Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, C.; Wachs, D.; Carmack, J.
The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, andmore » salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.« less
STEADY STATE MODELING OF THE MINIMUM CRITICAL CORE OF THE TRANSIENT REACTOR TEST FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony L. Alberti; Todd S. Palmer; Javier Ortensi
2016-05-01
With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. The DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum, air-cooled, nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific scenarios range from simple temperature transients to full fuel melt accidents. DOE has expressed a desire to develop a simulation capability that will accurately modelmore » the experiments before they are irradiated at the facility. It is the aim for this capability to have an emphasis on effective and safe operation while minimizing experimental time and cost. The multi physics platform MOOSE has been selected as the framework for this project. The goals for this work are to identify the fundamental neutronics properties of TREAT and to develop an accurate steady state model for future multiphysics transient simulations. In order to minimize computational cost, the effect of spatial homogenization and angular discretization are investigated. It was found that significant anisotropy is present in TREAT assemblies and to capture this effect, explicit modeling of cooling channels and inter-element gaps is necessary. For this modeling scheme, single element calculations at 293 K gave power distributions with a root mean square difference of 0.076% from those of reference SERPENT calculations. The minimum critical core configuration with identical gap and channel treatment at 293 K resulted in a root mean square, total core, radial power distribution 2.423% different than those of reference SERPENT solutions.« less
Advanced Instrumentation for Transient Reactor Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, Michael L.; Anderson, Mark; Imel, George
Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and designmore » increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).« less
29 CFR 1910.1096 - Ionizing radiation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... test tubes, used transiently in laboratory procedures, when the user is present. (iv) Where containers... shall contain the following statement: “You should preserve this report for future reference.” (n... statement: “You should preserve this report for future reference.” (2) [Reserved] (p) Nuclear Regulatory...
Flight test derived heating math models for critical locations on the orbiter during reentry
NASA Technical Reports Server (NTRS)
Hertzler, E. K.; Phillips, P. W.
1983-01-01
An analysis technique was developed for expanding the aerothermodynamic envelope of the Space Shuttle without subjecting the vehicle to sustained flight at more stressing heating conditions. A transient analysis program was developed to take advantage of the transient maneuvers that were flown as part of this analysis technique. Heat rates were derived from flight test data for various locations on the orbiter. The flight derived heat rates were used to update heating models based on predicted data. Future missions were then analyzed based on these flight adjusted models. A technique for comparing flight and predicted heating rate data and the extrapolation of the data to predict the aerothermodynamic environment of future missions is presented.
TREAT Neutronics Analysis and Design Support, Part I: Multi-SERTTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Woolstenhulme, Nicolas E.; Hill, Connie M.
2016-08-01
Experiment vehicle design is necessary in preparation for Transient Reactor Test (TREAT) facility restart and the resumption of transient testing to support Accident Tolerant Fuel (ATF) characterization and other future fuels testing requirements. Currently the most mature vehicle design is the Multi-SERTTA (Static Environments Rodlet Transient Test Apparatuses), which can accommodate up to four concurrent rodlet-sized specimens under separate environmental conditions. Robust test vehicle design requires neutronics analyses to support design development, optimization of the power coupling factor (PCF) to efficiently maximize energy generation in the test fuel rodlets, and experiment safety analyses. Calculations were performed to support analysis ofmore » a near-final design of the Multi-SERTTA vehicle, the design process for future TREAT test vehicles, and establish analytical practices for upcoming transient test experiments. Models of the Multi-SERTTA vehicle containing typical PWR-fuel rodlets were prepared and neutronics calculations were performed using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries. Calculation of the PCF for reference conditions of a PWR fuel rodlet in clean water at operational temperature and pressure provided results between 1.10 and 1.74 W/g-MW depending on the location of the four Multi-SERTTA units with the stack. Basic changes to the Multi-SERTTA secondary vessel containment and support have minimal impact on PCF; using materials with less neutron absorption can improve expected PCF values, especially in the primary containment. An optimized balance is needed between structural integrity, experiment safety, and energy deposition in the experiment. Type of medium and environmental conditions within the primary vessel surrounding the fuel rodlet can also have a significant impact on resultant PCF values. The estimated reactivity insertion worth into the TREAT core is impacted more by the primary and secondary Multi-SERTTA vehicle structure with the experiment content and contained environment having a near negligible impact on overall system reactivity. Additional calculations were performed to evaluate the peak-to-average assembly powers throughout the TREAT core, as well as the nuclear heat generation for the various structural components of the Multi-SERTTA assembly. Future efforts include the evaluation of flux collars to shape the PCF for individual Multi-SERTTA units during an experiment such as to achieve uniformity in test unit environmental conditions impacted by the non-uniform axial flux/power profile of TREAT. Upon resumption of transient testing, experimental results from both the Multi-SERTTA and Multi-SERTTA-CAL will be compared against calculational results and methods for further optimization and design strategies.« less
Multi-Physics Simulation of TREAT Kinetics using MAMMOTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark; Gleicher, Frederick; Ortensi, Javier
With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific fuels transient tests range from simple temperature transients to full fuel melt accidents. The current TREAT core is driven by highly enriched uranium (HEU) dispersed in amore » graphite matrix (1:10000 U-235/C atom ratio). At the center of the core, fuel is removed allowing for the insertion of an experimental test vehicle. TREAT’s design provides experimental flexibility and inherent safety during neutron pulsing. This safety stems from the graphite in the driver fuel having a strong negative temperature coefficient of reactivity resulting from a thermal Maxwellian shift with increased leakage, as well as graphite acting as a temperature sink. Air cooling is available, but is generally used post-transient for heat removal. DOE and INL have expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility, with an emphasis on effective and safe operation while minimizing experimental time and cost. At INL, the Multi-physics Object Oriented Simulation Environment (MOOSE) has been selected as the model development framework for this work. This paper describes the results of preliminary simulations of a TREAT fuel element under transient conditions using the MOOSE-based MAMMOTH reactor physics tool.« less
Analyses of transients for an 800 MW-class accelerator driven transmuter with fertile-free fuels
NASA Astrophysics Data System (ADS)
Maschek, Werner; Suzuki, Tohru; Chen, Xue-Nong; Rineiski, Andrei; Matzerath Boccaccini, Claudia; Mori, Magnus; Morita, Koji
2006-06-01
In the FUTURE Program, the development and application of fertile-free fuels for Accelerator Driven Transmuters (ADTs) has been advanced. To assess the reactor performance and safety behavior of an ADT with so-called dedicated fuels, various transient cases for an 800 MW-class Pb/Bi-cooled ADT were investigated using the SIMMER-III code. The FUTURE ADT also served as vehicle to develop and test ideas on a safety concept for such transmuters. After an extensive ranking procedure, a CERCER fuel with an MgO matrix and a CERMET fuel with a Mo-92 matrix were chosen. The transient scenarios shown here are: spurious beam trip (BT), unprotected loss of flow (ULOF) and unprotected blockage accident (UBA). Since the release of fission gas and helium after cladding failure could induce a significant positive reactivity, the gas-blowdown was investigated for the transient scenarios. The present analyses showed that power excursions could be avoided by the fuel sweep-out from the core under severe accident conditions.
Performance testing of lidar receivers
NASA Technical Reports Server (NTRS)
Shams, M. Y.
1986-01-01
In addition to the considerations about the different types of noise sources, dynamic range, and linearity of a lidar receiver, one requires information about the pulse shape retaining capabilities of the receiver. For this purpose, relatively precise information about the height resolution as well as the recovery time of the receiver, due both to large transients and to fast changes in the received signal, is required. As more and more analog receivers using fast analog to digital converters and transient recorders will be used in the future lidar systems, methods to test these devices are essential. The method proposed for this purpose is shown. Tests were carried out using LCW-10, LT-20, and FTVR-2 as optical parts of the optical pulse generator circuits. A commercial optical receiver, LNOR, and a transient recorder, VK 220-4, were parts of the receiver system.
Capabilities Development for Transient Testing of Advanced Nuclear Fuels at TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolstenhulme, N. E.; Baker, C. C.; Bess, J. D.
2016-09-01
The TREAT facility is a unique capability at the Idaho National Laboratory currently being prepared for resumption of nuclear transient testing. Accordingly, designs for several transient irradiation tests are being pursued to enable development of advanced nuclear fuels and materials. In addition to the reactor itself, the foundation for TREAT’s capabilities also include a suite of irradiation vehicles and supporting infrastructure to provide the desired specimen boundary conditions while supporting a variety of instrumentation needs. The challenge of creating these vehicles, especially since many of the modern data needs were not historically addressed in TREAT experiment vehicles, has necessitated amore » sizeable engineering effort. This effort is currently underway and maturing rapidly. This paper summarizes the status, future plans, and rationale for TREAT experiment vehicle capabilities. Much of the current progress is focused around understanding and demonstrating the behavior of fuel design with enhanced accident tolerance in water-cooled reactors. Additionally, several related efforts are underway to facilitate transient testing in liquid sodium, inert gas, and steam environments. This paper discusses why such a variety of capabilities are needed, outlines plans to accomplish them, and describes the relationship between transient data needs and the irradiation hardware that will support the gathering of this information.« less
NASA Technical Reports Server (NTRS)
Seymour, David C.; Martin, Michael A.; Nguyen, Huy H.; Greene, William D.
2005-01-01
The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.
NASA Technical Reports Server (NTRS)
Martin, Michael A.; Nguyen, Huy H.; Greene, William D.; Seymout, David C.
2003-01-01
The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.
Isolated transient vertigo: posterior circulation ischemia or benign origin?
Blasberg, Tobias F; Wolf, Lea; Henke, Christian; Lorenz, Matthias W
2017-06-14
Isolated transient vertigo can be the only symptom of posterior circulation ischemia. Thus, it is important to differentiate isolated vertigo of a cerebrovascular origin from that of more benign origins, as patients with cerebral ischemia have a much higher risk for future stroke than do those with 'peripheral' vertigo. The current study aims to identify risk factors for cerebrovascular origin of isolated transient vertigo, and for future cerebrovascular events. From the files of 339 outpatients with isolated transient vertigo we extracted history, clinical and technical findings, diagnosis, and follow-up information on subsequent stroke or transient ischemic attack (TIA). Risk factors were analyzed using multivariate regression models (logistic or Cox) and reconfirmed in univariate analyses. On first presentation, 48 (14.2%) patients received the diagnosis 'probable or definite cerebrovascular vertigo'. During follow-up, 41 patients suffered stroke or TIA (event rate 7.9 per 100 person years, 95% confidence interval (CI) 5.5-10.4), 26 in the posterior circulation (event rate 4.8 per 100 person years, 95% CI 3.0-6.7). The diagnosis was not associated with follow-up cerebrovascular events. In multivariate models testing multiple potential determinants, only the presentation mode was consistently associated with the diagnosis and stroke risk: patients who presented because of vertigo (rather than reporting vertigo when they presented for other reasons) had a significantly higher risk for future stroke or TIA (p = 0.028, event rate 13.4 vs. 5.4 per 100 person years) and for future posterior circulation stroke or TIA (p = 0.044, event rate 7.8 vs. 3.5 per 100 person years). We here report for the first time follow-up stroke rates in patients with transient isolated vertigo. In such patients, the identification of those with cerebrovascular origin remains difficult, and presentation mode was found to be the only consistent risk factor. Confirmation in an independent prospective sample is needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.
2011-07-10
Recent investigations reveal an important new class of transient radio phenomena that occur on submillisecond timescales. Often, transient surveys' data volumes are too large to archive exhaustively. Instead, an online automatic system must excise impulsive interference and detect candidate events in real time. This work presents a case study using data from multiple geographically distributed stations to perform simultaneous interference excision and transient detection. We present several algorithms that incorporate dedispersed data from multiple sites, and report experiments with a commensal real-time transient detection system on the Very Long Baseline Array. We test the system using observations of pulsar B0329+54.more » The multiple-station algorithms enhanced sensitivity for detection of individual pulses. These strategies could improve detection performance for a future generation of geographically distributed arrays such as the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array.« less
NASA Astrophysics Data System (ADS)
Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong
2017-04-01
The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.
Solution techniques for transient stability-constrained optimal power flow – Part II
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu; ...
2017-06-28
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
Solution techniques for transient stability-constrained optimal power flow – Part II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chichester, Heather Jean MacLean; Hayes, Steven Lowe; Dempsey, Douglas
This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally,more » the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.« less
Waterhammer Transient Simulation and Model Anchoring for the Robotic Lunar Lander Propulsion System
NASA Technical Reports Server (NTRS)
Stein, William B.; Trinh, Huu P.; Reynolds, Michael E.; Sharp, David J.
2011-01-01
Waterhammer transients have the potential to adversely impact propulsion system design if not properly addressed. Waterhammer can potentially lead to system plumbing, and component damage. Multi-thruster propulsion systems also develop constructive/destructive wave interference which becomes difficult to predict without detailed models. Therefore, it is important to sufficiently characterize propulsion system waterhammer in order to develop a robust design with minimal impact to other systems. A risk reduction activity was performed at Marshall Space Flight Center to develop a tool for estimating waterhammer through the use of anchored simulation for the Robotic Lunar Lander (RLL) propulsion system design. Testing was performed to simulate waterhammer surges due to rapid valve closure and consisted of twenty-two series of waterhammer tests, resulting in more than 300 valve actuations. These tests were performed using different valve actuation schemes and three system pressures. Data from the valve characterization tests were used to anchor the models that employed MSCSoftware.EASY5 v.2010 to model transient fluid phenomena by using transient forms of mass and energy conservation. The anchoring process was performed by comparing initial model results to experimental data and then iterating the model input to match the simulation results with the experimental data. The models provide good correlation with experimental results, supporting the use of EASY5 as a tool to model fluid transients and provide a baseline for future RLL system modeling. This paper addresses tasks performed during the waterhammer risk reduction activity for the RLL propulsion system. The problem of waterhammer simulation anchoring as applied to the RLL system is discussed with results from the corresponding experimental valve tests. Important factors for waterhammer mitigation are discussed along with potential design impacts to the RLL propulsion system.
Yousuf, Seema; Atif, Fahim; Sayeed, Iqbal; Tang, Huiling; Wang, Jun; Stein, Donald G
2015-01-01
Most pre-clinical stroke studies address the acute phase after injury, with less attention to long-term effects of injury, treatment, and experimental testing itself. We addressed these questions: 1) Will functional deficits persist up to 8 weeks following transient stroke in older animals? 2) Will functional deficits resolve spontaneously, with time and/or repeated behavioral testing? Male Sprague-Dawley rats (12 months) were pre-trained on behavioral tasks to provide baseline data and then underwent transient middle artery occlusion (tMCAO) or sham surgery. We measured motor, sensory, cognitive and gait impairments over 8 weeks, and the extent of hemispheric brain infarction. One cohort underwent behavioral testing once at 8 weeks post-stroke (LT); a second cohort (RLT) was tested at 3, 6 and 8 weeks post-stroke. Significant deficits were exhibited in all functional outcomes in both cohorts after 8 weeks. We observed some recovery in some behavioral parameters in both cohorts at 8 weeks. Deficits persist for at least 8 weeks after tMCAO. The greater spontaneous recovery seen in the RLT groups suggest that repeated testing did reduce the severity of these stroke-induced impairments. These findings have implications for designing future studies of agents to induce long-term functional recovery following stroke.
An RL10A-3-3A rocket engine model using the rocket engine transient simulator (ROCETS) software
NASA Technical Reports Server (NTRS)
Binder, Michael
1993-01-01
Steady-state and transient computer models of the RL10A-3-3A rocket engine have been created using the Rocket Engine Transient Simulation (ROCETS) code. These models were created for several purposes. The RL10 engine is a critical component of past, present, and future space missions; the model will give NASA an in-house capability to simulate the performance of the engine under various operating conditions and mission profiles. The RL10 simulation activity is also an opportunity to further validate the ROCETS program. The ROCETS code is an important tool for modeling rocket engine systems at NASA Lewis. ROCETS provides a modular and general framework for simulating the steady-state and transient behavior of any desired propulsion system. Although the ROCETS code is being used in a number of different analysis and design projects within NASA, it has not been extensively validated for any system using actual test data. The RL10A-3-3A has a ten year history of test and flight applications; it should provide sufficient data to validate the ROCETS program capability. The ROCETS models of the RL10 system were created using design information provided by Pratt & Whitney, the engine manufacturer. These models are in the process of being validated using test-stand and flight data. This paper includes a brief description of the models and comparison of preliminary simulation output against flight and test-stand data.
Preliminary Analysis of the Transient Reactor Test Facility (TREAT) with PROTEUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connaway, H. M.; Lee, C. H.
The neutron transport code PROTEUS has been used to perform preliminary simulations of the Transient Reactor Test Facility (TREAT). TREAT is an experimental reactor designed for the testing of nuclear fuels and other materials under transient conditions. It operated from 1959 to 1994, when it was placed on non-operational standby. The restart of TREAT to support the U.S. Department of Energy’s resumption of transient testing is currently underway. Both single assembly and assembly-homogenized full core models have been evaluated. Simulations were performed using a historic set of WIMS-ANL-generated cross-sections as well as a new set of Serpent-generated cross-sections. To supportmore » this work, further analyses were also performed using additional codes in order to investigate particular aspects of TREAT modeling. DIF3D and the Monte-Carlo codes MCNP and Serpent were utilized in these studies. MCNP and Serpent were used to evaluate the effect of geometry homogenization on the simulation results and to support code-to-code comparisons. New meshes for the PROTEUS simulations were created using the CUBIT toolkit, with additional meshes generated via conversion of selected DIF3D models to support code-to-code verifications. All current analyses have focused on code-to-code verifications, with additional verification and validation studies planned. The analysis of TREAT with PROTEUS-SN is an ongoing project. This report documents the studies that have been performed thus far, and highlights key challenges to address in future work.« less
Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woronowicz, M. S.
2011-05-20
The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cm{sup 3}. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may bemore » possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.« less
Angular response calibration of the burst and transient source experiment
NASA Technical Reports Server (NTRS)
Lestrade, John Patrick
1988-01-01
The Gamma Ray Observatory includes four experiments designed to observe the gamma-ray universe. Laboratory measurements to test the response the Burst and Transient Source Experiment (BATSE) modules to gamma-ray sources that are non-axial were recently completed. The results of these observations are necessary for the correct interpretation of BATSE data obtained after it is put in Earth orbit. The launch is planned for March, 1900. Preliminary analyses of these test data show the presence of a radial dependence to the detector's light collection efficiency. It is proposed to evaluate the importance of this radial response, analyze future experimental data to derive the actual functional dependence on radius, and calculate the net effect on the output spectrum as a function of the angle of incidence.
Prognostics for Electronics Components of Avionics Systems
NASA Technical Reports Server (NTRS)
Celaya, Jose R.; Saha, Bhaskar; Wysocki, Philip F.; Goebel, Kai F.
2009-01-01
Electronics components have and increasingly critical role in avionics systems and for the development of future aircraft systems. Prognostics of such components is becoming a very important research filed as a result of the need to provide aircraft systems with system level health management. This paper reports on a prognostics application for electronics components of avionics systems, in particular, its application to the Isolated Gate Bipolar Transistor (IGBT). The remaining useful life prediction for the IGBT is based on the particle filter framework, leveraging data from an accelerated aging tests on IGBTs. The accelerated aging test provided thermal-electrical overstress by applying thermal cycling to the device. In-situ state monitoring, including measurements of the steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.
Towards Prognostics for Electronics Components
NASA Technical Reports Server (NTRS)
Saha, Bhaskar; Celaya, Jose R.; Wysocki, Philip F.; Goebel, Kai F.
2013-01-01
Electronics components have an increasingly critical role in avionics systems and in the development of future aircraft systems. Prognostics of such components is becoming a very important research field as a result of the need to provide aircraft systems with system level health management information. This paper focuses on a prognostics application for electronics components within avionics systems, and in particular its application to an Isolated Gate Bipolar Transistor (IGBT). This application utilizes the remaining useful life prediction, accomplished by employing the particle filter framework, leveraging data from accelerated aging tests on IGBTs. These tests induced thermal-electrical overstresses by applying thermal cycling to the IGBT devices. In-situ state monitoring, including measurements of steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.
Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations
NASA Technical Reports Server (NTRS)
Woronowicz, M. S.
2010-01-01
The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cu cm. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may be possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, D.G.: Watkins, J.C.
This report documents an evaluation of the TRAC-PF1/MOD1 reactor safety analysis computer code during computer simulations of feedwater line break transients. The experimental data base for the evaluation included the results of three bottom feedwater line break tests performed in the Semiscale Mod-2C test facility. The tests modeled 14.3% (S-FS-7), 50% (S-FS-11), and 100% (S-FS-6B) breaks. The test facility and the TRAC-PF1/MOD1 model used in the calculations are described. Evaluations of the accuracy of the calculations are presented in the form of comparisons of measured and calculated histories of selected parameters associated with the primary and secondary systems. In additionmore » to evaluating the accuracy of the code calculations, the computational performance of the code during the simulations was assessed. A conclusion was reached that the code is capable of making feedwater line break transient calculations efficiently, but there is room for significant improvements in the simulations that were performed. Recommendations are made for follow-on investigations to determine how to improve future feedwater line break calculations and for code improvements to make the code easier to use.« less
TREAT Neutronics Analysis and Design Support, Part II: Multi-SERTTA-CAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Woolstenhulme, Nicolas E.; Hill, Connie M.
2016-08-01
Experiment vehicle design is necessary in preparation for Transient Reactor Test (TREAT) facility restart and the resumption of transient testing to support Accident Tolerant Fuel (ATF) characterization and other future fuels testing requirements. Currently the most mature vehicle design is the Multi-SERTTA (Static Environments Rodlet Transient Test Apparatuses), which can accommodate up to four concurrent rodlet-sized specimens under separate environmental conditions. Robust test vehicle design requires neutronics analyses to support design development, optimization of the power coupling factor (PCF) to efficiently maximize energy generation in the test fuel rodlets, and experiment safety analyses. In integral aspect of prior TREAT transientmore » testing was the incorporation of calibration experiments to experimentally evaluate and validate test conditions in preparation of the actual fuel testing. The calibration experiment package established the test parameter conditions to support fine-tuning of the computational models to deliver the required energy deposition to the fuel samples. The calibration vehicle was designed to be as near neutronically equivalent to the experiment vehicle as possible to minimize errors between the calibration and final tests. The Multi-SERTTA-CAL vehicle was designed to serve as the calibration vehicle supporting Multi-SERTTA experimentation. Models of the Multi-SERTTA-CAL vehicle containing typical PWR-fuel rodlets were prepared and neutronics calculations were performed using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries; these results were then compared against those performed for Multi-SERTTA to determine the similarity and possible design modification necessary prior to construction of these experiment vehicles. The estimated reactivity insertion worth into the TREAT core is very similar between the two vehicle designs, with the primary physical difference being a hollow Inconel tube running down the length of the calibration vehicle. Calculations of PCF indicate that on average there is a reduction of approximately 6.3 and 12.6%, respectively, for PWR fuel rodlets irradiated under wet and dry conditions. Changes to the primary or secondary vessel structure in the calibration vehicle can be performed to offset this discrepancy and maintain neutronic equivalency. Current possible modifications to the calibration vehicle include reduction of the primary vessel wall thickness, swapping Zircaloy-4 for stainless steel 316 in the secondary containment, or slight modification to the temperature and pressure of the water environment within the primary vessel. Removal of some of the instrumentation within the calibration vehicle can also serve to slightly increase the PCF. Future efforts include further modification and optimization of the Multi-SERTTA and Multi-SERTTA-CAL designs in preparation of actual TREAT transient testing. Experimental results from both test vehicles will be compared against calculational results and methods to provide validation and support additional neutronics analyses.« less
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Vassilakos, Gregory J.
2015-01-01
This report summarizes initial modeling of the local response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris (MMOD) impacts using a structural, non-linear, transient dynamic finite element code. Complementary test results for a local BEAM structure are presented for both hammer and projectile impacts. Review of these data provided guidance for the transient dynamic model development. The local model is intended to support predictions using the global BEAM model, described in a companion report. Two types of local models were developed. One mimics the simplified Soft-Goods (fabric envelop) part of the BEAM NASTRAN model delivered by the project. The second investigates through-the-thickness modeling challenges for MMOD-type impacts. Both the testing and the analysis summaries contain lessons learned and areas for future efforts.
State-trait decomposition of Name Letter Test scores and relationships with global self-esteem.
Perinelli, Enrico; Alessandri, Guido; Donnellan, M Brent; Łaguna, Mariola
2018-06-01
The Name Letter Test (NLT) assesses the degree that participants show a preference for an individual's own initials. The NLT was often thought to measure implicit self-esteem, but recent literature reviews do not equivocally support this hypothesis. Several authors have argued that the NLT is most strongly associated with the state component of self-esteem. The current research uses a modified STARTS model to (a) estimate the percentage of stable and transient components of the NLT and (b) estimate the covariances between stable/transient components of the NLT and stable/transient components of self-esteem and positive and negative affect. Two longitudinal studies were conducted with different time lags: In Study 1, participants were assessed daily for 7 consecutive days, whereas in Study 2, participants were assessed weekly for 8 consecutive weeks. Participants also completed a battery of questionnaires including global self-esteem, positive affect, and negative affect. In both studies, the NLT showed (a) high stability across time, (b) a high percentage of stable variance, (c) no significant covariance with stable and transient factors for global self-esteem, and (d) a different pattern of correlations with stable and transient factors of affect than global self-esteem. Collectively, these results further undermine the claim that the NLT is a valid measure of implicit self-esteem. Future work is needed to identify theoretically grounded correlates of the NLT. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Maolong; Ryals, Matthew; Ali, Amir
2016-08-01
A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentallymore » investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.« less
Thin film thermocouples for high temperature turbine application
NASA Technical Reports Server (NTRS)
Martin, Lisa C.
1991-01-01
The objective is to develop thin film thermocouples (TFTC) for Space Shuttle Main Engine (SSME) components such as the high pressure fuel turbopump (HPFTP) blades and to test TFTC survivability and durability in the SSME environment. The purpose for developing TFTC's for SSME components is to obtain blade temperatures for computational models developed for fluid mechanics and structures. The TFTC must be able to withstand the presence of high temperature, high pressure hydrogen as well as a severe thermal transient due to a cryogenic to combustion temperature change. The TFTC's will eventually be installed and tested on SSME propulsion system components in the SSME test bed engine. The TFTC's were successfully fabricated on flat coupons of MAR-M 246 (Hf+), which is the superalloy material used for HPFTP turbine blades. The TFTC's fabricated on flat coupons survived thermal shock cycling as well as testing in a heat flux measurement facility which provided a rapid thermal transient. The same fabrication procedure was used to deposit TFTC's on HPFTP first stage rotor blades. Other results from the experiments are presented, and future testing plans are discussed.
Transient Region Coverage in the Propulsion IVHM Technology Experiment
NASA Technical Reports Server (NTRS)
Balaban, Edward; Sweet, Adam; Bajwa, Anupa; Maul, William; Fulton, Chris; Chicatelli, amy
2004-01-01
Over the last several years researchers at NASA Glenn and Ames Research Centers have developed a real-time fault detection and isolation system for propulsion subsystems of future space vehicles. The Propulsion IVHM Technology Experiment (PITEX), as it is called follows the model-based diagnostic methodology and employs Livingstone, developed at NASA Ames, as its reasoning engine. The system has been tested on,flight-like hardware through a series of nominal and fault scenarios. These scenarios have been developed using a highly detailed simulation of the X-34 flight demonstrator main propulsion system and include realistic failures involving valves, regulators, microswitches, and sensors. This paper focuses on one of the recent research and development efforts under PITEX - to provide more complete transient region coverage. It describes the development of the transient monitors, the corresponding modeling methodology, and the interface software responsible for coordinating the flow of information between the quantitative monitors and the qualitative, discrete representation Livingstone.
NASA Astrophysics Data System (ADS)
Yoo, Donghoon; Lee, Joohyun; Lee, Byeongchan; Kwon, Suyong; Koo, Junemo
2018-02-01
The Transient Hot-Wire Method (THWM) was developed to measure the absolute thermal conductivity of gases, liquids, melts, and solids with low uncertainty. The majority of nanofluid researchers used THWM to measure the thermal conductivity of test fluids. Several reasons have been suggested for the discrepancies in these types of measurements, including nanofluid generation, nanofluid stability, and measurement challenges. The details of the transient hot-wire method such as the test cell size, the temperature coefficient of resistance (TCR) and the sampling number are further investigated to improve the accuracy and consistency of the measurements of different researchers. It was observed that smaller test apparatuses were better because they can delay the onset of natural convection. TCR values of a coated platinum wire were measured and statistically analyzed to reduce the uncertainty in thermal conductivity measurements. For validation, ethylene glycol (EG) and water thermal conductivity were measured and analyzed in the temperature range between 280 and 310 K. Furthermore, a detailed statistical analysis was conducted for such measurements, and the results confirmed the minimum number of samples required to achieve the desired resolution and precision of the measurements. It is further proposed that researchers fully report the information related to their measurements to validate the measurements and to avoid future inconsistent nanofluid data.
Overview and Current Status of Analyses of Potential LEU Design Concepts for TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.
2015-10-01
Neutronic and thermal-hydraulic analyses have been performed to evaluate the performance of different low-enriched uranium (LEU) fuel design concepts for the conversion of the Transient Reactor Test Facility (TREAT) from its current high-enriched uranium (HEU) fuel. TREAT is an experimental reactor developed to generate high neutron flux transients for the testing of nuclear fuels. The goal of this work was to identify an LEU design which can maintain the performance of the existing HEU core while continuing to operate safely. A wide variety of design options were considered, with a focus on minimizing peak fuel temperatures and optimizing the powermore » coupling between the TREAT core and test samples. Designs were also evaluated to ensure that they provide sufficient reactivity and shutdown margin for each control rod bank. Analyses were performed using the core loading and experiment configuration of historic M8 Power Calibration experiments (M8CAL). The Monte Carlo code MCNP was utilized for steady-state analyses, and transient calculations were performed with the point kinetics code TREKIN. Thermal analyses were performed with the COMSOL multi-physics code. Using the results of this study, a new LEU Baseline design concept is being established, which will be evaluated in detail in a future report.« less
40 CFR 86.1333-2010 - Transient test cycle generation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Transient test cycle generation. 86... (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1333-2010 Transient test cycle generation. (a) Generating transient test...
Multibeam Gpu Transient Pipeline for the Medicina BEST-2 Array
NASA Astrophysics Data System (ADS)
Magro, A.; Hickish, J.; Adami, K. Z.
2013-09-01
Radio transient discovery using next generation radio telescopes will pose several digital signal processing and data transfer challenges, requiring specialized high-performance backends. Several accelerator technologies are being considered as prototyping platforms, including Graphics Processing Units (GPUs). In this paper we present a real-time pipeline prototype capable of processing multiple beams concurrently, performing Radio Frequency Interference (RFI) rejection through thresholding, correcting for the delay in signal arrival times across the frequency band using brute-force dedispersion, event detection and clustering, and finally candidate filtering, with the capability of persisting data buffers containing interesting signals to disk. This setup was deployed at the BEST-2 SKA pathfinder in Medicina, Italy, where several benchmarks and test observations of astrophysical transients were conducted. These tests show that on the deployed hardware eight 20 MHz beams can be processed simultaneously for 640 Dispersion Measure (DM) values. Furthermore, the clustering and candidate filtering algorithms employed prove to be good candidates for online event detection techniques. The number of beams which can be processed increases proportionally to the number of servers deployed and number of GPUs, making it a viable architecture for current and future radio telescopes.
40 CFR 86.1333-90 - Transient test cycle generation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Transient test cycle generation. 86...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1333-90 Transient test cycle generation. (a) The heavy-duty transient engine cycles for Otto...
Simulation of IST Turbomachinery Power-Neutral Tests with the ANL Plant Dynamics Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moisseytsev, A.; Sienicki, J. J.
The validation of the Plant Dynamics Code (PDC) developed at Argonne National Laboratory (ANL) for the steady-state and transient analysis of supercritical carbon dioxide (sCO2) systems has been continued with new test data from the Naval Nuclear Laboratory (operated by Bechtel Marine Propulsion Corporation) Integrated System Test (IST). Although data from three runs were provided to ANL, only two of the data sets were analyzed and described in this report. The common feature of these tests is the power-neutral operation of the turbine-compressor shaft, where no external power through the alternator was provided during the tests. Instead, the shaft speedmore » was allowed to change dictated by the power balance between the turbine, the compressor, and the power losses in the shaft. The new test data turned out to be important for code validation for several reasons. First, the power-neutral operation of the shaft allows validation of the shaft dynamics equations in asynchronous mode, when the shaft is disconnected from the grid. Second, the shaft speed control with the compressor recirculation (CR) valve not only allows for testing the code control logic itself, but it also serves as a good test for validation of both the compressor surge control and the turbine bypass control actions, since the effect of the CR action on the loop conditions is similar for both of these controls. Third, the varying compressor-inlet temperature change test allows validation of the transient response of the precooler, a shell-and-tube heat exchanger. The first transient simulation of the compressor-inlet temperature variation Test 64661 showed a much slower calculated response of the precooler in the calculations than the test data. Further investigation revealed an error in calculating the heat exchanger tube mass for the PDC dynamic equations that resulted in a slower change in the tube wall temperature than measured. The transient calculations for both tests were done in two steps. The first step was done in the same fashion as the FY15 IST analysis, where the CR valve position and the turbine-compressor shaft speed were specified through the PDC input based on the test values. On the second step, the turbine-compressor shaft dynamics equations were invoked by specifying that the shaft is disconnected from the grid. In addition, the CR valve control was used to control the shaft speed, based on the turbine bypass control logic already implemented in the PDC. For the shaft power balance, the friction (windage) loss is calculated based on the shaft balance at the steady-state conditions and is assumed to be scaled to the third power of shaft speed in the transient. Both the steady-state and transient simulations of both tests showed good agreement with the test data. The only significant difference was the turbine performance, which was not predicted as well as it was in the previous IST simulation, resulting in the prediction of a somewhat different flow split between the two turbines. This flow split difference is believed to be the result of not addressing the recent turbine modifications in the model. In addition, the full simulation of the turbine-compressor speed variation Test 65261-P with shaft speed control showed greater a difference with the test data later in the transient than the other test. Further analysis of the results revealed that this difference is most likely due to scaling the shaft windage losses only with the shaft speed and ignoring its dependency on the fluid density in the shaft cavity. Based on the results of steady state and transient calculations of the Tests 64661 and 65216-P, several areas of future improvements for the PDC simulation of the IST are identified.« less
Transient Simulation of the Multi-SERTTA Experiment with MAMMOTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortensi, Javier; Baker, Benjamin; Wang, Yaqi
This work details the MAMMOTH reactor physics simulations of the Static Environment Rodlet Transient Test Apparatus (SERTTA) conducted at Idaho National Laboratory in FY-2017. TREAT static-environment experiment vehicles are being developed to enable transient testing of Pressurized Water Reactor (PWR) type fuel specimens, including fuel concepts with enhanced accident tolerance (Accident Tolerant Fuels, ATF). The MAMMOTH simulations include point reactor kinetics as well as spatial dynamics for a temperature-limited transient. The strongly coupled multi-physics solutions of the neutron flux and temperature fields are second order accurate both in the spatial and temporal domains. MAMMOTH produces pellet stack powers that are within 1.5% of the Monte Carlo reference solutions. Some discrepancies between the MCNP model used in the design of the flux collars and the Serpent/MAMMOTH models lead to higher power and energy deposition values in Multi-SERTTA unit 1. The TREAT core results compare well with the safety case computed with point reactor kinetics in RELAP5-3D. The reactor period is 44 msec, which corresponds to a reactivity insertion of 2.685% delta k/kmore » $. The peak core power in the spatial dynamics simulation is 431 MW, which the point kinetics model over-predicts by 12%. The pulse width at half the maximum power is 0.177 sec. Subtle transient effects are apparent at the beginning insertion in the experimental samples due to the control rod removal. Additional difference due to transient effects are observed in the sample powers and enthalpy. The time dependence of the power coupling factor (PCF) is calculated for the various fuel stacks of the Multi-SERTTA vehicle. Sample temperatures in excess of 3100 K, the melting point UO$$_2$$, are computed with the adiabatic heat transfer model. The planned shaped-transient might introduce additional effects that cannot be predicted with PRK models. Future modeling will be focused on the shaped-transient by improving the control rod models in MAMMOTH and adding the BISON thermo-elastic models and thermal-fluids heat transfer.« less
NASA Astrophysics Data System (ADS)
Shi, Shanbin
The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal-hydraulic and nuclear coupled startup transients are performed to investigate the flow instabilities at low pressure and low power conditions. Two different power ramps are chosen to study the effect of power density on the flow instability. The experimental startup transient tests show the existence of three different flow instability mechanisms during the low pressure startup transients, i.e., flashing instability, condensation induced instability, and density wave oscillations. Flashing instability in the chimney section of the test loop and density wave oscillation are the main flow instabilities observed when the system pressure is below 0.5 MPa. They show completely different type of oscillations, i.e., intermittent oscillation and sinusoidal oscillation, in void fraction profile during the startup transients. In order to perform nuclear-coupled startup transients with void reactivity feedback, the Point Kinetics model is utilized to calculate the transient power during the startup transients. In addition, the differences between the electric resistance heaters and typical fuel element are taken into account. The reactor power calculated shows some oscillations due to flashing instability during the transients. However, the void reactivity feedback does not have significant influence on the flow instability during the startup procedure for the NMR-50. Further investigation of very small power ramp on the startup transients is carried out for the thermal-hydraulic startup transients. It is found that very small power density can eliminate the flashing oscillation in the single phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. Furthermore, initially pressurized startup procedure is investigated to eliminate the main flow instabilities. The results show that the pressurized startup procedure can suppress the flashing instability at low pressure and low power conditions. In order to have a deep understanding of natural circulation flow instability, the quasi-steady tests are performed using the test facility installed with preheater and subcooler. The effects of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback are investigated in the quasi-steady state tests. The stability boundaries are determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. In order to predict the stability boundary theoretically, linear stability analysis in the frequency domain is performed at four sections of the loop. The flashing in the chimney is considered as an axially uniform heat source. The dimensionless characteristic equation of the pressure drop perturbation is obtained by considering the void fraction effect and outlet flow resistance in the chimney section. The flashing boundary shows some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium is recommended to improve the accuracy of flashing instability boundary.
Experimental Investigation of Transient Sublimator Performance
NASA Technical Reports Server (NTRS)
Sheth, Rubik B.; Stephan, Ryan A.; Leimkuehler, Thomas O.
2012-01-01
Sublimators have been used as heat rejection devices for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators typically operate with steady-state feedwater utilization at or near 100%. However, sublimators are currently being considered for operations in a cyclical topping mode, which represents a new mode of operation for sublimators. Sublimators can be used as a supplemental heat rejection device during mission phases where the environmental temperature or heat rejection requirement changes rapidly. This scenario may occur during low lunar orbit, low earth orbit, or other planetary orbits. In these mission phases, the need for supplemental heat rejection will vary between zero and some fraction of the overall heat load. In particular, supplemental heat rejection is required for the portion of the orbit where the radiative sink temperature exceeds the system setpoint temperature. This paper will describe the effects of these transient starts and stops on the feedwater utilization during various feedwater timing scenarios. Experimental data from various scenarios is analyzed to investigate feedwater consumption efficiency under the cyclical conditions. Start up utilization tests were conducted to better understand the transient performance. This paper also provides recommendations for future sublimator design and transient operation.
UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, N. E.; Soderberg, A. M.; Betancourt, M., E-mail: nsanders@cfa.harvard.edu
2015-02-10
Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. Wemore » present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST.« less
Analysis of the TREAT LEU Conceptual Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.
2016-03-01
Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy’s Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration’s Material Managementmore » and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO 2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.« less
Clark, Nigel N; Jarrett, Ronald P; Atkinson, Christopher M
1999-09-01
Diesel particulate matter (PM) is a significant contributor to ambient air PM 10 and PM 2.5 particulate levels. In addition, recent literature argues that submicron diesel PM is a pulmonary health hazard. There is difficulty in attributing PM emissions to specific operating modes of a diesel engine, although it is acknowledged that PM production rises dramatically with load and that high PM emissions occur during rapid load increases on turbocharged engines. Snap-acceleration tests generally identify PM associated with rapid transient operating conditions, but not with high load. To quantify the origin of PM during transient engine operation, continuous opacity measurements have been made using a Wager 650CP full flow exhaust opacity meter. Opacity measurements were taken while the vehicles were operated over transient driving cycles on a chassis dynamometer using the West Virginia University (WVU) Transportable Heavy Duty Vehicle Emissions Testing Laboratories. Data were gathered from Detroit Diesel, Cummins, Caterpillar, and Navistar heavy-duty (HD) diesel engines. Driving cycles used were the Central Business District (CBD) cycle, the WVU 5-Peak Truck cycle, the WVU 5-Mile route, and the New York City Bus (NYCB) cycle. Continuous opacity measurements, integrated over the entire driving cycle, were compared to total integrated PM mass. In addition, the truck was subjected to repeat snap-acceleration tests, and PM was collected for a composite of these snap-acceleration tests. Additional data were obtained from a fleet of 1996 New Flyer buses in Flint, MI, equipped with electronically controlled Detroit Diesel Series 50 engines. Again, continuous opacity, regulated gaseous emissions, and PM were measured. The relationship between continuous carbon monoxide (CO) emissions and continuous opacity was noted. In identifying the level of PM emissions in transient diesel engine operation, it is suggested that CO emissions may prove to be a useful indicator and may be used to apportion total PM on a continuous basis over a transient cycle. The projected continuous PM data will prove valuable in future mobile source inventory prediction.
Analysis of rig test data for an axial/centrifugal compressor in the 12 kg/sec
NASA Technical Reports Server (NTRS)
Owen, A. K.
1994-01-01
Extensive testing was done on a T55-L-712 turboshaft engine compressor in a compressor test rig at TEXTRON/Lycoming. These rig tests will be followed by a series of engine tests to occur at the NASA Lewis Research Center beginning in the last quarter of 1993. The goals of the rig testing were: (1) map the steady state compressor operation from 20 percent to 100 percent design speed, (2) quantify the effects of compressor bleed on the operation of the compressor, and (3) explore and measure the operation of the compressor in the flow ranges 'beyond' the normal compressor stall line. Instrumentation consisted of 497 steady state pressure sensors, 153 temperature sensors and 34 high response transducers for transient analysis in the pre- and post-stall operating regime. These measurements allow for generation of detailed stage characteristics as well as overall mapping. Transient data is being analyzed for the existence of modal disturbances at the front face of the compression system ('stall precursors'). This paper presents some preliminary results of the ongoing analysis and a description of the current and future program plans. It will primarily address the unsteady events at the front face of the compression system that occur as the system transitions from steady state to unsteady (stall/surge) operation.
Final report, PT IP-535-C: Test of smaller VSR`s in DR reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughn, A.D.
1963-04-17
Because of rod-sticking problems at DR Reactor, a knuckle rod of B Reactor design was installed in vertical safety channel number 28. The substitute VSR, which has a smaller diameter than the original DR rod, has been tested for its operational feasibility including both drop time and reactivity effect. The reactivity effect of the rod was estimated by comparison of the reactivity transient caused by insertion of the specific B-type rod after scramming into the pile, with similar transients caused by normal vertical safety rod in an adjacent channel. This document lists the indicated relative control strength of the rodmore » as an empirical basis for future safety calculations. Results indicate that the B-type knuckel rod in DR reactor is about 80% as strong as a normal DR vertical safety rod if used in equivalent flux distribution and location; this makes it reasonable to assume that the local control strength of the B-type knuckel rod is 98 {mu}b.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerner, R.C.; Bauer, T.H.; Morman, J.A.
Prototypic oxide fuel was subjected to simulated, fast reactor severe accident conditions in a series of in-pile tests in the Transient Reactor Test Facility reactor. Seven experiments were performed on fresh and previously irradiated oxide fuel pins under transient overpower and transient undercooled. overpower accident conditions. For each of the tests, fuel motions were observed by the hodoscope. Hodoscope data are correlated with coolant flow, pressure, and temperature data recorded by the loop instrumentation. Data were analyzed from the onset of initial failure to a final mass distribution at the end of the test. In this paper results of thesemore » analyses are compared to pre- and posttest accident calculations and to posttest metallographic accident calculations and to posttest metallographic examinations and computed tomographic reconstructions from neutron radiographs.« less
Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane
NASA Technical Reports Server (NTRS)
1984-01-01
Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.
Experimental Validation of a Closed Brayton Cycle System Transient Simulation
NASA Technical Reports Server (NTRS)
Johnson, Paul K.; Hervol, David S.
2006-01-01
The Brayton Power Conversion Unit (BPCU) is a closed cycle system with an inert gas working fluid. It is located in Vacuum Facility 6 at NASA Glenn Research Center. Was used in previous solar dynamic technology efforts (SDGTD). Modified to its present configuration by replacing the solar receiver with an electrical resistance heater. The first closed-Brayton-cycle to be coupled with an ion propulsion system. Used to examine mechanical dynamic characteristics and responses. The focus of this work was the validation of a computer model of the BPCU. Model was built using the Closed Cycle System Simulation (CCSS) design and analysis tool. Test conditions were then duplicated in CCSS. Various steady-state points. Transients involving changes in shaft rotational speed and heat input. Testing to date has shown that the BPCU is able to generate meaningful, repeatable data that can be used for computer model validation. Results generated by CCSS demonstrated that the model sufficiently reproduced the thermal transients exhibited by the BPCU system. CCSS was also used to match BPCU steady-state operating points. Cycle temperatures were within 4.1% of the data (most were within 1%). Cycle pressures were all within 3.2%. Error in alternator power (as much as 13.5%) was attributed to uncertainties in the compressor and turbine maps and alternator and bearing loss models. The acquired understanding of the BPCU behavior gives useful insight for improvements to be made to the CCSS model as well as ideas for future testing and possible system modifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
HYDRA, a new tool for mechanical testing
NASA Technical Reports Server (NTRS)
Brinkmann, P. W.
1994-01-01
The introduction outlines the verification concept for programs of the European Space Agency (ESA). The role of the Agency in coordinating the activities of major European space test centers is summarized. Major test facilities of the environmental test center at ESTEC, the Space Research and Technology Center of ESA, are shown and their specific characteristics are highlighted with special emphasis on the 6-degree-of-freedom (6-DOF) hydraulic shaker. The specified performance characteristics for sine and transient tests are presented. Results of single-axis hardware tests and 6-DOF computer simulations are included. Efforts employed to protect payloads against accidental damage in case of malfunctions of the facility are listed. Finally the operational advantages of the facility, as well as the possible use of the HYDRA control system design for future applications are indicated.
The Dynamic Radio Sky: Future Directions at cm/m-Wavelengths
NASA Astrophysics Data System (ADS)
Bower, Geoffrey C.; Cordes, J.; Croft, S.; Lazio, J.; Lorimer, D.; McLaughlin, M.
2009-01-01
The time domain of the radio wavelength sky has been only sparsely explored. Nevertheless, recent discoveries from limited surveys and serendipitous discoveries indicate that there is much to be found on timescales from nanoseconds to years and at wavelengths from meters to millimeters. These observations have revealed unexpected phenonmena such as rotating radio transients and coherent pulses from brown dwarfs. Additionally, archival studies have revealed an unknown class of radio transients without radio, optical, or high-energy hosts. The current generation of new meter- and centimeter-wave radio telescopes such as the MWA, LWA, PAPER, and ATA will exploit wide fields of view and flexible digital signal processing to systematically explore radio transient parameter space, as well as lay the scientific and technical foundation for the SKA. Known unknowns that will be the target of future transient surveys include orphan gamma-ray burst afterglows, radio supernovae, tidally-disrupted stars, flare stars, and magnetars.
Operational Results From a High Power Alternator Test Bed
NASA Technical Reports Server (NTRS)
Birchenough, Arthur; Hervol, David
2007-01-01
The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was used to simulate the operating conditions and evaluate the performance of the ATU and its interaction with various LPSF components in accordance with the current Fission Surface Power System (FSPS) requirements. The testing was carried out at the breadboard development level. These results successfully demonstrated excellent ATU power bus characteristics and rectified user load power quality during steady state and transient conditions. Information gained from this work could be used to assist the design and primary power quality considerations for a possible future FSPS. This paper describes the LPSF components and some preliminary test results.
Swift Follow-Up Observations of Candidate Gravitational-Wave Transient Events
NASA Technical Reports Server (NTRS)
Evans, P. A.; Fridriksson, J. K.; Gehrels, N.; Homan, J.; Osborne, J. P.; Siegel, M.; Beardmore, A.; Handbauer, P.; Gelbord, J.; Kennea, J. A.;
2012-01-01
We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors (within less than 10 minutes) and their candidate sky locations were observed by the Swift observatory (within 12 hr). Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge." With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime, multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.
Swift Follow-up Observations of Candidate Gravitational-wave Transient Events
NASA Astrophysics Data System (ADS)
Evans, P. A.; Fridriksson, J. K.; Gehrels, N.; Homan, J.; Osborne, J. P.; Siegel, M.; Beardmore, A.; Handbauer, P.; Gelbord, J.; Kennea, J. A.; Smith, M.; Zhu, Q.; LIGO Scientific Collaboration; Virgo Collaboration; Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Eikenberry, S.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Langley, A.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Lhuillier, V.; Li, J.; Li, T. G. F.; Lindquist, P. E.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Logue, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McDaniel, P.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenberg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pihlaja, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Poux, C.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012-12-01
We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors (within less than 10 minutes) and their candidate sky locations were observed by the Swift observatory (within 12 hr). Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge." With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime, multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.
40 CFR 1039.510 - Which duty cycles do I use for transient testing?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Which duty cycles do I use for... ENGINES Test Procedures § 1039.510 Which duty cycles do I use for transient testing? (a) Measure emissions by testing the engine on a dynamometer with one of the following transient duty cycles to determine...
NASA Astrophysics Data System (ADS)
Gebhart, Trey; Baylor, Larry; Winfrey, Leigh
2016-10-01
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a possible transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime, which is driven by a DC capacitive discharge. The current travels through the 4mm bore of a boron nitride liner and subsequently ablates and ionizes the liner material. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have a duration of 1ms at full-width half maximum. The peak currents and maximum source energies seen in this system are 2kA and 5kJ. The goal of this work is to show that the ET source produces electron densities and heat fluxes that are comparable to transient events in future large magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each test shot using infrared imaging and optical spectroscopy techniques. This work will compare the ET source output (heat flux, temperature, and density) with and without an applied magnetic field. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.
NASA Technical Reports Server (NTRS)
Lachenmayr, Georg
1992-01-01
IABG has been using various servohydraulic test facilities for many years for the reproduction of service loads and environmental loads on all kinds of test objects. For more than 15 years, a multi-axis vibration test facility has been under service, originally designed for earthquake simulation but being upgraded to the demands of space testing. First tests with the DFS/STM showed good reproduction accuracy and demonstrated the feasibility of transient vibration testing of space objects on a multi-axis hydraulic shaker. An approach to structural qualification is possible by using this test philosophy. It will be outlined and its obvious advantages over the state-of-the-art single-axis test will be demonstrated by example results. The new test technique has some special requirements to the test facility exceeding those of earthquake testing. Most important is the high reproduction accuracy demanded for a sophisticated control system. The state-of-the-art approach of analog closed-loop control circuits for each actuator combined with a static decoupling network and an off-line iterative waveform control is not able to meet all the demands. Therefore, the future over-all control system is implemented as hierarchical full digital closed-loop system on a highly parallel transputer network. The innermost layer is the digital actuator controller, the second one is the MDOF-control of the table movement. The outermost layer would be the off-line iterative waveform control, which is dedicated only to deal with the interaction of test table and test object or non-linear effects. The outline of the system will be presented.
Environmental, Transient, Three-Dimensional, Hydrothermal, Mass Transport Code - FLESCOT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Yasuo; Bao, Jie; Glass, Kevin A.
The purpose of the project was to modify and apply the transient, three-dimensional FLESCOT code to be able to effectively simulate cesium behavior in Fukushima lakes/dam reservoirs, river mouths, and coastal areas. The ultimate objective of the FLESCOT simulation is to predict future changes of cesium accumulation in Fukushima area reservoirs and costal water. These evaluation results will assist ongoing and future environmental remediation activities and policies in a systematic and comprehensive manner.
Common faults and their impacts for rooftop air conditioners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breuker, M.S.; Braun, J.E.
This paper identifies important faults and their performance impacts for rooftop air conditioners. The frequencies of occurrence and the relative costs of service for different faults were estimated through analysis of service records. Several of the important and difficult to diagnose refrigeration cycle faults were simulated in the laboratory. Also, the impacts on several performance indices were quantified through transient testing for a range of conditions and fault levels. The transient test results indicated that fault detection and diagnostics could be performed using methods that incorporate steady-state assumptions and models. Furthermore, the fault testing led to a set of genericmore » rules for the impacts of faults on measurements that could be used for fault diagnoses. The average impacts of the faults on cooling capacity and coefficient of performance (COP) were also evaluated. Based upon the results, all of the faults are significant at the levels introduced, and should be detected and diagnosed by an FDD system. The data set obtained during this work was very comprehensive, and was used to design and evaluate the performance of an FDD method that will be reported in a future paper.« less
Characterizing the role of the hippocampus during episodic simulation and encoding.
Thakral, Preston P; Benoit, Roland G; Schacter, Daniel L
2017-12-01
The hippocampus has been consistently associated with episodic simulation (i.e., the mental construction of a possible future episode). In a recent study, we identified an anterior-posterior temporal dissociation within the hippocampus during simulation. Specifically, transient simulation-related activity occurred in relatively posterior portions of the hippocampus and sustained activity occurred in anterior portions. In line with previous theoretical proposals of hippocampal function during simulation, the posterior hippocampal activity was interpreted as reflecting a transient retrieval process for the episodic details necessary to construct an episode. In contrast, the sustained anterior hippocampal activity was interpreted as reflecting the continual recruitment of encoding and/or relational processing associated with a simulation. In the present study, we provide a direct test of these interpretations by conducting a subsequent memory analysis of our previously published data to assess whether successful encoding during episodic simulation is associated with the anterior hippocampus. Analyses revealed a subsequent memory effect (i.e., later remembered > later forgotten simulations) in the anterior hippocampus. The subsequent memory effect was transient and not sustained. Taken together, the current findings provide further support for a component process model of hippocampal function during simulation. That is, unique regions of the hippocampus support dissociable processes during simulation, which include the transient retrieval of episodic information, the sustained binding of such information into a coherent episode, and the transient encoding of that episode for later retrieval. © 2017 Wiley Periodicals, Inc.
Wide Field Radio Transient Surveys
NASA Astrophysics Data System (ADS)
Bower, Geoffrey
2011-04-01
The time domain of the radio wavelength sky has been only sparsely explored. Nevertheless, serendipitous discovery and results from limited surveys indicate that there is much to be found on timescales from nanoseconds to years and at wavelengths from meters to millimeters. These observations have revealed unexpected phenomena such as rotating radio transients and coherent pulses from brown dwarfs. Additionally, archival studies have revealed an unknown class of radio transients without radio, optical, or high-energy hosts. The new generation of centimeter-wave radio telescopes such as the Allen Telescope Array (ATA) will exploit wide fields of view and flexible digital signal processing to systematically explore radio transient parameter space, as well as lay the scientific and technical foundation for the Square Kilometer Array. Known unknowns that will be the target of future transient surveys include orphan gamma-ray burst afterglows, radio supernovae, tidally-disrupted stars, flare stars, and magnetars. While probing the variable sky, these surveys will also provide unprecedented information on the static radio sky. I will present results from three large ATA surveys (the Fly's Eye survey, the ATA Twenty CM Survey (ATATS), and the Pi GHz Survey (PiGSS)) and several small ATA transient searches. Finally, I will discuss the landscape and opportunities for future instruments at centimeter wavelengths.
Progress in the measurement of SSME turbine heat flux with plug-type sensors
NASA Technical Reports Server (NTRS)
Liebert, Curt H.
