research to further investigate how innovative technologies may influence the unequal distribution of health as a human right. PMID:29614114

  15. Innovative technologies and social inequalities in health: A scoping review of the literature.

    PubMed

    Weiss, Daniel; Rydland, Håvard T; Øversveen, Emil; Jensen, Magnus Rom; Solhaug, Solvor; Krokstad, Steinar

    2018-01-01

    The aim of this study was to systematically review the range, nature, and extent of current research activity exploring the influence of innovative health-related technologies on social inequalities in health, with specific focus on a deeper understanding of the variables used to measure this connection and the pathways leading to the (re)production of inequalities. A review process was conducted, based on scoping review techniques, searching literature published from January 1, 1996 to November 25, 2016 using MEDLINE, Scopus, and ISI web of science. Search, sorting, and data extraction processes were conducted by a team of researchers and experts using a dynamic, reflexive examination process. Of 4139 studies collected from the search process, a total of 33 were included in the final analysis. Results of this study include the classification of technologies based on how these technologies are accessed and used by end users. In addition to the factors and mechanisms that influence unequal access to technologies, the results of this study highlight the importance of variations in use that importantly shape social inequalities in health. Additionally, focus on health care services technologies must be accompanied by investigating emerging technologies influencing healthy lifestyle, genomics, and personalized devices in health. Findings also suggest that choosing one measure of social position over another has important implications for the interpretation of research results. Furthermore, understanding the pathways through which various innovative health technologies reduce or (re)produce social inequalities in health is context dependent. In order to better understand social inequalities in health, these contextual variations draw attention to the need for critical distinctions between technologies based on how these various technologies are accessed and used. The results of this study provide a comprehensive starting point for future research to further investigate how innovative technologies may influence the unequal distribution of health as a human right.

  16. Restructuring: Imperatives and Opportunities for Academic Leaders.

    ERIC Educational Resources Information Center

    Gumport, Patricia J.

    2001-01-01

    Offers critical reflection on higher education's past, describing some macro trends affecting public higher education in the United States and the responses by public research universities in particular. Briefly considers how technological innovations may reshape the academic future, and concludes with suggestions for how campus leaders might…

  17. OCLC in Asia Pacific.

    ERIC Educational Resources Information Center

    Chang, Min-min

    1998-01-01

    Discusses the Online Computer Library Center (OCLC) and the changing Asia Pacific library scene under the broad headings of the three phases of technology innovation. Highlights include WorldCat and the OCLC shared cataloging system; resource sharing and interlibrary loan; enriching OCLC online catalog with Asian collections; and future outlooks.…

  18. Aging Water Infrastructure and Nutrient Control at WWTPs: U.S. Environmental Protection Agency Research Program

    EPA Science Inventory

    What are… the effects of major influencing factors (climate change, population dynamics, etc.) on future system demands? the innovative technologies that can cost-effectively improve performance and extend the life of existing systems? the new designs and management approaches...

  19. The U.S.-German Bilateral Working Group (BGW): Collaborative Research For A Sustainable Future

    EPA Science Inventory

    Since 1990, the United States and Germany have worked bilaterally to identify, understand, and apply innovative technologies and policies for remediation and sustainable revitalization of contaminated sites in each country. Over a period of 15 years (= three Phases) remarkable b...

  20. The Online Catalog Revolution.

    ERIC Educational Resources Information Center

    Kilgour, Frederick G.

    1984-01-01

    A review of library technological development and card catalog innovations of the past century and a half precedes a discussion of online public access catalog development. Design requirements and purpose of the online catalog, access techniques and provisions, costs, and future integration are highlighted. Twenty-two references are listed. (EJS)

  1. Innovating Professional Development for Future Health Care Practitioners.

    ERIC Educational Resources Information Center

    Hamilton, Charlene; Rucinski, Ann; Schakelman, Justin

    2001-01-01

    Describes a Web-based professional development curriculum that was designed at the University of Delaware for the internship portion of the Registered Dieticians program. Topics include distance learning; technology integration; combining in-class with online instruction; multimedia use for problem-based learning case studies; course management…

  2. Considerations for Using Composite Pressure Vessels (CPVs) in Fuel Storage for Automotive Applications

    NASA Technical Reports Server (NTRS)

    Cone, Darren; Greene, Nathanael; Beeson, Harold; McCloskey, David

    2013-01-01

    Ongoing initiative to get high energy capacity "green fuel" containers to market quickly and cost effectively. The United States has decided to invest in "green energy" technology, to become energy independent, and to "Innovate Our Way to a Clean Energy Future."

  3. More than Spinning Their Wheels

    ERIC Educational Resources Information Center

    Cassola, Joel

    2007-01-01

    Last fall, when Mastercam, the leading manufacturer of computer-aided manufacturing (CAM) software, announced the winners of its Innovators of the Future (IOF) contest, first, second and third prizes went to students in the advanced manufacturing program of Vincennes University's (VU's) Machine Trades Technology Department. The contest called for…

  4. ICT and the future of health care: aspects of doctor-patient communication.

    PubMed

    Haluza, Daniela; Jungwirth, David

    2014-07-01

    The current digital revolution is particularly relevant for interactions of healthcare providers with patients and the community as a whole. The growing public acceptance and distribution of new communication tools such as smart mobile phones provide the prerequisite for information and communication technology (ICT) -assisted healthcare applications. The present study aimed at identifying specifications and perceptions of different interest groups regarding future demands of ICT-supported doctor-patient communication in Austria. German-speaking Austrian healthcare experts (n = 73; 74 percent males; mean age, 43.9 years; SD 9.4) representing medical professionals, patient advocates, and administrative personnel participated in a 2-round online Delphi process. Participants evaluated scenario-based benefits and obstacles for possible prospect introduction as well as degree of innovation, desirability, and estimated implementation dates of two medical care-related future set ups. Panelists expected the future ICT-supported doctor-patient dialogue to especially improve the three factors doctors-patient relationship, patients' knowledge, and quality of social health care. However, lack of acceptance by doctors, data security, and monetary aspects were considered as the three most relevant barriers for ICT implementation. Furthermore, inter-group comparison regarding desirability of future scenarios showed that medical professionals tended to be more skeptical about health-related technological innovations (p < .001). The findings of this survey revealed different expectations among interest groups. Thus, we suggest building taskforces and using workshops for establishing a dialogue between stakeholders to positively shape the future of ICT-supported collaboration and communication between doctors and patients.

  5. [Health care innovation from a territorial perspective: a call for a new approach].

    PubMed

    Costa, Laís Silveira; Gadelha, Carlos Augusto Grabois; Maldonado, José

    2012-12-01

    Innovation plays an increasingly important role in health care, partly because it is responsible for a significant share of national investment in research and development, and partly because of its industrial and service provision base, which provides a conduit to future technology. The relationship between health care and development is also strengthened as a result of the leading role of health care in generating innovation. Nevertheless, Brazil's health care production base is persistently weak, hindering both universal provision of health care services and international competitiveness. This article, based on the theoretical framework of Political Economy and innovation systems, has sought to identify variables in subnational contexts that influence the dynamic of innovation generation in health care. To this end, the theoretical approach used lies on the assumption that innovation is a contextualized social process and that the production base in healthcare will remain weak if new variables involved in the dynamic of innovation are not taken into account.

  6. The Role of Proteomics in the Diagnosis and Treatment of Women's Cancers: Current Trends in Technology and Future Opportunities

    PubMed Central

    Breuer, Eun-Kyoung Yim; Murph, Mandi M.

    2011-01-01

    Technological and scientific innovations over the last decade have greatly contributed to improved diagnostics, predictive models, and prognosis among cancers affecting women. In fact, an explosion of information in these areas has almost assured future generations that outcomes in cancer will continue to improve. Herein we discuss the current status of breast, cervical, and ovarian cancers as it relates to screening, disease diagnosis, and treatment options. Among the differences in these cancers, it is striking that breast cancer has multiple predictive tests based upon tumor biomarkers and sophisticated, individualized options for prescription therapeutics while ovarian cancer lacks these tools. In addition, cervical cancer leads the way in innovative, cancer-preventative vaccines and multiple screening options to prevent disease progression. For each of these malignancies, emerging proteomic technologies based upon mass spectrometry, stable isotope labeling with amino acids, high-throughput ELISA, tissue or protein microarray techniques, and click chemistry in the pursuit of activity-based profiling can pioneer the next generation of discovery. We will discuss six of the latest techniques to understand proteomics in cancer and highlight research utilizing these techniques with the goal of improvement in the management of women's cancers. PMID:21886869

  7. The future of partial nephrectomy.

    PubMed

    Malthouse, Theo; Kasivisvanathan, Veeru; Raison, Nicholas; Lam, Wayne; Challacombe, Ben

    2016-12-01

    Innovation in recent times has accelerated due to factors such as the globalization of communication; but there are also more barriers/safeguards in place than ever before as we strive to streamline this process. From the first planned partial nephrectomy completed in 1887, it took over a century to become recommended practice for small renal tumours. At present, identified areas for improvement/innovation are 1) to preserve renal parenchyma, 2) to optimise pre-operative eGFR and 3) to reduce global warm ischaemia time. All 3 of these, are statistically significant predictors of post-operative renal function. Urologists, have a proud history of embracing innovation & have experimented with different clamping techniques of the renal vasculature, image guidance in robotics, renal hypothermia, lasers and new robots under development. The DaVinci model may soon no longer have a monopoly on this market, as it loses its stranglehold with novel technology emerging including added features, such as haptic feedback with reduced costs. As ever, our predictions of the future may well fall wide of the mark, but in order to progress, one must open the mind to the possibilities that already exist, as evolution of existing technology often appears to be a revolution in hindsight. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  8. Promoting healthcare innovation on the demand side

    PubMed Central

    Eisenberg, Rebecca S.

    2017-01-01

    Abstract Innovation policy often focuses on fortifying the incentives of firms that develop and sell new products by offering them lucrative rights to exclude competitors from the market. Regulators also rely on these same firms—and on similar incentives—to develop information about the effects of their products in patients, despite their obvious conflict of interest. The result may be a distorted understanding that leads to overuse of expensive new medical technologies. Recent technological advances have put healthcare payers in an excellent position to play a larger role in future innovation to improve healthcare and reduce its costs. Insurance companies and integrated healthcare providers have custody of treasure troves of data about healthcare provision and outcomes that can yield valuable insights about the effects of medical treatment without the need to conduct costly clinical trials. Some integrated healthcare systems have seized upon this advantage to make notable discoveries about the effects of particular products that have changed the standard of care. Moreover, to the extent that healthcare payers can profit from reducing costs, they will seek to avoid inappropriate use of costly technologies. Greater involvement of payers in healthcare innovation thus offers a potential counterweight to the incentives of product sellers to promote excessive use of costly new products. In recent years, the federal government has sought to promote innovation through analysis of healthcare records in a series of initiatives; some picture insurers as passive data repositories, while others provide opportunities for insurers to take a more active role in innovation. In this paper, we examine the role of health insurers in developing new knowledge about the provision and effects of healthcare—what we call ‘demand-side innovation’. We address the contours of this underexplored area of innovation and describe the behavior of participating firms. We examine the effects of current legal rules on demand-side innovation, including insurance regulation, intellectual property rules, privacy protections, and FDA regulation of new healthcare technologies. Throughout, we highlight many policy tools that government can use and is using to facilitate payer innovation outside the traditional toolkit of patents and exclusive rights. PMID:28852556

  9. The Future of Pharmaceutical Manufacturing Sciences

    PubMed Central

    2015-01-01

    The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial‐scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state‐of‐art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular‐based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot‐melt processing and printing‐based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3612–3638, 2015 PMID:26280993

  10. The Future of Pharmaceutical Manufacturing Sciences.

    PubMed

    Rantanen, Jukka; Khinast, Johannes

    2015-11-01

    The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial-scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state-of-art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular-based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot-melt processing and printing-based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Personal Aircraft Point to the Future of Transportation

    NASA Technical Reports Server (NTRS)

    2010-01-01

    NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, as well as a number of Agency innovations, have helped Duluth, Minnesota-based Cirrus Design Corporation become one of the world's leading manufacturers of general aviation aircraft. SBIRs with Langley Research Center provided the company with cost-effective composite airframe manufacturing methods, while crashworthiness testing at the Center increased the safety of its airplanes. Other NASA-derived technologies on Cirrus SR20 and SR22 aircraft include synthetic vision systems that help pilots navigate and full-plane parachutes that have saved the lives of more than 30 Cirrus pilots and passengers to date. Today, the SR22 is the world's top-selling Federal Aviation Administration (FAA)-certified single-engine airplane.

  12. Johnson Space Center Research and Technology Report

    NASA Technical Reports Server (NTRS)

    Pido, Kelle; Davis, Henry L. (Technical Monitor)

    1999-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA's development of human spacecraft, human support systems, and human spacecraft operations. To implement this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space--technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described.

  13. Innovation Research in E-Learning

    NASA Astrophysics Data System (ADS)

    Wu, Bing; Xu, WenXia; Ge, Jun

    This study is a productivity review on the literature gleaned from SSCI, SCIE databases concerning innovation research in E-Learning. The result indicates that the number of literature productions on innovation research in ELearning is still growing from 2005. The main research development country is England, and from the analysis of the publication year, the number of papers is increasing peaking in 25% of the total in 2010. Meanwhile the main source title is British Journal of Educational Technology. In addition the subject area concentrated on Education & Educational Research, Computer Science, Interdisciplinary Applications and Computer Science, Software Engineering. Moreover the research focuses on are mainly conceptual research and empirical research, which were used to explore E-Learning in respective of innovation diffusion theory, also the limitations and future research of these research were discussed for further research.

  14. Sigint for Anyone: The Growing Availability of Signals Intelligence in the Public Domain

    DTIC Science & Technology

    2017-01-01

    this opinion today. We tested this viewpoint by conducting a market scan to seek examples of how new technologies, innovations, and behaviors are...future to understand the capabilities each provides, which audience or market each serves, and what implications each may have for government policy...effects. Finally, we identified areas for future study for U.S. and allied government leaders to respond to these changes. During our market scan, we

  15. Improving NASA's technology for space science

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The continued advance of the nation's space program is directly dependent upon the development and use of new technology. Technology is the foundation for every aspect of space missions and ground operations. The improvements in technology that will enable future advances are not only in device and system performance, but also in permitting missions to be carried out more rapidly and at lower cost. Although more can be done with current technology, NASA's recent call for new and innovative approaches should not be answered by employing only today's technologies; new technologies with revolutionary potential should be sought. The study reported here was performed to identify means to enhance the development of technologies for the space sciences and applications.

  16. Report of the In Situ Resources Utilization Workshop

    NASA Technical Reports Server (NTRS)

    Fairchild, Kyle (Editor); Mendell, Wendell W. (Editor)

    1988-01-01

    The results of a workshop of 50 representatives from the public and private sector which investigated the potential joint development of the key technologies and mechanisms that will enable the permanent habitation of space are presented. The workshop is an initial step to develop a joint public/private assessment of new technology requirements of future space options, to share knowledge on required technologies that may exist in the private sector, and to investigate potential joint technology development opportunities. The majority of the material was produced in 5 working groups: (1) Construction, Assembly, Automation and Robotics; (2) Prospecting, Mining, and Surface Transportation; (3) Biosystems and Life Support; (4) Materials Processing; and (5) Innovative Ventures. In addition to the results of the working groups, preliminary technology development recommendations to assist in near-term development priority decisions are presented. Finally, steps are outlined for potential new future activities and relationships among the public, private, and academic sectors.

  17. SMD Technology Development Story for NASA Annual Technology report

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community-including the recommendations set forth in the National Research Council (NRC) decadal surveys-and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions-Heliophysics, Earth Science, Planetary Science, and Astrophysics-develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation-e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  18. 75 FR 1681 - University Transportation Centers (UTC) Program Grants (49 U.S.C. 5506); Suspension of Competitions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... providing notice that it intends to suspend competitions for its University Transportation Centers (UTC... DEPARTMENT OF TRANSPORTATION Research and Innovative Technology Administration University... available about future grant competitions, it will be posted on the UTC Program's Web site, http://utc.dot...

  19. Supporting Adaptive Learning Pathways through the Use of Learning Analytics: Developments, Challenges and Future Opportunities

    ERIC Educational Resources Information Center

    Mavroudi, Anna; Giannakos, Michail; Krogstie, John

    2018-01-01

    Learning Analytics (LA) and adaptive learning are inextricably linked since they both foster technology-supported learner-centred education. This study identifies developments focusing on their interplay and emphasises insufficiently investigated directions which display a higher innovation potential. Twenty-one peer-reviewed studies are…

  20. Preparing the Future STEM Workforce for Diverse Environments

    ERIC Educational Resources Information Center

    Daily, Shaundra Bryant; Eugene, Wanda

    2013-01-01

    Following the belief that diversity breeds innovation in scientific endeavors, there is a national push for more diversity in the science, technology, engineering, and mathematics (STEM) workforce in order to maintain national economic competitiveness. Currently, STEM-related employment is only 28% non-White; however, greater efforts to recruit…

  1. Composing Change: The Role of Graduate Education in Sustaining a Digital Scholarly Future

    ERIC Educational Resources Information Center

    Blair, Kristine L.

