Should future wind speed changes be taken into account in wind farm development?
NASA Astrophysics Data System (ADS)
Devis, Annemarie; Van Lipzig, Nicole P. M.; Demuzere, Matthias
2018-06-01
Accurate wind resource assessments are crucial in the development of wind farm projects. However, it is common practice to estimate the wind yield over the next 20 years from short-term measurements and reanalysis data of the past 20 years, even though wind climatology is expected to change under the future climate. The present work examines future changes in wind power output over Europe using an ensemble of ESMs. The power output is calculated using the entire wind speed PDF and a non-constant power conversion coefficient. Based on this method, the ESM ensemble projects changes in near-future power outputs with a spatially varying magnitude between ‑12% and 8%. The most extreme changes occur over the Mediterranean region. For the first time, the sensitivity of these future change in power output to the type of wind turbine is also investigated. The analysis reveals that the projected wind power changes may vary in up to half of their magnitude, depending on the type of turbine and region of interest. As such, we recommend that wind industries fully account for projected near-future changes in wind power output by taking them into account as a well-defined loss/gain and uncertainty when estimating the yield of a future wind farm.
Outlooks for Wind Power in the United States: Drivers and Trends under a 2016 Policy Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Trieu; Lantz, Eric; Ho, Jonathan
Over the past decade, wind power has become one of the fastest growing electricity generation sources in the United States. Despite this growth, the U.S. wind industry continues to experience year-to-year fluctuations across the manufacturing and supply chain as a result of dynamic market conditions and changing policy landscapes. Moreover, with advancing wind technologies, ever-changing fossil fuel prices, and evolving energy policies, the long-term future for wind power is highly uncertain. In this report, we present multiple outlooks for wind power in the United States, to explore the possibilities of future wind deployment. The future wind power outlooks presented relymore » on high-resolution wind resource data and advanced electric sector modeling capabilities to evaluate an array of potential scenarios of the U.S. electricity system. Scenario analysis is used to explore drivers, trends, and implications for wind power deployment over multiple periods through 2050. Specifically, we model 16 scenarios of wind deployment in the contiguous United States. These scenarios span a wide range of wind technology costs, natural gas prices, and future transmission expansion. We identify conditions with more consistent wind deployment after the production tax credit expires as well as drivers for more robust wind growth in the long run. Conversely, we highlight challenges to future wind deployment. We find that the degree to which wind technology costs decline can play an important role in future wind deployment, electric sector CO 2 emissions, and lowering allowance prices for the Clean Power Plan.« less
Security and Stability Analysis of Wind Farms Integration into Distribution Network
NASA Astrophysics Data System (ADS)
Guan-yang, Li; Hongzhao, Wang; Guanglei, Li; Yamei, Cheng; Hong-zheng, Liu; Yi, Sun
2017-05-01
With the increasing share of the wind power in the power system, wind power fluctuations will cause obvious negative impacts on weak local grid. This paper firstly establish electromechanical transient simulation model for doubly fed induction wind turbine, then use Matlab/Simulink to achieve power flow calculation and transient simulation of power system including wind farms, the local synchronous generator, load, etc, finally analyze wind power on the impact of the local power grid under typical circumstances. The actual calculated results indicate that wind mutation causes little effect on the power grid, but when the three-phase short circuit fault happens, active power of wind power decreases sharply and the voltage of location of wind power into the grid also drop sharply, finally wind farm split from power system. This situation is not conducive to security and stability of the local power grid. It is necessary to develop security and stability measures in the future.
Introducing Wind Power: Essentials for Bringing It into the Classroom
ERIC Educational Resources Information Center
Swapp, Andy; Schreuders, Paul; Reeve, Edward
2011-01-01
As a renewable source of energy, wind energy will play a significant role in the future. Public, commercial, and privately owned organizations are increasingly finding the value and profits in wind power. Including wind power in a technology and engineering education curriculum teaches students about an important technology that may effect their…
Wind energy developments in the 20th century
NASA Technical Reports Server (NTRS)
Vargo, D. J.
1974-01-01
Wind turbine systems of the past are reviewed and wind energy is reexamined as a future source of power. Various phases and objectives of the Wind Energy Program are discussed. Conclusions indicate that wind generated energy must be considered economically competitive with other power production methods.
IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantz, E.; Wiser, R.; Hand, M.
2012-05-01
Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an arraymore » of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.« less
Opportunities for Wind Power In Low- and Mid-Quality Resource Regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantz, Eric; Mai, Trieu; Heimiller, Donna
2016-05-25
In this presentation for American Wind Energy Association (AWEA) WINDPOWER 2016 conference, the authors discuss wind power today in low and mid-quality resource regions, the anticipated role of wind power in the future electric sector, market potential in low and mid-quality resource regions, and anticipated innovations to capture that market potential.
Towards 50% wind electricity in Denmark: Dilemmas and challenges
NASA Astrophysics Data System (ADS)
Bach, Paul-Frederik
2016-05-01
Electricity and heat supply systems are essential contributors to a fossil-free future in Denmark. The combined production of heat and power (CHP) and the production of wind energy are already well developed in Denmark. Combined heat and power covers about 40% of the demand for space heating in Denmark, and the production of wind energy is supposed to exceed 50% of the demand for electricity by 2020. The changing electricity and heat production has some consequences already now: i) Decreasing wholesale prices in Denmark and in other countries. ii) Thermal power plants are closing down. Denmark is no longer self-sufficient with electricity under all conditions. iii) The electricity production pattern does not match the demand pattern. The result is that the neighbouring countries must absorb the variations from wind and solar power. Essential challenges: i) The future of combined heat and power in Denmark is uncertain. ii) Denmark will need new backup capacity for filling the gaps in wind power and solar cell output. iii) Flexible electricity consumers are supposed to contribute to balancing the future power systems. There is still a long way to go before the Smart Grid visions are implemented in large scale. iv) The transformation of the power system will create new risks of power failures.
Renewable Electricity Futures (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, T.
2012-08-01
This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.
NASA Astrophysics Data System (ADS)
Carvalho, David Joao da Silva
The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.
Lizuma, Lita; Avotniece, Zanita; Rupainis, Sergejs; Teilans, Artis
2013-01-01
Offshore wind energy development promises to be a significant domestic renewable energy source in Latvia. The reliable prediction of present and future wind resources at offshore sites is crucial for planning and selecting the location for wind farms. The overall goal of this paper is the assessment of offshore wind power potential in a target territory of the Baltic Sea near the Latvian coast as well as the identification of a trend in the future wind energy potential for the study territory. The regional climate model CLM and High Resolution Limited Area Model (Hirlam) simulations were used to obtain the wind climatology data for the study area. The results indicated that offshore wind energy is promising for expanding the national electricity generation and will continue to be a stable resource for electricity generation in the region over the 21st century.
Comparison of the economic impact of different wind power forecast systems for producers
NASA Astrophysics Data System (ADS)
Alessandrini, S.; Davò, F.; Sperati, S.; Benini, M.; Delle Monache, L.
2014-05-01
Deterministic forecasts of wind production for the next 72 h at a single wind farm or at the regional level are among the main end-users requirement. However, for an optimal management of wind power production and distribution it is important to provide, together with a deterministic prediction, a probabilistic one. A deterministic forecast consists of a single value for each time in the future for the variable to be predicted, while probabilistic forecasting informs on probabilities for potential future events. This means providing information about uncertainty (i.e. a forecast of the PDF of power) in addition to the commonly provided single-valued power prediction. A significant probabilistic application is related to the trading of energy in day-ahead electricity markets. It has been shown that, when trading future wind energy production, using probabilistic wind power predictions can lead to higher benefits than those obtained by using deterministic forecasts alone. In fact, by using probabilistic forecasting it is possible to solve economic model equations trying to optimize the revenue for the producer depending, for example, on the specific penalties for forecast errors valid in that market. In this work we have applied a probabilistic wind power forecast systems based on the "analog ensemble" method for bidding wind energy during the day-ahead market in the case of a wind farm located in Italy. The actual hourly income for the plant is computed considering the actual selling energy prices and penalties proportional to the unbalancing, defined as the difference between the day-ahead offered energy and the actual production. The economic benefit of using a probabilistic approach for the day-ahead energy bidding are evaluated, resulting in an increase of 23% of the annual income for a wind farm owner in the case of knowing "a priori" the future energy prices. The uncertainty on price forecasting partly reduces the economic benefit gained by using a probabilistic energy forecast system.
A peaking-regulation-balance-based method for wind & PV power integrated accommodation
NASA Astrophysics Data System (ADS)
Zhang, Jinfang; Li, Nan; Liu, Jun
2018-02-01
Rapid development of China’s new energy in current and future should be focused on cooperation of wind and PV power. Based on the analysis of system peaking balance, combined with the statistical features of wind and PV power output characteristics, a method of comprehensive integrated accommodation analysis of wind and PV power is put forward. By the electric power balance during night peaking load period in typical day, wind power installed capacity is determined firstly; then PV power installed capacity could be figured out by midday peak load hours, which effectively solves the problem of uncertainty when traditional method hard determines the combination of the wind and solar power simultaneously. The simulation results have validated the effectiveness of the proposed method.
The Future Impact of Wind on BPA Power System Load Following and Regulation Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Lu, Shuai; McManus, Bart
Wind power is growing in a very fast pace as an alternative generating resource. As the ratio of wind power over total system capacity increases, the impact of wind on various system aspects becomes significant. This paper presents a methodology to study the future impact of wind on BPA power system load following and regulation requirements. Existing methodologies for similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. The methodology proposed in this paper uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system. It mimics themore » actual power system operations therefore the results are close to reality yet the study based on this methodology is convenient to perform. The capacity, ramp rate and ramp duration characteristics are extracted from the simulation results. System load following and regulation capacity requirements are calculated accordingly. The ramp rate and ramp duration data obtained from the analysis can be used to evaluate generator response or maneuverability requirement and regulating units’ energy requirement, respectively.« less
The Future Impact of Wind on BPA Power System Ancillary Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Lu, Shuai; McManus, Bart
Wind power is growing in a very fast pace as an alternative generating resource. As the ratio of wind power over total system capacity increases, the impact of wind on various system aspects becomes significant. This paper presents a methodology to study the future impact of wind on BPA power system ancillary services including load following and regulation. Existing approaches for similar analysis include dispatch model simulation and standard deviation evaluation. The methodology proposed in this paper uses historical data and stochastic processes to simulate the load balancing processes in BPA power system. Then capacity, ramp rate and ramp durationmore » characteristics are extracted from the simulation results, and load following and regulation requirements are calculated accordingly. It mimics the actual power system operations therefore the results can be more realistic yet the approach is convenient to perform. Further, the ramp rate and ramp duration data obtained from the analysis can be used to evaluate generator response or maneuverability and energy requirement, respectively, additional to the capacity requirement.« less
Eastern Wind Data Set | Grid Modernization | NREL
cell was computed by combining these data sets with a composite turbine power curve. Wind power plants wind speed at the site. Adjustments were made for model biases, wake losses, wind gusts, turbine and conversion was also updated to better reflect future wind turbine technology. The 12-hour discontinuity was
Assessing Capacity Value of Wind Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frew, Bethany A.
This presentation provides a high-level overview of assessing capacity value of wind power, including Impacts of multiple-year data sets, impacts of transmission assumptions, and future research needs.
Climate change impact on wave energy in the Persian Gulf
NASA Astrophysics Data System (ADS)
Kamranzad, Bahareh; Etemad-Shahidi, Amir; Chegini, Vahid; Yeganeh-Bakhtiary, Abbas
2015-06-01
Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth's temperature, and consequently have changed the patterns of natural phenomena such as wind speed, wave height, etc. Renewable energy resources are ideal alternatives to reduce the negative effects of increasing greenhouse gases emission and climate change. However, these energy sources are also sensitive to changing climate. In this study, the effect of climate change on wave energy in the Persian Gulf is investigated. For this purpose, future wind data obtained from CGCM3.1 model were downscaled using a hybrid approach and modification factors were computed based on local wind data (ECMWF) and applied to control and future CGCM3.1 wind data. Downscaled wind data was used to generate the wave characteristics in the future based on A2, B1, and A1B scenarios, while ECMWF wind field was used to generate the wave characteristics in the control period. The results of these two 30-yearly wave modelings using SWAN model showed that the average wave power changes slightly in the future. Assessment of wave power spatial distribution showed that the reduction of the average wave power is more in the middle parts of the Persian Gulf. Investigation of wave power distribution in two coastal stations (Boushehr and Assalouyeh ports) indicated that the annual wave energy will decrease in both stations while the wave power distribution for different intervals of significant wave height and peak period will also change in Assalouyeh according to all scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Trieu T; Lantz, Eric J; Mowers, Matthew
Improvements to wind technologies have, in part, led to substantial deployment of U.S. wind power in recent years. The degree to which technology innovation will continue is highly uncertain adding to uncertainties in future wind deployment. We apply electric sector modeling to estimate the potential wind deployment opportunities across a range of technology advancement projections. The suite of projections considered span a wide range of possible cost and technology innovation trajectories, including those from a recent expert elicitation of wind energy experts, a projection based on the broader literature, and one reflecting estimates based on a U.S. DOE research initiative.more » In addition, we explore how these deployment pathways may impact the electricity system, electricity consumers, the environment, and the wind-related workforce. Overall, our analysis finds that wind technology innovation can have consequential implications for future wind power development throughout the United States, impact the broader electricity system, lower electric system and consumer costs, provide potential environmental benefits, and grow the U.S. wind workforce.« less
Lu, Xi; McElroy, Michael B; Chen, Xinyu; Kang, Chongqing
2014-12-16
Although capacity credits for wind power have been embodied in power systems in the U.S. and Europe, the current planning framework for electricity in China continues to treat wind power as a nondispatchable source with zero contribution to firm capacity. This study adopts a rigorous reliability model for the electric power system evaluating capacity credits that should be recognized for offshore wind resources supplying power demands for Jiangsu, China. Jiangsu is an economic hub located in the Yangtze River delta accounting for 10% of the total electricity consumed in China. Demand for electricity in Jiangsu is projected to increase from 331 TWh in 2009 to 800 TWh by 2030. Given a wind penetration level of 60% for the future additional Jiangsu power supply, wind resources distributed along the offshore region of five coastal provinces in China (Shandong, Jiangsu, Shanghai, Zhejiang, and Fujian) should merit a capacity credit of 12.9%, the fraction of installed wind capacity that should be recognized to displace coal-fired systems without violating the reliability standard. In the high-coal-price scenario, with 60% wind penetration, reductions in CO2 emissions relative to a business as usual reference could be as large as 200.2 million tons of CO2 or 51.8% of the potential addition, with a cost for emissions avoided of $29.0 per ton.
Teilans, Artis
2013-01-01
Offshore wind energy development promises to be a significant domestic renewable energy source in Latvia. The reliable prediction of present and future wind resources at offshore sites is crucial for planning and selecting the location for wind farms. The overall goal of this paper is the assessment of offshore wind power potential in a target territory of the Baltic Sea near the Latvian coast as well as the identification of a trend in the future wind energy potential for the study territory. The regional climate model CLM and High Resolution Limited Area Model (Hirlam) simulations were used to obtain the wind climatology data for the study area. The results indicated that offshore wind energy is promising for expanding the national electricity generation and will continue to be a stable resource for electricity generation in the region over the 21st century. PMID:23983619
Impacts of past and future climate change on wind energy resources in the United States
NASA Astrophysics Data System (ADS)
McCaa, J. R.; Wood, A.; Eichelberger, S.; Westrick, K.
2009-12-01
The links between climate change and trends in wind energy resources have important potential implications for the wind energy industry, and have received significant attention in recent studies. We have conducted two studies that provide insights into the potential for climate change to affect future wind power production. In one experiment, we projected changes in power capacity for a hypothetical wind farm located near Kennewick, Washington, due to greenhouse gas-induced climate change, estimated using a set of regional climate model simulations. Our results show that the annual wind farm power capacity is projected to decrease 1.3% by 2050. In a wider study focusing on wind speed instead of power, we analyzed projected changes in wind speed from 14 different climate simulations that were performed in support of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). Our results show that the predicted ensemble mean changes in annual mean wind speeds are expected to be modest. However, seasonal changes and changes predicted by individual models are large enough to affect the profitability of existing and future wind projects. The majority of the model simulations reveal that near-surface wind speed values are expected to shift poleward in response to the IPCC A2 emission scenario, particularly during the winter season. In the United States, most models agree that the mean annual wind speed values will increase in a region extending from the Great Lakes southward across the Midwest and into Texas. Decreased values, though, are predicted across most of the western United States. However, these predicted changes have a strong seasonal dependence, with wind speed increases over most of the United States during the winter and decreases over the northern United States during the summer.
Enabling the SMART Wind Power Plant of the Future Through Science-Based Innovation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, Katherine L.; Hand, M. M.; Lantz, Eric J.
This report describes the scientific challenges facing wind energy today and the recent scientific advancements that position the research community to tackle those challenges, as well as the new U.S. Department of Energy applied research program Atmosphere to Electrons that takes an integrated approach to addressing those challenges. It also ties these resulting scientific accomplishments to future technological innovation and quantifies the impact of that collection of innovations on 2030 wind power cost of energy.
Assessing the Future of Distributed Wind: Opportunities for Behind-the-Meter Projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantz, Eric; Sigrin, Benjamin; Gleason, Michael
2016-11-01
Wind power is one of the fastest growing sources of new electricity generation in the United States. Cumulative installed capacity was more than 74,000 megawatts (MW) at year-end 2015 and wind power supplied 4.7% of total 2015 U.S. electricity generation. Despite the growth of the wind power industry, the distributed wind market has remained limited. Cumulative installations of distributed wind through 2015 totaled 934 MW. This first-of-a-kind exploratory analysis characterizes the future opportunity for behind-the-meter distributed wind, serving primarily rural or suburban homes, farms, and manufacturing facilities. This work focuses only on the grid-connected, behind-the-meter subset of the broader distributedmore » wind market. We estimate this segment to be approximately half of the 934 MW of total installed distributed wind capacity at year-end 2015. Potential from other distributed wind market segments including systems installed in front of the meter (e.g., community wind) and in remote, off-grid locations is not assessed in this analysis and therefore, would be additive to results presented here. These other distributed wind market segments are not considered in this initial effort because of their relatively unique economic and market attributes.« less
Utility interconnection issues for wind power generation
NASA Technical Reports Server (NTRS)
Herrera, J. I.; Lawler, J. S.; Reddoch, T. W.; Sullivan, R. L.
1986-01-01
This document organizes the total range of utility related issues, reviews wind turbine control and dynamic characteristics, identifies the interaction of wind turbines to electric utility systems, and identifies areas for future research. The material is organized at three levels: the wind turbine, its controls and characteristics; connection strategies as dispersed or WPSs; and the composite issue of planning and operating the electric power system with wind generated electricity.
Renewable Electricity Futures (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMeo, E.
2012-08-01
This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.
Current and Future Opportunities for Wind Power in the Southeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinnesand, Heidi; Roberts, Owen; Lantz, Eric
This presentation discusses future wind opportunities in the Southeast including factors such as changes in wind turbine technology, historical innovation trends, and forecast demand growth among regions. The presentation covers the current status of wind in the United States at 80-m hub height and the near-future outlook with a hub height at 110 to 140 meters. Future cost reductions in 2030 and beyond are also explored. Heidi Tinnesand presented this information to a utility advisory group meeting in Charlotte, North Carolina, on October 5, 2016.
NASA Technical Reports Server (NTRS)
Heronemus, W.
1973-01-01
An offshore wind power system is described that consists of wind driven electrical dc generators mounted on floating towers in offshore waters. The output from the generators supplies underwater electrolyzer stations in which water is converted into hydrogen and oxygen. The hydrogen is piped to shore for conversion to electricity in fuel cell stations. It is estimated that this system can produce 159 x 10 to the ninth power kilowatt-hours per year. It is concluded that solar energy - and that includes wind energy - is the only way out of the US energy dilemma in the not too distant future.
Proceedings of National Avian-Wind Power Planning Meeting IV
DOE Office of Scientific and Technical Information (OSTI.GOV)
NWCC Avian Subcommittee
2001-05-01
OAK-B135 The purpose of the fourth meeting was to (1) share research and update research conducted on avian wind interactions (2) identify questions and issues related to the research results, (3) develop conclusions about some avian/wind power issues, and (4) identify questions and issues for future avian research.
76 FR 23198 - Segregation of Lands-Renewable Energy
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
... could be used to carry the power generated from a specific wind or solar energy ROW project, and the... included in a pending or future wind or solar energy generation right- of-way (ROW) application, or public lands identified by the BLM for a potential future wind or solar energy generation ROW authorization...
Datasets on hub-height wind speed comparisons for wind farms in California.
Wang, Meina; Ullrich, Paul; Millstein, Dev
2018-08-01
This article includes the description of data information related to the research article entitled "The future of wind energy in California: Future projections with the Variable-Resolution CESM"[1], with reference number RENE_RENE-D-17-03392. Datasets from the Variable-Resolution CESM, Det Norske Veritas Germanischer Lloyd Virtual Met, MERRA-2, CFSR, NARR, ISD surface observations, and upper air sounding observations were used for calculating and comparing hub-height wind speed at multiple major wind farms across California. Information on hub-height wind speed interpolation and power curves at each wind farm sites are also presented. All datasets, except Det Norske Veritas Germanischer Lloyd Virtual Met, are publicly available for future analysis.
The changing sensitivity of power systems to meteorological drivers: a case study of Great Britain
NASA Astrophysics Data System (ADS)
Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.
2018-05-01
The increasing use of intermittent renewable generation (such as wind) is increasing the exposure of national power systems to meteorological variability. This study identifies how the integration of wind power in one particular country (Great Britain, GB) is affecting the overall sensitivity of the power system to weather using three key metrics: total annual energy requirement, peak residual load (from sources other than wind) and wind power curtailment. The present-day level of wind power capacity (approximately 15 GW) is shown to have already changed the power system’s overall sensitivity to weather in terms of the total annual energy requirement, from a temperature- to a wind-dominated regime (which occurred with 6GW of installed wind power capacity). Peak residual load from sources other than wind also shows a similar shift. The associated changes in the synoptic- and large-scale meteorological drivers associated with each metric are identified and discussed. In a period where power systems are changing rapidly, it is therefore argued that past experience of the weather impacts on the GB power system may not be a good guide for the impact on the present or near-future power system.
2014 Wind Technologies Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ryan; Bolinger, Mark; Barbose, Galen
Wind power capacity additions in the United States rebounded in 2014, and continued growth through 2016 is anticipated. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—which is available for projects that began construction by the end of 2014. Wind additions are also being driven by recent improvements in the cost and performance of wind power technologies, which have resulted in the lowest power sales prices ever seen in the U.S. wind sector. Growing corporate demand for wind energy and state-level policies play important roles as well. Expectations for continued technological advancementsmore » and cost reductions may further boost future growth. At the same time, the prospects for growth beyond 2016 are uncertain. The PTC has expired, and its renewal remains in question. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on growth expectations. These trends, in combination with increasingly global supply chains, have limited the growth of domestic manufacturing of wind equipment. What they mean for wind power additions through the end of the decade and beyond will be dictated in part by future natural gas prices, fossil plant retirements, and policy decisions.« less
Wind Vision: A New Era for Wind Power in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy
With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with industry, environmental organizations, academic institutions, and national laboratories to develop a renewed Wind Vision, documenting the contributions of wind to date and envisioning a future where wind continues to provide key contributions to the nation’s energy portfolio. Building on and updating the 2008 20% Wind Energy by 2030 report, the new Wind Vision Report quantifies the economic, environmental, and social benefits of a robust wind energy future and the actions that wind stakeholders can take to make it a reality.
High Quality Data for Grid Integration Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Andrew; Draxl, Caroline; Sengupta, Manajit
As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. The existing electric grid infrastructure in the US in particular poses significant limitations on wind power expansion. In this presentation we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather predictionmore » to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets are presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. The need for high-resolution weather data pushes modeling towards finer scales and closer synchronization. We also present how we anticipate such datasets developing in the future, their benefits, and the challenges with using and disseminating such large amounts of data.« less
Coskun, Aynur Aydin; Türker, Yavuz Özhan
2012-03-01
The global energy requirement for sustaining economic activities, meeting social needs and social development is increasing daily. Environmentally friendly, renewable energy resources are an alternative to the primary non-renewable energy resources, which devastate ecosystems in order to meet increasing demand. Among renewable energy sources such as hydropower, biopower, geothermal power and solar power, wind power offers distinct advantages to Turkey. There is an increasing tendency toward wind globally and the European Union adjusted its legal regulations in this regard. As a potential EU Member state, Turkey is going through a similar process. The number of institutional and legal regulations concerning wind power has increased in recent years; technical infrastructure studies were completed, and some important steps were taken in this regard. This study examines the way in which Turkey has developed support for wind power, presents a SWOT analysis of the wind power sector in Turkey and a projection was made for the concrete success expected to be accomplished in the future.
Analysis and Countermeasures of Wind Power Accommodation by Aluminum Electrolysis Pot-Lines in China
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Ran, Ling; He, Guixiong; Wang, Zhenyu; Li, Jie
2017-10-01
The unit energy consumption and its price have become the main obstacles for the future development of the aluminum electrolysis industry in China. Meanwhile, wind power is widely being abandoned because of its instability. In this study, a novel idea for wind power accommodation is proposed to achieve a win-win situation: the idea is for nearby aluminum electrolysis plants to absorb the wind power. The features of the wind power distribution and aluminum electrolysis industry are first summarized, and the concept of wind power accommodation by the aluminum industry is introduced. Then, based on the characteristics of aluminum reduction cells, the key problems, including the bus-bar status, thermal balance, and magnetohydrodynamics instabilities, are analyzed. In addition, a whole accommodation implementation plan for wind power by aluminum reduction is introduced to explain the theoretical value of accommodation, evaluation of the reduction cells, and the industrial experiment scheme. A numerical simulation of a typical scenario proves that there is large accommodation potential for the aluminum reduction cells. Aluminum electrolysis can accommodate wind power and remain stable under the proper technique and accommodation scheme, which will provide promising benefits for the aluminum plant and the wind energy plant.
Energy Systems Integration News | Energy Systems Integration Facility |
power grid modeling scenarios Study Shows Eastern U.S. Power Grid Can Support Upwards of 30% Wind and newly released Eastern Renewable Energy Integration Study (ERGIS) shows that the power grid of the -based study of four potential wind and PV futures and associated operational impacts in the Eastern
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-03-01
This is a four-part Wind Vision project, consisting of Wind Vision Highlights, Executive Summary, a Full Report, and Appendix. The U.S. Department of Energy (DOE) Wind Program, in close cooperation with the wind industry, led a comprehensive analysis to evaluate future pathways for the wind industry. The Wind Vision report updates and expands upon the DOE's 2008 report, 20% Wind Energy by 2030, and defines the societal, environmental, and economic benefits of wind power in a scenario with wind energy supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050.
High-quality weather data for grid integration studies
NASA Astrophysics Data System (ADS)
Draxl, C.
2016-12-01
As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. In this talk we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather prediction to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets will be presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The Solar Integration National Dataset (SIND) is available as time synchronized with the WIND Toolkit, and will allow for combined wind-solar grid integration studies. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. Grid integration studies are also carried out in various countries, which aim at increasing their wind and solar penetration through combined wind and solar integration data sets. We will present a multi-year effort to directly support India's 24x7 energy access goal through a suite of activities aimed at enabling large-scale deployment of clean energy and energy efficiency. Another current effort is the North-American-Renewable-Integration-Study, with the aim of providing a seamless data set across borders for a whole continent, to simulate and analyze the impacts of potential future large wind and solar power penetrations on bulk power system operations.