1991-01-01
Data reduction was completed for tests of plug-type heat flux sensors (gauges) in a turbine blade thermal cycling tester (TBT) that is located at NASA/Marshall Space Flight Center, and a typical gauge is illustrated. This is the first time that heat flux has been measured in a Space Shuttle Main Engine (SSME) Turbopump Turbine environment. The development of the concept for the gauge was performed in a heat flux measurement facility at Lewis. In this facility, transient and steady state absorbed surface heat flux information was obtained from transient temperature measurements taken at points within the gauge. A schematic of the TBT is presented, and plots of the absorbed surface heat flux measured on the three blades tested in the TBT are presented. High quality heat flux values were measured on all three blades. The experiments demonstrated that reliable and durable gauges can be repeatedly fabricated into the airfoils. The experiment heat flux data are being used for verification of SSME analytical stress, boundary layer, and heat transfer design models. Other experimental results and future plans are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clichici, Simona, E-mail: simonaclichici@yahoo.com; Biris, Alexandru Radu; Tabaran, Flaviu
2012-03-15
Multi-walled carbon nanotubes (MWCNTs) are widely used for nanotechnology. Their impact on living organisms is, however, not entirely clarified. Oxidative stress and inflammation seem to be the key mechanisms involved in MWCNTs' cytotoxicity. Until present, pulmonary and skin models were the main tested experimental designs to assess carbon nanotubes' toxicity. The systemic administration of MWCNTs is essential, with respect for future medical applications. Our research is performed on Wistar rats and is focused on the dynamics of oxidative stress parameters in blood and liver and pro-inflammatory cytokines in liver, after single dose (270 mg l{sup −1}) ip administration of MWCNTsmore » (exterior diameter 15–25 nm, interior diameter 10–15 nm, surface 88 m{sup 2} g{sup −1}) functionalized with single strand DNA (ss-DNA). The presence of MWCNTs in blood was assessed by Raman spectroscopy, while in liver histological examination and confocal microscopy were used. It was found that ss-DNA-MWCNTs induce oxidative stress in plasma and liver, with the return of the tested parameters to normal values, 6 h after ip injection of nanotubes, with the exception of reduced glutathione in plasma. The inflammatory cytokines (TNF-α, IL-1β) had a similar pattern of evolution. We also assessed the level of ERK1/2 and the phosphorylation of p65 subunit of NF-kB in liver that had a transient increase and returned to normal at the end of the tested period. Our results demonstrate that ss-DNA-MWCNTs produce oxidative stress and inflammation, but with a transient pattern. Given the fact that antioxidants modify the profile not only for oxidative stress, but also of inflammation, the dynamics of these alterations may be of practical importance for future protective strategies. -- Highlights: ► ss-DNA-MWCNTs ip administration induce oxidative stress in plasma and liver. ► ss-DNA-MWCNTs ip administration determine liver inflammation. ► ERK1/2 and p65 phosphorylated NF-KB increase in liver after MWCNTs ip injection. ► All the alterations, except plasma GSH, return to normal within 6 days.« less
40 CFR Appendix E to Subpart S of... - Transient Test Driving Cycle
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Transient Test Driving Cycle E Appendix... Driving Cycle (I) Driver's trace. All excursions in the transient driving cycle shall be evaluated by the... shall cause a test to be void. In addition, provisions shall be available to utilize cycle validation...
40 CFR 1048.510 - What transient duty cycles apply for laboratory testing?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What transient duty cycles apply for... Procedures § 1048.510 What transient duty cycles apply for laboratory testing? (a) Starting with the 2007 model year, measure emissions by testing the engine on a dynamometer with the duty cycle described in...
A Transient Initialization Routine of the Community Ice Sheet Model for the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
van der Laan, Larissa; van den Broeke, Michiel; Noël, Brice; van de Wal, Roderik
2017-04-01
The Community Ice Sheet Model (CISM) is to be applied in future simulations of the Greenland Ice Sheet under a range of climate change scenarios, determining the sensitivity of the ice sheet to individual climatic forcings. In order to achieve reliable results regarding ice sheet stability and assess the probability of future occurrence of tipping points, a realistic initial ice sheet geometry is essential. The current work describes and evaluates the development of a transient initialization routine, using NGRIP 18O isotope data to create a temperature anomaly field. Based on the latter, surface mass balance components runoff and precipitation are perturbed for the past 125k years. The precipitation and runoff fields originate from a downscaled 1 km resolution version of the regional climate model RACMO2.3 for the period 1961-1990. The result of the initialization routine is a present-day ice sheet with a transient memory of the last glacial-interglacial cycle, which will serve as the future runs' initial condition.
EBR-II high-ramp transients under computer control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrester, R.J.; Larson, H.A.; Christensen, L.J.
1983-01-01
During reactor run 122, EBR-II was subjected to 13 computer-controlled overpower transients at ramps of 4 MWt/s to qualify the facility and fuel for transient testing of LMFBR oxide fuels as part of the EBR-II operational-reliability-testing (ORT) program. A computer-controlled automatic control-rod drive system (ACRDS), designed by EBR-II personnel, permitted automatic control on demand power during the transients.
NASA Technical Reports Server (NTRS)
Hall, G. F.
1975-01-01
A numerical analysis was developed to determine the airloads on helicopter rotors operating under near-hovering flight conditions capable of producing impulsive noise. A computer program was written in which the solutions for the rotor tip vortex geometry, inflow, aeroelastic response, and airloads are solved in a coupled manner at sequential time steps, with or without the influence of an imposed steady ambient wind or transient gust. The program was developed for future applications in which predicted airloads would be incorporated in an acoustics analysis to attempt to predict and analyze impulsive noise (blade slap). The analysis was applied to a hovering full-scale rotor for which impulsive noise was recorded in the presence of ambient wind. The predicted tip vortex coordinates are in reasonable agreement with the test data, and the blade airload solutions converged to a periodic behavior for an imposed steady ambient wind conditions.
Diffuse dispersive delay and the time convolution/attenuation of transients
NASA Technical Reports Server (NTRS)
Bittner, Burt J.
1991-01-01
Test data and analytic evaluations are presented to show that relatively poor 100 KHz shielding of 12 Db can effectively provide an electromagnetic pulse transient reduction of 100 Db. More importantly, several techniques are shown for lightning surge attenuation as an alternative to crowbar, spark gap, or power zener type clipping which simply reflects the surge. A time delay test method is shown which allows CW testing, along with a convolution program to define transient shielding effectivity where the Fourier phase characteristics of the transient are known or can be broadly estimated.
The use of transient evoked otoacoustic emissions as a hearing screen following grommet insertion.
Dale, O T; McCann, L J; Thio, D; Wells, S C; Drysdale, A J
2011-07-01
This study aimed to evaluate the sensitivity of transient evoked otoacoustic emission testing as a screening tool for hearing loss in children, after grommet insertion. A prospective study was conducted of 48 children (91 ears) aged three to 16 years who had undergone grommet insertion for glue ear. At post-operative review, pure tone audiometry was performed followed by transient evoked otoacoustic emission testing. Outcomes for both tests, in each ear, were compared. The pure tone audiometry threshold was ≤ 20 dB in 85 ears (93.4 per cent), 25 dB in two ears (2.2 per cent) and ≥ 30 dB in four ears (4.4 per cent). Transient evoked otoacoustic emissions were detected in 69 ears (75.8 per cent). The sensitivity of transient evoked otoacoustic emission testing for detecting hearing loss was 100 per cent for ≥ 30 dB loss but only 66.7 per cent for ≥ 25 dB loss. Transient evoked otoacoustic emission testing offers a sensitive means of detecting hearing loss of ≥ 30 dB following grommet insertion in children. However, the use of such testing as a screening tool may miss some cases of mild hearing loss.
Driscoll, C; Kei, J; McPherson, B
2001-01-01
(1) To establish test performance measures for Transient Evoked Otoacoustic Emission testing of 6-year-old children in a school setting; (2) To investigate whether Transient Evoked Otoacoustic Emission testing provides a more accurate and effective alternative to a pure tone screening plus tympanometry protocol. Pure tone screening, tympanometry and transient evoked otoacoustic emission data were collected from 940 subjects (1880 ears), with a mean age of 6.2 years. Subjects were tested in non-sound-treated rooms within 22 schools. Receiver operating characteristics curves along with specificity, sensitivity, accuracy and efficiency values were determined for a variety of transient evoked otoacoustic emission/pure tone screening/tympanometry comparisons. The Transient Evoked Otoacoustic Emission failure rate for the group was 20.3%. The failure rate for pure tone screening was found to be 8.9%, whilst 18.6% of subjects failed a protocol consisting of combined pure tone screening and tympanometry results. In essence, findings from the comparison of overall Transient Evoked Otoacoustic Emission pass/fail with overall pure tone screening pass/fail suggested that use of a modified Rhode Island Hearing Assessment Project criterion would result in a very high probability that a child with a pass result has normal hearing (true negative). However, the hit rate was only moderate. Selection of a signal-to-noise ratio (SNR) criterion set at > or =1 dB appeared to provide the best test performance measures for the range of SNR values investigated. Test performance measures generally declined when tympanometry results were included, with the exception of lower false alarm rates and higher positive predictive values. The exclusion of low frequency data from the Transient Evoked Otoacoustic Emission SNR versus pure tone screening analysis resulted in improved performance measures. The present study poses several implications for the clinical implementation of Transient Evoked Otoacoustic Emission screening for entry level school children. Transient Evoked Otoacoustic Emission pass/fail criteria will require revision. The findings of the current investigation offer support to the possible replacement of pure tone screening with Transient Evoked Otoacoustic Emission testing for 6-year-old children. However, they do not suggest the replacement of the pure tone screening plus tympanometry battery.
Transient survey rates for orphan afterglows from compact merger jets
NASA Astrophysics Data System (ADS)
Lamb, Gavin P.; Tanaka, Masaomi; Kobayashi, Shiho
2018-06-01
Orphan afterglows from short γ-ray bursts (GRBs) are potential candidates for electromagnetic (EM) counterpart searches to gravitational wave (GW) detected neutron star or neutron star black hole mergers. Various jet dynamical and structure models have been proposed that can be tested by the detection of a large sample of GW-EM counterparts. We make predictions for the expected rate of optical transients from these jet models for future survey telescopes, without a GW or GRB trigger. A sample of merger jets is generated in the redshift limits 0 ≤ z ≤ 3.0, and the expected peak r-band flux and time-scale above the Large Synoptic Survey Telescope (LSST) or Zwicky Transient Factory (ZTF) detection threshold, mr = 24.5 and 20.4, respectively, is calculated. General all-sky rates are shown for mr ≤ 26.0 and mr ≤ 21.0. The detected orphan and GRB afterglow rate depends on jet model, typically 16≲ R≲ 76 yr-1 for the LSST, and 2≲ R ≲ 8 yr-1 for ZTF. An excess in the rate of orphan afterglows for a survey to a depth of mr ≤ 26 would indicate that merger jets have a dominant low-Lorentz factor population, or the jets exhibit intrinsic jet structure. Careful filtering of transients is required to successfully identify orphan afterglows from either short- or long-GRB progenitors.
Intermediate Palomar Transient Factory: Realtime Image Subtraction Pipeline
Cao, Yi; Nugent, Peter E.; Kasliwal, Mansi M.
2016-09-28
A fast-turnaround pipeline for realtime data reduction plays an essential role in discovering and permitting followup observations to young supernovae and fast-evolving transients in modern time-domain surveys. In this paper, we present the realtime image subtraction pipeline in the intermediate Palomar Transient Factory. By using highperformance computing, efficient databases, and machine-learning algorithms, this pipeline manages to reliably deliver transient candidates within 10 minutes of images being taken. Our experience in using high-performance computing resources to process big data in astronomy serves as a trailblazer to dealing with data from large-scale time-domain facilities in the near future.
Intermediate Palomar Transient Factory: Realtime Image Subtraction Pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yi; Nugent, Peter E.; Kasliwal, Mansi M.
A fast-turnaround pipeline for realtime data reduction plays an essential role in discovering and permitting followup observations to young supernovae and fast-evolving transients in modern time-domain surveys. In this paper, we present the realtime image subtraction pipeline in the intermediate Palomar Transient Factory. By using highperformance computing, efficient databases, and machine-learning algorithms, this pipeline manages to reliably deliver transient candidates within 10 minutes of images being taken. Our experience in using high-performance computing resources to process big data in astronomy serves as a trailblazer to dealing with data from large-scale time-domain facilities in the near future.
Impacts of different rainfall patterns on hyporheic zone under transient conditions
NASA Astrophysics Data System (ADS)
Liu, Suning; Chui, Ting Fong May
2018-06-01
The hyporheic zone (HZ) plays an important role in stream ecology. Previous studies have mainly focused on the factors influencing the HZ in the steady state. However, the exchange between surface water and groundwater in the HZ can become transient during a storm. This study investigates the impacts of different rainfall patterns (varying in intensity and duration) on the HZ under transient conditions. A two-dimensional numerical model of a 10-m long and 2-m deep domain is developed, in which the streambed consists of a series of dunes. Brinkman-Darcy and Navier-Stokes equations are respectively solved for groundwater and surface water, and velocity and pressure are coupled at the interface (i.e., the streambed surface). To compare the results under different transient conditions, this study proposes two indicators, i.e., the influential time (IT, the time required for the HZ to return to its initial state once it starts to change) and the influential depth (ID, the maximum increment in the HZ depth). To detect the extent to which the HZ undergoes significant spatial changes, moving split-window and inflection point tests are conducted. The results indicate that rainfall intensity (RI) and rainfall duration (RD) both display logarithmic relationships with the IT and ID with high coefficients of determination, but only between certain lower and upper thresholds of the RI and RD. Moreover, the distributions of the IT and ID as a function of the RI and RD are mapped using the surface spline and kriging interpolation methods to facilitate future prediction of the IT and ID. In addition, it is observed that the IT has a linear negative correlation with the groundwater response while the ID is not affected by different groundwater responses. All of the derived relationships can be used to predict the impacts of a future rainfall event on the HZ.
Transient Go: A Mobile App for Transient Astronomy Outreach
NASA Astrophysics Data System (ADS)
Crichton, D.; Mahabal, A.; Djorgovski, S. G.; Drake, A.; Early, J.; Ivezic, Z.; Jacoby, S.; Kanbur, S.
2016-12-01
Augmented Reality (AR) is set to revolutionize human interaction with the real world as demonstrated by the phenomenal success of `Pokemon Go'. That very technology can be used to rekindle the interest in science at the school level. We are in the process of developing a prototype app based on sky maps that will use AR to introduce different classes of astronomical transients to students as they are discovered i.e. in real-time. This will involve transient streams from surveys such as the Catalina Real-time Transient Survey (CRTS) today and the Large Synoptic Survey Telescope (LSST) in the near future. The transient streams will be combined with archival and latest image cut-outs and other auxiliary data as well as historical and statistical perspectives on each of the transient types being served. Such an app could easily be adapted to work with various NASA missions and NSF projects to enrich the student experience.
Update on the Commensal VLA Low-band Ionospheric and Transient Experiment (VLITE)
NASA Astrophysics Data System (ADS)
Kassim, Namir E.; Clarke, Tracy E.; Ray, Paul S.; Polisensky, Emil; Peters, Wendy M.; Giacintucci, Simona; Helmboldt, Joseph F.; Hyman, Scott D.; Brisken, Walter; Hicks, Brian; Deneva, Julia S.
2017-01-01
The JVLA Low-band Ionospheric and Transient Experiment (VLITE) is a commensal observing system on the NRAO JVLA. The separate optical path of the prime-focus sub-GHz dipole feeds and the Cassegrain-focus GHz feeds provided an opportunity to expand the simultaneous frequency operation of the JVLA through joint observations across both systems. The low-band receivers on 10 JVLA antennas are outfitted with dedicated samplers and use spare fibers to transport the 320-384 MHz band to the VLITE correlator. The initial phase of VLITE uses a custom-designed real-time DiFX software correlator to produce autocorrelations, as well as parallel and cross-hand cross-correlations from the linear dipole feeds. NRL and NRAO have worked together to explore the scientific potential of the commensal low frequency system for ionospheric remote sensing, astrophysics and transients. VLITE operates at nearly 70% wall time with roughly 6200 hours of JVLA time recorded each year.VLITE data are used in real-time for ionospheric research and are transferred daily to NRL for processing in the astrophysics and transient pipelines. These pipelines provide automated radio frequency interference excision, calibration, imaging and self-calibration of data.We will review early scientific results from VLITE across all three science focus areas, including the ionosphere, slow (> 1 sec) transients, and astrophysics. We also discuss the future of the project, that includes its planned expansion to eVLITE including the addition of more antennas, and a parallel capability to search for fast (< 1 sec), dispersed transients, such as Fast Radio Bursts and Rotating Radio Transients. We will also present early results of commissioning tests to utilize VLITE data products to complement NRAO’s 3 GHz VLA Sky Survey (VLASS). Revised pipelines are under development for operation during the on-the-fly operation mode of the sky survey.
Challenges in investigating transient rash illness in nursery children.
Paranthaman, K; Pooransingh, S; McCarthy, N; Saunders, P; Haworth, E
2010-06-01
In October 2007, the Thames Valley Health Protection Unit (TVHPU) was notified by a parent that her child developed a transient rash after eating lunch at a nursery in Oxfordshire. An initial investigation undertaken by TVHPU was escalated when similar incidents were reported in nurseries in other parts of England. A detailed epidemiological and food tracing investigation was conducted to ascertain the aetiology. Investigations revealed 11 incidents affecting 164 children between July and November 2007 in six nurseries operated by two companies. The symptoms included a transient rash around the mouth and hands of children who ate meals prepared on site by the nurseries. Consumption of the lunch main course appeared to be a strong aetiological factor. Expert opinion pointed to biogenic amines (e.g. histamine) as a possible cause for the symptoms displayed, but there was insufficient evidence to support testing of food samples. The incident highlighted significant gaps in reporting of unexplained symptoms among children in nurseries, indicating that such incidents do not always come to the attention of public health authorities. Timely notification to HPUs will enable prompt investigation, increase the likelihood of identifying the cause and inform appropriate responses to prevent future incidents.
Stability Test for Transient-Temperature Calculations
NASA Technical Reports Server (NTRS)
Campbell, W.
1984-01-01
Graphical test helps assure numerical stability of calculations of transient temperature or diffusion in composite medium. Rectangular grid forms basis of two-dimensional finite-difference model for heat conduction or other diffusion like phenomena. Model enables calculation of transient heat transfer among up to four different materials that meet at grid point.
Characterizing SI Engine Transient Fuel Consumption in ALPHA
Examine typical transient engine operation encountered over the EPA's vehicle and engine testing drive cycles to characterize that transient fuel usage, and then describe the changes made to ALPHA to better model transient engine operation.
NASA Astrophysics Data System (ADS)
Van Tiel, Marit; Teuling, Adriaan J.; Wanders, Niko; Vis, Marc J. P.; Stahl, Kerstin; Van Loon, Anne F.
2018-01-01
Glaciers are essential hydrological reservoirs, storing and releasing water at various timescales. Short-term variability in glacier melt is one of the causes of streamflow droughts, here defined as deficiencies from the flow regime. Streamflow droughts in glacierised catchments have a wide range of interlinked causing factors related to precipitation and temperature on short and long timescales. Climate change affects glacier storage capacity, with resulting consequences for discharge regimes and streamflow drought. Future projections of streamflow drought in glacierised basins can, however, strongly depend on the modelling strategies and analysis approaches applied. Here, we examine the effect of different approaches, concerning the glacier modelling and the drought threshold, on the characterisation of streamflow droughts in glacierised catchments. Streamflow is simulated with the Hydrologiska Byråns Vattenbalansavdelning (HBV-light) model for two case study catchments, the Nigardsbreen catchment in Norway and the Wolverine catchment in Alaska, and two future climate change scenarios (RCP4.5 and RCP8.5). Two types of glacier modelling are applied, a constant and dynamic glacier area conceptualisation. Streamflow droughts are identified with the variable threshold level method and their characteristics are compared between two periods, a historical (1975-2004) and future (2071-2100) period. Two existing threshold approaches to define future droughts are employed: (1) the threshold from the historical period; (2) a transient threshold approach, whereby the threshold adapts every year in the future to the changing regimes. Results show that drought characteristics differ among the combinations of glacier area modelling and thresholds. The historical threshold combined with a dynamic glacier area projects extreme increases in drought severity in the future, caused by the regime shift due to a reduction in glacier area. The historical threshold combined with a constant glacier area results in a drastic decrease of the number of droughts. The drought characteristics between future and historical periods are more similar when the transient threshold is used, for both glacier area conceptualisations. With the transient threshold, factors causing future droughts can be analysed. This study revealed the different effects of methodological choices on future streamflow drought projections and it highlights how the options can be used to analyse different aspects of future droughts: the transient threshold for analysing future drought processes, the historical threshold to assess changes between periods, the constant glacier area to analyse the effect of short-term climate variability on droughts and the dynamic glacier area to model more realistic future discharges under climate change.
Westinghouse programs in pulsed homopolar power supplies
NASA Technical Reports Server (NTRS)
Litz, D. C.; Mullan, E.
1984-01-01
This document details Westinghouse's ongoing study of homopolar machines since 1929 with the major effort occurring in the early 1970's to the present. The effort has enabled Westinghouse to develop expertise in the technology required for the design, fabrication and testing of such machines. This includes electrical design, electromagnetic analysis, current collection, mechanical design, advanced cooling, stress analysis, transient rotor performance, bearing analysis and seal technology. Westinghouse is using this capability to explore the use of homopolar machines as pulsed power supplies for future systems in both military and commercial applications.
Investigation of thermal-fluid mechanical characteristics of the Capillary Pump Loop
NASA Technical Reports Server (NTRS)
Kiper, Ali M.
1991-01-01
The main purpose is the experimental and analytical study of behavior of the Capillary Pump Loop (CPL) heat pipe system during the transient mode of operating by applying a step heat pulse to one or more evaporators. Prediction of the CPL behavior when subjected to pulse heat loading requires further study before the transient response of CPL system can be fully understood. The following tasks are discussed: (1) exploratory testing of a CPL heat pipe for transient operational conditions which could generate the type of oscillatory inlet temperature behavior observed in an earlier testing of NASA/GSFC CPL-2 heat pipe system; (2) analytical investigation of the CPL inlet section temperature oscillations; (3) design, construction and testing of a bench-top CPL test system for study of the CPL transient operation; and (4) transient analysis of a CPL heat pipe by applying a step power input to the evaporators.
A transient laboratory method for determining the hydraulic properties of 'tight' rocks-I. Theory
Hsieh, P.A.; Tracy, J.V.; Neuzil, C.E.; Bredehoeft, J.D.; Silliman, Stephen E.
1981-01-01
Transient pulse testing has been employed increasingly in the laboratory to measure the hydraulic properties of rock samples with low permeability. Several investigators have proposed a mathematical model in terms of an initial-boundary value problem to describe fluid flow in a transient pulse test. However, the solution of this problem has not been available. In analyzing data from the transient pulse test, previous investigators have either employed analytical solutions that are derived with the use of additional, restrictive assumptions, or have resorted to numerical methods. In Part I of this paper, a general, analytical solution for the transient pulse test is presented. This solution is graphically illustrated by plots of dimensionless variables for several cases of interest. The solution is shown to contain, as limiting cases, the more restrictive analytical solutions that the previous investigators have derived. A method of computing both the permeability and specific storage of the test sample from experimental data will be presented in Part II. ?? 1981.
Continuation of surge life of transient voltage suppressor
NASA Technical Reports Server (NTRS)
Clark, O. M.
1977-01-01
Efforts expended in testing, analyzing and the development of a meaningful definition of the mean number of peak pulses before failure (mp2bf) levels of a family of transient voltage suppressor devices were documented. Tests were done to determine the ability of the transient suppressor to effectively and reliably protect against severe short term, millisecond range, and transient voltages of the types resulting from inductive load switching and induced lightning. Existing pulse testing instrumentation was utilized, interfaced to an automatic sequencing test rack accommodating up to 50 devices. Tests were performed in step stress increments of 25% beginning at 25% and extending thru 100% rated I(pp) for each voltage category. The four voltage types test were the 6.8V, 33V, 91V, and 190V. Engineering efforts addressed the problem of improving the reliability of the 190V types.
NASA Astrophysics Data System (ADS)
Price-Whelan, Adrian M.; Agueros, M. A.; Fournier, A.; Street, R.; Ofek, E.; Levitan, D. B.; PTF Collaboration
2013-01-01
Many current photometric, time-domain surveys are driven by specific goals such as searches for supernovae or transiting exoplanets, or studies of stellar variability. These goals in turn set the cadence with which individual fields are re-imaged. In the case of the Palomar Transient Factory (PTF), several such sub-surveys are being conducted in parallel, leading to extremely non-uniform sampling over the survey's nearly 20,000 sq. deg. footprint. While the typical 7.26 sq. deg. PTF field has been imaged 20 times in R-band, ~2300 sq. deg. have been observed more than 100 times. We use the existing PTF data 6.4x107 light curves) to study the trade-off that occurs when searching for microlensing events when one has access to a large survey footprint with irregular sampling. To examine the probability that microlensing events can be recovered in these data, we also test previous statistics used on uniformly sampled data to identify variables and transients. We find that one such statistic, the von Neumann ratio, performs best for identifying simulated microlensing events. We develop a selection method using this statistic and apply it to data from all PTF fields with >100 observations to uncover a number of interesting candidate events. This work can help constrain all-sky event rate predictions and tests microlensing signal recovery in large datasets, both of which will be useful to future wide-field, time-domain surveys such as the LSST.
Trends in shuttle entry heating from the correction of flight test maneuvers
NASA Technical Reports Server (NTRS)
Hodge, J. K.
1983-01-01
A new technique was developed to systematically expand the aerothermodynamic envelope of the Space Shuttle Protection System (TPS). The technique required transient flight test maneuvers which were performed on the second, fourth, and fifth Shuttle reentries. Kalman filtering and parameter estimation were used for the reduction of embedded thermocouple data to obtain best estimates of aerothermal parameters. Difficulties in reducing the data were overcome or minimized. Thermal parameters were estimated to minimize uncertainties, and heating rate parameters were estimated to correlate with angle of attack, sideslip, deflection angle, and Reynolds number changes. Heating trends from the maneuvers allow for rapid and safe envelope expansion needed for future missions, except for some local areas.
Radiation-Induced Transient Effects in Near Infrared Focal Plane Arrays
NASA Technical Reports Server (NTRS)
Reed, Robert A.; Pickel, J.; Marshall, P.; Waczynski, A.; McMurray, R.; Gee, G.; Polidan, E.; Johnson, S.; McKeivey, M.; Ennico, K.;
2004-01-01
This viewgraph presentation describes a test simulate the transient effects of cosmic ray impacts on near infrared focal plane arrays. The objectives of the test are to: 1) Characterize proton single events as function of energy and angle of incidence; 2) Measure charge spread (crosstalk) to adjacent pixels; 3) Assess transient recovery time.
NASA Astrophysics Data System (ADS)
Price-Whelan, Adrian M.; Agüeros, Marcel A.; Fournier, Amanda P.; Street, Rachel; Ofek, Eran O.; Covey, Kevin R.; Levitan, David; Laher, Russ R.; Sesar, Branimir; Surace, Jason
2014-01-01
Many photometric time-domain surveys are driven by specific goals, such as searches for supernovae or transiting exoplanets, which set the cadence with which fields are re-imaged. In the case of the Palomar Transient Factory (PTF), several sub-surveys are conducted in parallel, leading to non-uniform sampling over its ~20,000 deg2 footprint. While the median 7.26 deg2 PTF field has been imaged ~40 times in the R band, ~2300 deg2 have been observed >100 times. We use PTF data to study the trade off between searching for microlensing events in a survey whose footprint is much larger than that of typical microlensing searches, but with far-from-optimal time sampling. To examine the probability that microlensing events can be recovered in these data, we test statistics used on uniformly sampled data to identify variables and transients. We find that the von Neumann ratio performs best for identifying simulated microlensing events in our data. We develop a selection method using this statistic and apply it to data from fields with >10 R-band observations, 1.1 × 109 light curves, uncovering three candidate microlensing events. We lack simultaneous, multi-color photometry to confirm these as microlensing events. However, their number is consistent with predictions for the event rate in the PTF footprint over the survey's three years of operations, as estimated from near-field microlensing models. This work can help constrain all-sky event rate predictions and tests microlensing signal recovery in large data sets, which will be useful to future time-domain surveys, such as that planned with the Large Synoptic Survey Telescope.
NASA Technical Reports Server (NTRS)
Gore, J. V.
1977-01-01
Detailed discussions are presented of the measures taken on the Communications Technology Satellite (CTS or Hermes) which provide protection against the effects of spacecraft charging. These measures include: a comprehensive grounding philosophy and implementation; provision of command and data line transmitters and receivers for transient noise immunity; and a fairly restrictive EMI specification. Ground tests were made on materials and the impact of these tests on the CTS spacecraft is described. Hermes, launched on 17 January 1976 on a 2914 Delta vehicle, has successfully completed 10 months of operations. Anomalies observed are being assessed in relation to spacecraft charging, but no definite correlations have yet been established. A list of conclusions with regard to the CTS experience is given and recommendations for future spacecraft are also listed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Colby B.; Folsom, Charles P.; Davis, Cliff B.
Experimental testing in the Multi-Static Environment Rodlet Transient Test Apparatus (SERTTA) will lead the rebirth of transient fuel testing in the United States as part of the Accident Tolerant Fuels (ATF) progam. The Multi-SERTTA is comprised of four isolated pressurized environments capable of a wide variety of working fluids and thermal conditions. Ultimately, the TREAT reactor as well as the Multi-SERTTA test vehicle serve the purpose of providing desired thermal-hydraulic boundary conditions to the test specimen. The initial ATF testing in TREAT will focus on reactivity insertion accident (RIA) events using both gas and water environments including typical PWR operatingmore » pressures and temperatures. For the water test environment, a test configuration is envisioned using the expansion tank as part of the gas-filled expansion volume seen by the test to provide additional pressure relief. The heat transfer conditions during the high energy power pulses of RIA events remains a subject of large uncertainty and great importance for fuel performance predictions. To support transient experiments, the Multi-SERTTA vehicle has been modeled using RELAP5 with a baseline test specimen composed of UO2 fuel in zircaloy cladding. The modeling results show the influence of the designs of the specimen, vehicle, and transient power pulses. The primary purpose of this work is to provide input and boundary conditions to fuel performance code BISON. Therefore, studies of parameters having influence on specimen performance during RIA transients are presented including cladding oxidation, power pulse magnitude and width, cladding-to-coolant heat fluxes, fuel-to-cladding gap, transient boiling effects (modified CHF values), etc. The results show the great flexibility and capacity of the TREAT Multi-SERTTA test vehicle to provide testing under a wide range of prototypic thermal-hydraulic conditions as never done before.« less
Characterizing SI Engine Transient Fuel Consumption in ...
Examine typical transient engine operation encountered over the EPA's vehicle and engine testing drive cycles to characterize that transient fuel usage, and then describe the changes made to ALPHA to better model transient engine operation. To present an approach to capture dynamic fuel consumption during engine transients and then implement these identified characteristics in ALPHA.
Deconvolution of noisy transient signals: a Kalman filtering application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candy, J.V.; Zicker, J.E.
The deconvolution of transient signals from noisy measurements is a common problem occuring in various tests at Lawrence Livermore National Laboratory. The transient deconvolution problem places atypical constraints on algorithms presently available. The Schmidt-Kalman filter, a time-varying, tunable predictor, is designed using a piecewise constant model of the transient input signal. A simulation is developed to test the algorithm for various input signal bandwidths and different signal-to-noise ratios for the input and output sequences. The algorithm performance is reasonable.
Measurement of Turbine Engine Transient Airflow in Ground Test Facilities
1980-08-01
REPORT NUMBER 12 GOVT ACCESSION NO. A E D C - T R - 8 0 - 2 1 L 6. T I T L E (aqd Subl l l |e ) MEASUREMENT OF TURBINE ENGINE TRANSIENT AIRFLOW IN...21 ILLUSTRATIONS Figure !. Direct-Connect Turbine Engine Test Cell Installation...26 3. Turbine Engine Transient Airflow Simulator (TETAS) . . . . . . . . . . . . . . . . . . . . . . . . . 27 4
EXPERIMENTAL STUDIES OF TRANSIENT EFFECTS IN FAST REACTOR FUELS. SERIES I. UO$sub 2$ IRRADIATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, J.H.
1962-11-15
An experimental program to evaluate the performance of FCR and EFCR fuel during transient operation is outlined, and the initial series of tests are described in some detail. Test results from five experiments in the TREAT reactor, using 1-in. OD SS-clad UO/sub 2/ fuel specimens, are compared with regard to fuel temperatures, mechanical integrity, and post-irradiation appearance. Incipient fuel pin failure limits for transients are identified with maximum fuel temperatures in the range of 7000 deg F. Multiple transient damage to the cladding is likely for transients above the melting point of the fuel. (auth)
Design and calibration of a novel transient radiative heat flux meter for a spacecraft thermal test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Chunchen; Hu, Peng, E-mail: hupeng@ustc.edu.cn; Cheng, Xiaofang
2016-06-15
Radiative heat flux measurement is significantly important for a spacecraft thermal test. To satisfy the requirements of both high accuracy and fast response, a novel transient radiative heat flux meter was developed. Its thermal receiver consists of a central thermal receiver and two thermal guarded annular plates, which ensure the temperature distribution of the central thermal receiver to be uniform enough for reasonably applying lumped heat capacity method in a transient radiative heat flux measurement. This novel transient radiative heat flux meter design can also take accurate measurements regardless of spacecraft surface temperature and incident radiation spectrum. The measurement principlemore » was elaborated and the coefficients were calibrated. Experimental results from testing a blackbody furnace and an Xenon lamp show that this novel transient radiative heat flux meter can be used to measure transient radiative heat flux up to 1400 W/m{sup 2} with high accuracy and the response time of less than 10 s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Papadias, Dionissios D.
2015-01-01
The Transient Reactor Test Facility (TREAT) is a graphite-reflected, graphitemoderated, and air-cooled reactor fueled with 93.1% enriched UO2 particles dispersed in graphite, with a carbon-to-235U ratio of ~10000:1. TREAT was used to simulate accident conditions by subjecting fuel test samples placed at the center of the core to high energy transient pulses. The transient pulse production is based on the core’s selflimiting nature due to the negative reactivity feedback provided by the fuel graphite as the core temperature rises. The analysis of the conversion of TREAT to low enriched uranium (LEU) is currently underway. This paper presents the analytical methodsmore » used to calculate the transient performance of TREAT in terms of power pulse production and resulting peak core temperatures. The validation of the HEU neutronics TREAT model, the calculation of the temperature distribution and the temperature reactivity feedback as well as the number of fissions generated inside fuel test samples are discussed.« less
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stiles, D.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Archibald, A. M.; Banaszak, S.; Berndsen, A.; Boyles, J.; Cardoso, R. F.; Chawla, P.; Cherry, A.; Dartez, L. P.; Day, D.; Epstein, C. R.; Ford, A. J.; Flanigan, J.; Garcia, A.; Hessels, J. W. T.; Hinojosa, J.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Keane, E. F.; Kondratiev, V. I.; Kramer, M.; Leake, S.; Lorimer, D.; Lunsford, G.; Lynch, R. S.; Martinez, J. G.; Mata, A.; McLaughlin, M. A.; McPhee, C. A.; Penucci, T.; Ransom, S.; Roberts, M. S. E.; Rohr, M. D. W.; Stairs, I. H.; Stovall, K.; van Leeuwen, J.; Walker, A. N.; Wells, B. L.; LIGO Scientific Collaboration; Virgo Collaboration
2016-06-01
We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO, Virgo, and GEO interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include starquakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.
Intelligent transient transitions detection of LRE test bed
NASA Astrophysics Data System (ADS)
Zhu, Fengyu; Shen, Zhengguang; Wang, Qi
2013-01-01
Health Monitoring Systems is an implementation of monitoring strategies for complex systems whereby avoiding catastrophic failure, extending life and leading to improved asset management. A Health Monitoring Systems generally encompasses intelligence at many levels and sub-systems including sensors, actuators, devices, etc. In this paper, a smart sensor is studied, which is use to detect transient transitions of liquid-propellant rocket engines test bed. In consideration of dramatic changes of variable condition, wavelet decomposition is used to work real time in areas. Contrast to traditional Fourier transform method, the major advantage of adding wavelet analysis is the ability to detect transient transitions as well as obtaining the frequency content using a much smaller data set. Historically, transient transitions were only detected by offline analysis of the data. The methods proposed in this paper provide an opportunity to detect transient transitions automatically as well as many additional data anomalies, and provide improved data-correction and sensor health diagnostic abilities. The developed algorithms have been tested on actual rocket test data.
INITIAL ANALYSIS OF TRANSIENT POWER TIME LAG DUE TO HETEROGENEITY WITHIN THE TREAT FUEL MATRIX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.M. Wachs; A.X. Zabriskie, W.R. Marcum
2014-06-01
The topic Nuclear Safety encompasses a broad spectrum of focal areas within the nuclear industry; one specific aspect centers on the performance and integrity of nuclear fuel during a reactivity insertion accident (RIA). This specific accident has proven to be fundamentally difficult to theoretically characterize due to the numerous empirically driven characteristics that quantify the fuel and reactor performance. The Transient Reactor Test (TREAT) facility was designed and operated to better understand fuel behavior under extreme (i.e. accident) conditions; it was shutdown in 1994. Recently, efforts have been underway to commission the TREAT facility to continue testing of advanced accidentmore » tolerant fuels (i.e. recently developed fuel concepts). To aid in the restart effort, new simulation tools are being used to investigate the behavior of nuclear fuels during facility’s transient events. This study focuses specifically on the characterizing modeled effects of fuel particles within the fuel matrix of the TREAT. The objective of this study was to (1) identify the impact of modeled heterogeneity within the fuel matrix during a transient event, and (2) demonstrate acceptable modeling processes for the purpose of TREAT safety analyses, specific to fuel matrix and particle size. Hypothetically, a fuel that is dominantly heterogeneous will demonstrate a clearly different temporal heating response to that of a modeled homogeneous fuel. This time difference is a result of the uniqueness of the thermal diffusivity within the fuel particle and fuel matrix. Using MOOSE/BISON to simulate the temperature time-lag effect of fuel particle diameter during a transient event, a comparison of the average graphite moderator temperature surrounding a spherical particle of fuel was made for both types of fuel simulations. This comparison showed that at a given time and with a specific fuel particle diameter, the fuel particle (heterogeneous) simulation and the homogeneous simulation were related by a multiplier relative to the average moderator temperature. As time increases the multiplier is comparable to the factor found in a previous analytical study from literature. The implementation of this multiplier and the method of analysis may be employed to remove assumptions and increase fidelity for future research on the effect of fuel particles during transient events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Mamoru
The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup power density on the flow instability. The experimental startup transient results showed the existence of three different flow instability mechanisms, i.e., flashing instability, condensation induced flow instability, and density wave oscillations. In addition, the void-reactivity feedback did not have significant effects on the flow instability during the startup transients for NMR-50. ii Several initial startup procedures with different power ramp rates were experimentally investigated to eliminate the flow instabilities observed from the startup transients. Particularly, the very slow startup transient and pressurized startup transient tests were performed and compared. It was found that the very slow startup transients by applying very small power density can eliminate the flashing oscillations in the single-phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. The initially pressurized startup procedure was tested to eliminate the flashing instability during the startup transients as well. The pressurized startup procedure included the initial pressurization, heat-up, and venting process. The startup transient tests showed that the pressurized startup procedure could eliminate the flow instability during the transition from single-phase flow to two-phase flow at low pressure conditions. The experimental results indicated that both startup procedures were applicable to the initial startup of NMR. However, the pressurized startup procedures might be preferred due to short operating hours required. In order to have a deeper understanding of natural circulation flow instability, the quasi-steady tests were performed using the test facility installed with preheater and subcooler. The effect of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback were investigated in the quasi-steady state tests. The experimental stability boundaries were determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. To predict the stability boundary theoretically, linear stability analysis in the frequency domain was performed at four sections of the natural circulation test loop. The flashing phenomena in the chimney section was considered as an axially uniform heat source. And the dimensionless characteristic equation of the pressure drop perturbation was obtained by considering the void fraction effect and outlet flow resistance in the core section. The theoretical flashing boundary showed some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium was recommended to improve the accuracy of flashing instability boundary. As another part of the funded research, flow instabilities of a PWR-type SMR under low pressure and low power conditions were investigated experimentally as well. The NuScale reactor design was selected as the prototype for the PWR-type SMR. In order to experimentally study the natural circulation behavior of NuScale iii reactor during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. The three-level scaling method is used as well to obtain the scaling ratios derived from various non-dimensional numbers. The design of the ideally scaled facility (ISF) was initially accomplished based on these scaling ratios. Then the engineering scaled facility (ESF) was designed and constructed based on the ISF by considering engineering limitations including laboratory space, pipe size, and pipe connections etc. PWR-type SMR experiments were performed in this well-scaled test facility to investigate the potential thermal hydraulic flow instability during the blowdown events, which might occur during the loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) of the prototype PWR-type SMR. Two kinds of experiments, normal blowdown event and cold blowdown event, were experimentally investigated and compared with code predictions. The normal blowdown event was experimentally simulated since an initial condition where the pressure was lower than the designed pressure of the experiment facility, while the code prediction of blowdown started from the normal operation condition. Important thermal hydraulic parameters including reactor pressure vessel (RPV) pressure, containment pressure, local void fraction and temperature, pressure drop and natural circulation flow rate were measured and analyzed during the blowdown event. The pressure and water level transients are similar to the experimental results published by NuScale [51], which proves the capability of current loop in simulating the thermal hydraulic transient of real PWR-type SMR. During the 20000s blowdown experiment, water level in the core was always above the active fuel assemble during the experiment and proved the safety of natural circulation cooling and water recycling design of PWR-type SMR. Besides, pressure, temperature, and water level transient can be accurately predicted by RELAP5 code. However, the oscillations of natural circulation flow rate, water level and pressure drops were observed during the blowdown transients. This kind of flow oscillations are related to the water level and the location upper plenum, which is a path for coolant flow from chimney to steam generator and down comer. In order to investigate the transients start from the opening of ADS valve in both experimental and numerical way, the cold blow-down experiment is conducted. For the cold blowdown event, different from setting both reactor iv pressure vessel (RPV) and containment at high temperature and pressure, only RPV was heated close to the highest designed pressure and then open the ADS valve, same process was predicted using RELAP5 code. By doing cold blowdown experiment, the entire transients from the opening of ADS can be investigated by code and benchmarked with experimental data. Similar flow instability observed in the cold blowdown experiment. The comparison between code prediction and experiment data showed that the RELAP5 code can successfully predict the pressure void fraction and temperature transient during the cold blowdown event with limited error, but numerical instability exists in predicting natural circulation flow rate. Besides, the code is lack of capability in predicting the water level related flow instability observed in experiments.« less
Electronically controlled mechanical seal for aerospace applications--Part 2: Transient tests
NASA Technical Reports Server (NTRS)
Wolff, Paul J.; Salant, Richard F.
1995-01-01
An electronically controlled mechanical seal for use as the purge gas seal in a liquid oxygen turbopump has been fabricated and tested under transient operating conditions. The thickness of the lubricating film is controlled by adjusting the coning of the carbon face. This is accomplished by applying a voltage to a piezoelectric actuator to which the carbon face is bonded. The seal has been operated with a closed-loop control system that utilizes either the leakage rate or seal face temperature as the feedback. Both speed and pressure transients have been imposed on the seal. The transient tests have demonstrated that the seal is capable of maintaing low leakage rates while limiting face temperatures.
Beam-Switch Transient Effects in the RF Path of the ICAPA Receive Phased Array Antenna
NASA Technical Reports Server (NTRS)
Sands, O. Scott
2003-01-01
When the beam of a Phased Array Antenna (PAA) is switched from one pointing direction to another, transient effects in the RF path of the antenna are observed. Testing described in the report has revealed implementation-specific transient effects in the RF channel that are associated with digital clocking pulses that occur with transfer of data from the Beam Steering Controller (BSC) to the digital electronics of the PAA under test. The testing described here provides an initial assessment of the beam-switch phenomena by digitally acquiring time series of the RF communications channel, under CW excitation, during the period of time that the beam switch transient occurs. Effects are analyzed using time-frequency distributions and instantaneous frequency estimation techniques. The results of tests conducted with CW excitation supports further Bit-Error-Rate (BER) testing of the PAA communication channel.
Transient dynamics of a flexible rotor with squeeze film dampers
NASA Technical Reports Server (NTRS)
Buono, D. F.; Schlitzer, L. D.; Hall, R. G., III; Hibner, D. H.
1978-01-01
A series of simulated blade loss tests are reported on a test rotor designed to operate above its second bending critical speed. A series of analyses were performed which predicted the transient behavior of the test rig for each of the blade loss tests. The scope of the program included the investigation of transient rotor dynamics of a flexible rotor system, similar to modern flexible jet engine rotors, both with and without squeeze film dampers. The results substantiate the effectiveness of squeeze film dampers and document the ability of available analytical methods to predict their effectiveness and behavior.
NASA Technical Reports Server (NTRS)
Buchner, Steve; McMorrow, Dale; Poivey, Christian; Howard, James, Jr.; Pease, Rom; Savage, Mark; Boulghassoul, Younis; Massengill, Lloyd
2003-01-01
A comparison of transients from heavy-ion and pulsed-laser testing shows good agreement for many different voltage configurations. The agreement is illustrated by comparing directly individual transients and plots of transient amplitude versus width.
NASA Astrophysics Data System (ADS)
Sundberg, Marshall; Cooper, Reid F.
2010-07-01
A new viscoelastic creep function that incorporates both the effects of elastically-accommodated grain boundary sliding (GBS) and transient diffusion creep is proposed. It is demonstrated that this model can simultaneously describe both the transient microcreep curves and the shear attenuation/modulus dispersion in a fine-grained (d ∼ 5 µm) peridotite (olivine + 39 vol. % orthopyroxene) specimen. Low-frequency shear attenuation, ? , and modulus dispersion, G(ω), spectra were measured in a one-atmosphere reciprocating torsion apparatus at temperatures of 1200 ≤ T ≤ 1300°C and frequencies of 10-2.25 ≤ f ≤ 100 Hz. Reciprocating tests were complemented by a series of small stress (τ ∼ 90 kPa) microcreep experiments at the same temperatures. In contrast to previous models where the parameters of viscoelastic models are derived by fitting the Laplace transform of the creep function to measured attenuation spectra, the parameters are derived solely from the fit of the creep function to the experimental microcreep curves using different published expressions for the relaxation strength of elastically-accommodated GBS. This approach may allow future studies to better link the large dataset of steady-state creep response to the dynamic attenuation behavior.
Size and Shape of Solid Fuel Diffusion Flames in Very Low Speed Flows. M.S. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Foutch, David W.
1987-01-01
The effect of very low speed forced flows on the size and shape of a solid fuel diffusion flame are investigated experimentally. Flows due to natural convection are eliminated by performing the experiment in low gravity. The range of velocities tested is 1.5 cm/s to 6.3 cm/s and the mole fraction of oxygen in the O2/N2 atmosphere ranges from 0.15 to 0.19. The flames did not reach steady state in the 5.2 sec to which the experiment was limited. Despite limited data, trends in the transient flame temperature and, by means of extrapolation, the steady state flame size are deduced. As the flow velocity is reduced, the flames move farther from the fuel surface, and the transient flame temperature is lowered. As the oxygen concentration is reduced the flames move closer to the fuel sample and the transient flame temperature is reduced. With stand off distances up to 8.5 + or - 0.7 mm and thicknesses around 1 or 2 mm, these flames are much weaker than flames observed at normal gravity. Based on the performance of the equipment and several qualitative observations, suggestions for future work are made.
NASA Astrophysics Data System (ADS)
Ivanov, V.; Samokhin, A.; Danicheva, I.; Khrennikov, N.; Bouscuet, J.; Velkov, K.; Pasichnyk, I.
2017-01-01
In this paper the approaches used for developing of the BN-800 reactor test model and for validation of coupled neutron-physic and thermohydraulic calculations are described. Coupled codes ATHLET 3.0 (code for thermohydraulic calculations of reactor transients) and DYN3D (3-dimensional code of neutron kinetics) are used for calculations. The main calculation results of reactor steady state condition are provided. 3-D model used for neutron calculations was developed for start reactor BN-800 load. The homogeneous approach is used for description of reactor assemblies. Along with main simplifications, the main reactor BN-800 core zones are described (LEZ, MEZ, HEZ, MOX, blankets). The 3D neutron physics calculations were provided with 28-group library, which is based on estimated nuclear data ENDF/B-7.0. Neutron SCALE code was used for preparation of group constants. Nodalization hydraulic model has boundary conditions by coolant mass-flow rate for core inlet part, by pressure and enthalpy for core outlet part, which can be chosen depending on reactor state. Core inlet and outlet temperatures were chosen according to reactor nominal state. The coolant mass flow rate profiling through the core is based on reactor power distribution. The test thermohydraulic calculations made with using of developed model showed acceptable results in coolant mass flow rate distribution through the reactor core and in axial temperature and pressure distribution. The developed model will be upgraded in future for different transient analysis in metal-cooled fast reactors of BN type including reactivity transients (control rods withdrawal, stop of the main circulation pump, etc.).
Do Magnetic Fields Drive High-Energy Explosive Transients?
NASA Astrophysics Data System (ADS)
Mundell, Carole
2017-10-01
I will review the current state-of-the-art in real-time, rapid response optical imaging and polarimetric followup of transient sources such as Gamma Ray Bursts. I will interpret current results within the context of the external shock model and present predictions for future mm- and cm-wave radio observatories. Recent observational results from new radio pilot studies will also be presented.
Can We Remember Future Actions yet Forget the Last Two Minutes? Study in Transient Global Amnesia
ERIC Educational Resources Information Center
Hainselin, Mathieu; Quinette, Peggy; Desgranges, Beatrice; Martinaud, Olivier; Hannequin, Didier; de La Sayette, Vincent; Viader, Fausto; Eustache, Francis
2011-01-01
Transient global amnesia (TGA) is a clinical syndrome characterized by the abrupt onset of a massive episodic memory deficit that spares other cognitive functions. If the anterograde dimension is known to be impaired in TGA, researchers have yet to investigate prospective memory (PM)--which involves remembering to perform an intended action at…
NASA Technical Reports Server (NTRS)
Jones, Terry V.; Hippensteele, Steven A.
1988-01-01
Tests were performed in a transient heat transfer tunnel in which the model under test was preheated prior to allowing room temperature air to be suddenly drawn over the model. The resulting movement of isothermal contours on the model is revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record is obtained of a temperature and time data pair for all points on the model during a single test. Experiments on a duct model are reported in which the model was preheated using a hot air stream. A manner in which initial model temperature nonuniformities could be taken into account was investigated. The duct model was also tested with a steady-state measurement technique and results were compared with the transient measurements, but recognizing that differences existed between the upstream thermal boundary conditions. The steady-state and transient measurements were shown to be consistent with predicted values. The main advantage of this transient heat transfer technique using liquid crystals is that since the test model need not be actively heated, high-resolution measurements on surfaces with complex shapes may be obtained.
NASA Technical Reports Server (NTRS)
Kana, D. D.; Vargas, L. M.
1977-01-01
Transient excitation forces were applied separately to simple beam-and-mass launch vehicle and payload models to develop complex admittance functions for the interface and other appropriate points on the structures. These measured admittances were then analytically combined by a matrix representation to obtain a description of the coupled system dynamic characteristics. Response of the payload model to excitation of the launch vehicle model was predicted and compared with results measured on the combined models. These results are also compared with results of earlier work in which a similar procedure was employed except that steady-state sinusoidal excitation techniques were included. It is found that the method employing transient tests produces results that are better overall than the steady state methods. Furthermore, the transient method requires far less time to implement, and provides far better resolution in the data. However, the data acquisition and handling problem is more complex for this method. It is concluded that the transient test and admittance matrix prediction method can be a valuable tool for development of payload vibration tests.
Alternatives Analysis for the Resumption of Transient Testing Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee Nelson
2013-11-01
An alternatives analysis was performed for resumption of transient testing. The analysis considered eleven alternatives – including both US international facilities. A screening process was used to identify two viable alternatives from the original eleven. In addition, the alternatives analysis includes a no action alternative as required by the National Environmental Policy Act (NEPA). The alternatives considered in this analysis included: 1. Restart the Transient Reactor Test Facility (TREAT) 2. Modify the Annular Core Research Reactor (ACRR) which includes construction of a new hot cell and installation of a new hodoscope. 3. No Action
Transient and Steady-state Tests of the Space Power Research Engine with Resistive and Motor Loads
NASA Technical Reports Server (NTRS)
Rauch, Jeffrey S.; Kankam, M. David
1995-01-01
The NASA Lewis Research Center (LeRC) has been testing free-piston Stirling engine/linear alternators (FPSE/LA) to develop advanced power convertors for space-based electrical power generation. Tests reported herein were performed to evaluate the interaction and transient behavior of FPSE/LA-based power systems with typical user loads. Both resistive and small induction motor loads were tested with the space power research engine (SPRE) power system. Tests showed that the control system could maintain constant long term voltage and stable periodic operation over a large range of engine operating parameters and loads. Modest resistive load changes were shown to cause relatively large voltage and, therefore, piston and displacer amplitude excursions. Starting a typical small induction motor was shown to cause large and, in some cases, deleterious voltage transients. The tests identified the need for more effective controls, if FPSE/LAs are to be used for stand-alone power systems. The tests also generated a large body of transient dynamic data useful for analysis code validation.
Transient and steady-state tests of the space power research engine with resistive and motor loads
NASA Astrophysics Data System (ADS)
Rauch, Jeffrey S.; Kankam, M. David
1995-01-01
The NASA Lewis Research Center (LeRC) has been testing free-piston Stirling engine/linear alternators (FPSE/LA) to develop advanced power convertors for space-based electrical power generation. Tests reported herein were performed to evaluate the interaction and transient behavior of FPSE/LA-based power systems with typical user loads. Both resistive and small induction motor loads were tested with the space power research engine (SPRE) power system. Tests showed that the control system could maintain constant long term voltage and stable periodic operation over a large range of engine operating parameters and loads. Modest resistive load changes were shown to cause relatively large voltage and, therefore, piston and displacer amplitude excursions. Starting a typical small induction motor was shown to cause large and, in some cases, deleterious voltage transients. The tests identified the need for more effective controls, if FPSE/LAs are to be used for stand-alone power systems. The tests also generated a large body of transient dynamic data useful for analysis code validation.
Transient Testing of Nuclear Fuels and Materials in the United States
NASA Astrophysics Data System (ADS)
Wachs, Daniel M.
2012-12-01
The United States has established that transient irradiation testing is needed to support advanced light water reactors fuel development. The U.S. Department of Energy (DOE) has initiated an effort to reestablish this capability. Restart of the Transient Testing Reactor (TREAT) facility located at the Idaho National Laboratory (INL) is being considered for this purpose. This effort would also include the development of specialized test vehicles to support stagnant capsule and flowing loop tests as well as the enhancement of postirradiation examination capabilities and remote device assembly capabilities at the Hot Fuel Examination Facility. It is anticipated that the capability will be available to support testing by 2018, as required to meet the DOE goals for the development of accident-tolerant LWR fuel designs.
Two peculiar fast transients in a strongly lensed host galaxy
NASA Astrophysics Data System (ADS)
Rodney, S. A.; Balestra, I.; Bradac, M.; Brammer, G.; Broadhurst, T.; Caminha, G. B.; Chirivı, G.; Diego, J. M.; Filippenko, A. V.; Foley, R. J.; Graur, O.; Grillo, C.; Hemmati, S.; Hjorth, J.; Hoag, A.; Jauzac, M.; Jha, S. W.; Kawamata, R.; Kelly, P. L.; McCully, C.; Mobasher, B.; Molino, A.; Oguri, M.; Richard, J.; Riess, A. G.; Rosati, P.; Schmidt, K. B.; Selsing, J.; Sharon, K.; Strolger, L.-G.; Suyu, S. H.; Treu, T.; Weiner, B. J.; Williams, L. L. R.; Zitrin, A.
2018-04-01
A massive galaxy cluster can serve as a magnifying glass for distant stellar populations, as strong gravitational lensing magnifies background galaxies and exposes details that are otherwise undetectable. In time-domain astronomy, imaging programmes with a short cadence are able to detect rapidly evolving transients, previously unseen by surveys designed for slowly evolving supernovae. Here, we describe two unusual transient events discovered in a Hubble Space Telescope programme that combined these techniques with high-cadence imaging on a field with a strong-lensing galaxy cluster. These transients were faster and fainter than any supernovae, but substantially more luminous than a classical nova. We find that they can be explained as separate eruptions of a luminous blue variable star or a recurrent nova, or as an unrelated pair of stellar microlensing events. To distinguish between these hypotheses will require clarification of the cluster lens models, along with more high-cadence imaging of the field that could detect related transient episodes. This discovery suggests that the intersection of strong lensing with high-cadence transient surveys may be a fruitful path for future astrophysical transient studies.
Transient Micromotors That Disappear When No Longer Needed.
Chen, Chuanrui; Karshalev, Emil; Li, Jinxing; Soto, Fernando; Castillo, Roxanne; Campos, Isaac; Mou, Fangzhi; Guan, Jianguo; Wang, Joseph
2016-11-22
Transient self-destroyed micromotors that autonomously disappear in biological media at controlled rates upon completing their task, without leaving a toxic residue, are presented. The propulsion and degradation characteristics of the self-destroyed Mg/ZnO, Mg/Si, and Zn/Fe Janus micromotors and single-component Zn micromotors are described. The degradation of the Janus micromotors relies on the different corrosion rates of their core-shell components. Inductively coupled plasma optical emission spectrometry measurements are used to probe the time-dependent degradation of the different constituents of the micromotors. The toxicity of the transient micromotors is discussed toward their potential use in biomedical applications. This concept of transient micromotors offers considerable potential for diverse practical applications in the near future.