    2014-01-01

    In "Reading the Archives: Ten Years on Nonlinear ("Kairos") History," James Kalmbach acknowledges the significant role graduate students have played as digital innovators in the field, particularly in the formation of "Kairos: A Journal of Rhetoric, Technology, Pedagogy" in 1996. Graduate students in the Rhetoric and…

  2. Productivity, Social Networks and Net Communities in the Workplace

    ERIC Educational Resources Information Center

    Asunda, Paul

    2010-01-01

    The 21st century workplace is being shaped by ever-changing technological innovations, shifting demographic patterns, globalization and power shifts, in addition to different economic players such as policymakers, employers, education and training institutions that shape the quality of the future workforce. In today's work environment,…

  3. Navigating Disruptive Innovation in Undergraduate Business Education

    ERIC Educational Resources Information Center

    Behara, Ravi S.; Davis, Mark M.

    2015-01-01

    The undergraduate business education landscape is dramatically changing and will continue to do so for the foreseeable future. Many of the changes are being driven by increasing costs, advances in technology, rapid globalization, and an increasingly diverse workforce and customer base, and are occurring simultaneously in both the business world…

  4. A Path to the Future: Creating Accountability for Personalized Learning

    ERIC Educational Resources Information Center

    Hyslop, Anne; Mead, Sara

    2015-01-01

    A small but growing number of schools and districts across the country are experimenting with personalized learning, an innovation that customizes students' experiences to their individual needs and strengths. Through new kinds of environments, technologies, and ways to demonstrate their knowledge, personalized learning aims to meet students where…

  5. The Future of Learning and Training in Augmented Reality

    ERIC Educational Resources Information Center

    Lee, Kangdon

    2012-01-01

    Students acquire knowledge and skills through different modes of instruction that include classroom lectures with textbooks, computers, and the like. The availability and choice of learning innovation depends on the individual's access to technologies and on the infrastructure environment of the surrounding community. In this rapidly changing…

  6. Kindergarten 2.0

    ERIC Educational Resources Information Center

    Sevans

    2006-01-01

    The Media Lab of the Massachusetts Institute of Technology is featured. The 21-year-old center is an ongoing experiment in how electronics can shape the future, and it helped pioneer digital videography and computer multimedia capabilities, among other innovations. So it's no surprise that it is home to Lifelong Kindergarten, a high-tech…

  7. Reinforcing In-Service Teachers Education via ICT

    ERIC Educational Resources Information Center

    Thorsteinsson, Gisli

    2012-01-01

    Earlier educational models have not managed to take into account novel contextual and mobile methods of learning with the advances in technology-mediated learning. The article firstly reports an educational approach, namely, future innovative in-service teacher education in Europe (ICE-ED). This project was supported by the European Union Comenius…

  8. Why Research-Informed Teaching in Engineering Education? A Review of the Evidence

    ERIC Educational Resources Information Center

    Bubou, Gordon Monday; Offor, Ibebietei Temple; Bappa, Abubakar Saddiq

    2017-01-01

    Challenges of today's engineering education (EE) are emergent, necessitating calls for its reformation to empower future engineers function optimally as innovative leaders, in both local and international contexts. These challenges: keeping pace with technological dynamism; high attrition; and most importantly, quality teaching/learning require…

  9. Reimaging the Future of Higher Education

    ERIC Educational Resources Information Center

    Blumenthal, Anita

    2013-01-01

    "Higher education is at a crossroads," Kelly Baxley declared as he introduced the plenary session at the APPA 2013 conference in Minneapolis last August. "The sector urgently needs to innovate because becoming a savvy user of technology is now a requirement, regardless of industry or career path. The vast proliferation of mobile…

  10. TPACK Updated to Measure Pre-Service Teachers' Twenty-First Century Skills

    ERIC Educational Resources Information Center

    Valtonen, Teemu; Sointu, Erkko; Kukkonen, Jari; Kontkanen, Sini; Lambert, Matthew C.; Mäkitalo-Siegl, Kati

    2017-01-01

    Twenty-first century skills have attracted significant attention in recent years. Students of today and the future are expected to have the skills necessary for collaborating, problem solving, creative and innovative thinking, and the ability to take advantage of information and communication technology (ICT) applications. Teachers must be…

  11. Online Treatment and Virtual Therapists in Child and Adolescent Psychiatry.

    PubMed

    Schueller, Stephen M; Stiles-Shields, Colleen; Yarosh, Lana

    2017-01-01

    Online and virtual therapies are a well-studied and efficacious treatment option for various mental and behavioral health conditions among children and adolescents. However, many interventions have not considered the unique affordances offered by technologies that might align with the capacities and interests of youth users. In this article, the authors discuss learnings from child-computer interaction that can inform future generations of interventions and guide developers, practitioners, and researchers how to best use new technologies for youth populations. The article concludes with innovative examples illustrating future potentials of online and virtual therapies such as gaming and social networking. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. NASA's Sentinels Monitoring Weather and Climate: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Herring, David; Gutro, Rob; Huffman, George; Halverson, Jeff

    2002-01-01

    Weatherwise is probably the most popular newstand magazine focusing on the subject of weather. It is published six times per year and includes features on weather, climate, and technology. This article (to appear in the January/February Issue) provides a comprehensive review of NASA s past, present, and future contributions in satellite remote sensing for weather and climate processes. The article spans the historical strides of the TIROS program through the scientific and technological innovation of Earth Observer-3 and Global Precipitation Measurement (GPM). It is one of the most thorough reviews of NASA s weather and climate satellite efforts to appear in the popular literature.

  13. War-gaming application for future space systems acquisition

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien M.; Guillen, Andy T.

    2016-05-01

    Recently the U.S. Department of Defense (DOD) released the Defense Innovation Initiative (DII) [1] to focus DOD on five key aspects; Aspect #1: Recruit talented and innovative people, Aspect #2: Reinvigorate war-gaming, Aspect #3: Initiate long-range research and development programs, Aspect #4: Make DOD practices more innovative, and Aspect #5: Advance technology and new operational concepts. Per DII instruction, this paper concentrates on Aspect #2 and Aspect #4 by reinvigorating the war-gaming effort with a focus on an innovative approach for developing the optimum Program and Technical Baselines (PTBs) and their corresponding optimum acquisition strategies for acquiring future space systems. The paper describes a unified approach for applying the war-gaming concept for future DOD acquisition of space systems. The proposed approach includes a Unified Game-based Acquisition Framework (UGAF) and an Advanced Game-Based Mathematical Framework (AGMF) using Bayesian war-gaming engines to optimize PTB solutions and select the corresponding optimum acquisition strategies for acquiring a space system. The framework defines the action space for all players with a complete description of the elements associated with the games, including Department of Defense Acquisition Authority (DAA), stakeholders, warfighters, and potential contractors, War-Gaming Engines (WGEs) played by DAA, WGEs played by Contractor (KTR), and the players' Payoff and Cost functions (PCFs). The AGMF presented here addresses both complete and incomplete information cases. The proposed framework provides a recipe for the DAA and USAF-Space and Missile Systems Center (SMC) to acquire future space systems optimally.

  14. Transatlantic Innovations: a new approach to international ideas and technology.

    PubMed

    Evans, Gregory R D; Blondeel, Phillip; Marchac, Daniel; Kinney, Brian; Cunningham, Bruce; Neuhann-Lorenz, Constance

    2010-07-01

    In April of this past year, Transatlantic Innovations brought a variety of organizations and industry together for an international exchange of ideas, new technology, and current trends in plastic surgery. The meeting was highly interactive and included audience response devices. The focus was on 10 major areas: (1) new surgical techniques; (2) composite allografts versus conventional techniques, facing the future; (3) interspecialty collaboration versus competition; (4) the business of plastic surgery, best practices; (5) the image of the plastic surgeon, branding yourself; (6) medical tourism; (7) publicity; (8) the regulation of innovation, U.S. Food and Drug Administration and European Medicines Agency perspective; (9) the future of plastic surgery, cutting edge technologies; and (10) applications and controversies in fat grafting. The meeting concluded with the 8th International Committee for Quality Assurance, Medical Technologies and Devices in Plastic Surgery Consensus Conference with the development of a consensus statement. Through an interactive audience response system, additional questions and attitudes were asked of the audience and, in real time, international differences were identified, which led to further discussions from panelists. Responses were identified in three major groups: European Union, North America, and the Rest of the World. Responses and data are included in this article. The meeting brought participants, industry, regulators, and educators from both sides of the Atlantic. The interaction of these groups in these outlined topics brought a unique perspective to the meeting and, in the end, volumes of data. We have more in common than we believe. It is our anticipation that as we as plastic surgeons move forward, we can use these interactions to help our own practices but more specifically the specialty as a whole.

  15. America Makes: The National Additive Manufacturing Innovation Institute (NAMII) Status Report and Future Opportunities (Postprint)

    DTIC Science & Technology

    2014-09-01

    manufacturing, direct part manufacturing, manufacturing institute, public- private partnership, rapid manufacturing, 3D printing 16. SECURITY CLASSIFICATION...Manufacturing Science and Technology Pro- gram and selected Additive Manufacturing (or more popularly known as 3D printing ) as the technical subject. Working...operations, America Makes is starting to hit its stride in developing technology for 3D printing and in leading the way in how the United States should

  16. NASA Deputy Administrator Tours Bigelow Aerospace

    NASA Image and Video Library

    2011-02-04

    NASA Deputy Administrator Lori Garver talks during a press conference shortly after she was given a tour of the Bigelow Aerospace facilities by the company's President Robert Bigelow on Friday, Feb. 4, 2011, in Las Vegas. NASA has been discussing potential partnership opportunities with Bigelow for its inflatable habitat technologies as part of NASA's goal to develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  17. Proceedings of the Acquisition Research Symposium: Acquisition for the Future, Imagination, Innovation, and Implementation, 1991. Volume 2.

    DTIC Science & Technology

    1991-01-01

    Estimates, in support force structure, and identifying of cost- effectiveness studies , other system characteristics. system analysis efforts, and trade- A...mission effectiveness studies , used to justify technology evaluate the results in terms funding. These technology of benefit vs. cost, and marketers often...the formal studies serve on mission effectiveness and to rubber stamp these prede- ultimately, benefit vs. cost termined solutions. In an 101 attempt to

  18. Innovation in dental education in Texas: The University of Texas Dental Branch at Houston.

    PubMed

    Valenza, John A; Walji, Muhammad F; Taylor, David; Estes, Kristine

    2009-08-01

    Innovation has been an integral part of The University of Texas Dental Branch at Houston and its approach to educating dentists since the school's origin in 1905. Its history is rich with examples, such as a modular, self-directed curriculum and a general practice-based patient care delivery system. Moving into the 21st century, the school has embraced new models for patient care and research upon which to build innovative programs for teaching and learning. Combined with a technological explosion across the world and in education, UTDB has been a leader on many fronts, such as electronic patient records, clinical simulation and research in informatics. As the school looks ahead to a new building by 2012, additional advances and innovations are planned to follow. This article takes a look at the past, present, and future contributions by UTDB to innovation in dental education.

  19. Medical innovation then and now: perspectives of innovators responsible for transformative drugs.

    PubMed

    Xu, Shuai; Kesselheim, Aaron S

    2014-01-01

    Effective medical innovation is a common goal of policymakers, physicians, researchers, and patients both in the private and public sectors. With the recent slowdown in approval of new transformative prescription drugs, many have looked back to the "golden years" of the 1980s and 1990s when numerous breakthrough products emerged. We conducted a qualitative study of innovators (n=127) directly involved in creation of groundbreaking drugs during that era to determine what made their work successful and how the process of conducting medical innovation has changed over the past 3 decades. Transcripts were analyzed using standard coding techniques and the constant comparative method of qualitative data analysis to identify the positive features of and challenges posed by the past and present therapeutic innovation environments (70 of the 127 interviewees explicitly addressed these issues). Interviewees emphasized the continued central role played by individuals and the institutions they were a part of in driving innovation. In addition, respondents discussed the importance of collaboration between individuals and institutions to share resources and expertise. Strong underlying basic science was also cited to be a major contributing factor to the success of an innovation. The climate for modern-day medical innovation involves a greater emphasis on patenting in academia, difficulty negotiating the technology transfer process, and funding constraints. Regulatory demands or reimbursement concerns were not commonly cited as factors that influenced transformative innovation. This study suggests that generating future transformative innovation will require a simplification of the current technology transfer process, continued commitment to basic science research, and policy changes that promote meaningful collaboration between individuals from disparate institutions. © 2014 American Society of Law, Medicine & Ethics, Inc.

  20. Bridging the Gap between the Technological Singularity and Medicine: Highlighting a Course on Technology and the Future of Medicine

    PubMed Central

    Solez, Kim; Bernier, Ashlyn; Crichton, Joel; Graves, Heather; Kuttikat, Preeti; Lockwood, Ross; Marovitz, William F.; Monroe, Damon; Pallen, Mark; Pandya, Shawna; Pearce, David; Saleh, Abdullah; Sandhu, Neelam; Sergi, Consolato; Tuszynski, Jack; Waugh, Earle; White, Jonathan; Wong, Julielynn; Woodside, Michael; Wyndham, Roger; Zaiane, Osmar; Zakus, David

    2013-01-01

    The “technological singularity” is forecasted to occur in the mid-21st century and is defined as the point when machines will become smarter than humans and thus trigger the merging of humans and machines. It is hypothesized that this will have a profound influence on medicine and population health. This paper describes a new course entitled “Technology and the Future of Medicine” developed by a multi-disciplinary group of experts. The course began as a continuing medical education course and then transitioned to an accredited graduate-level course. We describe the philosophy of the course and the innovative solutions to the barriers that were encountered, with a focus on YouTube audience retention analytics. Our experience may provide a useful template for others. PMID:24171879

  1. Mobile display technologies: Past developments, present technologies, and future opportunities

    NASA Astrophysics Data System (ADS)

    Ohshima, Hiroyuki

    2014-01-01

    It has been thirty years since the first active matrix (AM) flat panel display (FPD) was industrialized for portable televisions (TVs) in 1984. The AM FPD has become a dominant electronic display technology widely used from mobile displays to large TVs. The development of AM FPDs for mobile displays has significantly changed our lives by enabling new applications, such as notebook personal computers (PCs), smartphones and tablet PCs. In the future, the role of mobile displays will become even more important, since mobile displays are the live interface for the world of mobile communications in the era of ubiquitous networks. Various developments are being conducted to improve visual performance, reduce power consumption and add new functionality. At the same time, innovative display concepts and novel manufacturing technologies are being investigated to create new values.

  2. E-service learning: A pedagogic innovation for healthcare management education.

    PubMed

    Malvey, Donna M; Hamby, Eileen F; Fottler, Myron D

    2006-01-01

    This paper proposes an innovation in service learning that we identify as e-service learning. By adding the "e" to service learning, we create a service learning model that is dynamic, mediated by technology, and delivered online. This paper begins by examining service learning, which is a distinct learning concept. Service learning furnishes students with opportunities for applied learning through participation in projects and activities in community organizations. The authors then define and conceptualize e-service learning, including the anticipated outcomes of implementation such as enhanced access, quality, and cost effectiveness of healthcare management education. Because e-service learning is mediated by technology, we identify state of the art technologies that support e-service learning activities. In addition, possible e-service learning projects and activities that may be included in healthcare management courses such as finance, human resources, quality, service management/marketing and strategy are identified. Finally, opportunities for future research are suggested.

  3. Creating innovative programs for the future.

    PubMed

    Allen, Patricia E; Keough, Vicki A; Armstrong, Myrna L

    2013-09-01

    Although several major national mandates advocate for a better educated workforce, this push comes at a time when the competition for faculty, financial resources, advanced technology, and students remains strong. If nurse educators are seriously considering creating a new nurse program at their school, some key points are essential during the development stage. Using the innovation frameworks from the Institute of Healthcare Improvement, from the global design firm IDEO, and from Gladwell's The Tipping Point: How Little Things Can Make a Big Difference, this article examines the informal, formal, internal, and external work needed during program conceptualization, initial program exploration, resource infrastructure, support, and evaluation for an effective and innovative plan. Copyright 2013, SLACK Incorporated.

  4. Cultivating a Grassroots Aerospace Innovation Culture at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    D'Souza, Sarah; Sanchez, Hugo; Lewis, Ryan

    2017-01-01

    This paper details the adaptation of specific 'knowledge production' methods to implement a first of its kind, grassroots event that provokes a cultural change in how the NASA Ames civil servant community engages in the creation and selection of innovative ideas. Historically, selection of innovative proposals at NASA Ames Research Center is done at the highest levels of management, isolating the views and perspectives of the larger civil servant community. Additionally, NASA innovation programs are typically open to technical organizations and do not engage non-technical organizations to bring forward innovative processes/business practices. Finally, collaboration on innovative ideas and associated solutions tend to be isolated to organizational silos. In this environment, not all Ames employees feel empowered to innovate and opportunities for employee collaboration are limited. In order to address these issues, the 'innovation contest' method was adapted to create the NASA Ames Innovation Fair, a unique, grassroots innovation opportunity for the civil servant community. The Innovation Fair consisted of a physical event with a virtual component. The physical event provided innovators the opportunity to collaborate and pitch their innovations to the NASA Ames community. The civil servant community then voted for the projects that they viewed as innovative and would contribute to NASA's core mission, making this event a truly grassroots effort. The Innovation Fair website provided a location for additional knowledge sharing, discussion, and voting. On March 3rd, 2016, the 'First Annual NASA Ames Innovation Fair' was held with 49 innovators and more than 300 participants collaborating and/or voting for the best innovations. Based on the voting results, seven projects were awarded seed funding for projects ranging from innovative cost models to innovations in aerospace technology. Surveys of both innovators and Fair participants show the Innovation Fair was successful in fostering cross-organizational collaborations, soliciting participation of non-technical innovations, and increasing employee engagement in influencing the future of NASA Ames Research Center. The grassroots component of the Innovation Fair has been bench marked by the agency as a solid foundation for increasing employee engagement in the development of game changing aerospace technology and processes in support of NASA's mission.