Comparison of Wind Power and Load Forecasting Error Distributions: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, B. M.; Florita, A.; Orwig, K.
2012-07-01
The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent Systemmore » Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.« less
Jihong, Qu
2014-01-01
Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663
Ren, Kun; Jihong, Qu
2014-01-01
Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision.
Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; ...
2014-05-16
The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluatedmore » the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.« less
The footprint of atmospheric turbulence in power grid frequency measurements
NASA Astrophysics Data System (ADS)
Haehne, H.; Schottler, J.; Waechter, M.; Peinke, J.; Kamps, O.
2018-02-01
Fluctuating wind energy makes a stable grid operation challenging. Due to the direct contact with atmospheric turbulence, intermittent short-term variations in the wind speed are converted to power fluctuations that cause transient imbalances in the grid. We investigate the impact of wind energy feed-in on short-term fluctuations in the frequency of the public power grid, which we have measured in our local distribution grid. By conditioning on wind power production data, provided by the ENTSO-E transparency platform, we demonstrate that wind energy feed-in has a measurable effect on frequency increment statistics for short time scales (< 1 \\text{s}) that are below the activation time of frequency control. Our results are in accordance with previous numerical studies of self-organized synchronization in power grids under intermittent perturbation and give rise to new challenges for a stable operation of future power grids fed by a high share of renewable generation.
Using Bayes Model Averaging for Wind Power Forecasts
NASA Astrophysics Data System (ADS)
Preede Revheim, Pål; Beyer, Hans Georg
2014-05-01
For operational purposes predictions of the forecasts of the lumped output of groups of wind farms spread over larger geographic areas will often be of interest. A naive approach is to make forecasts for each individual site and sum them up to get the group forecast. It is however well documented that a better choice is to use a model that also takes advantage of spatial smoothing effects. It might however be the case that some sites tends to more accurately reflect the total output of the region, either in general or for certain wind directions. It will then be of interest giving these a greater influence over the group forecast. Bayesian model averaging (BMA) is a statistical post-processing method for producing probabilistic forecasts from ensembles. Raftery et al. [1] show how BMA can be used for statistical post processing of forecast ensembles, producing PDFs of future weather quantities. The BMA predictive PDF of a future weather quantity is a weighted average of the ensemble members' PDFs, where the weights can be interpreted as posterior probabilities and reflect the ensemble members' contribution to overall forecasting skill over a training period. In Revheim and Beyer [2] the BMA procedure used in Sloughter, Gneiting and Raftery [3] were found to produce fairly accurate PDFs for the future mean wind speed of a group of sites from the single sites wind speeds. However, when the procedure was attempted applied to wind power it resulted in either problems with the estimation of the parameters (mainly caused by longer consecutive periods of no power production) or severe underestimation (mainly caused by problems with reflecting the power curve). In this paper the problems that arose when applying BMA to wind power forecasting is met through two strategies. First, the BMA procedure is run with a combination of single site wind speeds and single site wind power production as input. This solves the problem with longer consecutive periods where the input data does not contain information, but it has the disadvantage of nearly doubling the number of model parameters to be estimated. Second, the BMA procedure is run with group mean wind power as the response variable instead of group mean wind speed. This also solves the problem with longer consecutive periods without information in the input data, but it leaves the power curve to also be estimated from the data. [1] Raftery, A. E., et al. (2005). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. Monthly Weather Review, 133, 1155-1174. [2]Revheim, P. P. and H. G. Beyer (2013). Using Bayesian Model Averaging for wind farm group forecasts. EWEA Wind Power Forecasting Technology Workshop,Rotterdam, 4-5 December 2013. [3]Sloughter, J. M., T. Gneiting and A. E. Raftery (2010). Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging. Journal of the American Statistical Association, Vol. 105, No. 489, 25-35
Wind offering in energy and reserve markets
NASA Astrophysics Data System (ADS)
Soares, T.; Pinson, P.; Morais, H.
2016-09-01
The increasing penetration of wind generation in power systems to fulfil the ambitious European targets will make wind power producers to play an even more important role in the future power system. Wind power producers are being incentivized to participate in reserve markets to increase their revenue, since currently wind turbine/farm technologies allow them to provide ancillary services. Thus, wind power producers are to develop offering strategies for participation in both energy and reserve markets, accounting for market rules, while ensuring optimal revenue. We consider a proportional offering strategy to optimally decide upon participation in both markets by maximizing expected revenue from day-ahead decisions while accounting for estimated regulation costs for failing to provide the services. An evaluation of considering the same proportional splitting of energy and reserve in both day- ahead and balancing market is performed. A set of numerical examples illustrate the behavior of such strategy. An important conclusion is that the optimal split of the available wind power between energy and reserve strongly depends upon prices and penalties on both market trading floors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeni, Lorenzo; Hesselbæk, Bo; Bech, John
This article presents an example of application of a modern test facility conceived for experiments regarding the integration of renewable energy in the power system. The capabilities of the test facility are used to validate dynamic simulation models of wind power plants and their controllers. The models are based on standard and generic blocks. The successful validation of events related to the control of active power (control phenomena in <10 Hz range, including frequency control and power oscillation damping) is described, demonstrating the capabilities of the test facility and drawing the track for future work and improvements.
Evaluation model of wind energy resources and utilization efficiency of wind farm
NASA Astrophysics Data System (ADS)
Ma, Jie
2018-04-01
Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.
Changes in European wind energy generation potential within a 1.5 °C warmer world
NASA Astrophysics Data System (ADS)
Hosking, J. Scott; MacLeod, D.; Phillips, T.; Holmes, C. R.; Watson, P.; Shuckburgh, E. F.; Mitchell, D.
2018-05-01
Global climate model simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) project were used to assess how wind power generation over Europe would change in a future world where global temperatures reach 1.5 °C above pre-industrial levels. Comparing recent historical (2006–2015) and future 1.5 °C forcing experiments highlights that the climate models demonstrate a northward shift in the Atlantic jet, leading to a significant (p < 0.01) increase in surface winds over the UK and Northern Europe and a significant (p < 0.05) reduction over Southern Europe. We use a wind turbine power model to transform daily near-surface (10 m) wind speeds into daily wind power output, accounting for sub-daily variability, the height of the turbine, and power losses due to transmission and distribution of electricity. To reduce regional model biases we use bias-corrected 10 m wind speeds. We see an increase in power generation potential over much of Europe, with the greatest increase in load factor over the UK of around four percentage points. Increases in variability are seen over much of central and northern Europe with the largest seasonal change in summer. Focusing on the UK, we find that wind energy production during spring and autumn under 1.5 °C forcing would become as productive as it is currently during the peak winter season. Similarly, summer winds would increase driving up wind generation to resemble levels currently seen in spring and autumn. We conclude that the potential for wind energy in Northern Europe may be greater than has been previously assumed, with likely increases even in a 1.5 °C warmer world. While there is the potential for Southern Europe to see a reduction in their wind resource, these decreases are likely to be negligible.
A Global Look at Future Trends in the Renewable Energy Resource
NASA Astrophysics Data System (ADS)
Chen, S.; Freedman, J. M.; Kirk-Davidoff, D. B.; Brower, M.
2017-12-01
With the aggressive deployment of utility-scale and distributed generation of wind and solar energy systems, an accurate estimate of the uncertainty associated with future resource trends and plant performance is crucial in maintaining financial integrity in the renewable energy markets. With continuing concerns regarding climate change, the move towards energy resiliency, and the cost-competitiveness of renewables, a rapidly expanding fleet of utility-scale wind and solar power facilities and distributed generation of both resources is now being incorporated into the electric distribution grid. Although solar and wind account for about 3% of global power production, renewable energy is now and will continue to be the world's fastest-growing energy source. With deeper penetration of renewables, confidence in future power production output on a spectrum of temporal and spatial scales is crucial to grid stability for long-term planning and achieving national and international targets in the reduction of greenhouse gas emissions. Here, we use output from a diverse subset of Earth System Models (Climate Model Inter-comparison Project-Phase 5 members) to produce projected trends and uncertainties in regional and global seasonal and inter-annual wind and solar power production and respective capacity factors through the end of the 21st century. Our trends and uncertainty analysis focuses on the Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 scenarios. For wind and solar energy production estimates, we extract surface layer wind (extrapolated to hub height), irradiance, cloud fraction, and temperature (air temperature affects density [hence wind power production] and the efficiency of photovoltaic [PV] systems), output from the CMIP5 ensemble mean fields for the period 2020 - 2099 and an historical baseline for POR of 1986 - 2005 (compared with long-term observations and the ERA-Interim Reanalysis). Results include representative statistics such as the standard deviation (as determined from the slopes of the trend lines for individual CMIP5 members), means, medians (e.g. P50 values) and percent change, trends analysis on time series for each variable, and creation of global maps of trends (% change per year) and changes in capacity factors for both estimated solar and wind power production.
Reducing Wind Curtailment through Transmission Expansion in a Wind Vision Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgensen, Jennie; Mai, Trieu; Brinkman, Greg
The Department of Energy's 2015 Wind Vision study, which analyzed an ambitious scenario where wind power served 35% of U.S. electricity consumption in 2050, showed the potential for wind energy to provide substantial health, environmental, and economic benefits. Using a commercial unit commitment and economic dispatch model, we build on this research by assessing the hourly operational feasibility of a similar high wind future in the Western United States. Our detailed simulations found no hours of unmet load or reserve violations with more than 35% potential wind (and 12% potential solar) available on the system, which highlights the technical possibilitymore » of integrating large amounts of wind energy. However, absent significant changes to the western grid, we find that substantial wind curtailment could be an issue, as it could degrade the potential for wind power to reduce fuel costs and lowering the emission benefits. To assess the value of transmission to mitigate wind curtailment, we model a suite of transmission expansion scenarios. We find that wind curtailment could be reduced by approximately half under a scenario where new transmission is based only on proposed projects. This avoided wind curtailment could lower annual production costs and reduce carbon dioxide emissions substantially. Greater transmission expansion was found to yield further benefits, although the marginal benefits of these new lines were found to decline. Overall, these results suggest that power systems operation can be realized with more than 35% wind penetration, but that transmission expansion is likely to play a vital role.« less
A Wind-powered Rover for a Low-Cost Venus Mission
NASA Technical Reports Server (NTRS)
Benigno, Gina; Hoza, Kathleen; Motiwala, Samira; Landis, Geoffrey A.; Colozza, Anthony J.
2013-01-01
Venus, with a surface temperature of 450 C and an atmospheric pressure 90 times higher than that of the Earth, is a difficult target for exploration. However, high-temperature electronics and power systems now being developed make it possible that future missions may be able to operate in the Venus environment. Powering such a rover within the scope of a Discovery class mission will be difficult, but harnessing Venus' surface winds provides a possible way to keep a powered rover small and light. This project scopes out the feasibility of a wind-powered rover for Venus surface missions. Two rover concepts, a land-sailing rover and a wind-turbine-powered rover, were considered. The turbine-powered rover design is selected as being a low-risk and low-cost strategy. Turbine detailed analysis and design shows that the turbine can meet mission requirements across the desired range of wind speeds by utilizing three constant voltage generators at fixed gear ratios.
Research on unit commitment with large-scale wind power connected power system
NASA Astrophysics Data System (ADS)
Jiao, Ran; Zhang, Baoqun; Chi, Zhongjun; Gong, Cheng; Ma, Longfei; Yang, Bing
2017-01-01
Large-scale integration of wind power generators into power grid brings severe challenges to power system economic dispatch due to its stochastic volatility. Unit commitment including wind farm is analyzed from the two parts of modeling and solving methods. The structures and characteristics can be summarized after classification has been done according to different objective function and constraints. Finally, the issues to be solved and possible directions of research and development in the future are discussed, which can adapt to the requirements of the electricity market, energy-saving power generation dispatching and smart grid, even providing reference for research and practice of researchers and workers in this field.
Performance and Feasibility Analysis of a Wind Turbine Power System for Use on Mars
NASA Technical Reports Server (NTRS)
Lichter, Matthew D.; Viterna, Larry
1999-01-01
A wind turbine power system for future missions to the Martian surface was studied for performance and feasibility. A C++ program was developed from existing FORTRAN code to analyze the power capabilities of wind turbines under different environments and design philosophies. Power output, efficiency, torque, thrust, and other performance criteria could be computed given design geometries, atmospheric conditions, and airfoil behavior. After reviewing performance of such a wind turbine, a conceptual system design was modeled to evaluate feasibility. More analysis code was developed to study and optimize the overall structural design. Findings of this preliminary study show that turbine power output on Mars could be as high as several hundred kilowatts. The optimized conceptual design examined here would have a power output of 104 kW, total mass of 1910 kg, and specific power of 54.6 W/kg.
Onshore wind energy potential over Iberia: present and future projections
NASA Astrophysics Data System (ADS)
Rochinha, Carlos A.; Santos, João A.; Liberato, Margarida L. R.; Pinto, Joaquim G.
2014-05-01
Onshore grid-connected wind power generation has been explored for more than three decades in the Iberian Peninsula. Further, increasing attention has been devoted to renewable energy sources in a climate change context. While advantages of wind energy are widely recognized, its distribution is not spatially homogeneous and not uniform throughout the year. Hence, understanding these spatial-temporal distributions is critical in power system planning. The present study aims at assessing the potential power output estimated from 10 m wind components simulated by a regional climate model (CCLM), driven by ERA40 reanalysis. Datasets are available on a grid with a high spatial resolution (approximately 20 km) and over a 40-yr period (1961-2000). Furthermore, several target sites, located in areas with high installed wind generation capacity, are selected for local-to-regional scale assessments. The results show that potential wind power is higher over northern Iberia, mostly in Cantabria and Galicia, while Andalucía and Cataluña record the lowest values. With respect to the intra-annual variability, summer is by far the season with the lowest potential energy outputs. Furthermore, the inter-annual variability reveals an overall downward long-term trend over the 40-yr period, particularly in the winter time series. A CCLM transient experiment, forced by the SRES A1B emission scenario, is also discussed for a future period (2041-2070), after a model validation/calibration process (bias corrections). Significant changes in the wind power potential are projected for the future throughout Iberia, but their magnitude largely depends on the locations. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, Judith
This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatorymore » environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.« less
Wind for Schools: Fostering the Human Talent Supply Chain for a 20% Wind Energy Future (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, I.
2011-03-01
As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: 1) Developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses. 2) Installing small wind turbines at community "host" schools. 3) Implementing teacher training with interactive curricula at each host school.
The 80 megawatt wind power project at Kahuku Point, Hawaii
NASA Technical Reports Server (NTRS)
Laessig, R. R.
1982-01-01
Windfarms Ltd. is developing the two largest wind energy projects in the world. Designed to produce 80 megawatts at Kahuku Point, Hawaii and 350 megawatts in Solano County, California, these projects will be the prototypes for future large-scale wind energy installations throughout the world.
Wind power forecasting: IEA Wind Task 36 & future research issues
NASA Astrophysics Data System (ADS)
Giebel, G.; Cline, J.; Frank, H.; Shaw, W.; Pinson, P.; Hodge, B.-M.; Kariniotakis, G.; Madsen, J.; Möhrlen, C.
2016-09-01
This paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Task is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.
NASA Astrophysics Data System (ADS)
Zhu, Y.; Jeon, S. W.; Seong, M.
2017-12-01
In case of wind-power, one of the most economical renewable energy resources, it is highly emerged owing to the strategic aspect of the response of environmental restriction and strong energy security as well as the upcoming motivation for huge industrial growth in the future. According to the fourth Fundamental Renewable Energy Plan, declared in Sep. 2014, the government instituted the scheme to minimize the proportion of previous RDF(Refused Derived Fuel) till 2035, promoting the solar power and wind power as the core energy for the next generation. Especially in South Korea, it is somewhat desperate to suggest the standard for environmentally optimal locations of wind power setup accompanied with the prevention of disasters from the climate changes. This is because that in case of South Korea, most of suitable places for Wind power complex are in the ridge of the mountains, where is highly invaluable sites as the pool of bio-resources and ecosystem conservations. In this research, we are to focus on the analysis of suitable locations for wind farm site which is relevant to the meteorological and geological factors, by utilizing GIS techniques through the whole South Korea. Ultimately, this analyses are to minimize the adverse effect derived from the current development of wind power in mountain ridges and the time for negotiation for wind power advance.
The resilience of Australian wind energy to climate change
NASA Astrophysics Data System (ADS)
Evans, Jason P.; Kay, Merlinde; Prasad, Abhnil; Pitman, Andy
2018-02-01
The Paris Agreement limits global average temperature rise to 2 °C and commits to pursuing efforts in limiting warming to 1.5 °C above pre-industrial levels. This will require rapid reductions in the emissions of greenhouse gases and the eventual decarbonisation of the global economy. Wind energy is an established technology to help achieve emissions reductions, with a cumulative global installed capacity of ~486 GW (2016). Focusing on Australia, we assess the future economic viability of wind energy using a 12-member ensemble of high-resolution regional climate simulations forced by Coupled Model Intercomparison Project (CMIP) output. We examine both near future (around 2030) and far future (around 2070) changes. Extractable wind power changes vary across the continent, though the most spatially coherent change is a small but significant decrease across southern regions. The cost of future wind energy generation, measured via the Levelised Cost of Energy (LCOE), increases negligibly in the future in regions with significant existing installed capacity. Technological developments in wind energy generation more than compensate for projected small reductions in wind, decreasing the LCOE by around 30%. These developments ensure viability for existing wind farms, and enhance the economic viability of proposed wind farms in Western Australian and Tasmania. Wind energy is therefore a resilient source of electricity over most of Australia and technological innovation entering the market will open new regions for energy production in the future.
Application and verification of ECMWF seasonal forecast for wind energy
NASA Astrophysics Data System (ADS)
Žagar, Mark; Marić, Tomislav; Qvist, Martin; Gulstad, Line
2015-04-01
A good understanding of long-term annual energy production (AEP) is crucial when assessing the business case of investing in green energy like wind power. The art of wind-resource assessment has emerged into a scientific discipline on its own, which has advanced at high pace over the last decade. This has resulted in continuous improvement of the AEP accuracy and, therefore, increase in business case certainty. Harvesting the full potential output of a wind farm or a portfolio of wind farms depends heavily on optimizing operation and management strategy. The necessary information for short-term planning (up to 14 days) is provided by standard weather and power forecasting services, and the long-term plans are based on climatology. However, the wind-power industry is lacking quality information on intermediate scales of the expected variability in seasonal and intra-annual variations and their geographical distribution. The seasonal power forecast presented here is designed to bridge this gap. The seasonal power production forecast is based on the ECMWF seasonal weather forecast and the Vestas' high-resolution, mesoscale weather library. The seasonal weather forecast is enriched through a layer of statistical post-processing added to relate large-scale wind speed anomalies to mesoscale climatology. The resulting predicted energy production anomalies, thus, include mesoscale effects not captured by the global forecasting systems. The turbine power output is non-linearly related to the wind speed, which has important implications for the wind power forecast. In theory, the wind power is proportional to the cube of wind speed. However, due to the nature of turbine design, this exponent is close to 3 only at low wind speeds, becomes smaller as the wind speed increases, and above 11-13 m/s the power output remains constant, called the rated power. The non-linear relationship between wind speed and the power output generally increases sensitivity of the forecasted power to the wind speed anomalies. On the other hand, in some cases and areas where turbines operate close to, or above the rated power, the sensitivity of power forecast is reduced. Thus, the seasonal power forecasting system requires good knowledge of the changes in frequency of events with sufficient wind speeds to have acceptable skill. The scientific background for the Vestas seasonal power forecasting system is described and the relationship between predicted monthly wind speed anomalies and observed wind energy production are investigated for a number of operating wind farms in different climate zones. Current challenges will be discussed and some future research and development areas identified.
Is There a Future for Nuclear Power? Wind and Emission Reduction Targets in Fossil-Fuel Alberta
Duan, Jun; Lynch, Rachel
2016-01-01
This paper explores the viability of relying on wind power to replace upwards of 60% of electricity generation in Alberta that would be lost if coal-fired generation is phased out. Using hourly wind data from 17 locations across Alberta, we are able to simulate the potential wind power output available to the Alberta grid when modern, 3.5 MW-capacity wind turbines are spread across the province. Using wind regimes for the years 2006 through 2015, we find that available wind power is less than 60% of installed capacity 98% of the time, and below 30% of capacity 74% of the time. There is only a small amount of correlation between wind speeds at different locations, but yet it remains necessary to rely on fossil fuel generation. Then, based on the results from a grid allocation model, we find that CO2 emissions can be reduced by about 30%, but only through a combination of investment in wind energy and reliance on purchases of hydropower from British Columbia. Only if nuclear energy is permitted into the generation mix would Alberta be able to meet its CO2-emissions reduction target in the electricity sector. With nuclear power, emissions can be reduced by upwards of 85%. PMID:27902712
Is There a Future for Nuclear Power? Wind and Emission Reduction Targets in Fossil-Fuel Alberta.
van Kooten, G Cornelis; Duan, Jun; Lynch, Rachel
2016-01-01
This paper explores the viability of relying on wind power to replace upwards of 60% of electricity generation in Alberta that would be lost if coal-fired generation is phased out. Using hourly wind data from 17 locations across Alberta, we are able to simulate the potential wind power output available to the Alberta grid when modern, 3.5 MW-capacity wind turbines are spread across the province. Using wind regimes for the years 2006 through 2015, we find that available wind power is less than 60% of installed capacity 98% of the time, and below 30% of capacity 74% of the time. There is only a small amount of correlation between wind speeds at different locations, but yet it remains necessary to rely on fossil fuel generation. Then, based on the results from a grid allocation model, we find that CO2 emissions can be reduced by about 30%, but only through a combination of investment in wind energy and reliance on purchases of hydropower from British Columbia. Only if nuclear energy is permitted into the generation mix would Alberta be able to meet its CO2-emissions reduction target in the electricity sector. With nuclear power, emissions can be reduced by upwards of 85%.
Optimal Day-Ahead Scheduling of a Hybrid Electric Grid Using Weather Forecasts
2013-12-01
ahead scheduling, Weather forecast , Wind power , Photovoltaic Power 15. NUMBER OF PAGES 107 16. PRICE CODE 17. SECURITY CLASSIFICATION OF...cost can be reached by accurately anticipating the future renewable power productions. This thesis suggests the use of weather forecasts to establish...reached by accurately anticipating the future renewable power productions. This thesis suggests the use of weather forecasts to establish day-ahead
NASA Astrophysics Data System (ADS)
Reboita, Michelle Simões; Amaro, Tatiana Rocha; de Souza, Marcelo Rodrigues
2017-09-01
Since wind is an important source of renewable energy, it has attracted attention worldwide. Several studies have been developed in order to know favorable areas where wind farms can be implemented. Therefore, the purpose of this study is to project changes in wind intensity and in wind power density (PD), at 100 m high, over South America and adjacent oceans, by downscaling and ensemble techniques. Regional climate model version 4 (RegCM4) was nested in the output of three global climate models, considering the RCP8.5 scenario. RegCM4 ensemble in the present climate (1979-2005) was validated through comparisons with ERA-Interim reanalysis. The ensemble represents well the spatial pattern of the winds, but there are some differences in relation to the wind intensity registered by ERA-Interim, mainly in center-east Brazil and Patagonia. The comparison between the future climate (2020-2050 and 2070-2098) and the present one shows that there is an increase in wind intensity and PD on the north of SA, center-east Brazil (except in summer) and latitudes higher than 50°S. Such increase is more intense in the period 2070-2098.
Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model
NASA Astrophysics Data System (ADS)
Carbajo Fuertes, Fernando; Porté-Agel, Fernando
2016-04-01
A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements and large-eddy simulation (LES) data of miniature wind turbine wakes, as well as LES data of real-scale wind-turbine wakes, but not yet with full-scale wind turbine wake measurements. [1] M. Bastankhah and F. Porté-Agel. A New Analytical Model For Wind-Turbine Wakes, in Renewable Energy, vol. 70, p. 116-123, 2014.
Renewable Energy for Rural Economic Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, Cathy L.; Stafford, Edwin R.
When Renewable Energy for Rural Economic Development (RERED) began in 2005, Utah had no commercial wind power projects in operation. Today, the state hosts two commercial wind power plants, the Spanish Fork Wind Project and the Milford Wind Corridor Project, totaling 324 megawatts (MW) of wind capacity. Another project in San Juan County is expected to break ground very soon, and two others, also in San Juan County, are in the approval process. RERED has played a direct role in advancing wind power (and other renewable energy and clean technology innovations) in Utah through its education outreach and research/publication initiatives.more » RERED has also witnessed and studied some of the persistent barriers facing wind power development in communities across Utah and the West, and its research expanded to examine the diffusion of other energy efficiency and clean technology innovations. RERED leaves a legacy of publications, government reports, and documentary films and educational videos (archived at www.cleantech.usu.edu) to provide important insights for entrepreneurs, policymakers, students, and citizens about the road ahead for transitioning society onto a cleaner, more sustainable future.« less
76 FR 23230 - Segregation of Lands-Renewable Energy
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
... within the wind energy right-of- way application areas in FY 2009 and 2010, we estimate the total cost of... transmission facilities that could be used to carry the power generated from a specific wind or solar energy..., public lands included in a pending or future wind or solar energy generation right-of-way (ROW...
Wind farms production: Control and prediction
NASA Astrophysics Data System (ADS)
El-Fouly, Tarek Hussein Mostafa
Wind energy resources, unlike dispatchable central station generation, produce power dependable on external irregular source and that is the incident wind speed which does not always blow when electricity is needed. This results in the variability, unpredictability, and uncertainty of wind resources. Therefore, the integration of wind facilities to utility electrical grid presents a major challenge to power system operator. Such integration has significant impact on the optimum power flow, transmission congestion, power quality issues, system stability, load dispatch, and economic analysis. Due to the irregular nature of wind power production, accurate prediction represents the major challenge to power system operators. Therefore, in this thesis two novel models are proposed for wind speed and wind power prediction. One proposed model is dedicated to short-term prediction (one-hour ahead) and the other involves medium term prediction (one-day ahead). The accuracy of the proposed models is revealed by comparing their results with the corresponding values of a reference prediction model referred to as the persistent model. Utility grid operation is not only impacted by the uncertainty of the future production of wind farms, but also by the variability of their current production and how the active and reactive power exchange with the grid is controlled. To address this particular task, a control technique for wind turbines, driven by doubly-fed induction generators (DFIGs), is developed to regulate the terminal voltage by equally sharing the generated/absorbed reactive power between the rotor-side and the gridside converters. To highlight the impact of the new developed technique in reducing the power loss in the generator set, an economic analysis is carried out. Moreover, a new aggregated model for wind farms is proposed that accounts for the irregularity of the incident wind distribution throughout the farm layout. Specifically, this model includes the wake effect and the time delay of the incident wind speed of the different turbines on the farm, and to simulate the fluctuation in the generated power more accurately and more closer to real-time operation. Recently, wind farms with considerable output power ratings have been installed. Their integrating into the utility grid will substantially affect the electricity markets. This thesis investigates the possible impact of wind power variability, wind farm control strategy, wind energy penetration level, wind farm location, and wind power prediction accuracy on the total generation costs and close to real time electricity market prices. These issues are addressed by developing a single auction market model for determining the real-time electricity market prices.