Kaiser, Jeffrey R; Bai, Shasha; Gibson, Neal; Holland, Greg; Lin, Tsai Mei; Swearingen, Christopher J; Mehl, Jennifer K; ElHassan, Nahed O
2015-10-01
Prolonged neonatal hypoglycemia is associated with poor long-term neurocognitive function. However, little is known about an association between early transient newborn hypoglycemia and academic achievement. To determine if early (within the first 3 hours of life) transient hypoglycemia (a single initial low glucose concentration, followed by a second value above a cutoff) is associated with subsequent poor academic performance. A retrospective population-based cohort study of all infants born between January 1, 1998, and December 31, 1998, at the University of Arkansas for Medical Sciences who had at least 1 recorded glucose concentration (a universal newborn glucose screening policy was in effect) was conducted. Medical record data from newborns with normoglycemia or transient hypoglycemia were matched with their student achievement test scores in 2008 from the Arkansas Department of Education and anonymized. Logistic regression models were developed to evaluate the association between transient hypoglycemia and school-age achievement test proficiency based on perinatal factors. Common hypoglycemia cutoffs of a glucose level less than 35 mg/dL (primary) and less than 40 and 45 mg/dL (secondary) were investigated. All 1943 normoglycemic and transiently hypoglycemic infants (23-42 weeks' gestation) were eligible for inclusion in the study. Infants with prolonged hypoglycemia, congenital anomalies, or chromosomal abnormalities were excluded from the study. Hypoglycemia as a newborn. The primary outcome was proficiency on fourth-grade literacy and mathematics achievement tests at age 10 years. We hypothesized a priori that newborns with early transient hypoglycemia would be less proficient on fourth-grade achievement tests compared with normoglycemic newborns. Perinatal data were matched with fourth-grade achievement test scores in 1395 newborn-student pairs (71.8%). Transient hypoglycemia (glucose level <35, <40, and <45 mg/dL) was observed in 6.4% (89 of 1395), 10.3% (143 of 1395), and 19.3% (269 of 1395) of newborns, respectively. After controlling for gestational age group, race, sex, multifetal gestation, insurance status, maternal educational level and socioeconomic status, and gravidity, transient hypoglycemia was associated with decreased probability of proficiency on literacy and mathematics fourth-grade achievement tests. For the 3 hypoglycemia cutoffs, the adjusted odds ratios (95% CIs) for literacy were 0.49 (0.28-0.83), 0.43 (0.28-0.67), and 0.62 (0.45-0.85), respectively, and the adjusted odds ratios (95% CIs) for mathematics were 0.49 (0.29-0.82), 0.51 (0.34-0.78), and 0.78 (0.57-1.08), respectively. Early transient newborn hypoglycemia was associated with lower achievement test scores at age 10 years. Given that our findings are serious and contrary to expert opinion, the results need to be validated in other populations before universal newborn glucose screening should be adopted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheatley, P.D.; Wagner, K.C.
The FIST power transient test 6PMC2 was analyzed to further the understanding of the FIST facility and provide an assessment of TRAC-BD1/MOD1. FIST power transient 6PMC2 investigated the thermal-hydraulic response following inadvertent closure of the main steam isolation valve and the subsequent failure of the reactor to scram. Failure of the high pressure core spray system was also assumed, resulting on only the reactor core isolation cooling flow for inventory makeup during the transient. The experiment was a sensitivity study with relatively high core power and low makeup rates. This study provides one of the first opportunities to assess TRAC-BD1/MOD1more » under power transient and natural circulation conditions with data from a facility with prototypical BWR geometry. The power transient test was analyzed with emphasis on the following phenomena; (a) the system pressure response, (b) the natural circulation flows and rates, and (c) the heater rod cladding temperature response. Based on the results of this study, TRAC-BD1/MOD1 can be expected to calculate the thermal-hydraulic behavior of a BWR during a power transient.« less
NASA Technical Reports Server (NTRS)
Abbott, B. P.; Hughey, Brennan; Zanolin, Michele; Szczepanczyk, Marek; Gill, Kiranjyot; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.;
2016-01-01
We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO (Laser Interferometer Gravitational Wave Observatory), Virgo (Variability of Solar Irradiance and Gravity Oscillations) and GEO (German-UK Interferometric Detector) interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include star quakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.
Experimental Validation of a Closed Brayton Cycle System Transient Simulation
NASA Technical Reports Server (NTRS)
Johnson, Paul K.; Hervol, David S.
2006-01-01
The Brayton Power Conversion Unit (BPCU) located at NASA Glenn Research Center (GRC) in Cleveland, Ohio was used to validate the results of a computational code known as Closed Cycle System Simulation (CCSS). Conversion system thermal transient behavior was the focus of this validation. The BPCU was operated at various steady state points and then subjected to transient changes involving shaft rotational speed and thermal energy input. These conditions were then duplicated in CCSS. Validation of the CCSS BPCU model provides confidence in developing future Brayton power system performance predictions, and helps to guide high power Brayton technology development.
The performance of cable braids and terminations to lightning induced transients
NASA Technical Reports Server (NTRS)
Crofts, David
1991-01-01
The latest specification detailing the test waveforms for indirect lightning transients as applied to aircraft wiring systems specify very high voltages and currents. Although considerable data exists for measuring cable screen leakage using such methods as surface transfer impedance and bulk cable injection, there is little data on the likely core transient level that is likely to be induced from these threats. In particular, the new Waveform 5 at very high current levels (10 kA) is reputed to cause severe cable damage. A range of representative cables were made with various screen termination techniques and screening levels. These were tested first to determine their relative screening performance and then they were subjected to lightning transient testing to all the specified waveforms. Core voltages were measured for each test. Tests were also performed on bundles with fewer wires to determine the failure criteria with Waveform 5 and these tests also include flat conductor cables. The test showed that correctly terminated cable bundles performed well in all the tests and would provide a high level of protection to the electronic systems. The use of overbraides, provided the individual screens are well terminated, appears to be unnecessary.
NASA Technical Reports Server (NTRS)
O'Connor, Brian; Hernandez, Deborah; Hornsby, Linda; Brown, Maria; Horton-Mullins, Kathryn
2017-01-01
Outline: Background of ISS (International Space Station) Material Science Research Rack; NASA SCA (Sample Cartridge Assembly) Design; GEDS (Gravitational Effects in Distortion in Sintering) Experiment Ampoule Design; Development Testing Summary; Thermal Modeling and Analysis. Summary: GEDS design development challenging (GEDS Ampoule design developed through MUGS (Microgravity) testing; Short duration transient sample processing; Unable to measure sample temperatures); MUGS Development testing used to gather data (Actual LGF (Low Gradient Furnace)-like furnace response; Provided sample for sintering evaluation); Transient thermal model integral to successful GEDS experiment (Development testing provided furnace response; PI (Performance Indicator) evaluation of sintering anchored model evaluation of processing durations; Thermal transient model used to determine flight SCA sample processing profiles).
A study of the transient performance of annular hydrostatic journal bearings in liquid oxygen
NASA Astrophysics Data System (ADS)
Scharrer, J. K.; Tellier, J. G.; Hibbs, R. I.
1992-07-01
A test apparatus was used to simulate a cryogenic turbopump start transient in order to determine the liftoff and touchdown speed and amount of wear of an annular hydrostatic bearing in liquid oxygen. The bearing was made of sterling silver and the journal made of Inconel 718. The target application of this configuration is the pump end bearing of the Space Shuttle Main Engine High Pressure Liquid Oxygen Turbopump. Sixty-one transient cycles were performed in liquid oxygen with an additional three tests in liquid nitrogen to certify the test facility and configuration. The bearing showed no appreciable wear during the testing, and the results indicate that the performance of the bearing was not significantly degraded during the testing.
NASA Technical Reports Server (NTRS)
Rader, W. P.; Barrett, S.; Payne, K. R.
1975-01-01
Data measurement and interpretation techniques were defined for application to the first few space shuttle flights, so that the dynamic environment could be sufficiently well established to be used to reduce the cost of future payloads through more efficient design and environmental test techniques. It was concluded that: (1) initial payloads must be given comprehensive instrumentation coverage to obtain detailed definition of acoustics, vibration, and interface loads, (2) analytical models of selected initial payloads must be developed and verified by modal surveys and flight measurements, (3) acoustic tests should be performed on initial payloads to establish realistic test criteria for components and experiments in order to minimize unrealistic failures and retest requirements, (4) permanent data banks should be set up to establish statistical confidence in the data to be used, (5) a more unified design/test specification philosophy is needed, (6) additional work is needed to establish a practical testing technique for simulation of vehicle transients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Rodriguez, J.G.; Salinas-Bravo, V.M.; Garcia-Ochoa, E.
1997-09-01
Corrosion potential transients were associated with nucleation and propagation of stress corrosion cracks in a 17-4 precipitation-hardenable (PH) martensitic stainless steel (SS) during slow strain rate tests (SSRT) at 90 C in deaerated sodium chloride (NaCl) solutions, Test solutions included 20 wt% NaCl at pH 3 and 7, similar to normal and faulted steam turbine environments, respectively. Time series were analyzed using the fast Fourier transform method. At the beginning of straining, the consistent noise behavior was perturbed with small potential transients, probably associated with rupture of the surface oxide layer. After yielding, these transients increased in intensity. At maximummore » load, the transients were still higher in intensity and frequency. These potential transients were related to crack nucleation and propagation. When the steel did not fail by stress corrosion cracking (SCC), such transients were found only at the beginning of the test. The power spectra showed some differences in all cases in roll-off slope and voltage magnitude, but these were not reliable tools to monitor the initiation and propagation of stress corrosion cracks.« less
NASA Astrophysics Data System (ADS)
Jiang, L.; Shi, Z.; Xia, J.; Liang, J.; Lu, X.; Wang, Y.; Luo, Y.
2017-12-01
Uptake of anthropogenically emitted carbon (C) dioxide by terrestrial ecosystem is critical for determining future climate. However, Earth system models project large uncertainties in future C storage. To help identify sources of uncertainties in model predictions, this study develops a transient traceability framework to trace components of C storage dynamics. Transient C storage (X) can be decomposed into two components, C storage capacity (Xc) and C storage potential (Xp). Xc is the maximum C amount that an ecosystem can potentially store and Xp represents the internal capacity of an ecosystem to equilibrate C input and output for a network of pools. Xc is co-determined by net primary production (NPP) and residence time (𝜏N), with the latter being determined by allocation coefficients, transfer coefficients, environmental scalar, and exit rate. Xp is the product of redistribution matrix (𝜏ch) and net ecosystem exchange. We applied this framework to two contrasting ecosystems, Duke Forest and Harvard Forest with an ecosystem model. This framework helps identify the mechanisms underlying the responses of carbon cycling in the two forests to climate change. The temporal trajectories of X are similar between the two ecosystems. Using this framework, we found that two different mechanisms leading to the similar trajectory. This framework has potential to reveal mechanisms behind transient C storage in response to various global change factors. It can also identify sources of uncertainties in predicted transient C storage across models and can therefore be useful for model intercomparison.
2011-02-01
seakeeping was the transient wave technique, developed analytically by Davis and Zarnick (1964). At the David Taylor Model Basin, Davis and Zarnick, and...Gersten and Johnson (1969) applied the transient wave technique to regular wave model experiments for heave and pitch, at zero forward speed. These...tests demonstrated a potential reduction by an order of magnitude of the total necessary testing time. The transient wave technique was also applied to
Method of Generating Transient Equivalent Sink and Test Target Temperatures for Swift BAT
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2004-01-01
The NASA Swift mission has a 600-km altitude and a 22 degrees maximum inclination. The sun angle varies from 45 degrees to 180 degrees in normal operation. As a result, environmental heat fluxes absorbed by the Burst Alert Telescope (BAT) radiator and loop heat pipe (LHP) compensation chambers (CCs) vary transiently. Therefore the equivalent sink temperatures for the radiator and CCs varies transiently. In thermal performance verification testing in vacuum, the radiator and CCs radiated heat to sink targets. This paper presents an analytical technique for generating orbit transient equivalent sink temperatures and a technique for generating transient sink target temperatures for the radiator and LHP CCs. Using these techniques, transient target temperatures for the radiator and LHP CCs were generated for three thermal environmental cases: worst hot case, worst cold case, and cooldown and warmup between worst hot case in sunlight and worst cold case in the eclipse, and three different heat transport values: 128 W, 255 W, and 382 W. The 128 W case assumed that the two LHPs transport 255 W equally to the radiator. The 255 W case assumed that one LHP fails so that the remaining LHP transports all the waste heat from the detector array to the radiator. The 382 W case assumed that one LHP fails so that the remaining LHP transports all the waste heat from the detector array to the radiator, and has a 50% design margin. All these transient target temperatures were successfully implemented in the engineering test unit (ETU) LHP and flight LHP thermal performance verification tests in vacuum.
DOT National Transportation Integrated Search
1976-03-01
Rolling loss tests were performed on 31 different passenger and 4 light truck tires under transient and equilibrium conditions. The tests were designed to determine the effects of load, speed, inflation pressure, tire temperature, slip angle, torque,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shayduk, Roman; Vonk, Vedran; Strempfer, Jörg
We report on the quantitative determination of the transient surface temperature of Pt(110) upon nanosecond laser pulse heating. We find excellent agreement between heat transport theory and the experimentally determined transient surface temperature as obtained from time-resolved X-ray diffraction on timescales from hundred nanoseconds to milliseconds. Exact knowledge of the surface temperature's temporal evolution after laser excitation is crucial for future pump-probe experiments at synchrotron storage rings and X-ray free electron lasers.
NASA Astrophysics Data System (ADS)
Ngeow, Chow-Choong; Yu, Po-Chieh; Bellm, Eric; Yang, Ting-Chang; Chang, Chan-Kao; Miller, Adam; Laher, Russ; Surace, Jason; Ip, Wing-Huen
2016-12-01
The wide-field synoptic sky surveys, known as the Palomar Transient Factory (PTF) and the intermediate Palomar Transient Factory (iPTF), will accumulate a large number of known and new RR Lyrae. These RR Lyrae are good tracers to study the substructure of the Galactic halo if their distance, metallicity, and galactocentric velocity can be measured. Candidates of halo RR Lyrae can be identified from their distance and metallicity before requesting spectroscopic observations for confirmation. This is because both quantities can be obtained via their photometric light curves, because the absolute V-band magnitude for RR Lyrae is correlated with metallicity, and the metallicity can be estimated using a metallicity–light curve relation. To fully utilize the PTF and iPTF light-curve data in related future work, it is necessary to derive the metallicity–light curve relation in the native PTF/iPTF R-band photometric system. In this work, we derived such a relation using the known ab-type RR Lyrae located in the Kepler field, and it is found to be {[{Fe}/{{H}}]}PTF}=-4.089{--}7.346P+1.280{φ }31 (where P is pulsational period and {φ }31 is one of the Fourier parameters describing the shape of the light curve), with a dispersion of 0.118 dex. We tested our metallicity–light curve relation with new spectroscopic observations of a few RR Lyrae in the Kepler field, as well as several data sets available in the literature. Our tests demonstrated that the derived metallicity–light curve relation could be used to estimate metallicities for the majority of the RR Lyrae, which are in agreement with the published values.
Eclipsing binary stars in the era of massive surveys First results and future prospects
NASA Astrophysics Data System (ADS)
Papageorgiou, Athanasios; Catelan, Márcio; Ramos, Rodrigo Contreras; Drake, Andrew J.
2017-09-01
Our thinking about eclipsing binary stars has undergone a tremendous change in the last decade. Eclipsing binary stars are one of nature's best laboratories for determining the fundamental physical properties of stars and thus for testing the predictions of theoretical models. Some of the largest ongoing variable star surveys include the Catalina Real-time Transient Survey (CRTS) and the VISTA Variables in the Vía Láctea survey (VVV). They both contain a large amount of photometric data and plenty of information about eclipsing binaries that wait to be extracted and exploited. Here we briefly describe our efforts in this direction.
NASA Astrophysics Data System (ADS)
Linke, J.
2006-04-01
The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive R&D. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.
Apparatus and method for defect testing of integrated circuits
Cole, Jr., Edward I.; Soden, Jerry M.
2000-01-01
An apparatus and method for defect and failure-mechanism testing of integrated circuits (ICs) is disclosed. The apparatus provides an operating voltage, V.sub.DD, to an IC under test and measures a transient voltage component, V.sub.DDT, signal that is produced in response to switching transients that occur as test vectors are provided as inputs to the IC. The amplitude or time delay of the V.sub.DDT signal can be used to distinguish between defective and defect-free (i.e. known good) ICs. The V.sub.DDT signal is measured with a transient digitizer, a digital oscilloscope, or with an IC tester that is also used to input the test vectors to the IC. The present invention has applications for IC process development, for the testing of ICs during manufacture, and for qualifying ICs for reliability.
1987-07-01
A forward segment is being lowered into the Transient Pressure Test Article (TPTA) test stand at the Marshall Space Flight Center (MSFC) east test area. The TPTA test stand, 14-feet wide, 27-feet long, and 33-feet high, was built in 1987 to provide data to verify the sealing capability of the redesign solid rocket motor (SRM) field and nozzle joints. The test facility applies pressure, temperature, and external loads to a short stack of solid rocket motor hardware. The simulated SRM ignition pressure and temperature transients are achieved by firing a small amount of specially configured solid propellant. The pressure transient is synchronized with external programmable dynamic loads that simulate lift off loads at the external tank attach points. Approximately one million pounds of dead weight on top of the test article simulates the weight of the other Shuttle elements.
1987-07-01
A forward segment is being lowered into the Transient Pressure Test Article (TPTA) test stand at thw Marshall Space Flight Center (MSFC) east test area. The TPTA test stand, 14-feet wide, 27-feet long, and 33-feet high, was built in 1987 to provide data to verify the sealing capability of the redesign solid rocket motor (SRM) field and nozzle joints. The test facility applies pressure, temperature, and external loads to a short stack of solid rocket motor hardware. The simulated SRM ignition pressure and temperature transients are achieved by firing a small amount of specially configured solid propellant. The pressure transient is synchronized with external programmable dynamic loads that simulate lift off loads at the external tank attach points. Approximately one million pounds of dead weight on top of the test article simulates the weight of the other Shuttle elements.
Transient Lift Off Testing Results for a Radial Hybrid Bearing
2009-05-01
Speed Hydrostatic Bearings,” ASME Journal of Tribology, Vol. 116, n2, 1994, pp. 337-344. [2] Scharrer, J. K., Tellier , J. and Hibbs, R., “A Study of... Tellier , J. and Hibbs, R., “A Study of the Transient Performance of Hydrostatic Journal Bearings: Part II-Experimental Results,” STLE Paper 91-TC-3B-2...1991. [4] Scharrer, J., Tellier , J. and Hibbs, R., “Start Transient Testing of an Annular Hydrostatic Bearing in Liquid Oxygen,” AIAA Paper 92-3404
Transient Lift-Off Test Results for an Experimental Hybrid Bearing in Air
2009-12-01
High-Speed Hydrostatic Bearings,” ASME Journal of Tribology, Vol. 116, n2, 1994, pp. 337-344. [2] Scharrer, J.K., Tellier , J. and Hibbs, R., “A...J.K., Tellier , J. and Hibbs, R., “A Study of the Transient Performance of Hydrostatic Journal Bearings: Part II-Experimental Results,” STLE Paper 91...TC- 3B-2, 1991. [4] Sharrer, J., Tellier , J. and Hibbs, R., “Start Transient Testing of an Annular Hydrostatic Bearing in Liquid Oxygen,” AIAA
Motivational effects on the processing of delayed intentions in the anterior prefrontal cortex.
Bruening, Jovita; Ludwig, Vera U; Paschke, Lena M; Walter, Henrik; Stelzel, Christine
2018-05-15
Delaying intentions bears the risk of interference from distracting activities during the delay interval. Motivation can increase intention retrieval success but little is known about the underlying brain mechanisms. Here, we investigated whether motivational incentives (monetary reward) modulate the processing of delayed intentions in the anterior prefrontal cortex (aPFC), known to be crucial for intention processing. Using a mixed blocked and event-related functional Magnetic Resonance Imaging design, we specifically tested whether reward affects intention processing in the aPFC in a transient or in a sustained manner and whether this is related to individual differences in retrieval success. We found a generalized effect of reward on both correct intention retrieval and ongoing task performance. Fronto-parietal regions including bilateral lateral aPFC showed sustained activity increases in rewarded compared to non-rewarded blocks as well as transient reward-related activity during the storage phase. Additionally, individual differences in reward-related performance benefits were related to the degree of transient signal increases in right lateral aPFC, specifically during intention encoding. This suggests that the ability to integrate motivational relevance into the encoding of future intentions is crucial for successful intention retrieval in addition to general increases in processing effort. Bilateral aPFC is central to these motivation-cognition interactions. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter
2017-12-01
We discuss the electromagnetic radiation from newborn binary black holes (BBHs). As a consequence of the evolution of massive stellar binaries, a binary consisting of a primary black hole (BH) and a secondary Wolf–Rayet star is expected as a BBH progenitor system. We investigate optical transients from the birth of BBHs powered by the Bondi–Hoyle–Lyttleton accretion onto the primary BH, which occur ∼1–10 Gyr earlier than gravitational-wave signals at the BH–BH merger. When the secondary massive star collapses into a BH, it may eject a fraction of its outer material and may form a disk around the primary BH and induces a powerful disk wind. These primary-induced winds can lead to optical transients with a kinetic energy of ∼1047–3 × 1048 erg, an ejecta velocity of 108–109 cm s‑1, a duration of a few days, and an absolute magnitude ranging from about ‑11 to ‑14. The light curves and late-time spectra of these transients are distinctive from those of ordinary supernovae, and detection of this type of transient is possible by future optical transient surveys if the event rate of this transient is comparable to the merger rate of BBHs. This paper focuses on the emissions from disk-driven transients induced by the primary BH, different from Paper I, which focuses on wind-driven transients from the tidally locked secondary massive star.
Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendler, O J; Takeuchi, K; Young, M Y
1986-10-01
The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.
Computational modeling of cardiovascular response to orthostatic stress
NASA Technical Reports Server (NTRS)
Heldt, Thomas; Shim, Eun B.; Kamm, Roger D.; Mark, Roger G.
2002-01-01
The objective of this study is to develop a model of the cardiovascular system capable of simulating the short-term (< or = 5 min) transient and steady-state hemodynamic responses to head-up tilt and lower body negative pressure. The model consists of a closed-loop lumped-parameter representation of the circulation connected to set-point models of the arterial and cardiopulmonary baroreflexes. Model parameters are largely based on literature values. Model verification was performed by comparing the simulation output under baseline conditions and at different levels of orthostatic stress to sets of population-averaged hemodynamic data reported in the literature. On the basis of experimental evidence, we adjusted some model parameters to simulate experimental data. Orthostatic stress simulations are not statistically different from experimental data (two-sided test of significance with Bonferroni adjustment for multiple comparisons). Transient response characteristics of heart rate to tilt also compare well with reported data. A case study is presented on how the model is intended to be used in the future to investigate the effects of post-spaceflight orthostatic intolerance.
Initial Results of the SSPX Transient Internal Probe System for Measuring Toroidal Field Profiles
NASA Astrophysics Data System (ADS)
Holcomb, C. T.; Jarboe, T. R.; Mattick, A. T.; Hill, D. N.; McLean, H. S.; Wood, R. D.; Cellamare, V.
2000-10-01
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. The Sustained Spheromak Physics Experiment (SSPX) is using a field profile diagnostic called the Transient Internal Probe (TIP). TIP consists of a verdet-glass bullet that is used to measure the magnetic field by Faraday rotation. This probe is shot through the spheromak by a light gas gun at speeds near 2 km/s. An argon laser is aligned along the path of the probe. The light passes through the probe and is retro-reflected to an ellipsometer that measures the change in polarization angle. The measurement is spatially resolved down to the probes’ 1 cm length to within 15 Gauss. Initial testing results are given. This and future data will be used to determine the field profile for equilibrium reconstruction. TIP can also be used in conjunction with wall probes to map out toroidal mode amplitudes and phases internally. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.
Multiple-Beam Detection of Fast Transient Radio Sources
NASA Technical Reports Server (NTRS)
Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.
2011-01-01
A method has been designed for using multiple independent stations to discriminate fast transient radio sources from local anomalies, such as antenna noise or radio frequency interference (RFI). This can improve the sensitivity of incoherent detection for geographically separated stations such as the very long baseline array (VLBA), the future square kilometer array (SKA), or any other coincident observations by multiple separated receivers. The transients are short, broadband pulses of radio energy, often just a few milliseconds long, emitted by a variety of exotic astronomical phenomena. They generally represent rare, high-energy events making them of great scientific value. For RFI-robust adaptive detection of transients, using multiple stations, a family of algorithms has been developed. The technique exploits the fact that the separated stations constitute statistically independent samples of the target. This can be used to adaptively ignore RFI events for superior sensitivity. If the antenna signals are independent and identically distributed (IID), then RFI events are simply outlier data points that can be removed through robust estimation such as a trimmed or Winsorized estimator. The alternative "trimmed" estimator is considered, which excises the strongest n signals from the list of short-beamed intensities. Because local RFI is independent at each antenna, this interference is unlikely to occur at many antennas on the same step. Trimming the strongest signals provides robustness to RFI that can theoretically outperform even the detection performance of the same number of antennas at a single site. This algorithm requires sorting the signals at each time step and dispersion measure, an operation that is computationally tractable for existing array sizes. An alternative uses the various stations to form an ensemble estimate of the conditional density function (CDF) evaluated at each time step. Both methods outperform standard detection strategies on a test sequence of VLBA data, and both are efficient enough for deployment in real-time, online transient detection applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schafer, Annette L.; Brown, LLoyd C.; Carathers, David C.
2014-02-01
This document contains the analysis details and summary of analyses conducted to evaluate the environmental impacts for the Resumption of Transient Fuel and Materials Testing Program. It provides an assessment of the impacts for the two action alternatives being evaluated in the environmental assessment. These alternatives are (1) resumption of transient testing using the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) and (2) conducting transient testing using the Annular Core Research Reactor (ACRR) at Sandia National Laboratory in New Mexico (SNL/NM). Analyses are provided for radiologic emissions, other air emissions, soil contamination, and groundwater contamination that couldmore » occur (1) during normal operations, (2) as a result of accidents in one of the facilities, and (3) during transport. It does not include an assessment of the biotic, cultural resources, waste generation, or other impacts that could result from the resumption of transient testing. Analyses were conducted by technical professionals at INL and SNL/NM as noted throughout this report. The analyses are based on bounding radionuclide inventories, with the same inventories used for test materials by both alternatives and different inventories for the TREAT Reactor and ACRR. An upper value on the number of tests was assumed, with a test frequency determined by the realistic turn-around times required between experiments. The estimates provided for impacts during normal operations are based on historical emission rates and projected usage rates; therefore, they are bounding. Estimated doses for members of the public, collocated workers, and facility workers that could be incurred as a result of an accident are very conservative. They do not credit safety systems or administrative procedures (such as evacuation plans or use of personal protective equipment) that could be used to limit worker doses. Doses estimated for transportation are conservative and are based on transport of the bounding radiologic inventory that will be contained in any given test. The transportation analysis assumes all transports will contain the bounding inventory.« less
This paper examines a) typical transient engine operation encountered over the EPA city and highway drive cycles, b) EPA’s vehicle and engine testing to characterize that transient fuel usage, and c) changes made to ALPHA to better model transient engine
Real-time detection of transients in OGLE-IV with application of machine learning
NASA Astrophysics Data System (ADS)
Klencki, Jakub; Wyrzykowski, Łukasz
2016-06-01
The current bottleneck of transient detection in most surveys is the problem of rejecting numerous artifacts from detected candidates. We present a triple-stage hierarchical machine learning system for automated artifact filtering in difference imaging, based on self-organizing maps. The classifier, when tested on the OGLE-IV Transient Detection System, accepts 97% of real transients while removing up to 97.5% of artifacts.
A theory of post-stall transients in multistage axial compression systems
NASA Technical Reports Server (NTRS)
Moore, F. K.; Greitzer, E. M.
1985-01-01
A theory is presented for post stall transients in multistage axial compressors. The theory leads to a set of coupled first-order ordinary differential equations capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. These changing flow features are shown to have a significant effect on the instantaneous compressor pumping characteristic during unsteady operation, and henace on the overall system behavior. It is also found from the theory that the ultimate mode of system response, stable rotating stall or surge, depends not only on the B parameter but also on other parameters, such as the compressor length-to-diameter ratio. Small values of this latter quantity tend to favor the occurrence of surge, as do large values of B. A limited parametric study is carried out to show the impact of the different system features on transient behavior. Based on analytical and numerical results, several specific topics are suggested for future research on post-stall transients.
Evaluation of Start Transient Oscillations with the J-2X Engine Gas Generator Assembly
NASA Technical Reports Server (NTRS)
Hulka, J. R.; Morgan, C. J.; Casiano, M. J.
2015-01-01
During development of the gas generator for the liquid oxygen/liquid hydrogen propellant J-2X rocket engine, distinctive and oftentimes high-amplitude pressure oscillations and hardware vibrations occurred during the start transient of nearly every workhorse gas generator assembly test, as well as during many tests of engine system hardware. These oscillations appeared whether the steady-state conditions exhibited stable behavior or not. They occurred similarly with three different injector types, and with every combustion chamber configuration tested, including chamber lengths ranging over a 5:1 range, several different nozzle types, and with or without a side branch line simulating a turbine spin start gas supply line. Generally, two sets of oscillations occurred, one earlier in the start transient and at higher frequencies, and the other almost immediately following and at lower frequencies. Multiple dynamic pressure measurements in the workhorse combustion chambers indicated that the oscillations were associated with longitudinal acoustic modes of the combustion chambers, with the earlier and higher frequency oscillation usually related to the second longitudinal acoustic mode and the later and lower frequency oscillation usually related to the first longitudinal acoustic mode. Given that several early development gas generator assemblies exhibited unstable behavior at frequencies near the first longitudinal acoustic modes of longer combustion chambers, the start transient oscillations are presumed to provide additional insight into the nature of the combustion instability mechanisms. Aspects of the steadystate oscillations and combustion instabilities from development and engine system test programs have been reported extensively in the three previous JANNAF Liquid Propulsion Subcommittee meetings (see references below). This paper describes the hardware configurations, start transient sequence operations, and transient and dynamic test data during the start transient. The implications of these results on previous analyses and understanding of the combustion instability observed during steady-state conditions, especially the effects of injector influences, is discussed.
NASA Astrophysics Data System (ADS)
Goderniaux, Pascal; BrouyèRe, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley J.; Orban, Philippe; Dassargues, Alain
2011-12-01
Several studies have highlighted the potential negative impact of climate change on groundwater reserves, but additional work is required to help water managers plan for future changes. In particular, existing studies provide projections for a stationary climate representative of the end of the century, although information is demanded for the near future. Such time-slice experiments fail to account for the transient nature of climatic changes over the century. Moreover, uncertainty linked to natural climate variability is not explicitly considered in previous studies. In this study we substantially improve upon the state-of-the-art by using a sophisticated transient weather generator in combination with an integrated surface-subsurface hydrological model (Geer basin, Belgium) developed with the finite element modeling software "HydroGeoSphere." This version of the weather generator enables the stochastic generation of large numbers of equiprobable climatic time series, representing transient climate change, and used to assess impacts in a probabilistic way. For the Geer basin, 30 equiprobable climate change scenarios from 2010 to 2085 have been generated for each of six different regional climate models (RCMs). Results show that although the 95% confidence intervals calculated around projected groundwater levels remain large, the climate change signal becomes stronger than that of natural climate variability by 2085. Additionally, the weather generator's ability to simulate transient climate change enabled the assessment of the likely time scale and associated uncertainty of a specific impact, providing managers with additional information when planning further investment. This methodology constitutes a real improvement in the field of groundwater projections under climate change conditions.
Tillman, Fred D.; Garner, Bradley D.; Truini, Margot
2013-01-01
Preliminary numerical models were developed to simulate groundwater flow in the basin-fill alluvium in Detrital, Hualapai, and Sacramento Valleys in northwestern Arizona. The purpose of this exercise was to gather and evaluate available information and data, to test natural‑recharge concepts, and to indicate directions for improving future regional groundwater models of the study area. Both steady-state and transient models were developed with a single layer incorporating vertically averaged hydraulic properties over the model layer. Boundary conditions for the models were constant-head cells along the northern and western edges of the study area, corresponding to the location of the Colorado River, and no-flow boundaries along the bedrock ridges that bound the rest of the study area, except for specified flow where Truxton Wash enters the southern end of Hualapai Valley. Steady-state conditions were simulated for the pre-1935 period, before the construction of Hoover Dam in the northwestern part of the model area. Two recharge scenarios were investigated using the steady-state model—one in which natural aquifer recharge occurs directly in places where water is available from precipitation, and another in which natural aquifer recharge from precipitation occurs in the basin-fill alluvium that drains areas of available water. A transient model with 31 stress periods was constructed to simulate groundwater flow for the period 1935–2010. The transient model incorporates changing Colorado River, Lake Mead, and Lake Mohave water levels and includes time-varying groundwater withdrawals and aquifer recharge. Both the steady-state and transient models were calibrated to available water-level observations in basin-fill alluvium, and simulations approximate observed water-level trends throughout most of the study area.
NASA Technical Reports Server (NTRS)
McArdle, Jack G.; Barth, Richard L.; Wenzel, Leon M.; Biesiadny, Thomas J.
1996-01-01
A convertible engine called the CEST TF34, using the variable inlet guide vane method of power change, was tested on an outdoor stand at the NASA Lewis Research Center with a waterbrake dynamometer for the shaft load. A new digital electronic system, in conjunction with a modified standard TF34 hydromechanical fuel control, kept engine operation stable and safely within limits. All planned testing was completed successfully. Steady-state performance and acoustic characteristics were reported previously and are referenced. This report presents results of transient and dynamic tests. The transient tests measured engine response to several rapid changes in thrust and torque commands at constant fan (shaft) speed. Limited results from dynamic tests using the pseudorandom binary noise technique are also presented. Performance of the waterbrake dynamometer is discussed in an appendix.
A Technique for Transient Thermal Testing of Thick Structures
NASA Technical Reports Server (NTRS)
Horn, Thomas J.; Richards, W. Lance; Gong, Leslie
1997-01-01
A new open-loop heat flux control technique has been developed to conduct transient thermal testing of thick, thermally-conductive aerospace structures. This technique uses calibration of the radiant heater system power level as a function of heat flux, predicted aerodynamic heat flux, and the properties of an instrumented test article. An iterative process was used to generate open-loop heater power profiles prior to each transient thermal test. Differences between the measured and predicted surface temperatures were used to refine the heater power level command profiles through the iteration process. This iteration process has reduced the effects of environmental and test system design factors, which are normally compensated for by closed-loop temperature control, to acceptable levels. The final revised heater power profiles resulted in measured temperature time histories which deviated less than 25 F from the predicted surface temperatures.
Posttest data analysis of FIST experimental TRAC-BD1/MOD1 power transient experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheatley, P.D.; Wagner, K.C.
The FIST power transient test 6PMC2 was analyzed to further the understanding of the FIST facility and provide an assessment of TRAC-BD1/MOD1. FIST power transient 6PMC2 investigated the thermal-hydraulic response following inadvertent closure of the main steam isolation valve and the subsequent failure of the reactor to scram. Failure of the high pressure core spray system was also assumed, resulting in only the reactor core isolation cooling flow for inventory makeup during the transient. The experiment was a sensitivity study with relatively high core power and low makeup rates. This study provides one of the first opportunities to assess TRAC-BD1/MOD1more » under power transient and natural circulation conditions with data from a facility with prototypical BWR geometry. The power transient test was analyzed with emphasis on the following phenomena: (a) the system pressure response, (b) the natural circulation flows and rates, and (c) the heater rod cladding temperature response. Based on the results of this study, TRAC-BD1/MOD1 can be expected to calculate the thermal-hydraulic behavior of a BWR during a power transient.« less
A Framework for Finding and Interpreting Stellar CMEs
NASA Astrophysics Data System (ADS)
Osten, Rachel A.; Wolk, Scott J.
2017-10-01
The astrophysical study of mass loss, both steady-state and transient, on the cool half of the HR diagram has implications both for the star itself and the conditions created around the star that can be hospitable or inimical to supporting life. Stellar coronal mass ejections (CMEs) have not been conclusively detected, despite the ubiquity with which their radiative counterparts in an eruptive event (flares) have been. I will review some of the different observational methods which have been used and possibly could be used in the future in the stellar case, emphasizing some of the difficulties inherent in such attempts. I will provide a framework for interpreting potential transient stellar mass loss in light of the properties of flares known to occur on magnetically active stars. This uses a physically motivated way to connect the properties of flares and coronal mass ejections and provides a testable hypothesis for observing or constraining transient stellar mass loss. Finally I will describe recent results using observations at low radio frequencies to detect stellar coronal mass ejections, and give updates on prospects using future facilities to make headway in this important area.
Transient Pressure Test Article Test Program
NASA Technical Reports Server (NTRS)
Vibbart, Charles M.
1989-01-01
The Transient Pressure Test Article (TPTA) test program is being conducted at a new test facility located in the East Test Area at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) in Huntsville, Alabama. This facility, along with the special test equipment (STE) required for facility support, was constructed specifically to test and verify the sealing capability of the Redesigned Solid Rocket Motor (RSRM) field, igniter, and nozzle joints. The test article consists of full scale RSRM hardware loaded with inert propellant and assembled in a short stack configuration. The TPTA is pressurized by igniting a propellant cartridge capable of inducing a pressure rise rate which stimulates the ignition transient that occurs during launch. Dynamic loads are applied during the pressure cycle to simulate external tank attach (ETA) strut loads present on the ETA ring. Sealing ability of the redesigned joints is evaluated under joint movement conditions produced by these combined loads since joint sealing ability depends on seal resilience velocity being greater than gap opening velocity. Also, maximum flight dynamic loads are applied to the test article which is either pressurized to 600 psia using gaseous nitrogen (GN2) or applied to the test article as the pressure decays inside the test article on the down cycle after the ignition transient cycle. This new test facility is examined with respect to its capabilities. In addition, both the topic of test effectiveness versus space vehicle flight performance and new aerospace test techniques, as well as a comparison between the old SRM design and the RSRM are presented.
Chiwaula, Levison S; Witt, Rudolf; Waibel, Hermann
2011-01-01
This paper analyses vulnerability to poverty of rural small-scale fishing communities using cross-section data from 295 households in Cameroon and 267 in Nigeria. We propose a vulnerability measure that incorporates the idea of asset poverty into the concept of expected poverty, which allows decomposing expected poverty into expected structural-chronic, structural-transient, and stochastic-transient poverty. The findings show that most households in our study areas are expected to be structurally-chronic and structurally-transient poor. This underlines the importance of asset formation for long-term poverty reduction strategies. Further refinements are possible with longitudinal data and information about future states of nature.
Transient Relay Function of Midline Thalamic Nuclei during Long-Term Memory Consolidation in Humans
ERIC Educational Resources Information Center
Thielen, Jan-Willem; Takashima, Atsuko; Rutters, Femke; Tendolkar, Indira; Fernández, Guillén
2015-01-01
To test the hypothesis that thalamic midline nuclei play a transient role in memory consolidation, we reanalyzed a prospective functional MRI study, contrasting recent and progressively more remote memory retrieval. We revealed a transient thalamic connectivity increase with the hippocampus, the medial prefrontal cortex (mPFC), and a…
NASA Astrophysics Data System (ADS)
Chen, Hong-Yu; Luo, Lai-Ma; Zan, Xiang; Xu, Qiu; Tokunaga, Kazutoshi; Liu, Jia-Qin; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng
2018-02-01
The transient thermal shock behaviors of W-ZrC/Sc2O3 composites with different ZrC contents were evaluated using transient thermal shock test by electron and laser beams. The effects of different ZrC doping contents on the surface morphology and thermal shock resistance of W-ZrC/Sc2O3 composites were then investigated. Similarity and difference between effects of electron and laser beam transient heat loading were also discussed in this study. Repeated heat loading resulted in thermal fatigue of the irradiated W-ZrC/Sc2O3 samples by thermal stress, leading to the rough surface morphologies with cracks. After different transient thermal tests, significant surface roughening, cracks, surface melting, and droplet ejection occurred. W-2vol.%Sc2O3 sample has superior thermal properties and greater resistance to surface modifications under transient thermal shock, and with the increasing ZrC content in W alloys, thermal shock resistance of W-Zr/Sc2O3 sample tends to be unsatisfied.
ROSE::FTTransform - A Source-to-Source Translation Framework for Exascale Fault-Tolerance Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lidman, J; Quinlan, D; Liao, C
2012-03-26
Exascale computing systems will require sufficient resilience to tolerate numerous types of hardware faults while still assuring correct program execution. Such extreme-scale machines are expected to be dominated by processors driven at lower voltages (near the minimum 0.5 volts for current transistors). At these voltage levels, the rate of transient errors increases dramatically due to the sensitivity to transient and geographically localized voltage drops on parts of the processor chip. To achieve power efficiency, these processors are likely to be streamlined and minimal, and thus they cannot be expected to handle transient errors entirely in hardware. Here we present anmore » open, compiler-based framework to automate the armoring of High Performance Computing (HPC) software to protect it from these types of transient processor errors. We develop an open infrastructure to support research work in this area, and we define tools that, in the future, may provide more complete automated and/or semi-automated solutions to support software resiliency on future exascale architectures. Results demonstrate that our approach is feasible, pragmatic in how it can be separated from the software development process, and reasonably efficient (0% to 30% overhead for the Jacobi iteration on common hardware; and 20%, 40%, 26%, and 2% overhead for a randomly selected subset of benchmarks from the Livermore Loops [1]).« less
Transient global amnesia—a hippocampal phenomenon?
Ponsford, J L; Donnan, G A
1980-01-01
A case of transient global amnesia of clear vascular aetiology is described. Results of neuropsychological testing carried out during the attack clarify the nature of the memory disorder and suggest that the critical region of ischaemia is the medial temporal area around the hippocampus. Follow-up testing suggests that no lasting memory impairment resulted. PMID:7373328
NASA Astrophysics Data System (ADS)
Scharrer, J. K.; Tellier, J.; Hibbs, R.
1992-10-01
A test apparatus was developed for studies of the transient performance of hydrostatic journal bearings operating in liquid nitrogen. The data obtained give the number of revolutions of the shaft contact before the liftoff and after touchdown as a function of bearing/shaft material combinations and operating conditions.
Ford, George A; Denniston, Sara; Sesser, David; Skeels, Michael R; LaFranchi, Stephen H
2016-01-01
The newborn screening (NBS) program in Oregon, USA, collects two routine specimens in all infants. The aim of our study was to determine the incidence of permanent versus transient congenital hypothyroidism (CH) in infants detected on the first versus second screening test. Thyroid function was determined in infants after the age of 3 years diagnosed with CH and born in Oregon between 2005 and 2011. Permanent hypothyroidism was defined as a TSH rise >10 mIU/ml after the first year on treatment or a TSH rise >6 mIU/ml with temporary discontinuation of l-thyroxine after the age of 3 years. Of the cases detected on the first test, 72 of 87 (83%) were permanent and 15 of 87 (17%) were transient, while of the cases detected on the second test, 5 of 22 (23%) were permanent and 17 of 22 (77%) were transient (OR 16.3, p < 0.001). There was a female preponderance detected on the first screen versus a male preponderance on the second screen. Blood spot and serum thyroid function tests at diagnosis, before treatment, were not meaningfully different between the two groups. The mean l-thyroxine dose at the age of 3 years was greater on the first screen: 61.2 versus 36.6 μg/day. Infants detected on the second NBS specimen have a higher incidence of transient CH. © 2016 S. Karger AG, Basel.
Hilton, B.; Miller, M.W.
2003-01-01
We estimated annual apparent survival, recruitment, and rate of population growth of breeding Ruby-throated Hummingbirds (Archilochus colubris), while controlling for transients, by using 18 years of capture-mark-recapture data collected during 1984-2001 at Hilton Pond Center for Piedmont Natural History near York, South Carolina. Resident males had lower apparent survival (0.30 +/- 0.05 SE) than females (0.43 +/- 0.04). Estimates of apparent survival did not differ by age. Point estimates suggested that newly banded males were less likely than females to be residents, but standard errors of these estimates overlapped (males: 0.60 +/- 0.14 SE; females: 0.67 +/- 0.09). Estimated female recruitment was 0.60 +/- 0.06 SE, meaning that 60% of adult females present in any given year had entered the population during the previous year. Our estimate for rate of change indicated the population of female hummingbirds was stable during the study period (1.04 +/- 0.04 SE). We suggest an annual goal of greater than or equal to 64 adult females and greater than or equal to 64 immature females released per banding area to enable rigorous future tests for effects of covariates on population dynamics. Development of a broader cooperating network of hummingbird banders in eastern North America could allow tests for regional or metapopulation dynamics in this species.
A theory of post-stall transients in axial compression systems. II - Application
NASA Technical Reports Server (NTRS)
Greitzer, E. M.; Moore, F. K.
1985-01-01
Using the theory developed in Part I, calculations have been carried out to show the evolution of the mass flow, pressure rise, and rotating-stall cell amplitude during compression system post-stall transients. In particular, it is shown that the unsteady growth or decay of the stall cell can have a significant effect on the instantaneous compressor pumping characteristic and hence on the overall system behavior. A limited parametric study is carried out to illustrate the impact of different system features on transient behavior. It is shown, for example, that the ultimate mode of system response, surge or stable rotating stall, depends not only on the B parameter, but also on the compressor length-to-radius ratio. Small values of this latter quantity tend to favor the occurrence of surge, as do large values of B. Based on the analytical and numerical results, several specific topics are suggested for future research on post-stall transients.
The Astrophysical Multimessenger Observatory Network (AMON)
NASA Technical Reports Server (NTRS)
Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh;
2013-01-01
We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.
NASA Technical Reports Server (NTRS)
Nehl, T. W.; Demerdash, N. A.
1983-01-01
Mathematical models capable of simulating the transient, steady state, and faulted performance characteristics of various brushless dc machine-PSA (power switching assembly) configurations were developed. These systems are intended for possible future use as primemovers in EMAs (electromechanical actuators) for flight control applications. These machine-PSA configurations include wye, delta, and open-delta connected systems. The research performed under this contract was initially broken down into the following six tasks: development of mathematical models for various machine-PSA configurations; experimental validation of the model for failure modes; experimental validation of the mathematical model for shorted turn-failure modes; tradeoff study; and documentation of results and methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Chen; CM Regan; D. Noe
2006-01-09
Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas releasemore » and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.« less
NASA Technical Reports Server (NTRS)
Ko, W. L.; Schuster, L. S.
1984-01-01
This paper concerns the transient dynamic analysis of the B-52 aircraft carrying the Space Shuttle solid rocket booster drop test vehicle (SRB/DTV). The NASA structural analysis (NASTRAN) finite element computer program was used in the analysis. The B-52 operating conditions considered for analysis were (1) landing and (2) braking on aborted takeoff runs. The transient loads for the B-52 pylon front and rear hooks were calculated. The results can be used to establish the safe maneuver envelopes for the B-52 carrying the SRB/DTV in landings and brakings.
NASA Technical Reports Server (NTRS)
Ko, W. L.; Schuster, L. S.
1983-01-01
This paper concerns the transient dynamic analysis of the B-52 aircraft carrying the Space Shuttle solid-rocket booster drop-test vehicle (SRB/DTV). The NASA structural analysis (NASTRAN) finite-element computer program was used in the analysis. The B-52 operating conditions considered for analysis were (1) landing and (2) braking on aborted takeoff runs. The transient loads for the B-52 pylon front and rear hooks were calculated. The results can be used to establish the safe maneuver envelopes for the B-52 carrying the SRB/DTV in landings and brakings.
Non-Pilot Protection of the HVDC Grid
NASA Astrophysics Data System (ADS)
Badrkhani Ajaei, Firouz
This thesis develops a non-pilot protection system for the next generation power transmission system, the High-Voltage Direct Current (HVDC) grid. The HVDC grid protection system is required to be (i) adequately fast to prevent damages and/or converter blocking and (ii) reliable to minimize the impacts of faults. This study is mainly focused on the Modular Multilevel Converter (MMC) -based HVDC grid since the MMC is considered as the building block of the future HVDC systems. The studies reported in this thesis include (i) developing an enhanced equivalent model of the MMC to enable accurate representation of its DC-side fault response, (ii) developing a realistic HVDC-AC test system that includes a five-terminal MMC-based HVDC grid embedded in a large interconnected AC network, (iii) investigating the transient response of the developed test system to AC-side and DC-side disturbances in order to determine the HVDC grid protection requirements, (iv) investigating the fault surge propagation in the HVDC grid to determine the impacts of the DC-side fault location on the measured signals at each relay location, (v) designing a protection algorithm that detects and locates DC-side faults reliably and sufficiently fast to prevent relay malfunction and unnecessary blocking of the converters, and (vi) performing hardware-in-the-loop tests on the designed relay to verify its potential to be implemented in hardware. The results of the off-line time domain transients studies in the PSCAD software platform and the real-time hardware-in-the-loop tests using an enhanced version of the RTDS platform indicate that the developed HVDC grid relay meets all technical requirements including speed, dependability, security, selectivity, and robustness. Moreover, the developed protection algorithm does not impose considerable computational burden on the hardware.
40 CFR 1048.510 - What transient duty cycles apply for laboratory testing?
Code of Federal Regulations, 2013 CFR
2013-07-01
... model year, measure emissions by testing the engine on a dynamometer with the duty cycle described in Appendix II to determine whether it meets the transient emission standards in § 1048.101(a). (b) Calculate cycle statistics and compare with the established criteria as specified in 40 CFR 1065.514 to confirm...
40 CFR 1048.510 - What transient duty cycles apply for laboratory testing?
Code of Federal Regulations, 2011 CFR
2011-07-01
... model year, measure emissions by testing the engine on a dynamometer with the duty cycle described in Appendix II to determine whether it meets the transient emission standards in § 1048.101(a). (b) Calculate cycle statistics and compare with the established criteria as specified in 40 CFR 1065.514 to confirm...
40 CFR 1048.510 - What transient duty cycles apply for laboratory testing?
Code of Federal Regulations, 2014 CFR
2014-07-01
... model year, measure emissions by testing the engine on a dynamometer with the duty cycle described in Appendix II to determine whether it meets the transient emission standards in § 1048.101(a). (b) Calculate cycle statistics and compare with the established criteria as specified in 40 CFR 1065.514 to confirm...
40 CFR 1048.510 - What transient duty cycles apply for laboratory testing?
Code of Federal Regulations, 2012 CFR
2012-07-01
... model year, measure emissions by testing the engine on a dynamometer with the duty cycle described in Appendix II to determine whether it meets the transient emission standards in § 1048.101(a). (b) Calculate cycle statistics and compare with the established criteria as specified in 40 CFR 1065.514 to confirm...
Ward, Adam S.; Kelleher, Christa A.; Mason, Seth J. K.; Wagener, Thorsten; McIntyre, Neil; McGlynn, Brian L.; Runkel, Robert L.; Payn, Robert A.
2017-01-01
Researchers and practitioners alike often need to understand and characterize how water and solutes move through a stream in terms of the relative importance of in-stream and near-stream storage and transport processes. In-channel and subsurface storage processes are highly variable in space and time and difficult to measure. Storage estimates are commonly obtained using transient-storage models (TSMs) of the experimentally obtained solute-tracer test data. The TSM equations represent key transport and storage processes with a suite of numerical parameters. Parameter values are estimated via inverse modeling, in which parameter values are iteratively changed until model simulations closely match observed solute-tracer data. Several investigators have shown that TSM parameter estimates can be highly uncertain. When this is the case, parameter values cannot be used reliably to interpret stream-reach functioning. However, authors of most TSM studies do not evaluate or report parameter certainty. Here, we present a software tool linked to the One-dimensional Transport with Inflow and Storage (OTIS) model that enables researchers to conduct uncertainty analyses via Monte-Carlo parameter sampling and to visualize uncertainty and sensitivity results. We demonstrate application of our tool to 2 case studies and compare our results to output obtained from more traditional implementation of the OTIS model. We conclude by suggesting best practices for transient-storage modeling and recommend that future applications of TSMs include assessments of parameter certainty to support comparisons and more reliable interpretations of transport processes.
The Goddard program of gamma ray transient astronomy
NASA Technical Reports Server (NTRS)
Cline, T. L.; Desai, U. D.; Teegarden, B. J.
1980-01-01
Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5.
NASA Technical Reports Server (NTRS)
Dryer, M. (Editor); Tandberg-Hanssen, E.
1980-01-01
The symposium focuses on solar phenomena as the source of transient events propagating through the solar system, and theoretical and observational assessments of the dynamic processes involved in these events. The topics discussed include the life history of coronal structures and fields, coronal and interplanetary responses to long time scale phenomena, solar transient phenomena affecting the corona and interplanetary medium, coronal and interplanetary responses to short time scale phenomena, and future directions.
Transient imaging for real-time tracking around a corner
NASA Astrophysics Data System (ADS)
Klein, Jonathan; Laurenzis, Martin; Hullin, Matthias
2016-10-01
Non-line-of-sight imaging is a fascinating emerging area of research and expected to have an impact in numerous application fields including civilian and military sensing. Performance of human perception and situational awareness can be extended by the sensing of shapes and movement around a corner in future scenarios. Rather than seeing through obstacles directly, non-line-of-sight imaging relies on analyzing indirect reflections of light that traveled around the obstacle. In previous work, transient imaging was established as the key mechanic to enable the extraction of useful information from such reflections. So far, a number of different approaches based on transient imaging have been proposed, with back projection being the most prominent one. Different hardware setups were used for the acquisition of the required data, however all of them have severe drawbacks such as limited image quality, long capture time or very high prices. In this paper we propose the analysis of synthetic transient renderings to gain more insights into the transient light transport. With this simulated data, we are no longer bound to the imperfect data of real systems and gain more flexibility and control over the analysis. In a second part, we use the insights of our analysis to formulate a novel reconstruction algorithm. It uses an adapted light simulation to formulate an inverse problem which is solved in an analysis-by-synthesis fashion. Through rigorous optimization of the reconstruction, it then becomes possible to track known objects outside the line of side in real time. Due to the forward formulation of the light transport, the algorithm is easily expandable to more general scenarios or different hardware setups. We therefore expect it to become a viable alternative to the classic back projection approach in the future.
NASA Technical Reports Server (NTRS)
Carreno, Victor A.; Choi, G.; Iyer, R. K.
1990-01-01
A simulation study is described which predicts the susceptibility of an advanced control system to electrical transients resulting in logic errors, latched errors, error propagation, and digital upset. The system is based on a custom-designed microprocessor and it incorporates fault-tolerant techniques. The system under test and the method to perform the transient injection experiment are described. Results for 2100 transient injections are analyzed and classified according to charge level, type of error, and location of injection.
Laser-induced transient grating setup with continuously tunable period
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vega-Flick, A.; Applied Physics Department, CINVESTAV-Unidad Mérida, Carretera Antigua a Progreso Km 6, Cordemex, Mérida, Yucatán 97310 Mexico; Eliason, J. K.
2015-12-15
We present a modification of the laser-induced transient grating setup enabling continuous tuning of the transient grating period. The fine control of the period is accomplished by varying the angle of the diffraction grating used to split excitation and probe beams. The setup has been tested by measuring dispersion of bulk and surface acoustic waves in both transmission and reflection geometries. The presented modification is fully compatible with optical heterodyne detection and can be easily implemented in any transient grating setup.
Automated transient identification in the Dark Energy Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, D. A.
2015-08-20
We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factormore » of 13.4, while only 1.0 percent of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Here we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.« less
Automated transient identification in the Dark Energy Survey
Goldstein, D. A.; D'Andrea, C. B.; Fischer, J. A.; ...
2015-09-01
We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factormore » of 13.4, while only 1.0% of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Furthermore, we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.« less
Thermal Vacuum Testing of a Helium Loop Heat Pipe for Large Area Cryocooling
NASA Technical Reports Server (NTRS)
Ku, Jentung; Robinson, Franklin
2016-01-01
Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and to verify its ability to cool large areas or components in the 3 degrees Kelvin temperature range. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully by simply applying power to both the capillary pump and the evaporator plate without pre-conditioning. It could adapt to a rapid heat load change and quickly reach a new steady state. Heat removal between 10 megawatts and 140 megawatts was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.
A programmable power processor for high power space applications
NASA Technical Reports Server (NTRS)
Lanier, J. R., Jr.; Graves, J. R.; Kapustka, R. E.; Bush, J. R., Jr.
1982-01-01
A Programmable Power Processor (P3) has been developed for application in future large space power systems. The P3 is capable of operation over a wide range of input voltage (26 to 375 Vdc) and output voltage (24 to 180 Vdc). The peak output power capability is 18 kW (180 V at 100 A). The output characteristics of the P3 can be programmed to any voltage and/or current level within the limits of the processor and may be controlled as a function of internal or external parameters. Seven breadboard P3s and one 'flight-type' engineering model P3 have been built and tested both individually and in electrical power systems. The programmable feature allows the P3 to be used in a variety of applications by changing the output characteristics. Test results, including efficiency at various input/output combinations, transient response, and output impedance, are presented.
Photovoltaic array space power plus diagnostics experiment
NASA Technical Reports Server (NTRS)
Guidice, Donald A.