  5. Social aspects of automation: Some critical insights

    NASA Astrophysics Data System (ADS)

    Nouzil, Ibrahim; Raza, Ali; Pervaiz, Salman

    2017-09-01

    Sustainable development has been recognized globally as one of the major driving forces towards the current technological innovations. To achieve sustainable development and attain its associated goals, it is very important to properly address its concerns in different aspects of technological innovations. Several industrial sectors have enjoyed productivity and economic gains due to advent of automation technology. It is important to characterize sustainability for the automation technology. Sustainability is key factor that will determine the future of our neighbours in time and it must be tightly wrapped around the double-edged sword of technology. In this study, different impacts of automation have been addressed using the ‘Circles of Sustainability’ approach as a framework, covering economic, political, cultural and ecological aspects and their implications. A systematic literature review of automation technology from its inception is outlined and plotted against its many outcomes covering a broad spectrum. The study is more focused towards the social aspects of the automation technology. The study also reviews literature to analyse the employment deficiency as one end of the social impact spectrum. On the other end of the spectrum, benefits to society through technological advancements, such as the Internet of Things (IoT) coupled with automation are presented.

  6. 40 CFR 35.2032 - Innovative and alternative technologies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Innovative and alternative technologies... Innovative and alternative technologies. (a) Funding for innovative and alternative technologies. Projects or... innovative or alternative technology shall receive increased grants under § 35.2152. (1) Only funds from the...

  7. 40 CFR 35.2032 - Innovative and alternative technologies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Innovative and alternative technologies... Innovative and alternative technologies. (a) Funding for innovative and alternative technologies. Projects or... innovative or alternative technology shall receive increased grants under § 35.2152. (1) Only funds from the...

  8. 40 CFR 35.2032 - Innovative and alternative technologies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Innovative and alternative technologies... Innovative and alternative technologies. (a) Funding for innovative and alternative technologies. Projects or... innovative or alternative technology shall receive increased grants under § 35.2152. (1) Only funds from the...

  9. 40 CFR 35.2032 - Innovative and alternative technologies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Innovative and alternative technologies... Innovative and alternative technologies. (a) Funding for innovative and alternative technologies. Projects or... innovative or alternative technology shall receive increased grants under § 35.2152. (1) Only funds from the...

  10. 40 CFR 35.2032 - Innovative and alternative technologies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Innovative and alternative technologies... Innovative and alternative technologies. (a) Funding for innovative and alternative technologies. Projects or... innovative or alternative technology shall receive increased grants under § 35.2152. (1) Only funds from the...

  11. Information management and information technologies: keys to professional and business success.

    PubMed

    Otten, K W

    1984-01-01

    Personal computers, spreadsheets, decision support software, electronic mail and video disks are just a few of the innovations of information technology which attract the attention of information professionals and managers alike: they are all concerned with the rapidly changing face of information technology and how to cope with a changing competitive environment, personally, and for the benefit of their companies. This paper is the first in a monthly series which tries to illuminate some of the factors and changes which shape our future as professionals and managers. In so doing, it guides and motivates the reader to become "information literate," a prerequisite for personal advancement in an information-based economy. This first paper outlines the relationship between technological innovations, use of information tools and information management and what to consider in order to benefit from the information revolution. It explains the risks of becoming professionally obsolete and alerts the reader to get personally involved to remain or become "information and computer literate."

  12. Research Updates: The three M's (materials, metrology, and modeling) together pave the path to future nanoelectronic technologies

    NASA Astrophysics Data System (ADS)

    King, Sean W.; Simka, Harsono; Herr, Dan; Akinaga, Hiro; Garner, Mike

    2013-10-01

    Recent discussions concerning the continuation of Moore's law have focused on announcements by several major corporations to transition from traditional 2D planar to new 3D multi-gate field effect transistor devices. However, the growth and progression of the semiconductor microelectronics industry over the previous 4 decades has been largely driven by combined advances in new materials, lithography, and materials related process technologies. Looking forward, it is therefore anticipated that new materials and materials technologies will continue to play a significant role in both the pursuit of Moore's law and the evolution of the industry. In this research update, we discuss and illustrate some of the required and anticipated materials innovations that could potentially lead to the continuation of Moore's law for another decade (or more). We focus primarily on the innovations needed to achieve single digit nanometer technologies and illustrate how at these dimensions not only new materials but new metrologies and computational modeling will be needed.

  13. Technological advances in real-time tracking of cell death

    PubMed Central

    Skommer, Joanna; Darzynkiewicz, Zbigniew; Wlodkowic, Donald

    2010-01-01

    Cell population can be viewed as a quantum system, which like Schrödinger’s cat exists as a combination of survival- and death-allowing states. Tracking and understanding cell-to-cell variability in processes of high spatio-temporal complexity such as cell death is at the core of current systems biology approaches. As probabilistic modeling tools attempt to impute information inaccessible by current experimental approaches, advances in technologies for single-cell imaging and omics (proteomics, genomics, metabolomics) should go hand in hand with the computational efforts. Over the last few years we have made exciting technological advances that allow studies of cell death dynamically in real-time and with the unprecedented accuracy. These approaches are based on innovative fluorescent assays and recombinant proteins, bioelectrical properties of cells, and more recently also on state-of-the-art optical spectroscopy. Here, we review current status of the most innovative analytical technologies for dynamic tracking of cell death, and address the interdisciplinary promises and future challenges of these methods. PMID:20519963

  14. Assessment and non-clinical impact of medical devices.

    PubMed

    Dervaux, Benoît; Szwarcensztein, Karine; Josseran, Anne; Barna, Alexandre; Carbonneil, Cédric; Chevrie, Karine; Debroucker, Frédérique; Grumblat, Anne; Grumel, Olivier; Massol, Jacques; Maugendre, Philippe; Méchin, Hubert; Orlikowski, David; Roussel, Christophe; Rumeau-Pichon, Catherine; Sales, Jean-Patrick; Vicaut, Eric

    2015-01-01

    Medical devices (MDs) cover a wide variety of products. They accompany changes in medical practice in step with technology innovations. Innovations in the field of MDs can improve the conditions of use of health technology and/or modify the organisation of care beyond the strict diagnostic or therapeutic benefit for the patients. However, these non purely clinical criteria seem to be only rarely documented or taken into account in the assessment of MDs during reimbursement decisions at national level or for formulary listing by hospitals even though multidimensional models for the assessment of health technologies have been developed that take into account the views of all stakeholders in the healthcare system In this article, after summarising the background concerning the assessment of health technologies in France, a definition of non-clinical criteria for the assessment of MDs is proposed and a decision tree for the assessment of MDs is described. Future lines of approach are proposed as a conclusion. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  15. Study of launch site processing and facilities for future launch vehicles

    NASA Astrophysics Data System (ADS)

    Shaffer, Rex

    1995-03-01

    The purpose of this research is to provide innovative and creative approaches to assess the impact to the Kennedy Space Center and other launch sites for a range of candidate manned and unmanned space transportation systems. The general scope of the research includes the engineering activities, analyses, and evaluations defined in the four tasks below: (1) development of innovative approaches and computer aided tools; (2) operations analyses of launch vehicle concepts and designs; (3) assessment of ground operations impacts; and (4) development of methodologies to identify promising technologies.

  16. Study of launch site processing and facilities for future launch vehicles

    NASA Technical Reports Server (NTRS)

    Shaffer, Rex

    1995-01-01

    The purpose of this research is to provide innovative and creative approaches to assess the impact to the Kennedy Space Center and other launch sites for a range of candidate manned and unmanned space transportation systems. The general scope of the research includes the engineering activities, analyses, and evaluations defined in the four tasks below: (1) development of innovative approaches and computer aided tools; (2) operations analyses of launch vehicle concepts and designs; (3) assessment of ground operations impacts; and (4) development of methodologies to identify promising technologies.

  17. Beacon communities aim to use health information technology to transform the delivery of care.

    PubMed

    Maxson, Emily R; Jain, Sachin H; McKethan, Aaron N; Brammer, Craig; Buntin, Melinda Beeuwkes; Cronin, Kelly; Mostashari, Farzad; Blumenthal, David

    2010-09-01

    The Beacon Community Program, authorized under the 2009 American Recovery and Reinvestment Act (ARRA), aims to demonstrate the potential for health information technology to enable local improvements in health care quality, cost efficiency, and population health. If successful, these communitywide efforts will yield important lessons that will assist other communities seeking to harness technology to achieve and sustain health care improvements. This paper highlights key programmatic details that reflect the meaningful use of technology in the fifteen Beacon communities. It describes the innovations they propose and provides insight into current and future challenges.

  18. Astronomical technology - the past and the future. Karl Schwarzschild Award Lecture 2015

    NASA Astrophysics Data System (ADS)

    Appenzeller, I.

    2016-07-01

    The past fifty years have been an epoch of impressive progress in the field of astronomical technology. Practically all the technical tools, which we use today, have been developed during that time span. While the first half of this period has been dominated by advances in the detector technologies, during the past two decades innovative telescope concepts have been developed for practically all wavelength ranges where astronomical observations are possible. Further important advances can be expected in the next few decades. Based on the experience of the past, some of the main sources of technological progress can be identified.

  19. Youth Participatory Action Research (YPAR) 2.0: how technological innovation and digital organizing sparked a food revolution in East Oakland

    PubMed Central

    Akom, Antwi; Shah, Aekta; Nakai, Aaron; Cruz, Tessa

    2017-01-01

    This article argues that technological innovation is transforming the flow of information, the fluidity of social action, and is giving birth to new forms of bottom up innovation that are capable of expanding and exploding old theories of reproduction and resistance because ‘smart mobs’, ‘street knowledge’, and ‘social movements’ cannot be neutralized by powerful structural forces in the same old ways. The purpose of this article is to develop the concept of YPAR 2.0 in which new technologies enable young people to visualize, validate, and transform social inequalities by using local knowledge in innovative ways that deepen civic engagement, democratize data, expand educational opportunity, inform policy, and mobilize community assets. Specifically this article documents how digital technology (including a mobile, mapping and SMS platform called Streetwyze and paper-mapping tool Local Ground) – coupled with ‘ground-truthing’ – an approach in which community members work with researchers to collect and verify ‘public’ data – sparked a food revolution in East Oakland that led to an increase in young people’s self-esteem, environmental stewardship, academic engagement, and positioned urban youth to become community leaders and community builders who are connected and committed to health and well-being of their neighborhoods. This article provides an overview of how the YPAR 2.0 Model was developed along with recommendations and implications for future research and collaborations between youth, teachers, neighborhood leaders, and youth serving organizations. PMID:28835731

  20. Youth Participatory Action Research (YPAR) 2.0: how technological innovation and digital organizing sparked a food revolution in East Oakland.

    PubMed

    Akom, Antwi; Shah, Aekta; Nakai, Aaron; Cruz, Tessa

    2016-01-01

    This article argues that technological innovation is transforming the flow of information, the fluidity of social action, and is giving birth to new forms of bottom up innovation that are capable of expanding and exploding old theories of reproduction and resistance because 'smart mobs', 'street knowledge', and 'social movements' cannot be neutralized by powerful structural forces in the same old ways. The purpose of this article is to develop the concept of YPAR 2.0 in which new technologies enable young people to visualize, validate, and transform social inequalities by using local knowledge in innovative ways that deepen civic engagement, democratize data, expand educational opportunity, inform policy, and mobilize community assets. Specifically this article documents how digital technology (including a mobile, mapping and SMS platform called Streetwyze and paper-mapping tool Local Ground) - coupled with 'ground-truthing' - an approach in which community members work with researchers to collect and verify 'public' data - sparked a food revolution in East Oakland that led to an increase in young people's self-esteem, environmental stewardship, academic engagement, and positioned urban youth to become community leaders and community builders who are connected and committed to health and well-being of their neighborhoods. This article provides an overview of how the YPAR 2.0 Model was developed along with recommendations and implications for future research and collaborations between youth, teachers, neighborhood leaders, and youth serving organizations.

  1. Defense Science Board 2006 Summer Study on 21st Century Strategic Technology Vectors. Volume 4. Accelerating the Transition of Technologies into U.S. Capabilities

    DTIC Science & Technology

    2007-04-01

    perform more research on future defense technology, the DOD should invest in companies that are leaders in the development of innovative sources of next...well. In fact, the kit from one vender out-performed the standard up-armor kits being produced for the Army’s acquisition team. That Army company ...subsequently purchased the company that had built the improved performance kit. As part of the process to look at alternatives, the Army Material

  2. 76 FR 76388 - National Medal of Technology and Innovation Nomination Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Medal of Technology and Innovation is the highest honor for technological achievement bestowed by the... commercialization of technology products, processes and concepts, technological innovation, and development of the Nation's technological manpower. The purpose of the National Medal of Technology and Innovation is to...

  3. A paleo-aerodynamic exploration of the evolution of nature's flyers, man's aircraft, and the needs and options for future technology innovations

    NASA Astrophysics Data System (ADS)

    Kulfan, Brenda M.

    2009-03-01

    Insights and observations of fascinating aspects of birds, bugs and flying seeds, of inspired aerodynamic concepts, and visions of past, present and future aircraft developments are presented. The evolution of nature's flyers, will be compared with the corresponding evolution of commercial aircraft. We will explore similarities between nature's creations and man's inventions. Many critical areas requiring future significant technology based solutions remain. With the advent of UAVs and MAVs, the gap between "possible" and "actual" is again very large. Allometric scaling procedures will be used to explore size implications on limitations and performance capabilities of nature's creations. Biologically related technology development concepts including: bionics, biomimicry, neo-bionic, pseudo-mimicry, cybernetic and non-bionic approaches will be discussed and illustrated with numerous examples. Technology development strategies will be discussed along with the pros and cons for each. Future technology developments should include a synergistic coupling of "discovery driven", "product led" and "technology acceleration" strategies. The objective of this presentation is to inspire the creative nature existing within all of us. This is a summary all text version of the complete report with the same title that report includes approximately 80 figures, photos and charts and much more information.

  4. Research on Upgrade Path to Technology Innovation of Resource-based SMEs in China

    NASA Astrophysics Data System (ADS)

    Jie, Xu

    2017-08-01

    Complexity, diversity and coordination are features of technology innovation of resource-based SMEs in China. This paper studies on the key factors of macro-environment, cooperation among enterprises and enterprise interior, which influence the upgrading of technology innovation of resource-based SMEs in China. This paper constructs integrated system of technology innovation to analyse the upgrade path to technology innovation of resource-based SMEs in China, so that enterprises would improve their technology innovation and get a new way to accomplish sustainable innovated development.

  5. 3D printing awareness: the future of making things

    NASA Astrophysics Data System (ADS)

    Valpreda, F.

    2015-03-01

    The advent of 3D printing is giving us new production opportunities but is creating new economic and social assets. In the paper we will analyze the new conditions we will live in. The current industrial production scenario will be analyzed to see how it works and how 3D printing is being introduced into it: where the traditional production comes from and how it actually works, from the historical, technological, social and economic point of view, including transports of materials and products. This asset is being "polluted" and possibly transformed by 3D printing: what is it, how it works, but most important, how this technology is transforming our personal approach to industrial products. This technological innovation will transform our lives, possibly even more than how movable type printing did: we will see the opportunities offered to adopt this innovation not only for our everyday life, but also looking forward for environmental issues, (e)commerce reorganization and social quality improvement. In the final part we will also see what will be the keys to open a new kind of developing path, where technology will take an important part, what relationship with it humans will have, and which will be the keys to succeed in this challenge, identifying in knowledge, awareness and culture of innovation those keys.

  6. Laboratory medicine: challenges and opportunities.

    PubMed

    Bossuyt, Xavier; Verweire, Kurt; Blanckaert, Norbert

    2007-10-01

    Technologic innovations have substantially improved the productivity of clinical laboratories, but the services provided by clinical laboratories are increasingly becoming commoditized. We reflect on how current developments may affect the future of laboratory medicine and how to deal with these changes. We argue that to be prepared for the future, clinical laboratories should enhance efficiency and reduce costs by forming alliances and networks; consolidating, integrating, or outsourcing; and more importantly, create additional value by providing knowledge services related to in vitro diagnostics.

  7. Crosscutting Issues in International Transformation: Interactions and Innovations among People, Organizations, Processes, and Technology

    DTIC Science & Technology

    2009-12-01

    in the process of reaching this goal. We hope that this book is valuable to you as you seek to transform your part of the world. Ralph O...missions and operations; lead NATO military transformation; and improve relationships , interaction, and practical cooperation with partners, nations...the Multiple Futures Project or most other future studies will you find anything about the central element of the problem—learning how to think about

  8. Playing to our human strengths to prepare medical students for the future.

    PubMed

    Chen, Julie

    2017-09-01

    We are living in an age where artificial intelligence and astounding technological advances are bringing truly remarkable change to healthcare. Medical knowledge and skills which form the core responsibility of doctors such as making diagnoses may increasingly be delivered by robots. Machines are gradually acquiring human abilities such as deep learning and empathy. What, then is the role of doctors in future healthcare? And what direction should medical schools be taking to prepare their graduates? This article will give an overview of the evolving technological landscape of healthcare and examine the issues undergraduate medical education may have to address. The experience at The University of Hong Kong will serve as a case study featuring several curricular innovations that aim to empower medical graduates with the capabilities to thrive in the future.