Wind power forecasting: IEA Wind Task 36 & future research issues
Giebel, G.; Cline, J.; Frank, H.; ...
2016-10-03
Here, this paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Taskmore » is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.« less
Southward shift of the global wind energy resource under high carbon dioxide emissions
NASA Astrophysics Data System (ADS)
Karnauskas, Kristopher B.; Lundquist, Julie K.; Zhang, Lei
2018-01-01
The use of wind energy resource is an integral part of many nations' strategies towards realizing the carbon emissions reduction targets set forth in the Paris Agreement, and global installed wind power cumulative capacity has grown on average by 22% per year since 2006. However, assessments of wind energy resource are usually based on today's climate, rather than taking into account that anthropogenic greenhouse gas emissions continue to modify the global atmospheric circulation. Here, we apply an industry wind turbine power curve to simulations of high and low future emissions scenarios in an ensemble of ten fully coupled global climate models to investigate large-scale changes in wind power across the globe. Our calculations reveal decreases in wind power across the Northern Hemisphere mid-latitudes and increases across the tropics and Southern Hemisphere, with substantial regional variations. The changes across the northern mid-latitudes are robust responses over time in both emissions scenarios, whereas the Southern Hemisphere changes appear critically sensitive to each individual emissions scenario. In addition, we find that established features of climate change can explain these patterns: polar amplification is implicated in the northern mid-latitude decrease in wind power, and enhanced land-sea thermal gradients account for the tropical and southern subtropical increases.
Measured and predicted rotor performance for the SERI advanced wind turbine blades
NASA Astrophysics Data System (ADS)
Tangler, J.; Smith, B.; Kelley, N.; Jager, D.
1992-02-01
Measured and predicted rotor performance for the Solar Energy Research Institute (SERI) advanced wind turbine blades were compared to assess the accuracy of predictions and to identify the sources of error affecting both predictions and measurements. An awareness of these sources of error contributes to improved prediction and measurement methods that will ultimately benefit future rotor design efforts. Propeller/vane anemometers were found to underestimate the wind speed in turbulent environments such as the San Gorgonio Pass wind farm area. Using sonic or cup anemometers, good agreement was achieved between predicted and measured power output for wind speeds up to 8 m/sec. At higher wind speeds an optimistic predicted power output and the occurrence of peak power at wind speeds lower than measurements resulted from the omission of turbulence and yaw error. In addition, accurate two-dimensional (2-D) airfoil data prior to stall and a post stall airfoil data synthesization method that reflects three-dimensional (3-D) effects were found to be essential for accurate performance prediction.
Balancing Europe's wind power output through spatial deployment informed by weather regimes.
Grams, Christian M; Beerli, Remo; Pfenninger, Stefan; Staffell, Iain; Wernli, Heini
2017-08-01
As wind and solar power provide a growing share of Europe's electricity1, understanding and accommodating their variability on multiple timescales remains a critical problem. On weekly timescales, variability is related to long-lasting weather conditions, called weather regimes2-5, which can cause lulls with a loss of wind power across neighbouring countries6. Here we show that weather regimes provide a meteorological explanation for multi-day fluctuations in Europe's wind power and can help guide new deployment pathways which minimise this variability. Mean generation during different regimes currently ranges from 22 GW to 44 GW and is expected to triple by 2030 with current planning strategies. However, balancing future wind capacity across regions with contrasting inter-regime behaviour - specifically deploying in the Balkans instead of the North Sea - would almost eliminate these output variations, maintain mean generation, and increase fleet-wide minimum output. Solar photovoltaics could balance low-wind regimes locally, but only by expanding current capacity tenfold. New deployment strategies based on an understanding of continent-scale wind patterns and pan-European collaboration could enable a high share of wind energy whilst minimising the negative impacts of output variability.
The problem of the second wind turbine - a note on a common but flawed wind power estimation method
NASA Astrophysics Data System (ADS)
Gans, F.; Miller, L. M.; Kleidon, A.
2010-06-01
Several recent wind power estimates suggest how this renewable resource can meet all of the current and future global energy demand with little impact on the atmosphere. These estimates are calculated using observed wind speeds in combination with specifications of wind turbine size and density to quantify the extractable wind power. Here we show that this common methodology is flawed because it does not account for energy removal by the turbines that is necessary to ensure the conservation of energy. We will first illustrate the common but flawed methodology using parameters from a recent global quantification of wind power in a simple experimental setup. For a small number of turbines at small scales, the conservation of energy hardly results in a difference when compared to the common method. However, when applied at large to global scales, the ability of radiative gradients to generate a finite amount of kinetic energy needs to be taken into account. Using the same experimental setup, we use the simplest method to ensure the conservation of energy to show a non-negligble decrease in wind velocity after the first turbine that will successively result in lower extraction of the downwind turbines. We then show how the conservation of energy inevitably results in substantially lower estimates of wind power at the global scale. Because conservation of energy is fundamental, we conclude that ultimately environmental constraints set the upper limit for wind power availability at the larger scale rather than detailed engineering specifications of the wind turbine design and placement.
NASA Astrophysics Data System (ADS)
Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.
2010-12-01
Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on individual wind turbines. The information is utilized by several technologies including: a) the Weather Research and Forecasting (WRF) model, which generates finely detailed simulations of future atmospheric conditions, b) the Real-Time Four-Dimensional Data Assimilation System (RTFDDA), which performs continuous data assimilation providing the WRF model with continuous updates of the initial atmospheric state, 3) the Dynamic Integrated Forecast System (DICast®), which statistically optimizes the forecasts using all predictors, and 4) a suite of wind-to-power algorithms that convert wind speed to power for a wide range of wind farms with varying real-time data availability capabilities. In addition to these core wind energy prediction capabilities, NCAR implemented a high-resolution (10 km grid increment) 30-member ensemble RTFDDA prediction system that provides information on the expected range of wind power over a 72-hour forecast period covering Xcel Energy’s service areas. This talk will include descriptions of these capabilities and report on several topics including initial results of next-day forecasts and nowcasts of wind energy ramp events, influence of local observations on forecast skill, and overall lessons learned to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flowers, L.; Miner-Nordstrom, L.
2006-01-01
As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Especially in arid U.S. regions, communities may soon face hard choices with respect to water and electric power. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in costmore » to be competitive with thermoelectric generation. Wind energy can potentially offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The U.S. Department of Energy (DOE) Wind Energy Technologies Program has been exploring the potential for wind power to meet growing challenges for water supply and treatment. The DOE is currently characterizing the U.S. regions that are most likely to benefit from wind-water applications and is also exploring the associated technical and policy issues associated with bringing wind energy to bear on water resource challenges.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... Energy Carolinas, LLC, to construct up to three (3) power generating wind turbines within the Pamlico... turbines in NC's coastal waters, entitled Coastal Wind, Energy for North Carolina's Future, dated June 2009... reasonable number of alternatives, including the no action alternative and constructing the wind turbines and...
Wind speed statistics for Goldstone, California, anemometer sites
NASA Technical Reports Server (NTRS)
Berg, M.; Levy, R.; Mcginness, H.; Strain, D.
1981-01-01
An exploratory wind survey at an antenna complex was summarized statistically for application to future windmill designs. Data were collected at six locations from a total of 10 anemometers. Statistics include means, standard deviations, cubes, pattern factors, correlation coefficients, and exponents for power law profile of wind speed. Curves presented include: mean monthly wind speeds, moving averages, and diurnal variation patterns. It is concluded that three of the locations have sufficiently strong winds to justify consideration for windmill sites.
Research on design of cryotransformers and its prospects for the future
NASA Astrophysics Data System (ADS)
Lech, W.
1985-02-01
Calculation results of the technical-economic parameters of large power cryotransformers with windings of pure aluminum, presented in this paper, indicate that the production of such cryotransformers could be justified and that resumption of the research work in this field would be advisable. On the basis of significant progress in the development of new multifilament superconducting wires it was concluded that the construction of cryotransformers with superconducting windings will become feasible in the near future, and that most likely these windings will operate at the temperature of liquid hydrogen.
Analysis of Ideal Towers for Tall Wind Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, Katherine L; Damiani, Rick R; Roberts, Joseph O
Innovation in wind turbine tower design is of significant interest for future development of wind power plants. First, wind turbine towers account for a large portion of overall capital expenditures for wind power projects. Second, for low wind-resource regions of the world, the use of low-cost tall-tower technology has the potential to open new markets for development. This study investigates the relative potential of various tower configurations in terms of mass and cost. For different market applications and hub heights, idealized tall towers are designed and compared. The results show that innovation in wind turbine controls makes reaching higher hubmore » heights with current technology economically viable. At the same time, new technologies hold promise for reducing tower costs as these technologies mature and hub heights reach twice the current average.« less
Analysis of Ideal Towers for Tall Wind Applications: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, Katherine L; Damiani, Rick R; Roberts, Joseph O
Innovation in wind turbine tower design is of significant interest for future development of wind power plants. First, wind turbine towers account for a large portion of overall capital expenditures for wind power projects. Second, for low wind-resource regions of the world, the use of low-cost tall-tower technology has the potential to open new markets for development. This study investigates the relative potential of various tower configurations in terms of mass and cost. For different market applications and hub heights, idealized tall towers are designed and compared. The results show that innovation in wind turbine controls makes reaching higher hubmore » heights with current technology economically viable. At the same time, new technologies hold promise for reducing tower costs as these technologies mature and hub heights reach twice the current average.« less
Prognostics and Health Management of Wind Turbines -- Current Status and Future Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Shuangwen
The global wind industry has seen tremendous growth during the past two decades. However, the industry is challenged by premature component failures, which lead to increased turbine downtime and subsequently, cost of energy for wind power. To mitigate the impacts from these failures, the wind industry has been exploring various areas for improvements ranging from product design, new materials or lubricants, to operation and maintenance (O&M) practices. Condition-based maintenance or prognostics and health management (PHM) has been explored as one enabling technology for improving O&M practices. This chapter provides a brief overview of wind turbine PHM with a focus onmore » operational data mining and condition monitoring of drivetrains. Some future research and development opportunities in wind turbine PHM are also briefly discussed.« less
The problem of the second wind turbine - a note on a common but flawed wind power estimation method
NASA Astrophysics Data System (ADS)
Gans, F.; Miller, L. M.; Kleidon, A.
2012-06-01
Several recent wind power estimates suggest that this renewable energy resource can meet all of the current and future global energy demand with little impact on the atmosphere. These estimates are calculated using observed wind speeds in combination with specifications of wind turbine size and density to quantify the extractable wind power. However, this approach neglects the effects of momentum extraction by the turbines on the atmospheric flow that would have effects outside the turbine wake. Here we show with a simple momentum balance model of the atmospheric boundary layer that this common methodology to derive wind power potentials requires unrealistically high increases in the generation of kinetic energy by the atmosphere. This increase by an order of magnitude is needed to ensure momentum conservation in the atmospheric boundary layer. In the context of this simple model, we then compare the effect of three different assumptions regarding the boundary conditions at the top of the boundary layer, with prescribed hub height velocity, momentum transport, or kinetic energy transfer into the boundary layer. We then use simulations with an atmospheric general circulation model that explicitly simulate generation of kinetic energy with momentum conservation. These simulations show that the assumption of prescribed momentum import into the atmospheric boundary layer yields the most realistic behavior of the simple model, while the assumption of prescribed hub height velocity can clearly be disregarded. We also show that the assumptions yield similar estimates for extracted wind power when less than 10% of the kinetic energy flux in the boundary layer is extracted by the turbines. We conclude that the common method significantly overestimates wind power potentials by an order of magnitude in the limit of high wind power extraction. Ultimately, environmental constraints set the upper limit on wind power potential at larger scales rather than detailed engineering specifications of wind turbine design and placement.
Keeping the Future Bright: Department of Defense (DOD) Sustainable Energy Strategy for Installations
2016-04-04
sustainable energy included renewable energy sources, such as hydroelectricity, solar energy, wind energy, wave power, geothermal energy, bioenergy, tidal...energy, including bioftiel and other alternative sources (wind. solar, and geothermal ).27 The SECNAV made security and independence the two energy...Navy’s China Lake geothermal power plant in California is DOD’s largest renewable energy project supplying nearly half of DOD’s renewable energy
2015 Wind Technologies Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ryan; Bolinger, Mark; Barbose, Galen
Annual wind power capacity additions in the United States surged in 2015 and are projected to continue at a rapid clip in the coming five years. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—having been extended for several years (though with a phase-down schedule, described further on pages 68-69), as well as a myriad of state-level policies. Wind additions are also being driven by improvements in the cost and performance of wind power technologies, yielding low power sales prices for utility, corporate, and other purchasers. At the same time, the prospectsmore » for growth beyond the current PTC cycle remain uncertain: growth could be blunted by declining federal tax support, expectations for low natural gas prices, and modest electricity demand growth. This annual report—now in its tenth year—provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2015. The report begins with an overview of key installation-related trends: trends in U.S. wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development; and the quantity of proposed wind power capacity in various interconnection queues in the United States. Next, the report covers an array of wind power industry trends: developments in turbine manufacturer market share; manufacturing and supply-chain developments; wind turbine and component imports into and exports from the United States; project financing developments; and trends among wind power project owners and power purchasers. The report then turns to a summary of wind turbine technology trends: turbine size, hub height, rotor diameter, specific power, and IEC Class. After that, the report discusses wind power performance, cost, and pricing trends. In so doing, it describes trends in project performance, wind turbine transaction prices, installed project costs, and operations and maintenance (O&M) expenses. It also reviews the prices paid for wind power in the United States and how those prices compare to short-term wholesale electricity prices and forecasts of future natural gas prices. Next, the report examines policy and market factors impacting the domestic wind power market, including federal and state policy drivers as well as transmission and grid integration issues. The report concludes with a preview of possible near-term market developments. This edition of the annual report updates data presented in previous editions while highlighting key trends and important new developments from 2015. The report concentrates on larger, utility-scale wind turbines, defined here as individual turbines that exceed 100 kW in size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan; Koralewicz, Przemyslaw; Wallen, Robb
The rapid expansion of wind power has led many transmission system operators to demand modern wind power plants to comply with strict interconnection requirements. Such requirements involve various aspects of wind power plant operation, including fault ride-through and power quality performance as well as the provision of ancillary services to enhance grid reliability. During recent years, the National Renewable Energy Laboratory (NREL) of the U.S. Department of Energy has developed a new, groundbreaking testing apparatus and methodology to test and demonstrate many existing and future advanced controls for wind generation (and other renewable generation technologies) on the multimegawatt scale andmore » medium-voltage levels. This paper describes the capabilities and control features of NREL's 7-MVA power electronic grid simulator (also called a controllable grid interface, or CGI) that enables testing many active and reactive power control features of modern wind turbine generators -- including inertial response, primary and secondary frequency responses, and voltage regulation -- under a controlled, medium-voltage grid environment. In particular, this paper focuses on the specifics of testing the balanced and unbalanced fault ride-through characteristics of wind turbine generators under simulated strong and weak medium-voltage grid conditions. In addition, this paper provides insights on the power hardware-in-the-loop feature implemented in the CGI to emulate (in real time) the conditions that might exist in various types of electric power systems under normal operations and/or contingency scenarios. Using actual test examples and simulation results, this paper describes the value of CGI as an ultimate modeling validation tool for all types of 'grid-friendly' controls by wind generation.« less
Using Analog Ensemble to generate spatially downscaled probabilistic wind power forecasts
NASA Astrophysics Data System (ADS)
Delle Monache, L.; Shahriari, M.; Cervone, G.
2017-12-01
We use the Analog Ensemble (AnEn) method to generate probabilistic 80-m wind power forecasts. We use data from the NCEP GFS ( 28 km resolution) and NCEP NAM (12 km resolution). We use forecasts data from NAM and GFS, and analysis data from NAM which enables us to: 1) use a lower-resolution model to create higher-resolution forecasts, and 2) use a higher-resolution model to create higher-resolution forecasts. The former essentially increases computing speed and the latter increases forecast accuracy. An aggregated model of the former can be compared against the latter to measure the accuracy of the AnEn spatial downscaling. The AnEn works by taking a deterministic future forecast and comparing it with past forecasts. The model searches for the best matching estimates within the past forecasts and selects the predictand value corresponding to these past forecasts as the ensemble prediction for the future forecast. Our study is based on predicting wind speed and air density at more than 13,000 grid points in the continental US. We run the AnEn model twice: 1) estimating 80-m wind speed by using predictor variables such as temperature, pressure, geopotential height, U-component and V-component of wind, 2) estimating air density by using predictors such as temperature, pressure, and relative humidity. We use the air density values to correct the standard wind power curves for different values of air density. The standard deviation of the ensemble members (i.e. ensemble spread) will be used as the degree of difficulty to predict wind power at different locations. The value of the correlation coefficient between the ensemble spread and the forecast error determines the appropriateness of this measure. This measure is prominent for wind farm developers as building wind farms in regions with higher predictability will reduce the real-time risks of operating in the electricity markets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zayas, Jose; Derby, Mike; Ralston, Kiersten
Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing electricity generation by wind plants. The goal of A2e is to ensure future wind plants are sited, built, and operated in a way that produces the most cost-effective, usable electric power.
It's Indisputable: Five Facts About Planning and Operating Modern Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloom, Aaron; Helman, Udi; Holttinen, Hannele
An indisputable fact cannot be rebutted. It is supported by theory and experience. Over the past 25 years, wind and solar generation has undergone dramatic growth, resulting in a variety of experiences that model the integration of wind and solar into the planning and operation of modern electric power systems. In this article, we bring together examples from Europe, North America, and Australia to identify five indisputable facts about planning and operating modern power systems. Taken together, we hope these experiences can help build consensus among the engineering and public policy communities about the current state of wind and solarmore » integration and also facilitate conversations about evolving future challenges.« less
Integrated Wind Power Planning Tool
NASA Astrophysics Data System (ADS)
Rosgaard, Martin; Giebel, Gregor; Skov Nielsen, Torben; Hahmann, Andrea; Sørensen, Poul; Madsen, Henrik
2013-04-01
This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the title "Integrated Wind Power Planning Tool". The goal is to integrate a mesoscale numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. Using the state-of-the-art mesoscale NWP model Weather Research & Forecasting model (WRF) the forecast error is sought quantified in dependence of the time scale involved. This task constitutes a preparative study for later implementation of features accounting for NWP forecast errors in the DTU Wind Energy maintained Corwind code - a long term wind power planning tool. Within the framework of PSO 10464 research related to operational short term wind power prediction will be carried out, including a comparison of forecast quality at different mesoscale NWP model resolutions and development of a statistical wind power prediction tool taking input from WRF. The short term prediction part of the project is carried out in collaboration with ENFOR A/S; a Danish company that specialises in forecasting and optimisation for the energy sector. The integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated short term prediction tool constitutes scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator. The need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2025 from the current 20%.
Atmosphere to Electrons (A2e): Enabling the Wind Plant of Tomorrow
Zayas, Jose; Derby, Mike; Ralston, Kiersten; Clark, Charlton; Brake, Dan; Johnson, Nick
2018-01-16
Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing electricity generation by wind plants. The goal of A2e is to ensure future wind plants are sited, built, and operated in a way that produces the most cost-effective, usable electric power.
Evaluating potentials for future generation off-shore wind-power outside Norway
NASA Astrophysics Data System (ADS)
Benestad, R. E.; Haugen, J.; Haakenstad, H.
2012-12-01
With todays critical need of renewable energy sources, it is naturally to look towards wind power. With the long coast of Norway, there is a large potential for wind farms offshore Norway. Although there are more challenges with offshore wind energy installations compared to wind farms on land, the offshore wind is generally higher, and there is also higher persistence of wind speed values in the power generating classes. I planning offshore wind farms, there is a need of evaluation of the wind resources, the wind climatology and possible future changes. In this aspect, we use data from regional climate model runs performed in the European ENSEMBLE-project (van der Linden and J.F.B. Mitchell, 2009). In spite of increased reliability in RCMs in the recent years, the simulations still suffer from systematic model errors, therefore the data has to be corrected before using them in wind resource analyses. In correcting the wind speeds from the RCMs, we will use wind speeds from a Norwegian high resolution wind- and wave- archive, NORA10 (Reistad et al 2010), to do quantile mapping (Themeβl et. al. 2012). The quantile mapping is performed individually for each regional simulation driven by ERA40-reanalysis from the ENSEMBLE-project corrected against NORA10. The same calibration is then used to the belonging regional climate scenario. The calibration is done for each grid cell in the domain and for each day of the year centered in a +/-15 day window to make an empirical cumulative density function for each day of the year. The quantile mapping of the scenarios provide us with a new wind speed data set for the future, more correct compared to the raw ENSEMBLE scenarios. References: Reistad M., Ø. Breivik, H. Haakenstad, O. J. Aarnes, B. R. Furevik and J-R Bidlo, 2010, A high-resolution hindcast of wind and waves for The North Sea, The Norwegian Sea and The Barents Sea. J. Geophys. Res., 116. doi:10.1029/2010JC006402. Themessl M. J., A. Gobiet and A. Leuprecht, 2012, Empirical-statistical downscaling and error correction of regional climate models and its imipact on the climate change signal. Climatic Change 112: 449-468, DOI 10.1007/s10584-011-0224-4. Van der Linden P. and J.F.B. Mitchell, 2009, ENSEMBLES: Climate Change and its Impacts_ Summary and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK.
Equilibrium pricing in electricity markets with wind power
NASA Astrophysics Data System (ADS)
Rubin, Ofir David
Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from 2000 to 2009. Moreover, according to their predictions, by the end of 2010 global wind power capacity will reach 190 GW. Since electricity is a unique commodity, this remarkable expansion brings forward several key economic questions regarding the integration of significant amount of wind power capacity into deregulated electricity markets. The overall dissertation objective is to develop a comprehensive theoretical framework that enables the modeling of the performance and outcome of wind-integrated electricity markets. This is relevant because the state of knowledge of modeling electricity markets is insufficient for the purpose of wind power considerations. First, there is a need to decide about a consistent representation of deregulated electricity markets. Surprisingly, the related body of literature does not agree on the very economic basics of modeling electricity markets. That is important since we need to capture the fundamentals of electricity markets before we introduce wind power to our study. For example, the structure of the electric industry is a key. If market power is present, the integration of wind power has large consequences on welfare distribution. Since wind power uncertainty changes the dynamics of information it also impacts the ability to manipulate market prices. This is because the quantity supplied by wind energy is not a decision variable. Second, the intermittent spatial nature of wind over a geographical region is important because the market value of wind power capacity is derived from its statistical properties. Once integrated into the market, the distribution of wind will impact the price of electricity produced from conventional sources of energy. Third, although wind power forecasting has improved in recent years, at the time of trading short-term electricity forwards, forecasting precision is still low. Therefore, it is crucial that the uncertainty in forecasting wind power is considered when modeling trading behavior. Our theoretical framework is based on finding a symmetric Cournot-Nash equilibrium in double-sided auctions in both forwards and spot electricity markets. The theoretical framework allows for the first time, to the best of our knowledge, a model of electricity markets that explain two main empirical findings; the existence of forwards premium and spot market mark-ups. That is a significant contribution since so far forward premiums have been explained exclusively by the assumption of risk-averse behavior while spot mark-ups are the outcome of the body of literature assuming oligopolistic competition. In the next step, we extend the theoretical framework to account for deregulated electricity markets with wind power. Modeling a wind-integrated electricity market allows us to analyze market outcomes with respect to three main factors; the introduction of uncertainty from the supply side, ownership of wind power capacity and the geographical diversification of wind power capacity. For the purpose of modeling trade in electricity forwards one should simulate the information agents have regarding future availability of aggregate wind power. This is particularly important for modeling accurately traders' ability to predict the spot price distribution. We develop a novel numerical methodology for the simulation of the conditional distribution of regional wind power at the time of trading short-term electricity forwards. Finally, we put the theoretical framework and the numerical methodology developed in this study to work by providing a detailed computational experiment examining electricity market outcomes for a particular expansion path of wind power capacity.
Strategies for Voltage Control and Transient Stability Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiskens, Ian A.
As wind generation grows, its influence on power system performance will becoming increasingly noticeable. Wind generation di ffers from traditional forms of generation in numerous ways though, motivating the need to reconsider the usual approaches to power system assessment and performance enhancement. The project has investigated the impact of wind generation on transient stability and voltage control, identifying and addressing issues at three distinct levels of the power system: 1) at the device level, the physical characteristics of wind turbine generators (WTGs) are quite unlike those of synchronous machines, 2) at the wind-farm level, the provision of reactive support ismore » achieved through coordination of numerous dissimilar devices, rather than straightforward generator control, and 3) from a systems perspective, the location of wind-farms on the sub-transmission network, coupled with the variability inherent in their power output, can cause complex voltage control issues. The project has sought to develop a thorough understanding of the dynamic behaviour of type-3 WTGs, and in particular the WECC generic model. The behaviour of such models is governed by interactions between the continuous dynamics of state variables and discrete events associated with limits. It was shown that these interactions can be quite complex, and may lead to switching deadlock that prevents continuation of the trajectory. Switching hysteresis was proposed for eliminating deadlock situations. Various type-3 WTG models include control blocks that duplicate integrators. It was shown that this leads to non-uniqueness in the conditions governing steady-state, and may result in pre- and post-disturbance equilibria not coinciding. It also gives rise to a zero eigenvalue in the linearized WTG model. In order to eliminate the anomalous behaviour revealed through this investigation, WECC has now released a new generic model for type-3 WTGs. Wind-farms typically incorporate a variety of voltage control equipment including tapchanging transformers, switched capacitors, SVCs, STATCOMs and the WTGs themselves. The project has considered the coordinated control of this equipment, and has addressed a range of issues that arise in wind-farm operation. The first concerns the ability of WTGs to meet reactive power requirements when voltage saturation in the collector network restricts the reactive power availability of individual generators. Secondly, dynamic interactions between voltage regulating devices have been investigated. It was found that under certain realistic conditions, tap-changing transformers may exhibit instability. In order to meet cost, maintenance, fault tolerance and other requirements, it is desirable for voltage control equipment to be treated as an integrated system rather than as independent devices. The resulting high-level scheduling of wind-farm reactive support has been investigated. In addressing this control problem, several forms of future information were considered, including exact future knowledge and stochastic predictions. Deterministic and Stochastic Dynamic Programming techniques were used in the development of control algorithms. The results demonstrated that while exact future knowledge is very useful, simple prediction methods yield little bene fit. The integration of inherently variable wind generation into weak grids, particularly subtransmission networks that are characterized by low X=R ratios, aff ects bus voltages, regulating devices and line flows. The meshed structure of these networks adds to the complexity, especially when wind generation is distributed across multiple nodes. A range of techniques have been considered for analyzing the impact of wind variability on weak grids. Sensitivity analysis, based on the power-flow Jacobian, was used to highlight sections of a system that are most severely a ffected by wind-power variations. A continuation power flow was used to determine parameter changes that reduce the impact of wind-power variability. It was also used to explore interactions between multiple wind-farms. Furthermore, these tools have been used to examine the impact of wind injection on transformer tap operation in subtransmission networks. The results of a tap operation simulation study show that voltage regulation at wind injection nodes increases tap change operations. The tradeo ff between local voltage regulation and tap change frequency is fundamentally important in optimizing the size of reactive compensation used for voltage regulation at wind injection nodes. Line congestion arising as a consequence of variable patterns of wind-power production has also been investigated. Two optimization problems have been formulated, based respectively on the DC and AC power flow models, for identifying vulnerable line segments. The DC optimization is computationally more e fficient, whereas the AC sensitivity-based optimization provides greater accuracy.« less
NASA Astrophysics Data System (ADS)
Daniel, Michael T.