1990-01-01
The objective of the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment is to measure the effects of the interaction of the low- to mid-altitude space environment on the performance of a diverse set of small solar-cell arrays (planar and concentrator, representative of present and future military technologies) under differing conditions of velocity-vector orientation and simulated (by biasing) high-voltage operation. Solar arrays to be tested include Si and GaAs planar arrays and several types of GaAs concentrator arrays. Diagnostics (a Langmuir probe and a pressure gauge) and a transient pulse monitor (to measure radiated and conducted EMI during arcing) will be used to determine the impact of the environment on array operation to help verify various interactions models. Results from a successful PASP Plus flight will furnish answers to important interactions questions and provide inputs for design and test standards for photovoltaic space-power subsystems.
Tiny Hiccups To Titanic Explosions: Tackling Transients in Anomalous X-ray Pulsars
NASA Astrophysics Data System (ADS)
Kaspi, Victoria
2006-09-01
Recently discovered transient events in Anomalous X-ray Pulsars (AXPs) may be a Rosetta Stone for understanding the persistent emission from magnetars. They also may hold the key to quantifying the number of magnetars in the Galaxy. Here we request Chandra TOO time to observe any AXP following a rare transient event, including a major outburst or a long-duration flare. Specifically, the requested observations will determine the pulsed fraction and spectral evolution of a transient AXP event as the source relaxes back to quiescence, in order to quantitatively test the "twisted magnetosphere" model for magnetars, and establish the basic phenomenology of transient AXP events.
TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars
NASA Astrophysics Data System (ADS)
Kaspi, Victoria
2007-09-01
Recently discovered transient events in Anomalous X-ray Pulsars (AXPs) may be a Rosetta Stone for understanding the persistent emission from magnetars. They also may hold the key to quantifying the number of magnetars in the Galaxy. Here we request Chandra TOO time to observe any AXP following a rare transient event, including a major outburst or a long-duration flare. Specifically, the requested observations will determine the pulsed fraction and spectral evolution of a transient AXP event as the source relaxes back to quiescence, in order to quantitatively test the "twisted magnetosphere" model for magnetars, and establish the basic phenomenology of transient AXP events.
NASA Technical Reports Server (NTRS)
Gauntner, D. J.; Yeh, F. C.
1975-01-01
Experimental transient turbine blade temperatures were obtained from tests conducted on air-cooled blades in a research turbojet engine, cycling between cruise and idle conditions. Transient data were recorded by a high speed data acquisition system. Temperatures at the same phase of each transient cycle were repeatable between cycles to within 3.9 K (7 F). Turbine inlet pressures were repeatable between cycles to within 0.32 N/sq cm (0.47 psia). The tests were conducted at a gas stream temperature of 1567 K (2360 F) at cruise, and 1067 K (1460 F) at idle conditions. The corresponding gas stream pressures were about 26.2 and 22.4 N/sq cm (38 and 32.5 psia) respectively. The nominal coolant inlet temperature was about 811 K (1000 F).
Single-Event Transient Testing of the Crane Aerospace and Electronics SMHF2812D Dual DC-DC Converter
NASA Technical Reports Server (NTRS)
Casey, Megan
2015-01-01
The purpose of this testing was to characterize the Crane Aerospace & Electronics (Crane) Interpoint SMHF2812D for single-event transient (SET) susceptibility. These data shall be used for flight lot evaluation, as well as qualification by similarity of the SMHF family of converters, all of which use the same active components.
Ahn, Sangzin; Choi, Mooseok; Kim, Hyunju; Yang, Eun-Jeong; Mahmood, Usman; Kang, Seong-Il; Shin, Hyun-Woo; Kim, Dae Woo; Kim, Hye-Sun
2018-04-23
Olfactory loss is known to affect both mood and quality of life. Transient anosmia was induced in mice to study the resulting changes in mood, behavior, and on a molecular level. Transient anosmia was induced by a single intranasal instillation of ZnSO4 in BALB/c mice. Hematoxylin and eosin (HE) staining, and potato chip finding test were performed to confirm olfactory loss. Tail suspension, forced swim, and splash tests were performed to evaluate depression-related behavior; while the open field, and elevated plus maze tests were used to evaluate anxiety-related behavior. The mRNA levels of amygdalar corticotropin-releasing hormone (CRH) and hypothalamic glucocorticoid receptor (GR) were quantified using real-time PCR to confirm relevant molecular change. Olfactory loss was confirmed 1-2.5 weeks after induction, and this loss was subsequently reversed over time. The results of the behavioral tests indicated increased depression-like and reduced anxiety-like behavior at week 1. Accordingly, PCR data identified decreased amygdalar CRH expression at week 1. These results suggest that transient anosmia induces both depressive and anxiolytic behavior as a result of decreased amygdalar CRH in a mouse model of anosmia.
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Storace, A. S.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.
1981-01-01
The component element method was used to develop a transient dynamic analysis computer program which is essentially based on modal synthesis combined with a central, finite difference, numerical integration scheme. The methodology leads to a modular or building-block technique that is amenable to computer programming. To verify the analytical method, turbine engine transient response analysis (TETRA), was applied to two blade-out test vehicles that had been previously instrumented and tested. Comparison of the time dependent test data with those predicted by TETRA led to recommendations for refinement or extension of the analytical method to improve its accuracy and overcome its shortcomings. The development of working equations, their discretization, numerical solution scheme, the modular concept of engine modelling, the program logical structure and some illustrated results are discussed. The blade-loss test vehicles (rig full engine), the type of measured data, and the engine structural model are described.
Results of an On-Going Long Duration Ground Test of the DS1 Flight Spare Engine
NASA Technical Reports Server (NTRS)
Anderson, John R.; Goodfellow, Keith D.; Polk, James E.; Shotwell, Robert F.; Rawlin, Vincent K.; Sovey, James S.; Patterson, Michael J.
2000-01-01
Ground testing of the DS1 night spare thruster (FT2) is presently being conducted. To date, the thruster has accumulated over 4500 hours of operation. Comparison of FT2 with the performance of the engineering model thruster 2 (EMT2) during the 8.2 khr test shows a transient, lasting for about 3000 hours, during which the discharge chamber efficiency decreases for both thrusters. The flow rates are 2% lower for FT2 than for EMT2 and the discharge chamber performance is 4.5% lower for FT2 during the transient. Sensitivity data obtained during the test show that the lower flow rate accounts for about half of the observed difference. After the initial transients decay, the performance of both thrusters is comparable with the exception of the electron backstreaming margin--which is 6 V lower for FT2.
Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator
NASA Astrophysics Data System (ADS)
Stenger, F. J.
1982-12-01
The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.
Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator
NASA Technical Reports Server (NTRS)
Stenger, F. J.
1982-01-01
The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.
Transient adhesion in a non-fully detached contact.
Liu, Zheyu; Lu, Hongyu; Zheng, Yelong; Tao, Dashuai; Meng, Yonggang; Tian, Yu
2018-04-18
Continuous approaching and detaching displacement usually occurs in an adhesion test. Here, we found a transient adhesion force at the end of a non-fully detached contact. This force occurred when the nominal detaching displacement was less than the traditional quasi-static theory predicted zero force point. The transient adhesion force was ascribed to interfacial adhesion hysteresis, which was caused by the cracking process of the contact and the deformation competition between the sphere and supporting spring. Results indicated that the testing of adhesion can be significantly affected by different combinations of stiffnesses of the contact objects and the supporting spring cantilever. This combination should be carefully designed in an adhesion test. All these results enabled increased understanding of the nature of adhesion and can guide the design of adhesive actuators.
Hunting Elusive SPRITEs with Spitzer
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-05-01
In recent years, astronomers have developed many wide-field imaging surveys in which the same targets are observed again and again. This new form of observing has allowed us to discover optical and radio transients explosive or irregular events with durations ranging from seconds to years. The dynamic infrared sky, however, has remained largely unexplored until now.Infrared ExplorationExample of a transient: SPIRITS 14ajc was visible when imaged by SPIRITS in 2014 (left) but it wasnt there during previous imaging between 2004 and 2008 (right). The bottom frame shows the difference between the two images. [Adapted from Kasliwal et al. 2017]Why hunt for infrared transients? Optical wavelengths dont allow us to observe events that are obscured, such that their own structure or their surroundings hide them from our view. Both supernovae and luminous red novae (associated with stellar mergers) are discoverable as infrared transients, and there may well be new types of transients in infrared that we havent seen before!To explore this uncharted territory, a team of scientists developed SPIRITS, the Spitzer Infrared Intensive Transients Survey. Begun in 2014, SPIRITS is a five-year long survey that uses the Spitzer Space Telescope to conduct a systematic search for mid-infrared transients in nearby galaxies.In a recent publication led by Mansi Kasliwal (Caltech and the Carnegie Institution for Science), the SPIRITS team has now detailed how their survey works and what theyve discovered in its first year.The light curves of SPRITEs (red stars) lie in the mid-infared luminosity gap between novae (orange) and supernovae (blue). [Kasliwal et al. 2017]Mystery TransientsKasliwal and collaborators used Spitzer to monitor 190 nearby galaxies. In SPIRITS first year, they found over 1958 variable stars and 43 infrared transient sources. Of these 43 transients, 21 were known supernovae, 4 were in the luminosity range of novae, and 4 had optical counterparts. The remaining 14 events were designated eSPecially Red Intermediate-luminosity Transient Events, or SPRITEs.SPRITEs are unusual infrared transients that lie in the luminosity gap between novae and supernovae, and they have no optical counterparts. They all occur in star-forming galaxies.Search for the CauseWhats the physical origin of these phenomena? The authors explore a number of possible sources, including obscured supernovae, stellar mergers with dusty winds, collapse of extreme stars, or even weak shocks in failed supernovae.Spitzer image of M83, one of the closest barred spiral galaxies in the sky. SPIRITS 14ajc was discovered in one of M83s spiral arms. [NASA/JPL-Caltech]In one case, SPIRITS 14ajc, the SPRITEs spectrum shows signs of excited molecular hydrogen lines, which are indicative of a shock. Based on the data, Kasliwal and collaborators propose that the shock might have been driven into a molecular cloud after it was triggered by the decay of a system of massive stars that either passed closely or collided and merged.The other SPRITEs may all have different origins, however, and in general the infrared photometric data isnt sufficient to identify which model fits each transient. Future technology, like spectroscopy with the James Webb Space Telescope, may help us to better understand the origins of these elusive transients, though. And future surveying with projects like SPIRITS will help us to discover more SPRITE-like events, expanding our understanding of the dynamic infrared sky.CitationMansi M. Kasliwal et al 2017 ApJ 839 88. doi:10.3847/1538-4357/aa6978
Smith, Ryan M; Tivarus, Madalina; Campbell, Heather L; Hillier, Ashleigh; Beversdorf, David Q
2006-09-01
Our purpose is to investigate cognitive performance and extrapyramidal function early after ecstasy use. Ecstasy, containing 3,4 methylenedioxymethamphetamine, has shown evidence of causing cognitive deficits and parkinsonian signs. Previous research has examined cognitive performance after a period of prolonged abstinence, but research assessing the early effects of ecstasy after recent use is limited despite temporal neurochemical differences demonstrated in nonhuman models. This study compared task performance between 13 ecstasy users (10 to 15 h postdrug use) and a control group on a battery of neuropsychologic assessments while matching for education level, sleep deprivation, and premorbid IQ. The groups were also compared on measures relating to parkinsonian signs. The ecstasy subjects showed impairments on measures of executive function as evaluated by Raven's Standard Progressive Matrices (SPM) and the Wisconsin Card Sorting Task (WCST). Short-delay free recall memory was also impaired in ecstasy subjects on the California Verbal Learning Test (CVLT-II). No extrapyramidal motor impairments were detected. These deficits resemble deficits previously reported in chronic ecstasy use but also seem to reveal transient impairments in executive function. Future research is needed to better understand the neurologic and neuropsychologic implications of ecstasy use across time and extent of use.
Modeling The Atmosphere In The Era Of Big Data From Extremely Wide Field-Of-View Telescopes
NASA Astrophysics Data System (ADS)
Gonzalez Quiles, Junellie; Nordin, Jakob
2018-01-01
Surveys like the Sloan Digital Sky Survey (SDSS), Pan-STARRS and the Palomar Transient Factory Survey (PTF) receive large amounts of data, which need to be processed and calibrated in order to correct for various factors. One of the limiting factors in obtaining high quality data is the atmosphere, and it is therefore essential to find the appropriate calibration for the atmospheric extinction. It is to be expected that a physical atmospheric model, compared to a photometric calibration used currently by PTF, is more effective in calibrating for the atmospheric extinction due to its ability to account for rapid atmospheric fluctuation and objects of different colors. We focused on creating tools to model the atmospheric extinction for the upcoming Zwicky Transient Factory Survey (ZTF). In order to model the atmosphere, we created a program that combines input data and catalogue values, and efficiently handles them. Then, using PTF data and the SDSS catalogue, we created several models to fit the data, and tested the quality of the fits by chi-square minimization. This will allow us to optimize atmospheric extinction for the upcoming ZTF in the near future.
NASA Technical Reports Server (NTRS)
Belcastro, C. M.
1983-01-01
Flight critical computer based control systems designed for advanced aircraft must exhibit ultrareliable performance in lightning charged environments. Digital system upset can occur as a result of lightning induced electrical transients, and a methodology was developed to test specific digital systems for upset susceptibility. Initial upset data indicates that there are several distinct upset modes and that the occurrence of upset is related to the relative synchronization of the transient input with the processing sate of the digital system. A large upset test data base will aid in the formulation and verification of analytical upset reliability modeling techniques which are being developed.
Test prediction for the German PKL Test K5A using RELAP4/MOD6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.S.; Haigh, W.S.; Sullivan, L.H.
RELAP4/MOD6 is the most recent modification in the series of RELAP4 computer programs developed to describe the thermal-hydraulic conditions attendant to postulated transients in light water reactor systems. The major new features in RELAP4/MOD6 include best-estimate pressurized water reactor (PWR) reflood transient analytical models for core heat transfer, local entrainment, and core vapor superheat, and a new set of heat transfer correlations for PWR blowdown and reflood. These new features were used for a test prediction of the Kraftwerk Union three-loop PRIMAR KREISLAUF (PKL) Reflood Test K5A. The results of the prediction were in good agreement with the experimental thermalmore » and hydraulic system data. Comparisons include heater rod surface temperature, system pressure, mass flow rates, and core mixture level. It is concluded that RELAP4/MOD6 is capable of accurately predicting transient reflood phenomena in the 200% cold-leg break test configuration of the PKL reflood facility.« less
Shnitko, Tatiana A; Mace, Kyla D; Sullivan, Kaitlin M; Martin, W Kyle; Andersen, Elizabeth H; Williams Avram, Sarah K; Johns, Josephine M; Robinson, Donita L
2017-12-01
Maternal behavior (MB) is a complex response to infant cues, orchestrated by postpartum neurophysiology. Although mesolimbic dopamine contributes toward MB, little is known about real-time dopamine fluctuations during the postpartum period. Thus, we used fast-scan cyclic voltammetry to measure individual dopamine transients in the nucleus accumbens of early postpartum rats and compared them with dopamine transients in virgins and in postpartum females exposed to cocaine during pregnancy, which is known to disrupt MB. We hypothesized that dopamine transients are normally enhanced postpartum and support MB. In anesthetized rats, electrically evoked dopamine release was larger and clearance was faster in postpartum females than in virgins and gestational cocaine exposure blocked the change in clearance. In awake rats, control mothers showed more dopamine transients than cocaine-exposed mothers during MB. Salient pup-produced stimuli may contribute toward differences in maternal phasic dopamine by evoking dopamine transients; supporting the feasibility of this hypothesis, urine composition (glucose, ketones, and leukocytes) differed between unexposed and cocaine-exposed infants. These data, resulting from the novel application of fast-scan cyclic voltammetry to models of MB, support the hypothesis that phasic dopamine signaling is enhanced postpartum. Future studies with additional controls can delineate which aspects of gestational cocaine reduce dopamine clearance and transient frequency.
Silicon Carbide Diodes Performance Characterization and Comparison With Silicon Devices
NASA Technical Reports Server (NTRS)
Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Trapp, Scott
2003-01-01
Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers were electrically tested and characterized at room temperature. Performed electrical tests include steady state forward and reverse I-V curves, as well as switching transient tests performed with the diodes operating in a hard switch dc-to-dc buck converter. The same tests were performed in current state of the art silicon (Si) and gallium arsenide (GaAs) Schottky and pn junction devices for evaluation and comparison purposes. The SiC devices tested have a voltage rating of 200, 300, and 600 V. The comparison parameters are forward voltage drop at rated current, reverse current at rated voltage and peak reverse recovery currents in the dc to dc converter. Test results show that steady state characteristics of the tested SiC devices are not superior to the best available Si Schottky and ultra fast pn junction devices. Transient tests reveal that the tested SiC Schottky devices exhibit superior transient behavior. This is more evident at the 300 and 600 V rating where SiC Schottky devices showed drastically lower reverse recovery currents than Si ultra fast pn diodes of similar rating.
Conducted Transients on Spacecraft Primary Power Lines
NASA Technical Reports Server (NTRS)
Mc Closkey, John; Dimov, Jen
2017-01-01
One of the sources of potential interference on spacecraft primary power lines is that of conducted transients resulting from equipment being switched on and off of the bus. Susceptibility to such transients is addressed by some version of the CS06 requirement of MIL-STD-461462. This presentation provides a summary of the history of the CS06 requirement and test method, a basis for understanding of the sources of these transients, analysis techniques for determining their worst-case characteristics, and guidelines for minimizing their magnitudes and applying the requirement appropriately.
Transient Thermal Testing and Analysis of a Thermally Insulating Structural Sandwich Panel
NASA Technical Reports Server (NTRS)
Blosser, Max L.; Daryabeigi, Kamran; Bird, Richard K.; Knutson, Jeffrey R.
2015-01-01
A core configuration was devised for a thermally insulating structural sandwich panel. Two titanium prototype panels were constructed to illustrate the proposed sandwich panel geometry. The core of one of the titanium panels was filled with Saffil(trademark) alumina fibrous insulation and the panel was tested in a series of transient thermal tests. Finite element analysis was used to predict the thermal response of the panel using one- and two-dimensional models. Excellent agreement was obtained between predicted and measured temperature histories.
Testing For EM Upsets In Aircraft Control Computers
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.
1994-01-01
Effects of transient electrical signals evaluated in laboratory tests. Method of evaluating nominally fault-tolerant, aircraft-type digital-computer-based control system devised. Provides for evaluation of susceptibility of system to upset and evaluation of integrity of control when system subjected to transient electrical signals like those induced by electromagnetic (EM) source, in this case lightning. Beyond aerospace applications, fault-tolerant control systems becoming more wide-spread in industry; such as in automobiles. Method supports practical, systematic tests for evaluation of designs of fault-tolerant control systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J; Gehl, S M
1979-01-01
GRASS-SST and FASTGRASS are mechanistic computer codes for predicting fission-gas behavior in UO/sub 2/-base fuels during steady-state and transient conditions. FASTGRASS was developed in order to satisfy the need for a fast-running alternative to GRASS-SST. Althrough based on GRASS-SST, FASTGRASS is approximately an order of magnitude quicker in execution. The GRASS-SST transient analysis has evolved through comparisons of code predictions with the fission-gas release and physical phenomena that occur during reactor operation and transient direct-electrical-heating (DEH) testing of irradiated light-water reactor fuel. The FASTGRASS calculational procedure is described in this paper, along with models of key physical processes included inmore » both FASTGRASS and GRASS-SST. Predictions of fission-gas release obtained from GRASS-SST and FASTGRASS analyses are compared with experimental observations from a series of DEH tests. The major conclusions is that the computer codes should include an improved model for the evolution of the grain-edge porosity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.H. Frantz Jr; K.G. Brown; W.K. Sawyer
2006-03-01
This report summarizes the work performed under contract DE-FC26-03NT41743. The primary objective of this study was to develop tools that would allow Underground Gas Storage (UGS) operators to use wellhead electronic flow measurement (EFM) data to quickly and efficiently identify trends in well damage over time, thus aiding in the identification of potential causes of the damage. Secondary objectives of this work included: (1) To assist UGS operators in the evaluation of hardware and software requirements for implementing an EFM system similar to the one described in this report, and (2) To provide a cost-benefit analysis framework UGS operators canmore » use to evaluate economic benefits of installing wellhead EFM systems in their particular fields. Assessment of EFM data available for use, and selection of the specific study field are reviewed. The various EFM data processing tasks, including data collection, organization, extraction, processing, and interpretation are discussed. The process of damage assessment via pressure transient analysis of EFM data is outlined and demonstrated, including such tasks as quality control, semi-log analysis, and log-log analysis of pressure transient test data extracted from routinely collected EFM data. Output from pressure transient test analyses for 21 wells is presented, and the interpretation of these analyses to determine the timing of damage development is demonstrated using output from specific study wells. Development of processing and interpretation modules to handle EFM data interpretation in horizontal wells is also a presented and discussed. A spreadsheet application developed to aid underground gas storage operators in the selection of EFM equipment is presented, discussed, and used to determine the cost benefit of installing EFM equipment in a gas storage field. Recommendations for future work related to EFM in gas storage fields are presented and discussed.« less
NASA Technical Reports Server (NTRS)
Ferraro, R.; Some, R.
2002-01-01
The growth in data rates of instruments on future NASA spacecraft continues to outstrip the improvement in communications bandwidth and processing capabilities of radiation-hardened computers. Sophisticated autonomous operations strategies will further increase the processing workload. Given the reductions in spacecraft size and available power, standard radiation hardened computing systems alone will not be able to address the requirements of future missions. The REE project was intended to overcome this obstacle by developing a COTS- based supercomputer suitable for use as a science and autonomy data processor in most space environments. This development required a detailed knowledge of system behavior in the presence of Single Event Effect (SEE) induced faults so that mitigation strategies could be designed to recover system level reliability while maintaining the COTS throughput advantage. The REE project has developed a suite of tools and a methodology for predicting SEU induced transient fault rates in a range of natural space environments from ground-based radiation testing of component parts. In this paper we provide an overview of this methodology and tool set with a concentration on the radiation fault model and its use in the REE system development methodology. Using test data reported elsewhere in this and other conferences, we predict upset rates for a particular COTS single board computer configuration in several space environments.
A universal procedure for evaluation and application of surge-protective devices
NASA Technical Reports Server (NTRS)
1980-01-01
The source, nature, and frequency of occurrence of transients must be identified and a representative standard test wave chosen for proof testing. The performance of candidate suppressor devices then can be evaluated against the withstand goals set for the equipment. The various suppressors divide into two classes of generic behavior. The key to a universal procedure for evaluating both classes lies in representing transients as quasi-current sources of defined current impulse duration. The available surge current is established by the Thevenin equivalent transient voltage and source impedance. A load line drawn on the V-I characteristic graph of the suppressor quickly determines the clamping voltage and peak current. These values then can be compared to the requirement. The deposited energy and average power dissipation for multiple transients also can be calculated. The method is illustrated with a design example for motor vehicle alternator load dump suppression.
Turbofan compressor dynamics during afterburner transients
NASA Technical Reports Server (NTRS)
Kurkov, A. P.
1975-01-01
The effects of afterburner light-off and shut-down transients on compressor stability were investigated. Experimental results are based on detailed high-response pressure and temperature measurements on the Tf30-p-3 turbofan engine. The tests were performed in an altitude test chamber simulating high-altitude engine operation. It is shown that during both types of transients, flow breaks down in the forward part of the fan-bypass duct. At a sufficiently low engine inlet pressure this resulted in a compressor stall. Complete flow breakdown within the compressor was preceded by a rotating stall. At some locations in the compressor, rotating stall cells initially extended only through part of the blade span. For the shutdown transient, the time between first and last detected occurrence of rotating stall is related to the flow Reynolds number. An attempt was made to deduce the number and speed of propagation of rotating stall cells.
The advantages and disadvantages of using the TREAT reactor for nuclear laser experiments
NASA Astrophysics Data System (ADS)
Dickson, P. W.; Snyder, A. M.; Imel, G. R.; McConnell, R. J.
The Transient Reactor Test Facility (TREAT) is a large air-cooled test facility located at the Idaho National Engineering Laboratory. Two of the major design features of TREAT, its large size and its being an air-cooled reactor, provide clues to both its advantages and disadvantages for supporting nuclear laser experiments. Its large size, which is dictated by the dilute uranium/graphite fuel, permits accommodation of geometrically large experiments. However, TREAT's large size also results in relatively long transients so that the energy deposited in an experiment is large relative to the peak power available from the reactor. TREAT's air-cooling mode of operation allows its configuration to be changed fairly readily. Due to air cooling, the reactor cools down slowly, permitting only one full power transient a day, which can be a disadvantage in some experimental programs. The reactor is capable of both steady-state or transient operation.
Transient Modeling of Hybrid Rocket Low Frequency Instabilities
NASA Technical Reports Server (NTRS)
Karabeyoglu, M. Arif; DeZilwa, Shane; Cantwell, Brian; Zilliac, Greg
2003-01-01
A comprehensive dynamic model of a hybrid rocket has been developed in order to understand and predict the transient behavior including instabilities. A linearized version of the transient model predicted the low-frequency chamber pressure oscillations that are commonly observed in hybrids. The source of the instabilities is based on a complex coupling of thermal transients in the solid fuel, wall heat transfer blocking due to fuel regression rate and the transients in the boundary layer that forms on the fuel surface. The oscillation frequencies predicted by the linearized theory are in very good agreement with 43 motor test results obtained from the hybrid propulsion literature. The motor test results used in the comparison cover a very wide spectrum of parameters including: 1) four separate research and development programs, 2) three different oxidizers (LOX, GOX, N2O), 3) a wide range of motor dimensions (i.e. from 5 inch diameter to 72 inch diameter) and operating conditions and 4) several fuel formulations. A simple universal scaling formula for the frequency of the primary oscillation mode is suggested.
A new transiently chaotic flow with ellipsoid equilibria
NASA Astrophysics Data System (ADS)
Panahi, Shirin; Aram, Zainab; Jafari, Sajad; Pham, Viet-Thanh; Volos, Christos; Rajagopal, Karthikeyan
2018-03-01
In this article, a simple autonomous transiently chaotic flow with cubic nonlinearities is proposed. This system represents some unusual features such as having a surface of equilibria. We shall describe some dynamical properties and behaviours of this system in terms of eigenvalue structures, bifurcation diagrams, time series, and phase portraits. Various behaviours of this system such as periodic and transiently chaotic dynamics can be shown by setting special parameters in proper values. Our system belongs to a newly introduced category of transiently chaotic systems: systems with hidden attractors. Transiently chaotic behaviour of our proposed system has been implemented and tested by the OrCAD-PSpise software. We have found a proper qualitative similarity between circuit and simulation results.
Induction of plasticity in the human motor cortex by pairing an auditory stimulus with TMS.
Sowman, Paul F; Dueholm, Søren S; Rasmussen, Jesper H; Mrachacz-Kersting, Natalie
2014-01-01
Acoustic stimuli can cause a transient increase in the excitability of the motor cortex. The current study leverages this phenomenon to develop a method for testing the integrity of auditorimotor integration and the capacity for auditorimotor plasticity. We demonstrate that appropriately timed transcranial magnetic stimulation (TMS) of the hand area, paired with auditorily mediated excitation of the motor cortex, induces an enhancement of motor cortex excitability that lasts beyond the time of stimulation. This result demonstrates for the first time that paired associative stimulation (PAS)-induced plasticity within the motor cortex is applicable with auditory stimuli. We propose that the method developed here might provide a useful tool for future studies that measure auditory-motor connectivity in communication disorders.
Blind detection of isolated astrophysical pulses in the spatial Fourier transform domain
NASA Astrophysics Data System (ADS)
Schmid, Natalia A.; Prestage, Richard M.
2018-07-01
We present a novel approach for the detection of isolated transients in pulsar surveys and fast radio transient observations. Rather than the conventional approach of performing a computationally expensive blind dispersion measure search, we take the spatial Fourier transform (SFT) of short (˜ few seconds) sections of data. A transient will have a characteristic signature in the SFT domain, and we present a blind statistic which may be used to detect this signature at an empirical zero false alarm rate. The method has been evaluated using simulations, and also applied to two fast radio burst observations. In addition to its use for current observations, we expect this method will be extremely beneficial for future multibeam observations made by telescopes equipped with phased array feeds.
Blind detection of isolated astrophysical pulses in the spatial Fourier transform domain
NASA Astrophysics Data System (ADS)
Schmid, Natalia A.; Prestage, Richard M.
2018-04-01
We present a novel approach for the detection of isolated transients in pulsar surveys and fast radio transient observations. Rather than the conventional approach of performing a computationally expensive blind DM search, we take the spatial Fourier transform (SFT) of short (˜ few seconds) sections of data. A transient will have a characteristic signature in the SFT domain, and we present a blind statistic which may be used to detect this signature at an empirical zero False Alarm Rate (FAR). The method has been evaluated using simulations, and also applied to two fast radio burst observations. In addition to its use for current observations, we expect this method will be extremely beneficial for future multi-beam observations made by telescopes equipped with phased array feeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heard, F.J.; Harris, R.A.; Padilla, A.
The SASSYS/SAS4A systems analysis code was used to simulate a series of unprotected loss of flow (ULOF) tests planned at the Fast Flux Test Facility (FFTF). The subject tests were designed to investigate the transient performance of the FFTF during various ULOF scenarios for two different loading patterns designed to produce extremes in the assembly load pad clearance and the direction of the initial assembly bows. The tests are part of an international program designed to extend the existing data base on the performance of liquid metal reactors (LMR). The analyses demonstrate that a wide range of power-to-flow ratios canmore » be reached during the transients and, therefore, will yield valuable data on the dynamic character of the structural feedbacks in LMRS. These analyses will be repeated once the actual FFTF core loadings for the tests are available. These predictions, similar ones obtained by other international participants in the FFTF program, and post-test analyses will be used to upgrade and further verify the computer codes used to predict the behavior of LMRS.« less
NASA Astrophysics Data System (ADS)
Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L.
2016-03-01
Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics. Electronic supplementary information (ESI) available: (i) Experimental details for ALD and material fabrication, ellipsometry film thickness, preparation of gel electrolyte and separator, details for electrochemical measurements, HRTEM image of VOx coated porous silicon, Raman spectroscopy for VOx as-deposited as well as annealed in air for 1 hour at 450 °C, SEM and transient behavior dissolution tests of uniformly coated VOx on porous silicon, dissolution tests for 0.1 M and 0.01 M NaOH trigger solutions, EIS analysis for VOx coated devices, and EDS compositional analysis of VOx. (ii) Video showing transient behavior of integrated VOx/porous silicon scaffolds. See DOI: 10.1039/c5nr09095d
Association of transient hyperthyroidism and severity of hyperemesis gravidarum.
Malek, Nor Zila Hassan; Kalok, Aida; Hanafiah, Zainal Abidin; Shah, Shamsul Azhar; Ismail, Nor Azlin Mohamed
2017-03-23
Background Transient non-immune hyperthyroidism in early pregnancy is hyperthyroidism diagnosed for the first time in early pregnancy, without evidence of thyroid autoimmunity or clinical findings of Grave's disease and resolved spontaneously as the pregnancy progressed. Hyperemesis gravidarum (HG) is the commonest cause with 66%-73% of women with severe HG were found to have elevated thyroid function. Materials and methods We conducted a cross sectional study to determine the prevalence of transient hyperthyroidism in patients with hyperemesis gravidarum and its relation to the severity of nausea and vomiting. Severity of nausea and vomiting in pregnancy was assessed using the modified pregnancy-unique quantification of emesis (PUQE) scoring system. Each patient had urine and blood investigations which also included a full blood count and thyroid and renal function tests. Patients with abnormal thyroid function were retested at 20 weeks of gestation. The patients' demographic data, electrolyte levels, thyroid function and their respective PUQE score were analyzed. Results The prevalence of transient hyperthyroidism in women with hyperemesis gravidarum was 4.8%. Although there was a significant association between the severity of the PUQE score and hypokalemia (p = 0.001), there was no significant association with transient hyperthyroidism in early pregnancy (p = 0.072). Free T4 and TSH values of all women with transient hyperthyroidism were normalized by 20 weeks of gestation. Conclusion Transient hyperthyroidism in pregnancy is not significantly associated with the severity of the PUQE score. Women with transient hyperthyroidism in pregnancy are normally clinically euthyroid, hence a routine thyroid function test is unnecessary unless they exhibit clinical signs or symptoms of hyperthyroidism.
Proper Image Subtraction—Optimal Transient Detection, Photometry, and Hypothesis Testing
NASA Astrophysics Data System (ADS)
Zackay, Barak; Ofek, Eran O.; Gal-Yam, Avishay
2016-10-01
Transient detection and flux measurement via image subtraction stand at the base of time domain astronomy. Due to the varying seeing conditions, the image subtraction process is non-trivial, and existing solutions suffer from a variety of problems. Starting from basic statistical principles, we develop the optimal statistic for transient detection, flux measurement, and any image-difference hypothesis testing. We derive a closed-form statistic that: (1) is mathematically proven to be the optimal transient detection statistic in the limit of background-dominated noise, (2) is numerically stable, (3) for accurately registered, adequately sampled images, does not leave subtraction or deconvolution artifacts, (4) allows automatic transient detection to the theoretical sensitivity limit by providing credible detection significance, (5) has uncorrelated white noise, (6) is a sufficient statistic for any further statistical test on the difference image, and, in particular, allows us to distinguish particle hits and other image artifacts from real transients, (7) is symmetric to the exchange of the new and reference images, (8) is at least an order of magnitude faster to compute than some popular methods, and (9) is straightforward to implement. Furthermore, we present extensions of this method that make it resilient to registration errors, color-refraction errors, and any noise source that can be modeled. In addition, we show that the optimal way to prepare a reference image is the proper image coaddition presented in Zackay & Ofek. We demonstrate this method on simulated data and real observations from the PTF data release 2. We provide an implementation of this algorithm in MATLAB and Python.
Liu, Z Gerald; Vasys, Victoria N; Kittelson, David B
2007-09-15
The effects of fuel sulfur content and primary dilution on PM number emissions were investigated during transient operations of an old and a modern diesel engine. Emissions were also studied during steady-state operations in order to confirm consistency with previous findings. Testing methods were concurrent with those implemented by the EPA to regulate PM mass emissions, including the use of the Federal Transient Testing Procedure-Heavy Duty cycle to simulate transient conditions and the use of a Critical Flow Venturi-Constant Volume System to provide primary dilution. Steady-state results were found to be consistent with previous studies in that nuclei-mode particulate emissions were largely reduced when lower-sulfur content fuel was used in the newer engine, while the nuclei-mode PM emissions from the older engine were much less affected by fuel sulfur content. The transient results, however, show that the total number of nuclei-mode PM emissions from both engines increases with fuel sulfur content, although this effect is only seen under the higher primary dilution ratios with the older engine. Transient results further show that higher primary dilution ratios increase total nuclei-mode PM number emissions in both engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark D.; Mausolff, Zander; Weems, Zach
2016-08-01
One goal of the MAMMOTH M&S project is to validate the analysis capabilities within MAMMOTH. Historical data has shown limited value for validation of full three-dimensional (3D) multi-physics methods. Initial analysis considered the TREAT startup minimum critical core and one of the startup transient tests. At present, validation is focusing on measurements taken during the M8CAL test calibration series. These exercises will valuable in preliminary assessment of the ability of MAMMOTH to perform coupled multi-physics calculations; calculations performed to date are being used to validate the neutron transport solver Rattlesnake\\cite{Rattlesnake} and the fuels performance code BISON. Other validation projects outsidemore » of TREAT are available for single-physics benchmarking. Because the transient solution capability of Rattlesnake is one of the key attributes that makes it unique for TREAT transient simulations, validation of the transient solution of Rattlesnake using other time dependent kinetics benchmarks has considerable value. The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has recently developed a computational benchmark for transient simulations. This benchmark considered both two-dimensional (2D) and 3D configurations for a total number of 26 different transients. All are negative reactivity insertions, typically returning to the critical state after some time.« less
Development and Testing of a Sorbent-Based Atmosphere Revitalization System 2010/2011
NASA Technical Reports Server (NTRS)
Miller, Lee A.; Knox, James C.
2012-01-01
Spacecraft being developed for future exploration missions incorporate Environmental Control and Life Support Systems (ECLSS) that limit weight, power, and volume thus requiring systems with higher levels of efficiency while maintaining high dependability and robustness. For air revitalization, an approach that meets those goals utilizes a regenerative Vacuum-Swing Adsorption (VSA) system that removes 100% of the CO2 from the cabin atmosphere as well as 100% of the water. A Sorbent Based Atmosphere Revitalization (SBAR) system is a VSA system that utilizes standard commercial adsorbents that have been proven effective and safe in spacecraft including Skylab and the International Space Station. The SBAR system is the subject of a development, test, and evaluation program that is being conducted at NASA s Marshall Space Flight Center. While previous testing had validated that the technology is a viable option, potential improvements to system design and operation were identified. Modifications of the full-scale SBAR test articles and adsorption cycles have been implemented and have shown significant performance gains resulting in a decrease in the consumables required for a mission as well as improved mission safety. Previous testing had utilized single bed test articles, during this period the test facility was enhanced to allow testing on the full 2-bed SBAR system. The test facility simulates a spacecraft ECLSS and allows testing of the SBAR system over the full range of operational conditions using mission simulations that assess the real-time performance of the SBAR system during scenarios that include the metabolic transients associated with extravehicular activity. Although future manned missions are currently being redefined, the atmosphere revitalization requirements for the spacecraft are expected to be quite similar to the Orion and the Altair vehicles and the SBAR test program addressed validation to the defined mission requirements as well as operation in other potential vehicle architectures. The development program, including test articles, the test facility, and tests and results through early 2011 is discussed.
Automated Transient Identification in the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Goldstein, D. A.; D'Andrea, C. B.; Fischer, J. A.; Foley, R. J.; Gupta, R. R.; Kessler, R.; Kim, A. G.; Nichol, R. C.; Nugent, P. E.; Papadopoulos, A.; Sako, M.; Smith, M.; Sullivan, M.; Thomas, R. C.; Wester, W.; Wolf, R. C.; Abdalla, F. B.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Castander, F. J.; da Costa, L. N.; Covarrubias, R.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Fausti Neto, A.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D.; Gruen, D.; Gruendl, R. A.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Maia, M. A. G.; Makler, M.; March, M.; Marshall, J. L.; Martini, P.; Merritt, K. W.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.
2015-09-01
We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factor of 13.4, while only 1.0% of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Here we characterize the algorithm’s performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility. An implementation of the algorithm and the training data used in this paper are available at at http://portal.nersc.gov/project/dessn/autoscan.
NASA Astrophysics Data System (ADS)
Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.
2014-11-01
Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.
Detecting tidal disruption events of massive black holes in normal galaxies with the Einstein Probe
NASA Astrophysics Data System (ADS)
Yuan, W.; Komossa, S.; Zhang, C.; Feng, H.; Ling, Z.-X.; Zhao, D. H.; Zhang, S.-N.; Osborne, J. P.; O'Brien, P.; Willingale, R.; Lapington, J.
2016-02-01
Stars are tidally disrupted and accreted when they approach massive black holes (MBHs) closely, producing a flare of electromagnetic radiation. The majority of the (approximately two dozen) tidal disruption events (TDEs) identified so far have been discovered by their luminous, transient X-ray emission. Once TDEs are detected in much larger numbers, in future dedicated transient surveys, a wealth of new applications will become possible. Here, we present the proposed Einstein Probe mission, which is a dedicated time-domain soft X-ray all-sky monitor aiming at detecting X-ray transients including TDEs in large numbers. The mission consists of a wide-field micro-pore Lobster-eye imager (60° × 60°), and is designed to carry out an all-sky transient survey at energies of 0.5-4 keV. It will also carry a more sensitive telescope for X-ray follow-ups, and will be capable of issuing public transient alerts rapidly. Einstein Probe is expected to revolutionise the field of TDE research by detecting several tens to hundreds of events per year from the early phase of flares, many with long-term, well sampled lightcurves.
The SED Machine: A Robotic Spectrograph for Fast Transient Classification
NASA Astrophysics Data System (ADS)
Blagorodnova, Nadejda; Neill, James D.; Walters, Richard; Kulkarni, Shrinivas R.; Fremling, Christoffer; Ben-Ami, Sagi; Dekany, Richard G.; Fucik, Jason R.; Konidaris, Nick; Nash, Reston; Ngeow, Chow-Choong; Ofek, Eran O.; O’ Sullivan, Donal; Quimby, Robert; Ritter, Andreas; Vyhmeister, Karl E.
2018-03-01
Current time domain facilities are finding several hundreds of transient astronomical events a year. The discovery rate is expected to increase in the future as soon as new surveys such as the Zwicky Transient Facility (ZTF) and the Large Synoptic Sky Survey (LSST) come online. Presently, the rate at which transients are classified is approximately one order or magnitude lower than the discovery rate, leading to an increasing “follow-up drought”. Existing telescopes with moderate aperture can help address this deficit when equipped with spectrographs optimized for spectral classification. Here, we provide an overview of the design, operations and first results of the Spectral Energy Distribution Machine (SEDM), operating on the Palomar 60-inch telescope (P60). The instrument is optimized for classification and high observing efficiency. It combines a low-resolution (R ∼ 100) integral field unit (IFU) spectrograph with “Rainbow Camera” (RC), a multi-band field acquisition camera which also serves as multi-band (ugri) photometer. The SEDM was commissioned during the operation of the intermediate Palomar Transient Factory (iPTF) and has already lived up to its promise. The success of the SEDM demonstrates the value of spectrographs optimized for spectral classification.
Excitonic gap formation in pumped Dirac materials
NASA Astrophysics Data System (ADS)
Triola, Christopher; Pertsova, Anna; Markiewicz, Robert S.; Balatsky, Alexander V.
2017-05-01
Recent pump-probe experiments demonstrate the possibility that Dirac materials may be driven into transient excited states describable by two chemical potentials, one for the electrons and one for the holes. Given the Dirac nature of the spectrum, such an inverted population allows the optical tunability of the density of states of the electrons and holes, effectively offering control of the strength of the Coulomb interaction. Here we discuss the feasibility of realizing transient excitonic instabilities in optically pumped Dirac materials. We demonstrate, theoretically, the reduction of the critical coupling leading to the formation of a transient condensate of electron-hole pairs and identify signatures of this state. Furthermore, we provide guidelines for experiments by both identifying the regimes in which such exotic many-body states are more likely to be observed and estimating the magnitude of the excitonic gap for a few important examples of existing Dirac materials. We find a set of material parameters for which our theory predicts large gaps and high critical temperatures and which could be realized in future Dirac materials. We also comment on transient excitonic instabilities in three-dimensional Dirac and Weyl semimetals. This study provides an example of a transient collective instability in driven Dirac materials.
Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.
2014-01-01
Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten. PMID:25366885
Suslova, A; El-Atwani, O; Sagapuram, D; Harilal, S S; Hassanein, A
2014-11-04
Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.
Actively controlled shaft seals for aerospace applications
NASA Technical Reports Server (NTRS)
Salant, Richard F.
1993-01-01
An electronically controlled mechanical seal for use as the purge gas seal in a liquid oxygen turbo pump has been fabricated and tested under transient operating conditions. The thickness of the lubricating film is controlled by adjusting the coning of the carbon face. This is accomplished by applying a voltage to a piezoelectric actuator to which the carbon face is bonded. The seal has been operated with a closed-loop control system that utilizes either the leakage rate or the seal face temperature as the feedback. Both speed and pressure transients have been imposed on the seal. The transient tests have demonstrated that the seal is capable of maintaining low leakage rates while limiting the face temperatures.
Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley K. Heath
2014-03-01
This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show thatmore » fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.« less
Change Ahead: Transient Scenarios for Long-term Water Management
NASA Astrophysics Data System (ADS)
Haasnoot, Marjolijn; Beersma, Jules; Schellekens, Jaap
2013-04-01
While the use of an ensemble of transient scenarios is common in climate change studies, they are rarely used in water management studies. Present planning studies on long-term water management often use a few plausible futures for one or two projection years, ignoring the dynamic aspect of adaptation through the interaction between the water system and society. Over the course of time society experiences, learns and adapts to changes and events, making policy responses part of a plausible future, and thus the success of a water management strategy. Exploring transient scenarios and policy options over time can support decision making on water management strategies in an uncertain and changing environment. We have developed and applied such a method, called exploring adaptation pathways (Haasnoot et al., 2012; Haasnoot et al., 2011). This method uses multiple realisations of transient scenarios to assess the efficacy of policy actions over time. In case specified objectives are not achieved anymore, an adaptation tipping point (Kwadijk et al., 2010) is reached. After reaching a tipping point, additional actions are needed to reach the objectives. As a result, a pathway emerges. In this presentation we describe the development of transient scenarios for long term water management, and how these scenarios can be used for long term water management under uncertainty. We illustrate this with thought experiments, and results from computational modeling experiment for exploring adaptation pathways in the lower Rhine delta. The results and the thought experiments show, among others, that climate variability is at least just as important as climate change for taking decisions in water management. References Haasnoot, M., Middelkoop, H., Offermans, A., Beek, E., Deursen, W.A.v. (2012) Exploring pathways for sustainable water management in river deltas in a changing environment. Climatic Change 115, 795-819. Haasnoot, M., Middelkoop, H., van Beek, E., van Deursen, W.P.A. (2011) A Method to Develop Sustainable Water Management Strategies for an Uncertain Future. Sustainable Development 19, 369-381. Kwadijk, J.C.J., Haasnoot, M., Mulder, J.P.M., Hoogvliet, M.M.C., Jeuken, A.B.M., van der Krogt, R.A.A., van Oostrom, N.G.C., Schelfhout, H.A., van Velzen, E.H., van Waveren, H., de Wit, M.J.M. (2010) Using adaptation tipping points to prepare for climate change and sea level rise: a case study in the Netherlands. Wiley Interdisciplinary Reviews: Climate Change 1, 729-740.
Thermal finite-element analysis of space shuttle main engine turbine blade
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Tong, Michael T.; Kaufman, Albert
1987-01-01
Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.
Prior, Peter L; Hachinski, Vladimir; Unsworth, Karen; Chan, Richard; Mytka, Sharon; O'Callaghan, Christina; Suskin, Neville
2011-11-01
Comprehensive cardiac rehabilitation (CCR), which integrates structured lifestyle interventions and medications, reduces morbidity and mortality among cardiac patients. CCR has not typically been used with cerebrovascular populations, despite important commonalities with heart patients. We tested feasibility and effectiveness of 6-month outpatient CCR for secondary prevention after transient ischemic attack or mild, nondisabling stroke. This article presents risk factors. A future article will discuss psychological outcomes. Consecutive consenting subjects having sustained a transient ischemic attack or mild, nondisabling stroke within the previous 12 months (mean, 11.5 weeks; event-to-CCR entry) with ≥1 vascular risk factor, were recruited from a stroke prevention clinic providing usual care. We measured 6-month CCR outcomes following a prospective cohort design. Of 110 subjects recruited from January 2005 to April 2006, 100 subjects (mean age, 64.9 years; 46 women) entered and 80 subjects completed CCR. We obtained favorable, significant intake-to-exit changes in: aerobic capacity (+31.4%; P<0.001), total cholesterol (-0.30 mmol/L; P=0.008), total cholesterol/high-density lipoprotein (-11.6%; P<0.001), triglycerides (-0.27 mmol/L; P=0.003), waist circumference (-2.44 cm; P<0.001), body mass index (-0.53 kg/m(2); P=0.003), and body weight (-1.43 kg; P=0.001). Low-density lipoprotein (-0.24 mmol/L), high-density lipoprotein (+0.06 mmol/L), systolic (-3.21 mm Hg) and diastolic (-2.34 mm Hg) blood pressure changed favorably, but nonsignificantly. A significant shift toward nonsmoking occurred (P=0.008). Compared with intake, 11 more individuals (25.6% increase) finished CCR in the lowest-mortality risk category of the Duke Treadmill Score (P<0.001). CCR is feasible and effective for secondary prevention after transient ischemic attack or mild, nondisabling stroke, offering a promising model for vascular protection across chronic disease entities. We know of no similar previous investigation, and are now conducting a randomized trial.
NASA Astrophysics Data System (ADS)
Van Tiel, Marit; Van Loon, Anne; Wanders, Niko; Vis, Marc; Teuling, Ryan; Stahl, Kerstin
2017-04-01
In glacierized catchments, snowpack and glaciers function as an important storage of water and hydrographs of highly glacierized catchments in mid- and high latitudes thus show a clear seasonality with low flows in winter and high flows in summer. Due to the ongoing climate change we expect this type of storage capacity to decrease with resultant consequences for the discharge regime. In this study we focus on streamflow droughts, here defined as below average water availability specifically in the high flow season, and which methods are most suitable to characterize future streamflow droughts as regimes change. Two glacierized catchments, Nigardsbreen (Norway) and Wolverine (Alaska), are used as case study and streamflow droughts are compared between two periods, 1975-2004 and 2071-2100. Streamflow is simulated with the HBV light model, calibrated on observed discharge and seasonal glacier mass balances, for two climate change scenarios (RCP 4.5 & RCP 8.5). In studies on future streamflow drought often the same variable threshold of the past has been applied to the future, but in regions where a regime shift is expected this method gives severe "droughts" in the historic high-flow period. We applied the new alternative transient variable threshold, a threshold that adapts to the changing hydrological regime and is thus better able to cope with this issue, but has never been thoroughly tested in glacierized catchments. As the glacier area representation in the hydrological modelling can also influence the modelled discharge and the derived streamflow droughts, we evaluated in this study both the difference between the historical variable threshold (HVT) and transient variable threshold (TVT) and two different glacier area conceptualisations (constant area (C) and dynamical area (D)), resulting in four scenarios: HVT-C, HVT-D, TVT-C and TVT-D. Results show a drastic decrease in the number of droughts in the HVT-C scenario due to increased glacier melt. The deficit volume is expected to be up to almost eight times larger in the future compared to the historical period (Wolverine, +674%) in the HVT-D scenario, caused by the regime shift. Using the TVT the drought characteristics between the C and D scenarios and between future and historic droughts are more similar. However, when using the TVT, causing factors of future droughts, anomalies in temperature and/or precipitation, can be analysed. This study highlights the different conclusions that may be drawn on future streamflow droughts in glacierized catchments depending on methodological choices. They could be used to answer different questions: the TVT for analysing drought processes in the future, the HVT to assess changes between historical and future periods, the constant area conceptualisation to analyse the effect of short term climate variability and the dynamical glacier area to model realistic future discharges in glacierized catchments.
Single Event Transients in Low Voltage Dropout (LVDO) Voltage Regulators
NASA Technical Reports Server (NTRS)
LaBel, K.; Karsh, J.; Pursley, S.; Kleyner, I.; Katz, R.; Poivey, C.; Kim, H.; Seidleck, C.
2006-01-01
This viewgraph presentation reviews the use of Low Voltage Dropout (LVDO) Voltage Regulators in environments where heavy ion induced Single Event Transients are a concern to the designers.Included in the presentation are results of tests of voltage regulators.
Testing of a Helium Loop Heat Pipe for Large Area Cryocooling
NASA Technical Reports Server (NTRS)
Ku, Jentung; Robinson, Franklin
2016-01-01
Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components in the 3K temperature range. A copper plate with attached electrical heaters was used to simulate the heat source, and heat was collected by the CLHP evaporator and transferred to the cryocooler for ultimate heat rejection. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully without pre-conditioning by simply applying power to both the capillary pump and the evaporator plate. It could adapt to rapid changes in the heat load, and reach a new steady state very quickly. Heat removal between 10mW and 140mW was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.
Testing of a Helium Loop Heat Pipe for Large Area Cryocooling
NASA Technical Reports Server (NTRS)
Ku, Jentung; Robinson, Franklin Lee
2015-01-01
Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components in the 3K temperature range. A copper plate with attached electrical heters was used to simulate the heat source, and heat was collected by the CLHP evaporator and transferred to the cryocooler for ultimate heat rejection. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully without pre-conditioning by simply applying power to both the capillary pump and the evaporator plate. It could adapt to rapid changes in the heat load, and reach a new steady state very quickly. Heat removal between 10mW and 140mW was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.
Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed
NASA Technical Reports Server (NTRS)
Flynn, Howard; Lusby, Brian; Villemarette, Mark
2011-01-01
In support of NASA?s Propulsion and Cryogenic Advanced Development (PCAD) project, a liquid oxygen (LO2)/liquid methane (LCH4) Integrated Propulsion System Test Bed (IPSTB) was designed and advanced to the Critical Design Review (CDR) stage at the Johnson Space Center. The IPSTB?s primary objectives are to study LO2/LCH4 propulsion system steady state and transient performance, operational characteristics and to validate fluid and thermal models of a LO2/LCH4 propulsion system for use in future flight design work. Two phase thermal and dynamic fluid flow models of the IPSTB were built to predict the system performance characteristics under a variety of operating modes and to aid in the overall system design work. While at ambient temperature and simulated altitude conditions at the White Sands Test Facility, the IPSTB and its approximately 600 channels of system instrumentation would be operated to perform a variety of integrated main engine and reaction control engine hot fire tests. The pressure, temperature, and flow rate data collected during this testing would then be used to validate the analytical models of the IPSTB?s thermal and dynamic fluid flow performance. An overview of the IPSTB design and analytical model development will be presented.
Transient Characterization of Type B Particles in a Transport Riser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadle, L.J.; Monazam, E.R.; Mei, J.S.
2007-01-01
Simple and rapid dynamic tests were used to evaluate fluid dynamic behavior of granular materials in the transport regime. Particles with densities ranging from 189 to 2,500 kg/m3 and Sauter mean size from 61 to 812 μm were tested in a 0.305 m diameter, 15.5 m height circulating fluidized bed (CFB) riser. The transient tests involved the abrupt stoppage of solids flow for each granular material over a wide range gas flow rates. The riser emptying time was linearly related to the Froude number in each of three different operating regimes. The flow structure along the height of the risermore » followed a distinct pattern as tracked through incremental pressures. These results are discussed to better understand the transformations that take place when operating over various regimes. During the transients the particle size distribution was measured. The effects of pressure, particle size, and density on test performance are also presented.« less
Tantalum capacitor behavior under fast transient overvoltages. [circuit protection against lightning
NASA Technical Reports Server (NTRS)
Zill, J. A.; Castle, K. D.
1974-01-01
Tantalum capacitors were tested to determine failure time when subjected to short-duration, high-voltage surges caused by lightning strikes. Lightning is of concern to NASA because of possible damage to critical spacecraft circuits. The test was designed to determine the minimum time for tantalum capacitor failure and the amount of overvoltage a capacitor could survive, without permanent damage, in 100 microseconds. All tested exhibited good recovery from the transient one-shot pulses with no failure at any voltage, forward or reverse, in less than 25 microseconds.
NASA Technical Reports Server (NTRS)
Sargent, N. B.; Dustin, M. O.
1981-01-01
Steady state tests were run to characterize the system and component efficiencies over the complete speed-torque capabilities of the propulsion system in both motoring and regenerative modes of operation. The steady state data were obtained using a battery simulator to separate the effects on efficiency caused by changing battery state-of-charge and component temperature. Transient tests were performed to determine the energy profiles of the propulsion system operating over the SAE J227a driving schedules.
Analysis and testing of a space crane articulating joint testbed
NASA Technical Reports Server (NTRS)
Sutter, Thomas R.; Wu, K. Chauncey
1992-01-01
The topics are presented in viewgraph form and include: space crane concept with mobile base; mechanical versus structural articulating joint; articulating joint test bed and reference truss; static and dynamic characterization completed for space crane reference truss configuration; improved linear actuators reduce articulating joint test bed backlash; 1-DOF space crane slew maneuver; boom 2 tip transient response finite element dynamic model; boom 2 tip transient response shear-corrected component modes torque driver profile; peak root member force vs. slew time torque driver profile; and open loop control of space crane motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreier, J.; Huggenberger, M.; Aubert, C.
1996-08-01
The PANDA test facility at PSI in Switzerland is used to study the long-term Simplified Boiling Water Reactor (SBWR) Passive Containment Cooling System (PCCS) performance. The PANDA tests demonstrate performance on a larger scale than previous tests and examine the effects of any non-uniform spatial distributions of steam and non-condensables in the system. The PANDA facility has a 1:1 vertical scale, and 1:25 ``system`` scale (volume, power, etc.). Steady-state PCCS condenser performance tests and extensive facility characterization tests have been completed. Transient system behavior tests were conducted late in 1995; results from the first three transient tests (M3 series) aremore » reviewed. The first PANDA tests showed that the overall global behavior of the SBWR containment was globally repeatable and very favorable; the system exhibited great ``robustness.``« less
NASA Technical Reports Server (NTRS)
Hippensteele, Steven A.; Poinsatte, Philip E.