  9. Overview of Existing and Future Residential Use Cases for Connected Thermostats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotondo, Julia; Johnson, Robert; Gonzalez, Nancy

    This paper is intended to help inform future technology deployment opportunities for connected thermostats (CTs), based on investigation and review of the U.S. residential housing and CT markets, as well as existing, emerging, and future use cases for CT hardware and CT-generated data. The CT market has experienced tremendous growth over the last 5 years—both in terms of the number of units sold and the number of firms offering competing products—and can be characterized by its rapid pace of technological innovation. Despite many assuming CTs would become powerful tools for increasing comfort while saving energy, there remains a great dealmore » of uncertainty about the actual energy and cost savings that are likely to be realized from deployment of CTs, particularly under different conditions.« less

  10. The future of e-learning in healthcare professional education: some possible directions. Commentary.

    PubMed

    Walsh, Kieran

    2014-01-01

    E-learning in healthcare professional education still seems like it is a new innovation but the reality is that e-learning has been around for as long as the internet has been around. This is approximately twenty years and so it is probably appropriate to now take stock and consider what the future of e-learning in healthcare professional education might be. One likely occurrence is that there will be more formats, more interactive technology, and sometimes game-based learning. Another future of healthcare professional education will likely be in simulation. Like other forms of technology outside of medicine, the cost of e-learning in healthcare professional education will fall rapidly. E-learning will also become more adaptive in the future and so will deliver educational content based on learners' exact needs. The future of e-learning will also be mobile. Increasingly in the future e-learning will be blended with face to face education.

  11. The aluminum smelting process and innovative alternative technologies.

    PubMed

    Kvande, Halvor; Drabløs, Per Arne

    2014-05-01

    The industrial aluminum production process is addressed. The purpose is to give a short but comprehensive description of the electrolysis cell technology, the raw materials used, and the health and safety relevance of the process. This article is based on a study of the extensive chemical and medical literature on primary aluminum production. At present, there are two main technological challenges for the process--to reduce energy consumption and to mitigate greenhouse gas emissions. A future step may be carbon dioxide gas capture and sequestration related to the electric power generation from fossil sources. Workers' health and safety have now become an integrated part of the aluminum business. Work-related injuries and illnesses are preventable, and the ultimate goal to eliminate accidents with lost-time injuries may hopefully be approached in the future.

  12. Innovation under cap-and-trade programs

    PubMed Central

    Taylor, Margaret R.

    2012-01-01

    Policies incentivizing the private sector to reach its innovative potential in “clean” technologies are likely to play a key role in achieving climate stabilization. This article explores the relationship between innovation and cap-and-trade programs (CTPs)—the world's most prominent climate policy instrument—through empirical evidence drawn from successful CTPs for sulfur dioxide and nitrogen oxide control. The article shows that before trading began for these CTPs, analysts overestimated the value of allowances in a pattern suggestive of the frequent a priori overestimation of the compliance costs of regulation. When lower-than-expected allowance prices were observed, in part because of the unexpected range of abatement approaches used in the lead-up to trading, emissions sources chose to bank allowances in significant numbers and reassess abatement approaches going forward. In addition, commercially oriented inventive activity declined for emissions-reducing technologies with a wide range of costs and technical characteristics, dropping from peaks before the establishment of CTPs to nadirs a few years into trading. This finding is consistent with innovators deciding during trading that their research and development investments should be reduced, based on assessments of future market conditions under the relevant CTPs. The article concludes with a discussion of the results and their implications for innovation and climate policy. PMID:22411797

  13. Enabling a sustainable and prosperous future through science and innovation in the bioeconomy at Agriculture and Agri-Food Canada.

    PubMed

    Sarkar, Sara F; Poon, Jacquelyne S; Lepage, Etienne; Bilecki, Lori; Girard, Benoit

    2018-01-25

    Science and innovation are important components underpinning the agricultural and agri-food system in Canada. Canada's vast geographical area presents diverse, regionally specific requirements in addition to the 21st century agricultural challenges facing the overall sector. As the broader needs of the agricultural landscape have evolved and will continue to do so in the next few decades, there is a trend in place to transition towards a sustainable bioeconomy, contributing to reducing greenhouse gas emission and our dependency on non-renewable resources. We highlight some of the key policy drivers on an overarching national scale and those specific to agricultural research and innovation that are critical to fostering a supportive environment for innovation and a sustainable bioeconomy. As well, we delineate some major challenges and opportunities facing agriculture in Canada, including climate change, sustainable agriculture, clean technologies, and agricultural productivity, and some scientific initiatives currently underway to tackle these challenges. The use of various technologies and scientific efforts, such as Next Generation Sequencing, metagenomics analysis, satellite image analysis and mapping of soil moisture, and value-added bioproduct development will accelerate scientific development and innovation and its contribution to a sustainable and prosperous bioeconomy. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. Innovation under cap-and-trade programs.

    PubMed

    Taylor, Margaret R

    2012-03-27

    Policies incentivizing the private sector to reach its innovative potential in "clean" technologies are likely to play a key role in achieving climate stabilization. This article explores the relationship between innovation and cap-and-trade programs (CTPs)--the world's most prominent climate policy instrument--through empirical evidence drawn from successful CTPs for sulfur dioxide and nitrogen oxide control. The article shows that before trading began for these CTPs, analysts overestimated the value of allowances in a pattern suggestive of the frequent a priori overestimation of the compliance costs of regulation. When lower-than-expected allowance prices were observed, in part because of the unexpected range of abatement approaches used in the lead-up to trading, emissions sources chose to bank allowances in significant numbers and reassess abatement approaches going forward. In addition, commercially oriented inventive activity declined for emissions-reducing technologies with a wide range of costs and technical characteristics, dropping from peaks before the establishment of CTPs to nadirs a few years into trading. This finding is consistent with innovators deciding during trading that their research and development investments should be reduced, based on assessments of future market conditions under the relevant CTPs. The article concludes with a discussion of the results and their implications for innovation and climate policy.

  15. NASA Deputy Administrator Tours Bigelow Aerospace

    NASA Image and Video Library

    2011-02-04

    NASA Deputy Administrator Lori Garver views the inside of a full scale mockup of Bigelow Aerospace's Space Station Alpha during a tour of the Bigelow Aerospace facilities by the company's President Robert Bigelow on Friday, Feb. 4, 2011, in Las Vegas. NASA has been discussing potential partnership opportunities with Bigelow for its inflatable habitat technologies as part of NASA's goal to develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  16. JPRS Report, Science and Technology, USSR: Science and Technology Policy.

    DTIC Science & Technology

    1990-07-23

    complex jobs, which are now "nobody’s." For precisely these intermediate directions are the most promising with respect to future discoveries. At the...34Of course! I work as an aircraft designer, while the invention applies to medical equipment. The coopera- tive is prepared to pay all the necessary...the introduction and practical appli - cation of useful technical innovations. The main principle is "from the idea to the finished product." We

  17. Advanced Modulation and Coding Technology Conference

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions.

  18. Microbial Monitoring from the Frontlines to Space: A Successful Validation of a Department of Defense (DoD) Funded Small Business Innovation Research (SBIR) Technology on Board the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Oubre, Cherie; Khodadad, Christina; Castro, Victoria; Ott, Mark; Pollack, Lawrence; Roman, Monsi

    2017-01-01

    The RAZOR EX (Registered Trademark) PCR unit was initially developed by the DoD as part of an SBIR project to detect and identify biothreats during field deployment. The system was evaluated by NASA as a commercial technology for future microbial monitoring requirements and has been successfully demonstrated in microgravity on-board the International Space Station.

  19. Implications of Emerging Vehicle Technologies on Rare Earth Supply and Demand in the United States

    DOE PAGES

    Fishman, Tomer; Myers, Rupert; Rios, Orlando; ...

    2018-01-25

    In this article, we explore the long-term demand and supply potentials of rare earth elements in alternative energy vehicles (AEVs) in the United States until 2050. Using a stock-flow model, we compare a baseline scenario with scenarios that incorporate an exemplary technological innovation: a novel aluminum–cerium–magnesium alloy. We find that the introduction of the novel alloy demonstrates that even low penetration rates can exceed domestic cerium production capacity, illustrating possible consequences of technological innovations to material supply and demand. End-of-life vehicles can, however, overtake domestic mining as a source of materials, calling for proper technologies and policies to utilize thismore » emerging source. The long-term importing of critical materials in manufactured and semi-manufactured products shifts the location of material stocks and hence future secondary supply of high-value materials, culminating in a double benefit to the importing country. This modeling approach is adaptable to the study of varied scenarios and materials, linking technologies with supply and demand dynamics in order to understand their potential economic and environmental consequences.« less

  20. Implications of Emerging Vehicle Technologies on Rare Earth Supply and Demand in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishman, Tomer; Myers, Rupert; Rios, Orlando

    In this article, we explore the long-term demand and supply potentials of rare earth elements in alternative energy vehicles (AEVs) in the United States until 2050. Using a stock-flow model, we compare a baseline scenario with scenarios that incorporate an exemplary technological innovation: a novel aluminum–cerium–magnesium alloy. We find that the introduction of the novel alloy demonstrates that even low penetration rates can exceed domestic cerium production capacity, illustrating possible consequences of technological innovations to material supply and demand. End-of-life vehicles can, however, overtake domestic mining as a source of materials, calling for proper technologies and policies to utilize thismore » emerging source. The long-term importing of critical materials in manufactured and semi-manufactured products shifts the location of material stocks and hence future secondary supply of high-value materials, culminating in a double benefit to the importing country. This modeling approach is adaptable to the study of varied scenarios and materials, linking technologies with supply and demand dynamics in order to understand their potential economic and environmental consequences.« less

  1. Technology-design-manufacturing co-optimization for advanced mobile SoCs

    NASA Astrophysics Data System (ADS)

    Yang, Da; Gan, Chock; Chidambaram, P. R.; Nallapadi, Giri; Zhu, John; Song, S. C.; Xu, Jeff; Yeap, Geoffrey

    2014-03-01

    How to maintain the Moore's Law scaling beyond the 193 immersion resolution limit is the key question semiconductor industry needs to answer in the near future. Process complexity will undoubtfully increase for 14nm node and beyond, which brings both challenges and opportunities for technology development. A vertically integrated design-technologymanufacturing co-optimization flow is desired to better address the complicated issues new process changes bring. In recent years smart mobile wireless devices have been the fastest growing consumer electronics market. Advanced mobile devices such as smartphones are complex systems with the overriding objective of providing the best userexperience value by harnessing all the technology innovations. Most critical system drivers are better system performance/power efficiency, cost effectiveness, and smaller form factors, which, in turns, drive the need of system design and solution with More-than-Moore innovations. Mobile system-on-chips (SoCs) has become the leading driver for semiconductor technology definition and manufacturing. Here we highlight how the co-optimization strategy influenced architecture, device/circuit, process technology and package, in the face of growing process cost/complexity and variability as well as design rule restrictions.

  2. A Survey on Ambient Intelligence in Health Care

    PubMed Central

    Acampora, Giovanni; Cook, Diane J.; Rashidi, Parisa; Vasilakos, Athanasios V.

    2013-01-01

    Ambient Intelligence (AmI) is a new paradigm in information technology aimed at empowering people’s capabilities by the means of digital environments that are sensitive, adaptive, and responsive to human needs, habits, gestures, and emotions. This futuristic vision of daily environment will enable innovative human-machine interactions characterized by pervasive, unobtrusive and anticipatory communications. Such innovative interaction paradigms make ambient intelligence technology a suitable candidate for developing various real life solutions, including in the health care domain. This survey will discuss the emergence of ambient intelligence (AmI) techniques in the health care domain, in order to provide the research community with the necessary background. We will examine the infrastructure and technology required for achieving the vision of ambient intelligence, such as smart environments and wearable medical devices. We will summarize of the state of the art artificial intelligence methodologies used for developing AmI system in the health care domain, including various learning techniques (for learning from user interaction), reasoning techniques (for reasoning about users’ goals and intensions) and planning techniques (for planning activities and interactions). We will also discuss how AmI technology might support people affected by various physical or mental disabilities or chronic disease. Finally, we will point to some of the successful case studies in the area and we will look at the current and future challenges to draw upon the possible future research paths. PMID:24431472

  3. Theory and application for the promotion of wheat production in China: past, present and future.

    PubMed

    Xu, Zhenzhu; Yu, Zhenwen; Zhao, Junye

    2013-08-15

    Food security is becoming a crucial concern worldwide. In this study, we focus on wheat - a staple crop in China - as a model to review its history, status quo and future scenarios, with regard to key production technologies and management practices for wheat production and associated food security issues since the new era in China: the post-1949 era. First, the dominant technologies and management practices over the past 60 years are reviewed. Secondly, we outline several key innovative technologies and their theoretical bases over the last decade, including (i) prohibiting excessively early senescence at a later growth stage to maintain viable leaves with higher photosynthetic capacity, (ii) postponing top dressing nitrogen application to balance carbon and nitrogen nutrition, and (iii) achieving both high yield and better grain quality mainly by increasing soil productivity and balancing the ratio of nutrient elements. Finally, concerns such as water shortages and excessive application of chemical fertilizers are presented. Nevertheless, under high negative conditions, including global warming, rapid population growth, decreasing amounts of arable land, increasing competition with cash crops and severe environmental pollution, we conclude that domestic food production will be able to meet Chinese demand in the mid to long term, because increasingly innovative technologies and improved management practices have been and may continue to be applied appropriately. © 2013 Society of Chemical Industry.

  4. A Survey on Ambient Intelligence in Health Care.

    PubMed

    Acampora, Giovanni; Cook, Diane J; Rashidi, Parisa; Vasilakos, Athanasios V

    2013-12-01

    Ambient Intelligence (AmI) is a new paradigm in information technology aimed at empowering people's capabilities by the means of digital environments that are sensitive, adaptive, and responsive to human needs, habits, gestures, and emotions. This futuristic vision of daily environment will enable innovative human-machine interactions characterized by pervasive, unobtrusive and anticipatory communications. Such innovative interaction paradigms make ambient intelligence technology a suitable candidate for developing various real life solutions, including in the health care domain. This survey will discuss the emergence of ambient intelligence (AmI) techniques in the health care domain, in order to provide the research community with the necessary background. We will examine the infrastructure and technology required for achieving the vision of ambient intelligence, such as smart environments and wearable medical devices. We will summarize of the state of the art artificial intelligence methodologies used for developing AmI system in the health care domain, including various learning techniques (for learning from user interaction), reasoning techniques (for reasoning about users' goals and intensions) and planning techniques (for planning activities and interactions). We will also discuss how AmI technology might support people affected by various physical or mental disabilities or chronic disease. Finally, we will point to some of the successful case studies in the area and we will look at the current and future challenges to draw upon the possible future research paths.

  5. Renal function replacement by hemodialysis: forty-year anniversary and a glimpse into the future at hand.

    PubMed

    Catapano, Gerardo; Buscaroli, Andrea

    2017-07-05

    From its introduction in 1943 and until the late 1970s, hemodialysis (HD) has been a lengthy and cumbersome treatment administered by a few skilled physicians and technicians to a very limited number of terminal kidney patients. The technological innovations introduced over the years made HD a treatment administered and supervised by nursing personnel to a very large numbers of kidney patients, hopefully until recovery of kidney functions or kidney transplantation. In 2013, it is estimated that 2.250.00 kidney patients were treated worldwide, and their number is steadily increasing. Shortage of transplant kidneys and quality of current treatments has contributed to increasing the survival of HD patients. Today, it is not unusual to find patients who have been on HD for longer than twenty years. All this generated the feeling that performance of membranes and dialysis technology has reached its limit. Recently, the increasing economic burden of healthcare caused by people ageing and the increasing incidence of degenerative diseases (e.g. diabetes and cardiovascular diseases), and the economic crisis has pushed many governments and health insurances to cut resources for healthcare. The main consequence is that investments in research and development in HD have been significantly reduced. The question is whether there is indeed no need for innovation in HD.In this paper, it is discussed how the paradigm of HD has changed and what possibly are now the drivers for innovation in HD. A few ideas are proposed that could be developed by adapting existing technologies to the future needs of HD.

  6. Rising above the Gathering Storm: Developing Regional Innovation Environments--A Workshop Summary

    ERIC Educational Resources Information Center

    Arrison, Tom, Ed.; Olson, Steve, Ed.

    2012-01-01

    In October 2005, the National Academy of Sciences, National Academy of Engineering, and Institute of Medicine released a policy report that served as a call to action. The report, "Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future" observed that "the scientific and technological building blocks…

  7. Preparing Students for the Future--21st Century Skills

    ERIC Educational Resources Information Center

    Velez, Alejandra

    2012-01-01

    The 21st century economy is driven by information and communication technologies (ICT). This change has made innovation, manufacturing and production of products and services, rather than manufacturing of material goods, the driving force of economies of leading countries (Wagner, 2008). Due to this shift, today's 21st century society and…

  8. Unique Procurement Process Expands Microgrid Research Capabilities at the

    Science.gov Websites

    competitive procurement process provided comparative research on multiple controller technologies, which will be made publicly available on GitHub. "We always set out to design and build innovative advance the design and performance of controls for future microgrids, and of the larger U.S. power system

  9. Dancing with History: A Cautionary Tale

    ERIC Educational Resources Information Center

    Gourley, Brenda

    2010-01-01

    Lessons from history lead to questions for the future of higher education: is innovation being embraced quickly enough, have universities reached a scale necessary to the task, can technology help, can higher education institutions bring more hands to the wheel, and are they managing and leading in appropriate ways? Trends in higher education play…

  10. LAUNCH Health Forum

    NASA Image and Video Library

    2010-10-30

    Tom Kalil, Deputy Director of the White House Office of Science and Technology Policy, opens the LAUNCH: Health forum at NASA's Kennedy Space Center in Florida on Saturday, Oct. 30, 2010. LAUNCH: Health provides a forum to discuss accelerating innovation for a sustainable future. LAUNCH: Health partners include NASA, USAID and Nike. Photo Credit: (NASA/Bill Ingalls)

  11. Realization of a Desired Future: Innovation in Education

    ERIC Educational Resources Information Center

    Findikoglu, Fuat; Ilhan, Dilek

    2016-01-01

    Today and tomorrow, the world needs individuals who can manipulate critical and creative thinking skills to solve problems as a team. With technology, the way knowledge is obtained, constructed and communicated have completely transformed and altered. When it comes to education, it is a matter of question whether education is capable of creating…

  12. Applications of simulation technology in psychiatric mental health nursing education.

    PubMed

    Brown, J F

    2008-10-01

    The purpose of this paper is to review the use of simulation in education across the health professionals, to describe the development and implementation of innovative simulation techniques for an undergraduate psychiatric mental-health nursing course, and to identify lessons learned and future directions for successful simulation experiences in psychiatric nursing.