Here in the early 21st century humanity is continuing to seek improved quality of life for citizens throughout the world. This global advancement is providing more people than ever with access to state-of-the-art services in areas such as transportation, entertainment, computing, communication, and so on. Providing these services to an ever-growing population while considering the constraints levied by continuing climate change will require new frontiers of clean energy to be developed. At the time of this writing, offshore wind has been proven as both a politically and economically agreeable source of clean, sustainable energy by northern European nations with many wind farms deployed in the North, Baltic, and Irish Seas. Modern offshore wind farms are equipped with an electrical system within the farm itself to aggregate the energy from all turbines in the farm before it is transmitted to shore. This collection grid is traditionally a 3-phase medium voltage alternating current (MVAC) system. Due to reactive power and other practical constraints, it is preferable to use a medium voltage direct current (MVDC) collection grid when siting farms >150 km from shore. To date, no offshore wind farm features an MVDC collection grid. However, MVDC collection grids are expected to be deployed with future offshore wind farms as they are sited further out to sea. In this work it is assumed that many future offshore wind farms may utilize an MVDC collection grid to aggregate electrical energy generated by individual wind turbines. As such, this work presents both per-phase and per-pole power electronic converter systems suitable for interfacing individual wind turbines to such an MVDC collection grid. Both interfaces are shown to provide high input power factor at the wind turbine while providing DC output current to the MVDC grid. Common mode voltage stress and circulating currents are investigated, and mitigation strategies are provided for both interfaces. A power sharing scheme for connecting multiple wind turbines in series to allow for a higher MVDC grid voltage is also proposed and analyzed. The overall results show that the proposed per-pole approach yields key advantages in areas of common mode voltage stress, circulating current, and DC link capacitance, making it the more appropriate choice of the two proposed interfaces for this application.
Lessons learned from hybrid wind/PV village power system installations in Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergey, M.
1995-09-01
In the last three years eight decentralized village power systems utilizing small wind turbines as the primary energy source have been installed in rural Mexico. Hybrid wind/PV systems have been installed in five States and by three vendors. Seven out of the eight systems, which range i size from 9.3--71.2kW in combined wind and PV capacity, utilize one or more 10 kW wind turbines. All of these installations have battery banks and use static inverters to provide AC power for distribution to homes, businesses, and community facilities. On all but one of the systems a diesel generator is used tomore » provide back-up power. This paper attempts to summarize the range of costs and economics, performance, and operational experiences for all eight installations. Several of the systems are monitored for performance, including one that is extensively monitored under a cooperative program between the Instituto de Investigaciones Electricas and Sandia National Laboratory. Lessons learned from these systems provide insights that may allow future village power systems of this architecture to be installed at lower costs, to be operated more effectively and efficiently, and to be better able to satisfy customer requirements.« less
Research on power source structure optimization for East China Power Grid
NASA Astrophysics Data System (ADS)
Xu, Lingjun; Sang, Da; Zhang, Jianping; Tang, Chunyi; Xu, Da
2017-05-01
The structure of east china power grid is not reasonable for the coal power takes a much higher proportion than hydropower, at present the coal power takes charge of most peak load regulation, and the pressure of peak load regulation cannot be ignored. The nuclear power, wind power, photovoltaic, other clean energy and hydropower, coal power and wind power from outside will be actively developed in future, which increases the pressure of peak load regulation. According to development of economic and social, Load status and load prediction, status quo and planning of power source and the characteristics of power source, the peak load regulation balance is carried out and put forward a reasonable plan of power source allocation. The ultimate aim is to optimize the power source structure and to provide reference for power source allocation in east china.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flowers, L.; Miner-Nordstrom, L.
2006-01-01
As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economicallymore » meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Wind Vision analysis demonstrates the economic value that wind power can bring to the nation, a value exceeding the costs of deployment. Wind’s environmental benefits can address key societal challenges such as climate change, air quality and public health, and water scarcity. Wind deployment can provide U.S. jobs, U.S. manufacturing, and lease and tax revenues in local communities to strengthen and support a transition of the nation’s electricity sector towards a low-carbon U.S. economy. The path needed to achieve 10% wind by 2020, 20% by 2030, and 35% by 2050 requires new tools, priorities, and emphases beyond those forgedmore » by the wind industry in growing to 4.5% of current U.S. electricity demand. Consideration of new strategies and updated priorities as identified in the Wind Vision could provide substantial positive outcomes for future generations.« less
An assessment of renewable energy in Southern Africa: Wind, solar, hydro
NASA Astrophysics Data System (ADS)
Fant, Charles William, IV
While electricity demand is rising quickly in the Southern African Power Pool (SAPP), the nations involved struggle to build the necessary infrastructure to meet the demand. In addition, the principal member---the Republic of South Africa---has made ambitious targets to reduce emissions via renewable energy technology. In this dissertation, three stand-alone studies on this subject are presented that address the future reliability of renewable energy in southern Africa, considering climate variability as well as long-term trends caused by climate change. In the first study, a suite of models are used to assess the vulnerability of the countries dependent on resources from the Zambezi River Basin to changes in climate. The study finds that the sectors most vulnerable to climate change are: hydropower in Zambia, irrigation in Zimbabwe and Mozambique, and flooding in Mozambique. In the second study, hourly reanalysis data is used to characterize wind power intermittency and assess the value of interconnection in southern Africa. The study finds that wind potential is high in Kenya, central Tanzania, and southern South Africa. With a closer look, wind power resource in South Africa is unreliable (i.e. intermittent) and is weak when power demand is highest on all relevant time-scales. In the third study, presented in Chapter 4, we develop a risk profile for changes in the long-term mean of wind and solar power sources. To do this, we use a statistical relationship between global mean temperature and each local gridded wind speed and solar radiation from the GCMs. We find that only small changes in wind speed and solar radiation are predicted in the median of the distributions projected to 2050. Furthermore, at the extremes of the distribution, relatively significant changes are predicted in some parts of southern Africa, and are associated with low probability. Finally, in the conclusion chapter, limitations and assumptions are listed for each of the three studies, South Africa's options for reducing emissions are revisited, power trade and interconnection are discussed broadly, and future research is suggested.
Integration of permanent magnet synchronous generator wind turbines into power grid
NASA Astrophysics Data System (ADS)
Abedini, Asghar
The world is seeing an ever-increasing demand for electrical energy. The future growth of electrical power generation needs to be a mix of technologies including fossil fuels, hydro, nuclear, wind, and solar. The federal and state energy agencies have taken several proactive steps to increase the share of renewable energy in the total generated electrical power. In 2005, 11.1% of the total 1060 GW electricity generation capacity was from Renewable Energy Sources (RES) in the US. The power capacity portfolio included 9.2% from hydroelectric, 0.87% from wind, and 0.7% from biomass. Other renewable power capacity included 2.8 GW of geothermal, 0.4 GW of solar thermal, and 0.2 GW of solar PV. Although the share of renewable energy sources is small compared with the total power capacity, they are experiencing a high and steady growth. The US is leading the world in wind energy growth with a 27% increase in 2006 and a projected 26% increase in 2007, according to the American Wind Energy Association (AWEA). The US Department of Energy benchmarked a goal to meet 5% of the nation's energy need by launching the Wind Powering America (WPA) program. Although renewable energy sources have many benefits, their utilization in the electrical grid does not come without cost. The higher penetration of RES has introduced many technical and non-technical challenges, including power quality, reliability, safety and protection, load management, grid interconnections and control, new regulations, and grid operation economics. RES such as wind and PV are also intermittent in nature. The energy from these sources is available as long as there is wind or sunlight. However, these are energies that are abundant in the world and the power generated from these sources is pollution free. Due to high price of foundation of wind farms, employing variable speed wind turbines to maximize the extracted energy from blowing wind is more beneficial. On the other hand, since wind power is intermittent, integrating energy storage systems with wind farms has attracted a lot of attention. These two subjects are addressed in this dissertation in detail. Permanent Magnet Synchronous Generators (PMSG) are used in variable speed wind turbines. In this thesis, the dynamic of the PMSG is investigated and a power electronic converter is designed to integrate the wind turbine to the grid. The risks of PMSG wind turbines such as low voltage ride through and short circuits, are assessed and the methods of mitigating the risks are discussed. In the second section of the thesis, various methods of smoothing wind turbine output power are explained and compared. Two novel methods of output power smoothing are analyzed: Rotor inertia and Super capacitors. The advantages and disadvantages of each method are explained and the dynamic model of each method is developed. The performance of the system is evaluated by simulating the wind turbine system in each method. The concepts of the methods of smoothing wind power can be implemented in other types of wind turbines such as Doubly Fed Induction Generator (DFIG) wind turbines.
Impact of strong climate change on balancing and storage needs in a fully renewable energy system
NASA Astrophysics Data System (ADS)
Weber, Juliane; Wohland, Jan; Witthaut, Dirk
2017-04-01
We investigate the impact of strong climate change on a European energy system dominated by wind power. No robust trend can be observed regarding the change of the wind power yield for most countries in Europe. However, intra-annual variabilities in wind power generation robustly increase in most of Central and Western Europe and decrease in Spain, Portugal and Greece by the end of this century. Thus, the generation of wind power tends to increase (decrease) in the winter months compared to the summer months. Due to higher (lower) intra-annual variations, the probability for extreme events with long periods of low power production increases (decreases) in summer. This implies that more (less) energy has to be provided by backup power plants. Our simulations are based on the results of five different Global Climate Models (GCMs) using the Representative Concentration Pathway scenario 8.5 (RCP8.5). These results are dynamically downscaled with the regional atmospheric model RCA4 by the EURO-CORDEX initiative (Coordinated Downscaling Experiment - European Domain). A comparison was made between historical data (1970-2000) and mid-century (2030-2060) and end-of-century (2070-2100) data, respectively. For all timeframes we made the assumption that a certain amount of energy is provided by wind power plants. This implies that changes in wind power potentials are neglected and only temporal effects are considered. Wind speed time series are converted to power generation time series using an extrapolation to hub height and a standardized power curve. Assuming a scenario for the future distribution of wind turbines, we obtain a wind power generation time series aggregated on a national level. The operation of backup power plants and storage facilities is simulated on coarse scales assuming an optimal storage strategy. Backup is required whenever the storage facilities are empty. The amount of change of the backup energy depends on the storage capacity - the higher the capacity, the higher the change as long as storage capacities do not allow for multi-year storage.
Wind energy: Resources, systems, and regional strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grubb, M.J.; Meyer, N.I.
1993-12-31
Wind power is already cost competitive with conventional modes of electricity generation under certain conditions and could, if widely exploited, meet 20 percent or more of the world`s electricity needs within the next four to five decades. The greatest wind potential exists in North America, the former Soviet Union, Africa, and (to a lesser extent), South America, Australia, southern Asia, and parts of Europe. In all these areas, wind can make a significant contribution to the energy supply. In regions of the developing world and in island communities, wind can operate with storage and displace diesel fuel. In more developedmore » areas, wind-generated electricity can be channeled directly into the grid, providing an environmentally benign alternative to fossil fuels. Indeed, wind power can contribute as much as 25 to 45 percent of a grid`s energy supply before economic penalties become prohibitive; the presence of storage facilities or hydroelectric power would increase wind`s share still further. Despite a promising future, opportunities for wind power development are probably being missed because too little is known about either the resource or the technology. International efforts are badly needed to obtain better data and to disseminate technological information around the world. Even then, the extent to which wind is exploited will depend on public reaction and on the willingness of governments to embrace the technology. Action that governments might take to promote wind include providing strategic incentives to further its deployment, funding research on wind resources, taxing fossil fuels to reflect their social costs, and allowing independent wind generators adequate access to electricity systems. 74 refs., 15 figs., 10 tabs.« less
Potential climatic impacts and reliability of large-scale offshore wind farms
NASA Astrophysics Data System (ADS)
Wang, Chien; Prinn, Ronald G.
2011-04-01
The vast availability of wind power has fueled substantial interest in this renewable energy source as a potential near-zero greenhouse gas emission technology for meeting future world energy needs while addressing the climate change issue. However, in order to provide even a fraction of the estimated future energy needs, a large-scale deployment of wind turbines (several million) is required. The consequent environmental impacts, and the inherent reliability of such a large-scale usage of intermittent wind power would have to be carefully assessed, in addition to the need to lower the high current unit wind power costs. Our previous study (Wang and Prinn 2010 Atmos. Chem. Phys. 10 2053) using a three-dimensional climate model suggested that a large deployment of wind turbines over land to meet about 10% of predicted world energy needs in 2100 could lead to a significant temperature increase in the lower atmosphere over the installed regions. A global-scale perturbation to the general circulation patterns as well as to the cloud and precipitation distribution was also predicted. In the later study reported here, we conducted a set of six additional model simulations using an improved climate model to further address the potential environmental and intermittency issues of large-scale deployment of offshore wind turbines for differing installation areas and spatial densities. In contrast to the previous land installation results, the offshore wind turbine installations are found to cause a surface cooling over the installed offshore regions. This cooling is due principally to the enhanced latent heat flux from the sea surface to lower atmosphere, driven by an increase in turbulent mixing caused by the wind turbines which was not entirely offset by the concurrent reduction of mean wind kinetic energy. We found that the perturbation of the large-scale deployment of offshore wind turbines to the global climate is relatively small compared to the case of land-based installations. However, the intermittency caused by the significant seasonal wind variations over several major offshore sites is substantial, and demands further options to ensure the reliability of large-scale offshore wind power. The method that we used to simulate the offshore wind turbine effect on the lower atmosphere involved simply increasing the ocean surface drag coefficient. While this method is consistent with several detailed fine-scale simulations of wind turbines, it still needs further study to ensure its validity. New field observations of actual wind turbine arrays are definitely required to provide ultimate validation of the model predictions presented here.
Floating Offshore Wind in Oregon: Potential for Jobs and Economic Impacts from Two Future Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, Tony; Keyser, David; Tegen, Suzanne
Construction of the first offshore wind power plant in the United States began in 2015, off the coast of Rhode Island, using fixed platform structures that are appropriate for shallow seafloors, like those located off of the East Coast and mid-Atlantic. However, floating platforms, which have yet to be deployed commercially, will likely need to anchor to the deeper seafloor if deployed off of the West Coast. To analyze the employment and economic potential for floating offshore wind along the West Coast, the Bureau of Ocean Energy Management (BOEM) commissioned the National Renewable Energy Laboratory (NREL) to analyze two hypothetical,more » large-scale deployment scenarios for Oregon: 5,500 megawatts (MW) of offshore wind deployment in Oregon by 2050 (Scenario A), and 2,900 MW of offshore wind by 2050 (Scenario B). These levels of deployment could power approximately 1,600,000 homes (Scenario A) or 870,000 homes (Scenario B). Offshore wind would contribute to economic development in Oregon in the near future, and more substantially in the long term, especially if equipment and labor are sourced from within the state. According to the analysis, over the 2020-2050 period, Oregon floating offshore wind facilities could support 65,000-97,000 job-years and add $6.8 billion-$9.9 billion to the state GDP (Scenario A).« less
Powering the Future: A Wind Turbine Design Challenge
ERIC Educational Resources Information Center
Pries, Caitlin Hicks; Hughes, Julie
2011-01-01
Nothing brings out the best in eighth-grade physical science students quite like an engineering challenge. The wind turbine design challenge described in this article has proved to be a favorite among students with its focus on teamwork and creativity and its (almost) sneaky reinforcement of numerous physics concepts. For this activity, pairs of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcy, Cara; Beiter, Philipp
2016-09-01
This report provides a high-level indicator of the future electricity demand for additional electric power generation that is not met by existing generation sources between 2015 and 2050. The indicator is applied to coastal regions, including the Great Lakes, to assess the regional opportunity space for offshore wind. An assessment of opportunity space can be a first step in determining the prospects and the system value of a technology. The metric provides the maximal amount of additional generation that is likely required to satisfy load in future years.
Large Scale Integration of Renewable Power Sources into the Vietnamese Power System
NASA Astrophysics Data System (ADS)
Kies, Alexander; Schyska, Bruno; Thanh Viet, Dinh; von Bremen, Lueder; Heinemann, Detlev; Schramm, Stefan
2017-04-01
The Vietnamese Power system is expected to expand considerably in upcoming decades. Power capacities installed are projected to grow from 39 GW in 2015 to 129.5 GW by 2030. Installed wind power capacities are expected to grow to 6 GW (0.8 GW 2015) and solar power capacities to 12 GW (0.85 GW 2015). This goes hand in hand with an increase of the renewable penetration in the power mix from 1.3% from wind and photovoltaics (PV) in 2015 to 5.4% by 2030. The overall potential for wind power in Vietnam is estimated to be around 24 GW. Moreover, the up-scaling of renewable energy sources was formulated as one of the priorized targets of the Vietnamese government in the National Power Development Plan VII. In this work, we investigate the transition of the Vietnamese power system towards high shares of renewables. For this purpose, we jointly optimise the expansion of renewable generation facilities for wind and PV, and the transmission grid within renewable build-up pathways until 2030 and beyond. To simulate the Vietnamese power system and its generation from renewable sources, we use highly spatially and temporally resolved historical weather and load data and the open source modelling toolbox Python for Power System Analysis (PyPSA). We show that the highest potential of renewable generation for wind and PV is observed in southern Vietnam and discuss the resulting need for transmission grid extensions in dependency of the optimal pathway. Furthermore, we show that the smoothing effect of wind power has several considerable beneficial effects and that the Vietnamese hydro power potential can be efficiently used to provide balancing opportunities. This work is part of the R&D Project "Analysis of the Large Scale Integration of Renewable Power into the Future Vietnamese Power System" (GIZ, 2016-2018).
Miller, Lee M; Kleidon, Axel
2016-11-29
Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 W e m -2 ) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 W e m -2 ) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 W e m -2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.
Miller, Lee M.; Kleidon, Axel
2016-01-01
Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m−2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m−2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m−2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power. PMID:27849587
Examples of mesoscale structures and short-term wind variations detected by VHF Doppler radar
NASA Technical Reports Server (NTRS)
Forbes, G. S.
1986-01-01
The first of three wind profilers planned for operation in central and western Pennsylvania began full-time, high-quality operation during July 1985. It is located about 20 km south-southeast of University Park and operates at 50 MHz. Another 50-MHz radar and a 400-MHz radar are to be installed over the next few months, to complete a mesoscale triangle with sides of 120 to 160 km. During the period since early July, a number of weather systems have passed over the wind profiler. Those accompanied by thunderstorms caused data losses either because the Department computer system lost power or because power went out at the profiler site. A backup power supply and an automatic re-start program will be added to the profiler system to minimize such future losses. Data have normally been averaged over a one-hour period, although there have been some investigations of shorter-period averaging. In each case, preliminary examinations reveal that the profiler winds are indicative of meteorological phenomena. The only occasions of bad or missing data are obtained when airplane noise is occasionally experienced and when the returned power is nearly at the noise level, at the upper few gates, where a consensus wind cannot be determined. Jets streams, clouds, and diurnal variations of winds are discussed.
Performance Prediction and Validation: Data, Frameworks, and Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinnesand, Heidi
2017-05-19
Improving the predictability and reliability of wind power generation and operations will reduce costs and potentially establish a framework to attract new capital into the distributed wind sector, a key cost reduction requirement highlighted in results from the distributed wind future market assessment conducted with dWind. Quantifying and refining the accuracy of project performance estimates will also directly address several of the key challenges identified by industry stakeholders in 2015 as part of the distributed wind resource assessment workshop and be cross-cutting for several other facets of the distributed wind portfolio. This presentation covers the efforts undertaken in 2016 tomore » address these topics.« less
NASA Astrophysics Data System (ADS)
Ohba, Masamichi; Nohara, Daisuke; Kadokura, Shinji
2016-04-01
Severe storms or other extreme weather events can interrupt the spin of wind turbines in large scale that cause unexpected "wind ramp events". In this study, we present an application of self-organizing maps (SOMs) for climatological attribution of the wind ramp events and their probabilistic prediction. The SOM is an automatic data-mining clustering technique, which allows us to summarize a high-dimensional data space in terms of a set of reference vectors. The SOM is applied to analyze and connect the relationship between atmospheric patterns over Japan and wind power generation. SOM is employed on sea level pressure derived from the JRA55 reanalysis over the target area (Tohoku region in Japan), whereby a two-dimensional lattice of weather patterns (WPs) classified during the 1977-2013 period is obtained. To compare with the atmospheric data, the long-term wind power generation is reconstructed by using a high-resolution surface observation network AMeDAS (Automated Meteorological Data Acquisition System) in Japan. Our analysis extracts seven typical WPs, which are linked to frequent occurrences of wind ramp events. Probabilistic forecasts to wind power generation and ramps are conducted by using the obtained SOM. The probability are derived from the multiple SOM lattices based on the matching of output from TIGGE multi-model global forecast to the WPs on the lattices. Since this method effectively takes care of the empirical uncertainties from the historical data, wind power generation and ramp is probabilistically forecasted from the forecasts of global models. The predictability skill of the forecasts for the wind power generation and ramp events show the relatively good skill score under the downscaling technique. It is expected that the results of this study provides better guidance to the user community and contribute to future development of system operation model for the transmission grid operator.
Market protocols in ERCOT and their effect on wind generation
Sioshansi, Ramteen; Hurlbut, David
2009-08-22
Integrating wind generation into power systems and wholesale electricity markets presents unique challenges due to the characteristics of wind power, including its limited dispatchability, variability in generation, difficulty in forecasting resource availability, and the geographic location of wind resources. Texas has had to deal with many of these issues beginning in 2002 when it restructured its electricity industry and introduced aggressive renewable portfolio standards that helped spur major investments in wind generation. In this paper we discuss the issues that have arisen in designing market protocols that take account of these special characteristics of wind generation and survey the regulatorymore » and market rules that have been developed in Texas. We discuss the perverse incentives some of the rules gave wind generators to overschedule generation in order to receive balancing energy payments, and steps that have been taken to mitigate those incentive effects. Lastly, we discuss more recent steps taken by the market operator and regulators to ensure transmission capacity is available for new wind generators that are expected to come online in the future.« less
How to develop renewable power in China? A cost-effective perspective.
Cong, Rong-Gang; Shen, Shaochuan
2014-01-01
To address the problems of climate change and energy security, Chinese government strived to develop renewable power as an important alternative of conventional electricity. In this paper, the learning curve model is employed to describe the decreasing unit investment cost due to accumulated installed capacity; the technology diffusion model is used to analyze the potential of renewable power. Combined with the investment cost, the technology potential, and scenario analysis of China social development in the future, we develop the Renewable Power Optimization Model (RPOM) to analyze the optimal development paths of three sources of renewable power from 2009 to 2020 in a cost-effective way. Results show that (1) the optimal accumulated installed capacities of wind power, solar power, and biomass power will reach 169000, 20000, and 30000 MW in 2020; (2) the developments of renewable power show the intermittent feature; (3) the unit investment costs of wind power, solar power, and biomass power will be 4500, 11500, and 5700 Yuan/KW in 2020; (4) the discounting effect dominates the learning curve effect for solar and biomass powers; (5) the rise of on-grid ratio of renewable power will first promote the development of wind power and then solar power and biomass power.
How to Develop Renewable Power in China? A Cost-Effective Perspective
2014-01-01
To address the problems of climate change and energy security, Chinese government strived to develop renewable power as an important alternative of conventional electricity. In this paper, the learning curve model is employed to describe the decreasing unit investment cost due to accumulated installed capacity; the technology diffusion model is used to analyze the potential of renewable power. Combined with the investment cost, the technology potential, and scenario analysis of China social development in the future, we develop the Renewable Power Optimization Model (RPOM) to analyze the optimal development paths of three sources of renewable power from 2009 to 2020 in a cost-effective way. Results show that (1) the optimal accumulated installed capacities of wind power, solar power, and biomass power will reach 169000, 20000, and 30000 MW in 2020; (2) the developments of renewable power show the intermittent feature; (3) the unit investment costs of wind power, solar power, and biomass power will be 4500, 11500, and 5700 Yuan/KW in 2020; (4) the discounting effect dominates the learning curve effect for solar and biomass powers; (5) the rise of on-grid ratio of renewable power will first promote the development of wind power and then solar power and biomass power. PMID:24578672
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.
2014-01-31
Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generatormore » and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vonhof, Maarten J.; Russell, Amy L.
Documented fatalities of bats at wind turbines have raised serious concerns about the future impacts of increased wind power development on populations of migratory bat species. Yet there is little data on bat population sizes and trends to provide context for understanding the consequences of mortality due to wind power development. Using a large dataset of both nuclear and mitochondrial DNA variation for eastern red bats, we demonstrated that: 1) this species forms a single, panmictic population across their range with no evidence for the historical use of divergent migratory pathways by any portion of the population; 2) the effectivemore » size of this population is in the hundreds of thousands to millions; and 3) for large populations, genetic diversity measures and at least one coalescent method are insensitive to even very high rates of population decline over long time scales and until population size has become very small. Our data provide important context for understanding the population-level impacts of wind power development on affected bat species.« less
NASA Astrophysics Data System (ADS)
Bentley, S.; Watt, C.; Owens, M. J.
2017-12-01
Ultra-low frequency (ULF) waves in the magnetosphere are involved in the energisation and transport of radiation belt particles and are predominantly driven by the external solar wind. By systematically examining the instantaneous relative contribution of non-derived solar wind parameters and accounting for their interdependencies using fifteen years of ground-based measurements (CANOPUS) at a single frequency and magnetic latitude, we conclude that the dominant causal parameters for ground-based ULF wave power are solar wind speed v, interplanetary magnetic field component Bz and summed power in number density perturbations δNp. We suggest that these correspond to driving by the Kelvin-Helmholtz instability, flux transfer events and direct perturbations from solar wind structures sweeping past. We will also extend our analysis to a stochastic wave model at multiple magnetic latitudes that will be used in future to predict background ULF wave power across the radiation belts in different magnetic local time sectors, and to examine the relative contribution of the parameters v, Bz and var(Np) in these sectors.
Integrated Wind Power Planning Tool
NASA Astrophysics Data System (ADS)
Rosgaard, M. H.; Giebel, G.; Nielsen, T. S.; Hahmann, A.; Sørensen, P.; Madsen, H.
2012-04-01
This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the working title "Integrated Wind Power Planning Tool". The project commenced October 1, 2011, and the goal is to integrate a numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. With regard to the latter, one such simulation tool has been developed at the Wind Energy Division, Risø DTU, intended for long term power system planning. As part of the PSO project the inferior NWP model used at present will be replaced by the state-of-the-art Weather Research & Forecasting (WRF) model. Furthermore, the integrated simulation tool will be improved so it can handle simultaneously 10-50 times more turbines than the present ~ 300, as well as additional atmospheric parameters will be included in the model. The WRF data will also be input for a statistical short term prediction model to be developed in collaboration with ENFOR A/S; a danish company that specialises in forecasting and optimisation for the energy sector. This integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated prediction tool constitute scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator, and the need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2020, from the current 20%.