1993-01-01
In this transient technique the preheated isothermal model wall simulates the classic one-dimensional, semi-infinite wall heat transfer conduction problem. By knowing the temperature of the air flowing through the model, the initial temperature of the model wall, and the surface cooling rate measured at any location with time (using the fast-response liquid-crystal patterns recorded on video tape), the heat transfer coefficient can be calculated for the color isothermal pattern produced. Although the test was run transiently, the heat transfer coefficients are for the steady-state case. The upstream thermal boundary condition was considered to be isothermal. This transient liquid-crystal heat-transfer technique was used in a transient air tunnel in which a square-inlet, 3-to-1 exit transition duct was placed. The duct was preheated prior to allowing room temperature air to be suddenly drawn through it. The resulting isothermal contours on the duct surfaces were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the temperature and time data for all points on the duct surfaces during each test. The duct surfaces were uniformly heated using two heating systems: the first was an automatic temperature-controlled heater blanket completely surrounding the test duct like an oven, and the second was an internal hot-air loop through the inside of the test duct. The hot-air loop path was confined inside the test duct by insulated heat dams located at the inlet and exit ends of the test duct. A recirculating fan moved hot air into the duct inlet, through the duct, out of the duct exit, through the oven, and back to the duct inlet. The temperature nonuniformity of the test duct model wall was held very small. Test results are reported for two inlet Reynolds numbers of 200,000 and 1,150,000 (based on the square-inlet hydraulic diameter) and two free-stream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 20 percent (using a grid), which is typical of real engine conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, R.; Jones, J.R.
1997-07-01
Ensuring that safety analysis needs are met in the future is likely to lead to the development of new codes and the further development of existing codes. It is therefore advantageous to define standards for data interfaces and to develop software interfacing techniques which can readily accommodate changes when they are made. Defining interface standards is beneficial but is necessarily restricted in application if future requirements are not known in detail. Code interfacing methods are of particular relevance with the move towards automatic grid frequency response operation where the integration of plant dynamic, core follow and fault study calculation toolsmore » is considered advantageous. This paper describes the background and features of a new code TALINK (Transient Analysis code LINKage program) used to provide a flexible interface to link the RELAP5 thermal hydraulics code with the PANTHER neutron kinetics and the SIBDYM whole plant dynamic modelling codes used by Nuclear Electric. The complete package enables the codes to be executed in parallel and provides an integrated whole plant thermal-hydraulics and neutron kinetics model. In addition the paper discusses the capabilities and pedigree of the component codes used to form the integrated transient analysis package and the details of the calculation of a postulated Sizewell `B` Loss of offsite power fault transient.« less
Mary, a Pipeline to Aid Discovery of Optical Transients
NASA Astrophysics Data System (ADS)
Andreoni, I.; Jacobs, C.; Hegarty, S.; Pritchard, T.; Cooke, J.; Ryder, S.
2017-09-01
The ability to quickly detect transient sources in optical images and trigger multi-wavelength follow up is key for the discovery of fast transients. These include events rare and difficult to detect such as kilonovae, supernova shock breakout, and `orphan' Gamma-ray Burst afterglows. We present the Mary pipeline, a (mostly) automated tool to discover transients during high-cadenced observations with the Dark Energy Camera at Cerro Tololo Inter-American Observatory (CTIO). The observations are part of the `Deeper Wider Faster' programme, a multi-facility, multi-wavelength programme designed to discover fast transients, including counterparts to Fast Radio Bursts and gravitational waves. Our tests of the Mary pipeline on Dark Energy Camera images return a false positive rate of 2.2% and a missed fraction of 3.4% obtained in less than 2 min, which proves the pipeline to be suitable for rapid and high-quality transient searches. The pipeline can be adapted to search for transients in data obtained with imagers other than Dark Energy Camera.
NASA Technical Reports Server (NTRS)
Miller, C. G., III
1981-01-01
Thin film gages deposited at the stagnation region of small (8.1-mm-diameter) hemispheres and gages mounted flush with the surface of a sharp-leading-edge flat plate were tested in the Langley continuous-flow hypersonic tunnel and in the Langley hypersonic CF4 tunnel. Two substrate materials were tested, quartz and a machinable glass-ceramic. Small hemispheres were also tested utilizing the thin-skin transient calorimeter technique usually employed in conventional tunnels. One transient calorimeter model was a thin shell of stainless steel, and the other was a thin-skin insert of stainless steel mounted into a hemisphere fabricated from a machinable-glass-ceramic. Measured heat-transfer rates from the various hemispheres were compared with one another and with predicted rates. The results demonstrate the feasibility and advantages of using-film resistance heat-transfer gages in conventional hypersonic wind tunnels over a wide range of conditions.
Steady and transient regimes in hydropower plants
NASA Astrophysics Data System (ADS)
Gajic, A.
2013-12-01
Hydropower plant that has been in operation for about 30 years has to be reconstructed. They have already installed 12 Kaplan turbines, the largest in the world at that time. The existing CAM relationship was determined based on hydraulic model tests and checked by efficiency on-site tests. It was also tested based on turbine bearing vibrations. In order to discover vibrations and long cracks on stay vanes detailed on-site measurements were performed. Influence of the modification of the trailing edges on the dynamic stresses of the stay vanes is also shown. In order to improve power output transient regimes were analyzed, both experimentally and numerically. Reversible hydropower plant, a pioneer in Europe since it was the first Pump storage power plant constructed with the highest head pump-turbines in the world. Analyses of transient regimes discover some problems with S-shaped characteristics coupled with non-symmetrical penstock.
Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2008-01-01
The objective of this effort is to develop a computational methodology to capture the startup side load physics and to anchor the computed aerodynamic side loads with the available data from a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, a transient 5 s inlet history based on an engine system simulation, and a wall temperature distribution to reflect the effect of regenerative cooling. To understand the effect of regenerative wall cooling, two transient computations were performed using the boundary conditions of adiabatic and cooled walls, respectively. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with the pulsation of shocks across the lip, although the combustion wave is commonly eliminated with the sparklers during actual test. The test measured two side load events: a secondary and lower side load, followed by a primary and peak side load. Results from both wall boundary conditions captured the free-shock separation to restricted-shock separation transition with computed side loads matching the measured secondary side load. For the primary side load, the cooled wall transient produced restricted-shock pulsation across the nozzle lip with peak side load matching that of the test, while the adiabatic wall transient captured shock transitions and free-shock pulsation across the lip with computed peak side load 50% lower than that of the measurement. The computed dominant pulsation frequency of the cooled wall nozzle agrees with that of a separate test, while that of the adiabatic wall nozzle is more than 50% lower than that of the measurement. The computed teepee-like formation and the tangential motion of the shocks during lip pulsation also qualitatively agree with those of test observations. Moreover, a third transient computation was performed with a proportionately shortened 1 s sequence, and lower side loads were obtained with the higher ramp rate.
Swelling and gas release in oxide fuels during fast temperature transients
NASA Astrophysics Data System (ADS)
Dollins, C. C.; Jursich, M.
1982-05-01
A previously reported intergranular swelling and gas release model for oxide fuels has been modified to predict fission gas behavior during fast temperature transients. Under steady state or slowly varying conditions it has been assumed in the previous model that the pressure caused by the fission gas within the gas bubbles is in equilibrium with the surface tension of the bubbles. During a fast transient, however, net vacancy migration to the bubbles may be insufficient to maintain this equilibrium. In order to ascertain the net vacancy flow, it is necessary to model the point defect behavior in the fuel. Knowing the net flow of vacancies to the bubble and the bubble size, the bubble diffusivity can be determined and the long range migration of the gas out of the fuel can be calculated. The model has also been modified to allow release of all the gas on the grain boundaries during a fast temperature transient. The gas release predicted by the revised model shows good agreement to fast transient gas release data from an EBR-II TREAT H-3 (Transient Reactor Test Facility) test. Agreement has also been obtained between predictions using the model and gas release data obtained by Argonne National Laboratory from out-of-reactor transient heating experiments on irradiated UO 2. It was found necessary to increase the gas bubble diffusivity used in the model by a factor of thirty during the transient to provide agreement between calculations and measurements. Other workers have also found that such an increase is necessary for agreement and attribute the increased diffusivity to yielding at the bubble surface due to the increased pressure.
First Searches for Optical Counterparts to Gravitational-wave Candidate Events
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Akerlof, C.; Baltay, C.; Bloom, J. S.; Cao, Y.; Cenko, S. B.; Ćwiek, A.; Ćwiok, M.; Dhillon, V.; Fox, D. B.; Gal-Yam, A.; Kasliwal, M. M.; Klotz, A.; Laas-Bourez, M.; Laher, R. R.; Law, N. M.; Majcher, A.; Małek, K.; Mankiewicz, L.; Nawrocki, K.; Nissanke, S.; Nugent, P. E.; Ofek, E. O.; Opiela, R.; Piotrowski, L.; Poznanski, D.; Rabinowitz, D.; Rapoport, S.; Richards, J. W.; Schmidt, B.; Siudek, M.; Sokołowski, M.; Steele, I. A.; Sullivan, M.; Żarnecki, A. F.; Zheng, W.
2014-03-01
During the Laser Interferometer Gravitational-wave Observatory and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type.
First Searches for Optical Counterparts to Gravitational-Wave Candidate Events
NASA Technical Reports Server (NTRS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.;
2014-01-01
During the Laser Interferometer Gravitational-wave Observatory and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type.
Electrically-Assisted Turbocharger Development for Performance and Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Milton
2000-08-20
Turbocharger transient lag inherently imposes a tradeoff between a robust engine response to transient load shifts and exhaust emissions. By itself, a well matched turbocharger for an engine has limited flexibility in improving this transient response. Electrically-assisted turbocharging has been seen as an attractive option to improve response and lower transient emissions. This paper presents the results of a multi-year joint CRADA between DDC and ORNL. Virtual lab diesel simulation models characterized the performance improvement potential of an electrically assisted turbocharger technology. Operating requirements to reduce transient duration between load shift time by up to 50% were determined. A turbomachinemore » has been conceptualized with an integrated motor-generator, providing transient burst boost plus energy recovery capability. Numerous electric motor designs were considered, and a prototype motor was developed, fabricated, and is undergoing tests. Power controls have been designed and fabricated.« less
Amarasekera, Dilru C; Resende, Arthur F; Waisbourd, Michael; Puri, Sanjeev; Moster, Marlene R; Hark, Lisa A; Katz, L Jay; Fudemberg, Scott J; Mantravadi, Anand V
2018-01-01
This study evaluates two rapid electrophysiological glaucoma diagnostic tests that may add a functional perspective to glaucoma diagnosis. This study aimed to determine the ability of two office-based electrophysiological diagnostic tests, steady-state pattern electroretinogram and short-duration transient visual evoked potentials, to discern between glaucomatous and healthy eyes. This is a cross-sectional study in a hospital setting. Forty-one patients with glaucoma and 41 healthy volunteers participated in the study. Steady-state pattern electroretinogram and short-duration transient visual evoked potential testing was conducted in glaucomatous and healthy eyes. A 64-bar-size stimulus with both a low-contrast and high-contrast setting was used to compare steady-state pattern electroretinogram parameters in both groups. A low-contrast and high-contrast checkerboard stimulus was used to measure short-duration transient visual evoked potential parameters in both groups. Steady-state pattern electroretinogram parameters compared were MagnitudeD, MagnitudeD/Magnitude ratio, and the signal-to-noise ratio. Short-duration transient visual evoked potential parameters compared were amplitude and latency. MagnitudeD was significantly lower in glaucoma patients when using a low-contrast (P = 0.001) and high-contrast (P < 0.001) 64-bar-size steady-state pattern electroretinogram stimulus. MagnitudeD/Magnitude ratio and SNR were significantly lower in the glaucoma group when using a high-contrast 64-bar-size stimulus (P < 0.001 and P = 0.010, respectively). Short-duration transient visual evoked potential amplitude and latency were not significantly different between the two groups. Steady-state pattern electroretinogram was effectively able to discern between glaucomatous and healthy eyes. Steady-state pattern electroretinogram may thus have a role as a clinically useful electrophysiological diagnostic tool. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Development of an algorithm for automatic detection and rating of squeak and rattle events
NASA Astrophysics Data System (ADS)
Chandrika, Unnikrishnan Kuttan; Kim, Jay H.
2010-10-01
A new algorithm for automatic detection and rating of squeak and rattle (S&R) events was developed. The algorithm utilizes the perceived transient loudness (PTL) that approximates the human perception of a transient noise. At first, instantaneous specific loudness time histories are calculated over 1-24 bark range by applying the analytic wavelet transform and Zwicker loudness transform to the recorded noise. Transient specific loudness time histories are then obtained by removing estimated contributions of the background noise from instantaneous specific loudness time histories. These transient specific loudness time histories are summed to obtain the transient loudness time history. Finally, the PTL time history is obtained by applying Glasberg and Moore temporal integration to the transient loudness time history. Detection of S&R events utilizes the PTL time history obtained by summing only 18-24 barks components to take advantage of high signal-to-noise ratio in the high frequency range. A S&R event is identified when the value of the PTL time history exceeds the detection threshold pre-determined by a jury test. The maximum value of the PTL time history is used for rating of S&R events. Another jury test showed that the method performs much better if the PTL time history obtained by summing all frequency components is used. Therefore, r ating of S&R events utilizes this modified PTL time history. Two additional jury tests were conducted to validate the developed detection and rating methods. The algorithm developed in this work will enable automatic detection and rating of S&R events with good accuracy and minimum possibility of false alarm.
Effects of transients in LIGO suspensions on searches for gravitational waves
NASA Astrophysics Data System (ADS)
Walker, M.; Abbott, T. D.; Aston, S. M.; González, G.; Macleod, D. M.; McIver, J.; Abbott, B. P.; Abbott, R.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blair, C. D.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gras, S.; Gray, C.; Grote, H.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, E. D.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Izumi, K.; Jones, R.; Kandhasamy, S.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lormand, M.; Lundgren, A. P.; MacInnis, M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Miller, J.; Mittleman, R.; Moreno, G.; Mueller, G.; Mullavey, A.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Tuyenbayev, D.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.
2017-12-01
This paper presents an analysis of the transient behavior of the Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) suspensions used to seismically isolate the optics. We have characterized the transients in the longitudinal motion of the quadruple suspensions during Advanced LIGO's first observing run. Propagation of transients between stages is consistent with modeled transfer functions, such that transient motion originating at the top of the suspension chain is significantly reduced in amplitude at the test mass. We find that there are transients seen by the longitudinal motion monitors of quadruple suspensions, but they are not significantly correlated with transient motion above the noise floor in the gravitational wave strain data, and therefore do not present a dominant source of background noise in the searches for transient gravitational wave signals. Using the suspension transfer functions, we compared the transients in a week of gravitational wave strain data with transients from a quadruple suspension. Of the strain transients between 10 and 60 Hz, 84% are loud enough that they would have appeared above the sensor noise in the top stage quadruple suspension monitors if they had originated at that stage at the same frequencies. We find no significant temporal correlation with the suspension transients in that stage, so we can rule out suspension motion originating at the top stage as the cause of those transients. However, only 3.2% of the gravitational wave strain transients are loud enough that they would have been seen by the second stage suspension sensors, and none of them are above the sensor noise levels of the penultimate stage. Therefore, we cannot eliminate the possibility of transient noise in the detectors originating in the intermediate stages of the suspension below the sensing noise.
Large liquid rocket engine transient performance simulation system
NASA Technical Reports Server (NTRS)
Mason, J. R.; Southwick, R. D.
1991-01-01
A simulation system, ROCETS, was designed and developed to allow cost-effective computer predictions of liquid rocket engine transient performance. The system allows a user to generate a simulation of any rocket engine configuration using component modules stored in a library through high-level input commands. The system library currently contains 24 component modules, 57 sub-modules and maps, and 33 system routines and utilities. FORTRAN models from other sources can be operated in the system upon inclusion of interface information on comment cards. Operation of the simulation is simplified for the user by run, execution, and output processors. The simulation system makes available steady-state trim balance, transient operation, and linear partial generation. The system utilizes a modern equation solver for efficient operation of the simulations. Transient integration methods include integral and differential forms for the trapezoidal, first order Gear, and second order Gear corrector equations. A detailed technology test bed engine (TTBE) model was generated to be used as the acceptance test of the simulation system. The general level of model detail was that reflected in the Space Shuttle Main Engine DTM. The model successfully obtained steady-state balance in main stage operation and simulated throttle transients, including engine starts and shutdown. A NASA FORTRAN control model was obtained, ROCETS interface installed in comment cards, and operated with the TTBE model in closed-loop transient mode.
Miller, Andrew; Villegas, Arturo; Diez, F Javier
2015-03-01
The solution to the startup transient EOF in an arbitrary rectangular microchannel is derived analytically and validated experimentally. This full 2D transient solution describes the evolution of the flow through five distinct periods until reaching a final steady state. The derived analytical velocity solution is validated experimentally for different channel sizes and aspect ratios under time-varying pressure gradients. The experiments used a time resolved micro particle image velocimetry technique to calculate the startup transient velocity profiles. The measurements captured the effect of time-varying pressure gradient fields derived in the analytical solutions. This is tested by using small reservoirs at both ends of the channel which allowed a time-varying pressure gradient to develop with a time scale on the order of the transient EOF. Results showed that under these common conditions, the effect of the pressure build up in the reservoirs on the temporal development of the transient startup EOF in the channels cannot be neglected. The measurements also captured the analytical predictions for channel walls made of different materials (i.e., zeta potentials). This was tested in channels that had three PDMS and one quartz wall, resulting in a flow with an asymmetric velocity profile due to variations in the zeta potential between the walls. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.R.; Gregory, W.S.
1985-04-01
Pressure transients in nuclear facility air cleaning systems can originate from natural phenomena such as tornadoes or from accident-induced explosive blast waves. This study was concerned with the effective efficiency of high-efficiency particulate air (HEPA) filters during pressure surges resulting from simulated tornado and explosion transients. The primary objective of the study was to examine filter efficiencies at pressure levels below the point of structural failure. Both standard and high-capacity 0.61-m by 0.61-m HEPA filters were evaluated, as were several 0.2-m by 0.2-m HEPA filters. For a particular manufacturer, the material release when subjected to tornado transients is the samemore » (per unit area) for both the 0.2-m by 0.2-m and the 0.61-m by 0.61-m filters. For tornado transients, the material release was on the order of micrograms per square meter. When subjecting clean HEPA filters to simulated tornado transients with aerosol entrained in the pressure pulse, all filters tested showed a degradation of filter efficiency. For explosive transients, the material release from preloaded high-capacity filters was as much as 340 g. When preloaded high-capacity filters were subjected to shock waves approximately 50% of the structural limit level, 1 to 2 mg of particulate was released.« less
Three Decades of Explosive High Energy Transients
NASA Technical Reports Server (NTRS)
Kouveliotou, Chryssa
2013-01-01
Gamma-Ray Bursts are the most brilliant explosions in space. The first GRB was discovered on 1967, just 40 years ago. It took several years and multiple generations of space and ground instruments to unravel some of the mysteries of this phenomenon. However, many questions remain open today. I will discuss the history, evolution and current status of the GRB field and its contributions in our understanding of the transient high energy sky. Finally, I will describe how GRBs can be utilized in future missions as tools, to probe the cosmic chemical evolution of the Universe and the star formation rates.
Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike
2010-01-01
The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests and/or deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four degrees of ovalization of the nozzle: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The computed side load physics caused by the nozzle out-of-roundness and its effect on nozzle side load are reported and discussed.
NASA Technical Reports Server (NTRS)
Belcastro, C. M.
1984-01-01
A methodology was developed a assess the upset susceptibility/reliability of a computer system onboard an aircraft flying through a lightning environment. Upset error modes in a general purpose microprocessor were studied. The upset tests involved the random input of analog transients which model lightning induced signals onto interface lines of an 8080 based microcomputer from which upset error data was recorded. The program code on the microprocessor during tests is designed to exercise all of the machine cycles and memory addressing techniques implemented in the 8080 central processing unit. A statistical analysis is presented in which possible correlations are established between the probability of upset occurrence and transient signal inputs during specific processing states and operations. A stochastic upset susceptibility model for the 8080 microprocessor is presented. The susceptibility of this microprocessor to upset, once analog transients have entered the system, is determined analytically by calculating the state probabilities of the stochastic model.
Aeroelastic Modeling of a Nozzle Startup Transient
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2014-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,
Fast Flux Test Facility thermal and pressure transient events during Cycle 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahrens, D. M.
1992-03-01
This report documents the thermal and pressure transients experienced by the Reactor Heat Transport System (RHTS) during Cycle 11 which included Cycles 11A, 11B-1, 11B-2 and 11C (i.e. 4 startups and 4 shutdowns). Cycle 11 consisted of a refueling period that began on March 14, 1989 and power operation which began on May 3, 1989 and ended on October 27, 1990. Transients resulted from secondary pump starts/stops while at refueling conditions. The major causes of transients at power were five unplanned reactor scrams from 100% power and problems with Loop 2 DHX Fan Controls During 11A.
Heavy Ion Microbeam- and Broadbeam-Induced Current Transients in SiGe HBTs
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.; Reed, R. A.; McMorrow, D.; Vizkelethy, G.; Ferlet-Cavrois, V.; Baggio, J.; Duhamel, O.; Moen, K. A.; Phillips, S. D.; Diestelhorst, R. M.;
2009-01-01
IBM 5AM SiGe HBT is device-under-test. High-speed measurement setup. Low-impedance current transient measurements. SNL, JYFL, GANIL. Microbeam to broadbeam position inference. Improvement to state-of-the-art. Microbeam (SNL) transients reveal position dependent heavy ion response, Unique response for different device regions Unique response for different bias schemes. Similarities to TPA pulsed-laser data. Broadbeam transients (JYFL and GANIL) provide realistic heavy ion response. Feedback using microbeam data. Overcome issues of LET and ion range with microbeam. **Angled Ar-40 data in full paper. Data sets yield first-order results, suitable for TCAD calibration feedback.
So, Rosa Q; McConnell, George C; Grill, Warren M
2017-03-01
Methamphetamine-induced circling is used to quantify the behavioral effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in hemiparkinsonian rats. We observed a frequency-dependent transient effect of DBS on circling, and quantified this effect to determine its neuronal basis. High frequency STN DBS (75-260Hz) resulted in transient circling contralateral to the lesion at the onset of stimulation, which was not sustained after the first several seconds of stimulation. Following the transient behavioral change, DBS resulted in a frequency-dependent steady-state reduction in pathological ipsilateral circling, but no change in overall movement. Recordings from single neurons in globus pallidus externa (GPe) and substantia nigra pars reticulata (SNr) revealed that high frequency, but not low frequency, STN DBS elicited transient changes in both firing rate and neuronal oscillatory power at the stimulation frequency in a subpopulation of GPe and SNr neurons. These transient changes were not sustained, and most neurons exhibited a different response during the steady-state phase of DBS. During the steady-state, DBS produced elevated neuronal oscillatory power at the stimulus frequency in a majority of GPe and SNr neurons, and the increase was more pronounced during high frequency DBS than during low frequency DBS. Changes in oscillatory power during both transient and steady-state DBS were highly correlated with changes in firing rates. These results suggest that distinct neural mechanisms were responsible for transient and sustained behavioral responses to STN DBS. The transient contralateral turning behavior following the onset of high frequency DBS was paralleled by transient changes in firing rate and oscillatory power in the GPe and SNr, while steady-state suppression of ipsilateral turning was paralleled by sustained increased synchronization of basal ganglia neurons to the stimulus pulses. Our analysis of distinct frequency-dependent transient and steady-state responses to DBS lays the foundation for future mechanistic studies of the immediate and persistent effects of DBS. Copyright © 2016 Elsevier B.V. All rights reserved.
The performance of hafnium and gadolinium self powered neutron detectors in the TREAT reactor
NASA Astrophysics Data System (ADS)
Imel, G. R.; Hart, P. R.
1996-05-01
The use of gadolinium and hafnium self powered neutron detectors in a transient reactor is described in this paper. The detectors were calibrated to the fission rate of U-235 using calibrated fission chambers; the calibration factors were tested in two reactors in steady state and found to be consistent. Calibration of the detectors in transient reactor conditions was done by using uranium wires that were analyzed by radiochemistry techniques to determine total fissions during the transient. This was correlated to the time-integrated current of the detectors during the transient. A temperature correction factor was derived to account for self-shielding effects in the hafnium and gadolinium detectors. The dynamic response of the detectors under transient conditions was studied, and found to be excellent.
Mental simulation of future scenarios in transient global amnesia.
Juskenaite, Aurelija; Quinette, Peggy; Desgranges, Béatrice; de La Sayette, Vincent; Viader, Fausto; Eustache, Francis
2014-10-01
Researchers exploring mental time travel into the future have emphasized the role played by episodic memory and its cerebral substrates. Recently, owing to controversial findings in amnesic patients, this role has become a matter of intense debate. In order to understand whether episodic memory is indeed crucial to future thinking, we assessed this ability in 11 patients during an episode of transient global amnesia (TGA), a unique and severe amnesic syndrome that primarily affects episodic memory. In the first of two experiments, TGA patients were asked to recall personal past events as well as to imagine personal future events, without any guidance regarding content. Under this condition, compared with controls, they provided fewer past and fewer future events, and the latter were less closely related to their personal goals. Furthermore, TGA patients׳ descriptions of past and future events were scant, containing fewer descriptive elements in total and fewer internal details. In order to assess whether TGA patients might have been basing their future event narratives on their general knowledge about how these events usually unfold, in our second experiment, we asked them to imagine future events in response to short descriptions of common scenarios. Under this condition, inherently eliciting less detailed descriptions, not only were all the TGA patients able to describe common events as happening in the future, but their narratives contained comparable amounts of internal detail to those of controls, despite being less detailed overall. Taken together, our results indicate that severe amnesia interferes with TGA patients׳ ability to envisage their personal past and future on a general level as well as in detail, but less severely affects their ability to imagine common scenarios, which are not related to their personal goals, probably owing to their preserved semantic memory, logical reasoning and ability to create vivid mental images. Copyright © 2014 Elsevier Ltd. All rights reserved.
Installation of automatic control at experimental breeder reactor II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, H.A.; Booty, W.F.; Chick, D.R.
1985-08-01
The Experimental Breeder Reactor II (EBR-II) has been modified to permit automatic control capability. Necessary mechanical and electrical changes were made on a regular control rod position; motor, gears, and controller were replaced. A digital computer system was installed that has the programming capability for varied power profiles. The modifications permit transient testing at EBR-II. Experiments were run that increased power linearly as much as 4 MW/s (16% of initial power of 25 MW(thermal)/s), held power constant, and decreased power at a rate no slower than the increase rate. Thus the performance of the automatic control algorithm, the mechanical andmore » electrical control equipment, and the qualifications of the driver fuel for future power change experiments were all demonstrated.« less
ERRATUM: “Automated Transient Identi cation in the Dark Energy Survey” (2015, AJ, 150, 82)
Goldstein, D. A.; D’Andrea, C. B.; Fischer, J. A.; ...
2015-08-20
Here, we describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by amore » factor of 13.4, while only 1.0% of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Here we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility. An implementation of the algorithm and the training data used in this paper are available at at http://portal.nersc.gov/project/dessn/autoscan.« less
Van Kuiken, Benjamin E.; Ross, Matthew R.; Strader, Matthew L.; ...
2017-05-08
Picosecond X-ray absorption (XA) spectroscopy at the S K-edge (~2.4 keV) is demonstrated and used to monitor excited state dynamics in a small organosulfur molecule (2-Thiopyridone, 2TP) following optical excitation. Multiple studies have reported that the thione (2TP) is converted into the thiol (2-Mercaptopyridine, 2MP) following photoexcitation. However, the timescale and photochemical pathway of this reaction remain uncertain. In this work, time-resolved XA spectroscopy at the S K-edge is used to monitor the formation and decay of two transient species following 400nm excitation of 2TP dissolved in acetonitrile. The first transient species forms within the instrument response time (70 ps)more » and decays within 6 ns. The second transient species forms on a timescale of ~400 ps and decays on a 15 ns timescale. Time-dependent density functional theory is used to identify the first and second transient species as the lowestlying triplet states of 2TP and 2MP, respectively. This study demonstrates transient S K-edge XA spectroscopy as a sensitive and viable probe of time-evolving charge dynamics near sulfur sites in small molecules with future applications towards studying complex biological and material systems.« less
RADIO TRANSIENTS FROM ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriya, Takashi J., E-mail: takashi.moriya@nao.ac.jp
2016-10-20
We investigate observational properties of accretion-induced collapse (AIC) of white dwarfs (WDs) in radio frequencies. If AIC is triggered by accretion from a companion star, a dense circumstellar medium can be formed around the progenitor system. Then, the ejecta from AIC collide with the dense circumstellar medium, creating a strong shock. The strong shock can produce synchrotron emission that can be observed in radio frequencies. Even if AIC occurs as a result of WD mergers, we argue that AIC may cause fast radio bursts (FRBs) if a certain condition is satisfied. If AIC forms neutron stars (NSs) that are somore » massive that rotation is required to support themselves (i.e., supramassive NSs), the supramassive NSs may immediately lose their rotational energy by the r-mode instability and collapse to black holes. If the collapsing supramassive NSs are strongly magnetized, they may emit FRBs, as previously proposed. The AIC radio transients from single-degenerate systems may be detected in future radio transient surveys like the Very Large Array Sky Survey or the Square Kilometer Array transient survey. Because AIC has been proposed as a source of gravitational waves (GWs), GWs from AIC may be accompanied by radio-bright transients that can be used to confirm the AIC origin of observed GWs.« less
Preliminary tests of vulnerability of typical aircraft electronics to lightning-induced voltages
NASA Technical Reports Server (NTRS)
Plumer, J. A.; Walko, L. C.
1974-01-01
Tests made on two pieces of typical aircraft electronics equipment to ascertain their vulnerability to simulated lightning-induced transient voltages representative of those which might occur in flight when the aircraft is struck by lightning were conducted. The test results demonstrated that such equipment can be interfered with or damaged by transient voltages as low as 21 volts peak. Greater voltages can cause failure of semiconductor components within the equipment. The results emphasize a need for establishment of coordinated system susceptibility and component vulnerability criteria to achieve lightning protection of aerospace electrical and electronic systems.
NASA Technical Reports Server (NTRS)
Miao, D.; Barber, J. R.; Dewitt, R. L.
1977-01-01
Two full-scale, lightweight, double-sheeted shadow shields were developed as the primary element of a deep-space thermal protection system for liquid-hydrogen propellant tankage. The thermal and mechanical considerations used in s, the method of fabrication, and the environmental testing results on a prototype shield are discussed. Testing consisted of a transient cooldown period, a prolonged cold soak, and a transient warmup. The mechanical and thermal analyses used in the shield design are sufficient to produce a lightweight rugged shadow shield assembly that is structurally adequate for its intended application.
A novel plant protection strategy for transient reactors
NASA Astrophysics Data System (ADS)
Bhattacharyya, Samit K.; Lipinski, Walter C.; Hanan, Nelson A.
The present plant protection system (PPS) has been defined for use in the TREAT-upgrade (TU) reactor for controlled transient operation of reactor-fuel behavior testing under simulated reactor-accident conditions. A PPS with energy-dependent trip set points lowered worst-case clad temperatures by as much as 180 K, relative to the use of conventional fixed-level trip set points. The multilayered multilevel protection strategy represents the state-of-the-art in terrestrial transient reactor protection systems, and should be applicable to multi-MW space reactors.
Edelen, J. P.; Edelen, A. L.; Bowring, D.; ...
2016-12-23
In this study we develop an a priori method for simulating dynamic resonant frequency and temperature responses in a radio frequency quadrupole (RFQ) and its associated water-based cooling system respectively. Our model provides a computationally efficient means to evaluate the transient response of the RFQ over a large range of system parameters. The model was constructed prior to the delivery of the PIP-II Injector Test RFQ and was used to aid in the design of the water-based cooling system, data acquisition system, and resonance control system. Now that the model has been validated with experimental data, it can confidently bemore » used to aid in the design of future RFQ resonance controllers and their associated water-based cooling systems. Finally, without any empirical fitting, it has demonstrated the ability to predict absolute temperature and frequency changes to 11% accuracy on average, and relative changes to 7% accuracy.« less
Assessment of the stability of a multimachine power system by the transient energy margin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanton, S.E.
1982-01-01
This reasearch develops a tool for the direct assessment of the transient stability of a multimachine electric power system that is subject to a large disturbance. The tool is the Transient Energy Margin. The transient of interest is the first swing (or inertial) transient. The Transient Energy Margin is computed by evaluating an energy function using the relevant unstable equilibrium point and the system states at the instant the disturbance is removed. In evaluating the function, a significant portion of the fault kinetic energy is identified as not contributing to system instability. The resulting energy value is a measure ofmore » the margin-of-safety for the disturbed system. A distinction is proposed between assessing system stability and assessing system security. The Transient Energy Margin is used first to assess the stability of the system. This profile ranks various distrubances to display the strengths and weaknesses of the system. A modified Transient Energy Margin is then proposed as an assessment of security; the transient energy margin profile is repeated to evaluate the system response in terms of the local minimum energy conditions approached by the critical trajectories. Both techniques are applied to a practical, 17 generator test system.« less
Evaluation of a multi-channel algorithm for reducing transient sounds.
Keshavarzi, Mahmoud; Baer, Thomas; Moore, Brian C J
2018-05-15
The objective was to evaluate and select appropriate parameters for a multi-channel transient reduction (MCTR) algorithm for detecting and attenuating transient sounds in speech. In each trial, the same sentence was played twice. A transient sound was presented in both sentences, but its level varied across the two depending on whether or not it had been processed by the MCTR and on the "strength" of the processing. The participant indicated their preference for which one was better and by how much in terms of the balance between the annoyance produced by the transient and the audibility of the transient (they were told that the transient should still be audible). Twenty English-speaking participants were tested, 10 with normal hearing and 10 with mild-to-moderate hearing-impairment. Frequency-dependent linear amplification was provided for the latter. The results for both participant groups indicated that sounds processed using the MCTR were preferred over the unprocessed sounds. For the hearing-impaired participants, the medium and strong settings of the MCTR were preferred over the weak setting. The medium and strong settings of the MCTR reduced the annoyance produced by the transients while maintaining their audibility.
NASA Astrophysics Data System (ADS)
Kelley, Luke Zoltan; Mandel, Ilya; Ramirez-Ruiz, Enrico
2013-06-01
The detection of an electromagnetic transient which may originate from a binary neutron star merger can increase the probability that a given segment of data from the LIGO-Virgo ground-based gravitational-wave detector network contains a signal from a binary coalescence. Additional information contained in the electromagnetic signal, such as the sky location or distance to the source, can help rule out false alarms and thus lower the necessary threshold for a detection. Here, we develop a framework for determining how much sensitivity is added to a gravitational-wave search by triggering on an electromagnetic transient. We apply this framework to a variety of relevant electromagnetic transients, from short gamma-ray bursts (GRBs) to signatures of r-process heating to optical and radio orphan afterglows. We compute the expected rates of multimessenger observations in the advanced detector era and find that searches triggered on short GRBs—with current high-energy instruments, such as Fermi—and nucleosynthetic “kilonovae”—with future optical surveys, like the Large Synoptic Survey Telescope—can boost the number of multimessenger detections by 15% and 40%, respectively, for a binary neutron star progenitor model. Short GRB triggers offer precise merger timing but suffer from detection rates decreased by beaming and the high a priori probability that the source is outside the LIGO-Virgo sensitive volume. Isotropic kilonovae, on the other hand, could be commonly observed within the LIGO-Virgo sensitive volume with an instrument roughly an order of magnitude more sensitive than current optical surveys. We propose that the most productive strategy for making multimessenger gravitational-wave observations is using triggers from future deep, optical all-sky surveys, with characteristics comparable to the Large Synoptic Survey Telescope, which could make as many as ten such coincident observations a year.
Kleindorfer, Dawn; Judd, Suzanne; Howard, Virginia J; McClure, Leslie; Safford, Monika M; Cushman, Mary; Rhodes, David; Howard, George
2011-11-01
Previously in the REasons for Geographic And Racial Differences in Stroke (REGARDS) cohort, we found 18% of the stroke/transient ischemic attack-free study population reported ≥1 stroke symptom at baseline. We sought to evaluate the additional impact of these stroke symptoms on risk for subsequent stroke. REGARDS recruited 30,239 US blacks and whites, aged 45+ years in 2003 to 2007 who are being followed every 6 months for events. All stroke events are physician-verified; those with prior diagnosed stroke or transient ischemic attack are excluded from this analysis. At baseline, participants were asked 6 questions regarding stroke symptoms. Measured stroke risk factors were components of the Framingham Stroke Risk Score. After excluding those with prior stroke or missing data, there were 24,412 participants in this analysis with a median follow-up of 4.4 years. Participants were 39% black, 55% female, and had median age of 64 years. There were 381 physician-verified stroke events. The Framingham Stroke Risk Score explained 72.0% of stroke risk; individual components explained between 0.2% (left ventricular hypertrophy) and 5.7% (age+race) of stroke risk. After adjustment for Framingham Stroke Risk Score factors, stroke symptoms were significantly related to stroke risk: for each stroke symptom reported, the risk of stroke increased by 21% per symptom. Among participants without self-reported stroke or transient ischemic attack, prior stroke symptoms are highly predictive of future stroke events. Compared with Framingham Stroke Risk Score factors, the impact of stroke symptom on the prediction of future stroke was almost as large as the impact of smoking and hypertension and larger than the impact of diabetes and heart disease.
Laser-combined scanning tunnelling microscopy for probing ultrafast transient dynamics.
Terada, Yasuhiko; Yoshida, Shoji; Takeuchi, Osamu; Shigekawa, Hidemi
2010-07-07
The development of time-resolved scanning tunnelling microscopy (STM), in particular, attempts to combine STM with ultrafast laser technology, is reviewed with emphasis on observed physical quantities and spatiotemporal resolution. Ultrashort optical pulse technology has allowed us to observe transient phenomena in the femtosecond range, which, however, has the drawback of a relatively low spatial resolution due to the electromagnetic wavelength used. In contrast, STM and its related techniques, although the time resolution is limited by the circuit bandwidth (∼100 kHz), enable us to observe structures at the atomic level in real space. Our purpose has been to combine these two techniques to achieve a new technology that satisfies the requirements for exploring the ultrafast transient dynamics of the local quantum functions in organized small structures, which will advance the pursuit of future nanoscale scientific research in terms of the ultimate temporal and spatial resolutions. © 2010 IOP Publishing Ltd
A transient search using combined human and machine classifications
NASA Astrophysics Data System (ADS)
Wright, Darryl E.; Lintott, Chris J.; Smartt, Stephen J.; Smith, Ken W.; Fortson, Lucy; Trouille, Laura; Allen, Campbell R.; Beck, Melanie; Bouslog, Mark C.; Boyer, Amy; Chambers, K. C.; Flewelling, Heather; Granger, Will; Magnier, Eugene A.; McMaster, Adam; Miller, Grant R. M.; O'Donnell, James E.; Simmons, Brooke; Spiers, Helen; Tonry, John L.; Veldthuis, Marten; Wainscoat, Richard J.; Waters, Chris; Willman, Mark; Wolfenbarger, Zach; Young, Dave R.
2017-12-01
Large modern surveys require efficient review of data in order to find transient sources such as supernovae, and to distinguish such sources from artefacts and noise. Much effort has been put into the development of automatic algorithms, but surveys still rely on human review of targets. This paper presents an integrated system for the identification of supernovae in data from Pan-STARRS1, combining classifications from volunteers participating in a citizen science project with those from a convolutional neural network. The unique aspect of this work is the deployment, in combination, of both human and machine classifications for near real-time discovery in an astronomical project. We show that the combination of the two methods outperforms either one used individually. This result has important implications for the future development of transient searches, especially in the era of Large Synoptic Survey Telescope and other large-throughput surveys.
Rural Transient Children and School Achievement: An Australian Perspective.
ERIC Educational Resources Information Center
Birch, Ian; Lally, Mike
1994-01-01
Among 336 students aged 4-8 in 4 rural Australian schools, transient students scored marginally lower on ability tests than their residentially stable peers. However, teachers gave more weight to family background and support, as opposed to disruption of schooling, as influencing children's adjustment to change and school achievement. (LP)
40 CFR 86.1333-2010 - Transient test cycle generation.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... cycles. The heavy-duty transient engine cycles for Otto-cycle and diesel engines are listed in appendix I...
40 CFR 86.1333-2010 - Transient test cycle generation.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... cycles. The heavy-duty transient engine cycles for Otto-cycle and diesel engines are listed in appendix I...
40 CFR 86.1333-2010 - Transient test cycle generation.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... cycles. The heavy-duty transient engine cycles for Otto-cycle and diesel engines are listed in appendix I...
The adaptive mechanisms that protect brain metabolism during and after hypoxia, for instance, during hypoxic preconditioning, are coordinated in part by nitric oxide (NO). We tested the hypothesis that acute transient hypoxia stimulates NO synthase (NOS)-activated mechanisms of m...
Pretest analysis document for Test S-FS-7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, D.G.
This report documents the pretest calculations completed for Semiscale Test S-FS-7. This test will simulate a transient initiated by a 14.3% break in a steam generator bottom feedwater line downstream of the check valve. The initial conditions represent normal operating conditions for a C-E System 80 nuclear power plant. Predictions of transients resulting from feedwater line breaks in these plants have indicated that significant primary system overpressurization may occur. The results of a RELAP5/MOD2/CY21 code calculation indicate that the test objectives for Test S-FS-7 can be achieved. The primary system overpressurization will occur but pose no threat to personnel ormore » to plant integrity. 3 refs., 15 figs., 5 tabs.« less
Pretest analysis document for Test S-FS-11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, D.G.; Shaw, R.A.
This report documents the pretest calculations completed for Semiscale Test S-FS-11. This test will simulate a transient initiated by a 50% break in a steam generator bottom feedwater line downstream of the check valve. The initial conditions represents normal operating conditions for a C-E System 80 nuclear plant. Prediction of transients resulting from feedwater line breaks in these plants have indicated that significant primary system overpressurization may occur. The results of a RELAP5/MOD2/CY21 code calculation indicate that the test objectives for Test S-FS-11 can be achieved. The primary system overpressurization will occur but pose no threat to personnel or plantmore » integrity. 3 refs., 15 figs., 5 tabs.« less
A strategy to unveil transient sources of ultra-high-energy cosmic rays
NASA Astrophysics Data System (ADS)
Takami, Hajime
2013-06-01
Transient generation of ultra-high-energy cosmic rays (UHECRs) has been motivated from promising candidates of UHECR sources such as gamma-ray bursts, flares of active galactic nuclei, and newly born neutron stars and magnetars. Here we propose a strategy to unveil transient sources of UHECRs from UHECR experiments. We demonstrate that the rate of UHECR bursts and/or flares is related to the apparent number density of UHECR sources, which is the number density estimated on the assumption of steady sources, and the time-profile spread of the bursts produced by cosmic magnetic fields. The apparent number density strongly depends on UHECR energies under a given rate of the bursts, which becomes observational evidence of transient sources. It is saturated at the number density of host galaxies of UHECR sources. We also derive constraints on the UHECR burst rate and/or energy budget of UHECRs per source as a function of the apparent source number density by using models of cosmic magnetic fields. In order to obtain a precise constraint of the UHECR burst rate, high event statistics above ˜ 1020 eV for evaluating the apparent source number density at the highest energies and better knowledge on cosmic magnetic fields by future observations and/or simulations to better estimate the time-profile spread of UHECR bursts are required. The estimated rate allows us to constrain transient UHECR sources by being compared with the occurrence rates of known energetic transient phenomena.
Augmentor transient capability of an F100 engine equipped with a digital electronic engine control
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Pai, G. D.
1984-01-01
An F100 augmented turbofan engine equipped with digital electronic engine control (DEEC) system was evaluated. The engine was equipped with a specially modified augmentor to provide improved steady state and transient augmentor capability. The combination of the DEEC and the modified augmentor was evaluated in sea level and altitude facility tests and then in four different flight phases in an F-15 aircraft. The augmentor configuration, logic, and test results are presented.
SSME turbopump technology improvements via transient rotordynamic analysis
NASA Technical Reports Server (NTRS)
Childs, D. W.
1975-01-01
The rotordynamic behavior of the high pressure oxygen turbopump and high pressure fuel pump was analyzed for the Space Shuttle Main Engine. The identification of potential rotordynamic problem areas which might arise during operation of these units prior to their testing was accomplished. Alternative procedures for correcting potential rotordynamic problems should they occur were investigated. An adequate analytic and physical understanding of the turbopump rotordynamics was developed to improve the probability of a correct diagnosis of rotordynamic problems from test data. Transient rotordynamic models were developed for both turbopumps. The transient models model the hydrodynamic forces of the turbopump seals. A linear stability analysis was performed for the turbopump rotordynamics models, which included gyroscopic effects, seal forces, speed-dependent bearing characteristics, and internal rotor damping. Results are presented and discussed.
Lee, Ju-Yeun; Min, Ju-Hong; Han, Sueng-Han; Han, Jinu
2017-07-01
We describe a 27-year-old pregnant female with new onset of conjugate gaze deficit during the third trimester of pregnancy. Repetitive nerve stimulation tests, neostigmine tests, and acetylcholine receptor antibody assays were all negative. The patient delivered a normal healthy baby at a local clinic via cesarean section. The baby became hypotonic and had respiratory failure several minutes after birth. The result of acetylcholine receptor antibody was negative in the neonate. The neonate became healthy spontaneously and was extubated after 21 days of ventilation care. Two months after delivery, the mother developed ptosis and generalized symptoms and subsequent workup revealed she was muscle specific kinase (MuSK) antibody positive. The neonate was presumed to have an anti-MuSK-mediated transient neonatal myasthenia gravis. Although MuSK antibody testing is rarely indicated in ocular myasthenia gravis, MuSK antibody testing is necessary in pregnant women who are presumed ocular myasthenia gravis to warn occurrence of transient neonatal myasthenia gravis. Copyright © 2017 Elsevier B.V. All rights reserved.
Experimental study of transient liquid motion in orbiting spacecraft
NASA Technical Reports Server (NTRS)
Berry, R. L.; Tegart, J. R.
1975-01-01
The results are presented of a twofold study of transient liquid motion such as that which will be experienced during orbital maneuvers by space tug. A test program was conducted in a low-g test facility involving twenty-two drops. Biaxial, low-g accelerations were applied to an instrumented, model propellant tank during free-fall testing, and forces exerted during liquid reorientation were measured and recorded. Photographic records of the liquid reorientation were also made. The test data were used to verify a mechanical analog which portrays the liquid as a point mass moving on an ellipsoidal constraint surface. The mechanical analog was coded into a FORTRAN IV digital computer program: LAMPS, Large AMPlitude Slosh. Test/analytical correlation indicates that the mechanical analog is capable of predicting the overall force trends measured during testing.
NASA Astrophysics Data System (ADS)
Zhao, X.; Chang, Y.; Peng, F.; Wu, J.
2016-12-01
Study of solute transport in karst conduit is of great significance for prediction and prevention of groundwater pollution in southwest karst region. Solute transport in karst conduit is strongly influenced by pools which often develop along karst conduit. In order to investigate the effect of transient storage within pools on solute transport in the conduit, a pool-pipe system was built in the laboratory and some tracer tests were performed in various flow conditions to characterize the solute transport in different pool-pipe structures. The Qtracer2 program was used to obtain solute transport parameters. We used retardation coefficient R to characterize the difference between the 1-D analytical solution of the classical advection-dispersion equation and experimental results. The experimental results reveal that the concentration peak decreases with the number of pools whereas the dispersion coefficient and dispersivity increase gradually. Adding transient storage increases retardation as tailing of the breakthrough curve(BTC) is growing with the number of pools. This demonstrates that transient storage within pools is transformed to retardation. The symmetrical pool has longer tails compared to the asymmetrical pool. The concentration peak lag behind significantly due to the asymmetrical pool. A decrease in dispersivity and tailing of the BTC is observed in all pipes with the increase of flow velocities. The 1-D analytical solution of the classical advection-dispersion equation is well fitted to BTC of a single pipe in maximum flow velocity but is poorly fitted to other BTCs with appreciable tails. Therefore, it requires an appropriate model to explain tailing of the BTC. The conclusion has important significance for understanding of solute transport process in karst conduit. Future work will focus on using the appropriate model to explain tailing of the BTC.
Inert matrix fuel neutronic, thermal-hydraulic, and transient behavior in a light water reactor
NASA Astrophysics Data System (ADS)
Carmack, W. J.; Todosow, M.; Meyer, M. K.; Pasamehmetoglu, K. O.
2006-06-01
Currently, commercial power reactors in the United States operate on a once-through or open cycle, with the spent nuclear fuel eventually destined for long-term storage in a geologic repository. Since the fissile and transuranic (TRU) elements in the spent nuclear fuel present a proliferation risk, limit the repository capacity, and are the major contributors to the long-term toxicity and dose from the repository, methods and systems are needed to reduce the amount of TRU that will eventually require long-term storage. An option to achieve a reduction in the amount, and modify the isotopic composition of TRU requiring geological disposal is 'burning' the TRU in commercial light water reactors (LWRs) and/or fast reactors. Fuel forms under consideration for TRU destruction in light water reactors (LWRs) include mixed-oxide (MOX), advanced mixed-oxide, and inert matrix fuels. Fertile-free inert matrix fuel (IMF) has been proposed for use in many forms and studied by several researchers. IMF offers several advantages relative to MOX, principally it provides a means for reducing the TRU in the fuel cycle by burning the fissile isotopes and transmuting the minor actinides while producing no new TRU elements from fertile isotopes. This paper will present and discuss the results of a four-bundle, neutronic, thermal-hydraulic, and transient analyses of proposed inert matrix materials in comparison with the results of similar analyses for reference UOX fuel bundles. The results of this work are to be used for screening purposes to identify the general feasibility of utilizing specific inert matrix fuel compositions in existing and future light water reactors. Compositions identified as feasible using the results of these analyses still require further detailed neutronic, thermal-hydraulic, and transient analysis study coupled with rigorous experimental testing and qualification.
Matsui, Takemi; Shinba, Toshikazu; Sun, Guanghao
2018-02-01
12.6% of major depressive disorder (MDD) patients have suicide intent, while it has been reported that 43% of patients did not consult their doctors for MDD, automated MDD screening is eagerly anticipated. Recently, in order to achieve automated screening of MDD, biomarkers such as multiplex DNA methylation profiles or physiological method using near infra-red spectroscopy (NIRS) have been studied, however, they require inspection using 96-well DNA ELIZA kit after blood sampling or significant cost. Using a single-lead electrocardiography (ECG), we developed a high-precision MDD screening system using transient autonomic responses induced by dual mental tasks. We developed a novel high precision MDD screening system which is composed of a single-lead ECG monitor, analogue to digital (AD) converter and a personal computer with measurement and analysis program written by LabView programming language. The system discriminates MDD patients from normal subjects using heat rate variability (HRV)-derived transient autonomic responses induced by dual mental tasks, i.e. verbal fluency task and random number generation task, via linear discriminant analysis (LDA) adopting HRV-related predictor variables (hear rate (HR), high frequency (HF), low frequency (LF)/HF). The proposed system was tested for 12 MDD patients (32 ± 15 years) under antidepressant treatment from Shizuoka Saiseikai General Hospital outpatient unit and 30 normal volunteers (37 ± 17 years) from Tokyo Metropolitan University. The proposed system achieved 100% sensitivity and 100% specificity in classifying 42 examinees into 12 MDD patients and 30 normal subjects. The proposed system appears promising for future HRV-based high-precision and low-cost screening of MDDs using only single-lead ECG.
Advanced Fuel Cycle Technology: Special Session in Honor of Dr. Michael Lineberry
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.M. Wachs; N. Woolstenhulme
2014-06-01
The US DOE recently initiated an effort to develop accident tolerant fuel designs for potential use in commercial power reactors. Evaluation of various fuel design concepts will require a broad array of testing that will include performance attributes at both steady state and transient irradiation conditions. The first stage of the transient testing program is intended to establish the relative performance limits of each proposed concept and to support development of first-draft fuel performance models. It is anticipated that this data can subsequently be used as the basis for larger scale qualification testing. This initial stage of the testing programmore » is outlined in this paper.« less
Reactor transient control in support of PFR/TREAT TUCOP experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrows, D.R.; Larsen, G.R.; Harrison, L.J.
1984-01-01
Unique energy deposition and experiment control requirements posed bythe PFR/TREAT series of transient undercooling/overpower (TUCOP) experiments resulted in equally unique TREAT reactor operations. New reactor control computer algorithms were written and used with the TREAT reactor control computer system to perform such functions as early power burst generation (based on test train flow conditions), burst generation produced by a step insertion of reactivity following a controlled power ramp, and shutdown (SCRAM) initiators based on both test train conditions and energy deposition. Specialized hardware was constructed to simulate test train inputs to the control computer system so that computer algorithms couldmore » be tested in real time without irradiating the experiment.« less
Unsteady hovering wake parameters identified from dynamic model tests, part 1
NASA Technical Reports Server (NTRS)
Hohenemser, K. H.; Crews, S. T.
1977-01-01
The development of a 4-bladed model rotor is reported that can be excited with a simple eccentric mechanism in progressing and regressing modes with either harmonic or transient inputs. Parameter identification methods were applied to the problem of extracting parameters for linear perturbation models, including rotor dynamic inflow effects, from the measured blade flapping responses to transient pitch stirring excitations. These perturbation models were then used to predict blade flapping response to other pitch stirring transient inputs, and rotor wake and blade flapping responses to harmonic inputs. The viability and utility of using parameter identification methods for extracting the perturbation models from transients are demonstrated through these combined analytical and experimental studies.
Single event induced transients in I/O devices - A characterization
NASA Technical Reports Server (NTRS)
Newberry, D. M.; Kaye, D. H.; Soli, G. A.
1990-01-01
The results of single-event upset (SEU) testing performed to evaluate the parametric transients, i.e., amplitude and duration, in several I/O devices, and the impact of these transients are discussed. The failure rate of these devices is dependent on the susceptibility of interconnected devices to the resulting transient change in the output of the I/O device. This failure rate, which is a function of the susceptibility of the interconnected device as well as the SEU response of the I/O device itself, may be significantly different from an upset rate calculated without taking these factors into account. The impact at the system level is discussed by way of an example.
Suppression of thermal transients in advanced LIGO interferometers using CO2 laser preheating
NASA Astrophysics Data System (ADS)
Jaberian Hamedan, V.; Zhao, C.; Ju, L.; Blair, C.; Blair, D. G.
2018-06-01
In high optical power interferometric gravitational wave detectors, such as Advanced LIGO, the thermal effects due to optical absorption in the mirror coatings and the slow thermal response of fused silica substrate cause time dependent changes in the mirror profile. After locking, high optical power builds up in the arm cavities. Absorption induced heating causes optical cavity transverse mode frequencies to drift over a period of hours, relative to the fundamental mode. At high optical power this can cause time dependent transient parametric instability, which can lead to interferometer disfunction. In this paper, we model the use of CO2 laser heating designed to enable the interferometer to be maintained in a thermal condition such that transient changes in the mirrors are greatly reduced. This can minimize transient parametric instability and compensate dark port power fluctuations. Modeling results are presented for both single compensation where a CO2 laser acting on one test mass per cavity, and double compensation using one CO2 laser for each test mass. Using parameters of the LIGO Hanford Observatory X-arm as an example, single compensation allows the maximum mode frequency shift to be limited to 6% of its uncompensated value. However, single compensation causes transient degradation of the contrast defect. Double compensation minimise contrast defect degradation and reduces transients to less than 1% if the CO2 laser spot is positioned within 2 mm of the cavity beam position.
Transient triggering of near and distant earthquakes
Gomberg, J.; Blanpied, M.L.; Beeler, N.M.
1997-01-01
We demonstrate qualitatively that frictional instability theory provides a context for understanding how earthquakes may be triggered by transient loads associated with seismic waves from near and distance earthquakes. We assume that earthquake triggering is a stick-slip process and test two hypotheses about the effect of transients on the timing of instabilities using a simple spring-slider model and a rate- and state-dependent friction constitutive law. A critical triggering threshold is implicit in such a model formulation. Our first hypothesis is that transient loads lead to clock advances; i.e., transients hasten the time of earthquakes that would have happened eventually due to constant background loading alone. Modeling results demonstrate that transient loads do lead to clock advances and that the triggered instabilities may occur after the transient has ceased (i.e., triggering may be delayed). These simple "clock-advance" models predict complex relationships between the triggering delay, the clock advance, and the transient characteristics. The triggering delay and the degree of clock advance both depend nonlinearly on when in the earthquake cycle the transient load is applied. This implies that the stress required to bring about failure does not depend linearly on loading time, even when the fault is loaded at a constant rate. The timing of instability also depends nonlinearly on the transient loading rate, faster rates more rapidly hastening instability. This implies that higher-frequency and/or longer-duration seismic waves should increase the amount of clock advance. These modeling results and simple calculations suggest that near (tens of kilometers) small/moderate earthquakes and remote (thousands of kilometers) earthquakes with magnitudes 2 to 3 units larger may be equally effective at triggering seismicity. Our second hypothesis is that some triggered seismicity represents earthquakes that would not have happened without the transient load (i.e., accumulated strain energy would have been relieved via other mechanisms). We test this using two "new-seismicity" models that (1) are inherently unstable but slide at steady-state conditions under the background load and (2) are conditionally stable such that instability occurs only for sufficiently large perturbations. For the new-seismicity models, very small-amplitude transients trigger instability relative to the clock-advance models. The unstable steady-state models predict that the triggering delay depends inversely and nonlinearly on the transient amplitude (as in the clock-advance models). We were unable to generate delayed triggering with conditionally stable models. For both new-seismicity models, the potential for triggering is independent of when the transient load is applied or, equivalently, of the prestress (unlike in the clock-advance models). In these models, a critical triggering threshold appears to be inversely proportional to frequency. Further advancement of our understanding will require more sophisticated, quantitative models and observations that distinguish between our qualitative, yet distinctly different, model predictions.