  13. Teaching Information Policy in the Digital Age: Issues, Strategies, and Innovation

    ERIC Educational Resources Information Center

    Jaeger, Paul T.; Gorham, Ursula; Taylor, Natalie Greene; Bertot, John C.

    2015-01-01

    As technology continues to advance at a rapid rate, it is increasingly important to consider how information policies are formulated and the impact that they have on both the public's access to information and the roles of information professionals. As such, current and future information professionals must be adequately prepared through education…

  14. Evaluating the Motivational Impact of CALL Systems: Current Practices and Future Directions

    ERIC Educational Resources Information Center

    Bodnar, Stephen; Cucchiarini, Catia; Strik, Helmer; van Hout, Roeland

    2016-01-01

    A major aim of computer-assisted language learning (CALL) is to create computer environments that facilitate students' second language (L2) acquisition. To achieve this aim, CALL employs technological innovations to create novel types of language practice. Evaluations of the new practice types serve the important role of distinguishing effective…

  15. Energy Analysis Research | Energy Analysis | NREL

    Science.gov Websites

    innovation through integration. Illustration of NREL energy analysis research, including impact systems analysis integrates all aspects of our capability set to develop future energy system scenarios evaluate and understand the impact of markets, policies, and financing on technology uptake and the impact

  16. The Future of Ideas: The Fate of the Commons in a Connected World.

    ERIC Educational Resources Information Center

    Lessig, Lawrence

    Stanford University law professor Lawrence Lessig asserts that laws concerning copyright and the Internet have a negative impact on the expression and dissemination of ideas and innovation. Unlike other technologies, the Internet's historical design and technical structure produced an environment that was creative, protected, and free--a place in…

  17. In the Future, Diverse Approaches to Schooling

    ERIC Educational Resources Information Center

    Hill, Paul; Johnston, Mike

    2010-01-01

    New forms of schooling are emerging, driven by new technology, the recession, and public sector innovation, as well as the commitment to attain standards. Three of these new forms are virtual schooling, hybrid schools, and broker schools. While still fairly rare, these schools could become the norm if the regulatory and funding barriers to their…

  18. The Faculty of the Future: Leaner, Meaner, More Innovative, Less Secure

    ERIC Educational Resources Information Center

    Chronicle of Higher Education, 2009

    2009-01-01

    The faculty workplace has changed significantly in the last 20 years: More women, minority professors, and adjuncts have joined the professoriate. Information technology has led to new opportunities and expectations. The economic crisis has complicated long-term planning for scholars and institutions alike. Seven scholars from several fields and…

  19. Does Digital Scholarship Have a Future?

    ERIC Educational Resources Information Center

    Ayers, Edward L.

    2013-01-01

    Twenty years into the transformation initiated by the World Wide Web, this author notes that institutes of higher education have grown accustomed to a head-spinning pace of technological and social change. Innovations that would have amazed us ten years ago are now merely passing news, as transient as a tweet. Music, video, and journalism have…

  20. Digital Documents and the Future of the Academic Community.

    ERIC Educational Resources Information Center

    Lyman, Peter

    This paper examines the dynamics of change in scholarly publishing and the impact of technological innovation upon the academic community for which the system of scholarly communication serves as an infrastructure. For the purposes of this discussion, what is of immediate interest is the way the productivity issue frames the possible dimensions of…

  1. 78 FR 14153 - Advisory Council on Transportation Statistics; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... Transportation Statistics; Meeting AGENCY: Research and Innovative Technology Administration (RITA), DOT. ACTION... Statistics (ACTS). The meeting was scheduled for Monday, March 4, 2013 from 8:30 a.m. to 4:00 p.m. E.S.T. in...., Washington, DC. The Bureau of Transportation Statistics (BTS) will reschedule the meeting for a future date...

  2. Object-Based Teaching and Learning for a Critical Assessment of Digital Technologies in Arts and Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Hess, M.; Garside, D.; Nelson, T.; Robson, S.; Weyrich, T.

    2017-08-01

    As cultural sector practice becomes increasingly dependent on digital technologies for the production, display, and dissemination of art and material heritage, it is important that those working in the sector understand the basic scientific principles underpinning these technologies and the social, political and economic implications of exploiting them. The understanding of issues in cultural heritage preservation and digital heritage begins in the education of the future stakeholders and the innovative integration of technologies into the curriculum. This paper gives an example of digital technology skills embedded into a module in the interdisciplinary UCL Bachelor of Arts and Sciences, named "Technologies in Arts and Cultural Heritage", at University College London.

  3. Impact of innovations on future energy supply - chemical enhanced oil recovery (CEOR).

    PubMed

    Bittner, Christian

    2013-01-01

    The International Energy Agency (IEA) expects an increase of global energy demand by one-third during next 20 years together with a change in the global energy mix. A key-influencing factor is a strong expected increase in oil and gas production in the United States driven by 'new' technologies such as hydraulic fracturing. Chemical enhanced oil recovery (CEOR) is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. In the case of polymer flooding with poly acrylamide, the number of full field implementations has increased in recent years. In the meantime new polymers have been developed to cover previously unmet needs - such polymers can be applied in fields of high salinity and high temperature. Use of surfactants is in an earlier stage, but pilot tests show promising results.

  4. American export control, technology spillover and innovation of Chinese pharmaceutical Industry.

    PubMed

    Hui, Jiang

    2017-05-01

    This paper was aimed to analyze whether the U.S. strict export control to China affects the technological innovation of Chinese pharmaceutical industry. This paper selected the data of technological innovation and the expenditure of high and new technology adoption in China's pharmaceutical industry from 1995 to 2014, created panel regression model to study the impact of export controls on technology spillovers and the impact of technology spillovers on innovation capacity. The results show that US export control has a significant impact on technology spillovers, but foreign technology spillovers have no significant impact on the innovation of Chinese pharmaceutical industry. Although the US export control prevented foreign technology spillovers to China, but indirectly stimulated the domestic technology spillovers to pharmaceutical manufacturing industry in China. Statistical analysis show that the correlation coefficient between innovation capacity and expenditure for high technology adoption is not significant, but the expenditure of purchasing domestic technical is essential to pharmaceutical innovation. This study shows that US export control indirectly, not directly, affected the technological innovation of China's pharmaceutical industry, affected the allocation of innovative resources, but failed to prevent the technological progress and competitiveness improvement of Chinese pharmaceutical industry.

  5. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: INNOVATION MAKING A DIFFERENCE

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program encourages commercialization of innovative technologies for characterizing and remediating hazardous waste site contamination through four components: Demonstration, Emerging Technology, and Monitoring & Measurement Pr...

  6. Access from Space: A New Perspective on NASA's Space Transportation Technology Requirements and Opportunities

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    2004-01-01

    The need for robust and reliable access from space is clearly demonstrated by the recent loss of the Space Shuttle Columbia; as well as the NASA s goals to get the Shuttle re-flying and extend its life, build new vehicles for space access, produce successful robotic landers and s a q k retrr? llisrions, and maximize the science content of ambitious outer planets missions that contain nuclear reactors which must be safe for re-entry after possible launch aborts. The technology lynch pin of access from space is hypersonic entry systems such the thermal protection system, along with navigation, guidance and control (NG&C). But it also extends to descent and landing systems such as parachutes, airbags and their control systems. Current space access technology maturation programs such as NASA s Next Generation Launch Technology (NGLT) program or the In-Space Propulsion (ISP) program focus on maturing laboratory demonstrated technologies for potential adoption by specific mission applications. A key requirement for these programs success is a suitable queue of innovative technologies and advanced concepts to mature, including mission concepts enabled by innovative, cross cutting technology advancements. When considering space access, propulsion often dominates the capability requirements, as well as the attention and resources. From the perspective of access from space some new cross cutting technology drivers come into view, along with some new capability opportunities. These include new miniature vehicles (micro, nano, and picosats), advanced automated systems (providing autonomous on-orbit inspection or landing site selection), and transformable aeroshells (to maximize capabilities and minimize weight). This paper provides an assessment of the technology drivers needed to meet future access from space mission requirements, along with the mission capabilities that can be envisioned from innovative, cross cutting access from space technology developments.

  7. CHANGING HEALTH TECHNOLOGY ASSESSMENT PARADIGMS?

    PubMed

    Husereau, Don; Henshall, Chris; Sampietro-Colom, Laura; Thomas, Sarah

    2016-01-01

    Health technology assessment (HTA) has to innovate to best support changing health system environments and to help provide access to valuable innovation under fiscal constraint. Issues associated with changing HTA paradigms were identified through scoping and explored through deliberation at a meeting of industry and HTA leaders. Five broad areas of change (engagement, scientific dialogue, research prioritization, adaptive approaches, and real world data) were identified. The meeting focused on two themes derived from these: re-thinking scientific dialogue and multi-stakeholder engagement, and re-thinking value, affordability, and access. Earlier and ongoing engagement to steer the innovation process and help achieve appropriate use across the technology lifecycle was perceived as important but would be resource intensive and would require priority setting. Patients need to be involved throughout, and particularly at the early stages. Further discussion is needed on the type of body best suited to convening the dialogue required. There was agreement that HTA must continue to assess value, but views differed on the role that HTA should play in assessing affordability and on appropriate responses to challenges around affordability. Enhanced horizon scanning could play an important role in preparing for significant future investments. Early and ongoing multi-stakeholder engagement and revisiting approaches to valuing innovation are required. Questions remain as to the most appropriate role for HTA bodies. Changing HTA paradigms extend HTA's traditional remit of being responsive to decision-makers demands to being more proactive and considering whole system value.

  8. Approaches to Identifying the Emerging Innovative Water Technology Industry in the United States.

    PubMed

    Wood, Allison R; Harten, Teresa; Gutierrez, Sally C

    2018-04-25

    Clean water is vital to sustaining our natural environment, human health, and our economy. As infrastructure continues to deteriorate and water resources become increasingly threatened, new technologies will be needed to ensure safe and sustainable water in the future. Though the US water industry accounts for approximately 1% gross domestic product and regional "clusters" for water technology exist throughout the country, this emerging industry has not been captured by recent studies. As use of the term "cluster" becomes more prevalent, regional mapping efforts have revealed international differences in definition yet showcase this industry's economic impact. In reality, institutional processes may inhibit altering industry coding to better describe water technology. Forgoing the benefits of national economic tracking, alternative data sets are available, which may support new ways of identifying these clusters. This work provides cluster definitions; summarizes current approaches to identifying industry activity using data, interviews, and literature; and sets a foundation for future research.

  9. 2015 Science Mission Directorate Technology Highlights

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2016-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation, e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  10. VERAM - Vision and Roadmap for European Raw Materials

    NASA Astrophysics Data System (ADS)

    Baumgarten, Wibke; Vashev, Boris

    2017-04-01

    The overall objective of VERAM project is to produce a Vision and Roadmap for European Raw Materials in 2050 based on raw materials research and innovation (R&I) coordination. Two leading European Technology Platforms (ETPs): ETP SMR (Sustainable Minerals Resources) and FTP (Forest Technology Platform) are joining forces to develop a common vison and roadmap with the support of ECTP (European Construction Technology Platform), represented by UNIVPM, SusChem (ETP for Sustainable Chemistry), represented by Cefic, EuMaT (Advanced Materials ETP), represented by VITO, ERAMIN 2, represented by Research Centre JUELICH and WoodWisdom Network Plus represented by the Agency for Renewable Resources (FNR). This partnership provides VERAM with expertise from downstream applications and additional knowledge on non-biotic and biotic raw materials. The project encourages capacity building as well as transfer of knowledge. It expects to provide an innovation reference point for the European Institute of Innovation & Technology (EIT) Raw Materials (formerly the KIC Raw MatTERS), to coordinate the network involved in the European Innovation Partnership (EIP) on Raw Materials Commitments and relevant proposals funded under Horizon 2020. It provides a platform for identifying gaps and complementarities and enables their bridging. VERAM will be able to advise the European Commission and Member States on future research needs and policies to stimulate innovation and assist in overcoming fragmentation in the implementing the EIP Raw Materials Strategic Implementation Plan. VERAM looks for mutually beneficial information exchange, encourages cross-fertilization between actions undertaken by different raw material industries, and expects to accelerate exploitation of breakthrough innovations. One of the main outcomes of the project is the presentation of a common long term 2050 Vision and Roadmap for relevant raw materials including metals, industrial minerals and aggregates and wood. The Vision and Roadmap have the objective of highlighting the path to achieving the European Commission's ambitious target of 80% reduction in CO2 emissions by 2050.

  11. NASA's Analog Missions: Driving Exploration Through Innovative Testing

    NASA Technical Reports Server (NTRS)

    Reagan, Marcum L.; Janoiko, Barbara A.; Parker, Michele L.; Johnson, James E.; Chappell, Steven P.; Abercromby, Andrew F.

    2012-01-01

    Human exploration beyond low-Earth orbit (LEO) will require a unique collection of advanced, innovative technologies and the precise execution of complex and challenging operational concepts. One tool we in the Analog Missions Project at the National Aeronautics and Space Administration (NASA) utilize to validate exploration system architecture concepts and conduct technology demonstrations, while gaining a deeper understanding of system-wide technical and operational challenges, is our analog missions. Analog missions are multi-disciplinary activities that test multiple features of future spaceflight missions in an integrated fashion to gain a deeper understanding of system-level interactions and integrated operations. These missions frequently occur in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They allow us to test robotics, vehicle prototypes, habitats, communications systems, in-situ resource utilization, and human performance as it relates to these technologies. And they allow us to validate architectural concepts, conduct technology demonstrations, and gain a deeper understanding of system-wide technical and operational challenges needed to support crewed missions beyond LEO. As NASA develops a capability driven architecture for transporting crew to a variety of space environments, including the moon, near-Earth asteroids (NEA), Mars, and other destinations, it will use its analog missions to gather requirements and develop the technologies that are necessary to ensure successful human exploration beyond LEO. Currently, there are four analog mission platforms: Research and Technology Studies (RATS), NASA s Extreme Environment Mission Operations (NEEMO), In-Situ Resource Utilization (ISRU), and International Space Station (ISS) Test bed for Analog Research (ISTAR).

  12. WE-G-BRB-04: Leveraging Innovation to Design Future Clinical Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalski, J.

    Over the past 20 years the NIH has funded individual grants, program projects grants, and clinical trials which have been instrumental in advancing patient care. The ways that each grant mechanism lends itself to the different phases of translating research into clinical practice will be described. Major technological innovations, such as IMRT and proton therapy, have been advanced with R01-type and P01-type funding and will be discussed. Similarly, the role of program project grants in identifying and addressing key hypotheses on the potential of 3D conformal therapy, normal tissue-guided dose escalation and motion management will be described. An overview willmore » be provided regarding how these technological innovations have been applied to multi-institutional NIH-sponsored trials. Finally, the panel will discuss regarding which research questions should be funded by the NIH to inspire the next advances in radiation therapy. Learning Objectives: Understand the different funding mechanisms of the NIH Learn about research advances that have led to innovation in delivery Review achievements due to NIH-funded program project grants in radiotherapy over the past 20 years Understand example advances achieved with multi-institutional clinical trials NIH.« less

  13. Research and Innovation in Physics Education: Transforming Classrooms, Teaching, and Student Learning at the Tertiary Level

    NASA Astrophysics Data System (ADS)

    Jolly, Pratibha

    2009-04-01

    It is well recognized that science and technology and the quality of scientifically trained manpower crucially determines the development and economic growth of nations and the future of humankind. At the same time, there is growing global concern about flight of talent from physics in particular, and the need to make physics teaching and learning effective and careers in physics attractive. This presentation presents the findings of seminal physics education research on students' learning that are impacting global praxis and motivating changes in content, context, instruments, and ways of teaching and learning physics, focusing on active learning environments that integrate the use of a variety of resources to create experiences that are both hands-on and minds-on. Initiatives to bring about innovative changes in a university system are described, including a triadic model that entails indigenous development of PHYSARE using low-cost technologies. Transfer of pedagogic innovations into the formal classroom is facilitated by professional development programs that provide experiential learning of research-based innovative teaching practices, catalyze the process of reflection through classroom research, and establish a collaborative network of teachers empowered to usher radical transformation.