Accessing Wind Tunnels From NASA's Information Power Grid
NASA Technical Reports Server (NTRS)
Becker, Jeff; Biegel, Bryan (Technical Monitor)
2002-01-01
The NASA Ames wind tunnel customers are one of the first users of the Information Power Grid (IPG) storage system at the NASA Advanced Supercomputing Division. We wanted to be able to store their data on the IPG so that it could be accessed remotely in a secure but timely fashion. In addition, incorporation into the IPG allows future use of grid computational resources, e.g., for post-processing of data, or to do side-by-side CFD validation. In this paper, we describe the integration of grid data access mechanisms with the existing DARWIN web-based system that is used to access wind tunnel test data. We also show that the combined system has reasonable performance: wind tunnel data may be retrieved at 50Mbits/s over a 100 base T network connected to the IPG storage server.
Arreyndip, Nkongho Ayuketang; Joseph, Ebobenow; David, Afungchui
2016-11-01
For the future installation of a wind farm in Cameroon, the wind energy potentials of three of Cameroon's coastal cities (Kribi, Douala and Limbe) are assessed using NASA average monthly wind data for 31 years (1983-2013) and compared through Weibull statistics. The Weibull parameters are estimated by the method of maximum likelihood, the mean power densities, the maximum energy carrying wind speeds and the most probable wind speeds are also calculated and compared over these three cities. Finally, the cumulative wind speed distributions over the wet and dry seasons are also analyzed. The results show that the shape and scale parameters for Kribi, Douala and Limbe are 2.9 and 2.8, 3.9 and 1.8 and 3.08 and 2.58, respectively. The mean power densities through Weibull analysis for Kribi, Douala and Limbe are 33.7 W/m2, 8.0 W/m2 and 25.42 W/m2, respectively. Kribi's most probable wind speed and maximum energy carrying wind speed was found to be 2.42 m/s and 3.35 m/s, 2.27 m/s and 3.03 m/s for Limbe and 1.67 m/s and 2.0 m/s for Douala, respectively. Analysis of the wind speed and hence power distribution over the wet and dry seasons shows that in the wet season, August is the windiest month for Douala and Limbe while September is the windiest month for Kribi while in the dry season, March is the windiest month for Douala and Limbe while February is the windiest month for Kribi. In terms of mean power density, most probable wind speed and wind speed carrying maximum energy, Kribi shows to be the best site for the installation of a wind farm. Generally, the wind speeds at all three locations seem quite low, average wind speeds of all the three studied locations fall below 4.0m/s which is far below the cut-in wind speed of many modern wind turbines. However we recommend the use of low cut-in speed wind turbines like the Savonius for stand alone low energy needs.
Description of an 8 MW reference wind turbine
NASA Astrophysics Data System (ADS)
Desmond, Cian; Murphy, Jimmy; Blonk, Lindert; Haans, Wouter
2016-09-01
An 8 MW wind turbine is described in terms of mass distribution, dimensions, power curve, thrust curve, maximum design load and tower configuration. This turbine has been described as part of the EU FP7 project LEANWIND in order to facilitate research into logistics and naval architecture efficiencies for future offshore wind installations. The design of this 8 MW reference wind turbine has been checked and validated by the design consultancy DNV-GL. This turbine description is intended to bridge the gap between the NREL 5 MW and DTU 10 reference turbines and thus contribute to the standardisation of research and development activities in the offshore wind energy industry.
Kongiganak Wind Turbine Replacement and System Upgrade Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boonstra, Patrick
2016-12-13
The Native Village of Kongiganak, Alaska was awarded a grant to upgrade the braking systems on five wind turbines and upgrade the monitoring and data collection unit to insure that enough energy is available to power the utility. The project manager for this award is Intelligent Energy Systems, LLC located in Anchorage, Alaska. In addition to accomplishing these upgrades, it was the intent for a local wind tech crew to be trained in Kongiganak so that routine maintenance and future repairs will be made by local workers.
Increasing power generation in horizontal axis wind turbines using optimized flow control
NASA Astrophysics Data System (ADS)
Cooney, John A., Jr.
In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a complete design cycle was performed for the turbine model incorporated in the wind energy lab. Enhanced power generation was obtained through passive trailing edge shaping aimed at reaching lift and lift-to-drag goals predicted to optimize performance. These targets were determined by BEM analysis to improve power generation characteristics and annual energy production (AEP) for the wind turbine. A preliminary design was validated in wind tunnel experiments on a 2D rotor section in preparation for testing in the full atmospheric environment of the eWiND Laboratory. These tests were performed for the full-scale geometry and atmospheric conditions. Upon making additional improvements to the shape optimization tools, a series of trailing edge additions were designed to optimize power generation. The trailing edge additions were predicted to increase the AEP by up to 4.2% at the White Field site. The pieces were rapid-prototyped and installed on the wind turbine in March, 2014. Field tests are ongoing.
Establishment of a National Wind Energy Center at University of Houston
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Su Su
The DOE-supported project objectives are to: establish a national wind energy center (NWEC) at University of Houston and conduct research to address critical science and engineering issues for the development of future large MW-scale wind energy production systems, especially offshore wind turbines. The goals of the project are to: (1) establish a sound scientific/technical knowledge base of solutions to critical science and engineering issues for developing future MW-scale large wind energy production systems, (2) develop a state-of-the-art wind rotor blade research facility at the University of Houston, and (3) through multi-disciplinary research, introducing technology innovations on advanced wind-turbine materials, processing/manufacturingmore » technology, design and simulation, testing and reliability assessment methods related to future wind turbine systems for cost-effective production of offshore wind energy. To achieve the goals of the project, the following technical tasks were planned and executed during the period from April 15, 2010 to October 31, 2014 at the University of Houston: (1) Basic research on large offshore wind turbine systems (2) Applied research on innovative wind turbine rotors for large offshore wind energy systems (3) Integration of offshore wind-turbine design, advanced materials and manufacturing technologies (4) Integrity and reliability of large offshore wind turbine blades and scaled model testing (5) Education and training of graduate and undergraduate students and post- doctoral researchers (6) Development of a national offshore wind turbine blade research facility The research program addresses both basic science and engineering of current and future large wind turbine systems, especially offshore wind turbines, for MW-scale power generation. The results of the research advance current understanding of many important scientific issues and provide technical information for solving future large wind turbines with advanced design, composite materials, integrated manufacturing, and structural reliability and integrity. The educational program have trained many graduate and undergraduate students and post-doctoral level researchers to learn critical science and engineering of wind energy production systems through graduate-level courses and research, and participating in various projects in center’s large multi-disciplinary research. These students and researchers are now employed by the wind industry, national labs and universities to support the US and international wind energy industry. The national offshore wind turbine blade research facility developed in the project has been used to support the technical and training tasks planned in the program to accomplish their goals, and it is a national asset which is available for used by domestic and international researchers in the wind energy arena.« less
Gross, Markus; Magar, Vanesa
2016-01-01
In previous work, the authors demonstrated how data from climate simulations can be utilized to estimate regional wind power densities. In particular, it was shown that the quality of wind power densities, estimated from the UPSCALE global dataset in offshore regions of Mexico, compared well with regional high resolution studies. Additionally, a link between surface temperature and moist air density in the estimates was presented. UPSCALE is an acronym for UK on PRACE (the Partnership for Advanced Computing in Europe)—weather-resolving Simulations of Climate for globAL Environmental risk. The UPSCALE experiment was performed in 2012 by NCAS (National Centre for Atmospheric Science)-Climate, at the University of Reading and the UK Met Office Hadley Centre. The study included a 25.6-year, five-member ensemble simulation of the HadGEM3 global atmosphere, at 25km resolution for present climate conditions. The initial conditions for the ensemble runs were taken from consecutive days of a test configuration. In the present paper, the emphasis is placed on the single climate run for a potential future climate scenario in the UPSCALE experiment dataset, using the Representation Concentrations Pathways (RCP) 8.5 climate change scenario. Firstly, some tests were performed to ensure that the results using only one instantiation of the current climate dataset are as robust as possible within the constraints of the available data. In order to achieve this, an artificial time series over a longer sampling period was created. Then, it was shown that these longer time series provided almost the same results than the short ones, thus leading to the argument that the short time series is sufficient to capture the climate. Finally, with the confidence that one instantiation is sufficient, the future climate dataset was analysed to provide, for the first time, a projection of future changes in wind power resources using the UPSCALE dataset. It is hoped that this, in turn, will provide some guidance for wind power developers and policy makers to prepare and adapt for climate change impacts on wind energy production. Although offshore locations around Mexico were used as a case study, the dataset is global and hence the methodology presented can be readily applied at any desired location. PMID:27788208
Gross, Markus; Magar, Vanesa
2016-01-01
In previous work, the authors demonstrated how data from climate simulations can be utilized to estimate regional wind power densities. In particular, it was shown that the quality of wind power densities, estimated from the UPSCALE global dataset in offshore regions of Mexico, compared well with regional high resolution studies. Additionally, a link between surface temperature and moist air density in the estimates was presented. UPSCALE is an acronym for UK on PRACE (the Partnership for Advanced Computing in Europe)-weather-resolving Simulations of Climate for globAL Environmental risk. The UPSCALE experiment was performed in 2012 by NCAS (National Centre for Atmospheric Science)-Climate, at the University of Reading and the UK Met Office Hadley Centre. The study included a 25.6-year, five-member ensemble simulation of the HadGEM3 global atmosphere, at 25km resolution for present climate conditions. The initial conditions for the ensemble runs were taken from consecutive days of a test configuration. In the present paper, the emphasis is placed on the single climate run for a potential future climate scenario in the UPSCALE experiment dataset, using the Representation Concentrations Pathways (RCP) 8.5 climate change scenario. Firstly, some tests were performed to ensure that the results using only one instantiation of the current climate dataset are as robust as possible within the constraints of the available data. In order to achieve this, an artificial time series over a longer sampling period was created. Then, it was shown that these longer time series provided almost the same results than the short ones, thus leading to the argument that the short time series is sufficient to capture the climate. Finally, with the confidence that one instantiation is sufficient, the future climate dataset was analysed to provide, for the first time, a projection of future changes in wind power resources using the UPSCALE dataset. It is hoped that this, in turn, will provide some guidance for wind power developers and policy makers to prepare and adapt for climate change impacts on wind energy production. Although offshore locations around Mexico were used as a case study, the dataset is global and hence the methodology presented can be readily applied at any desired location.
Device with Functions of Linear Motor and Non-contact Power Collector for Wireless Drive
NASA Astrophysics Data System (ADS)
Fujii, Nobuo; Mizuma, Tsuyoshi
The authors propose a new apparatus with functions of propulsion and non-contact power collection for a future vehicle which can run like an electric vehicle supplied from the onboard battery source in most of the root except near stations. The batteries or power-capacitors are non-contact charged from the winding connected with commercial power on ground in the stations etc. The apparatus has both functions of linear motor and transformer, and the basic configuration is a wound-secondary type linear induction motor (LIM). In the paper, the wound type LIM with the concentrated single-phase winding for the primary member on the ground is dealt from the viewpoint of low cost arrangement. The secondary winding is changed to the single-phase connection for zero thrust in the transformer operation, and the two-phase connection for the linear motor respectively. The change of connection is done by the special converter for charge and linear drive on board. The characteristics are studied analytically.
Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range
Yong, Hyungseok; Chung, Jihoon; Choi, Dukhyun; Jung, Daewoong; Cho, Minhaeng; Lee, Sangmin
2016-01-01
Triboelectric nanogenerators are aspiring energy harvesting methods that generate electricity from the triboelectric effect and electrostatic induction. This study demonstrates the harvesting of wind energy by a wind-rolling triboelectric nanogenerator (WR-TENG). The WR-TENG generates electricity from wind as a lightweight dielectric sphere rotates along the vortex whistle substrate. Increasing the kinetic energy of a dielectric converted from the wind energy is a key factor in fabricating an efficient WR-TENG. Computation fluid dynamics (CFD) analysis is introduced to estimate the precise movements of wind flow and to create a vortex flow by adjusting the parameters of the vortex whistle shape to optimize the design parameters to increase the kinetic energy conversion rate. WR-TENG can be utilized as both a self-powered wind velocity sensor and a wind energy harvester. A single unit of WR-TENG produces open-circuit voltage of 11.2 V and closed-circuit current of 1.86 μA. Additionally, findings reveal that the electrical power is enhanced through multiple electrode patterns in a single device and by increasing the number of dielectric spheres inside WR-TENG. The wind-rolling TENG is a novel approach for a sustainable wind-driven TENG that is sensitive and reliable to wind flows to harvest wasted wind energy in the near future. PMID:27653976
Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy
NASA Astrophysics Data System (ADS)
Bagen
The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion systems and energy storage in electric power systems and provide useful input to the managerial decision process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennings, W.; Green, J.
2001-01-01
The purpose of this research was to determine the optimal configuration of home power systems relevant to different regions in the United States. The hypothesis was that, regardless of region, the optimal system would be a hybrid incorporating wind technology, versus a photovoltaic hybrid system without the use of wind technology. The method used in this research was HOMER, the Hybrid Optimization Model for Electric Renewables. HOMER is a computer program that optimizes electrical configurations under user-defined circumstances. According to HOMER, the optimal system for the four regions studied (Kansas, Massachusetts, Oregon, and Arizona) was a hybrid incorporating wind technology.more » The cost differences between these regions, however, were dependent upon regional renewable resources. Future studies will be necessary, as it is difficult to estimate meteorological impacts for other regions.« less
NASA Astrophysics Data System (ADS)
Francois, Baptiste; Martino, Sara; Tofte, Lena; Hingray, Benoit; Mo, Birger; Creutin, Jean-Dominique
2017-04-01
Thanks to its huge water storage capacity, Norway has an excess of energy generation at annual scale, although significant regional disparity exists. On average, the Mid-Norway region has an energy deficit and needs to import more electricity than it exports. We show that this energy deficit can be reduced with an increase in wind generation and transmission line capacity, even in future climate scenarios where both mean annual temperature and precipitation are changed. For the considered scenarios, the deficit observed in winter disappears, i.e. when electricity consumption and prices are high. At the annual scale, the deficit behavior depends more on future changes in precipitation. Another consequence of changes in wind production and transmission capacity is the modification of electricity exchanges with neighboring regions which are also modified both in terms of average, variability and seasonality. Keywords: Variable renewable energy, Wind, Hydro, Energy balance, Energy market
Assessment Parameters and Matching between the Sites and Wind Turbines
NASA Astrophysics Data System (ADS)
Chermitti, A.; Bencherif, M.; Nakoul, Z.; Bibitriki, N.; Benyoucef, B.
The objective of this paper is to introduce the assessment parameters of the wind energy production of sites and pairing between the sites and wind turbines. The exploration is made with the wind data gathered at 10 m high is based on the atlas of the wind of Algeria established by the National office of the Meteorology runs 37 stations of measures. The data is used for a feasibility analysis of optimum future utilization of Wind generator potentiality in five promising sites covering a part of landscape types and regions in Algeria. Detailed technical assessment for the ten most promising potential wind sites was made using the capacity factor and the site effectiveness approach. The investigation was performed assuming several models of small, medium and big size wind machines representing different ranges of characteristic speeds and rated power suitable for water pumping and electric supply. The results show that small wind turbines could be installed in some coast region and medium wind turbines could be installed in the high plateau and some desert regions and utilized for water supply and electrical power generation, the sites having an important wind deposit, in high plateau we find Tiaret site's but in the desert there is some sites for example Adrar, Timimoun and In Amenas, in these sites could be installed a medium and big size wind turbines.
NASA Astrophysics Data System (ADS)
St. Martin, Clara Mae
Wind turbines and groups of wind turbines, or "wind plants", interact with the complex and heterogeneous boundary layer of the atmosphere. We define the boundary layer as the portion of the atmosphere directly influenced by the surface, and this layer exhibits variability on a range of temporal and spatial scales. While early developments in wind energy could ignore some of this variability, recent work demonstrates that improved understanding of atmosphere-turbine interactions leads to the discovery of new ways to approach turbine technology development as well as processes such as performance validation and turbine operations. This interaction with the atmosphere occurs at several spatial and temporal scales from continental-scale to turbine-scale. Understanding atmospheric variability over continental-scales and across plants can facilitate reliance on wind energy as a baseload energy source on the electrical grid. On turbine scales, understanding the atmosphere's contribution to the variability in power production can improve the accuracy of power production estimates as we continue to implement more wind energy onto the grid. Wind speed and directional variability within a plant will affect wind turbine wakes within the plants and among neighboring plants, and a deeper knowledge of these variations can help mitigate effects of wakes and possibly even allow the manipulation of these wakes for increased production. Herein, I present the extent of my PhD work, in which I studied outstanding questions at these scales at the intersections of wind energy and atmospheric science. My work consists of four distinct projects. At the coarsest scales, I analyze the separation between wind plant sites needed for statistical independence in order to reduce variability for grid-integration of wind. At lower wind speeds, periods of unstable and more turbulent conditions produce more power than periods of stable and less turbulent conditions, while at wind speeds closer to rated wind speed, periods of unstable and more turbulent conditions produce less power than periods of stable and less turbulent conditions. Using these new, stability- and turbulence-specific power curves to calculate annual energy production (AEP) estimates results in smaller AEPs than if calculated using no stability and turbulence filters, which could have implications for manufacturers and operators. In my third project, I address the problem of expensive power production validation. Rather than erecting towers to provide upwind wind measurements, I explore the utility of using nacelle-mounted anemometers for power curve verification studies. I calculate empirical nacelle transfer functions (NTFs) with upwind tower and turbine measurements. The fifth-order and second-order NTFs show a linear relationship between upwind wind speed and nacelle wind speed at wind speeds less than about 9 m s-1 , but this relationship becomes non-linear at wind speeds higher than about 9 m s-1. The use of NTFs results in AEPs within 1 % of an AEP using upwind wind speeds. Additionally, during periods of unstable conditions as well as during more turbulent conditions, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of stable conditions and less turbulence conditions at some wind speed bins below rated speed. Finally, in my fourth project, I consider spatial scales on the order of a wind plant. Using power production data from over 300 turbines from four neighboring wind farms in the western US along with simulations using the Weather Research and Forecasting model's Wind Farm Parameterization (WRF-WFP), I investigate the advantage of using the WFP to simulate wakes. During this case, winds from the west and north-northwest range from about 5 to 11 m s-1. A down-ramp occurs in this case study, which WRF predicts too early. The early prediction of the down-ramp likely affects the error in WRF-predicted power, the results of which show exaggerated wake effects. While these projects span a range of spatio-temporal scales, a unifying theme is the important aspect of atmospheric variation on wind power production, wind power production estimates, and means for facilitating the integration of wind-generated electricity into power grids. Future work, such as universal NTFs for sites with similar characteristics, NTFs for waked turbines, or the deployment of lidars on turbine nacelles for operation purposes, should continue to study the mutually-important interconnections between these two fields. (Abstract shortened by ProQuest.).
VisibleWind: wind profile measurements at low altitude
NASA Astrophysics Data System (ADS)
Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell
2009-09-01
VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other remote wind sensors must operate.
Wind for Schools Project Curriculum Brief (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2010-08-01
The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding education to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institutions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more graduate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and relatedmore » components and services to European countries. DOE's Wind Powering America initiative launched the Wind for Schools project to develop a wind energy knowledge base among future leaders of our communities, states, and nation while raising awareness about wind energy's benefits. This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.« less
Evaluating Tilt for Wind Farms: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annoni, Jennifer; Scholbrock, Andrew; Churchfield, Matthew
The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two- and threeturbine arrays. Specifically, the authors show that the power production of a two-turbine array can be increased by tilting turbines in a specific orientation. When adding more turbines, as is shown with the three-turbine array,more » the overall percentage of power gain increases. This outcome deviates from some of the results seen in typical wind plant control strategies. Finally, we discuss the impact this type of control strategy has on the aerodynamics in a wind plant. This analysis demonstrates that a good understanding of wake characteristics is necessary to improve the plant's performance. A tilt strategy such as the one presented in this paper may have implications for future control/optimization studies including optimization of hub heights in a wind plant and analysis of deep array effects.« less
Evaluating Tilt for Wind Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annoni, Jennifer; Scholbrock, Andrew K.; Churchfield, Matthew J.
The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two- and three-turbine arrays. Specifically, the authors show that the power production of a two-turbine array can be increased by tilting turbines in a specific orientation. When adding more turbines, as is shown with the three-turbine array,more » the overall percentage of power gain increases. This outcome deviates from some of the results seen in typical wind plant control strategies. Finally, we discuss the impact this type of control strategy has on the aerodynamics in a wind plant. This analysis demonstrates that a good understanding of wake characteristics is necessary to improve the plant's performance. A tilt strategy such as the one presented in this paper may have implications for future control/optimization studies including optimization of hub heights in a wind plant and analysis of deep array effects.« less
The largest renewable, easily exploitable, and economically sustainable energy resource
NASA Astrophysics Data System (ADS)
Abbate, Giancarlo; Saraceno, Eugenio
2018-02-01
Sun, the ultimate energy resource of our planet, transfers energy to the Earth at an average power of 23,000 TW. Earth surface can be regarded as a huge panel transforming solar energy into a more convenient mechanical form, the wind. Since millennia wind is recognized as an exploitable form of energy and it is common knowledge that the higher you go, the stronger the winds flow. To go high is difficult; however Bill Gates cites high wind among possible energy miracles in the near future. Public awareness of this possible miracle is still missing, but today's technology is ready for it.
NASA Technical Reports Server (NTRS)
Kadlec, E. G.
1979-01-01
The developing Darrieus VAWT technology whose ultimate objective is economically feasible, industry-produced, commercially marketed wind energy systems is reviewed. First-level aerodynamic, structural, and system analyses capabilities which support and evaluate the system designs are discussed. The characteristics of current technology designs are presented and their cost effectiveness is assessed. Potential improvements identified are also presented along with their cost benefits.
Mason, J.A.; Swinehart, J.B.; Lu, H.; Miao, X.; Cha, P.; Zhou, Y.
2008-01-01
The climatic controls on dune mobility, especially the relative importance of wind strength, remain incompletely understood. This is a key research problem in semi-arid northern China, both for interpreting past dune activity as evidence of paleoclimate and for predicting future environmental change. Potential eolian sand transport, which is approximately proportional to wind power above the threshold for sand entrainment, has decreased across much of northern China since the 1970s. Over the same period, effective moisture (ratio of precipitation to potential evapotranspiration) has not changed significantly. This "natural experiment" provides insight on the relative importance of wind power as a control on dune mobility in three dunefields of northern China (Mu Us, Otindag, and Horqin), although poorly understood and potentially large effects of human land use complicate interpretation. Dune forms in these three regions are consistent with sand transport vectors inferred from weather station data, suggesting that wind directions have remained stable and the stations adequately represent winds that shaped the dunes. The predicted effect of weaker winds since the 1970s would be dune stabilization, with lower sand transport rates allowing vegetation cover to expand. Large portions of all three dunefields remained stabilized by vegetation in the 1970s despite high wind power. Since the 1970s, trends in remotely sensed vegetation greenness and change in mobile dune area inferred from sequential Landsat images do indicate widespread dune stabilization in the eastern Mu Us region. On the other hand, expansion of active dunes took place farther west in the Mu Us dunefield and especially in the central Otindag dunefield, with little overall change in two parts of the Horqin dunes. Better ground truth is needed to validate the remote sensing analyses, but results presented here place limits on the relative importance of wind strength as a control on dune mobility in the study areas. High wind power alone does not completely destabilize these dunes. A large decrease in wind power either has little short-term effect on the dunes, or more likely its effect is sufficiently small that it is obscured by human impacts on dune stability in many parts of the study areas. ?? 2008 Elsevier B.V. All rights reserved.
Potential climatic impacts and reliability of very large-scale wind farms
NASA Astrophysics Data System (ADS)
Wang, C.; Prinn, R. G.
2010-02-01
Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled substantial interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1 °C over land installations. In contrast, surface cooling exceeding 1 °C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including backup generation capacity, very long distance power transmission lines, and onsite energy storage, each with specific economic and/or technological challenges.
Potential climatic impacts and reliability of very large-scale wind farms
NASA Astrophysics Data System (ADS)
Wang, C.; Prinn, R. G.
2009-09-01
Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled legitimate interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1°C over land installations. In contrast, surface cooling exceeding 1°C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including backup generation capacity, very long distance power transmission lines, and onsite energy storage, each with specific economic and/or technological challenges.
76 FR 76397 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-07
..., Dry Lake Wind Power, LLC, Dry Lake Wind Power II LLC, Elk River Windfarm, LLC, Elm Creek Wind, LLC..., Flying Cloud Power Partners, LLC, Hardscrabble Wind Power LLC, Hay Canyon Wind LLC, Juniper Canyon Wind Power LLC, Klamath Energy LLC, Klamath Generation LLC, Klondike Wind Power LLC, Klondike Wind Power II...
Measurement of aeroacoustic noise generated on wind turbine blades modified by trailing edge brushes
NASA Astrophysics Data System (ADS)
Asheim, Michael J.
As wind technology becomes a larger portion of the energy production picture, the problematic interactions between the machines and society will continue to become more pronounced. Of these problems, wind turbine noise is one of the most important to the future of wind turbine development. This study looks at the effect trailing edge brushes mounted on the 2 bladed Controls Advance Research Turbine (CART 2), located at the National Wind Technology Center, have on the overall acoustic and aerodynamic performance of the blades. The use of trailing edge brushes reduced the aeroacoustic noise by 1.0 to 5.0 dB over the baseline blade, depending on wind speed. This acoustic performance comes at a cost to the aerodynamic performance of the blades. The aerodynamic performance indicators, such as turbine power and root bending moments show that increased drag due to the brushes is the main contributor to the reduction in power production. An economic analysis also investigated how to best use noise mitigation devices to optimize acoustic, power performance and loads of a 600 kW baseline turbine, such as the CART 2. The analysis shows that the use of up a noise mitigation device of 4 dB is best used by increasing the rotor diameter and the power rating of the machine, from a 43.3 m diameter, 600 kW machine to a 68.8 m diameter, 886.7 kW machine. This increase resulted in an annual energy production increase of 414% when using a Rayleigh wind distribution with at a mean annual wind speed of 8.5 m/s. This is a reduction of cost of energy from 0.0463 per kWh to 0.0422 kWh. This reduction in energy production costs helps to explain the continuing trend of turbine machine growth in both rotor diameter and power rating.