NASA Astrophysics Data System (ADS)
Ni, Kai; Sternberg, Andrew L.; Zhang, En Xia; Kozub, John A.; Jiang, Rong; Schrimpf, Ronald D.; Reed, Robert A.; Fleetwood, Daniel M.; Alles, Michael L.; McMorrow, Dale; Lin, Jianqiang; Vardi, Alon; del Alamo, Jesús
2017-08-01
A tunable wavelength laser system and high-resolution transient capture system are introduced to characterize transients in high-mobility MOSFETs. The experimental configuration enables resolution of fast transient signals and new understanding of charge collection mechanisms. The channel layer is critical in the charge collection process for the InGaAs FinFETs examined here. The transient current mainly comes from the channel current, due to shunt effects and parasitic bipolar effects, instead of the junction collection. The charge amplification factor is found to be as high as 14, which makes this technology relatively sensitive to transient radiation. The peak current is inversely proportional to the device gate length. Simulations show that the parasitic bipolar effect is due to source-to-channel barrier lowering caused by hole accumulation in the source and channel. Charge deposited in the channel causes prompt current, while charge deposited below the channel causes delayed and slow current.
NASA Astrophysics Data System (ADS)
Eakins, D. E.; Thadhani, N. N.
2006-10-01
Instrumented Taylor anvil-on-rod impact tests have been conducted on oxygen-free electronic copper to validate the accuracy of current strength models for predicting transient states during dynamic deformation events. The experiments coupled the use of high-speed digital photography to record the transient deformation states and laser interferometry to monitor the sample back (free surface) velocity as a measure of the elastic/plastic wave propagation through the sample length. Numerical continuum dynamics simulations of the impact and plastic wave propagation employing the Johnson-Cook [Proceedings of the Seventh International Symposium on Ballistics, 1983, The Netherlands (Am. Def. Prep. Assoc. (ADPA)), pp. 541-547], Zerilli-Armstrong [J. Appl. Phys. C1, 1816 (1987)], and Steinberg-Guinan [J. Appl. Phys. 51, 1498 (1980)] constitutive equations were used to generate transient deformation profiles and the free surface velocity traces. While these simulations showed good correlation with the measured free surface velocity traces and the final deformed sample shape, varying degrees of deviations were observed between the photographed and calculated specimen profiles at intermediate deformation states. The results illustrate the usefulness of the instrumented Taylor anvil-on-rod impact technique for validating constitutive equations that can describe the path-dependent deformation response and can therefore predict the transient and final deformation states.
The PANDA tests for SBWR certification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varadi, G.; Dreier, J.; Bandurski, Th.
1996-03-01
The ALPHA project is centered around the experimental and analytical investigation of the long-term decay heat removal from the containments of the next generation of {open_quotes}passive{close_quotes} ALWRs. The project includes integral system tests in the large-scale (1:25 in volume) PANDA facility as well as several other series of tests and supporting analytical work. The first series of experiments to be conducted in PANDA have become a required experimental element in the certification process for the General Electric Simplified Boiling Water Reactor (SBWR). The PANDA general experimental philosophy, facility design, scaling, and instrumentation are described. Steady-state PCCS condenser performance tests andmore » extensive facility characterization tests were already conducted. The transient system behavior tests are underway; preliminary results from the first transient test M3 are reviewed.« less
The development of current biological monitoring and bioassessment programs was a drastic improvement over previous programs created for monitoring a limited number of specific chemical pollutants. Although these assessment programs are better designed to address the transient an...
NASA Astrophysics Data System (ADS)
Annaniah, Luruthudass; Devarajan, Mutharasu; San, Teoh Kok
To ensure the highest quality & long-term reliability of LED components it is necessary to examine LED dice that have sustained mechanical damage during the manufacturing process. This paper has demonstrated that detection of die crack in mass manufactured LEDs can be achieved by measuring Temperature Sensitive Parameters (TSPs) during final testing. A newly-designed apparatus and microcontroller was used for this investigation in order to achieve the millisecond switching time needed for detecting thermal transient effects and at the same time meet the expected speed for mass manufacturing. Evaluations conducted at lab scale shows that thermal transient behaviour of cracked die is significantly different than that of an undamaged die. Having an established test limits to differentiate cracked dice, large volume tests in a production environment were used to confirm the effectiveness of this test method. Failure Bin Analysis (FBA) of this high volume experiment confirmed that all the cracked die LEDs were detected and the undamaged LEDs passed this test without over-rejection. The work verifies that tests based on TSP are effective in identifying die cracks and it is believed that the method could be extended to other types of rejects that have thermal transient signatures such as die delamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbett, K; Mendler, O J; Gardner, G C
In PWR steam generator tube rupture (SGTR) faults, a direct pathway for the release of radioactive fission products can exist if there is a coincident stuck-open safety relief valve (SORV) or if the safety relief valve is cycled. In addition to the release of fission products from the bulk steam generator water by moisture carryover, there exists the possibility that some primary coolant may be released without having first mixed with the bulk water - a process called primary coolant bypassing. The MB-2 Phase II test program was designed specifically to identify the processes for droplet carryover during SGTR faultsmore » and to provide data of sufficient accuracy for use in developing physical models and computer codes to describe activity release. The test program consisted of sixteen separate tests designed to cover a range of steady-state and transient fault conditions. These included a full SGTR/SORV transient simulation, two SGTR overfill tests, ten steady-state SGTR tests at water levels ranging from very low levels in the bundle up to those when the dryer was flooded, and three moisture carryover tests without SGTR. In these tests the influence of break location and the effect of bypassing the dryer were also studied. In a final test the behavior with respect to aerosol particles in a dry steam generator, appropriate to a severe accident fault, was investigated.« less
Gamma-Ray Bursts and Fast Transients. Multi-wavelength Observations and Multi-messenger Signals
NASA Astrophysics Data System (ADS)
Willingale, R.; Mészáros, P.
2017-07-01
The current status of observations and theoretical models of gamma-ray bursts and some other related transients, including ultra-long bursts and tidal disruption events, is reviewed. We consider the impact of multi-wavelength data on the formulation and development of theoretical models for the prompt and afterglow emission including the standard fireball model utilizing internal shocks and external shocks, photospheric emission, the role of the magnetic field and hadronic processes. In addition, we discuss some of the prospects for non-photonic multi-messenger detection and for future instrumentation, and comment on some of the outstanding issues in the field.
The SPAR thermal analyzer: Present and future
NASA Astrophysics Data System (ADS)
Marlowe, M. B.; Whetstone, W. D.; Robinson, J. C.
The SPAR thermal analyzer, a system of finite-element processors for performing steady-state and transient thermal analyses, is described. The processors communicate with each other through the SPAR random access data base. As each processor is executed, all pertinent source data is extracted from the data base and results are stored in the data base. Steady state temperature distributions are determined by a direct solution method for linear problems and a modified Newton-Raphson method for nonlinear problems. An explicit and several implicit methods are available for the solution of transient heat transfer problems. Finite element plotting capability is available for model checkout and verification.
The SPAR thermal analyzer: Present and future
NASA Technical Reports Server (NTRS)
Marlowe, M. B.; Whetstone, W. D.; Robinson, J. C.
1982-01-01
The SPAR thermal analyzer, a system of finite-element processors for performing steady-state and transient thermal analyses, is described. The processors communicate with each other through the SPAR random access data base. As each processor is executed, all pertinent source data is extracted from the data base and results are stored in the data base. Steady state temperature distributions are determined by a direct solution method for linear problems and a modified Newton-Raphson method for nonlinear problems. An explicit and several implicit methods are available for the solution of transient heat transfer problems. Finite element plotting capability is available for model checkout and verification.
Siket, Matthew S; Edlow, Jonathan A
2012-08-01
A transient ischemic attack (TIA) is an episode of reversible neurologic deficit caused by temporary focal central nervous system hypoperfusion. TIA is a medical emergency. Because patients with TIA in the emergency department (ED) have a high risk for stroke within the next 48 hours, it is imperative for the clinician to recognize this golden opportunity to prevent a disabling stroke. This article reviews our conceptual understanding of TIA, its definition, diagnosis, ways to stratify stroke risk, the acute management and disposition in the ED, and the potential future role of diagnostic biomarkers. Copyright © 2012 Elsevier Inc. All rights reserved.
Time-domain electromagnetic tests in the Wadi Bidah District, Kingdom of Saudi Arabia
Flanigan, Vincent J.; Sadek, Hamdy; Smith, Bruce; Tippens, C.L.
1983-01-01
A time-domain electromagnetic (TDEM) method was tested in two areas of mineralization in Precambrian rocks in the Wadi Bidah district, Kingdom of Saudi Arabia. Transient-decay voltages in profile mode were measured across the Sha'ab at Tare and Rabathan prospects by use of three transmitterreceiver loop configurations. At the Sha'ab at Tare prospect all of the loop configurations indicated the mineralized zone. Analysis of the coincident loop data at Sha'ab at Tare reveals that gossanous and altered rock of i0 ohm-m resistivity extends to a depth of 35 m, where there is an unweathered, dry mineralized zone of about 1 ohm-m resistivity. The model further suggests that the rocks at a depth of 55 m and below the water table are even less resistive (0. 1 ohm-m). The TDEM method successfully discriminated conductors within from those below the weathered zone at the Rabathan prospect. Conductors below the weathered zone are identified by a lack of transient response in the early part of the transient decay curve, followed by an increasing response in the middle to late parts of the transient decay curve. Results of these limited tests suggest the potential value of integrating TDEM with other geophysical tools in the Kingdom. Recommendations are made to expand these tests into a more comprehensive program that will evaluate the TDEM potential in various geologic environments that are host to mineral deposits of diverse origin.
Integration of fracturing dynamics and pressure transient analysis for hydraulic fracture evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arihara, N.; Abbaszadeh, M.; Wright, C.A.
This paper presents pre- and post-fracture pressure transient analysis, combined with net fracture pressure interpretation, for a well in a naturally fractured geothermal reservoir. Integrated analysis was performed to achieve a consistent interpretation of the created fracture geometry, propagation, conductivity, shrinkage, reservoir flow behavior, and formation permeability characteristics. The interpreted data includes two-rate pre-frac injection tests, step-rate injection tests, a series of pressure falloff tests, and the net fracturing pressure from a massive fracture treatment. Pressure transient analyses were performed utilizing advanced well test interpretation techniques and a thermal reservoir simulator with fracture propagation option. Hydraulic fracture propagation analysis wasmore » also performed Milt a generalized 3-D dynamic fracture growth model simulator. Three major conclusions resulted from the combined analysis: (1) that an increasing number of hydraulic fractures were being simultaneously propagated during the fracture treatment. (2) that the reservoir behaved as a composite reservoir Keith the outer region permeability being greater than the permeability of the region immediately surrounding the wellbore, and (3) that the created fractures extended into the outer region during the fracture treatment but retreated to the inner region several days after stimulation had ceased. These conclusions were apparent from independent pressure transient analysis and from independent hydraulic fracture propagation analysis. Integrated interpretation, however, increased the confidence in these conclusions and greatly aided the quantification of the created hydraulic fracture geometry and characterization of the reservoir permeability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullins, C. B.; Felde, D. K.; Sutton, A. G.
1982-04-01
Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) Test 3.03.6AR. This test was conducted by members of the ORNL Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on May 21, 1980. Objective was to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.03.6AR was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.03.6AR available. Included in the report are uncertainties in the instrument responses,more » calculated mass flows, and calculated rod powers.« less
Ensemble Classifier Strategy Based on Transient Feature Fusion in Electronic Nose
NASA Astrophysics Data System (ADS)
Bagheri, Mohammad Ali; Montazer, Gholam Ali
2011-09-01
In this paper, we test the performance of several ensembles of classifiers and each base learner has been trained on different types of extracted features. Experimental results show the potential benefits introduced by the usage of simple ensemble classification systems for the integration of different types of transient features.
Transport dynamics of a high-power-density matrix-type hydrogen-oxygen fuel cell
NASA Technical Reports Server (NTRS)
Prokopius, P. R.; Hagedorn, N. H.
1974-01-01
Experimental transport dynamics tests were made on a space power fuel cell of current design. Various operating transients were introduced and transport-related response data were recorded with fluidic humidity sensing instruments. Also, sampled data techniques were developed for measuring the cathode-side electrolyte concentration during transient operation.
Lightning induced currents in aircraft wiring using low level injection techniques
NASA Technical Reports Server (NTRS)
Stevens, E. G.; Jordan, D. T.
1991-01-01
Various techniques were studied to predict the transient current induced into aircraft wiring bundles as a result of an aircraft lightning strike. A series of aircraft measurements were carried out together with a theoretical analysis using computer modeling. These tests were applied to various aircraft and also to specially constructed cylinders installed within coaxial return conductor systems. Low level swept frequency CW (carrier waves), low level transient and high level transient injection tests were applied to the aircraft and cylinders. Measurements were made to determine the transfer function between the aircraft drive current and the resulting skin currents and currents induced on the internal wiring. The full threat lightning induced transient currents were extrapolated from the low level data using Fourier transform techniques. The aircraft and cylinders used were constructed from both metallic and CFC (carbon fiber composite) materials. The results show the pulse stretching phenomenon which occurs for CFC materials due to the diffusion of the lightning current through carbon fiber materials. Transmission Line Matrix modeling techniques were used to compare theoretical and measured currents.
Blade loss transient dynamic analysis of turbomachinery
NASA Technical Reports Server (NTRS)
Stallone, M. J.; Gallardo, V.; Storace, A. F.; Bach, L. J.; Black, G.; Gaffney, E. F.
1982-01-01
This paper reports on work completed to develop an analytical method for predicting the transient non-linear response of a complete aircraft engine system due to the loss of a fan blade, and to validate the analysis by comparing the results against actual blade loss test data. The solution, which is based on the component element method, accounts for rotor-to-casing rubs, high damping and rapid deceleration rates associated with the blade loss event. A comparison of test results and predicted response show good agreement except for an initial overshoot spike not observed in test. The method is effective for analysis of large systems.
Single Event Effect microchip testing at the Texas A&M University Cyclotron Institute
NASA Astrophysics Data System (ADS)
Clark, Henry; Yennello, Sherry; Texas A&M University-Cyclotron Institute Team
2015-10-01
A Single Event Effect (SEE) is caused by a single, energetic particle that deposits a sufficient amount of charge in a device as it transverses it and upsets its normal operation. Soft errors are non-destructive and normally appear as transient pulses in logic or support circuitry, or as bit flips in memory cells or registers. Hard errors usually result in a high operating current, above device specifications, and must be cleared by a power reset. Burnout errors are so destructive that the device becomes operationally dead. Spacecraft designers must be concerned with the causes of SEE's from protons and heavy ions since commercial devices are typically chosen reduce the parameters of power, weight, volume and cost but have increased functionality, which in turn are typically vulnerable to SEE. As a result all mission-critical devices must be tested. The TAMU K500 superconducting cyclotron has provided beams for space radiation testing since 1994. Starting at just 100 hours/year at inception, the demand has grown to 3000 hours/year. In recent years, most beam time has been for US defense system testing. Nearly 15% has been provided for foreign agencies from Europe and Asia. An overview of the testing facility and future plans will be presented.
A novel plant protection strategy for transient reactors
NASA Astrophysics Data System (ADS)
Bhattacharyya, Samit K.; Lipinski, Walter C.; Hanan, Nelson A.
A novel plant protection system designed for use in the TREAT Upgrade (TU) reactor is described. The TU reactor is designed for controlled transient operation in the testing of reactor fuel behavior under simulated reactor accident conditions. Safe operation of the reactor is of paramount importance and the Plant Protection System (PPS) had to be designed to exacting requirements. Researchers believe that the strategy developed for the TU has potential application to the multimegawatt space reactors and represents the state of the art in terrestrial transient reactor protection systems.
NASA Astrophysics Data System (ADS)
Moshkbar-Bakhshayesh, Khalil; Ghofrani, Mohammad B.
2014-02-01
This study aims to improve the performance of nuclear power plants (NPPs) transients training and identification using the latest advances of error back-propagation (EBP) learning algorithm. To this end, elements of EBP, including input data, initial weights, learning rate, cost function, activation function, and weights updating procedure are investigated and an efficient neural network is developed. Usefulness of modular networks is also examined and appropriate identifiers, one for each transient, are employed. Furthermore, the effect of transient type on transient identifier performance is illustrated. Subsequently, the developed transient identifier is applied to Bushehr nuclear power plant (BNPP). Seven types of the plant events are probed to analyze the ability of the proposed identifier. The results reveal that identification occurs very early with only five plant variables, whilst in the previous studies a larger number of variables (typically 15 to 20) were required. Modular networks facilitated identification due to its sole dependency on the sign of each network output signal. Fast training of input patterns, extendibility for identification of more transients and reduction of false identification are other advantageous of the proposed identifier. Finally, the balance between the correct answer to the trained transients (memorization) and reasonable response to the test transients (generalization) is improved, meeting one of the primary design criteria of identifiers.
The MWA Transients Survey (MWATS).
NASA Astrophysics Data System (ADS)
Bell, M.; Murphy, T.; Kaplan, D. L.; Croft, S. D.; Hancock, P.; Rowlinson, A.; Wayth, R.; Gaensler, B.; Hurley-Walker, N.; Offringa, A.; Loi, C.; Bannister, K.; Trott, C.; Marquart, J.
2017-01-01
We propose the continuation of the MWA transients survey to search for and monitor low frequency transient and variable radio sources in the southern sky. This proposal is aimed at commensally utilising data from the GLEAM-X (G0008) project in semester 2017-A. The aim of this commensal data acquisition is to commission long baseline observations for transient science. In particular this will involve studying the impact of the ionosphere on calibration and imaging, and developing the techniques needed to produce science quality data products. The proposed drift scans with LST locking (see G0008 proposal) are particularly exciting as we can test image subtraction for transient and variable identification. This survey is targeted at studying objects such as AGN (intrinsic and extrinsic variability), long duration synchrotron emitters, pulsars and transients of unknown origin. The maps generated from this survey will be analysed with the Variables and Slow Transients (VAST) detection pipeline. The motivation for this survey is as follows: (i) To obtain temporal data on an extremely large and robust sample of low frequency sources to explore and quantify both intrinsic and extrinsic variability; (ii) To search and find new classes of low frequency radio transients that previously remained undetected and obscured from multi-wavelength discovery; (iii) To place rigorous statistics on the occurrence of both transients and variables prior to the Australian SKA era.
Murray-Moraleda, Jessica R.; Lohman, Rowena
2010-01-01
The Southern California Earthquake Center (SCEC) is a community of researchers at institutions worldwide working to improve understanding of earthquakes and mitigate earthquake risk. One of SCEC's priority objectives is to “develop a geodetic network processing system that will detect anomalous strain transients.” Given the growing number of continuously recording geodetic networks consisting of hundreds of stations, an automated means for systematically searching data for transient signals, especially in near real time, is critical for network operations, hazard monitoring, and event response. The SCEC Transient Detection Test Exercise began in 2008 to foster an active community of researchers working on this problem, explore promising methods, and combine effective approaches in novel ways. A workshop was held in California to assess what has been learned thus far and discuss areas of focus as the project moves forward.
Chandra X-ray constraints on the candidate Ca-rich gap transient SN 2016hnk
NASA Astrophysics Data System (ADS)
Sell, P. H.; Arur, K.; Maccarone, T. J.; Kotak, R.; Knigge, C.; Sand, D. J.; Valenti, S.
2018-03-01
We present a Chandra observation of SN 2016hnk, a candidate Ca-rich gap transient. This observation was specifically designed to test whether or not this transient was the result of the tidal detonation of a white dwarf by an intermediate-mass black hole. Since we detect no X-ray emission 28 d after the discovery of the transient, as predicted from fall-back accretion, we rule out this model. Our upper limit of ˜10 M⊙ does not allow us to rule out a neutron star or stellar-mass black hole detonator due limits on the sensitivity of Chandra to soft X-rays and unconstrained variables tied to the structure of super-Eddington accretion discs. Together with other Chandra and multiwavelength observations, our analysis strongly argues against the intermediate-mass black hole tidal detonation scenario for Ca-rich gap transients more generally.
NASA Astrophysics Data System (ADS)
Ejiri, Arata; Sasaki, Jun; Kinoshita, Yusuke; Fujimoto, Junya; Maruyama, Tsugito; Shimotani, Keiji
For the purpose of contributing to global environment protection, several research studies have been conducted involving clean-burning diesel engines. In recent diesel engines with Exhaust Gas Recirculation (EGR) systems and a Variable Nozzle Turbocharger (VNT), mutual interference between EGR and VNT has been noted. Hence, designing and adjusting control of the conventional PID controller is particularly difficult at the transient state in which the engine speed and fuel injection rate change. In this paper, we formulate 1st principal model of air intake system of diesel engines and transform it to control oriented model including an engine steady state model and a transient model. And we propose a model-based control system with the LQR Controller, Saturation Compensator, the Dynamic Feed-forward and Disturbance Observer using a transient model. Using this method, we achieved precise reference tracking and emission reduction in transient mode test with the real engine evaluations.
Posttest examination results of recent treat tests on metal fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, J.W.; Wright, A.E.; Bauer, T.H.
A series of in-reactor transient tests is underway to study the characteristics of metal-alloy fuel during transient-overpower-without-scam conditions. The initial tests focused on determining the margin to cladding breach and the axial fuel motions that would mitigate the power excursion. The tests were conducted in flowing-sodium loops with uranium - 5% fissium EBR-II Mark-II driver fuel elements in the TREAT facility. Posttest examination of the tests evaluated fuel elongation in intact pins and postfailure fuel motion. Microscopic examination of the intact pins studied the nature and extent of fuel/cladding interaction, fuel melt fraction and mass distribution, and distribution of porosity.more » Eutectic penetration and failure of the cladding were also examined in the failed pins.« less
Pretest analysis document for Test S-FS-6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, R.A.; Hall, D.G.
This report documents the pretest analyses completed for Semiscale Test S-FS-6. This test will simulate a transient initiated by a 100% break in a steam generator bottom feedwater line downstream of the check valve. The initial conditions represent normal operating conditions for a C-E System 80 nuclear power plant. Predictions of transients resulting from feedwater line breaks in these plants have indicated that significant primary system overpressurization may occur. The enclosed analyses include a RELAP5/MOD2/CY21 code calculation and preliminary results from a facility hot, integrated test which was conducted to near S-FS-6 specifications. The results of these analyses indicate thatmore » the test objectives for Test S-FS-6 can be achieved. The primary system overpressurization will pose no threat to personnel or plant integrity.« less
Nakajima, Isao; Tachibana, Masakazu; Ohashi, Noriyoshi; Imai, Hiroshi; Asari, Yasushi; Matsuyama, Shigenori
2011-12-01
The Japan Aerospace Exploration Agency (JAXA) provides extravehicular activity (EVA) training to astronauts in a weightless environment test building (WETS) located in Tsukuba City. For EVA training, Tsukuba Medial Center Hospital (TMCH) has established an emergency medical support system, serving as operations coordinator. Taking the perspective of emergency physicians, this paper provides an overview of the medical support system and examines its activities over the past decade as well as future issues. Fortunately, no major accident has occurred during the past 10 years of NBS. Minor complaints (external otitis, acute otitis media, transient dizziness, conjunctival inflammation, upper respiratory inflammation, dermatitis, abraded wounds, etc.) among the support divers have been addressed onsite by attending emergency physicians. Operations related to the medical support system at the WETS have proceeded smoothly for the former NASDA and continue to proceed without event for JAXA, providing safe, high-quality emergency medical services. If an accident occurs at the WETS, transporting the patient by helicopter following initial treatment by emergency physicians can actually exacerbate symptoms, since the procedure exposes a patient who was recently within a hyperbaric environment to the low-pressure environment involved in air transportation. If a helicopter is used, the flight altitude should be kept as low as possible by taking routes over the river.
Texas A&M vortex type phase separator
NASA Astrophysics Data System (ADS)
Best, Frederick
2000-01-01
Phase separation is required for regenerative biological and chemical process systems as well as thermal transport and rejection systems. Liquid and gas management requirements for future spacecraft will demand small, passive systems able to operate over wide ranges of inlet qualities. Conservation and recycling of air and water is a necessary part of the construction and operation of the International Space Station as well as future long duration space missions. Space systems are sensitive to volume, mass, and power. Therefore, it is necessary to develop a method to recycle wastewater with minimal power consumption. Regenerative life support systems currently being investigated require phase separation to separate the liquid from the gas produced. The microgravity phase separator designed and fabricated at Texas A&M University relies on centripetal driven buoyancy forces to form a gas-liquid vortex within a fixed, right-circular cylinder. Two-phase flow is injected tangentially along the inner wall of this cylinder producing a radial acceleration gradient. The gradient produced from the intrinsic momentum of the injected mixture results in a rotating flow that drives the buoyancy process by the production of a hydrostatic pressure gradient. Texas A&M has flown several KC-135 flights with separator. These flights have included scaling studies, stability and transient investigations, and tests for inventory instrumentation. Among the hardware tested have been passive devices for separating mixed vapor/liquid streams into single-phase streams of vapor only and liquid only. .
Berge, Jerica M; Tate, Allan; Trofholz, Amanda; Fertig, Angela; Crow, Scott; Neumark-Sztainer, Dianne; Miner, Michael
2018-01-16
Although prior research suggests that stress may play a role in parent's use of food-related parenting practices, it is unclear whether certain types of stress (e.g., transient, chronic) result in different food-related parenting practices. Identifying whether and how transient (i.e., momentary; parent/child conflict) and chronic (i.e., long-term; unemployment >6 months) sources of stress are related to parent food-related parenting practices is important with regard to childhood obesity. This is particularly important within racially/ethnically diverse parents who may be more likely to experience both types of stress and who have higher levels of obesity and related health problems. The current study examined the association between transient and chronic stressors and food-related parenting practices in a racially/ethnically diverse and immigrant sample. The current study is a cross-sectional, mixed-methods study using ecological momentary assessment (EMA). Parents (mean age = 35; 95% mothers) of children ages 5-7 years old (n = 61) from six racial/ethnic groups (African American, American Indian, Hispanic, Hmong, Somali, White) participated in this ten-day in-home observation with families. Transient stressors, specifically interpersonal conflicts, had significant within-day effects on engaging in more unhealthful food-related parenting practices the same evening with across-day effects weakening by day three. In contrast, financial transient stressors had stronger across-day effects. Chronic stressors, including stressful life events were not consistently associated with more unhealthful food-related parenting practices. Transient sources of stress were significantly associated with food-related parenting practices in racially/ethnically diverse and immigrant households. Chronic stressors were not consistently associated with food-related parenting practices. Future research and interventions may want to assess for transient sources of stress in parents and target these momentary factors in order to promote healthful food-related parenting practices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L. X.; Zhang, X.; Lockard, J. V.
Transient molecular structures along chemical reaction pathways are important for predicting molecular reactivity, understanding reaction mechanisms, as well as controlling reaction pathways. During the past decade, X-ray transient absorption spectroscopy (XTA, or LITR-XAS, laser-initiated X-ray absorption spectroscopy), analogous to the commonly used optical transient absorption spectroscopy, has been developed. XTA uses a laser pulse to trigger a fundamental chemical process, and an X-ray pulse(s) to probe transient structures as a function of the time delay between the pump and probe pulses. Using X-ray pulses with high photon flux from synchrotron sources, transient electronic and molecular structures of metal complexes havemore » been studied in disordered media from homogeneous solutions to heterogeneous solution-solid interfaces. Several examples from the studies at the Advanced Photon Source in Argonne National Laboratory are summarized, including excited-state metalloporphyrins, metal-to-ligand charge transfer (MLCT) states of transition metal complexes, and charge transfer states of metal complexes at the interface with semiconductor nanoparticles. Recent developments of the method are briefly described followed by a future prospective of XTA. It is envisioned that concurrent developments in X-ray free-electron lasers and synchrotron X-ray facilities as well as other table-top laser-driven femtosecond X-ray sources will make many breakthroughs and realise dreams of visualizing molecular movies and snapshots, which ultimately enable chemical reaction pathways to be controlled.« less
Development and evaluation of the impulse transfer function technique
NASA Technical Reports Server (NTRS)
Mantus, M.
1972-01-01
The development of the test/analysis technique known as the impulse transfer function (ITF) method is discussed. This technique, when implemented with proper data processing systems, should become a valuable supplement to conventional dynamic testing and analysis procedures that will be used in the space shuttle development program. The method can relieve many of the problems associated with extensive and costly testing of the shuttle for transient loading conditions. In addition, the time history information derived from impulse testing has the potential for being used to determine modal data for the structure under investigation. The technique could be very useful in determining the time-varying modal characteristics of structures subjected to thermal transients, where conventional mode surveys are difficult to perform.
1988-03-21
The Marshall Space Flight Center (MSFC) successfully test fired the third in a series of Transient Pressure Test Articles (TPTA) in its east test area. The test article was a short-stack solid rocket motor 52-feet long and 12-feet in diameter. The TPTA tests were designed to evaluate the effects of temperature, pressure and external loads encountered by the SRM, primarily during ignition transients. Instrumentation on the motor recorded approximately 1,000 charnels of data to verify the structural performance, thermal response, sealing capability of the redesign field, and case-to-nozzle joints. The TPTA test stand, 14-feet wide by 26-feet long by 33-feet high, was built in 1987. The TPTA series was a joint effort among Morton Thiokol, Inc., United Space Boosters, Inc., Wyle Laboratories, and MSFC. Wyle Laboratories conducted the tests for the MSFC, which manages the redesigned SRM program for NASA.
Voyager spacecraft electrostatic discharge testing
NASA Technical Reports Server (NTRS)
Whittlesey, A.; Inouye, G.
1980-01-01
The program of environmental testing undergone by the Voyager spacecraft in order to simulate the transient voltage effects of electrostatic discharges expected in the energetic plasma environment of Jupiter is reported. The testing consists of studies of the electrostatic discharge characteristics of spacecraft dielectrics in a vacuum-chamber-electron beam facility, brief piece part sensitivity tests on such items as a MOSFET multiplexer and the grounding of the thermal blanket, and assembly tests of the magnetometer boom and the science boom. In addition, testing of a complete spacecraft was performed using two arc sources to simulate long and short duration discharge sources for successive spacecraft shielding and grounding improvements. Due to the testing program, both Voyager 1 and Voyager 2 experienced tolerable electrostatic discharge-caused transient anomalies in science and engineering subsystems, however, a closer duplication of the spacecraft environment is necessary to predict and design actual spacecraft responses more accurately.
TRAC posttest calculations of Semiscale Test S-06-3. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ireland, J.R.; Bleiweis, P.B.
A comparison of Transient Reactor Analysis Code (TRAC) steady-state and transient results with Semiscale Test S-06-3 (US Standard Problem 8) experimental data is discussed. The TRAC model used employs fewer mesh cells than normal data comparison models so that TRAC's ability to obtain reasonable results with less computer time can be assessed. In general, the TRAC results are in good agreement with the data and the major phenomena found in the experiment are reproduced by the code with a substantial reduction in computing times.
NASA Astrophysics Data System (ADS)
Strasser, Ulrich; Formayer, Herbert; Förster, Kristian; Marke, Thomas; Meißl, Gertraud; Schermer, Markus; Stotten, Friederike; Themessl, Matthias
2016-04-01
Future land use in Alpine catchments is controlled by the evolution of socio-economy and climate. Estimates of their coupled development should hence fulfill the principles of plausibility (be convincing) and consistency (be unambiguous). In the project STELLA, coupled future climate and land use scenarios are used as input in a hydrological modelling exercise with the physically-based, distributed water balance model WaSiM. The aim of the project is to quantify the effects of these two framing components on the future water cycle. The test site for the simulations is the catchment of the Brixentaler Ache in Tyrol/Austria (47.5°N, 322 km2). The so-called „storylines" of future coupled climate and forest/land use management, policy, social cooperation, tourism and economy have jointly been developed in an inter- and transdisciplinary assessment with local actors. The climate background is given by simulations for the A1B (temperature conditions like today in Merano/Italy, 46.7°N) and RCP 8.5 (temperature conditions like today in Bologna/Italy, 44.5°N) emission scenarios. These two climate scenarios were combined with three potential socio-economic developments („local"/„glocal"/ „superglobal"), each in a positive and in a negative specification. From these twelve storylines of coupled climate/land use future, a set of four storylines was selected to be used in transient hydrological modelling experiments. Historical simulations of the water balance for the test site reveal the pattern of land use being the most prominent factor for the spatial distribution of its components. A new prototype for a snow-canopy interaction simulation module provides explicit rates of intercepted and sublimated snow from the trees and stems of the different forest stands in the catchment. This new canopy module will be used to model the coupled climate/land use future storylines for the Brixental. The aim is to quantify the effects of climate change and land use on the water balance and streamflow, both separately and in their respective combination.
Testing the ontogenetic base for the transient model of inflorescence development.
Bull-Hereñu, Kester; Claßen-Bockhoff, Regine
2013-11-01
Current research in plant science has concentrated on revealing ontogenetic processes of key attributes in plant evolution. One recently discussed model is the 'transient model' successful in explaining some types of inflorescence architectures based on two main principles: the decline of the so called 'vegetativeness' (veg) factor and the transient nature of apical meristems in developing inflorescences. This study examines whether both principles find a concrete ontogenetic correlate in inflorescence development. To test the ontogenetic base of veg decline and the transient character of apical meristems the ontogeny of meristematic size in developing inflorescences was investigated under scanning electron microscopy. Early and late inflorescence meristems were measured and compared during inflorescence development in 13 eudicot species from 11 families. The initial size of the inflorescence meristem in closed inflorescences correlates with the number of nodes in the mature inflorescence. Conjunct compound inflorescences (panicles) show a constant decrease of meristematic size from early to late inflorescence meristems, while disjunct compound inflorescences present an enlargement by merging from early inflorescence meristems to late inflorescence meristems, implying a qualitative change of the apical meristems during ontogeny. Partial confirmation was found for the transient model for inflorescence architecture in the ontogeny: the initial size of the apical meristem in closed inflorescences is consistent with the postulated veg decline mechanism regulating the size of the inflorescence. However, the observed biphasic kinetics of the development of the apical meristem in compound racemes offers the primary explanation for their disjunct morphology, contrary to the putative exclusive transient mechanism in lateral axes as expected by the model.
Tank 12 data dump OME integrated thrust chamber test report, phase 1
NASA Technical Reports Server (NTRS)
Pauckert, R. P.; Tobin, R. D.
1974-01-01
The test program conducted to characterize the steady state stability, thermal, and performance characteristics of the integrated thrust chamber assembly, as well as limited tests to investigate transient characteristics are described.
1985-10-31
4-45 4-1 SPC =. NTiC)NS I SPIKEGUARD SUPPRESSORS NANOSECOND TRANSIENT PROTECTION MODELS AVAILABLE FOR ,u * COAXIAL LINES...molded epoxy casc 4-40 General1- ~ *Sewiconductor4*industries,, Inc. Squats D oE.!v! MAXIMUM RATINGS DESCRIPTION coNro CASE 19 * Steady State POWr I
Davis, Kyle W.; Putnam, Larry D.
2013-01-01
The Ogallala aquifer is an important water resource for the Rosebud Sioux Tribe in Gregory and Tripp Counties in south-central South Dakota and is used for irrigation, public supply, domestic, and stock water supplies. To better understand groundwater flow in the Ogallala aquifer, conceptual and numerical models of groundwater flow were developed for the aquifer. A conceptual model of the Ogallala aquifer was used to analyze groundwater flow and develop a numerical model to simulate groundwater flow in the aquifer. The MODFLOW–NWT model was used to simulate transient groundwater conditions for water years 1985–2009. The model was calibrated using statistical parameter estimation techniques. Potential future scenarios were simulated using the input parameters from the calibrated model for simulations of potential future drought and future increased pumping. Transient simulations were completed with the numerical model. A 200-year transient initialization period was used to establish starting conditions for the subsequent 25-year simulation of water years 1985–2009. The 25-year simulation was discretized into three seasonal stress periods per year and used to simulate transient conditions. A single-layer model was used to simulate flow and mass balance in the Ogallala aquifer with a grid of 133 rows and 282 columns and a uniform spacing of 500 meters (1,640 feet). Regional inflow and outflow were simulated along the western and southern boundaries using specified-head cells. All other boundaries were simulated using no-flow cells. Recharge to the aquifer occurs through precipitation on the outcrop area. Model calibration was accomplished using the Parameter Estimation (PEST) program that adjusted individual model input parameters and assessed the difference between estimated and model-simulated values of hydraulic head and base flow. This program was designed to estimate parameter values that are statistically the most likely set of values to result in the smallest differences between simulated and observed values, within a given set of constraints. The potentiometric surface of the aquifer calculated during the 200-year initialization period established initial conditions for the transient simulation. Water levels for 38 observation wells were used to calibrate the 25-year simulation. Simulated hydraulic heads for the transient simulation were within plus or minus 20 feet of observed values for 95 percent of observation wells, and the mean absolute difference was 5.1 feet. Calibrated hydraulic conductivity ranged from 0.9 to 227 feet per day (ft/d). The annual recharge rates for the transient simulation (water years 1985–2009) ranged from 0.60 to 6.96 inches, with a mean of 3.68 inches for the Ogallala aquifer. This represents a mean recharge rate of 280.5 ft3/s for the model area. Discharge from the aquifer occurs through evapotranspiration, discharge to streams through river leakage and flow from springs and seeps, and well withdrawals. Water is withdrawn from wells for irrigation, public supply, domestic, and stock uses. Simulated mean discharge rates for water years 1985–2009 were about 185 cubic feet per second (ft3/s) for evapotranspiration, 66.7 ft3/s for discharge to streams, and 5.48 ft3/s for well withdrawals. Simulated annual evapotranspiration rates ranged from about 128 to 254 ft3/s, and outflow to streams ranged from 52.2 to 79.9 ft3/s. A sensitivity analysis was used to examine the response of the calibrated model to changes in model parameters for horizontal hydraulic conductivity, recharge, evapotranspiration, and spring and riverbed conductance. The model was most sensitive to recharge and maximum potential evapotranspiration and least sensitive to riverbed and spring conductances. Two potential future scenarios were simulated: a potential drought scenario and a potential increased pumping scenario. To simulate a potential drought scenario, a synthetic drought record was created, the mean of which was equal to 60 percent of the mean estimated recharge rate for the 25-year simulation period. Compared with the results of the calibrated model (non-drought simulation), the simulation representing a potential drought scenario resulted in water-level decreases of as much as 30 feet for the Ogallala aquifer. To simulate the effects of potential future increases in pumping, well withdrawal rates were increased by 50 percent from those estimated for the 25-year simulation period. Compared with the results of the calibrated model, the simulation representing an increased pumping scenario resulted in water-level decreases of as much as 26 feet for the Ogallala aquifer. Groundwater budgets for the potential future scenario simulations were compared with the transient simulation representing water years 1985–2009. The simulation representing a potential drought scenario resulted in lower aquifer recharge from precipitation and decreased discharge from streams, springs, seeps, and evapotranspiration. The simulation representing a potential increased pumping scenario was similar to results from the transient simulation, with a slight increase in well withdrawals and a slight decrease in discharge from river leakage and evapotranspiration. This numerical model is suitable as a tool that could be used to better understand the flow system of the Ogallala aquifer, to approximate hydraulic heads in the aquifer, and to estimate discharge to rivers, springs, and seeps in the study area. The model also is useful to help assess the response of the aquifer to additional stresses, including potential drought conditions and increased well withdrawals.
JPS heater and sensor lightning qualification
NASA Technical Reports Server (NTRS)
Cook, M.
1989-01-01
Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.
NASA Technical Reports Server (NTRS)
Northam, G. B.
1972-01-01
Instantaneous burning rate data for a polybutadiene acrylic acid propellant, containing 16 weight percent aluminum, were calculated from the pressure histories of a test motor with 96.77 sq cm of burning area and a 5.08-cm-thick propellant web. Additional acceleration tests were conducted with reduced propellant web thicknesses of 3.81, 2.54, and 1.27 cm. The metallic residue collected from the various web thickness tests was characterized by weight and shape and correlated with the instantaneous burning rate measurements. Rapid depressurization extinction tests were conducted in order that surface pitting characteristics due to localized increased burning rate could be correlated with the residue analysis and the instantaneous burning rate data. The acceleration-induced burning rate augmentation was strongly dependent on propellant distance burned, or burning time, and thus was transient in nature. The results from the extinction tests and the residue analyses indicate that the transient rate augmentation was highly dependent on local enhancement of the combustion zone heat feedback to the surface by the growth of molten residue particles on or just above the burning surface. The size, shape, and number density of molten residue particles, rather than the total residue weight, determined the acceleration-induced burning rate augmentation.
Inverter Load Rejection Over-Voltage Testing: SolarCity CRADA Task 1a Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, A.; Hoke, A.; Chakraborty, S.
Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of electric power systems. One of the urgent areas for additional research - as identified by inverter manufacturers, installers, and utilities - is the potential for transient over-voltage from PV inverters. In one stage of a cooperative tests were repeated a total of seven times. The maximum over-voltage measured in any test did not exceed 200% of nominal, and typical over-voltage levels were significantly lower. The total voltage duration and the maximum continuous time above each threshold are presented here,more » as well as the time to disconnect for each test. Finally, we present a brief investigation into the effect of DC input voltage as well as a series of no-load tests. This report describes testing conducted at NREL to determine the duration and magnitude of transient over-voltages created by several commercial PV inverters during load-rejection conditions. For this work, a test plan that is currently under development by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Through a cooperative research and development agreement, NREL is working with SolarCity to address two specific types of transient overvoltage: load rejection overvoltage (LRO) and ground fault overvoltage (GFO). Additional partners in this effort include the Hawaiian Electric Companies, Northern Plains Power Technologies, and the Electric Power Research Institute.« less
NASA Technical Reports Server (NTRS)
Tacina, R. R.
1984-01-01
Non-steady combustion problems can result from engine sources such as accelerations, decelerations, nozzle adjustments, augmentor ignition, and air perturbations into and out of the compressor. Also non-steady combustion can be generated internally from combustion instability or self-induced oscillations. A premixed-prevaporized combustor would be particularly sensitive to flow transients because of its susceptability to flashback-autoignition and blowout. An experimental program, the Transient Flow Combustion Study is in progress to study the effects of air and fuel flow transients on a premixed-prevaporized combustor. Preliminary tests performed at an inlet air temperature of 600 K, a reference velocity of 30 m/s, and a pressure of 700 kPa. The airflow was reduced to 1/3 of its original value in a 40 ms ramp before flashback occurred. Ramping the airflow up has shown that blowout is more sensitive than flashback to flow transients. Blowout occurred with a 25 percent increase in airflow (at a constant fuel-air ratio) in a 20 ms ramp. Combustion resonance was found at some conditions and may be important in determining the effects of flow transients.
Transient creep and semibrittle behavior of crystalline rocks
Carter, N.L.; Kirby, S.H.
1978-01-01
We review transient creep and semibrittle behavior of crystalline solids. The results are expected to be pertinent to crystalline rocks undergoing deformation in the depth range 5 to 20 km, corresponding to depths of focus of many major earthquakes. Transient creep data for crystalline rocks at elevated temperatures are analyzed but are poorly understood because of lack of information on the deformation processes which, at low to moderate pressure, are likely to be semibrittle in nature. Activation energies for transient creep at high effective confining pressure are much higher than those found for atmospheric pressure tests in which thermally-activated microfracturing probably dominates the creep rate. Empirical transient creep equations are extrapolated at 200?? to 600??C, stresses from 0.1 to 1.0 kbar, to times ranging from 3.17??102 to 3.17??108 years. At the higher temperatures, appreciable transient creep strains may take place but the physical significance of the results is in question because the flow mechanisms have not been determined. The purpose of this paper is to stimulate careful research on this important topic. ?? 1978 Birkha??user Verlag.
Transient hypothyroidism in the newborn: to treat or not to treat
Kanike, Neelakanta; Davis, Ajuah
2017-01-01
Transient congenital hypothyroidism (CH) refers to a temporary deficiency of thyroid hormone identified after birth, with low thyroxine (T4) and elevated thyrotropin (TSH), which later recovers to improved thyroxine production, typically in first few months of infancy. Approximately 17% to 40% of children diagnosed with CH by newborn screening (NBS) programs were later determined to have transient hypothyroidism. Causes of transient CH are prematurity, iodine deficiency, maternal thyrotropin receptor blocking antibodies, maternal intake of anti-thyroid drugs, maternal or neonatal iodine exposure, loss of function mutations and hepatic hemangiomas. The classic clinical symptoms and signs of CH are usually absent immediately after birth in vast majority of infants due to temporary protection from maternal thyroxine. NBS has been largely successful in preventing intellectual disability by early detection of CH by performing thyroid function tests in infants with abnormal screening results. In this review we present the evidence for decision making regarding treatment vs. withholding treatment in infants with transient CH and present a rational approach to identifying transient CH based on American Academy of Pediatrics (AAP) recommendation. PMID:29184815
Distributional Tests for Gravitational Waves from Core-Collapse Supernovae
NASA Astrophysics Data System (ADS)
Szczepanczyk, Marek; LIGO Collaboration
2017-01-01
Core-Collapse Supernovae (CCSN) are spectacular and violent deaths of massive stars. CCSN are some of the most interesting candidates for producing gravitational-waves (GW) transients. Current published results focus on methodologies to detect single GW unmodelled transients. The advantages of these tests are that they do not require a background for which we have an analytical model. Examples of non-parametric tests that will be compared are Kolmogorov-Smirnov, Mann-Whitney, chi squared, and asymmetric chi squared. I will present methodological results using publicly released LIGO-S6 data recolored to the design sensitivity of Advanced LIGO and that will be time lagged between interferometers sites so that the resulting coincident events are not GW.
Change-point detection of induced and natural seismicity
NASA Astrophysics Data System (ADS)
Fiedler, B.; Holschneider, M.; Zoeller, G.; Hainzl, S.
2016-12-01
Earthquake rates are influenced by tectonic stress buildup, earthquake-induced stress changes, and transient aseismic sources. While the first two sources can be well modeled due to the fact that the source is known, transient aseismic processes are more difficult to detect. However, the detection of the associated changes of the earthquake activity is of great interest, because it might help to identify natural aseismic deformation patterns (such as slow slip events) and the occurrence of induced seismicity related to human activities. We develop a Bayesian approach to detect change-points in seismicity data which are modeled by Poisson processes. By means of a Likelihood-Ratio-Test, we proof the significance of the change of the intensity. The model is also extended to spatiotemporal data to detect the area of the transient changes. The method is firstly tested for synthetic data and then applied to observational data from central US and the Bardarbunga volcano in Iceland.
In-pile measurement of the thermal conductivity of irradiated metallic fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, T.H.; Holland, J.W.
Transient test data and posttest measurements from recent in-pile overpower transient experiments are used for an in situ determination of metallic fuel thermal conductivity. For test pins that undergo melting but remain intact, a technique is described that relates fuel thermal conductivity to peak pin power during the transient and a posttest measured melt radius. Conductivity estimates and their uncertainty are made for a database of four irradiated Integral Fast Reactor-type metal fuel pins of relatively low burnup (<3 at.%). In the assessment of results, averages and trends of measured fuel thermal conductivity are correlated to local burnup. Emphasis ismore » placed on the changes of conductivity that take place with burnup-induced swelling and sodium logging. Measurements are used to validate simple empirically based analytical models that describe thermal conductivity of porous media and that are recommended for general thermal analyses of irradiated metallic fuel.« less
Hydro turbine governor’s power control of hydroelectric unit with sloping ceiling tailrace tunnel
NASA Astrophysics Data System (ADS)
Fu, Liang; Wu, Changli; Tang, Weiping
2018-02-01
The primary frequency regulation and load regulation transient process when the hydro turbine governor is under the power mode of hydropower unit with sloping ceiling tailrace are analysed by field test and numerical simulation in this paper. A simulation method based on “three-zone model” to simulate small fluctuation transient process of the sloping ceiling tailrace is proposed. The simulation model of hydraulic turbine governor power mode is established by governor’s PLC program identification and parameter measurement, and the simulation model is verified by the test. The slow-fast-slow “three-stage regulation” method which can improve the dynamic quality of hydro turbine governor power mode is proposed. The power regulation strategy and parameters are optimized by numerical simulation, the performance of primary frequency regulation and load regulation transient process when the hydro turbine governor is under power mode are improved significantly.
NASA Technical Reports Server (NTRS)
Cady, E. C.
1977-01-01
A design analysis, is developed based on experimental data, to predict the effects of transient flow and pressure surges (caused either by valve or pump operation, or by boiling of liquids in warm lines) on the retention performance of screen acquisition systems. A survey of screen liquid acquisition system applications was performed to determine appropriate system environment and classification. A screen model was developed which assumed that the screen device was a uniformly distributed composite orthotropic structure, and which accounted for liquid inflow/outflow, gas ingestion quality, screen stress, and liquid spill. A series of 177 tests using 13 specimens (5 screen meshes, 4 screen device construction/backup methods, and 2 orientations) with three test fluids (isopropyl alcohol, Freon 114, and LH2) provided data which verified important features of the screen model and resulted in a design tool which could accurately predict the transient startup performance acquisition devices.
Technology evaluation of man-rated acceleration test equipment for vestibular research
NASA Technical Reports Server (NTRS)
Taback, I.; Kenimer, R. L.; Butterfield, A. J.
1983-01-01
The considerations for eliminating acceleration noise cues in horizontal, linear, cyclic-motion sleds intended for both ground and shuttle-flight applications are addressed. the principal concerns are the acceleration transients associated with change in direction-of-motion for the carriage. The study presents a design limit for acceleration cues or transients based upon published measurements for thresholds of human perception to linear cyclic motion. The sources and levels for motion transients are presented based upon measurements obtained from existing sled systems. The approaches to a noise-free system recommends the use of air bearings for the carriage support and moving-coil linear induction motors operating at low frequency as the drive system. Metal belts running on air bearing pulleys provide an alternate approach to the driving system. The appendix presents a discussion of alternate testing techniques intended to provide preliminary type data by means of pendulums, linear motion devices and commercial air bearing tables.
NASA Technical Reports Server (NTRS)
Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.
1972-01-01
Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, D.; Derstine, K.; Wright, A.
2013-06-01
The purpose of the TREAT reactor is to generate large transient neutron pulses in test samples without over-heating the core to simulate fuel assembly accident conditions. The power transients in the present HEU core are inherently self-limiting such that the core prevents itself from overheating even in the event of a reactivity insertion accident. The objective of this study was to support the assessment of the feasibility of the TREAT core conversion based on the present reactor performance metrics and the technical specifications of the HEU core. The LEU fuel assembly studied had the same overall design, materials (UO 2more » particles finely dispersed in graphite) and impurities content as the HEU fuel assembly. The Monte Carlo N–Particle code (MCNP) and the point kinetics code TREKIN were used in the analyses.« less
United States Department of Energy solar receiver technology development
NASA Astrophysics Data System (ADS)
Klimas, P. C.; Diver, R. B.; Chavez, J. M.
The United States Department of Energy (DOE), through Sandia National Laboratories, has been conducting a Solar Thermal Receiver Technology Development Program, which maintains a balance between analytical modeling, bench and small scale testing, and experimentation conducted at scales representative of commercially-sized equipment. Central receiver activities emphasize molten salt-based systems on large scales and volumetric devices in the modeling and small scale testing. These receivers are expected to be utilized in solar power plants rated between 100 and 200 MW. Distributed receiver research focuses on liquid metal refluxing devices. These are intended to mate parabolic dish concentrators with Stirling cycle engines in the 5 to 25 kW(sub e) power range. The effort in the area of volumetric receivers is less intensive and highly cooperative in nature. A ceramic foam absorber of Sandia design was successfully tested on the 200 kW(sub t) test bed at Plataforma Solar during 1989. Material integrity during the approximately 90-test series was excellent. Significant progress has been made with parabolic dish concentrator-mounted receivers using liquid metals (sodium or a potassium/sodium mixture) as heat transport media. Sandia has successfully solar-tested a pool boiling reflux receiver sized to power a 25 kW Stirling engine. Boiling stability and transient operation were both excellent. This document describes these activities in detail and will outline plans for future development.
Structural Integrity of an Electron Beam Melted Titanium Alloy.
Lancaster, Robert; Davies, Gareth; Illsley, Henry; Jeffs, Spencer; Baxter, Gavin
2016-06-14
Advanced manufacturing encompasses the wide range of processes that consist of "3D printing" of metallic materials. One such method is Electron Beam Melting (EBM), a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP) test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response.
Manno, Catherine S; Pierce, Glenn F; Arruda, Valder R; Glader, Bertil; Ragni, Margaret; Rasko, John J; Rasko, John; Ozelo, Margareth C; Hoots, Keith; Blatt, Philip; Konkle, Barbara; Dake, Michael; Kaye, Robin; Razavi, Mahmood; Zajko, Albert; Zehnder, James; Rustagi, Pradip K; Nakai, Hiroyuki; Chew, Amy; Leonard, Debra; Wright, J Fraser; Lessard, Ruth R; Sommer, Jürg M; Tigges, Michael; Sabatino, Denise; Luk, Alvin; Jiang, Haiyan; Mingozzi, Federico; Couto, Linda; Ertl, Hildegund C; High, Katherine A; Kay, Mark A
2006-03-01
We have previously shown that a single portal vein infusion of a recombinant adeno-associated viral vector (rAAV) expressing canine Factor IX (F.IX) resulted in long-term expression of therapeutic levels of F.IX in dogs with severe hemophilia B. We carried out a phase 1/2 dose-escalation clinical study to extend this approach to humans with severe hemophilia B. rAAV-2 vector expressing human F.IX was infused through the hepatic artery into seven subjects. The data show that: (i) vector infusion at doses up to 2 x 10(12) vg/kg was not associated with acute or long-lasting toxicity; (ii) therapeutic levels of F.IX were achieved at the highest dose tested; (iii) duration of expression at therapeutic levels was limited to a period of approximately 8 weeks; (iv) a gradual decline in F.IX was accompanied by a transient asymptomatic elevation of liver transaminases that resolved without treatment. Further studies suggested that destruction of transduced hepatocytes by cell-mediated immunity targeting antigens of the AAV capsid caused both the decline in F.IX and the transient transaminitis. We conclude that rAAV-2 vectors can transduce human hepatocytes in vivo to result in therapeutically relevant levels of F.IX, but that future studies in humans may require immunomodulation to achieve long-term expression.
Ding, Zhaofeng; Li, Jinrong; Spiegel, Daniel P.; Chen, Zidong; Chan, Lily; Luo, Guangwei; Yuan, Junpeng; Deng, Daming; Yu, Minbin; Thompson, Benjamin
2016-01-01
Amblyopia is a neurodevelopmental disorder of vision that occurs when the visual cortex receives decorrelated inputs from the two eyes during an early critical period of development. Amblyopic eyes are subject to suppression from the fellow eye, generate weaker visual evoked potentials (VEPs) than fellow eyes and have multiple visual deficits including impairments in visual acuity and contrast sensitivity. Primate models and human psychophysics indicate that stronger suppression is associated with greater deficits in amblyopic eye contrast sensitivity and visual acuity. We tested whether transcranial direct current stimulation (tDCS) of the visual cortex would modulate VEP amplitude and contrast sensitivity in adults with amblyopia. tDCS can transiently alter cortical excitability and may influence suppressive neural interactions. Twenty-one patients with amblyopia and twenty-seven controls completed separate sessions of anodal (a-), cathodal (c-) and sham (s-) visual cortex tDCS. A-tDCS transiently and significantly increased VEP amplitudes for amblyopic, fellow and control eyes and contrast sensitivity for amblyopic and control eyes. C-tDCS decreased VEP amplitude and contrast sensitivity and s-tDCS had no effect. These results suggest that tDCS can modulate visual cortex responses to information from adult amblyopic eyes and provide a foundation for future clinical studies of tDCS in adults with amblyopia. PMID:26763954
Convolutional neural networks for transient candidate vetting in large-scale surveys
NASA Astrophysics Data System (ADS)
Gieseke, Fabian; Bloemen, Steven; van den Bogaard, Cas; Heskes, Tom; Kindler, Jonas; Scalzo, Richard A.; Ribeiro, Valério A. R. M.; van Roestel, Jan; Groot, Paul J.; Yuan, Fang; Möller, Anais; Tucker, Brad E.