  14. STEM Education as a Gateway to Future Astronomy: the Case of Ethiopian Universities

    NASA Astrophysics Data System (ADS)

    Adhana Teklr, Kelali

    2015-08-01

    Over last two decades education sector in Ethiopia has got due attention. To meet the education deficit of the nation number of universities has been increased from two to thirty eight and twelve more are coming soon. The proliferation has brought a spillover effect that universities have to compete for center excellence in research and education. Convincingly, government’s support is geared towards knowledge-based and innovation-driven system of education to back up the green economic development plan.In an effort to build inclusive economic development emphasis is given to innovative competency building through science and technology fields. The universities in the nation have establish laboratories to educate school boys and girls at early stage of their schooling in STEM (Science, Technology, Engineering and Mathematics) subjects as means to paving future destiny. Though most of the astronomy and space science labs are virtual ones; more and more student have been inspired and want astronomy and space science as their future career fields. Assessment study carried out in universities running STEM education showed that there is a mismatch between the capacity of the labs and number of students wanted to study astronomy and space sciences. The universities have endorsed that STEM education is the gateway to future astronomy and strongly advised concerned bodies and partnering institutions to collaboratively work to intensify the teaching-learning of STEM subjects.The assessment study compiled astronomic and space science exercises carried out by instructors and students and the document is ready to be disseminated to universities and middle and secondary schools to promote the science nationwide. The results have motivated university instructors, science and technology professionals, researchers and policy makers to be more involved in shaping future destiny of the young generation and have their shown determination to support the STEM education so that it will serve as a gateway for future astronomy education and research in the nation.

  15. Cost efficient command management

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa; Murphy, C. W.; Kuntz, Jon; Barlett, Tom

    1996-01-01

    The design and implementation of a command management system (CMS) for a NASA control center, is described. The technology innovations implemented in the CMS provide the infrastructure required for operations cost reduction and future development cost reduction through increased operational efficiency and reuse in future missions. The command management design facilitates error-free operations which enables the automation of the routine control center functions and allows for the distribution of scheduling responsibility to the instrument teams. The reusable system was developed using object oriented methodologies.

  16. Machine learning and new vital signs monitoring in civilian en route care: A systematic review of the literature and future implications for the military.

    PubMed

    Liu, Nehemiah T; Salinas, Jose

    2016-11-01

    Although air transport medical services are today an integral part of trauma systems in most developed countries, to date, there are no reviews on recent innovations in civilian en route care. The purpose of this systematic review was to identify potential machine learning and new vital signs monitoring technologies in civilian en route care that could help close civilian and military capability gaps in monitoring and the early detection and treatment of various trauma injuries. MEDLINE, the Cochrane Database of Systematic Reviews, and citation review of relevant primary and review articles were searched for studies involving civilian en route care, air medical transport, and technologies from January 2005 to November 2015. Data were abstracted on study design, population, year, sponsors, innovation category, details of technologies, and outcomes. Thirteen observational studies involving civilian medical transport met inclusion criteria. Studies either focused on machine learning and software algorithms (n = 5), new vital signs monitoring (n = 6), or both (n = 2). Innovations involved continuous digital acquisition of physiologic data and parameter extraction. Importantly, all studies (n = 13) demonstrated improved outcomes where applicable and potential use during civilian and military en route care. However, almost all studies required further validation in prospective and/or randomized controlled trials. Potential machine learning technologies and monitoring of novel vital signs such as heart rate variability and complexity in civilian en route care could help enhance en route care for our nation's war fighters. In a complex global environment, they could potentially fill capability gaps such as monitoring and the early detection and treatment of various trauma injuries. However, the impact of these innovations and technologies will require further validation before widespread acceptance and prehospital use. Systematic review, level V.

  17. This Is not Participatory Design - A Critical Analysis of Eight Living Laboratories.

    PubMed

    Bygholm, Ann; Kanstrup, Anne Marie

    2017-01-01

    Design of Health Technology for elderly and care personnel has a high priority because of a severe increase of elderly citizens in need of health care combined with a decrease of resources in the health care sector. Desires for maintaining and improving the quality of care while reducing costs has resulted in a search for approaches that support co-operation between technology designers, elderly persons and health care professionals on innovating future care technology. Living laboratories, where areas of a care environment are transformed into a so-called platform for technology innovation, are popular. Expectations for living laboratories are high but examinations of how such laboratories support the intended participatory innovation are few. This paper presents and examines eight living laboratories set up in Danish nursing homes for technology innovation. We present the notion of a living laboratory and explicate the aspirations and expectations of this approach, and discuss why these expectations are hard to meet both on a general level and in the investigated labs. We question the basic assumptions of the possibility of reconciling the different interests of the stakeholders involved. In our analysis we focus on users in the living laboratories. We use guiding principles developed within Participatory Design to reveal the role and participation of the users - the health care professionals and the elderly - in the eight living laboratories. In general, these users played a minor role, in the labs where technical problems turned out to be main activity. We conclude that living laboratories do not nullify different/conflicting interests and that a real-life setting by itself is no guarantee for user participation.

  18. Research on the Mode of Technology Innovation Alliance of the New Material Industry in Hunan Province

    NASA Astrophysics Data System (ADS)

    Wang, Fan

    2018-03-01

    One of the main directions of technology development in the 21st century is the development and application of new materials, and the key to the development of the new material industry lies in the industrial technology innovation. The gross scale of the new material industry in Hunan Province ranks the first array in China. Based on the present situation of Hunan’s new material industry, three modes of technology innovation alliance are put forward in this paper, namely the government-driven mode, the research-driven and the market-oriented mode. The government-driven mode is applicable to the major technology innovation fields with uncertain market prospect, high risk of innovation and government’s direct or indirect intervention;the research-driven mode is applicable to the key technology innovation fields with a high technology content; and the market-oriented mode is applicable to the general innovation fields in which enterprises have demands for technology innovation but such innovation must be achieved via cooperative research and development.

  19. Spinoff 2001: Special Millennium Feature

    NASA Technical Reports Server (NTRS)

    2001-01-01

    For the past 43 years, NASA has devoted its facilities, labor force, and expertise to sharing the abundance of technology developments used for its missions with the nation's industries. These countless technologies have not only successfully contributed to the growth of the U.S. economy, but also to the quality of life on Earth. For the past 25 years, NASA's Spinoff publication has brought attention to thousands of technologies, products, and services that were developed as a direct result of commercial partnerships between NASA and the private business sector. Many of these exciting technologies included advances in ceramics, computer technology, fiber optics, and remote sensing. New and ongoing research at the NASA field centers covers a full spectrum of technologies that will provide numerous advantages for the future, many of which have made significant strides in the commercial market. The NASA Commercial Technology Network plays a large role in transferring this progress. By applying NASA technologies such as data communication, aircraft de-icing technologies, and innovative materials to everyday functions, American consumers and the national economy benefit. Moving forward into the new millennium, these new technologies will further advance our country's position as the world leader in scientific and technical innovation. These cutting-edge innovations represent the investment of the U.S. citizen in the Space Program. Some of these technologies are highlighted in Spinoff 2001, an example of NASA's commitment to technology transfer and commercialization assistance. This year's issue spotlights the commercial technology efforts of NASA's John F. Kennedy Space Center. Kennedy's extensive network of commercial technology opportunities has enabled them to become a leader in technology transfer outreach. This kind of leadership is exemplified through Kennedy's recent partnership with the State of Florida, working toward the development of the Space Experiment Research and Processing Laboratory. The new laboratory is the first step toward the development of a proposed 400-acre Space Commerce Park, located at Kennedy Space Center. Spinoff, once again, successfully showcases the variety of commercial successes and benefits resulting from the transfer of NASA technology to private industry. It is with great pride and pleasure that we present Spinoff 2001 with a Special Millennium Feature. With help from U.S. industry and commercial technology programs, NASA will continue to assist in the presentation of innovative new products to our nation.

  20. Advanced technology care innovation for older people in Italy: necessity and opportunity to promote health and wellbeing.

    PubMed

    Lattanzio, Fabrizia; Abbatecola, Angela M; Bevilacqua, Roberta; Chiatti, Carlos; Corsonello, Andrea; Rossi, Lorena; Bustacchini, Silvia; Bernabei, Roberto

    2014-07-01

    Even though there is a constant and accelerating growth of the aging population worldwide, such a rapid rise is negatively impacting available home and community services not able to encompass the necessities associated with the increased number of older people. In particular, there are increasing demands on e-health care services and smart technologies needed for frail elders with chronic diseases and also for those experiencing active aging. Advanced Technology Care Innovation for older persons encompasses all sectors (assistive technology, robotics, home automation, and home care- and institution-based healthcare monitoring, telemedicine) dedicated to promoting health and wellbeing in all types of living environments. Considering that there is a large concern and demand by older persons to remain in familiar social living surroundings, study projects joined with industries have been currently initiated, especially across Europe to improve health and wellbeing. This article will highlight the latest updates in Europe and, in particular in Italy, regarding scientific projects dedicated to unraveling how diverse needs can be translated into an up-to-date technology innovation for the growing elder population. We will provide information regarding advanced technology designed for those with specific geriatric-correlated conditions in familiar living settings and for individuals aging actively. This is an important action because numerous emerging developments are based on user needs identified by geriatricians, thus, underlining the indispensable role of geriatric medicine toward future guidelines on specific technology. Copyright © 2014 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  1. International attitudes of early adopters to current and future robotic technologies in pediatric surgery.

    PubMed

    Cundy, Thomas P; Marcus, Hani J; Hughes-Hallett, Archie; Najmaldin, Azad S; Yang, Guang-Zhong; Darzi, Ara

    2014-10-01

    Perceptions toward surgical innovations are critical to the social processes that drive technology adoption. This study aims to capture attitudes of early adopter pediatric surgeons toward robotic technologies in order to clarify 1) specific features that are driving appeal, 2) limiting factors that are acting as diffusion barriers, and 3) future needs. Electronic surveys were distributed to pediatric surgeons with personal experience or exposure in robotic surgery. Participants were classified as experts or nonexperts for subgroup analysis. Coded Likert scale responses were analyzed using the Friedman or Mann-Whitney test. A total of 48 responses were received (22 experts, 26 nonexperts), with 14 countries represented. The most highly rated benefits of robot assistance were wristed instruments, stereoscopic vision, and magnified view. The most highly rated limitations were capital outlay expense, instrument size, and consumables/maintenance expenses. Future technologies of greatest interest were microbots, image guidance, and flexible snake robots. Putative benefits and limitations of robotic surgery are perceived with widely varied weightings. Insight provided by these responses will inform relevant clinical, engineering, and industry groups such that unambiguous goals and priorities may be assigned for the future. Pediatric surgeons seem most receptive toward technology that is smaller, less expensive, more intelligent and flexible. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Connecting Technological Innovation in Artificial Intelligence to Real-world Medical Practice through Rigorous Clinical Validation: What Peer-reviewed Medical Journals Could Do

    PubMed Central

    2018-01-01

    Artificial intelligence (AI) is projected to substantially influence clinical practice in the foreseeable future. However, despite the excitement around the technologies, it is yet rare to see examples of robust clinical validation of the technologies and, as a result, very few are currently in clinical use. A thorough, systematic validation of AI technologies using adequately designed clinical research studies before their integration into clinical practice is critical to ensure patient benefit and safety while avoiding any inadvertent harms. We would like to suggest several specific points regarding the role that peer-reviewed medical journals can play, in terms of study design, registration, and reporting, to help achieve proper and meaningful clinical validation of AI technologies designed to make medical diagnosis and prediction, focusing on the evaluation of diagnostic accuracy efficacy. Peer-reviewed medical journals can encourage investigators who wish to validate the performance of AI systems for medical diagnosis and prediction to pay closer attention to the factors listed in this article by emphasizing their importance. Thereby, peer-reviewed medical journals can ultimately facilitate translating the technological innovations into real-world practice while securing patient safety and benefit. PMID:29805337

  3. Aerospace Technology Innovation. Volume 10

    NASA Technical Reports Server (NTRS)

    Turner, Janelle (Editor); Cousins, Liz (Editor); Bennett, Evonne (Editor); Vendette, Joel (Editor); West, Kenyon (Editor)

    2002-01-01

    Whether finding new applications for existing NASA technologies or developing unique marketing strategies to demonstrate them, NASA's offices are committed to identifying unique partnering opportunities. Through their efforts NASA leverages resources through joint research and development, and gains new insight into the core areas relevant to all NASA field centers. One of the most satisfying aspects of my job comes when I learn of a mission-driven technology that can be spun-off to touch the lives of everyday people. NASA's New Partnerships in Medical Diagnostic Imaging is one such initiative. Not only does it promise to provide greater dividends for the country's investment in aerospace research, but also to enhance the American quality of life. This issue of Innovation highlights the new NASA-sponsored initiative in medical imaging. Early in 2001, NASA announced the launch of the New Partnerships in Medical Diagnostic Imaging initiative to promote the partnership and commercialization of NASA technologies in the medical imaging industry. NASA and the medical imaging industry share a number of crosscutting technologies in areas such as high-performance detectors and image-processing tools. Many of the opportunities for joint development and technology transfer to the medical imaging market also hold the promise for future spin back to NASA.

  4. Connecting Technological Innovation in Artificial Intelligence to Real-world Medical Practice through Rigorous Clinical Validation: What Peer-reviewed Medical Journals Could Do.

    PubMed

    Park, Seong Ho; Kressel, Herbert Y

    2018-05-28

    Artificial intelligence (AI) is projected to substantially influence clinical practice in the foreseeable future. However, despite the excitement around the technologies, it is yet rare to see examples of robust clinical validation of the technologies and, as a result, very few are currently in clinical use. A thorough, systematic validation of AI technologies using adequately designed clinical research studies before their integration into clinical practice is critical to ensure patient benefit and safety while avoiding any inadvertent harms. We would like to suggest several specific points regarding the role that peer-reviewed medical journals can play, in terms of study design, registration, and reporting, to help achieve proper and meaningful clinical validation of AI technologies designed to make medical diagnosis and prediction, focusing on the evaluation of diagnostic accuracy efficacy. Peer-reviewed medical journals can encourage investigators who wish to validate the performance of AI systems for medical diagnosis and prediction to pay closer attention to the factors listed in this article by emphasizing their importance. Thereby, peer-reviewed medical journals can ultimately facilitate translating the technological innovations into real-world practice while securing patient safety and benefit.

  5. Energy supplies and future engines for land, sea, and air.

    PubMed

    Hidy, George M; Chow, Judith C; England, Glen C; Legge, Alan H; Lloyd, Alan C; Watson, John G

    2012-11-01

    The 2012 Critical Review Discussion complements Wilson, (2012), provides pointers to more detailed treatments of different topics and adds additional dimensions to the area of "energy". These include broader aspects of technologies driven by fuel resources and environmental issues, the concept of energy technology innovation, evolution in transportation resources, and complexities of energy policies addressing carbon taxes or carbon trading. National and global energy data bases are identified and evaluated and conversion factors are given to allow their comparability.

  6. A review of building information modelling

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Han, Rui

    2018-05-01

    Building Information Modelling (BIM) is widely seen as a catalyst for innovation and productivity. It is becoming standard for new construction and is the most significant technology changing how we design, build, use and manage the building. It is a dominant technological trend in the software industry and although the theoretical groundwork was laid in the previous century, it is a popular topic in academic research. BIM is discussed in this study, which results can provide better and more comprehensive choices for building owners, designers, and developers in future.

  7. Pressure fed thrust chamber technology program

    NASA Technical Reports Server (NTRS)

    Dunn, Glenn M.

    1992-01-01

    This is the final report for the Pressure Fed Technology Program. It details the design, fabrication and testing of subscale hardware which successfully characterized LOX/RP combustion for a low cost pressure fed design. The innovative modular injector design is described in detail as well as hot-fire test results which showed excellent performance. The program summary identifies critical LOX/RP design issues that have been resolved by this testing, and details the low risk development requirements for a low cost engine for future Expendable Launch Vehicles (ELVi).

  8. Fuel efficiency through new airframe technology

    NASA Technical Reports Server (NTRS)

    Leonard, R. W.

    1982-01-01

    In its Aircraft Energy Efficiency Program, NASA has expended approximately 200 million dollars toward development and application of advanced airframe technologies to United States's commercial transports. United States manufacturers have already been given a significant boost toward early application of advanced composite materials to control surface and empennage structures and toward selected applications of active controls and advanced aerodynamic concepts. In addition, significant progress in definition and development of innovative, but realistic systems for laminar flow control over the wings of future transports has already been made.

  9. Transformational System Concepts and Technologies for Our Future in Space

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.

    2004-01-01

    Continued constrained budgets and growing national and international interests in the commercialization and development of space requires NASA to be constantly vigilant, to be creative, and to seize every opportunity for assuring the maximum return on space infrastructure investments. Accordingly, efforts are underway to forge new and innovative approaches to transform our space systems in the future to ultimately achieve two or three or five times as much with the same resources. This bold undertaking can be achieved only through extensive cooperative efforts throughout the aerospace community and truly effective planning to pursue advanced space system design concepts and high-risk/high-leverage research and technology. Definitive implementation strategies and roadmaps containing new methodologies and revolutionary approaches must be developed to economically accommodate the continued exploration and development of space. Transformation can be realized through modular design and stepping stone development. This approach involves sustainable budget levels and multi-purpose systems development of supporting capabilities that lead to a diverse amy of sustainable future space activities. Transformational design and development requires revolutionary advances by using modular designs and a planned, stepping stone development process. A modular approach to space systems potentially offers many improvements over traditional one-of-a-kind space systems comprised of different subsystem element with little standardization in interfaces or functionality. Modular systems must be more flexible, scaleable, reconfigurable, and evolvable. Costs can be reduced through learning curve effects and economies of scale, and by enabling servicing and repair that would not otherwise be feasible. This paper briefly discusses achieving a promising approach to transforming space systems planning and evolution into a meaningful stepping stone design, development, and implementation process. The success of this well planned and orchestrated approach holds great promise for achieving innovation and revolutionary technology development for supporting future exploration and development of space.