An Initial Evaluation of Siting Considerations on Current and Future Wind Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegen, Suzanne; Lantz, Eric; Mai, Trieu
This report provides a deeper understanding of the wind project development process, from desktop studies to a successful project in the ground. It examines three siting consideration categories that wind project sponsors must include in the development process: wildlife (species that live in, near, or migrate through the area where wind development is possible), radar (wind turbines can cause interference with radar signals), and public engagement (representing communities and stakeholders who live near wind power projects). The research shows that although this country's abundant wind resource provides numerous options for addressing siting considerations, actually siting individual projects is becoming moremore » difficult because of regulatory and other uncertainties. Model results are based on the premise that developers will be able to site, permit, and build successful projects, which is not always the case in reality.« less
The Etesian wind system and wind energy potential over the Aegean Sea
NASA Astrophysics Data System (ADS)
Dafka, Stella; Xoplaki, Elena; Garcia-Bustamante, Elena; Toreti, Andrea; Zanis, Prodromos; Luterbacher, Juerg
2013-04-01
The Mediterranean region lies in an area of great climatic interest since it is influenced by some of the most relevant mechanisms of the global climate system. In the frame of the three Europe 2020 priorities for a smart, sustainable and inclusive economy delivering high levels of employment, productivity and social cohesion, the Mediterranean energy plan is of paramount importance at the European level, being an area with a significant potential for renewable energy from natural sources that could play an important role in responding to climate change effects over the region. We present preliminary results on a study of the Etesian winds in the past, present and future time. We investigate the variability and predictability of the wind field over the Aegean. Statistical downscaling based on several methodologies will be applied (e.g. canonical correlation analysis and multiple linear regression). Instrumental time series, Era-Interim and the 20CR reanalyses will be used. Large-scale climate drivers as well as the influence of local/regional factors and their interaction with the Etesian wind field will be addressed. Finally, the Etesian wind resources on the present and future climate will be assessed in order to identify the potential areas suitable for the establishment of wind farms and the production of wind power in the Aegean Sea.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul;
2010-01-01
This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1
Reversible solid oxide fuel cell for natural gas/renewable hybrid power generation systems
NASA Astrophysics Data System (ADS)
Luo, Yu; Shi, Yixiang; Zheng, Yi; Cai, Ningsheng
2017-02-01
Renewable energy (RE) is expected to be the major part of the future energy. Presently, the intermittence and fluctuation of RE lead to the limitation of its penetration. Reversible solid oxide fuel cell (RSOFC) as the energy storage device can effectively store the renewable energy and build a bidirectional connection with natural gas (NG). In this paper, the energy storage strategy was designed to improve the RE penetration and dynamic operation stability in a distributed system coupling wind generators, internal combustion engine, RSOFC and lithium-ion batteries. By compromising the relative deviation of power supply and demand, RE penetration, system efficiency and capacity requirement, the strategy that no more than 36% of the maximum wind power output is directly supplied to users and the other is stored by the combination of battery and reversible solid oxide fuel cell is optimal for the distributed system. In the case, the RE penetration reached 56.9% and the system efficiency reached 55.2%. The maximum relative deviation of power supply and demand is also lower than 4%, which is significantly superior to that in the wind curtailment case.
Power harvesting by electromagnetic coupling from wind-induced limit cycle oscillations
NASA Astrophysics Data System (ADS)
Boccalero, G.; Olivieri, S.; Mazzino, A.; Boragno, C.
2017-09-01
Recent developments of low-power microprocessors open to new applications such as wireless sensor networks (WSN) with the consequent problem of autonomous powering. For this purpose, a possible strategy is represented by energy harvesting from wind or other flows exploiting fluid-structure interactions. In this work, we present an updated picture of a flutter-based device characterized by fully passive dynamics and a simple constructive layout, where limit cycle oscillations are undergone by an elastically bounded wing. In this case, the conversion from mechanical to electrical energy is performed by means of an electromagnetic coupling between a pair of coils and magnets. A centimetric-size prototype is shown to harvest energy from low wind velocities (between 2 and 4 m s-1), reaching a power peak of 14 mW, representing a valuable amount for applications related to WSN. A mathematical description of the nonlinear dynamics is then provided by a quasi-steady phenomenological model, revealing satisfactory agreement with the experimental framework within a certain parametric range and representing a useful tool for future optimizations.
AC HTS Transmission Cable for Integration into the Future EHV Grid of the Netherlands
NASA Astrophysics Data System (ADS)
Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.
Due to increasing power demand, the electricity grid of the Netherlands is changing. The future grid must be capable to transmit all the connected power. Power generation will be more decentralized like for instance wind parks connected to the grid. Furthermore, future large scale production units are expected to be installed near coastal regions. This creates some potential grid issues, such as: large power amounts to be transmitted to consumers from west to east and grid stability. High temperature superconductors (HTS) can help solving these grid problems. Advantages to integrate HTS components at Extra High Voltage (EHV) and High Voltage (HV) levels are numerous: more power with less losses and less emissions, intrinsic fault current limiting capability, better control of power flow, reduced footprint, etc. Today's main obstacle is the relatively high price of HTS. Nevertheless, as the price goes down, initial market penetration for several HTS components is expected by year 2015 (e.g.: cables, fault current limiters). In this paper we present a design of intrinsically compensated EHV HTS cable for future grid integration. Discussed are the parameters of such cable providing an optimal power transmission in the future network.
Systems and methods for an integrated electrical sub-system powered by wind energy
Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY
2008-06-24
Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.
NASA Astrophysics Data System (ADS)
Vanacore, E. A.; Lopez, A. M.; Huerfano, V.; Lugo, J.; Baez-Sanchez, G.
2017-12-01
For exactly 85 years the island of Puerto Rico in the northeastern Caribbean was spared from catastrophic category 4 hurricane winds. Then Hurricane Maria arrived on September 20, 2017 with maximum sustained winds of up to 155 mph. The eye of the hurricane crossed the island from southeast to northwest in eight hours leaving almost a meter of rainfall on its path. Sustained winds, gusts and precipitation were most certainly going to affect the seismic and geodetic equipment the Puerto Rico Seismic Network (PRSN) use for locating earthquakes in the region. PRSN relies on 35 seismic stations (velocity and strong-motion) to characterize the seismic behavior of the island and 15 geodetic (GNSS) stations to determine crustal deformation of the Puerto Rico - Virgin Islands microplate. PRSN stations have been designed to withstand earthquakes. However, the equipment suffered considerable damage due to the strong winds especially station communication towers. This coupled with catastrophic damage to the telecommunication and power grids of the island had severe effects on the network. Additionally, the level of devastation was such that it hampered the ability of PRSN staff to visit the sites for assessment and repair. Here we present the effects of category 4 hurricane had on our seismic and geodetic sites, examine the susceptibility of the PRSN stations' power and communications, and discuss future plans to recuperate and improve station resiliency for future catastrophic events. These lessons learned hopefully will help harden sites of networks, agencies and/or institutions that rely on similar infrastructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Yiduo; Zheng, Qipeng P.; Wang, Jianhui
Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined future uncertainties (i.e., fixed random outcomes with given probabilities). In several recent studies of generation assets' planning (e.g., thermal versus renewable), new findings show that the investment decisions could affect the future uncertainties as well. To this end, this paper proposes a multistage decision-dependent stochastic optimization model for long-term large-scale generation expansion planning, where large amounts of windmore » power are involved. In the decision-dependent model, the future uncertainties are not only affecting but also affected by the current decisions. In particular, the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming model. The wind penetration, investment decisions, and the optimality of the decision-dependent model are evaluated in a series of multistage case studies. The results show that the proposed decision-dependent model provides effective optimization solutions for long-term generation expansion planning.« less
76 FR 46284 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-02
... Holdings LLC, Dillon Wind LLC, Dry Lake Wind Power, LLC, Dry Lake Wind Power II LLC, Elk River Windfarm... Rock Windpower II LLC, Flying Cloud Power Partners, LLC, Hardscrabble Wind Power LLC, Hay Canyon Wind LLC, Juniper Canyon Wind Power LLC, Klamath Energy LLC, Klamath Generation LLC, Klondike Wind Power...
Larsen, Peter H.; LaCommare, Kristina H.; Eto, Joseph H.; ...
2016-10-27
Here, this study examines the relationship between annual changes in electricity reliability reported by a large cross-section of U.S. electricity distribution utilities over a period of 13 years and a broad set of potential explanatory variables, including weather and utility characteristics. We find statistically significant correlations between the average number of power interruptions experienced annually and above average wind speeds, precipitation, lightning strikes, and a measure of population density: customers per line mile. We also find significant relationships between the average number of minutes of power interruptions experienced and above average wind speeds, precipitation, cooling degree-days, and one strategy usedmore » to mitigate the impacts of severe weather: the amount of underground transmission and distribution line miles. Perhaps most importantly, we find a significant time trend of increasing annual average number of minutes of power interruptions over time—especially when interruptions associated with extreme weather are included. Lastly, the research method described in this analysis can provide a basis for future efforts to project long-term trends in reliability and the associated benefits of strategies to improve grid resiliency to severe weather—both in the U.S. and abroad.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmondson, J. K.; Lepri, S. T.; Zurbuchen, T. H.
2013-11-20
This analysis offers evidence of characteristic scale sizes in solar wind charge state data measured in situ for 13 quiet-Sun Carrington rotations in 2008. Using a previously established novel methodology, we analyze the wavelet power spectrum of the charge state ratio C{sup 6+}/C{sup 4+} measured in situ by ACE/SWICS for 2 hr and 12 minute cadence. We construct a statistical significance level in the wavelet power spectrum to quantify the interference effects arising from filling missing data in the time series, allowing extraction of significant power from the measured data to a resolution of 24 minutes. We analyze each waveletmore » power spectrum for transient coherency and global periodicities resulting from the superposition of repeating coherent structures. From the significant wavelet power spectra, we find evidence for a general upper limit on individual transient coherency of ∼10 days. We find evidence for a set of global periodicities between 4-5 hr and 35-45 days. We find evidence for the distribution of individual transient coherency scales consisting of two distinct populations. Below the ∼2 day timescale, the distribution is reasonably approximated by an inverse power law, whereas for scales ≳2 days, the distribution levels off, showing discrete peaks at common coherency scales. In addition, by organizing the transient coherency scale distributions by wind type, we find that these larger, common coherency scales are more prevalent and well defined in coronal hole wind. Finally, we discuss the implications of our results for current theories of solar wind generation and describe future work for determining the relationship between the coherent structures in our ionic composition data and the structure of the coronal magnetic field.« less
2016 Wind Technologies Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ryan H.; Bolinger, Mark
The U.S. Department of Energy (DOE)’s Wind Technologies Market Report provides an annual overview of trends in the U.S. wind power market. You can find the report, a presentation, and a data file on the Files tab, below. Additionally, several data visualizations are available in the Data Visualizations tab. Highlights of this year’s report include: -Wind power additions continued at a rapid clip in 2016: $13 billion was invested in new wind power plants in 2016. In 2016, wind energy contributed 5.6% of the nation’s electricity supply, more than 10% of total electricity generation in fourteen states, and 29% tomore » 37% in three of those states—Iowa, South Dakota, and Kansas. -Bigger turbines are enhancing wind project performance: Increased blade lengths, in particular, have dramatically increased wind project capacity factors, one measure of project performance. For example, the average 2016 capacity factor among projects built in 2014 and 2015 was 42.6%, compared to an average of 32.1% among projects built from 2004 to 2011 and 25.4% among projects built from 1998 to 2001. -Low wind turbine pricing continues to push down installed project costs: Wind turbine prices have fallen from their highs in 2008, to $800–$1,100/kW. Overall, the average installed cost of wind projects in 2016 was $1,590/kW, down $780/kW from the peak in 2009 and 2010. -Wind energy prices remain low: After topping out at nearly 7¢/kWh for power purchase agreements (PPAs) executed in 2009, the national average price of wind PPAs has dropped to around 2¢/kWh—though this nationwide average is dominated by projects that hail from the lowest-priced Interior region of the country (such as Texas, Iowa, Oklahoma). These prices, which are possible in part due to federal tax support, compare favorably to the projected future fuel costs of gas-fired generation. -The supply chain continued to adjust to swings in domestic demand for wind equipment: Wind sector employment reached a new high of more than 101,000 full-time workers at the end of 2016. For wind projects recently installed in the U.S., domestically manufactured content is highest for nacelle assembly (>90%), towers (65-80%), and blades and hubs (50-70%), but is much lower (<20%) for most components internal to the turbine. -Continued strong growth in wind capacity is anticipated in the near term: With federal tax incentives still available, though declining, various forecasts for the domestic market show expected wind power capacity additions averaging more than 9,000 MW/year from 2017 to 2020.« less
The impact of wind power on electricity prices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brancucci Martinez-Anido, Carlo; Brinkman, Greg; Hodge, Bri-Mathias
This paper investigates the impact of wind power on electricity prices using a production cost model of the Independent System Operator - New England power system. Different scenarios in terms of wind penetration, wind forecasts, and wind curtailment are modeled in order to analyze the impact of wind power on electricity prices for different wind penetration levels and for different levels of wind power visibility and controllability. The analysis concludes that electricity price volatility increases even as electricity prices decrease with increasing wind penetration levels. The impact of wind power on price volatility is larger in the shorter term (5-minmore » compared to hour-to-hour). The results presented show that over-forecasting wind power increases electricity prices while under-forecasting wind power reduces them. The modeling results also show that controlling wind power by allowing curtailment increases electricity prices, and for higher wind penetrations it also reduces their volatility.« less
Wiedmann, Thomas O; Suh, Sangwon; Feng, Kuishuang; Lenzen, Manfred; Acquaye, Adolf; Scott, Kate; Barrett, John R
2011-07-01
Future energy technologies will be key for a successful reduction of man-made greenhouse gas emissions. With demand for electricity projected to increase significantly in the future, climate policy goals of limiting the effects of global atmospheric warming can only be achieved if power generation processes are profoundly decarbonized. Energy models, however, have ignored the fact that upstream emissions are associated with any energy technology. In this work we explore methodological options for hybrid life cycle assessment (hybrid LCA) to account for the indirect greenhouse gas (GHG) emissions of energy technologies using wind power generation in the UK as a case study. We develop and compare two different approaches using a multiregion input-output modeling framework - Input-Output-based Hybrid LCA and Integrated Hybrid LCA. The latter utilizes the full-sized Ecoinvent process database. We discuss significance and reliability of the results and suggest ways to improve the accuracy of the calculations. The comparison of hybrid LCA methodologies provides valuable insight into the availability and robustness of approaches for informing energy and environmental policy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Lu, Shuai
2008-07-15
This report presents a methodology developed to study the future impact of wind on BPA power system load following and regulation requirements. The methodology uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system, by mimicking the actual power system operations. Therefore, the results are close to reality, yet the study based on this methodology is convenient to conduct. Compared with the proposed methodology, existing methodologies for doing similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. Dispatch model simulation is constrained by the design of themore » dispatch program, and standard deviation evaluation is artificial in separating the load following and regulation requirements, both of which usually do not reflect actual operational practice. The methodology used in this study provides not only capacity requirement information, it also analyzes the ramp rate requirements for system load following and regulation processes. The ramp rate data can be used to evaluate generator response/maneuverability requirements, which is another necessary capability of the generation fleet for the smooth integration of wind energy. The study results are presented in an innovative way such that the increased generation capacity or ramp requirements are compared for two different years, across 24 hours a day. Therefore, the impact of different levels of wind energy on generation requirements at different times can be easily visualized.« less
Prognostics and Health Management of Wind Turbines: Current Status and Future Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Shuangwen
Prognostics and health management is not a new concept. It has been used in relatively mature industries, such as aviation and electronics, to help improve operation and maintenance (O&M) practices. In the wind industry, prognostics and health management is relatively new. The level for both wind industry applications and research and development (R&D) has increased in recent years because of its potential for reducing O&M cost of wind power, especially for turbines installed offshore. The majority of wind industry application efforts has been focused on diagnosis based on various sensing and feature extraction techniques. For R&D, activities are being conductedmore » in almost all areas of a typical prognostics and health management framework (i.e., sensing, data collection, feature extraction, diagnosis, prognosis, and maintenance scheduling). This presentation provides an overview of the current status of wind turbine prognostics and health management that focuses on drivetrain condition monitoring through vibration, oil debris, and oil condition analysis techniques. It also discusses turbine component health diagnosis through data mining and modeling based on supervisory control and data acquisition system data. Finally, it provides a brief survey of R&D activities for wind turbine prognostics and health management, along with future opportunities.« less
WTG Energy Systems' Rotor: Steel at 80 Feet
NASA Technical Reports Server (NTRS)
Barrows, R. E.
1979-01-01
The design, specifications, and performance of the 80 foot diameter fixed pitch rotor operating on the MP1-200 wind turbine generator installed as part of the Island of Cuttyhunk's electric power utility grid system are described. This synchronous generating system rated 200 kilowatts at 28 mph wind velocity, and produces constant 60 Hz, 480 VAC current at +/- 1 percent accuracy throughout the machine's operating range. Future R & D requirements and suggestions are included with cost data.
78 FR 8121 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
... Green Holdings LLC, Dillon Wind LLC, Dry Lake Wind Power, LLC, Dry Lake Wind Power II LLC, Elk River..., Flat Rock Windpower II LLC, Flying Cloud Power Partners, LLC, Groton Wind, LLC, Hardscrabble Wind Power LLC, Hay Canyon Wind LLC, Juniper Canyon Wind Power LLC, Klamath [[Page 8122
77 FR 9914 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-21
... Power, LLC, Dry Lake Wind Power II LLC, Elk River Windfarm, LLC, Elm Creek Wind, LLC, Elm Creek Wind II LLC, Farmers City Wind, LLC, Flat Rock Windpower LLC, Flat Rock Windpower II LLC, Flying Cloud Power Partners, LLC, Hardscrabble Wind Power LLC, Hay Canyon Wind LLC, Juniper Canyon Wind Power LLC, Klamath...
Estimating the impacts of wind power on power systems—summary of IEA Wind collaboration
NASA Astrophysics Data System (ADS)
Holttinen, Hannele
2008-04-01
Adding wind power to power systems will have beneficial impacts by reducing the emissions of electricity production and reducing the operational costs of the power system as less fuel is consumed in conventional power plants. Wind power will also have a capacity value to a power system. However, possible negative impacts will have to be assessed to make sure that they will only offset a small part of the benefits and also to ensure the security of the power system operation. An international forum for the exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The Task 'Design and Operation of Power Systems with Large Amounts of Wind Power' is analyzing existing case studies from different power systems. There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. This paper describes the general issues of wind power impacts on power systems and presents a comparison of results from ten case studies on increased balancing needs due to wind power.
Switch: a planning tool for power systems with large shares of intermittent renewable energy.
Fripp, Matthias
2012-06-05
Wind and solar power are highly variable, so it is it unclear how large a role they can play in future power systems. This work introduces a new open-source electricity planning model--Switch--that identifies the least-cost strategy for using renewable and conventional generators and transmission in a large power system over a multidecade period. Switch includes an unprecedented amount of spatial and temporal detail, making it possible to address a new type of question about the optimal design and operation of power systems with large amounts of renewable power. A case study of California for 2012-2027 finds that there is no maximum possible penetration of wind and solar power--these resources could potentially be used to reduce emissions 90% or more below 1990 levels without reducing reliability or severely raising the cost of electricity. This work also finds that policies that encourage customers to shift electricity demand to times when renewable power is most abundant (e.g., well-timed charging of electric vehicles) could make it possible to achieve radical emission reductions at moderate costs.
A BROADBAND EMISSION MODEL OF MAGNETAR WIND NEBULAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Shuta J.
2016-08-20
Angular momentum loss by the plasma wind is considered as a universal feature of isolated neutron stars including magnetars. The wind nebulae that are powered by magnetars allow us to compare the wind properties and the spin evolution of magnetars with those of rotation-powered pulsars (RPPs). In this paper, we construct a broadband emission model of magnetar wind nebulae (MWNe). This model is similar to past studies of young pulsar wind nebulae (PWNe) around RPPs, but is modified for the application to MWNe that have far less observational information than the young PWNe. We apply the model to the MWNmore » around the youngest (∼1 kyr) magnetar, 1E 1547.0-5408, which has the largest spin-down power L {sub spin} among all the magnetars. However, the MWN is faint because of the low L {sub spin} of 1E 1547.0-5408 when compared to the young RPPs. Since most parameters are not well constrained by only an X-ray flux upper limit of the MWN, we adopt the model’s parameters from the young PWN Kes 75 around PSR J1846-0258, which is a peculiar RPP showing magnetar-like behaviors. The model predicts that γ -ray flux will be detected in a future TeV γ -ray observation by CTA (Cherenkov Telescope Array). The MWN spectrum does not allow us to test the hypothesis that 1E 1547.0-5408 had a period of milliseconds at its birth because the particles injected during the early phase of evolution suffered from severe adiabatic and synchrotron losses. Furthermore, both observational and theoretical studies of the wind nebulae around magnetars are required to constrain the wind and the spin-down properties of magnetars.« less
A Broadband Emission Model of Magnetar Wind Nebulae
NASA Astrophysics Data System (ADS)
Tanaka, Shuta J.
2016-08-01
Angular momentum loss by the plasma wind is considered as a universal feature of isolated neutron stars including magnetars. The wind nebulae that are powered by magnetars allow us to compare the wind properties and the spin evolution of magnetars with those of rotation-powered pulsars (RPPs). In this paper, we construct a broadband emission model of magnetar wind nebulae (MWNe). This model is similar to past studies of young pulsar wind nebulae (PWNe) around RPPs, but is modified for the application to MWNe that have far less observational information than the young PWNe. We apply the model to the MWN around the youngest (˜1 kyr) magnetar, 1E 1547.0-5408, which has the largest spin-down power L spin among all the magnetars. However, the MWN is faint because of the low L spin of 1E 1547.0-5408 when compared to the young RPPs. Since most parameters are not well constrained by only an X-ray flux upper limit of the MWN, we adopt the model’s parameters from the young PWN Kes 75 around PSR J1846-0258, which is a peculiar RPP showing magnetar-like behaviors. The model predicts that γ-ray flux will be detected in a future TeV γ-ray observation by CTA (Cherenkov Telescope Array). The MWN spectrum does not allow us to test the hypothesis that 1E 1547.0-5408 had a period of milliseconds at its birth because the particles injected during the early phase of evolution suffered from severe adiabatic and synchrotron losses. Furthermore, both observational and theoretical studies of the wind nebulae around magnetars are required to constrain the wind and the spin-down properties of magnetars.
Smart structure for small wind turbine blade
NASA Astrophysics Data System (ADS)
Supeni, E. E.; Epaarachchi, J. A.; Islam, M. M.; Lau, K. T.
2013-08-01
Wind energy is seen as a viable alternative energy option for future energy demand. The blades of wind turbines are generally regarded as the most critical component of the wind turbine system. Ultimately, the blades act as the prime mover of the whole system which interacts with the wind flow during the production of energy. During wind turbine operation the wind loading cause the deflection of the wind turbine blade which can be significant and affect the turbine efficiency. Such a deflection in wind blade not only will result in lower performance in electrical power generation but also increase of material degradation due high fatigue life and can significantly shorten the longevity for the wind turbine material. In harnessing stiffness of the blade will contribute massive weight factor and consequently excessive bending moment. To overcome this excessive deflection due to wind loading on the blade, it is feasible to use shape memory alloy (SMA) wires which has ability take the blade back to its optimal operational shape. This paper details analytical and experimental work being carried out to minimize blade flapping deflection using SMA.
Armstrong, Alona; Waldron, Susan; Whitaker, Jeanette; Ostle, Nicholas J
2014-01-01
Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy sources critical to future sustainable power provision. Land-based wind and solar electricity generation technologies are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting ecosystems is limited. Wind turbines and photovoltaic panels can significantly change local ground-level climate by a magnitude that could affect the fundamental plant–soil processes that govern carbon dynamics. We believe that understanding the possible effects of changes in ground-level microclimates on these phenomena is crucial to reducing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article, we examine the potential for the microclimatic effects of these land-based renewable energy sources to alter plant–soil carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research. PMID:24132939
A summary of wind power prediction methods
NASA Astrophysics Data System (ADS)
Wang, Yuqi
2018-06-01
The deterministic prediction of wind power, the probability prediction and the prediction of wind power ramp events are introduced in this paper. Deterministic prediction includes the prediction of statistical learning based on histor ical data and the prediction of physical models based on NWP data. Due to the great impact of wind power ramp events on the power system, this paper also introduces the prediction of wind power ramp events. At last, the evaluation indicators of all kinds of prediction are given. The prediction of wind power can be a good solution to the adverse effects of wind power on the power system due to the abrupt, intermittent and undulation of wind power.
NASA Astrophysics Data System (ADS)
Lassonde, Sylvain; Boucher, Olivier; Breon, François-Marie; Tobin, Isabelle; Vautard, Robert
2016-04-01
The share of renewable energies in the mix of electricity production is increasing worldwide. This trend is driven by environmental and economic policies aiming at a reduction of greenhouse gas emissions and an improvement of energy security. It is expected to continue in the forthcoming years and decades. Electricity production from renewables is related to weather and climate factors such as the diurnal and seasonal cycles of sunlight and wind, but is also linked to variability on all time scales. The intermittency in the renewable electricity production (solar, wind power) could eventually hinder their future deployment. Intermittency is indeed a challenge as demand and supply of electricity need to be balanced at any time. This challenge can be addressed by the deployment of an overcapacity in power generation (from renewable and/or thermal sources), a large-scale energy storage system and/or improved management of the demand. The main goal of this study is to optimize a hypothetical renewable energy system at the French and European scales in order to investigate if spatial diversity of the production (here electricity from wind energy) could be a response to the intermittency. We use ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-interim meteorological reanalysis and meteorological fields from the Weather Research and Forecasts (WRF) model to estimate the potential for wind power generation. Electricity demand and production are provided by the French electricity network (RTE) at the scale of administrative regions for years 2013 and 2014. Firstly we will show how the simulated production of wind power compares against the measured production at the national and regional scale. Several modelling and bias correction methods of wind power production will be discussed. Secondly, we will present results from an optimization procedure that aims to minimize some measure of the intermittency of wind energy. For instance we estimate the optimal distribution between French regions (with or without cross-border inputs) that minimizes the impact of low-production periods computed in a running mean sense and its sensitivity to the period considered. We will also assess which meteorological situations are the most problematic over the 35-year ERA-interim climatology(1980-2015).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, Tony; Keyser, David; Tegen, Suzanne
Construction of the first offshore wind power plant in the United States began in 2015, off the coast of Rhode Island, using fixed platform structures that are appropriate for shallow seafloors, like those located off the East Coast and mid-Atlantic. However, floating platforms, which have yet to be deployed commercially, will likely need to be anchored to the deeper seafloor if deployed in Hawaiian waters. To analyze the employment and economic potential for floating offshore wind off Hawaii's coasts, the Bureau of Ocean Energy Management commissioned the National Renewable Energy Laboratory (NREL) to analyze two hypothetical deployment scenarios for Hawaii:more » 400 MW of offshore wind by 2050 and 800 MW of offshore wind by 2050. The results of this analysis can be used to better understand the general scale of economic opportunities that could result from offshore wind development.« less
North Antelope Highlands Wind Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearlson, Matthew
This is the final report on the Wind Energy Development of 190 Mw on the Rosebud Indian Reservation in collaboration with Citizens Energy Corporation. The report discusses all pre-development activities since July of 2010 when award was granted. A systems impact study along with wind data accumulated over the past 5 years is contained in this report. We have responded to several RFPs concerning the sale of energy to certain offtakers, but we have failed to win a Power Purchase Agreement due to existing wind farms that won and the interconnection costs were already included in a previous PPAs, whichmore » we don't have that luxury. We continue this effort and hopefully in the near future we will win an RFP.« less
75 FR 82130 - WTO Dispute Settlement Proceeding Regarding China-Subsidies on Wind Power Equipment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
...--Subsidies on Wind Power Equipment AGENCY: Office of the United States Trade Representative. ACTION: Notice... certain subsidies provided by the People's Republic of China (China) on wind power equipment. The... Special Fund for Industrialization of Wind Power Equipment'' (``Wind Power Equipment Fund''). The Wind...
NASA Astrophysics Data System (ADS)
Shi, Wenhui; Feng, Changyou; Qu, Jixian; Zha, Hao; Ke, Dan
2018-02-01
Most of the existing studies on wind power output focus on the fluctuation of wind farms and the spatial self-complementary of wind power output time series was ignored. Therefore the existing probability models can’t reflect the features of power system incorporating wind farms. This paper analyzed the spatial self-complementary of wind power and proposed a probability model which can reflect temporal characteristics of wind power on seasonal and diurnal timescales based on sufficient measured data and improved clustering method. This model could provide important reference for power system simulation incorporating wind farms.