2017-12-01
Current synoptic sky surveys monitor large areas of the sky to find variable and transient astronomical sources. As the number of detections per night at a single telescope easily exceeds several thousand, current detection pipelines make intensive use of machine learning algorithms to classify the detected objects and to filter out the most interesting candidates. A number of upcoming surveys will produce up to three orders of magnitude more data, which renders high-precision classification systems essential to reduce the manual and, hence, expensive vetting by human experts. We present an approach based on convolutional neural networks to discriminate between true astrophysical sources and artefacts in reference-subtracted optical images. We show that relatively simple networks are already competitive with state-of-the-art systems and that their quality can further be improved via slightly deeper networks and additional pre-processing steps - eventually yielding models outperforming state-of-the-art systems. In particular, our best model correctly classifies about 97.3 per cent of all 'real' and 99.7 per cent of all 'bogus' instances on a test set containing 1942 'bogus' and 227 'real' instances in total. Furthermore, the networks considered in this work can also successfully classify these objects at hand without relying on difference images, which might pave the way for future detection pipelines not containing image subtraction steps at all.
A Proposed Roadmap for Inpatient Neurology Quality Indicators
Douglas, Vanja C.; Josephson, S. Andrew
2011-01-01
Background/Purpose: In recent years, there has been increasing pressure to measure and report quality in health care. However, there has been little focus on quality measurement in the field of neurology for conditions other than stroke and transient ischemic attack. As the number of evidence-based treatments for neurological conditions grows, so will the demand to measure the quality of care delivered. The purpose of this study was to review essential components of hospital performance measures for neurological disease and propose potential quality indicators for commonly encountered inpatient neurological diagnoses. Methods: We determined the most common inpatient neurological diagnoses at a major tertiary care medical center by reviewing the billing database. We then searched PubMed and the National Guidelines Clearinghouse to identify treatment guidelines for these conditions. Guideline recommendations with class I/level A evidence were evaluated as possible quality indicators. Results: We found 94 guidelines for 14 inpatient neurological conditions other than stroke and transient ischemic attack. Of these, 36 guidelines contained at least 1 recommendation with class I evidence. Based on these, potential quality indicators for intracerebral hemorrhage, subarachnoid hemorrhage, pneumococcal meningitis, coma following cardiac arrest, encephalitis, Guillain-Barre syndrome, multiple sclerosis, and benign paroxysmal positional vertigo are proposed. Conclusions: There are several inpatient neurological conditions with treatments or diagnostic test routines supported by high levels of evidence that could be used in the future as quality indicators. PMID:23983832
Ding, Zhaofeng; Li, Jinrong; Spiegel, Daniel P; Chen, Zidong; Chan, Lily; Luo, Guangwei; Yuan, Junpeng; Deng, Daming; Yu, Minbin; Thompson, Benjamin
2016-01-14
Amblyopia is a neurodevelopmental disorder of vision that occurs when the visual cortex receives decorrelated inputs from the two eyes during an early critical period of development. Amblyopic eyes are subject to suppression from the fellow eye, generate weaker visual evoked potentials (VEPs) than fellow eyes and have multiple visual deficits including impairments in visual acuity and contrast sensitivity. Primate models and human psychophysics indicate that stronger suppression is associated with greater deficits in amblyopic eye contrast sensitivity and visual acuity. We tested whether transcranial direct current stimulation (tDCS) of the visual cortex would modulate VEP amplitude and contrast sensitivity in adults with amblyopia. tDCS can transiently alter cortical excitability and may influence suppressive neural interactions. Twenty-one patients with amblyopia and twenty-seven controls completed separate sessions of anodal (a-), cathodal (c-) and sham (s-) visual cortex tDCS. A-tDCS transiently and significantly increased VEP amplitudes for amblyopic, fellow and control eyes and contrast sensitivity for amblyopic and control eyes. C-tDCS decreased VEP amplitude and contrast sensitivity and s-tDCS had no effect. These results suggest that tDCS can modulate visual cortex responses to information from adult amblyopic eyes and provide a foundation for future clinical studies of tDCS in adults with amblyopia.
NASA Technical Reports Server (NTRS)
Giltrud, M. E.; Lucas, D. S.
1979-01-01
The transient response of an elastic cylindrical shell immersed in an acoustic media that is engulfed by a plane wave is determined numerically. The method applies to the USA-STAGS code which utilizes the finite element method for the structural analysis and the doubly asymptotic approximation for the fluid-structure interaction. The calculations are compared to an exact analysis for two separate loading cases: a plane step wave and an exponentially decaying plane wave.
Vertical axis wind turbine drive train transient dynamics
NASA Technical Reports Server (NTRS)
Clauss, D. B.; Carne, T. G.
1982-01-01
Start up of a vertical axis wind turbine causes transient torque oscillations in the drive train with peak torques which may be over two and one half times the rated torque of the turbine. A computer code, based on a lumped parameter model of the drive train, was developed and tested for the low cost 17 meter turbine; the results show excellent agreement with field data. The code was used to predict the effect of a slip clutch on transient torque oscillations. It was demonstrated that a slip clutch located between the motor and brake can reduce peak torques by thirty eight percent.
Hardening communication ports for survival in electrical overstress environments
NASA Technical Reports Server (NTRS)
Clark, O. Melville
1991-01-01
Greater attention is being focused on the protection of data I/O ports since both experience and lab tests have shown that components at these locations are extremely vulnerable to electrical overstress (EOS) in the form of transient voltages. Lightning and electrostatic discharge (ESD) are the major contributors to these failures; however, these losses can be prevented. Hardening against transient voltages at both the board level and system level has a proven record of improving reliability by orders of magnitude. The EOS threats, typical failure modes, and transient voltage mitigation techniques are reviewed. Case histories are also reviewed.
Practical difficulties in the diagnosis of transient non-ketotic hyperglycinaemia.
Lang, T F; Parr, J R; Matthews, E E; Gray, R G F; Bonham, J R; Kay, J D S
2008-02-01
Making a diagnosis of transient non-ketotic hyperglycinaemia (tNKH) can be difficult. We report an infant who presented in the neonatal period with symptoms of NKH. Metabolic studies performed on day 2 of life showed raised cerebrospinal fluid (CSF) and plasma glycine, and a CSF:plasma glycine ratio consistent with NKH; however, a liver biopsy performed on day 5 revealed normal liver glycine cleavage system activity. Subsequently, the child's clinical condition improved in the absence of any therapeutic medication. Clinical assessment and developmental follow-up at 5 months, 1 year, and 2 years were age-appropriate. Guidance for the investigation and management of future suspected cases of tNKH is discussed.
30 years of Gamma Ray Bursts and the Transient High Energy Sky
NASA Technical Reports Server (NTRS)
Kouveliotou, Chryssa
2009-01-01
The first GRB was discovered on 1967, just over 40 years ago. It took several years and multiple generations of space and ground instruments to unravel some of the mysteries of this phenomenon. However, many questions remain open today. I will discuss the history, evolution and current status of the GRB field and its contributions in our understanding of the transient high energy sky. Further, I will discuss my involvement with the discovery of magnetars, neutron stars with extreme magnetic fields, serendipitously detected by GRB observers on 1979. Finally, I will describe how GRBs can be utilized in future missions as tools, to probe the cosmic chemical evolution of the Universe.
Hensel, Karol; Kučerová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitică; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut
2015-06-06
Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure.
Transient turbid water mass reduces temperature-induced coral bleaching and mortality in Barbados
Vallès, Henri
2016-01-01
Global warming is seen as one of the greatest threats to the world’s coral reefs and, with the continued rise in sea surface temperature predicted into the future, there is a great need for further understanding of how to prevent and address the damaging impacts. This is particularly so for countries whose economies depend heavily on healthy reefs, such as those of the eastern Caribbean. Here, we compare the severity of bleaching and mortality for five dominant coral species at six representative reef sites in Barbados during the two most significant warm-water events ever recorded in the eastern Caribbean, i.e., 2005 and 2010, and describe prevailing island-scale sea water conditions during both events. In so doing, we demonstrate that coral bleaching and subsequent mortality were considerably lower in 2010 than in 2005 for all species, irrespective of site, even though the anomalously warm water temperature profiles were very similar between years. We also show that during the 2010 event, Barbados was engulfed by a transient dark green turbid water mass of riverine origin coming from South America. We suggest that reduced exposure to high solar radiation associated with this transient water mass was the primary contributing factor to the lower bleaching and mortality observed in all corals. We conclude that monitoring these episodic mesoscale oceanographic features might improve risk assessments of southeastern Caribbean reefs to warm-water events in the future. PMID:27326377
Calibration and testing of selected portable flowmeters for use on large irrigation systems
Luckey, Richard R.; Heimes, Frederick J.; Gaggiani, Neville G.
1980-01-01
Existing methods for measuring discharge of irrigation systems in the High Plains region are not suitable to provide the pumpage data required by the High Plains Regional Aquifer System Analysis. Three portable flowmeters that might be suitable for obtaining fast and accurate discharge measure-ments on large irrigation systems were tested during 1979 under both laboratory and field conditions: propeller type gated-pipe meter, a Doppler meter, and a transient-time meter.The gated-pipe meter was found to be difficult to use and sensitive to particulate matter in the fluid. The Doppler meter, while easy to use, would not function suitably on steel pipe 6 inches or larger in diameter, or on aluminum pipe larger than 8 inches in diameter. The transient-time meter was more difficult to use than the other two meters; however, this instrument provided a high degree of accuracy and reliability under a variety of conditions. Of the three meters tested, only the transient-time meter was found to be suitable for providing reliable discharge measurements on the variety of irrigation systems used in the High Plains region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luther, Erik; Rooyen, Isabella van; Leckie, Rafael
2015-03-01
In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabricationmore » must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.« less
Interplanetary magnetic field orientation for transient events in the outer magnetosphere
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Newell, P. T.
1995-01-01
It is generally believed that flux transfer events (FTEs) in the outer dayside magneosphere, usually identified by transient (approximately 1 min) bipolar magneitc field perturbations in the direction normal to the nominal magnetopause, occur when the magnetosheath magetic field has a southward component. We compare the results of three methods for determining the magnetosheath magnetic field orientationat the times of previously identified UKS/IRM events: (1) the average magnetosheath magnetic field orientation in the 30-min period adjacent to the nearest magnetopause crossing, (2) the magnetosheath magnetic field orientation observed just outside the magnetopause, and (3) the lagged interplanetary magnetic field (IMF) orientation at the time of the transient events. Whereas the results of method 2 indicate that the events tend to occur for a southward magnetosheath magnetic field, the results of methods 1 and 3 show no such tnedency. The fact that the three methods yield significantly diffeent results emphasizes the need for caution in future studies.
An approach to DNI transients characterization for system evaluation
NASA Astrophysics Data System (ADS)
Feldhoff, Jan Fabian; Hirsch, Tobias
2017-06-01
The direct normal irradiance (DNI) is of utmost importance for concentrated solar power (CSP) plants. For annual yield prediction, a steady-state heat balance is made for each hour of the year or for a smaller time period such as 15 min with the corresponding average DNI value. However, short term DNI variations by clouds are ignored by this approach. In consequence, there is no information on the transient behavior of the plant and the question remains how the plant is influenced by the DNI disturbance. The paper intends to start a discussion on DNI characterization and its application to CSP. An approach to categorize the DNI behavior from a transient system point of view is presented by using purpose-/system-specific filters. Resulting DNI disturbance classes are proposed to directly compare different sites and technologies. They can be useful for better yield analysis and better commercial project selection in the future. An example on a once-through direct steam generation plant is provided.
Steam drum design for direct steam generation
NASA Astrophysics Data System (ADS)
Willwerth, Lisa; Müller, Svenja; Krüger, Joachim; Succo, Manuel; Feldhoff, Jan Fabian; Tiedemann, Jörg; Pandian, Yuvaraj; Krüger, Dirk; Hennecke, Klaus
2017-06-01
For the direct steam generation in solar fields, the recirculation concept has been demonstrated in several installations. Water masses in the solar field vary during transient phases, such as passing clouds. The volume of the steam drum can serve as a buffer during such transients by taking in excess water and providing water storage. The saturated steam mass flow to the superheating section or the consumer can be maintained almost constant during short transients; therefore the steam drum plays a key role for constant steam supply. Its buffer effect depends on the right sizing of the steam drum for the prevailing situations. Due to missing experiences, steam drums have been sized under conservative assumptions and are thereby usually oversized. With this paper, experiences on the steam drum of the 5 MWel TSE1 power plant are discussed for optimized future plant design. The results are also of relevance for process heat installations, in which saturated steam is produced by the solar field.
Kasahara, Kyoko; Kita, Nobuyuki; Kawasaki, Taku; Morisaki, Shinsuke; Yomo, Hiroko; Murakami, Takashi
2017-06-01
Femoral neck fractures resulting from pregnancy-associated osteoporosis is a rare condition. Herein, we report an undoubted case of pregnancy-associated osteoporosis in a 38-year-old primiparous patient with pre-existing anorexia nervosa who suffered bilateral femoral neck fractures in the third trimester and early post-partum period. Magnetic resonance imaging revealed femoral neck fractures as well as diffuse marrow edema involving both femoral heads, which are considered under ordinary circumstances as characteristic imaging findings of transient osteoporosis of the hip. Based on our experience, we propose that pregnancy-associated osteoporosis might be present in femoral neck fractures attributed to transient osteoporosis of the hip in pregnancy. Conversely, bone status should be carefully and accurately estimated in cases of potential transient osteoporosis of the hip in pregnancy to reduce future fracture risk. © 2017 The Authors Journal of Obstetrics and Gynaecology Research published by John Wiley & Sons Australia, Ltd on behalf of Japan Society of Obstetrics and Gynecology.
NASA Astrophysics Data System (ADS)
Patcharoen, Theerasak; Yoomak, Suntiti; Ngaopitakkul, Atthapol; Pothisarn, Chaichan
2018-04-01
This paper describes the combination of discrete wavelet transforms (DWT) and artificial intelligence (AI), which are efficient techniques to identify the type of inrush current, analyze the origin and possible cause on the capacitor bank switching. The experiment setup used to verify the proposed techniques can be detected and classified the transient inrush current from normal capacitor rated current. The discrete wavelet transforms are used to detect and classify the inrush current. Then, output from wavelet is acted as input of fuzzy inference system for discriminating the type of switching transient inrush current. The proposed technique shows enhanced performance with a discrimination accuracy of 90.57%. Both simulation study and experimental results are quite satisfactory with providing the high accuracy and reliability which can be developed and implemented into a numerical overcurrent (50/51) and unbalanced current (60C) protection relay for an application of shunt capacitor bank protection in the future.
Transient Evoked and Distortion Product Otoacoustic Emissions in a Group of Neonates
Silva, Giovanna Cesar; Delecrode, Camila Ribas; Kemp, Adriana Tahara; Martins, Fabiana; Cardoso, Ana Claudia Vieira
2015-01-01
Introduction The most commonly used method in neonatal hearing screening programs is transient evoked otoacoustic emissions in the first stage of the process. There are few studies comparing transient evoked otoacoustic emissions with distortion product, but some authors have investigated the issue. Objective To correlate the results of transient evoked and distortion product otoacoustic emissions in a Brazilian maternity hospital. Methods This is a cross-sectional, comparative, and prospective study. The study included 579 newborns, ranging from 6 to 54 days of age, born in a low-risk maternity hospital and assessed for hearing loss. All neonates underwent hearing screening by transient evoked and distortion product otoacoustic emissions. The results were analyzed using the Spearman correlation test to relate the two procedures. Results The pass index on transient evoked otoacoustic emissions was 95% and on distortion product otoacoustic emissions was 91%. The comparison of the two procedures showed that 91% of neonates passed on both procedures, 4.5% passed only on transient evoked otoacoustic emissions, 0.5% passed only on distortion product otoacoustic emissions, and 4% failed on both procedures. The inferential analysis showed a significant strong positive relationship between the two procedures. Conclusion The failure rate was higher in distortion product otoacoustic emissions when compared with transient evoked; however, there was correlation between the results of the procedures. PMID:26157501
NASA Astrophysics Data System (ADS)
Clamens, Olivier; Lecerf, Johann; Hudelot, Jean-Pascal; Duc, Bertrand; Cadiou, Thierry; Blaise, Patrick; Biard, Bruno
2018-01-01
CABRI is an experimental pulse reactor, funded by the French Nuclear Safety and Radioprotection Institute (IRSN) and operated by CEA at the Cadarache research center. It is designed to study fuel behavior under RIA conditions. In order to produce the power transients, reactivity is injected by depressurization of a neutron absorber (3He) situated in transient rods inside the reactor core. The shapes of power transients depend on the total amount of reactivity injected and on the injection speed. The injected reactivity can be calculated by conversion of the 3He gas density into units of reactivity. So, it is of upmost importance to properly master gas density evolution in transient rods during a power transient. The 3He depressurization was studied by CFD calculations and completed with measurements using pressure transducers. The CFD calculations show that the density evolution is slower than the pressure drop. Surrogate models were built based on CFD calculations and validated against preliminary tests in the CABRI transient system. Studies also show that it is harder to predict the depressurization during the power transients because of neutron/3He capture reactions that induce a gas heating. This phenomenon can be studied by a multiphysics approach based on reaction rate calculation thanks to Monte Carlo code and study the resulting heating effect with the validated CFD simulation.
Capture-recapture survival models taking account of transients
Pradel, R.; Hines, J.E.; Lebreton, J.D.; Nichols, J.D.
1997-01-01
The presence of transient animals, common enough in natural populations, invalidates the estimation of survival by traditional capture- recapture (CR) models designed for the study of residents only. Also, the study of transit is interesting in itself. We thus develop here a class of CR models to describe the presence of transients. In order to assess the merits of this approach we examme the bias of the traditional survival estimators in the presence of transients in relation to the power of different tests for detecting transients. We also compare the relative efficiency of an ad hoc approach to dealing with transients that leaves out the first observation of each animal. We then study a real example using lazuli bunting (Passerina amoena) and, in conclusion, discuss the design of an experiment aiming at the estimation of transience. In practice, the presence of transients is easily detected whenever the risk of bias is high. The ad hoc approach, which yields unbiased estimates for residents only, is satisfactory in a time-dependent context but poorly efficient when parameters are constant. The example shows that intermediate situations between strict 'residence' and strict 'transience' may exist in certain studies. Yet, most of the time, if the study design takes into account the expected length of stay of a transient, it should be possible to efficiently separate the two categories of animals.
1973-10-01
turbofan engine shutoff scheme, the ram duct flow conditions, and the Ian duct shutoff vane area transi- tion schedule. This loss will be...airflow. The performance of the turbofan is neglected until the main engine burner is ignited. At that time it is assumed that the turbo - fan...B. Transient Operation . . .. TRANSIENT TRANSITION TEST CASES A. Turbofan to Ramjet B. Ramjet to Turbo fan CONCLUSIONS AND RECOMMENDATIONS
Study on transient beam loading compensation for China ADS proton linac injector II
NASA Astrophysics Data System (ADS)
Gao, Zheng; He, Yuan; Wang, Xian-Wu; Chang, Wei; Zhang, Rui-Feng; Zhu, Zheng-Long; Zhang, Sheng-Hu; Chen, Qi; Powers, Tom
2016-05-01
Significant transient beam loading effects were observed during beam commissioning tests of prototype II of the injector for the accelerator driven sub-critical (ADS) system, which took place at the Institute of Modern Physics, Chinese Academy of Sciences, between October and December 2014. During these tests experiments were performed with continuous wave (CW) operation of the cavities with pulsed beam current, and the system was configured to make use of a prototype digital low level radio frequency (LLRF) controller. The system was originally operated in pulsed mode with a simple proportional plus integral and deviation (PID) feedback control algorithm, which was not able to maintain the desired gradient regulation during pulsed 10 mA beam operations. A unique simple transient beam loading compensation method which made use of a combination of proportional and integral (PI) feedback and feedforward control algorithm was implemented in order to significantly reduce the beam induced transient effect in the cavity gradients. The superconducting cavity field variation was reduced to less than 1.7% after turning on this control algorithm. The design and experimental results of this system are presented in this paper. Supported by National Natural Science Foundation of China (91426303, 11525523)
Radon anomalies: When are they possible to be detected?
NASA Astrophysics Data System (ADS)
Passarelli, Luigi; Woith, Heiko; Seyis, Cemil; Nikkhoo, Mehdi; Donner, Reik
2017-04-01
Records of the Radon noble gas in different environments like soil, air, groundwater, rock, caves, and tunnels, typically display cyclic variations including diurnal (S1), semidiurnal (S2) and seasonal components. But there are also cases where theses cycles are absent. Interestingly, radon emission can also be affected by transient processes, which inhibit or enhance the radon carrying process at the surface. This results in transient changes in the radon emission rate, which are superimposed on the low and high frequency cycles. The complexity in the spectral contents of the radon time-series makes any statistical analysis aiming at understanding the physical driving processes a challenging task. In the past decades there have been several attempts to relate changes in radon emission rate with physical triggering processes such as earthquake occurrence. One of the problems in this type of investigation is to objectively detect anomalies in the radon time-series. In the present work, we propose a simple and objective statistical method for detecting changes in the radon emission rate time-series. The method uses non-parametric statistical tests (e.g., Kolmogorov-Smirnov) to compare empirical distributions of radon emission rate by sequentially applying various time window to the time-series. The statistical test indicates whether two empirical distributions of data originate from the same distribution at a desired significance level. We test the algorithm on synthetic data in order to explore the sensitivity of the statistical test to the sample size. We successively apply the test to six radon emission rate recordings from stations located around the Marmara Sea obtained within the MARsite project (MARsite has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308417). We conclude that the test performs relatively well on identify transient changes in the radon emission rate, but the results are strongly dependent on the length of the time window and/or type of frequency filtering. More importantly, when raw time-series contain cyclic components (e.g. seasonal or diurnal variation), the quest of anomalies related to transients becomes meaningless. We conclude that an objective identification of transient changes can be performed only after filtering the raw time-series for the physically meaningful frequency content.
40 CFR 1037.510 - Duty-cycle exhaust testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... part 86. For cruise cycle testing of vehicles equipped with cruise control, use the vehicle's cruise... CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Test and Modeling Procedures § 1037.510...: variable speeds for the transient test and constant speeds for the cruise tests. None of these cycles...
40 CFR 1037.510 - Duty-cycle exhaust testing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... part 86. For cruise cycle testing of vehicles equipped with cruise control, use the vehicle's cruise... CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Test and Modeling Procedures § 1037.510...: variable speeds for the transient test and constant speeds for the cruise tests. None of these cycles...
40 CFR 1037.510 - Duty-cycle exhaust testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... part 86. For cruise cycle testing of vehicles equipped with cruise control, use the vehicle's cruise... CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Test and Modeling Procedures § 1037.510...: variable speeds for the transient test and constant speeds for the cruise tests. None of these cycles...
On the transient dynamics of piezoelectric-based, state-switched systems
NASA Astrophysics Data System (ADS)
Lopp, Garrett K.; Kelley, Christopher R.; Kauffman, Jeffrey L.
2018-01-01
This letter reports on the induced mechanical transients for piezoelectric-based, state-switching approaches utilizing both experimental tests and a numerical model that more accurately captures the dynamics associated with a switch between stiffness states. Currently, switching models instantaneously dissipate the stored piezoelectric voltage, resulting in a discrete change in effective stiffness states and a discontinuity in the system dynamics during the switching event. The proposed model allows for a rapid but continuous voltage dissipation and the corresponding variation between stiffness states, as one sees in physical implementations. This rapid variation in system stiffness when switching at a point of non-zero strain leads to high-frequency, large-amplitude transients in the system acceleration response. Utilizing a fundamental piezoelectric bimorph, a comparison between the numerical and experimental results reveals that these mechanical transients are much stronger than originally anticipated and masked by measurement hardware limitations, thus highlighting the significance of an appropriate system model governing the switch dynamics. Such a model enables designers to analyze systems that incorporate piezoelectric-based state switching with greater accuracy to ensure that these transients do not degrade the intended performance. Finally, if the switching does create unacceptable transients, controlling the duration of voltage dissipation enables control over the frequency content and peak amplitudes associated with the switch-induced acceleration transients.
Steady-state and transient operation of a heat-pipe radiator system
NASA Technical Reports Server (NTRS)
Sellers, J. P.
1974-01-01
Data obtained on a VCHP heat-pipe radiator system tested in a vacuum environment were studied. Analyses and interpretation of the steady-state results are presented along with an initial analysis of some of the transient data. Particular emphasis was placed on quantitative comparisons of the experimental data with computer model simulations. The results of the study provide a better understanding of the system but do not provide a complete explanation for the observed low VCHP performance and the relatively flat radiator panel temperature distribution. The results of the study also suggest hardware, software, and testing improvements.
A free-piston Stirling engine/linear alternator controls and load interaction test facility
NASA Technical Reports Server (NTRS)
Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.
1992-01-01
A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.
Kuga, Nahoko; Tanioka, Asao; Hagihara, Koichiro; Kawai, Tomoyuki
2017-01-01
Bladder smooth muscle shows spontaneous phasic contractions, which undergo a variety of abnormal changes depending on pathological conditions. How abnormal contractions affect the activity of bladder afferent nerves remains to be fully tested. In this study, we examined the relationship between transient increases in bladder pressure, representing transient contraction of bladder smooth muscle, and spiking patterns of bladder afferent fibers of the L6 dorsal root, in rat pathological models. All recordings were performed at a bladder pressure of approximately 10 cmH2O by maintaining the degree of bladder filling. In the cyclophosphamide-induced model, both Aδ and C fibers showed increased sensitivity to transient bladder pressure increases. In the prostaglandin E2-induced model, Aδ fibers, but not C fibers, specifically showed overexcitation that was time-locked with transient bladder pressure increases. These fiber type-specific changes in nerve spike patterns may underlie the symptoms of urinary bladder diseases. PMID:29267380
The Crimea 96 Conference: An Orchid of the Future.
ERIC Educational Resources Information Center
Spain, Victoria
1997-01-01
Describes the conference, "Libraries and Associations in the Transient World: New Technologies and New Forms of Cooperation" (3rd, Foros, Crimea, June 1-9, 1996), which aimed to promote cooperation among libraries in Russia, Ukraine, and other former Soviet Union countries. Sidebars list the English-language papers and the names and…
Does Digital Scholarship Have a Future?
ERIC Educational Resources Information Center
Ayers, Edward L.
2013-01-01
Twenty years into the transformation initiated by the World Wide Web, this author notes that institutes of higher education have grown accustomed to a head-spinning pace of technological and social change. Innovations that would have amazed us ten years ago are now merely passing news, as transient as a tweet. Music, video, and journalism have…
Testing the ontogenetic base for the transient model of inflorescence development
Bull-Hereñu, Kester; Claßen-Bockhoff, Regine
2013-01-01
Backgrounds and Aims Current research in plant science has concentrated on revealing ontogenetic processes of key attributes in plant evolution. One recently discussed model is the ‘transient model’ successful in explaining some types of inflorescence architectures based on two main principles: the decline of the so called ‘vegetativeness’ (veg) factor and the transient nature of apical meristems in developing inflorescences. This study examines whether both principles find a concrete ontogenetic correlate in inflorescence development. Methods To test the ontogenetic base of veg decline and the transient character of apical meristems the ontogeny of meristematic size in developing inflorescences was investigated under scanning electron microscopy. Early and late inflorescence meristems were measured and compared during inflorescence development in 13 eudicot species from 11 families. Key Results The initial size of the inflorescence meristem in closed inflorescences correlates with the number of nodes in the mature inflorescence. Conjunct compound inflorescences (panicles) show a constant decrease of meristematic size from early to late inflorescence meristems, while disjunct compound inflorescences present an enlargement by merging from early inflorescence meristems to late inflorescence meristems, implying a qualitative change of the apical meristems during ontogeny. Conclusions Partial confirmation was found for the transient model for inflorescence architecture in the ontogeny: the initial size of the apical meristem in closed inflorescences is consistent with the postulated veg decline mechanism regulating the size of the inflorescence. However, the observed biphasic kinetics of the development of the apical meristem in compound racemes offers the primary explanation for their disjunct morphology, contrary to the putative exclusive transient mechanism in lateral axes as expected by the model. PMID:23425784
NASA Astrophysics Data System (ADS)
Liu, Molin; Zhao, Zonghua; You, Xiaohe; Lu, Jianbo; Xu, Lixin
2017-07-01
About 0.4 s after the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a transient gravitational-wave (GW) signal GW150914, the Fermi Gamma-ray Burst Monitor (GBM) also found a weak electromagnetic transient (GBM transient 150914). Time and location coincidences favor a possible association between GW150904 and GBM transient 150914. Under this possible association, we adopt Fermi's electromagnetic (EM) localization and derive constraints on possible violations of the Weak Equivalence Principle (WEP) from the observations of two events. Our calculations are based on four comparisons: (1) The first is the comparison of the initial GWs detected at the two LIGO sites. From the different polarizations of these initial GWs, we obtain a limit on any difference in the parametrized post-Newtonian (PPN) parameter Δγ ≲10-10. (2) The second is a comparison of GWs and possible EM waves. Using a traditional super-Eddington accretion model for GBM transient 150914, we again obtain an upper limit Δγ ≲10-10. Compared with previous results for photons and neutrinos, our limits are five orders of magnitude stronger than those from PeV neutrinos in blazar flares, and seven orders stronger than those from MeV neutrinos in SN1987A. (3) The third is a comparison of GWs with different frequencies in the range [35 Hz, 250 Hz]. (4) The fourth is a comparison of EM waves with different energies in the range [1 keV, 10 MeV]. These last two comparisons lead to an even stronger limit, Δγ ≲10-8. Our results highlight the potential of multi-messenger signals exploiting different emission channels to strengthen existing tests of the WEP.
In vivo traffic of indium-111-oxine labeled human lymphocytes collected by automated apheresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, E.J.; Keenan, A.M.; Carter, C.S.
1990-06-01
The in vivo traffic patterns of autologous lymphocytes were studied in five normal human volunteers using lymphocytes obtained by automated apheresis, separated on Ficoll-Hypaque gradients, and labeled ex vivo with {sup 111}In-oxine. Final lymphocyte infusions contained 1.8-3.1 X 10(9) cells and 270-390 microCi (9.99-14.43 MBq) {sup 111}In, or 11-17 microCi (0.41-0.63 MBq) per 10(8) lymphocytes. Gamma imaging showed transient lung uptake and significant retention of radioactivity in the liver and spleen. Progressive uptake of activity in normal, nonpalpable axillary and inguinal lymph nodes was seen from 24 to 96 hr. Accumulation of radioactivity also was demonstrated at the forearm skinmore » test site, as well as in its associated epitrochlear and axillary lymph nodes, in a subject who had been tested for delayed hypersensitivity with tetanus toxoid. Indium-111-oxine labeled human lymphocytes may provide a useful tool for future studies of normal and abnormal lymphocyte traffic.« less
General relativistic dynamics of an extreme mass-ratio binary interacting with an external body
NASA Astrophysics Data System (ADS)
Yang, Huan; Casals, Marc
2017-10-01
We study the dynamics of a hierarchical three-body system in the general relativistic regime: an extreme mass-ratio inner binary under the tidal influence of an external body. The inner binary consists of a central Schwarzschild black hole and a test body moving around it. We discuss three types of tidal effects on the orbit of the test body. First, the angular momentum of the inner binary precesses around the angular momentum of the outer binary. Second, the tidal field drives a "transient resonance" when the radial and azimuthal frequencies are commensurable. In contrast with resonances driven by the gravitational self-force, this tidal-driven resonance may boost the orbital angular momentum and eccentricity (a relativistic version of the Kozai-Lidov effect). Finally, for an orbit-dynamical effect during the nonresonant phase, we calculate the correction to the innermost stable circular (mean) orbit due to the tidal interaction. Hierarchical three-body systems are potential sources for future space-based gravitational wave missions, and the tidal effects that we find could contribute significantly to their waveform.
How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?
NASA Astrophysics Data System (ADS)
Scolnic, D.; Kessler, R.; Brout, D.; Cowperthwaite, P. S.; Soares-Santos, M.; Annis, J.; Herner, K.; Chen, H.-Y.; Sako, M.; Doctor, Z.; Butler, R. E.; Palmese, A.; Diehl, H. T.; Frieman, J.; Holz, D. E.; Berger, E.; Chornock, R.; Villar, V. A.; Nicholl, M.; Biswas, R.; Hounsell, R.; Foley, R. J.; Metzger, J.; Rest, A.; García-Bellido, J.; Möller, A.; Nugent, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Davis, C.; Doel, P.; Drlica-Wagner, A.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; James, D. J.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Neilsen, E.; Plazas, A. A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, R. C.; Tucker, D. L.; Walker, A. R.; DES Collaboration
2018-01-01
The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve from the single known KN event, and we use an average of BNS rates from past studies of {10}3 {{Gpc}}-3 {{yr}}-1, consistent with the one event found so far. Examining past and current data sets from transient surveys, the number of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is z=0.8 for WFIRST, z=0.25 for LSST, and z=0.04 for ZTF and ATLAS. This maximum redshift for WFIRST is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide contamination estimates from Type Ia and core-collapse supernovae: after light curve and template-matching requirements, we estimate a background of just two events. More broadly, we stress that future transient surveys should consider how to optimize their search strategies to improve their detection efficiency and to consider similar analyses for GW follow-up programs.
How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scolnic, D.; Kessler, R.; Brout, D.
The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve from the single known KN event, and we use an average of BNS rates from past studies ofmore » $${10}^{3}\\,{\\mathrm{Gpc}}^{-3}\\,{\\mathrm{yr}}^{-1}$$, consistent with the one event found so far. Examining past and current data sets from transient surveys, the number of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is $z=0.8$ for WFIRST, $z=0.25$ for LSST, and $z=0.04$ for ZTF and ATLAS. This maximum redshift for WFIRST is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide contamination estimates from Type Ia and core-collapse supernovae: after light curve and template-matching requirements, we estimate a background of just two events. Finally, more broadly, we stress that future transient surveys should consider how to optimize their search strategies to improve their detection efficiency and to consider similar analyses for GW follow-up programs.« less
How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?
Scolnic, D.; Kessler, R.; Brout, D.; ...
2017-12-22
The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve from the single known KN event, and we use an average of BNS rates from past studies ofmore » $${10}^{3}\\,{\\mathrm{Gpc}}^{-3}\\,{\\mathrm{yr}}^{-1}$$, consistent with the one event found so far. Examining past and current data sets from transient surveys, the number of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is $z=0.8$ for WFIRST, $z=0.25$ for LSST, and $z=0.04$ for ZTF and ATLAS. This maximum redshift for WFIRST is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide contamination estimates from Type Ia and core-collapse supernovae: after light curve and template-matching requirements, we estimate a background of just two events. Finally, more broadly, we stress that future transient surveys should consider how to optimize their search strategies to improve their detection efficiency and to consider similar analyses for GW follow-up programs.« less
Space immunology - Past, present and future
NASA Technical Reports Server (NTRS)
Coulter, Gary R.; Taylor, Gerald R.; Sonnenfeld, Gerald
1989-01-01
Research results on the causes and mechanisms of change in immune systems during spaceflight are briefly reviewed. The most reliable conclusion from the sparse existing data is that postflight crew members exhibit a transient neutrophilia, eosinopenia, monocytopenia, reduced numbers of circulating T cells, and an often pronounced decrease in the ability of their T cells to respond to mitogen stimulation. Clinically, no direct predictive relationship between any of these measurements and increased health risk or disease has been established. Future areas of research are suggested in light of NASA's emerging requirements to support long-duration missions.
Climate variability and vadose zone controls on damping of transient recharge
Corona, Claudia R.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Maurer, Edwin P.
2018-01-01
Increasing demand on groundwater resources motivates understanding of the controls on recharge dynamics so model predictions under current and future climate may improve. Here we address questions about the nonlinear behavior of flux variability in the vadose zone that may explain previously reported teleconnections between global-scale climate variability and fluctuations in groundwater levels. We use hundreds of HYDRUS-1D simulations in a sensitivity analysis approach to evaluate the damping depth of transient recharge over a range of periodic boundary conditions and vadose zone geometries and hydraulic parameters that are representative of aquifer systems of the conterminous United States (U.S). Although the models were parameterized based on U.S. aquifers, findings from this study are applicable elsewhere that have mean recharge rates between 3.65 and 730 mm yr–1. We find that mean infiltration flux, period of time varying infiltration, and hydraulic conductivity are statistically significant predictors of damping depth. The resulting framework explains why some periodic infiltration fluxes associated with climate variability dampen with depth in the vadose zone, resulting in steady-state recharge, while other periodic surface fluxes do not dampen with depth, resulting in transient recharge. We find that transient recharge in response to the climate variability patterns could be detected at the depths of water levels in most U.S. aquifers. Our findings indicate that the damping behavior of transient infiltration fluxes is linear across soil layers for a range of texture combinations. The implications are that relatively simple, homogeneous models of the vadose zone may provide reasonable estimates of the damping depth of climate-varying transient recharge in some complex, layered vadose zone profiles.
NASA Technical Reports Server (NTRS)
Mooley, K. P.; Hallinan, G.; Bourke, S.; Horesh, A.; Myers, S. T.; Frail, D. A.; Kulkarni, S. R.; Levitan, D. B.; Kasliwal, M. M.; Cenko, S. B.;
2016-01-01
We have commenced a multiyear program, the Caltech-NRAO Stripe 82 Survey (CNSS), to search for radio transients with the Jansky VLA in the Sloan Digital Sky Survey Stripe 82 region. The CNSS will deliver five epochs over the entire approx. 270 deg.(exp. 2) of Stripe 82, an eventual deep combined map with an rms noise of approx. 40 proper motion epoch y and catalogs at a frequency of 3 GHz, and having a spatial resolution of 3 inches. This first paper presents the results from an initial pilot survey of a 50 deg.(exp. 2) region of Stripe 82, involving four epochs spanning logarithmic timescales between 1 week and 1.5 yr, with the combined map having a median rms noise of 35 proper motion epoch y. This pilot survey enabled the development of the hardware and software for rapid data processing, as well as transient detection and follow-up, necessary for the full 270 deg.(exp. 2) survey. Data editing, calibration, imaging, source extraction, cataloging, and transient identification were completed in a semi-automated fashion within 6 hr of completion of each epoch of observations, using dedicated computational hardware at the NRAO in Socorro and custom-developed data reduction and transient detection pipelines. Classification of variable and transient sources relied heavily on the wealth of multiwavelength legacy survey data in the Stripe 82 region, supplemented by repeated mapping of the region by the Palomar Transient Factory. A total of 3.9(+0.5%/-0.9%) of the few thousand detected point sources werefound to vary by greater than 30%, consistent with similar studies at 1.4 and 5 GHz. Multiwavelength photometric data and light curves suggest that the variability is mostly due to shock-induced flaring in the jets of active galactic nuclei (AGNs). Although this was only a pilot survey, we detected two bona fide transients, associated with an RS CVn binary and a dKe star. Comparison with existing legacy survey data (FIRST, VLA-Stripe 82) revealed additional highly variable and transient sources on timescales between 5 and 20 yr, largely associated with renewed AGN activity. The rates of such AGNs possibly imply episodes of enhanced accretion and jet activity occurring once every approx. 40,000 yr in these galaxies. We compile the revised radio transient rates and make recommendations for future transient surveys and joint radio-optical experiments.
Start Up of a Nb-1%Zr Potassium Heat Pipe From the Frozen State
NASA Technical Reports Server (NTRS)
Glass, David E.; Merrigan, Michael A.; Sena, J. Tom
1998-01-01
The start up of a liquid metal heat pipe from the frozen state was evaluated experimentally with a Nb-1%Zr heat pipe with potassium as the working fluid. The heat pipe was fabricated and tested at Los Alamos National Laboratory. RF induction heating was used to heat 13 cm of the 1-m-long heat pipe. The heat pipe and test conditions are well characterized so that the test data may be used for comparison with numerical analyses. An attempt was made during steady state tests to calibrate the heat input so that the heat input would be known during the transient cases. The heat pipe was heated to 675 C with a throughput of 600 W and an input heat flux of 6 W/cm(exp 2). Steady state tests, start up from the frozen state, and transient variations from steady state were performed.
NASA Astrophysics Data System (ADS)
Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.
2017-08-01
To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ˜1 GW/m2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured with two pulse lengths and tested under a solenoidal magnetic field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. The tungsten target plate is analyzed for surface damage using a scanning electron microscope.
Detonation failure characterization of non-ideal explosives
NASA Astrophysics Data System (ADS)
Janesheski, Robert S.; Groven, Lori J.; Son, Steven
2012-03-01
Non-ideal explosives are currently poorly characterized, hence limiting the modeling of them. Current characterization requires large-scale testing to obtain steady detonation wave characterization for analysis due to the relatively thick reaction zones. Use of a microwave interferometer applied to small-scale confined transient experiments is being implemented to allow for time resolved characterization of a failing detonation. The microwave interferometer measures the position of a failing detonation wave in a tube that is initiated with a booster charge. Experiments have been performed with ammonium nitrate and various fuel compositions (diesel fuel and mineral oil). It was observed that the failure dynamics are influenced by factors such as chemical composition and confiner thickness. Future work is planned to calibrate models to these small-scale experiments and eventually validate the models with available large scale experiments. This experiment is shown to be repeatable, shows dependence on reactive properties, and can be performed with little required material.
The first stars: our evolving theoretical picture
NASA Astrophysics Data System (ADS)
Bromm, V.
This brief review will discuss what we have learned about the formation, properties, evolution and death of the first stars, the so-called Population III (Pop III). It is crucial to embed the problem into its proper cosmological context, including insights into the particle-physics nature of dark matter. This is a good time to reflect on where we are, just ahead of the James Webb Space Telescope (JWST) launch, and of the imminent arrival of a suite of next-generation observational facilities. How can we test our emerging theoretical picture with observations both in-situ, at high redshifts, and in our local cosmic neighborhood? This may indeed be our main challenge for the near future, given that individual Pop III stars cannot be directly observed, unless we get very lucky, and catch them at the moment of their death as transient events. We therefore need powerful diagnostics that make use of an increasingly rich data set of indirect clues.
Observational constraints on the inter-binary stellar flare hypothesis for the gamma-ray bursts
NASA Astrophysics Data System (ADS)
Rao, A. R.; Vahia, M. N.
1994-01-01
The Gamma Ray Observatory/Burst and Transient Source Experiment (GRO/BATSE) results on the Gamma Ray Bursts (GRBs) have given an internally consistent set of observations of about 260 GRBs which have been released for analysis by the BATSE team. Using this database we investigate our earlier suggestion (Vahia and Rao, 1988) that GRBs are inter-binary stellar flares from a group of objects classified as Magnetically Active Stellar Systems (MASS) which includes flare stars, RS CVn binaries and cataclysmic variables. We show that there exists an observationally consistent parameter space for the number density, scale height and flare luminosity of MASS which explains the complete log(N) - log(P) distribution of GRBs as also the observed isotropic distribution. We further use this model to predict anisotropy in the GRB distribution at intermediate luminosities. We make definite predictions under the stellar flare hypothesis that can be tested in the near future.
Future heat waves due to climate change threaten the survival of Posidonia oceanica seedlings.
Guerrero-Meseguer, Laura; Marín, Arnaldo; Sanz-Lázaro, Carlos
2017-11-01
Extreme weather events are major drivers of ecological change, and their occurrence is likely to increase due to climate change. The transient increases in atmospheric temperatures are leading to a greater occurrence of heat waves, extreme events that can produce a substantial warming of water, especially in enclosed basins such as the Mediterranean Sea. Here, we tested the effects of current and predicted heat waves on the early stages of development of the seagrass Posidonia oceanica. Temperatures above 27 °C limited the growth of the plant by inhibiting its photosynthetic system. It suffered a reduction in leaf growth and faster leaf senescence, and in some cases mortality. This study demonstrates that the greater frequency of heat waves, along with anticipated temperature rises in coming decades, are expected to negatively affect the germination of P. oceanica seedlings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Searching gamma-ray bursts for gravitational lensing echoes - Implications for compact dark matter
NASA Technical Reports Server (NTRS)
Nemiroff, R. J.; Norris, J. P.; Wickramasinghe, W. A. D. T.; Horack, J. M.; Kouveliotou, C.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W. S.
1993-01-01
The first available 44 gamma-ray bursts (GRBs) detected by the Burst and Transient Source Experiment on board the Compton Gamma-Ray Observatory have been inspected for echo signals following shortly after the main signal. No significant echoes have been found. Echoes would have been expected were the GRBs distant enough and the universe populated with a sufficient density of compact objects composing the dark matter. Constraints on dark matter abundance and GRB redshifts from the present data are presented and discussed. Based on these preliminary results, a universe filled to critical density of compact objects between 10 exp 6.5 and 10 exp 8.1 solar masses are now marginally excluded, or the most likely cosmological distance paradigm for GRBs is not correct. We expect future constraints to be able either to test currently popular cosmological dark matter paradigms or to indicate that GRBs do not lie at cosmological distances.
Effects of fictive reward on rat's choice behavior
Kim, Ko-Un; Huh, Namjung; Jang, Yunsil; Lee, Daeyeol; Jung, Min Whan
2015-01-01
Choices of humans and non-human primates are influenced by both actually experienced and fictive outcomes. To test whether this is also the case in rodents, we examined rat's choice behavior in a binary choice task in which variable magnitudes of actual and fictive rewards were delivered. We found that the animal's choice was significantly influenced by the magnitudes of both actual and fictive rewards in the previous trial. A model-based analysis revealed, however, that the effect of fictive reward was more transient and influenced mostly the choice in the next trial, whereas the effect of actual reward was more sustained, consistent with incremental learning of action values. Our results suggest that the capacity to modify future choices based on fictive outcomes might be shared by many different animal species, but fictive outcomes are less effective than actual outcomes in the incremental value learning system. PMID:25623929
Flight experiment of thermal energy storage. [for spacecraft power systems
NASA Technical Reports Server (NTRS)
Namkoong, David
1989-01-01
Thermal energy storage (TES) enables a solar dynamic system to deliver constant electric power through periods of sun and shade. Brayton and Stirling power systems under current considerations for missions in the near future require working fluid temperatures in the 1100 to 1300+ K range. TES materials that meet these requirements fall into the fluoride family of salts. Salts shrink as they solidify, a change reaching 30 percent for some salts. Hot spots can develop in the TES container or the container can become distorted if the melting salt cannot expand elsewhere. Analysis of the transient, two-phase phenomenon is being incorporated into a three-dimensional computer code. The objective of the flight program is to verify the predictions of the code, particularly of the void location and its effect on containment temperature. The four experimental packages comprising the program will be the first tests of melting and freezing conducted under microgravity.
NASA Technical Reports Server (NTRS)
Jennings, W. P.; Olsen, N. L.; Walter, M. J.
1976-01-01
The development of testing techniques useful in airplane ground resonance testing, wind tunnel aeroelastic model testing, and airplane flight flutter testing is presented. Included is the consideration of impulsive excitation, steady-state sinusoidal excitation, and random and pseudorandom excitation. Reasons for the selection of fast sine sweeps for transient excitation are given. The use of the fast fourier transform dynamic analyzer (HP-5451B) is presented, together with a curve fitting data process in the Laplace domain to experimentally evaluate values of generalized mass, model frequencies, dampings, and mode shapes. The effects of poor signal to noise ratios due to turbulence creating data variance are discussed. Data manipulation techniques used to overcome variance problems are also included. The experience is described that was gained by using these techniques since the early stages of the SST program. Data measured during 747 flight flutter tests, and SST, YC-14, and 727 empennage flutter model tests are included.
Hoefnagels, W A; Padberg, G W; Overweg, J; Roos, R A; van Dijk, J G; Kamphuisen, H A
1991-01-01
In a prospective study of consecutive patients (age 15 or over) with transient loss of consciousness 45 patients had a history of seizure and 74 patients had a history of syncope. All patients had an EEG, ECG, laboratory tests and a hyperventilation test and were followed for an average of 14.5 months. Epileptiform activity in the interictal EEG had a sensitivity of 0.40 and a specificity of 0.95 for the diagnosis of a seizure. Epileptiform activity nearly doubled the probability of a seizure in doubtful cases. If no epileptiform activity was found, this probability remained substantially the same. The hyperventilation test had a sensitivity of 0.57 and a specificity of 0.84 for the diagnosis of syncope. A positive test increased the probability of syncope half as much in doubtful cases. A negative test did not exclude syncope. Laboratory tests were not helpful except for an ECG which was helpful in elderly patients. PMID:1800665
Pretest and posttest calculations of Semiscale Test S-07-10D with the TRAC computer program. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duerre, K.H.; Cort, G.E.; Knight, T.D.
The Transient Reactor Analysis Code (TRAC) developed at the Los Alamos National Laboratory was used to predict the behavior of the small-break experiment designated Semiscale S-07-10D. This test simulates a 10 per cent communicative cold-leg break with delayed Emergency Core Coolant injection and blowdown of the broken-loop steam generator secondary. Both pretest calculations that incorporated measured initial conditions and posttest calculations that incorporated measured initial conditions and measured transient boundary conditions were completed. The posttest calculated parameters were generally between those obtained from pretest calculations and those from the test data. The results are strongly dependent on depressurization rate and,more » hence, on break flow.« less
On-line determination of transient stability status using multilayer perceptron neural network
NASA Astrophysics Data System (ADS)
Frimpong, Emmanuel Asuming; Okyere, Philip Yaw; Asumadu, Johnson
2018-01-01
A scheme to predict transient stability status following a disturbance is presented. The scheme is activated upon the tripping of a line or bus and operates as follows: Two samples of frequency deviation values at all generator buses are obtained. At each generator bus, the maximum frequency deviation within the two samples is extracted. A vector is then constructed from the extracted maximum frequency deviations. The Euclidean norm of the constructed vector is calculated and then fed as input to a trained multilayer perceptron neural network which predicts the stability status of the system. The scheme was tested using data generated from the New England test system. The scheme successfully predicted the stability status of all two hundred and five disturbance test cases.
Upset due to a single particle caused propagated transients in a bulk CMOS microprocessor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leavy, J.F.; Hoffmann, L.F.; Shoran, R.W.
1991-12-01
This paper reports on data pattern advances observed in preset, single event upset (SEU) hardened clocked flip-flops, during static Cf-252 exposures on a bulk CMOS microprocessor, that were attributable to particle caused anomalous clock signals, or propagated transients. SPICE simulations established that particle strikes in the output nodes of a clock control logic flip-flop could produce transients of sufficient amplitude and duration to be accepted as legitimate pulses by clock buffers fed by the flip-flop's output nodes. The buffers would then output false clock pulses, thereby advancing the state of the present flip-flops. Masking the clock logic on one ofmore » the test chips made the flip-flop data advance cease, confirming the clock logic as the source of the SEU. By introducing N{sub 2} gas, at reduced pressures, into the SEU test chamber to attenuate Cf-252 particle LET's, a 24-26 MeV-cm{sup 2}/mg LET threshold was deduced. Subsequent tests, at the 88-inch cyclotron at Berkeley, established an LET threshold of 30 MeV-cm{sup 2}/mg (283 MeV Cu at 0{degrees}) for the generation of false clocks. Cyclotron SEU tests are considered definitive, while Cf-252 data usually is not. However, in this instance Cf-252 tests proved analytically useful, providing SEU characterization data that was both timely and inexpensive.« less
A microprocessor tester for the treat upgrade reactor trip system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenkszus, F.R.; Bucher, R.G.
1985-02-01
The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. To improve the analytical extrapolation of test results to full-size assembly bundles, the facility upgrade will increase the maximum size of the test bundle from 7 to 37 fuel pins. By creating a core convertor zone around the test location, the neutron spectrum incident on the test assembly will be hardened and the maximum energy deposited in the sample will be increased. In addition, a programmable Automated Reactor Control System (ARCS) willmore » permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations. A quantitative reliability analysis of the RTS shows that the unreliability, that is, the probability of failure, is acceptable for a 10 hour mission time or risk interval.« less
Starting Performance Analysis for Universal Motors by FEM
NASA Astrophysics Data System (ADS)
Kurihara, Kazumi; Sakamoto, Shin-Ichi
This paper presents a novel transient analysis of the universal motors taking into account the time-varying brush-contact resistance and mechanical loss. The transient current, torque and speed during the starting process are computed by solving the electromagnetic, circuit and dynamic motion equations, simultaneously. The computed performances have been validated by tests in a 500-W, 2-pole, 50Hz, 100V universal motor.
Initial Implementation of Transient VERA-CS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, Andrew; Kochunas, Brendan; Salko, Robert
In this milestone the capabilities of both CTF and MPACT were extended to perform coupled transient calculations. This required several small changes in MPACT to setup the problems correctly, perform the edits correctly, and call the appropriate CTF interfaces in the right order. For CTF, revisions and corrections to the transient timestepping algorithm were made, as well as the addition of a new interface subroutine to allow MPACT to drive CTF at each timestep. With the modifications completed, the initial coupled capability was demonstrated on some problems used for code verification, a hypothetical small mini-core, and a Watts Bar demonstrationmore » problem. For each of these cases the results showed good agreement with the previous MPACT internal TH feedback model that relied on a simplified fuel heat conduction model and simplified coolant treatment. After the pulse the results are notably different as expected, where the effects of convection of heat to the coolant can be observed. Areas for future work were discussed, including assessment and development of the CTF dynamic fuel deformation and gap conductance models, addition of suitable transient boiling and CHF models for the rapid heating and cooling rates seen in RIAs, additional validation and demonstration work, and areas for improvement to the code input and output capabilities.« less
The SED Machine: a dedicated transient IFU spectrograph
NASA Astrophysics Data System (ADS)
Ben-Ami, Sagi; Konidaris, Nick; Quimby, Robert; Davis, Jack T.; Ngeow, Chow Choong; Ritter, Andreas; Rudy, Alexander
2012-09-01
The Spectral Energy Distribution (SED) Machine is an Integral Field Unit (IFU) spectrograph designed specifically to classify transients. It is comprised of two subsystems. A lenselet based IFU, with a 26" × 26" Field of View (FoV) and ˜ 0.75" spaxels feeds a constant resolution (R˜100) triple-prism. The dispersed rays are than imaged onto an off-the-shelf CCD detector. The second subsystem, the Rainbow Camera (RC), is a 4-band seeing-limited imager with a 12.5' × 12.5' FoV around the IFU that will allow real time spectrophotometric calibrations with a ˜ 5% accuracy. Data from both subsystems will be processed in real time using a dedicated reduction pipeline. The SED Machine will be mounted on the Palomar 60-inch robotic telescope (P60), covers a wavelength range of 370 - 920nm at high throughput and will classify transients from on-going and future surveys at a high rate. This will provide good statistics for common types of transients, and a better ability to discover and study rare and exotic ones. We present the science cases, optical design, and data reduction strategy of the SED Machine. The SED machine is currently being constructed at the Calofornia Institute of Technology, and will be comissioned on the spring of 2013.
iPTF search for an optical counterpart to gravitational-wave transient GW150914
Kasliwal, M. M.; Cenko, S. B.; Singer, L. P.; ...
2016-06-16
The intermediate Palomar Transient Factory (iPTF) autonomously responded to and promptly tiled the error region of the first gravitational-wave event GW150914 to search for an optical counterpart. Only a small fraction of the total localized region was immediately visible in the northern night sky, due both to Sun-angle and elevation constraints. Here, we report on the transient candidates identified and rapid follow-up undertaken to determine the nature of each candidate. Even in the small area imaged of 126 deg 2, after extensive filtering, eight candidates were deemed worthy of additional follow-up. Within two hours, all eight were spectroscopically classified bymore » the Keck II telescope. Curiously, even though such events are rare, one of our candidates was a superluminous supernova. We obtained radio data with the Jansky Very Large Array and X-ray follow-up with the Swift satellite for this transient. None of our candidates appear to be associated with the gravitational-wave trigger, which is unsurprising given that GW150914 came from the merger of two stellar-mass black holes. In conclusion, this end-to-end discovery and follow-up campaign bodes well for future searches in this post-detection era of gravitational waves.« less
Shen, Changqing; Liu, Fang; Wang, Dong; Zhang, Ao; Kong, Fanrang; Tse, Peter W.
2013-01-01
The condition of locomotive bearings, which are essential components in trains, is crucial to train safety. The Doppler effect significantly distorts acoustic signals during high movement speeds, substantially increasing the difficulty of monitoring locomotive bearings online. In this study, a new Doppler transient model based on the acoustic theory and the Laplace wavelet is presented for the identification of fault-related impact intervals embedded in acoustic signals. An envelope spectrum correlation assessment is conducted between the transient model and the real fault signal in the frequency domain to optimize the model parameters. The proposed method can identify the parameters used for simulated transients (periods in simulated transients) from acoustic signals. Thus, localized bearing faults can be detected successfully based on identified parameters, particularly period intervals. The performance of the proposed method is tested on a simulated signal suffering from the Doppler effect. Besides, the proposed method is used to analyze real acoustic signals of locomotive bearings with inner race and outer race faults, respectively. The results confirm that the periods between the transients, which represent locomotive bearing fault characteristics, can be detected successfully. PMID:24253191
Shen, Changqing; Liu, Fang; Wang, Dong; Zhang, Ao; Kong, Fanrang; Tse, Peter W
2013-11-18
The condition of locomotive bearings, which are essential components in trains, is crucial to train safety. The Doppler effect significantly distorts acoustic signals during high movement speeds, substantially increasing the difficulty of monitoring locomotive bearings online. In this study, a new Doppler transient model based on the acoustic theory and the Laplace wavelet is presented for the identification of fault-related impact intervals embedded in acoustic signals. An envelope spectrum correlation assessment is conducted between the transient model and the real fault signal in the frequency domain to optimize the model parameters. The proposed method can identify the parameters used for simulated transients (periods in simulated transients) from acoustic signals. Thus, localized bearing faults can be detected successfully based on identified parameters, particularly period intervals. The performance of the proposed method is tested on a simulated signal suffering from the Doppler effect. Besides, the proposed method is used to analyze real acoustic signals of locomotive bearings with inner race and outer race faults, respectively. The results confirm that the periods between the transients, which represent locomotive bearing fault characteristics, can be detected successfully.