  10. 75 FR 28782 - Extension of Period for Nominations to the National Medal of Technology and Innovation Nomination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... innovation and/or be familiar with the education, training, employment and management of technological... Innovations/Bioengineering and Biomedical Technology; Technology Management/Computing/IT/Manufacturing...] Extension of Period for Nominations to the National Medal of Technology and Innovation Nomination Evaluation...

  11. National Strategies for Technological Innovation

    ERIC Educational Resources Information Center

    Rossini, Frederick; Bozeman, Barry

    1977-01-01

    Considers the implications of the technological innovation literature for possible national strategies for innovation. Sketches highly generalized innovation strategies for nations at various levels of technological development. (Author/IRT)

  12. MMP Inhibitors: Past, present and future.

    PubMed

    Cathcart, Jillian M; Cao, Jian

    2015-06-01

      Development of inhibitors of matrix metalloproteinases (MMPs) has been fraught with challenges. Early compounds largely failed due to poor selectivity and bioavailability. Dose-limiting side effects, off-target interactions, and improperly designed clinical trials significantly impeded clinical success. As information becomes available and technology evolves, tools to combat these obstacles have been developed. Improved methods for high throughput screening and drug design have led to identification of compounds exhibiting high potency, binding affinity, and favorable pharmacokinetic profiles. Current research into MMP inhibitors employs innovative approaches for drug delivery methods and allosteric inhibitors. Such innovation is key for development of clinically successful compounds.

  13. [Quality improvement potential in the pharmaceutical industry].

    PubMed

    Nusser, Michael

    2007-01-01

    The performance of the German pharmaceutical industry, future challenges and obstacles to quality improvement are assessed from a systems-of-innovation perspective, using appropriate innovation indicators. The current close-to-market performance indicators paint an unfavourable picture. Early R&D indicators (e.g., publications, patents), however, reveal a positive trend. A lot of obstacles to quality improvements are identified with respect to knowledge base, knowledge/technology transfer, industrial R&D processes, capital markets, market attractiveness and both regulatory and political framework conditions. On this basis, recommendations will finally be derived to improve quality in the pharmaceutical industry.

  14. Innovation and new trends in critical trauma disease.

    PubMed

    Chico-Fernández, M; Terceros-Almanza, L L; Mudarra-Reche, C C

    2015-04-01

    The management of critical trauma disease (CTD) has always trends the trends in military war experiences. These conflicts have historically revolutionized clinical concepts, clinical practice guidelines and medical devices, and have marked future lines of research and aspects of training and learning in severe trauma care. Moreover, in the civil setting, the development of intensive care, technological advances and the testing of our healthcare systems in the management of multiple victims, hasve also led to a need for innovation in our trauma care systems. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  15. New Technologies for Diabetes Presented at International Congresses in 2006

    PubMed Central

    Donicova, Viera

    2007-01-01

    Diabetes is a medical specialty that is currently experiencing the rapid development of new technologies that can be applied to clinical management. At three international Diabetes Congresses held in 2006 (the annual meeting of European Association of Diabetes in Copenhagen, the World Congress of the International Diabetes Federation in Cape Town, and the Diabetes and Technology meeting in Atlanta), several new technologies and devices were demonstrated that are applicable to diabetes care. Out of various technological innovations, this article highlights three new interesting areas, which may represent the principal direction of future developments in science that may help improve the quality of life for the person with diabetes. PMID:19885103

  16. Diabetes and technology in 2030: a utopian or dystopian future?

    PubMed

    Kerr, D; Axelrod, C; Hoppe, C; Klonoff, D C

    2018-04-01

    The ability of an individual living with diabetes to have human-to-human contact with their healthcare provider is not keeping pace with the number of people developing diabetes. From a futurist perspective, however, this dichotomy of diabetes care represents an opportunity for digital healthcare. The focus of technological innovation is unlikely to be the replacement of the multidisciplinary diabetes team but rather the provision of meaningful individual and family support between clinic visits and, on a larger scale, the facilitation of population health management for diabetes. We can also expect to see new therapies, including implantable drug delivery systems, automated closed-loop systems and miniaturized non-invasive glucose monitoring systems. New digital health technologies will create a 'digital diabetes ecosystem' to enhance rather than devolve care from humans. Concerns related to data privacy and ownership will inevitably rise, thus a future for diabetes care relying heavily on technology is not inevitably utopian. Nevertheless, revolutions in the development of novel sensors, accumulation of 'big data', and use of artificial intelligence will provide exciting opportunities for preventing, monitoring and treating diabetes in the near future. © 2018 Diabetes UK.

  17. Playing to our human strengths to prepare medical students for the future

    PubMed Central

    2017-01-01

    We are living in an age where artificial intelligence and astounding technological advances are bringing truly remarkable change to healthcare. Medical knowledge and skills which form the core responsibility of doctors such as making diagnoses may increasingly be delivered by robots. Machines are gradually acquiring human abilities such as deep learning and empathy. What, then is the role of doctors in future healthcare? And what direction should medical schools be taking to prepare their graduates? This article will give an overview of the evolving technological landscape of healthcare and examine the issues undergraduate medical education may have to address. The experience at The University of Hong Kong will serve as a case study featuring several curricular innovations that aim to empower medical graduates with the capabilities to thrive in the future. PMID:28870022

  18. ICT and the future of healthcare: Aspects of pervasive health monitoring.

    PubMed

    Haluza, Daniela; Jungwirth, David

    2018-01-01

    Along with the digital revolution, information and communication technology applications are currently transforming the delivery of health and social care services. This paper investigates prevailing opinions toward future technology-based healthcare solutions among Austrian healthcare professionals. During a biphasic online Delphi survey, panelists rated expected outcomes of two future scenarios describing pervasive health monitoring applications. Experts perceived that the scenarios were highly innovative, but only moderately desirable, and that their implementation could especially improve patients' knowledge, quality of healthcare, and living standard. Contrarily, monetary aspects, technical prerequisites, and data security were identified as key obstacles. We further compared the impact of professional affiliation. Clearly, opinions toward pervasive healthcare differed between the interest groups, medical professionals, patient advocates, and administrative personnel. These data suggest closer collaborations between stakeholder groups to harmonize differences in expectations regarding pervasive health monitoring.

  19. Overview of Existing and Future Residential Use Cases for Connected Thermostats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotondo, Julia; Johnson, Robert; Gonzales, Nancy

    This paper is intended to help inform future technology deployment opportunities for connected thermostats (CTs), based on investigation and review of the U.S. residential housing and CT markets, as well as existing, emerging, and future use cases for CT hardware and CT-generated data. The CT market has experienced tremendous growth over the last five years — both in terms of the number of units sold and the number of firms offering competing products — and can be characterized by its rapid pace of technological innovation. Despite many assuming CTs would become powerful tools for increasing comfort while saving energy, theremore » remains a great deal of uncertainty about the actual energy and cost savings that are likely to be realized from deployment of CTs, particularly under different conditions.« less

  20. Space Tracking and Surveillance System (STSS) Cryogenic Technology Efforts and Needs

    NASA Astrophysics Data System (ADS)

    Kolb, I. L.; Curran, D. G. T.; Lee, C. S.

    2004-06-01

    The Missile Defense Agency's (MDA) STSS program, the former Space Based Infrared Systems (SBIRS) Low, has been actively supporting and working to advance space-borne cryocooler technology through efforts with the Air Force Research Lab (AFRL) and Small Business Innovation Research (SBIR) program. The envisioned infrared satellite system requires high efficiency, low power, and low weight cooling in a range of temperature and cooling loads below 120K for reliable 10-year operation to meet mission needs. This paper describes cryocooler efforts previously and currently supported by STSS and the possible future cryogenic requirements for later technology insertion.

  1. Technology Applications Group Multimedia CD-ROM Project

    NASA Technical Reports Server (NTRS)

    McRacken, Kristi D.

    1995-01-01

    To produce a multimedia CD-ROM for the Technology Applications Group which would present the Technology Opportunity Showcase (TOPS) exhibits and Small Business Innovative Research (SBIR) projects to interested companies. The CD-ROM format is being used and developed especially for those companies who do not have Internet access, and cannot directly visit Langley through the World Wide Web. The CD-ROM will include text, pictures, sound, and movies. The information for the CD-ROM will be stored in a database from which the users can query and browse the information, and future CD's can be maintained and updated.

  2. MEMS microphone innovations towards high signal to noise ratios (Conference Presentation) (Plenary Presentation)

    NASA Astrophysics Data System (ADS)

    Dehé, Alfons

    2017-06-01

    After decades of research and more than ten years of successful production in very high volumes Silicon MEMS microphones are mature and unbeatable in form factor and robustness. Audio applications such as video, noise cancellation and speech recognition are key differentiators in smart phones. Microphones with low self-noise enable those functions. Backplate-free microphones enter the signal to noise ratios above 70dB(A). This talk will describe state of the art MEMS technology of Infineon Technologies. An outlook on future technologies such as the comb sensor microphone will be given.

  3. Modeling operation of mechanism of holistic management of technological processes at enterprise

    NASA Astrophysics Data System (ADS)

    Igorevich Shanin, Igor; Aleksandrovna Boris, Olga

    2018-03-01

    Enterprises applying modeling and technological process management approaches represent a sector of a new innovative economic system. First of all, they are innovators using innovative proposals and various resources to solve practical problems. Their work leads to balanced positive technological changes. In other words, they constitute industrial entrepreneurship with innovative goals and vice versa - innovative entrepreneurship with industrial objectives. It should be noted that the mechanism of holistic management of technological processes at the enterprise combines a traditional industrial organization of production, an innovative and technological enterprise. The enterprise borrows industrial targets from the latter one, an innovative component - from innovative activity and entrepreneurial approaches to holistic management - from a commercial firm.

  4. The Aluminum Smelting Process and Innovative Alternative Technologies

    PubMed Central

    Drabløs, Per Arne

    2014-01-01

    Objective: The industrial aluminum production process is addressed. The purpose is to give a short but comprehensive description of the electrolysis cell technology, the raw materials used, and the health and safety relevance of the process. Methods: This article is based on a study of the extensive chemical and medical literature on primary aluminum production. Results: At present, there are two main technological challenges for the process—to reduce energy consumption and to mitigate greenhouse gas emissions. A future step may be carbon dioxide gas capture and sequestration related to the electric power generation from fossil sources. Conclusions: Workers' health and safety have now become an integrated part of the aluminum business. Work-related injuries and illnesses are preventable, and the ultimate goal to eliminate accidents with lost-time injuries may hopefully be approached in the future. PMID:24806723

  5. Handbook of Health Professions Education. Responding to New Realities in Medicine, Dentistry, Pharmacy, Nursing, Allied Health, and Public Health.

    ERIC Educational Resources Information Center

    McGuire, Christine H.; And Others

    The evolution, present status, future directions, and external forces affecting health professions education are reviewed in this 25 chapter book. Guidelines are set forth for sound practices and policies for innovative and responsive health care. The authors assess how major economic, social, political, demographic, and technological changes are…

  6. A Mixed Methods Study on Evaluations of Virginia's STEM-Focused Governor's Schools

    ERIC Educational Resources Information Center

    Stith, Krista M.

    2017-01-01

    Significant emphasis is currently placed on STEM education as a vehicle to encourage American youth to enter science, technology, engineering, and math-related professions. Gifted students are a natural resource of future innovators for these fields; however gifted programs are largely overlooked for program support. Since 1973, the Virginia…

  7. Systematic Image Based Optical Alignment and Tensegrity

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W.; Montgomery, Edward E, IV (Technical Monitor)

    2001-01-01

    This presentation will review the objectives and current status of two Small Business Innovative Research being performed by the Sirius Group, under the direction of MSFC. They all relate to the development of advanced optical systems technologies for automated segmented mirror alignment techniques and fundamental design methodologies for ultralight structures. These are important to future astronomical missions in space.

  8. Hawaiian Language Immersion Adoption of an Innovation: A Case Study

    ERIC Educational Resources Information Center

    Yong, D. Lilinoe

    2012-01-01

    This is a story about some Native Hawaiian people written by Native Hawaiian people of the Papahana Kaiapuni, or the Hawaiian Language Immersion Program (HLIP) of the Hawai`i public schools. Together they "talk story" and become the voice for the HLIP by painting a picture of their past, present, and future experiences with technology.…

  9. Innovation and the Future of e-Books. Reprints

    ERIC Educational Resources Information Center

    Warren, John

    2009-01-01

    The technological development and cultural acceptance of e-books today parallels the state of the printed book in the 15th century. E-books are increasingly available from a variety of distributors and retailers, and work on a myriad of devices, but the majority remain simply digitized versions of print books. Some devices or platforms include…

  10. The Electronic Library: The Student/Scholar Workstation, CD-ROM and Hypertext.

    ERIC Educational Resources Information Center

    Triebwasser, Marc A.

    Predicting that a large component of the library of the not so distant future will be an electronic network of file servers where information is stored for access by personal computer workstations in remote locations as well as the library, this paper discusses innovative computer technologies--particularly CD-ROM (Compact Disk-Read Only Memory)…

  11. Wendell Berry's' Philosophy of Education: Lessons from Port William

    ERIC Educational Resources Information Center

    Schreck, Jane Margaret Hedahl

    2013-01-01

    In the midst of a proclaimed crisis in higher education, in the clamor and clamber to leverage technology for such innovations as mass open online courses and differentiated learning modules, in the speculative frenzy of preparing students for the careers of a fantasy future, and in the swirl of angst about funding accountability and economic…

  12. Impact of ICT on Education: Challenges and Perspectives

    ERIC Educational Resources Information Center

    Hernandez, Ronald M.

    2017-01-01

    This paper sets out the main challenges and provides an overview of the future of ICTs and their connection with education. It begins with a description of the so-called knowledge-based society and how its evolution, an offspring of technology, has encompassed different areas, paving the way for innovation in education and prompting generation of…

  13. A Commitment To America's Future: Responding to the Crisis in Mathematics & Science Education

    ERIC Educational Resources Information Center

    Business-Higher Education Forum (NJ1), 2005

    2005-01-01

    This report warns that if current trends continue, the United States will lose is preeminence in science and technology and its leadership position in innovation. In this report, the Business-Higher Education Forum (BHEF) proposes a four-part action plan in which business, higher education, and policy leaders support P-12 education leaders in…

  14. STEM: Good Jobs Now and for the Future. ESA Issue Brief #03-11

    ERIC Educational Resources Information Center

    Langdon, David; McKittrick, George; Beede, David; Khan, Beethika; Doms, Mark

    2011-01-01

    Science, technology, engineering and mathematics (STEM) workers drive the nation's innovation and competitiveness by generating new ideas, new companies and new industries. However, U.S. businesses frequently voice concerns over the supply and availability of STEM workers. Over the past 10 years, growth in STEM jobs was three times as fast as…

  15. THE U.S.-GERMAN BILATERAL WORKING GROUP: COLLABORATIVE ENGINEERING AND SCIENTIFIC RESEARCH FOR A SUSTAINABLE FUTURE. RESULTS FROM PHASE 3 (2000-2005) AND BEGINNING OF PHASE 4 (2006-2010)

    EPA Science Inventory

    Since 1990, the United States and Germany have worked bilaterally to identify, understand and apply innovative technologies and policies for remediation and sustainable revitalization of contaminated sites in each country. The last sixteen years have produced remarkable benefits ...

  16. THE U.S.-GERMAN BILATERAL WORKING GROUP: COLLABORATIVE ENGINEERING AND SCIENTIFIC RESEARCH FOR A SUSTAINABLE FUTURE. RESULTS FROM PHASE 3 (2000-2005) AND BEGINNING PHASE 4 (2006-2010).

    EPA Science Inventory

    Since 1990, the United States and Germany have worked bilaterally to identify, understand and apply innovative technologies and policies for remediation and sustainable revitalization of contaminated sites in each country. The last sixteen years (= three Phases) have produced rem...

  17. The U.S.-German Bilateral Working Group: Collaborative Engineering and Scientific Research for a Sustainable Future. Results from Phase 3 (2000-2005) and Beginning Phase 4 (2006-2010)

    EPA Science Inventory

    Since 1990, the United States and Germany have worked bilaterally to identify, understand and apply innovative technologies and policies for remediation and sustainable revitalization of contaminted sites in each country. The last sixteen years (= three Phases) have produced rem...

  18. Medical Simulation in the Community College Health Science Curriculum: A Matrix for Future Implementation

    ERIC Educational Resources Information Center

    McLaughlin, Michael P.; Starobin, Soko S.; Laanan, Frankie Santos

    2010-01-01

    As the nation's healthcare education system struggles to keep pace with the demand for its services, educators are seeking creative and innovative solutions to meet the needs of a growing number of students. The integration of medical simulation technology into the community college health science curriculum is a creative solution that can meet…

  19. Developing STEM Leaders Through Space Science Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Gibbs, M. G.; Veenstra, D.

    2012-08-01

    Capitol College, located in Laurel, Maryland, established the Center for Space Science Education and Public Outreach with the mission to assist in educating future leaders in the science, technology, engineering and math (STEM). This presentation shares emerging best practices through innovative methods to create awareness regarding STEM outreach programs and activities related workforce development and career pathways.