Improved Weather and Power Forecasts for Energy Operations - the German Research Project EWeLiNE
NASA Astrophysics Data System (ADS)
Lundgren, Kristina; Siefert, Malte; Hagedorn, Renate; Majewski, Detlev
2014-05-01
The German energy system is going through a fundamental change. Based on the energy plans of the German federal government, the share of electrical power production from renewables should increase to 35% by 2020. This means that, in the near future at certain times renewable energies will provide a major part of Germany's power production. Operating a power supply system with a large share of weather-dependent power sources in a secure way requires improved power forecasts. One of the most promising strategies to improve the existing wind power and PV power forecasts is to optimize the underlying weather forecasts and to enhance the collaboration between the meteorology and energy sectors. Deutscher Wetterdienst addresses these challenges in collaboration with Fraunhofer IWES within the research project EWeLiNE. The overarching goal of the project is to improve the wind and PV power forecasts by combining improved power forecast models and optimized weather forecasts. During the project, the numerical weather prediction models COSMO-DE and COSMO-DE-EPS (Ensemble Prediction System) by Deutscher Wetterdienst will be generally optimized towards improved wind power and PV forecasts. For instance, it will be investigated whether the assimilation of new types of data, e.g. power production data, can lead to improved weather forecasts. With regard to the probabilistic forecasts, the focus is on the generation of ensembles and ensemble calibration. One important aspect of the project is to integrate the probabilistic information into decision making processes by developing user-specified products. In this paper we give an overview of the project and present first results.
Research on wind power grid-connected operation and dispatching strategies of Liaoning power grid
NASA Astrophysics Data System (ADS)
Han, Qiu; Qu, Zhi; Zhou, Zhi; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Li, Jinze; Ling, Zhaowei
2018-02-01
As a kind of clean energy, wind power has gained rapid development in recent years. Liaoning Province has abundant wind resources and the total installed capacity of wind power is in the forefront. With the large-scale wind power grid-connected operation, the contradiction between wind power utilization and peak load regulation of power grid has been more prominent. To this point, starting with the power structure and power grid installation situation of Liaoning power grid, the distribution and the space-time output characteristics of wind farm, the prediction accuracy, the curtailment and the off-grid situation of wind power are analyzed. Based on the deep analysis of the seasonal characteristics of power network load, the composition and distribution of main load are presented. Aiming at the problem between the acceptance of wind power and power grid adjustment, the scheduling strategies are given, including unit maintenance scheduling, spinning reserve, energy storage equipment settings by the analysis of the operation characteristics and the response time of thermal power units and hydroelectric units, which can meet the demand of wind power acceptance and provide a solution to improve the level of power grid dispatching.
Retrospective and prospective analysis of policy incentives for wind power in Portugal
NASA Astrophysics Data System (ADS)
Pena Cabra, Ivonne A.
Concerns over climate change impacts, goals to increase environmental sustainability, and questions about the reliability of fuel supply have led several countries to pursue the goal of increasing the share of renewable energy sources in their electricity grid. Portugal is one of the leading countries for wind electricity generation. Wind diffusion in Portugal started in the early 2000's and in 2013 wind electricity generation accounted for more than 24% (REN 2013b). The large share of wind in Portuguese electricity production is a consequence of European Union (E.U.) mandates and national policies, mainly feed-in tariffs. Discussions on the appropriate policy design and level of incentive to promote renewable energy adoption and meet further renewable capacity goals are ongoing in Portugal, namely in what concerns the level and duration of feed-in tariffs that should be provided to independent power producers. This, in turn, raises the question of whether the past feed-in tariff levels were well designed to achieve the goals of a larger penetration of renewables in the Portuguese grid. The policies to induce wind adoption have led to a growth in wind installed capacity and share of electricity generated by wind in Portugal from less than 1% in 2000 to approximately 24% in 2013, but questions arise on their cost-effectiveness and whether alternative policy designs would have led to the same goal. The Portuguese wind feed-in tariffs are a guaranteed incentive which has varied between 85- 180/MWh over the last 20 years (ERSE 2011), and remained approximately constant since 2001 at $101/MWh. They are currently guaranteed for 20 years of production or 44GWh of electricity generation per MW installed (Diario da Republica 2013) - the longest period among countries with high wind electricity share. They do not incorporate any digression rate besides inflation, and are guaranteed for every unit of electricity fed to the grid. There are no power plants that have already been decommissioned despite being in operation for more than 20 years, favoring from new, detailed and hard-to-follow agreements in the legislation. All wind parks that are currently in operation have received feed-in tariffs since they connected to the grid, and are expected to keep receiving them at least until December 2019, and up to December 2036 - depending on year of connection and agreement under the most recent legislation (Diario da Republica 2013). The 2020 renewable energy goals in Portugal include having 6.8 GW of installed wind capacity, which implies the connection of 2 GW in the next years. If no further grid investments are made and wind capacity increases up to 100 MW to the connection point that we analyze, total annual electricity spill is likely to range the 20% to 40%. If the connection grid policy is designed to allow for wind spill, already 'occupied' connection points will be available to new entrants, lowering the total investment costs for new wind parks and increasing their profitability. This thesis is divided in three main parts: a first introductory section, a retrospective study of wind power in Portugal and a prospective analysis of the Portuguese wind power sector. The introductory section is a brief overview of the global renewable status, described in Chapter 1. Chapter 2 and Chapter 3 compile a retrospective study of wind power and the policies that have incentivized wind diffusion. We include in the discussion some references to the future wind power goals, but the results and policy recommendations are directed towards the existing connected wind power capacity. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio
Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.
Offshore Wind Power Integration in severely fluctuating Wind Conditions
NASA Astrophysics Data System (ADS)
von Bremen, L.
2010-09-01
Strong power fluctuations from offshore wind farms that are induced by wind speed fluctuations pose a severe problem to the save integration of offshore wind power into the power supply system. Experience at the first large-scale offshore wind farm Horns Rev showed that spatial smoothing of power fluctuations within a single wind farm is significantly smaller than onshore results suggest when distributed wind farms of 160 MW altogether are connected to a single point of common-coupling. Wind power gradients larger than 10% of the rated capacity within 5 minutes require large amount of regulation power that is very expensive for the grid operator. It must be noted that a wind speed change of only 0.5m/s result in a wind power change of 10% (within the range of 9-11 m/s where the wind power curve is steepest). Hence, it is very important for the grid operator to know if strong fluctuations are likely or not. Observed weather conditions at the German wind energy research platform FINO1 in the German bight are used to quantify wind fluctuations. With a standard power curve these wind fluctuations are transfered to wind power. The aim is to predict the probability of exceedence of certain wind power gradients that occur in a time interval of e.g. 12 hours. During 2006 and 2009 the distribution of wind power fluctuations looks very similar giving hope that distinct atmospheric processes can be determined that act as a trigger. Most often high wind power fluctuations occur in a range of wind speeds between 9-12 m/s as can be expected from the shape of the wind power curve. A cluster analysis of the 500 hPa geopotential height to detect predominant weather regimes shows that high fluctuations are more likely in north-western flow. It is shown that most often high fluctuations occur in non-stable atmospheric stratification. The description of stratification by means of the vertical gradient of the virtual potential temperature is chosen to be indicative for convection, i.e. it can be assumed that a negative gradient indicates convection which leads to strong wind fluctuations in the updraft and downdraft of the cloud. Neural Networks are used to determine the probability of exceedence of wind power gradients from a set of atmospheric parameters that are taken from Numerical Weather Prediction Models. Parameters describing atmospheric stability, that are related to convection (e.g. rain rate) and that forecast wind gusts tend to carry most information to estimate expected wind power fluctuations.
Wind power error estimation in resource assessments.
Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.
Wind Power Error Estimation in Resource Assessments
Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444
Stationary flywheel energy storage systems
NASA Astrophysics Data System (ADS)
Gilhaus, A.; Hau, E.; Gassner, G.; Huss, G.; Schauberger, H.
1982-07-01
A study intended to discover industrial applications of Stationary Flywheel Energy Accumulators. The economic value for the consumer and the effects on the power supply grid were investigated. A possibility for energy storage by flywheels exists where energy otherwise lost can be used effectively as in brake energy storage in vehicles. The future use of flywheels in wind power plants also seems to be promising. Attractive savings of energy can be obtained by introducing modern flywheel technology for emergency power supply units which are employed, for instance, in telecommunication systems.
Power control and management of the grid containing largescale wind power systems
NASA Astrophysics Data System (ADS)
Aula, Fadhil Toufick
The ever increasing demand for electricity has driven many countries toward the installation of new generation facilities. However, concerns such as environmental pollution and global warming issues, clean energy sources, high costs associated with installation of new conventional power plants, and fossil fuels depletion have created many interests in finding alternatives to conventional fossil fuels for generating electricity. Wind energy is one of the most rapidly growing renewable power sources and wind power generations have been increasingly demanded as an alternative to the conventional fossil fuels. However, wind power fluctuates due to variation of wind speed. Therefore, large-scale integration of wind energy conversion systems is a threat to the stability and reliability of utility grids containing these systems. They disturb the balance between power generation and consumption, affect the quality of the electricity, and complicate load sharing and load distribution managing and planning. Overall, wind power systems do not help in providing any services such as operating and regulating reserves to the power grid. In order to resolve these issues, research has been conducted in utilizing weather forecasting data to improve the performance of the wind power system, reduce the influence of the fluctuations, and plan power management of the grid containing large-scale wind power systems which consist of doubly-fed induction generator based energy conversion system. The aims of this research, my dissertation, are to provide new methods for: smoothing the output power of the wind power systems and reducing the influence of their fluctuations, power managing and planning of a grid containing these systems and other conventional power plants, and providing a new structure of implementing of latest microprocessor technology for controlling and managing the operation of the wind power system. In this research, in order to reduce and smooth the fluctuations, two methods are presented. The first method is based on a de-loaded technique while the other method is based on utilizing multiple storage facilities. The de-loaded technique is based on characteristics of the power of a wind turbine and estimation of the generated power according to weather forecasting data. The technique provides a reference power by which the wind power system will operate and generate a smooth power. In contrast, utilizing storage facilities will allow the wind power system to operate at its maximum tracking power points' strategy. Two types of energy storages are considered in this research, battery energy storage system (BESS) and pumped-hydropower storage system (PHSS), to suppress the output fluctuations and to support the wind power system to follow the system load demands. Furthermore, this method provides the ability to store energy when there is a surplus of the generated power and to reuse it when there is a shortage of power generation from wind power systems. Both methods are new in terms of utilizing of the techniques and wind speed data. A microprocessor embedded system using an IntelRTM Atom(TM) processor is presented for controlling the wind power system and for providing the remote communication for enhancing the operation of the individual wind power system in a wind farm. The embedded system helps the wind power system to respond and to follow the commands of the central control of the power system. Moreover, it enhances the performance of the wind power system through self-managing, self-functioning, and self-correcting. Finally, a method of system power management and planning is modeled and studied for a grid containing large-scale wind power systems. The method is based on a new technique through constructing a new load demand curve (NLDC) from merging the estimation of generated power from wind power systems and forecasting of the load. To summarize, the methods and their results presented in this dissertation, enhance the operation of the large-scale wind power systems and reduce their drawbacks on the operation of the power grid.
Power Performance Verification of a Wind Farm Using the Friedman's Test.
Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L
2016-06-03
In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman's test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable.
Power Performance Verification of a Wind Farm Using the Friedman’s Test
Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L.
2016-01-01
In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman’s test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable. PMID:27271628
Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; ...
2016-02-02
Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less
Coordinated control strategy for improving the two drops of the wind storage combined system
NASA Astrophysics Data System (ADS)
Qian, Zhou; Chenggen, Wang; Jing, Bu
2018-05-01
In the power system with high permeability wind power, due to wind power fluctuation, the operation of large-scale wind power grid connected to the system brings challenges to the frequency stability of the system. When the doubly fed wind power generation unit does not reserve spare capacity to participate in the system frequency regulation, the system frequency will produce two drops in different degrees when the wind power exits frequency modulation and enters the speed recovery stage. To solve this problem, based on the complementary advantages of wind turbines and energy storage systems in power transmission and frequency modulation, a wind storage combined frequency modulation strategy based on sectional control is proposed in this paper. Based on the TOP wind power frequency modulation strategy, the wind power output reference value is determined according to the linear relationship between the output and the speed of the wind turbine, and the auxiliary wind power load reduction is controlled when the wind power exits frequency modulation into the speed recovery stage, so that the wind turbine is recovered to run at the optimal speed. Then, according to the system frequency and the wind turbine operation state, set the energy storage system frequency modulation output. Energy storage output active support is triggered during wind speed recovery. And then when the system frequency to return to the normal operating frequency range, reduce energy storage output or to exit frequency modulation. The simulation results verify the effectiveness of the proposed method.
Foundations for offshore wind turbines.
Byrne, B W; Houlsby, G T
2003-12-15
An important engineering challenge of today, and a vital one for the future, is to develop and harvest alternative sources of energy. This is a firm priority in the UK, with the government setting a target of 10% of electricity from renewable sources by 2010. A component central to this commitment will be to harvest electrical power from the vast energy reserves offshore, through wind turbines or current or wave power generators. The most mature of these technologies is that of wind, as much technology transfer can be gained from onshore experience. Onshore wind farms, although supplying 'green energy', tend to provoke some objections on aesthetic grounds. These objections can be countered by locating the turbines offshore, where it will also be possible to install larger capacity turbines, thus maximizing the potential of each wind farm location. This paper explores some civil-engineering problems encountered for offshore wind turbines. A critical component is the connection of the structure to the ground, and in particular how the load applied to the structure is transferred safely to the surrounding soil. We review previous work on the design of offshore foundations, and then present some simple design calculations for sizing foundations and structures appropriate to the wind-turbine problem. We examine the deficiencies in the current design approaches, and the research currently under way to overcome these deficiencies. Designs must be improved so that these alternative energy sources can compete economically with traditional energy suppliers.
Compact Superconducting Power Systems for Airborne Applications (Postprint)
2009-01-01
rotating machin- ery such as motors and alternators, is to maximize the magnet- ic flux density. This can be achieved by using a higher current...future systems could be driven to much higher power ratios, since the initial machine configuration was a homopolar inductor alternator‡ (HIA). A... Homopolar inductor alternator is an electrically symmetrical synchro- nous generator with a field winding that has a fixed magnetic position in relation to
Discussion on mass concrete construction of wind turbine generator foundation
NASA Astrophysics Data System (ADS)
Shang, Liang; Wu, Chaoxiang; Yin, Xiaoyong
2018-04-01
Wind power is one of the main power sources currently. China has rich wind power resources, wind power plants are developed faster and faster. However, China wind power construction started late, which is lack of relevant experience technology. It is easy to produce quality problems. The key to the construction quality of wind power plant is the construction quality of mass concrete construction. Therefore, construction technology and quality control of wind turbine generator foundation mass concrete are discussed and analyzed in the paper.
The wind power prediction research based on mind evolutionary algorithm
NASA Astrophysics Data System (ADS)
Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina
2018-04-01
When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Jin; Zhang, Yingchen; Veda, Santosh
Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interestmore » to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.« less
Developing High PV Penetration Cases for Frequency Response Study of U.S. Western Interconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Jin; Zhang, Yingchen; Veda, Santosh
Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interestmore » to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Jin; Zhang, Yingchen; Veda, Santosh
2017-04-11
Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interestmore » to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.« less
Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; Devezeaux de Lavergne, Jean-Guy; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele
2014-01-01
The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.
NASA Astrophysics Data System (ADS)
Mann, Jakob; Nørkær Sørensen, Jens; Morthorst, Poul-Erik
2008-01-01
Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also addressed within the issue is how much conventional power production can be replaced by the ceaseless wind, with the question of how Greece's target of 29% renewables by 2020 is to be met efficiently. Other topics include an innovative way to determine the power curve of a turbine experimentally more accurately, the use of fluid dynamics tools to investigate the implications of placing vortex generators on wind turbine blades (thereby possibly improving their efficiency) and a study of the perception of wind turbine noise. It turns out that a small but significant fraction of wind turbine neighbours feel that turbine generated noise impairs their ability to rest. The annoyance is correlated with a negative attitude towards the visual impact on the landscape, but what is cause and effect is too early to say. As mentioned there is a rush for wind turbines in many countries. However, this positive development for the global climate is currently limited by practical barriers. One bottleneck is the difficulties for the sub-suppliers of gears and other parts to meet the demand. Another is the difficulties to meet the demand for engineers specialized in wind. For that reason the Technical University of Denmark (DTU) recently launched the world's first Wind Energy Masters Program. Here and elsewhere in the world of wind education and research we should really speed up now, as our chances of contributing to emission free energy production and a healthier global climate have never been better. Focus on Wind Energy Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Wind turbines—low level noise sources interfering with restoration? Eja Pedersen and Kerstin Persson Waye On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece George Caralis, Yiannis Perivolaris, Konstantinos Rados and Arthouros Zervos Large-eddy simulation of spectral coherence in a wind turbine wake A Jimenez, A Crespo, E Migoya and J Garcia How to improve the estimation of power curves for wind turbines Julia Gottschall and Joachim Peinke
77 FR 37395 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... Wind Power Partners, LLC, High Prairie Wind Farm II, LLC, Cloud County Wind Farm, LLC, Pioneer Prairie Wind Farm I, LLC, Sagebrush Power Partners, LLC, Arlington Wind Power Project LLC, Marble River, LLC... Power Project LLC, Blue Canyon Windpower II, LLC, Lost Lakes Wind Farm LLC, Blue Canyon Windpower V LLC...
Complementing hydropower with PV and wind: optimal energy mix in a fully renewable Switzerland
NASA Astrophysics Data System (ADS)
Dujardin, Jérôme; Kahl, Annelen; Kruyt, Bert; Lehning, Michael
2017-04-01
Like several other countries, Switzerland plans to phase out its nuclear power production and will replace most or all of it by renewables. Switzerland has the chance to benefit from a large hydropower potential and has already exploited almost all of it. Currently about 60% of the Swiss electricity consumption is covered by hydropower, which will eventually leave a gap of about 40% to the other renewables mainly composed of photovoltaics (PV) and wind. With its high flexibility, storage hydropower will play a major role in the future energy mix, providing valuable power and energy balance. Our work focuses on the interplay between PV, wind and storage hydropower, to analyze the dynamics of this complex system and to identify the best PV-wind mixing ratio. Given the current electricity consumption and the currently installed pumping capacity of the storage hydropower plants, it appears that the Swiss hydropower system can completely alleviate the intermittency of PV and wind. However, some seasonal mismatch between production and demand will remain, but we show that oversizing the production from PV and wind or enlarging the reservoir capacity can be a solution to keep it to an acceptable level or even eliminate it. We found that PV, wind and hydropower performs the best together when the share of PV in the solar - wind mix is between 20 and 60%. These findings are quantitatively specific for Switzerland but qualitatively transferable to similar mountainous environments with abundant hydropower resources.
Security region-based small signal stability analysis of power systems with FSIG based wind farm
NASA Astrophysics Data System (ADS)
Qin, Chao; Zeng, Yuan; Yang, Yang; Cui, Xiaodan; Xu, Xialing; Li, Yong
2018-02-01
Based on the Security Region approach, the impact of fixed-speed induction generator based wind farm on the small signal stability of power systems is analyzed. Firstly, the key factors of wind farm on the small signal stability of power systems are analyzed and the parameter space for small signal stability region is formed. Secondly, the small signal stability region of power systems with wind power is established. Thirdly, the corresponding relation between the boundary of SSSR and the dominant oscillation mode is further studied. Results show that the integration of fixed-speed induction generator based wind farm will cause the low frequency oscillation stability of the power system deteriorate. When the output of wind power is high, the oscillation stability of the power system is mainly concerned with the inter-area oscillation mode caused by the integration of the wind farm. Both the active power output and the capacity of reactive power compensation of the wind farm have a significant influence on the SSSR. To improve the oscillation stability of power systems with wind power, it is suggested to reasonably set the reactive power compensation capacity for the wind farm through SSSR.
Energy Systems Integration Facility | NREL
influence how electric power systems operate far into the future. LEARN MORE Sharing Knowledge Recent 2017 Journal Article Wind and Solar Resource Data Sets Technical Report Innovation Incubator , Liquid Submerged Server for High-Efficiency Data Centers News and Announcements News More News News
Jorgenson, Ali Ehlen, and James H. Caldwell. 2016. Low Carbon Grid Study: Analysis of a 50% Emission the Western Wind and Solar Integration Phase 2 Study. Golden, CO: National Renewable Energy Laboratory . Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission
National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.
2012-06-01
To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancingmore » requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.« less
Research on the effects of wind power grid to the distribution network of Henan province
NASA Astrophysics Data System (ADS)
Liu, Yunfeng; Zhang, Jian
2018-04-01
With the draining of traditional energy, all parts of nation implement policies to develop new energy to generate electricity under the favorable national policy. The wind has no pollution, Renewable and other advantages. It has become the most popular energy among the new energy power generation. The development of wind power in Henan province started relatively late, but the speed of the development is fast. The wind power of Henan province has broad development prospects. Wind power has the characteristics of volatility and randomness. The wind power access to power grids will cause much influence on the power stability and the power quality of distribution network, and some areas have appeared abandon the wind phenomenon. So the study of wind power access to power grids and find out improvement measures is very urgent. Energy storage has the properties of the space transfer energy can stabilize the operation of power grid and improve the power quality.
Krone, Roland; Gutow, Lars; Joschko, Tanja J; Schröder, Alexander
2013-04-01
In the light of the introduction of thousands of large offshore wind power foundations into the North Sea within the next decades, this manuscript focuses on the biofouling processes and likely reef effects. The study explores the macrozoobenthos (biofouling) colonization at an offshore platform which is comparable to offshore wind turbine foundations. A total of 183 single samples were taken and the parameters water depth and time were considered comparing biofouling masses and communities. The blue mussel Mytilus edulis, Anthozoa and the Amphipoda Jassa spp. were the dominant species. The community from the 1 m zone and those from the 5 and 20-28 m zones can clearly be differentiated. The 10 m zone community represents the transition between the M. edulis dominated 1 m and 5 m zones and the Anthozoa dominated 20-28 m zone. In the future offshore wind farms, thousands of wind turbine foundations will provide habitat for a hard bottom fauna which is otherwise restricted to the sparse rocky habitats scattered within extensive sedimentary soft bottoms of the German Bight. However, offshore wind power foundations cannot be considered natural rock equivalents as they selectively increase certain natural hard bottom species. The surface of the construction (1280 m²) was covered by an average of 4300 kg biomass. This foundation concentrates on its footprint area (1024 m²) 35 times more macrozoobenthos biomass than the same area of soft bottom in the German exclusive economic zone (0.12 kg m(-2)), functioning as a biomass hotspot. Concerning the temporal biomass variation, we assume that at least 2700 kg biomass was exported on a yearly basis. 345 × 10(4) single mussel shells of different sizes were produced during the study period. It is anticipated that the M. edulis abundance will increase in the North Sea due to the expansion of the offshore wind farm development. This will result in the enhanced production of secondary hard substrate (mussel shells) and its associated fauna and will intensify filtration rates of the seawater. This predicted ecological system change is coined the 'Mytilusation' of the German Bight. Copyright © 2012 Elsevier Ltd. All rights reserved.
Recent advances in electrohydrodynamic pumps operated by ionic winds: a review
NASA Astrophysics Data System (ADS)
Johnson, Michael J.; Go, David B.
2017-10-01
An ionic or electric wind is a bulk air movement induced by electrohydrodynamic (EHD) phenomena in a gas discharge. Because they are silent, low power, respond rapidly, and require no moving parts, ionic wind devices have been proposed for a wide range of applications, ranging from convection cooling and food drying to combustion management. The past several decades have seen the area grow tremendously leading to a number of new actuation strategies and devices that can be incorporated into various applications. In this review, we discuss the physics of ionic winds and recent developments of the past five years that have pushed the field forward, focusing on the development on bulk air-moving devices we term EHD pumps. We then highlight the ongoing challenges with transitioning ionic wind technologies to the market place, from issues that affect robustness to practical implementation, and point to areas where future research could have an impact on the field.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed
2008-01-01
NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.
Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P.W.
Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases consideredmore » include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.« less
Desholm, Mark
2009-06-01
Wind power generation is likely to constitute one of the most extensive human physical exploitation activities of European marine areas in the near future. The many millions of migrating birds that pass these man-made obstacles are protected by international obligations and the subject of public concerns. Yet some bird species are more sensitive to bird-wind turbine mortality than others. This study developed a simple and logical framework for ranking bird species with regard to their relative sensitivity to bird-wind turbine-collisions, and applied it to a data set comprising 38 avian migrant species at the Nysted offshore wind farm in Denmark. Two indicators were selected to characterize the sensitivity of each individual species: 1) relative abundance and 2) demographic sensitivity (elasticity of population growth rate to changes in adult survival). In the case-study from the Nysted offshore wind farm, birds of prey and waterbirds dominated the group of high priority species and only passerines showed a low risk of being impacted by the wind farm. Even where passerines might be present in very high numbers, they often represent insignificant segments of huge reference populations that, from a demographic point of view, are relatively insensitive to wind farm-related adult mortality. It will always be important to focus attention and direct the resources towards the most sensitive species to ensure cost-effective environmental assessments in the future, and in general, this novel index seems capable of identifying the species that are at high risk of being adversely affected by wind farms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.
2010-01-01
The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the loadmore » and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.« less
Doubly fed induction generator wind turbines with fuzzy controller: a survey.
Sathiyanarayanan, J S; Kumar, A Senthil
2014-01-01
Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.
Revolution...Now The Future Arrives for Five Clean Energy Technologies – 2016 Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donohoo-Vallett, Paul
Decades of investments by the federal government and industry in five key clean energy technologies are making an impact today. The cost of land-based wind power, utility and distributed photovoltaic (PV) solar power, light emitting diodes (LEDs), and electric vehicles (EVs) has fallen by 41% to as high as 94% since 2008. These cost reductions have enabled widespread adoption of these technologies with deployment increasing across the board.
77 FR 31839 - Wind and Water Power Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2012 Wind and Water Power Program, Wind Power Peer Review Meeting will review wind technology development and market acceleration and deployment projects from the Program's research and development...