Transient response of sap flow to wind speed.
Chu, Chia R; Hsieh, Cheng-I; Wu, Shen-Yuang; Phillips, Nathan G
2009-01-01
Transient responses of sap flow to step changes in wind speed were experimentally investigated in a wind tunnel. A Granier-type sap flow sensor was calibrated and tested in a cylindrical tube for analysis of its transient time response. Then the sensor was used to measure the transient response of a well-watered Pachira macrocarpa plant to wind speed variations. The transient response of sap flow was described using the resistance-capacitance model. The steady sap flow rate increased as the wind speed increased at low wind speeds. Once the wind speed exceeded 8.0 m s(-1), the steady sap flow rate did not increase further. The transpiration rate, measured gravimetrically, showed a similar trend. The response of nocturnal sap flow to wind speed variation was also measured and compared with the results in the daytime. Under the same wind speed, the steady sap flow rate was smaller than that in the daytime, indicating differences between diurnal and nocturnal hydraulic function, and incomplete stomatal closure at night. In addition, it was found that the temporal response of the Granier sensor is fast enough to resolve the transient behaviour of water flux in plant tissue.
Methodology, status and plans for development and assessment of Cathare code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bestion, D.; Barre, F.; Faydide, B.
1997-07-01
This paper presents the methodology, status and plans for the development, assessment and uncertainty evaluation of the Cathare code. Cathare is a thermalhydraulic code developed by CEA (DRN), IPSN, EDF and FRAMATOME for PWR safety analysis. First, the status of the code development and assessment is presented. The general strategy used for the development and the assessment of the code is presented. Analytical experiments with separate effect tests, and component tests are used for the development and the validation of closure laws. Successive Revisions of constitutive laws are implemented in successive Versions of the code and assessed. System tests ormore » integral tests are used to validate the general consistency of the Revision. Each delivery of a code Version + Revision is fully assessed and documented. A methodology is being developed to determine the uncertainty on all constitutive laws of the code using calculations of many analytical tests and applying the Discrete Adjoint Sensitivity Method (DASM). At last, the plans for the future developments of the code are presented. They concern the optimization of the code performance through parallel computing - the code will be used for real time full scope plant simulators - the coupling with many other codes (neutronic codes, severe accident codes), the application of the code for containment thermalhydraulics. Also, physical improvements are required in the field of low pressure transients and in the modeling for the 3-D model.« less
40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control
Code of Federal Regulations, 2012 CFR
2012-07-01
... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...
40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control
Code of Federal Regulations, 2010 CFR
2010-07-01
... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...
40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control
Code of Federal Regulations, 2011 CFR
2011-07-01
... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...
40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control
Code of Federal Regulations, 2013 CFR
2013-07-01
... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...
40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control
Code of Federal Regulations, 2014 CFR
2014-07-01
... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...
Automotive Stirling Engine Development Program
NASA Technical Reports Server (NTRS)
Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Antonelli, M. (Editor)
1982-01-01
Activities performed on Mod I engine testing and test results; the manufacture, assembly, and test of a Mod I engine in the United States; design initiation of the Mod I-A engine system; transient performance testing; Stirling reference engine manufacturing and reduced size studies; components and subsystems; and the study and test of low cost alloys are summarized.
NASA Technical Reports Server (NTRS)
Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.-H.; Lehoczky, S. L.; Feth, S.; Zhu, S.; Curreri, Peter A. (Technical Monitor)
2002-01-01
A novel apparatus based on transient torque technique is constructed in MSFC/NASA. The apparatus uses a 125um diameter quartz fiber as torsion wire. A high sensitive angular detector is implemented to measure the deflection angle of the crucible containing the liquid. A rotating magnetic field (RMF) is used to induce a rotating flow of a conducting or semiconducting melts. By measuring the magnitude and transient behavior of the induced deflection angle, the electrical conductivity and viscosity of the melt can be measured simultaneously. High purity elements namely Hg, Ga, Zn and Te are tested at room temperature and high temperature up to 900 C.
Cognitive findings after transient global amnesia: role of prefrontal cortex.
Le Pira, Francesco; Giuffrida, Salvatore; Maci, Tiziana; Reggio, Ester; Zappalà, Giuseppe; Perciavalle, Vincenzo
2005-01-01
The aim of this study is to verify, after recovery, the presence of specific patterns of cognitive dysfunctions in Transient Global Amnesia (TGA). Fourteen patients with the diagnosis of TGA were submitted to a battery of neuropsychological tests and compared to a matched control group. We found significant qualitative and quantitative differences between TGA patients and controls in the California Verbal Learning Test (CLVT) and Rey-Osterrieth Complex Figure Test. Our data support the presence of selective cognitive dysfunctions after the clinical recovery. Moreover, for Verbal Fluency, Digit Span Backward, and Number of Clusters in the CVLT short-term memory test, the relation resulted as positively related with the temporal interval from the TGA episode. Reduction of categorical learning, attention, and qualitative alterations of spatial strategy seem to postulate a planning defect due to a prefrontal impairment.
40 CFR 51.357 - Test procedures and standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... invalid test condition, unsafe conditions, fast pass/fail algorithms, or, in the case of the on-board... using approved fast pass or fast fail algorithms and multiple pass/fail algorithms may be used during the test cycle to eliminate false failures. The transient test procedure, including algorithms and...
40 CFR 51.357 - Test procedures and standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... invalid test condition, unsafe conditions, fast pass/fail algorithms, or, in the case of the on-board... using approved fast pass or fast fail algorithms and multiple pass/fail algorithms may be used during the test cycle to eliminate false failures. The transient test procedure, including algorithms and...
40 CFR 51.357 - Test procedures and standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... invalid test condition, unsafe conditions, fast pass/fail algorithms, or, in the case of the on-board... using approved fast pass or fast fail algorithms and multiple pass/fail algorithms may be used during the test cycle to eliminate false failures. The transient test procedure, including algorithms and...
40 CFR 51.357 - Test procedures and standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... invalid test condition, unsafe conditions, fast pass/fail algorithms, or, in the case of the on-board... using approved fast pass or fast fail algorithms and multiple pass/fail algorithms may be used during the test cycle to eliminate false failures. The transient test procedure, including algorithms and...
40 CFR 86.1430 - Certification Short Test sequence; general requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... test procedure. Fuel tank drain and fill is performed or a transient test procedure is performed, as... sets of test conditions identified in this subpart are based on the test fuel type present in the vehicle fuel tank and the ambient temperature during the test. Tables O-96-1 and O-96-2 outline the...
40 CFR 86.1430 - Certification Short Test sequence; general requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... test procedure. Fuel tank drain and fill is performed or a transient test procedure is performed, as... sets of test conditions identified in this subpart are based on the test fuel type present in the vehicle fuel tank and the ambient temperature during the test. Tables O-96-1 and O-96-2 outline the...
40 CFR 86.1430 - Certification Short Test sequence; general requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... test procedure. Fuel tank drain and fill is performed or a transient test procedure is performed, as... sets of test conditions identified in this subpart are based on the test fuel type present in the vehicle fuel tank and the ambient temperature during the test. Tables O-96-1 and O-96-2 outline the...
40 CFR 86.1430 - Certification Short Test sequence; general requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... test procedure. Fuel tank drain and fill is performed or a transient test procedure is performed, as... sets of test conditions identified in this subpart are based on the test fuel type present in the vehicle fuel tank and the ambient temperature during the test. Tables O-96-1 and O-96-2 outline the...
NASA Astrophysics Data System (ADS)
Phan, Leon L.
The motivation behind this thesis mainly stems from previous work performed at Hispano-Suiza (Safran Group) in the context of the European research project "Power Optimised Aircraft". Extensive testing on the COPPER Bird RTM, a test rig designed to characterize aircraft electrical networks, demonstrated the relevance of transient regimes in the design and development of dynamic systems. Transient regimes experienced by dynamic systems may have severe impacts on the operation of the aircraft. For example, the switching on of a high electrical load might cause a network voltage drop inducing a loss of power available to critical aircraft systems. These transient behaviors are thus often regulated by dynamic constraints, requiring the dynamic signals to remain within bounds whose values vary with time. The verification of these peculiar types of constraints, which generally requires high-fidelity time-domain simulation, intervenes late in the system development process, thus potentially causing costly design iterations. The research objective of this thesis is to develop a methodology that integrates the verification of dynamic constraints in the early specification of dynamic systems. In order to circumvent the inefficiencies of time-domain simulation, multivariate dynamic surrogate models of the original time-domain simulation models are generated, building on a nonlinear system identification technique using wavelet neural networks (or wavenets), which allow the multiscale nature of transient signals to be captured. However, training multivariate wavenets can become computationally prohibitive as the number of design variables increases. Therefore, an alternate approach is formulated, in which dynamic surrogate models using sigmoid-based neural networks are used to emulate the transient behavior of the envelopes of the time-domain response. Thus, in order to train the neural network, the envelopes are extracted by first separating the scales of the dynamic response, using a multiresolution analysis (MRA) based on the discrete wavelet transform. The MRA separates the dynamic response into a trend and a noise signal (ripple). The envelope of the noise is then computed with a windowing method, and recombined with the trend in order to reconstruct the global envelope of the dynamic response. The run-time efficiency of the resulting dynamic surrogate models enable the implementation of a data farming approach, in which a Monte-Carlo simulation generates time-domain behaviors of transient responses for a vast set of design and operation scenarios spanning the design and operation space. An interactive visualization environment, enabling what-if analyses, will be developed; the user can thereby instantaneously comprehend the transient response of the system (or its envelope) and its sensitivities to design and operation variables, as well as filter the design space to have it exhibit only the design scenarios verifying the dynamic constraints. The proposed methodology, along with its foundational hypotheses, are tested on the design and optimization of a 350VDC network, where a generator and its control system are concurrently designed in order to minimize the electrical losses, while ensuring that the transient undervoltage induced by peak demands in the consumption of a motor does not violate transient power quality constraints.
NASA Astrophysics Data System (ADS)
Raman, R.; Mueller, D.; Nelson, B. A.; Jarboe, T. R.; Gerhardt, S.; Kugel, H. W.; Leblanc, B.; Maingi, R.; Menard, J.; Ono, M.; Paul, S.; Roquemore, L.; Sabbagh, S.; Soukhanovskii, V.
2010-03-01
Transient coaxial helicity injection (CHI) started discharges in the National Spherical Torus Experiment (NSTX) have attained peak currents up to 300 kA and when coupled to induction, it has produced up to 200 kA additional current over inductive-only operation. CHI in NSTX has shown to be energetically quite efficient, producing a plasma current of about 10 A/J of capacitor bank energy. In addition, for the first time, the CHI-produced toroidal current that couples to induction continues to increase with the energy supplied by the CHI power supply at otherwise similar values of the injector flux, indicating the potential for substantial current generation capability by CHI in NSTX and in future toroidal devices.
The Swift Supergiant Fast X-Ray Transients Project:. [A Review, New Results and Future Perspectives
NASA Technical Reports Server (NTRS)
Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Vercellone, S.; Bocchino, F.; Burrows, D. N.; Kennea, J. A.; Krimm, H. A.; Gehrels, N.;
2013-01-01
We present a review of the Supergiant Fast X-ray Transients (SFXT) Project, a systematic investigation of the properties of SFXTs with a strategy that combines Swift monitoring programs with outburst follow-up observations. This strategy has quickly tripled the available sets of broad-band data of SFXT outbursts, and gathered a wealth of out-of-outburst data, which have led us to a broad-band spectral characterization, an assessment of the fraction of the time these sources spend in each phase, and their duty cycle of inactivity. We present some new observational results obtained through our outburst follow-ups, as fitting examples of the exceptional capabilities of Swift in catching bright flares and monitor them panchromatically.
Zarski, Jean-Pierre; Sturm, Nathalie; Guechot, Jérôme; Paris, Adeline; Zafrani, Elie-Serge; Asselah, Tarik; Boisson, Renée-Claude; Bosson, Jean-Luc; Guyader, Dominique; Renversez, Jean-Charles; Bronowicki, Jean-Pierre; Gelineau, Marie-Christine; Tran, Albert; Trocme, Candice; De Ledinghen, Victor; Lasnier, Elisabeth; Poujol-Robert, Armelle; Ziegler, Frédéric; Bourliere, Marc; Voitot, Hélène; Larrey, Dominique; Rosenthal-Allieri, Maria Alessandra; Fouchard Hubert, Isabelle; Bailly, François; Vaubourdolle, Michel
2012-01-01
Blood tests and transient elastography (Fibroscan™) have been developed as alternatives to liver biopsy. This ANRS HCEP-23 study compared the diagnostic accuracy of nine blood tests and transient elastography (Fibroscan™) to assess liver fibrosis, vs. liver biopsy, in untreated patients with chronic hepatitis C (CHC). This was a multicentre prospective independent study in 19 French University hospitals of consecutive adult patients having simultaneous liver biopsy, biochemical blood tests (performed in a centralized laboratory) and Fibroscan™. Two experienced pathologists independently reviewed the liver biopsies (mean length=25±8.4 mm). Performance was assessed using ROC curves corrected by Obuchowski's method. Fibroscan™ was not interpretable in 113 (22%) patients. In the 382 patients having both blood tests and interpretable Fibroscan™, Fibroscan™ performed similarly to the best blood tests for the diagnosis of significant fibrosis and cirrhosis. Obuchowski's measure showed Fibrometer® (0.86), Fibrotest® (0.84), Hepascore® (0.84), and interpretable Fibroscan™ (0.84) to be the most accurate tests. The combination of Fibrotest®, Fibrometer®, or Hepascore® with Fibroscan™ or Apri increases the percentage of well classified patients from 70-73% to 80-83% for significant fibrosis, but for cirrhosis a combination offers no improvement. For the 436 patients having all the blood tests, AUROC's ranged from 0.82 (Fibrometer®) to 0.75 (Hyaluronate) for significant fibrosis, and from 0.89 (Fibrometer® and Hepascore®) to 0.83 (FIB-4) for cirrhosis. Contrarily to blood tests, performance of Fibroscan™ was reduced due to uninterpretable results. Fibrotest®, interpretable Fibroscan™, Fibrometer®, and Hepascore® perform best and similarly for diagnosis of significant fibrosis and cirrhosis. Copyright © 2011 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
... disease (e.g. through a physical exam, blood tests and imaging studies such as an ultrasound). So talk to your ... monitor your health through a physical exam, blood tests and imaging studies (such as an ultrasound, FibroScan [Transient Elastography] or ...
40 CFR 1048.205 - What must I include in my application?
Code of Federal Regulations, 2010 CFR
2010-07-01
...? 1048.205 Section 1048.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... following: (1) Emission data from transient testing of engines using measurement systems designed for.... (s) Report test results as follows: (1) Report all test results involving measurement of pollutants...
A point implicit time integration technique for slow transient flow problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.
2015-05-01
We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation ofmore » explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust.« less
NASA Technical Reports Server (NTRS)
Ray, Ronald J.
1994-01-01
New flight test maneuvers and analysis techniques for evaluating the dynamic response of in-flight thrust models during throttle transients have been developed and validated. The approach is based on the aircraft and engine performance relationship between thrust and drag. Two flight test maneuvers, a throttle step and a throttle frequency sweep, were developed and used in the study. Graphical analysis techniques, including a frequency domain analysis method, were also developed and evaluated. They provide quantitative and qualitative results. Four thrust calculation methods were used to demonstrate and validate the test technique. Flight test applications on two high-performance aircraft confirmed the test methods as valid and accurate. These maneuvers and analysis techniques were easy to implement and use. Flight test results indicate the analysis techniques can identify the combined effects of model error and instrumentation response limitations on the calculated thrust value. The methods developed in this report provide an accurate approach for evaluating, validating, or comparing thrust calculation methods for dynamic flight applications.
Reichenberger, Michael A.; Patel, Vishal K.; Roberts, Jeremy A.; ...
2017-03-03
Here, Micro-Pocket Fission Detectors (MPFDs) are under development for in-core neutron flux measurements at the Transient REActor Test facility (TREAT) and in other experiments at Idaho National Laboratory (INL). The sensitivity of MPFDs to the energy dependent neutron flux at TREAT has been determined for 0.0300-μm thick active material coatings of 242Pu, 232Th, natural uranium, and 93% enriched 235U. Self-shielding effects in the active material of the MPFD was also confirmed to be negligible. Finally, fission fragment energy deposition was found to be in conformance with previously reported results.
Modeling of two-phase flow instabilities during startup transients utilizing RAMONA-4B methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paniagua, J.; Rohatgi, U.S.; Prasad, V.
1996-10-01
RAMONA-4B code is currently under development for simulating thermal hydraulic instabilities that can occur in Boiling Water Reactors (BWRs) and the Simplified Boiling Water Reactor (SBWR). As one of the missions of RAMONA-4B is to simulate SBWR startup transients, where geysering or condensation-induced instability may be encountered, the code needs to be assessed for this application. This paper outlines the results of the assessments of the current version of RAMONA-4B and the modifications necessary for simulating the geysering or condensation-induced instability. The test selected for assessment are the geysering tests performed by Prof Aritomi (1993).
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.
1981-01-01
An analytical technique was developed to predict the behavior of a rotor system subjected to sudden unbalance. The technique is implemented in the Turbine Engine Transient Rotor Analysis (TETRA) computer program using the component element method. The analysis was particularly aimed toward blade-loss phenomena in gas turbine engines. A dual-rotor, casing, and pylon structure can be modeled by the computer program. Blade tip rubs, Coriolis forces, and mechanical clearances are included. The analytical system was verified by modeling and simulating actual test conditions for a rig test as well as a full-engine, blade-release demonstration.
Multiple disturbances classifier for electric signals using adaptive structuring neural networks
NASA Astrophysics Data System (ADS)
Lu, Yen-Ling; Chuang, Cheng-Long; Fahn, Chin-Shyurng; Jiang, Joe-Air
2008-07-01
This work proposes a novel classifier to recognize multiple disturbances for electric signals of power systems. The proposed classifier consists of a series of pipeline-based processing components, including amplitude estimator, transient disturbance detector, transient impulsive detector, wavelet transform and a brand-new neural network for recognizing multiple disturbances in a power quality (PQ) event. Most of the previously proposed methods usually treated a PQ event as a single disturbance at a time. In practice, however, a PQ event often consists of various types of disturbances at the same time. Therefore, the performances of those methods might be limited in real power systems. This work considers the PQ event as a combination of several disturbances, including steady-state and transient disturbances, which is more analogous to the real status of a power system. Six types of commonly encountered power quality disturbances are considered for training and testing the proposed classifier. The proposed classifier has been tested on electric signals that contain single disturbance or several disturbances at a time. Experimental results indicate that the proposed PQ disturbance classification algorithm can achieve a high accuracy of more than 97% in various complex testing cases.
Digital Moiré based transient interferometry and its application in optical surface measurement
NASA Astrophysics Data System (ADS)
Hao, Qun; Tan, Yifeng; Wang, Shaopu; Hu, Yao
2017-10-01
Digital Moiré based transient interferometry (DMTI) is an effective non-contact testing methods for optical surfaces. In DMTI system, only one frame of real interferogram is experimentally captured for the transient measurement of the surface under test (SUT). When combined with partial compensation interferometry (PCI), DMTI is especially appropriate for the measurement of aspheres with large apertures, large asphericity or different surface parameters. Residual wavefront is allowed in PCI, so the same partial compensator can be applied to the detection of multiple SUTs. Excessive residual wavefront aberration results in spectrum aliasing, and the dynamic range of DMTI is limited. In order to solve this problem, a method based on wavelet transform is proposed to extract phase from the fringe pattern with spectrum aliasing. Results of simulation demonstrate the validity of this method. The dynamic range of Digital Moiré technology is effectively expanded, which makes DMTI prospective in surface figure error measurement for intelligent fabrication of aspheric surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helsen, Jan; Guo, Yi; Keller, Jonathan
This work investigates the behaviour of the high speed stage of a wind turbine gearbox during a transient grid loss event. Dynamometer testing on a full scale wind turbine nacelle is used. A combination of external and internal gearbox measurements is analysed. Particular focus is on the characterization of the high speed shaft tapered roller bearing slip behaviour. This slipping behaviour is linked to dynamic events by many researchers and described as potential bearing failure initiator. However only limited full scale dynamic testing is documented. Strain gauge bridges in grooves along the circumference of the outer ring are used tomore » characterize the bearing behaviour in detail. It is shown that during the transient event the high speed shaft experiences a combined torsional and bending deformation. These unfavourable loading conditions induce roller slip in the bearings during the torque reversals indicating the potential of the applied load case to go beyond the preload of the tapered roller bearing.« less
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2000-01-01
A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10-by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor staff and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zachary M. Prince; Jean C. Ragusa; Yaqi Wang
Because of the recent interest in reactor transient modeling and the restart of the Transient Reactor (TREAT) Facility, there has been a need for more efficient, robust methods in computation frameworks. This is the impetus of implementing the Improved Quasi-Static method (IQS) in the RATTLESNAKE/MOOSE framework. IQS has implemented with CFEM diffusion by factorizing flux into time-dependent amplitude and spacial- and weakly time-dependent shape. The shape evaluation is very similar to a flux diffusion solve and is computed at large (macro) time steps. While the amplitude evaluation is a PRKE solve where the parameters are dependent on the shape andmore » is computed at small (micro) time steps. IQS has been tested with a custom one-dimensional example and the TWIGL ramp benchmark. These examples prove it to be a viable and effective method for highly transient cases. More complex cases are intended to be applied to further test the method and its implementation.« less
TREAT Modeling and Simulation Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark David
2015-09-01
This report summarizes a four-phase process used to describe the strategy in developing modeling and simulation software for the Transient Reactor Test Facility. The four phases of this research and development task are identified as (1) full core transient calculations with feedback, (2) experiment modeling, (3) full core plus experiment simulation and (4) quality assurance. The document describes the four phases, the relationship between these research phases, and anticipated needs within each phase.
Reilly, Joanne M; Dharmalingam, Backialakshmi; Marsh, Stephen J; Thompson, Victoria; Goebel, Andreas; Brown, David A
2016-03-01
Complex regional pain syndrome (CRPS) is thought to have an auto-immune component. One such target recently proposed from the effects of auto-immune IgGs on Ca(2+) transients in cardiac myocytes and cell lines is the α1-adrenoceptor. We have tested whether such IgGs exerted comparable effects on nociceptive sensory neurons isolated from rat dorsal root ganglia. Depolarisation-induced [Ca(2+)]i transients were generated by applying 30 mM KCl for 2 min and monitored by Fura-2 fluorescence imaging. No IgGs tested (including 3 from CRPS patients) had any significant effect on these [Ca(2+)]i transients. However, IgG from one CRPS patient consistently and significantly reduced the K(+)-induced response of cells that had been pre-incubated for 24h with a mixture of inflammatory mediators (1 μM histamine, 5-hydroxytryptamine, bradykinin and PGE2). Since this pre-incubation also appeared to induce a comparable inhibitory response to the α1-agonist phenylephrine, this is compatible with the α1-adrenoceptor as a target for CRPS auto-immunity. A mechanism whereby this might enhance pain is suggested. Copyright © 2015. Published by Elsevier Inc.
Prasad, Peeyush; Wijnholds, Stefan J
2013-06-13
The Amsterdam-ASTRON Radio Transient Facility And Analysis Centre (AARTFAAC) project aims to implement an all-sky monitor (ASM), using the low-frequency array (LOFAR) telescope. It will enable real-time, 24 × 7 monitoring for low-frequency radio transients over most of the sky locally visible to the LOFAR at time scales ranging from seconds to several days, and rapid triggering of follow-up observations with the full LOFAR on detection of potential transient candidates. These requirements pose several implementation challenges: imaging of an all-sky field of view, low latencies of processing, continuous availability and autonomous operation of the ASM. The first of these has already resulted in the correlator for the ASM being the largest in the world in terms of the number of input data streams. We have carried out test observations using existing LOFAR infrastructure, in order to quantify and constrain crucial instrumental design criteria for the ASM. In this study, we present an overview of the AARTFAAC data-processing pipeline and illustrate some of the aforementioned challenges by showing all-sky images obtained from one of the test observations. These results provide quantitative estimates of the capabilities of the instrument.
Vázquez-León, Priscila; Martínez-Mota, Lucía; Quevedo-Corona, Lucía; Miranda-Páez, Abraham
2017-09-01
Stress can be experienced with or without adverse effects, of which anxiety and depression are two of the most important due to the frequent comorbidity with alcohol abuse in humans. Historically, stress has been considered a cause of drug use, particularly alcohol abuse due to its anxiolytic effects. In the present work we exposed male Wistar rats to two different stress conditions: single housing (social isolation, SI), and chronic mild stress (CMS). We compared both stressed groups to group-housed rats and rats without CMS (GH) to allow the determination of a clear behavioral response profile related to their respective endocrine stress response and alcohol intake pattern. We found that SI and CMS, to a greater extent, induced short-lasting increased sucrose consumption, a transient increase in serum corticosterone level, high latency/immobility, and low burying behavior in the defensive burying behavior (DBB) test, and a transient increase in alcohol intake. Thus, the main conclusion was that stress caused by both SI and CMS induced immobility in the DBB test and, subsequently, induced a transient increased voluntary ethanol intake in Wistar rats with a free-choice home-cage drinking paradigm. Copyright © 2017 Elsevier Inc. All rights reserved.
Machine Learning-based Transient Brokers for Real-time Classification of the LSST Alert Stream
NASA Astrophysics Data System (ADS)
Narayan, Gautham; Zaidi, Tayeb; Soraisam, Monika; ANTARES Collaboration
2018-01-01
The number of transient events discovered by wide-field time-domain surveys already far outstrips the combined followup resources of the astronomical community. This number will only increase as we progress towards the commissioning of the Large Synoptic Survey Telescope (LSST), breaking the community's current followup paradigm. Transient brokers - software to sift through, characterize, annotate and prioritize events for followup - will be a critical tool for managing alert streams in the LSST era. Developing the algorithms that underlie the brokers, and obtaining simulated LSST-like datasets prior to LSST commissioning, to train and test these algorithms are formidable, though not insurmountable challenges. The Arizona-NOAO Temporal Analysis and Response to Events System (ANTARES) is a joint project of the National Optical Astronomy Observatory and the Department of Computer Science at the University of Arizona. We have been developing completely automated methods to characterize and classify variable and transient events from their multiband optical photometry. We describe the hierarchical ensemble machine learning algorithm we are developing, and test its performance on sparse, unevenly sampled, heteroskedastic data from various existing observational campaigns, as well as our progress towards incorporating these into a real-time event broker working on live alert streams from time-domain surveys.
NASA Astrophysics Data System (ADS)
Kawamura, Tatsuo; Lee, Bok-Hee; Nishimura, Takahiko; Ishii, Masaru
1994-04-01
This paper deals with the experimental investigations of particle-initiated breakdown of SF6 gas stressed by the oscillating transient overvoltage and non-oscillating impulse voltages. The experiments are carried out by using hemisphere-to-plane electrodes with a needle-shaped protrusion in the gas pressure range of 0.05 to 0.3 MPa. The temporal growth of the prebreakdown process is measured by a current shunt and a photomultiplier. The electrical breakdown is initiated by the streamer corona in the vicinity of a needle-shaped protrusion and the flashover of test gap is substantially influenced by the local field enhancement due to the space charge formed by the preceding streamer corona. The dependence of the voltage-time characteristics on the polarity of test voltage is appreciable, and the minimum breakdown voltage under the damped oscillating transient overvoltage is approximately the same as that under the standard lightning impulse voltage. In presence of positive polarity, the dielectric strength of SF6 gas stressed by the oscillating transient overvoltage is particularly sensitive to the local field perturbed by a sharp conducting particle. The formative time lag from the first streamer corona to breakdown is longer in negative polarity than in positive polarity and the field stabilization of space charge is more pronounced in negative polarity.
Testing Our Fundamental Assumptions
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-06-01
Science is all about testing the things we take for granted including some of the most fundamental aspects of how we understand our universe. Is the speed of light in a vacuum the same for all photons regardless of their energy? Is the rest mass of a photon actually zero? A series of recent studies explore the possibility of using transient astrophysical sources for tests!Explaining Different Arrival TimesArtists illustration of a gamma-ray burst, another extragalactic transient, in a star-forming region. [NASA/Swift/Mary Pat Hrybyk-Keith and John Jones]Suppose you observe a distant transient astrophysical source like a gamma-ray burst, or a flare from an active nucleus and two photons of different energies arrive at your telescope at different times. This difference in arrival times could be due to several different factors, depending on how deeply you want to question some of our fundamental assumptions about physics:Intrinsic delayThe photons may simply have been emitted at two different times by the astrophysical source.Delay due to Lorentz invariance violationPerhaps the assumption that all massless particles (even two photons with different energies) move at the exact same velocity in a vacuum is incorrect.Special-relativistic delayMaybe there is a universal speed for massless particles, but the assumption that photons have zero rest mass is wrong. This, too, would cause photon velocities to be energy-dependent.Delay due to gravitational potentialPerhaps our understanding of the gravitational potential that the photons experience as they travel is incorrect, also causing different flight times for photons of different energies. This would mean that Einsteins equivalence principle, a fundamental tenet of general relativity (GR), is incorrect.If we now turn this problem around, then by measuring the arrival time delay between photons of different energies from various astrophysical sources the further away, the better we can provide constraints on these fundamental assumptions.A recent focus set in the Astrophysical Journal Letters, titled Focus on Exploring Fundamental Physics with Extragalactic Transients, consists of multiple published studies doing just that.Testing General RelativitySeveral of the articles focus on the 4th point above. By assuming that the delay in photon arrival times is only due to the gravitational potential of the Milky Way, these studies set constraints on the deviation of our galaxys gravitational potential from what GR would predict. The study by He Gao et al. uses the different photon arrival times from gamma-ray bursts to set constraints at eVGeV energies, and the study by Jun-Jie Wei et al. complements this by setting constraints at keV-TeV energies using photons from high-energy blazar emission.Photons or neutrinos from different extragalactic transients each set different upper limits on delta gamma, the post-Newtonian parameter, vs. particle energy or frequency. This is a test of Einsteins equivalence principle: if the principle is correct, delta gamma would be exactly zero, meaning that photons of different energies move at the same velocity through a vacuum. [Tingay Kaplan 2016]S.J. Tingay D.L. Kaplan make the case that measuring the time delay of photons from fast radio bursts (FRBs; transient radio pulses that last only a few milliseconds) will provide even tighter constraints if we are able to accurately determine distances to these FRBs.And Adi Musser argues that the large-scale structure of the universe plays an even greater role than the Milky Way gravitational potential, allowing for even stricter testing of Einsteins equivalence principle.The ever-narrower constraints from these studies all support GR as a correct set of rules through which to interpret our universe.Other Tests of Fundamental PhysicsIn addition to the above tests, Xue-Feng Wu et al. show that FRBs can be used to provide severe constraints on the rest mass of the photon, and S. Croft et al. even touches on what we might learn from transients using multi-messenger astrophysics (astrophysics involving observations of particles besides photons, such as neutrinos or gravitational waves).In general, extragalactic transients provide a rich prospect for better understanding the laws that govern the universe. Check out the entire focus set below to learn more about the tests of fundamental physics that can be done with observations of extragalactic transients!CitationFocus Set: Focus on Exploring Fundamental Physics With Extragalactic TransientsHe Gao et al. 2015 ApJ 810 121. doi:10.1088/0004-637X/810/2/121Jun-Jie Wei et al. 2016 ApJ 818 L2. doi:10.3847/2041-8205/818/1/L2S. Croft et al. 2016 ApJ 820 L24. doi:10.3847/2041-8205/820/2/L24S. J. Tingay and D. L. Kaplan 2016 ApJ 820 L31. doi:10.3847/2041-8205/820/2/L31Adi Nusser 2016 ApJ 821 L2. doi:10.3847/2041-8205/821/1/L2Xue-Feng Wu et al. 2016 ApJ 822 L15. doi:10.3847/2041-8205/822/1/L15
NASA Astrophysics Data System (ADS)
Ahmed, A. Soueid; Jardani, A.; Revil, A.; Dupont, J. P.
2016-03-01
Transient hydraulic tomography is used to image the heterogeneous hydraulic conductivity and specific storage fields of shallow aquifers using time series of hydraulic head data. Such ill-posed and non-unique inverse problem can be regularized using some spatial geostatistical characteristic of the two fields. In addition to hydraulic heads changes, the flow of water, during pumping tests, generates an electrical field of electrokinetic nature. These electrical field fluctuations can be passively recorded at the ground surface using a network of non-polarizing electrodes connected to a high impedance (> 10 MOhm) and sensitive (0.1 mV) voltmeter, a method known in geophysics as the self-potential method. We perform a joint inversion of the self-potential and hydraulic head data to image the hydraulic conductivity and specific storage fields. We work on a 3D synthetic confined aquifer and we use the adjoint state method to compute the sensitivities of the hydraulic parameters to the hydraulic head and self-potential data in both steady-state and transient conditions. The inverse problem is solved using the geostatistical quasi-linear algorithm framework of Kitanidis. When the number of piezometers is small, the record of the transient self-potential signals provides useful information to characterize the hydraulic conductivity and specific storage fields. These results show that the self-potential method reveals the heterogeneities of some areas of the aquifer, which could not been captured by the tomography based on the hydraulic heads alone. In our analysis, the improvement on the hydraulic conductivity and specific storage estimations were based on perfect knowledge of electrical resistivity field. This implies that electrical resistivity will need to be jointly inverted with the hydraulic parameters in future studies and the impact of its uncertainty assessed with respect to the final tomograms of the hydraulic parameters.
Lifetime Reliability Prediction of Ceramic Structures Under Transient Thermomechanical Loads
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Jadaan, Osama J.; Gyekenyesi, John P.
2005-01-01
An analytical methodology is developed to predict the probability of survival (reliability) of ceramic components subjected to harsh thermomechanical loads that can vary with time (transient reliability analysis). This capability enables more accurate prediction of ceramic component integrity against fracture in situations such as turbine startup and shutdown, operational vibrations, atmospheric reentry, or other rapid heating or cooling situations (thermal shock). The transient reliability analysis methodology developed herein incorporates the following features: fast-fracture transient analysis (reliability analysis without slow crack growth, SCG); transient analysis with SCG (reliability analysis with time-dependent damage due to SCG); a computationally efficient algorithm to compute the reliability for components subjected to repeated transient loading (block loading); cyclic fatigue modeling using a combined SCG and Walker fatigue law; proof testing for transient loads; and Weibull and fatigue parameters that are allowed to vary with temperature or time. Component-to-component variation in strength (stochastic strength response) is accounted for with the Weibull distribution, and either the principle of independent action or the Batdorf theory is used to predict the effect of multiaxial stresses on reliability. The reliability analysis can be performed either as a function of the component surface (for surface-distributed flaws) or component volume (for volume-distributed flaws). The transient reliability analysis capability has been added to the NASA CARES/ Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code. CARES/Life was also updated to interface with commercially available finite element analysis software, such as ANSYS, when used to model the effects of transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.
Numerical Simulation and Analyses of the Loss of Feedwater Transient at the Unit 4 of Kola NPP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevanovic, Vladimir D.; Stosic, Zoran V.; Kiera, Michael
2002-07-01
A three-dimensional numerical simulation of the loss-of-feed water transient at the horizontal steam generator of the Kola nuclear power plant is performed. Presented numerical results show transient change of integral steam generator parameters, such as steam generation rate, water mass inventory, outlet reactor coolant temperature, as well as detailed distribution of shell side thermal-hydraulic parameters: swell and collapsed levels, void fraction distributions, mass flux vectors, etc. Numerical results are compared with measurements at the Kola NPP. The agreement is satisfactory, while differences are close to or below the measurement uncertainties. Obtained numerical results are the first ones that give completemore » insight into the three-dimensional and transient horizontal steam generator thermal-hydraulics. Also, the presented results serve as benchmark tests for the assessment and further improvement of one-dimensional models of horizontal steam generator built with safety codes. (authors)« less
Agrobacterium-mediated transient MaFT expression in mulberry (Morus alba L.) leaves.
Wu, Su-Li; Yang, Xiao-Bing; Liu, Li-Qun; Jiang, Tao; Wu, Hai; Su, Chao; Qian, Yong-Hua; Jiao, Feng
2015-01-01
To optimize Agrobacterium-mediated transient transformation assay in mulberry (Morus alba L.), various infiltration methods, Agrobacterium tumefaciens (A. tumefaciens) strains, and bacterial concentrations were tested in mulberry seedlings. Compared with LBA4404, GV3101 harboring pBE2133 plasmids presented stronger GUS signals at 3 days post infiltration using syringe. Recombinant plasmids pBE2133:GFP and pBE2133:GFP:MaFT were successfully constructed. Transient expression of MaFT:GFP protein was found in leaves, petiole (cross section), and shoot apical meristem (SAM) of mulberry according to the GFP signal. Moreover, MaFT:GFP mRNA was also detected in leaves and SAM via RT-PCR and qRT-PCR. An efficient transient transformation system could be achieved in mulberry seedlings by syringe using A. tumefaciens GV3101 at the OD600 of 0.5. The movement of MaFT expression from leaves to SAM might trigger the precocious flowering of mulberry.
Intense transient electric field sensor based on the electro-optic effect of LiNbO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qing, E-mail: yangqing@cqu.edu.cn; Sun, Shangpeng; Han, Rui
2015-10-15
Intense transient electric field measurements are widely applied in various research areas. An optical intense E-field sensor for time-domain measurements, based on the electro-optic effect of lithium niobate, has been studied in detail. Principles and key issues in the design of the sensor are presented. The sensor is insulated, small in size (65 mm × 15 mm × 15 mm), and suitable for high-intensity (<801 kV/m) electric field measurements over a wide frequency band (10 Hz–10 MHz). The input/output characteristics of the sensor were obtained and the sensor calibrated. Finally, an application using this sensor in testing laboratory lightning impulsesmore » and in measuring transient electric fields during switch-on of a disconnector confirmed that the sensor is expected to find widespread use in transient intense electric field measurement applications.« less
Particle bombardment - mediated gene transfer and GFP transient expression in Seteria viridis.
Mookkan, Muruganantham
2018-04-03
Setaria viridis is one of the most important model grasses in studying monocot plant biology. Transient gene expression study is a very important tool in plant biotechnology, functional genomics, and CRISPR-Cas9 genome editing technology via particle bombardment. In this study, a particle bombardment-mediated protocol was developed to introduce DNA into Setaria viridis in vitro leaf explants. In addition, physical and biological parameters, such as helium pressure, distance from stopping screen to the target tissues, DNA concentration, and number of bombardments, were tested and optimized. Optimum concentration of transient GFP expression was achieved using 1.5 ug plasmid DNA with 0.6 mm gold particles and 6 cm bombardment distance, using 1,100 psi. Doubling the bombardment instances provides the maximum number of foci of transient GFP expression. This simple protocol will be helpful for genomics studies in the S. viridis monocot model.
NASA Astrophysics Data System (ADS)
Gladden, H. J.; Proctor, M. P.
A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...
2015-11-12
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
Intense transient electric field sensor based on the electro-optic effect of LiNbO3
NASA Astrophysics Data System (ADS)
Yang, Qing; Sun, Shangpeng; Han, Rui; Sima, Wenxia; Liu, Tong
2015-10-01
Intense transient electric field measurements are widely applied in various research areas. An optical intense E-field sensor for time-domain measurements, based on the electro-optic effect of lithium niobate, has been studied in detail. Principles and key issues in the design of the sensor are presented. The sensor is insulated, small in size (65 mm × 15 mm × 15 mm), and suitable for high-intensity (<801 kV/m) electric field measurements over a wide frequency band (10 Hz-10 MHz). The input/output characteristics of the sensor were obtained and the sensor calibrated. Finally, an application using this sensor in testing laboratory lightning impulses and in measuring transient electric fields during switch-on of a disconnector confirmed that the sensor is expected to find widespread use in transient intense electric field measurement applications.
NASA Technical Reports Server (NTRS)
Gladden, H. J.; Proctor, M. P.
1985-01-01
A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.
Transient Stability of the US Western Interconnection with High Wind and Solar Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Kara; Miller, Nicholas W.; Shao, Miaolei
The addition of large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. This paper reports the results of a study that investigated the transient stability of the WI with high penetrations of wind and solar generation. The mainmore » goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less
Global Precipitation Measurement (GPM) Spacecraft Lithium Ion Battery Micro-Cycling Investigation
NASA Technical Reports Server (NTRS)
Dakermanji, George; Lee, Leonine; Spitzer, Thomas
2016-01-01
The Global Precipitation Measurement (GPM) spacecraft was jointly developed by NASA and JAXA. It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The power system is a Direct Energy Transfer (DET) system designed to support 1950 watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s by 84p batteries operated in parallel as a single battery. During instrument integration with the spacecraft, large current transients were observed in the battery. Investigation into the matter traced the cause to the Dual-Frequency Precipitation Radar (DPR) phased array radar which generates cyclical high rate current transients on the spacecraft power bus. The power system electronics interaction with these transients resulted in the current transients in the battery. An accelerated test program was developed to bound the effect, and to assess the impact to the mission.
NASA Technical Reports Server (NTRS)
Steele, W. G.; Molder, K. J.; Hudson, S. T.; Vadasy, K. V.; Rieder, P. T.; Giel, T.
2005-01-01
NASA and the U.S. Air Force are working on a joint project to develop a new hydrogen-fueled, full-flow, staged combustion rocket engine. The initial testing and modeling work for the Integrated Powerhead Demonstrator (IPD) project is being performed by NASA Marshall and Stennis Space Centers. A key factor in the testing of this engine is the ability to predict and measure the transient fluid flow during engine start and shutdown phases of operation. A model built by NASA Marshall in the ROCket Engine Transient Simulation (ROCETS) program is used to predict transient engine fluid flows. The model is initially calibrated to data from previous tests on the Stennis E1 test stand. The model is then used to predict the next run. Data from this run can then be used to recalibrate the model providing a tool to guide the test program in incremental steps to reduce the risk to the prototype engine. In this paper, they define this type of model as a calibrated model. This paper proposes a method to estimate the uncertainty of a model calibrated to a set of experimental test data. The method is similar to that used in the calibration of experiment instrumentation. For the IPD example used in this paper, the model uncertainty is determined for both LOX and LH flow rates using previous data. The successful use of this model is then demonstrated to predict another similar test run within the uncertainty bounds. The paper summarizes the uncertainty methodology when a model is continually recalibrated with new test data. The methodology is general and can be applied to other calibrated models.
Identification of noise artifacts in searches for long-duration gravitational-wave transients
NASA Astrophysics Data System (ADS)
Prestegard, Tanner; Thrane, Eric; Christensen, Nelson L.; Coughlin, Michael W.; Hubbert, Ben; Kandhasamy, Shivaraj; MacAyeal, Evan; Mandic, Vuk
2012-05-01
We present an algorithm for the identification of transient noise artifacts (glitches) in cross-correlation searches for long gravitational-wave (GW) transients lasting seconds to weeks. The algorithm utilizes the auto-power in each detector as a discriminator between well-behaved stationary noise (possibly including a GW signal) and non-stationary noise transients. We test the algorithm with both Monte Carlo noise and time-shifted data from the LIGO S5 science run and find that it removes a significant fraction of glitches while keeping the vast majority (99.6%) of the data. We show that this cleaned data can be used to observe GW signals at a significantly lower amplitude than can otherwise be achieved. Using an accretion disk instability signal model, we estimate that the algorithm is accidentally triggered at a rate of less than 10-5% by realistic signals, and less than 3% even for exceptionally loud signals. We conclude that the algorithm is a safe and effective method for cleaning the cross-correlation data used in searches for long GW transients.
NASA Astrophysics Data System (ADS)
Sato, Chie; Furube, Akihiro; Katoh, Ryuzi; Nonaka, Hidehiko; Inoue, Hiroyuki
2008-11-01
We have tested the possibility of identifying illegal drugs by means of nanosecond transient absorption spectroscopy with a 10-ns UV-laser pulse for the excitation light and visible-to-near-IR light for the probe light. We measured the transient absorption spectra of acetonitrile solutions of d-methamphetamine, dl-3,4-methylenedioxymethamphetamine hydrochloride (MDMA), and dl-N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine hydrochloride (MBDB), which are illegal drugs widely consumed in Japan. Transient absorption signals of these drugs were observed between 400 and 950 nm, a range in which they are transparent in the ground state. By analyzing the spectra in terms of exponential and Gaussian functions, we could identify the drugs and discriminate them from chemical substances having similar structures. We propose that transient absorption spectroscopy will be a useful, non-destructive method of inspecting for illegal drugs, especially when they are dissolved in liquids. Such a method may even be used for drugs packed in opaque materials if it is further extended to utilize intense femtosecond laser pulses.
SPIRITS: SPitzer InfraRed Intensive Transients Survey
NASA Astrophysics Data System (ADS)
Kasliwal, Mansi; Lau, Ryan; Cao, Yi; Masci, Frank; Helou, George; Williams, Robert; Bally, John; Bond, Howard; Whitelock, Patricia; Cody, Ann Marie; Gehrz, Robert; Jencson, Jacob; Tinyanont, Samaporn; Smith, Nathan; Surace, Jason; Armus, Lee; Cantiello, Matteo; Langer, Norbert; Levesque, Emily; Mohamed, Shazrene; Ofek, Eran; Parthasarathy, Mudumba; van Dyk, Schuyler; Boyer, Martha; Phillips, Mark; Hsiao, Eric; Morrell, Nidia; Perley, Dan; Gonzalez, Consuelo; Contreras, Carlos; Jones, Olivia; Ressler, Michael; Adams, Scott; Moore, Anna; Cook, David; Fox, Ori; Johansson, Joel; Khan, Rubab; Monson, Andy
2016-08-01
Spitzer is pioneering a systematic exploration of the dynamic infrared sky. Our SPitzer InfraRed Intensive Transients Survey (SPIRITS) has already discovered 147 explosive transients and 1948 eruptive variables. Of these 147 infrared transients, 35 are so red that they are devoid of optical counterparts and we call them SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). The nature of SPRITEs is unknown and progress on deciphering the explosion physics depends on mid-IR spectroscopy. Multiple physical origins have been proposed including stellar merger, birth of a massive binary, electron capture supernova and stellar black-hole formation. Hence, we propose a modest continuation of SPIRITS, focusing on discovering and monitoring SPRITEs, in preparation for follow-up with the James Webb Space Telescope (JWST). As the SPRITEs evolve and cool, the bulk of the emission shifts to longer wavelengths. MIRI aboard JWST will be the only available platform in the near future capable of characterizing SPRITEs out to 28um. Specifically, the low resolution spectrometer would determine dust mass, grain chemistry, ice abundance and energetics to disentangle the proposed origins. The re-focused SPIRITS program consists of continued Spitzer monitoring of only those 104 luminous galaxies that are known SPRITE hosts or are most likely to host new SPRITEa. Scaling from the SPIRITS discovery rate, we estimate finding 22 new SPRITEs and 6 new supernovae over the next two years. The SPIRITS team remains committed to extensive ground-based follow-up. The Spitzer observations proposed here are essential for determining the final fates of active SPRITEs as well as bridging the time lag between the current SPIRITS survey and JWST launch.
Fermi GBM Observations of LIGO Gravitational-Wave Event Gw150914
NASA Technical Reports Server (NTRS)
Connaughton, V.; Burns, E.; Goldstein, A.; Blackburn, L.; Briggs, M. S.; Zhang, B.-B.; Camp, J.; Christensen, N.; Hui, C. M.; Jenke, P.;
2016-01-01
With an instantaneous view of 70% of the sky, the Fermi Gamma-ray Burst Monitor (GBM) is an excellent partner in the search for electromagnetic counterparts to gravitational-wave (GW) events. GBM observations at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914 reveal the presence of a weak transient above 50 keV, 0.4 s after the GW event, with a false-alarm probability of 0.0022 (2.9(sigma)). This weak transient lasting 1 s was not detected by any other instrument and does not appear to be connected with other previously known astrophysical, solar, terrestrial, or magnetospheric activity. Its localization is ill-constrained but consistent with the direction of GW150914. The duration and spectrum of the transient event are consistent with a weak short gamma-ray burst (GRB) arriving at a large angle to the direction in which Fermi was pointing where the GBM detector response is not optimal. If the GBM transient is associated with GW150914, then this electromagnetic signal from a stellar mass black hole binary merger is unexpected. We calculate a luminosity in hard X-ray emission between 1 keV and 10 MeV of 1.8(sup +1.5, sub -1.0) x 10(exp 49) erg/s. Future joint observations of GW events by LIGO/Virgo and Fermi GBM could reveal whether the weak transient reported here is a plausible counterpart to GW150914 or a chance coincidence, and will further probe the connection between compact binary mergers and short GRBs.
SPIRITS: SPitzer InfraRed Intensive Transients Survey
NASA Astrophysics Data System (ADS)
Kasliwal, Mansi; Jencson, Jacob; Lau, Ryan; Masci, Frank; Helou, George; Williams, Robert; Bally, John; Bond, Howard; Whitelock, Patricia; Cody, Ann Marie; Gehrz, Robert; Tinyanont, Samaporn; Smith, Nathan; Surace, Jason; Armus, Lee; Cantiello, Matteo; Langer, Norbert; Levesque, Emily; Mohamed, Shazrene; Ofek, Eran; Parthasarathy, Mudumba; van Dyk, Schuyler; Boyer, Martha; Phillips, Mark; Hsiao, Eric; Morrell, Nidia; Perley, Dan; Gonzalez, Consuelo; Contreras, Carlos; Jones, Olivia; Ressler, Michael; Adams, Scott; Moore, Anna; Cook, David; Fox, Ori; Johansson, Joel; Khan, Rubab; Monson, Andrew; Hankins, Matthew; Goldman, Steven; Jacob, Jencson
2018-05-01
Spitzer is pioneering a systematic exploration of the dynamic infrared sky. Our SPitzer InfraRed Intensive Transients Survey (SPIRITS) has already discovered 78 explosive transients and 2457 eruptive variables. Of these 78 infrared transients, 60 are so red that they are devoid of optical counterparts and we call them SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). The nature of SPRITEs is unknown and progress on deciphering the explosion physics depends on mid-IR spectroscopy. Multiple physical origins have been proposed including stellar merger, birth of a massive binary, electron capture supernova and stellar black hole formation. Hence, we propose a modest continuation of SPIRITS, focusing on discovering and monitoring SPRITEs, in preparation for follow-up with the James Webb Space Telescope (JWST). As the SPRITEs evolve and cool, the bulk of the emission shifts to longer wavelengths. MIRI aboard JWST will be the only available platform in the near future capable of characterizing SPRITEs out to 28 um. Specifically, the low resolution spectrometer would determine dust mass, grain chemistry, ice abundance and energetics to disentangle the proposed origins. The re-focused SPIRITS program consists of continued Spitzer monitoring of those 106 luminous galaxies that are known SPRITE hosts or are most likely to host new SPRITEs. Scaling from the SPIRITS discovery rate, we estimate finding 10 new SPRITEs and 2-3 new supernovae in Cycle 14. The SPIRITS team remains committed to extensive ground-based follow-up. The Spitzer observations proposed here are essential for determining the final fates of active SPRITEs as well as bridging the time lag between the current SPIRITS survey and JWST launch.
A Compendium of Recent Optocoupler Radiation Test Data
NASA Technical Reports Server (NTRS)
Label, K. A.; Kniffin, S. D.; Reed, R. A.; Kim, H. S.; Wert, J. L.; Oberg, D. L.; Normand, E.; Johnston, A. H.; Lum, G. K.; Koga, R.;
2000-01-01
We present a compendium of optocoupler radiation test data including neutron, proton and heavy ion Displacement Damage (DD), Single Event Transients (SET) and Total Ionizing Dose (TID). Proton data includes ionizing and non-ionizing damage mechanisms.
Structural Integrity of an Electron Beam Melted Titanium Alloy
Lancaster, Robert; Davies, Gareth; Illsley, Henry; Jeffs, Spencer; Baxter, Gavin
2016-01-01
Advanced manufacturing encompasses the wide range of processes that consist of “3D printing” of metallic materials. One such method is Electron Beam Melting (EBM), a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP) test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response. PMID:28773590
Uysal, İsmail Önder; Kaya, Ali; Güven, Ahmet Sami; Altuntaş, Emine Elif; Müderris, Suphi
2011-06-01
The aim of this study was to investigate cochlear involvement in child patients with Crimean-Congo hemorrhagic fever (CCHF) disease. Twenty-eight CCHF disease patients (56 ears) and 26 sex- and age-matched healthy control subjects (52 ears) were included in the study. Pure-tone audiometry at frequencies 0.25, 0.5, 1, 2, 4, and 6 kHz, immittance measures including tympanometry and acoustic reflex testing, and transient evoked otoacoustic emission (TEOAE) testing were performed in the patients and controls. The proportion with a result of 'fail' for the TEOAE test in the CCHF patients was not statistically significant from the control group (p>0.05). CCHF disease does not impair cochlear function in children. The clinical course of CCHF among children seems to be milder than in adults. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Large transient fault current test of an electrical roll ring
NASA Technical Reports Server (NTRS)
Yenni, Edward J.; Birchenough, Arthur G.
1992-01-01
The space station uses precision rotary gimbals to provide for sun tracking of its photoelectric arrays. Electrical power, command signals and data are transferred across the gimbals by roll rings. Roll rings have been shown to be capable of highly efficient electrical transmission and long life, through tests conducted at the NASA Lewis Research Center and Honeywell's Satellite and Space Systems Division in Phoenix, AZ. Large potential fault currents inherent to the power system's DC distribution architecture, have brought about the need to evaluate the effects of large transient fault currents on roll rings. A test recently conducted at Lewis subjected a roll ring to a simulated worst case space station electrical fault. The system model used to obtain the fault profile is described, along with details of the reduced order circuit that was used to simulate the fault. Test results comparing roll ring performance before and after the fault are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCulloch, R.W.; MacPherson, R.E.
1983-03-01
The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through cladmore » melting at 1370/sup 0/C.« less
On-road heavy-duty diesel particulate matter emissions modeled using chassis dynamometer data.
Kear, Tom; Niemeier, D A
2006-12-15
This study presents a model, derived from chassis dynamometer test data, for factors (operational correction factors, or OCFs) that correct (g/mi) heavy-duty diesel particle emission rates measured on standard test cycles for real-world conditions. Using a random effects mixed regression model with data from 531 tests of 34 heavy-duty vehicles from the Coordinating Research Council's E55/E59 research project, we specify a model with covariates that characterize high power transient driving, time spent idling, and average speed. Gram per mile particle emissions rates were negatively correlated with high power transient driving, average speed, and time idling. The new model is capable of predicting relative changes in g/mi on-road heavy-duty diesel particle emission rates for real-world driving conditions that are not reflected in the driving cycles used to test heavy-duty vehicles.
Benchmarking of Improved DPAC Transient Deflagration Analysis Code
Laurinat, James E.; Hensel, Steve J.
2017-09-27
The deflagration pressure analysis code (DPAC) has been upgraded for use in modeling hydrogen deflagration transients. The upgraded code is benchmarked using data from vented hydrogen deflagration tests conducted at the HYDRO-SC Test Facility at the University of Pisa. DPAC originally was written to calculate peak pressures for deflagrations in radioactive waste storage tanks and process facilities at the Savannah River Site. Upgrades include the addition of a laminar flame speed correlation for hydrogen deflagrations and a mechanistic model for turbulent flame propagation, incorporation of inertial effects during venting, and inclusion of the effect of water vapor condensation on vesselmore » walls. In addition, DPAC has been coupled with chemical equilibrium with applications (CEA), a NASA combustion chemistry code. The deflagration tests are modeled as end-to-end deflagrations. As a result, the improved DPAC code successfully predicts both the peak pressures during the deflagration tests and the times at which the pressure peaks.« less
Johnson, Bill J.; Briggs, Robert E.; Ridpath, Julia F.; Saliki, Jeremiah T.; Confer, Anthony W.; Burge, Lurinda J.; Step, Douglas L.; Walker, Derek A.; Payton, Mark E.
2006-01-01
Abstract Calves persistently infected (PI) with Bovine viral diarrhea virus (BVDV) represent an important source of infection for susceptible cattle. We evaluated vaccine efficacy using calves PI with noncytopathic BVDV2a for the challenge and compared tests to detect BVDV in acutely or transiently infected calves versus PI calves. Vaccination with 2 doses of modified live virus vaccine containing BVDV1a and BVDV2a protected the calves exposed to the PI calves: neither viremia nor nasal shedding occurred. An immunohistochemistry test on formalin-fixed ear notches and an antigen-capture enzyme-linked immunosorbent assay on fresh notches in phosphate-buffered saline did not detect BVDV antigen in any of the acutely or transiently infected calves, whereas both tests had positive results in all the PI calves. PMID:16639944