  20. The Leadership Imperative

    ERIC Educational Resources Information Center

    Technology & Learning, 2005

    2005-01-01

    It has been said that the best way to predict the future is to invent it. Here, the authors offer four views of the state of technology today and the challenges that lie ahead for education and the nation. According to Sudhir Halbhavi, if innovators truly care about making kids competitive in one's country and in the world, they will invest their…

  1. Engineering 'Posthumans': To Be or Not to Be?

    PubMed

    Karamanou, Marianna; Papaioannou, Theodore G; Soulis, Dimitrios; Tousoulis, Dimitrios

    2017-08-01

    Emerging technological innovations have transformed some science fiction ideas into reality, promising radical changes in human nature. New philosophical and intellectual movements such as 'transhumanism' and 'posthumanism' try to foretell and even direct the future of our existence while dealing with new and complex ethical, social, political issues and dilemmas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. An Assessment of Factors Relating to High School Students' Science Self-Efficacy

    ERIC Educational Resources Information Center

    Gibson, Jakeisha Jamice

    2017-01-01

    This mixed-methods case study examined two out-of-school (OST) Science, Technology, Engineering and Math (STEM) programs at a science-oriented high school on students' Self-Efficacy. Because STEM is a key for future innovation and economic growth, Americans have been developing a variety of approaches to increase student interest in science within…

  3. Search Engine Technology Impetus for the Knowledge Revolution in Business Education

    ERIC Educational Resources Information Center

    Hall, Owen P., Jr.

    2004-01-01

    Two equally powerful forces are helping shape the future of business education. First is the growing requirement for competent business managers on a worldwide basis. Second are the changing demands on our academic libraries as a result of the ongoing digital revolution. These dynamics call for new and innovative education systems such as…

  4. NASA chief technologist visits Stennis

    NASA Image and Video Library

    2010-08-26

    NASA Chief Technologist Bobby Braun visited John C. Stennis Space Center on Aug. 26. While at Stennis, he spoke to employees and the media about innovation and technology in NASA's future and the important role Stennis will play in space exploration programs. Braun also toured facilities and received briefings on work under way at the nation's premier rocket engine test facility.

  5. Going Green: The Vital Role of Community Colleges in Building a Sustainable Future and Green Workforce

    ERIC Educational Resources Information Center

    Feldbaum, Mindy

    2009-01-01

    The emerging transition to a low-carbon and sustainable economy holds great promise for economic growth and prosperity, innovation, and job creation. New green technologies and discoveries--coupled with new demand and forward-thinking public policies that advance sustainability and encourage public-private investments--are starting to transform…

  6. 75 FR 8043 - National Medal of Technology and Innovation Nomination Evaluation Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Nation's highest honor for technological innovation, awarded annually by the President of the United... utilizing technological innovation and/or be familiar with the education, training, employment and.../Manufacturing Innovation; Technological Manpower/Workforce Training/Education. Committee members generally are...

  7. 76 FR 80901 - National Medal of Technology and Innovation Nomination Evaluation Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... Nation's highest honor for technological innovation, awarded annually by the President of the United... utilizing technological innovation and/or be familiar with the education, training, employment and... Management/Computing/IT/Manufacturing Innovation; Technological Manpower/Workforce Training/Education. Under...

  8. Grand Challenges of Advanced Computing for Energy Innovation Report from the Workshop Held July 31-August 2, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larzelere, Alex R.; Ashby, Steven F.; Christensen, Dana C.

    2013-03-06

    On July 31-August 2 of 2012, the U.S. Department of Energy (DOE) held a workshop entitled Grand Challenges of Advanced Computing for Energy Innovation. This workshop built on three earlier workshops that clearly identified the potential for the Department and its national laboratories to enable energy innovation. The specific goal of the workshop was to identify the key challenges that the nation must overcome to apply the full benefit of taxpayer-funded advanced computing technologies to U.S. energy innovation in the ways that the country produces, moves, stores, and uses energy. Perhaps more importantly, the workshop also developed a set ofmore » recommendations to help the Department overcome those challenges. These recommendations provide an action plan for what the Department can do in the coming years to improve the nation’s energy future.« less

  9. A Bright Future: Innovation Transforming Public Health in Chicago

    PubMed Central

    Choucair, Bechara; Bhatt, Jay; Mansour, Raed

    2015-01-01

    Big cities continue to be centers for innovative solutions and services. Governments are quickly identifying opportunities to take advantage of this energy and revolutionize the means by which they deliver services to the public. The governmental public health sector is rapidly evolving in this respect, and Chicago is an emerging example of some of the changes to come. Governments are gradually adopting innovative informatics and big data tools and strategies, led by pioneering jurisdictions that are piecing together the standards, policy frameworks, and leadership structures fundamental to effective analytics use. They give an enticing glimpse of the technology's potential and a sense of the challenges that stand in the way. This is a rapidly evolving environment, and cities can work with partners to capitalize on the innovative energies of civic tech communities, health care systems, and emerging markets to introduce new methods to solve old problems. PMID:25423057

  10. A bright future: innovation transforming public health in Chicago.

    PubMed

    Choucair, Bechara; Bhatt, Jay; Mansour, Raed

    2015-01-01

    Big cities continue to be centers for innovative solutions and services. Governments are quickly identifying opportunities to take advantage of this energy and revolutionize the means by which they deliver services to the public. The governmental public health sector is rapidly evolving in this respect, and Chicago is an emerging example of some of the changes to come. Governments are gradually adopting innovative informatics and big data tools and strategies, led by pioneering jurisdictions that are piecing together the standards, policy frameworks, and leadership structures fundamental to effective analytics use. They give an enticing glimpse of the technology's potential and a sense of the challenges that stand in the way. This is a rapidly evolving environment, and cities can work with partners to capitalize on the innovative energies of civic tech communities, health care systems, and emerging markets to introduce new methods to solve old problems.

  11. From irreversibility to participation: towards a participatory foresight for the governance of collective environmental risks.

    PubMed

    Faucheux, S; Hue, C

    2001-09-14

    This paper presents a reflection on the introduction of methods and tools of "participative foresight" for scientific and technology policy as well as environmental policy fields. Future studies have recently made a comeback under the label of foresight. Future technology studies no longer claim to forecast the future, but are presented as a strategic tool for improving interaction between key actors and for anticipatory policy making. They can be defined as a "process by which one comes to a fuller understanding of the forces shaping the long term future which should be taken into account in policy formulation, planning and decision-making" [Foresight in Federal Government Policymaking, Futures Res. Quart. (1985) 29]. We discuss applications of this approach for perspectives on environmental policy and sustainable development. Foresight opens up the possibility of negotiating a new and more fruitful relationship or 'social contract' between science and technology, on the one hand, and society on the other. The focus has moved from merely scientific and industrial insights to social demand, thus emphasizing the importance of both the production and "supply" of innovation, and the "demand" as signaled in the views of citizens.

  12. Digital multicolor printing: state of the art and future challenges

    NASA Astrophysics Data System (ADS)

    Kipphan, Helmut

    1995-04-01

    During the last 5 years, digital techniques have become extremely important in the graphic arts industry. All sections in the production flow for producing multicolor printed products - prepress, printing and postpress - are influenced by digitalization, in an evolutionary and revolutionary way. New equipment and network techniques bring all the sections closer together. The focus is put on high-quality multicolor printing, together with high productivity. Conventional offset printing technology is compared with the leading nonimpact printing technologies. Computer to press is contrasted with computer to print techniques. The newest available digital multicolor presses are described - the direct imaging offset printing press from HEIDELBERG with new laser imaging technique as well as the INDIGO and XEIKON presses based on electrophotography. Regarding technical specifications, economic calculations and print quality, it is worked out that each technique has its own market segments. An outlook is given for future computer to press techniques and the potential of nonimpact printing technologies for advanced high-speed multicolor computer to print equipment. Synergy effects from the NIP-technologies to the conventional printing technologies and vice versa are possible for building up innovative new products, for example hybrid printing systems. It is also shown that there is potential for improving the print quality, based on special screening algorithms, and a higher number of grey levels per pixel by using NIP-technologies. As an intermediate step in digitalization of the production flow, but also as an economical solution computer to plate equipment is described. By producing printed products totally in a digital way, digital color proofing as well as color management systems are needed. The newest high-tech equipment using NIP-technologies for producing proofs is explained. All in all it is shown that the state of the art in digital multicolor printing has reached a very high level in technology, productivity and quality, but that there is still space for improvements and innovations. Manufacturers of equipment and producers of printed products can take part in a successful evolution-changes, chances and challenges must be recognized and considered for future orientated activities and investments.

  13. A New Era of Minimally Invasive Surgery: Progress and Development of Major Technical Innovations in General Surgery Over the Last Decade.

    PubMed

    Siddaiah-Subramanya, Manjunath; Tiang, Kor Woi; Nyandowe, Masimba

    2017-10-01

    Minimally invasive surgery (MIS) continues to play an important role in general surgery as an alternative to traditional open surgery as well as traditional laparoscopic techniques. Since the 1980s, technological advancement and innovation have seen surgical techniques in MIS rapidly grow as it is viewed as more desirable. MIS, which includes natural orifice transluminal endoscopic surgery (NOTES) and single-incision laparoscopic surgery (SILS), is less invasive and has better cosmetic results. The technological growth and adoption of NOTES and SILS by clinicians in the last decade has however not been uniform. We look at the differences in new developments and advancement in the different techniques in the last 10 years. We also aim to explain these differences as well as the implications in general surgery for the future.

  14. Responsible innovation: a pilot study with the U.K. Engineering and Physical Sciences Research Council.

    PubMed

    Owen, Richard; Goldberg, Nicola

    2010-11-01

    Significant time lags between the development of novel innovations (e.g., nanotechnologies), understanding of their wider impacts, and subsequent governance (e.g., regulation) have led to repeated calls for more anticipatory and adaptive approaches that promote the responsible emergence of new technologies in democratic societies. A key challenge is implementation in a pragmatic way. Results are presented of a study with the Engineering and Physical Sciences Research Council, the largest public funder of basic innovation research in the United Kingdom who, for the first time, asked applicants to submit a risk register identifying the wider potential impacts and associated risks (environment, health, societal, and ethical) of their proposed research. This focused on nanoscience for carbon capture and utilization. Risk registers were completed conservatively, with most identified impacts concerning researchers' health associated with nanoparticle synthesis, handling, and prototype device fabrication, i.e., risks that could be identified and managed with a reasonable level of certainty. Few wider environmental impacts and no future impacts on society were identified, reflecting the often uncertain and unpredictable nature of innovation. However, some applicants addressed this by including investigators with expertise beyond engineering and nanosciences supporting integrated activities that included life cycle and real-time technology assessment, which in some cases were also framed by stakeholder and/or public engagement. Proposals underpinned by a strong commitment to responsible science and innovation promoted continuous reflexivity, embedding a suite of multidisciplinary approaches around the innovation research core to support decisions modulating the trajectory of their innovation research in real-time.

  15. Emerging CAE technologies and their role in Future Ambient Intelligence Environments

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2011-03-01

    Dramatic improvements are on the horizon in Computer Aided Engineering (CAE) and various simulation technologies. The improvements are due, in part, to the developments in a number of leading-edge technologies and their synergistic combinations/convergence. The technologies include ubiquitous, cloud, and petascale computing; ultra high-bandwidth networks, pervasive wireless communication; knowledge based engineering; networked immersive virtual environments and virtual worlds; novel human-computer interfaces; and powerful game engines and facilities. This paper describes the frontiers and emerging simulation technologies, and their role in the future virtual product creation and learning/training environments. The environments will be ambient intelligence environments, incorporating a synergistic combination of novel agent-supported visual simulations (with cognitive learning and understanding abilities); immersive 3D virtual world facilities; development chain management systems and facilities (incorporating a synergistic combination of intelligent engineering and management tools); nontraditional methods; intelligent, multimodal and human-like interfaces; and mobile wireless devices. The Virtual product creation environment will significantly enhance the productivity and will stimulate creativity and innovation in future global virtual collaborative enterprises. The facilities in the learning/training environment will provide timely, engaging, personalized/collaborative and tailored visual learning.

  16. A new method to evaluate future impact of vehicle safety technology in Sweden.

    PubMed

    Strandroth, Johan; Sternlund, Simon; Tingvall, Claes; Johansson, Roger; Rizzi, Matteo; Kullgren, Anders

    2012-10-01

    In the design of a safe road transport system there is a need to better understand the safety challenges lying ahead. One way of doing that is to evaluate safety technology with retrospective analysis of crashes. However, by using retros- pective data there is the risk of adapting safety innovations to scenarios irrelevant in the future. Also, challenges arise as safety interventions do not act alone but are rather interacting components in a complex road transport system. The objective of this study was therefore to facilitate the prioritizing of road safety measures by developing and applying a new method to consider possible impact of future vehicle safety technology. The key point was to project the chain of events leading to a crash today into the crashes for a given time in the future. Assumptions on implementation on safety technologies were made and these assump- tions were applied on the crashes of today. It was estimated which crashes would be prevented and the residual was analyzed to identify the characteristics of future crashes. The Swedish Transport Administration's in-depth studies of fatal crashes from 2010 involving car passengers (n=156) were used. This study estimated that the number of killed car occupant would be reduced with 53 percent from the year 2010 to 2020. Through this new method, valuable information regarding the characteristic of the future crashes was found. The results of this study showed that it was possible to evaluate future impact of vehicle safety technology if detailed and representative crash data is available.

  17. From generic pathways to ICT-supported horizontally integrated care: the SmartCare approach and convergence with future Internet assembly.

    PubMed

    Urošević, Vladimir; Mitić, Marko

    2014-01-01

    Successful service integration in policy and practice requires both technology innovation and service process innovation being pursued and implemented at the same time. The SmartCare project (partially EC-funded under CIP ICT PSP Program) aims to achieve this through development, piloting and evaluation of ICT-based services, horizontally integrating health and social care in ten pilot regions, including Kraljevo region in Serbia. The project has identified and adopted two generic highest-level common thematic pathways in joint consolidation phase - integrated support for long-term care and integrated support after hospital discharge. A common set of standard functional specifications for an open ICT platform enabling the delivery of integrated care is being defined, around the challenges of data sharing, coordination and communication in these two formalized pathways. Implementation and system integration on technology and architecture level are to be based on open standards, multivendor interoperability, and leveraging on the current evolving open specification technology foundations developed in relevant projects across the European Research Area.

  18. STEAMakers- a global initiative to connect STEM career professionals with the public to inspire the next generation and nurture a creative approach to science, technology, maths & engineering

    NASA Astrophysics Data System (ADS)

    Shaw, Niamh; Sorkhabi, Elburz; Gasquez, Oriol; Yajima, Saho

    2016-04-01

    STEAMakers is a global initiative founded by Niamh Shaw, Elburz Sorkhabi, Oriol Gasquez & Saho Yajima, four alumni of The International Space University's Space Studies Programme 2015 who each shared a vision to inspire the next generation to embrace science, technology, engineering & maths (STEM) in new ways, by embedding the Arts within STEM, putting the 'A' in STEAM. STEAMakers invited STEM professionals around the world to join their community, providing training and a suite of STEAM events, specially designed to encourage students to perceive science, technology, engineering & maths as a set of tools with which to create, design, troubleshoot, innovate, and imagine. The ultimate goal of STEAMakers is to grow this community and create a global culture of non-linear learning among the next generation, to nurture within them a new multidisciplinary mindset and incubate new forms of innovation and thought leadership required for the future through the power of inspiration and creativity.

  19. Future directions in physical activity intervention research: expanding our focus to sedentary behaviors, technology, and dissemination.

    PubMed

    Lewis, Beth A; Napolitano, Melissa A; Buman, Matthew P; Williams, David M; Nigg, Claudio R

    2017-02-01

    Despite the increased health risks of a sedentary lifestyle, only 49 % of American adults participate in physical activity (PA) at the recommended levels. In an effort to move the PA field forward, we briefly review three emerging areas of PA intervention research. First, new intervention research has focused on not only increasing PA but also on decreasing sedentary behavior. Researchers should utilize randomized controlled trials, common terminology, investigate which behaviors should replace sedentary behaviors, evaluate long-term outcomes, and focus across the lifespan. Second, technology has contributed to an increase in sedentary behavior but has also led to innovative PA interventions. PA technology research should focus on large randomized trials with evidence-based components, explore social networking and innovative apps, improve PA monitoring, consider the lifespan, and be grounded in theory. Finally, in an effort to maximize public health impact, dissemination efforts should address the RE-AIM model, health disparities, and intervention costs.

  20. Future directions in physical activity intervention research: expanding our focus to sedentary behaviors, technology, and dissemination

    PubMed Central

    Napolitano, Melissa A.; Buman, Matthew P.; Williams, David M.; Nigg, Claudio R.

    2016-01-01

    Despite the increased health risks of a sedentary lifestyle, only 49 % of American adults participate in physical activity (PA) at the recommended levels. In an effort to move the PA field forward, we briefly review three emerging areas of PA intervention research. First, new intervention research has focused on not only increasing PA but also on decreasing sedentary behavior. Researchers should utilize randomized controlled trials, common terminology, investigate which behaviors should replace sedentary behaviors, evaluate long-term outcomes, and focus across the lifespan. Second, technology has contributed to an increase in sedentary behavior but has also led to innovative PA interventions. PA technology research should focus on large randomized trials with evidence-based components, explore social networking and innovative apps, improve PA monitoring, consider the lifespan, and be grounded in theory. Finally, in an effort to maximize public health impact, dissemination efforts should address the RE-AIM model, health disparities, and intervention costs. PMID:27722907

Top