NASA Astrophysics Data System (ADS)
Barradale, Merrill Jones
This dissertation examines the influence of attitudes, beliefs, and preferences of energy industry practitioners on investment decision-making with regard to fuel choice for new electric power plants. The conclusions are based on in-depth interviews and an extensive online survey I conducted of 600-800 energy professionals in the U.S. power sector. Chapter 1 analyzes the impact of policy uncertainty on investment decision-making in renewable energy, using the federal production tax credit (PTC) and wind energy investment as an example. It is generally understood that the pattern of repeated expiration and short-term renewal of the PTC causes a boom-bust cycle in wind power plant investment in the U.S. This on-off pattern is detrimental to the wind industry, since ramp-up and ramp-down costs are high, and players are deterred from making long-term investments. The widely held belief that the severe downturn in investment during "off" years implies that wind power is unviable without the PTC turns out to be unsubstantiated: this chapter demonstrates that it is not the absence of the PTC that causes the investment downturn during "off" years, but rather the uncertainty over its return. Specifically, it is the dynamic of power purchase agreement negotiations in the face of PTC renewal uncertainty that drives investment volatility. This suggests that reducing regulatory uncertainty is a crucial component of effective renewable energy policy. The PTC as currently structured is not the only means, existing or potential, for encouraging wind power investment. Using data from my survey, various alternative policy incentives are considered and compared in terms of their perceived reliability for supporting long-term investment. Chapter 2 introduces the concept of expected payment of carbon as a factor in investment decision-making. The notion of carbon risk (the financial risk associated with CO2 emissions under potential climate change policy) is usually incorporated into investment decision-making by including a cost of carbon in the budget analysis. Most existing literature uses the expected price of carbon as a proxy for this cost, where expected price is a weighted average of various scenarios, often comparing policy proposals and representing either the price of traded permits or level of carbon tax, depending on the type of policy. The literature focuses on the minimum price of carbon required to influence power plant investment decisions. In contrast, this chapter introduces expected payment as a more accurate measure of carbon cost as it is perceived by industry practitioners. The expected payment of carbon is the expected price of carbon times the probability that this cost would actually be faced in the case of a particular investment. This concept helps explain both the 2005-2006 surge of activity in coal-fired power plant development and the subsequent decline in that interest. The energy industry has been slow to move away from fossil fuels and towards renewable resources. In chapter 3 I find evidence for a cognitive bias that plays a role in this momentum. Energy executives' expectations of future energy prices are strongly correlated with their own preferences, which I document for the case of natural gas prices. This is an example of wishful expectations, a form of overconfidence in which people are excessively optimistic over uncontrollable future outcomes. This implies energy executives with strong exposure to fossil fuels are excessively optimistic on future prices and so continue to invest despite the presence of superior alternatives.
Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkataramanan, Giri; Lesieutre, Bernard; Jahns, Thomas
This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well asmore » on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.« less
The relationship between wind power, electricity demand and winter weather patterns in Great Britain
NASA Astrophysics Data System (ADS)
Thornton, Hazel E.; Scaife, Adam A.; Hoskins, Brian J.; Brayshaw, David J.
2017-06-01
Wind power generation in Great Britain has increased markedly in recent years. However due to its intermittency its ability to provide power during periods of high electricity demand has been questioned. Here we characterise the winter relationship between electricity demand and the availability of wind power. Although a wide range of wind power capacity factors is seen for a given demand, the average capacity factor reduces by a third between low and high demand. However, during the highest demand average wind power increases again, due to strengthening easterly winds. The nature of the weather patterns affecting Great Britain are responsible for this relationship. High demand is driven by a range of high pressure weather types, each giving cold conditions, but variable wind power availability. Offshore wind power is sustained at higher levels and offers a more secure supply compared to that onshore. However, during high demand periods in Great Britain neighbouring countries may struggle to provide additional capacity due to concurrent low temperatures and low wind power availability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-11-01
The specific purpose for the action under consideration in this Environmental Assessment is to determine the wind characteristics of the Lincoln Ridge site over a period of time. The wind data is needed by the government and by Green Mountain Power Corporation to determine the technical and economic feasibility for possible future erection of a wind turbine generator at this location. It is important to note that the data presented in this document relates only to the installation of one meteorological tower with related wind and ice detection and recording equipment. Based on preliminary information it is expected that themore » site would be feasible in all respects for installation of a large wind turbine. However, it is not intended that the environmental considerations presented herein should cover the installation and operation of a wind turbine of any size. If the site is selected at a later date for installation of a wind turbine, a complete new Environmental Assessment and an Environmental Impact Statement, if required, will be prepared.« less
Design of Intelligent Power Supply System for Expressway Tunnel
NASA Astrophysics Data System (ADS)
Wang, Li; Li, Yutong; Lin, Zimian
2018-01-01
Tunnel lighting program is one of the key points of tunnel infrastructure construction. As tunnels tend to handle remote locations, power supply line construction generally has been having the distance, investment, high cost characteristics. To solve this problem, we propose a green, environmentally friendly, energy-efficient lighting system. This program uses the piston-wind which cars within tunnel produce as the power and combines with solar energy, physical lighting to achieve it, which solves the problem of difficult and high cost of highway tunnel section, and provides new ideas for the future construction of tunnel power supply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian
The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPPs) is crucial to ensuring the reliable and stable operation of the electric power grid. This report compares the standards for grid-connected WPPs in China to those in the United States to facilitate further improvements in wind power standards and enhance the development of wind power equipment. Detailed analyses of power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhancemore » the understanding of grid codes in the two largest markets of wind power. This study compares WPP interconnection standards and technical requirements in China to those in the United States.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strach-Sonsalla, Mareike; Stammler, Matthias; Wenske, Jan
In 1991, the Vindeby Offshore Wind Farm, the first offshore wind farm in the world, started feeding electricity to the grid off the coast of Lolland, Denmark. Since then, offshore wind energy has developed from this early experiment to a multibillion dollar market and an important pillar of worldwide renewable energy production. Unit sizes grew from 450 kW at Vindeby to the 7.5 MW-class offshore wind turbines (OWT ) that are currently (by October 2014) in the prototyping phase. This chapter gives an overview of the state of the art in offshore wind turbine (OWT) technology and introduces the principlesmore » of modeling and simulating an OWT. The OWT components -- including the rotor, nacelle, support structure, control system, and power electronics -- are introduced, and current technological challenges are presented. The OWT system dynamics and the environment (wind and ocean waves) are described from the perspective of OWT modelers and designers. Finally, an outlook on future technology is provided. The descriptions in this chapter are focused on a single OWT -- more precisely, a horizontal-axis wind turbine -- as a dynamic system. Offshore wind farms and wind farm effects are not described in detail in this chapter, but an introduction and further references are given.« less
Pryor, S. C.; Barthelmie, R. J.
2011-01-01
The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the “fuel” is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades. PMID:21536905
Pryor, S C; Barthelmie, R J
2011-05-17
The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the "fuel" is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades.
1981-09-01
The expres- sions for the rotor torque for a Darrieus machine can be found in Reference 4.16. The Darrieus wind turbine offers the following... turbine generators, wind -driven turbines , power conditioning, wind power, energy conservation, windmills, economic ana \\sis. 20 ABS 1"ACT (Conti,on... turbines , power conditioning requirements, siting requirements, and the economics of wind power under different conditions. Three examples are given to
Variability in large-scale wind power generation: Variability in large-scale wind power generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiviluoma, Juha; Holttinen, Hannele; Weir, David
2015-10-25
The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1more » h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.« less
Study on optimized decision-making model of offshore wind power projects investment
NASA Astrophysics Data System (ADS)
Zhao, Tian; Yang, Shangdong; Gao, Guowei; Ma, Li
2018-02-01
China’s offshore wind energy is of great potential and plays an important role in promoting China’s energy structure adjustment. However, the current development of offshore wind power in China is inadequate, and is much less developed than that of onshore wind power. On the basis of considering all kinds of risks faced by offshore wind power development, an optimized model of offshore wind power investment decision is established in this paper by proposing the risk-benefit assessment method. To prove the practicability of this method in improving the selection of wind power projects, python programming is used to simulate the investment analysis of a large number of projects. Therefore, the paper is dedicated to provide decision-making support for the sound development of offshore wind power industry.
Doubly Fed Induction Generator Wind Turbines with Fuzzy Controller: A Survey
Sathiyanarayanan, J. S.; Senthil Kumar, A.
2014-01-01
Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine. PMID:25028677
NASA Astrophysics Data System (ADS)
Kennedy, Scott Warren
A steady decline in the cost of wind turbines and increased experience in their successful operation have brought this technology to the forefront of viable alternatives for large-scale power generation. Methodologies for understanding the costs and benefits of large-scale wind power development, however, are currently limited. In this thesis, a new and widely applicable technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic modeling techniques to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. A method for including the spatial smoothing effect of geographically dispersed wind farms is also introduced. The model has been used to analyze potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle (NGCC) and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on natural gas and coal prices is also discussed. In power systems with a high penetration of wind generated electricity, the intermittent availability of wind power may influence hourly spot prices. A price responsive electricity demand model is introduced that shows a small increase in wind power value when consumers react to hourly spot prices. The effectiveness of this mechanism depends heavily on estimates of the own- and cross-price elasticities of aggregate electricity demand. This work makes a valuable contribution by synthesizing information from research in power market economics, power system reliability, and environmental impact assessment, to develop a comprehensive methodology for analyzing wind power in the context of long-term energy planning.
75 FR 6652 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
...-004. Applicants: Bendwind, LLC; Big Sky Wind, LLC; DeGreeff DP, LLC; DeGreeffpa, LLC; CL Power Sales... Wind, LLC; EME Homer City Generation, L.P.; Forward WindPower, LLC; Groen Wind, LLC; High Lonesome Mesa, LLC; Hillcrest Wind, LLC; Jeffers Wind 20, LLC; Larswind, LLC; Lookout WindPower, LLC; Midway-Sunset...
76 FR 69252 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
..., Butler Ridge Wind Energy Center, LLC, Calhoun Power Company I, LLC, Crystal Lake Wind, LLC, Crystal Lake... Partnership, Elk City Wind, LLC, Elk City II Wind, LLC, ESI Vansycle Partners, L.P., Florida Power & Light Co... Cowboy Wind, LLC, FPL Energy Green Power Wind, LLC, FPL Energy Hancock County Wind, LLC, FPL Energy...
NASA Astrophysics Data System (ADS)
Haas, J.; Olivares, M. A.; Palma, R.
2013-12-01
In central Chile, water from reservoirs and streams is mainly used for irrigation and power generation. Hydropower reservoirs operation is particularly challenging because: i) decisions at each plant impact the entire power system, and ii) the existence of large storage capacity implies inter-temporal ties. An Independent System Operator (ISO) decides the grid-wide optimal allocation of water for power generation, under irrigation-related constraints. To account for the long-term opportunity cost of water, a future cost function is determined and used in the short term planning. As population growth and green policies demand increasing levels of renewable energy in power systems, deployment of wind farms and solar plants is rising quickly. However, their power output is highly fluctuating on short time scales, affecting the operation of power plants, particularly those fast responding units as hydropower reservoirs. This study addresses these indirect consequences of massive introduction of green energy sources on reservoir operations. Short-term reservoir operation, under different wind penetration scenarios, is simulated using a replica of Chile's ISO's scheduling optimization tools. Furthermore, an ongoing study is exploring the potential to augment the capacity the existing hydro-power plants to better cope with the balancing needs due to a higher wind power share in the system. As reservoir releases determine to a great extent flows at downstream locations, hourly time series of turbined flows for 24-hour periods were computed for selected combinations between new wind farms and increased capacity of existing hydropower plants. These time series are compiled into subdaily hydrologic alteration (SDHA) indexes (Zimmerman et al, 2010). The resulting sample of indexes is then analyzed using duration curves. Results show a clear increase in the SDHA for every reservoir of the system as more fluctuating renewables are integrated into the system. High-fluctuation events become more frequent. While the main load-following reservoirs are very susceptible to even small levels of additional wind power, the remaining withstand greater amounts before producing a significant SDHA. The additional effect of augmented installed capacity of existing hydropower plants on the SDHA is modest. The increase in SDHA calls for alternative operational constraints beyond the current practice based exclusively on minimum instream flows. Previous research by this group has shown the potential of maximum ramping rates constraints to efficiently achieve improvement in the SDHA. This alternative is being studied as part of a project currently in progress. This may contribute to make hydropower projects more socially acceptable and environmentally sound.
Identification of best particle radiation shielded region through Energetic Neutral Atoms mapping
NASA Astrophysics Data System (ADS)
Milillo, A.; De Angelis, E.; Mura, A.; Orsini, S.; Mangano, V.; Massetti, S.; Rispoli, R.; Lazzarotto, F.; Vertolli, N.; Lavagna, M.; Ferrari, F.; Lunghi, P.; Attinà, P.; Parissenti, G.
2017-09-01
The lunar surface is directly exposed either to direct solar wind, or to Earth's magnetospheric plasma due to the Moon's lack of a magnetosphere or a dense atmosphere. This exposure could create inhospitable conditions for a possible human presence on the Moon, so it is crucial to investigate the close-to-surface environment for establishing the best reliable locations for future human bases. Although it lacks a global magnetic field, the Moon possesses magnetic anomalies that create mini-magnetospheres, where the solar wind is partly deflected. The local protection of the surface from the solar wind radiation inside the mini-magnetospheres could make these sites preferred for future lunar colonization. It is crucial a detailed characterization of these sites. In this paper, an investigation based on the detection of Energetic Neutral Atoms (ENA) from the surface for identifying the best particle radiation shielded region is proposed. A high spatial resolution mapping via ENA is a feasible and it is powerful way for reaching this goal.
Armstrong, Alona; Waldron, Susan; Whitaker, Jeanette; Ostle, Nicholas J
2014-06-01
Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy sources critical to future sustainable power provision. Land-based wind and solar electricity generation technologies are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting ecosystems is limited. Wind turbines and photovoltaic panels can significantly change local ground-level climate by a magnitude that could affect the fundamental plant-soil processes that govern carbon dynamics. We believe that understanding the possible effects of changes in ground-level microclimates on these phenomena is crucial to reducing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article, we examine the potential for the microclimatic effects of these land-based renewable energy sources to alter plant-soil carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research. © 2013 John Wiley & Sons Ltd.
Study of wind retrieval from space-borne infrared coherent lidar in cloudy atmosphere.
NASA Astrophysics Data System (ADS)
Baron, Philippe; Ishii, Shoken; Mizutani, Kohei; Okamoto, Kozo; Ochiai, Satoshi
2015-04-01
Future spaceborne tropospheric wind missions using infrared coherent lidar are currently being studied in Japan and in the United States [1,2]. The line-of-sight wind velocity is retrieved from the Doppler shift frequency of the signal returned by aerosol particles. However a large percentage (70-80%) of the measured single-shot intensity profiles are expected to be contaminated by clouds [3]. A large number of cloud contaminated profiles (>40%) will be characterized by a cloud-top signal intensity stronger than the aerosol signal by a factor of one order of magnitude, and by a strong attenuation of the signal backscattered from below the clouds. Profiles including more than one cloud layer are also expected. This work is a simulation study dealing with the impacts of clouds on wind retrieval. We focus on the three following points: 1) definition of an algorithm for optimizing the wind retrieval from the cloud-top signal, 2) assessment of the clouds impact on the measurement performance and, 3) definition of a method for averaging the measurements before the retrieval. The retrieval simulations are conducted considering the instrumental characteristics selected for the Japanese study: wavelength at 2 µm, PRF of 30 Hz, pulse power of 0.125 mJ and platform altitude between 200-400 km. Liquid and ice clouds are considered. The analysis uses data from atmospheric models and statistics of cloud effects derived from CALIPSO measurements such as in [3]. A special focus is put on the average method of the measurements before retrieval. Good retrievals in the mid-upper troposphere implie the average of measured single-range power spectra over large horizontal (100 km) and vertical (1 km) ranges. Large differences of signal intensities due to the presence of clouds and the clouds non-uniform distribution have to be taken into account when averaging the data to optimize the measurement performances. References: [1] S. Ishii, T. Iwasaki, M. Sato, R. Oki, K. Okamoto, T. Ishibashi, P. Baron, and T. Nishizawa: Future Doppler lidar wind measurement from space in Japan, Proc. of SPIE Vol. 8529, 2012 [2] D. Wu, J. Tang, Z. Liu, and Y. Hu: Simulation of coherent doppler wind lidar measurement from space based on CALIPSO lidar global aerosol observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 122(0), 79-86, 2013 [3] G.D Emmitt: CFLOS and cloud statistics from satellite and their impact on future space-based Doppler Wind Lidar development. Symposium on Recent Developments in Atmospheric Applications of Radar and Lidar, 2008
Bailey, Helen; Brookes, Kate L; Thompson, Paul M
2014-01-01
Offshore wind power provides a valuable source of renewable energy that can help reduce carbon emissions. Technological advances are allowing higher capacity turbines to be installed and in deeper water, but there is still much that is unknown about the effects on the environment. Here we describe the lessons learned based on the recent literature and our experience with assessing impacts of offshore wind developments on marine mammals and seabirds, and make recommendations for future monitoring and assessment as interest in offshore wind energy grows around the world. The four key lessons learned that we discuss are: 1) Identifying the area over which biological effects may occur to inform baseline data collection and determining the connectivity between key populations and proposed wind energy sites, 2) The need to put impacts into a population level context to determine whether they are biologically significant, 3) Measuring responses to wind farm construction and operation to determine disturbance effects and avoidance responses, and 4) Learn from other industries to inform risk assessments and the effectiveness of mitigation measures. As the number and size of offshore wind developments increases, there will be a growing need to consider the population level consequences and cumulative impacts of these activities on marine species. Strategically targeted data collection and modeling aimed at answering questions for the consenting process will also allow regulators to make decisions based on the best available information, and achieve a balance between climate change targets and environmental legislation.
2014-01-01
Offshore wind power provides a valuable source of renewable energy that can help reduce carbon emissions. Technological advances are allowing higher capacity turbines to be installed and in deeper water, but there is still much that is unknown about the effects on the environment. Here we describe the lessons learned based on the recent literature and our experience with assessing impacts of offshore wind developments on marine mammals and seabirds, and make recommendations for future monitoring and assessment as interest in offshore wind energy grows around the world. The four key lessons learned that we discuss are: 1) Identifying the area over which biological effects may occur to inform baseline data collection and determining the connectivity between key populations and proposed wind energy sites, 2) The need to put impacts into a population level context to determine whether they are biologically significant, 3) Measuring responses to wind farm construction and operation to determine disturbance effects and avoidance responses, and 4) Learn from other industries to inform risk assessments and the effectiveness of mitigation measures. As the number and size of offshore wind developments increases, there will be a growing need to consider the population level consequences and cumulative impacts of these activities on marine species. Strategically targeted data collection and modeling aimed at answering questions for the consenting process will also allow regulators to make decisions based on the best available information, and achieve a balance between climate change targets and environmental legislation. PMID:25250175
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fripp, Matthias; Wiser, Ryan
2006-08-04
Wind power production varies on a diurnal and seasonal basis. In this paper, we use wind speed data from three different sources to assess the effects of wind timing on the value of electric power from potential wind farm locations in California and the Northwestern United States. By ''value'', we refer to either the contribution of wind power to meeting the electric system's peak loads, or the financial value of wind power in electricity markets. Sites for wind power projects are often screened or compared based on the annual average power production that would be expected from wind turbines atmore » each site (Baban and Parry 2001; Brower et al. 2004; Jangamshetti and Rau 2001; Nielsen et al. 2002; Roy 2002; Schwartz 1999). However, at many locations, variations in wind speeds during the day and year are correlated with variations in the electric power system's load and wholesale market prices (Burton et al. 2001; Carlin 1983; Kennedy and Rogers 2003; Man Bae and Devine 1978; Sezgen et al. 1998); this correlation may raise or lower the value of wind power generated at each location. A number of previous reports address this issue somewhat indirectly by studying the contribution of individual wind power sites to the reliability or economic operation of the electric grid, using hourly wind speed data (Fleten et al.; Kahn 1991; Kirby et al. 2003; Milligan 2002; van Wijk et al. 1992). However, we have not identified any previous study that examines the effect of variations in wind timing across a broad geographical area on wholesale market value or capacity contribution of those different wind power sites. We have done so, to determine whether it is important to consider wind-timing when planning wind power development, and to try to identify locations where timing would have a more positive or negative effect. The research reported in this paper seeks to answer three specific questions: (1) How large of an effect can the temporal variation of wind power have on the value of wind in different wind resource areas? (2) Which locations are affected most positively or negatively by the seasonal and diurnal timing of wind speeds? (3) How compatible are wind resources in California and the Northwest (Washington, Oregon, Idaho, Montana and Wyoming) with wholesale power prices and loads in either region? The latter question is motivated by the fact that wind power projects in the Northwest could sell their output into California (and vice versa), and that California has an aggressive renewable energy policy that may ultimately yield such imports. We also assess whether modeled wind data from TrueWind Solutions, LLC, can help answer such questions, by comparing results found using the TrueWind data to those found using anemometers or wind farm power production data. This paper summarizes results that are presented in more detail in a recent report from Lawrence Berkeley National Laboratory (Fripp and Wiser 2006). The full report is available at http://eetd.lbl.gov/EA/EMP/re-pubs.html.« less
ERIC Educational Resources Information Center
Inglis, David Rittenhouse
1975-01-01
The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)
78 FR 40735 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-08
...: Iberdrola Renewables, LLC, Atlantic Renewable Projects II LLC, Dillon Wind LLC, Dry Lake Wind Power, LLC, Dry Lake Wind Power II LLC, Manzana Wind LLC, Mountain View Power Partners III, LLC, Shiloh I Wind... Market Power Analysis in the Northwest Region of Puget Sound Energy, Inc., et. al. Filed Date: 6/28/13...
Modeling and control of hybrid wind/photovoltaic/fuel cell distributed generation systems
NASA Astrophysics Data System (ADS)
Wang, Caisheng
Due to ever increasing energy consumption, rising public awareness of environmental protection, and steady progress in power deregulation, alternative (i.e., renewable and fuel cell based) distributed generation (DG) systems have attracted increased interest. Wind and photovoltaic (PV) power generation are two of the most promising renewable energy technologies. Fuel cell (FC) systems also show great potential in DG applications of the future due to their fast technology development and many merits they have, such as high efficiency, zero or low emission (of pollutant gases) and flexible modular structure. The modeling and control of a hybrid wind/PV/FC DG system is addressed in this dissertation. Different energy sources in the system are integrated through an AC bus. Dynamic models for the main system components, namely, wind energy conversion system (WECS), PV energy conversion system (PVECS), fuel cell, electrolyzer, power electronic interfacing circuits, battery, hydrogen storage tank, gas compressor and gas pressure regulator, are developed. Two types of fuel cells have been modeled in this dissertation: proton exchange membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC). Power control of a grid-connected FC system as well as load mitigation control of a stand-alone FC system are investigated. The pitch angle control for WECS, the maximum power point tracking (MPPT) control for PVECS, and the control for electrolyzer and power electronic devices, are also addressed in the dissertation. Based on the dynamic component models, a simulation model for the proposed hybrid energy system has been developed using MATLAB/Simulink. The overall power management strategy for coordinating the power flows among the different energy sources is presented in the dissertation. Simulation studies have been carried out to verify the system performance under different scenarios using a practical load profile and real weather data. The results show that the overall power management strategy is effective and the power flows among the different energy sources and the load demand is balanced successfully. The DG's impacts on the existing power system are also investigated in this dissertation. Analytical methods for finding optimal sites to deploy DG sources in power systems are presented and verified with simulation studies.
Impact of Offshore Wind Power Integrated by VSC-HVDC on Power Angle Stability of Power Systems
NASA Astrophysics Data System (ADS)
Lu, Haiyang; Tang, Xisheng
2017-05-01
Offshore wind farm connected to grid by VSC-HVDC loses frequency support for power system, so adding frequency control in wind farm and VSC-HVDC system is an effective measure, but it will change wind farm VSC-HVDC’s transient stability on power system. Through theoretical analysis, concluding the relationship between equivalent mechanical power and electromagnetic power of two-machine system with the active power of wind farm VSC-HVDC, then analyzing the impact of wind farm VSC-HVDC with or without frequency control and different frequency control parameters on angle stability of synchronous machine by EEAC. The validity of theoretical analysis has been demonstrated through simulation in PSCAD/EMTDC.
NASA Astrophysics Data System (ADS)
Sato, Daiki; Saitoh, Hiroumi
This paper proposes a new control method for reducing fluctuation of power system frequency through smoothing active power output of wind farm. The proposal is based on the modulation of rotaional kinetic energy of variable speed wind power generators through power converters between permanent magnet synchronous generators (PMSG) and transmission lines. In this paper, the proposed control is called Fluctuation Absorption by Flywheel Characteristics control (FAFC). The FAFC can be easily implemented by adding wind farm output signal to Maximum Power Point Tracking control signal through a feedback control loop. In order to verify the effectiveness of the FAFC control, a simulation study was carried out. In the study, it was assumed that the wind farm consisting of PMSG type wind power generator and induction machine type wind power generaotors is connected with a power sysem. The results of the study show that the FAFC control is a useful method for reducing the impacts of wind farm output fluctuation on system frequency without additional devices such as secondary battery.
Capacity expansion model of wind power generation based on ELCC
NASA Astrophysics Data System (ADS)
Yuan, Bo; Zong, Jin; Wu, Shengyu
2018-02-01
Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.
2016 Annual Technology Baseline (ATB)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley; Kurup, Parthiv; Hand, Maureen
Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), National Renewable Energy Laboratory provides an organized and centralized dataset that was reviewed by internal and external experts. It uses the best information from the Department of Energy laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values usingmore » best available information. The ATB includes both a presentation with notes (PDF) and an associated Excel Workbook. The ATB includes the following electricity generation technologies: land-based wind; offshore wind; utility-scale solar PV; concentrating solar power; geothermal power; hydropower plants (upgrades to existing facilities, powering non-powered dams, and new stream-reach development); conventional coal; coal with carbon capture and sequestration; integrated gasification combined cycle coal; natural gas combustion turbines; natural gas combined cycle; conventional biopower. Nuclear laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information.« less
Comparative Study of Standards for Grid-Connected Wind Power Plant in China and the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wenzhong; Tian, Tian; Muljadi, Eduard
2015-10-06
The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPP) is crucial to ensuring the safe and stable operation of the electric power grid. The standards for grid-connected WPPs in China and the United States are compared in this paper to facilitate further improvements to the standards and enhance the development of wind power equipment. Detailed analyses in power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhance themore » understanding of grid codes in the two largest markets of wind power.« less
Comparative analysis of wind energy production in Oklahoma
NASA Astrophysics Data System (ADS)
Ermilova, Ekaterina Alexeevna
Scope and method of study. In the last decades humanity has realized the necessity of developing alternative energy sources for its efficient economic development and simple survival in the future. During the last 30 years major improvements were made in renewable energy technologies and they started to become competitive with traditional energy sources (fossil fuels), especially with consideration of external costs. Among the renewable energy sources, wind energy is one of the cheapest and fastest growing nowadays. Oklahoma is a very promising site for wind energy development considering its excellent wind resources. Developing wind energy can allow not only electricity production for in-state consumption, but also exporting to other states. The development of wind energy could encourage economic growth with very few adverse impacts on the environment. However, traditional energy sources are still the cheapest and, thus, the introduction of the wind energy in Oklahoma should be critically analyzed from economic, ecological and social points of view. The goal of this study is to conduct analysis of wind energy electricity production in Oklahoma on the four main stages: (1) Investment Analysis from Private Perspective: Calculate present value net benefits for wind energy and traditional energy (natural gas), make sure that both of them are positive. (2) Investment Analysis from Social Perspective: Evaluate present value net private benefits (PVNPB) and present value net social benefit from both projects (PVNSB). (3) Government Subsidy Analysis: recognize the necessity of the subsidies and evaluate the amount of subsidies if any. (4) Investment Analysis from a Geographic Perspective: determine economic feasibility of wind power generation for 77 Oklahoma counties. Findings and conclusions. The final output of the study is the recommendations concerning wind energy development in Oklahoma with consideration of economic efficiency, ecological and social impacts. Study not only analyze possibilities for wind energy development in the state, but make recommendations on the county by county basis with consideration of wind power density, land cost, property tax and infrastructure development in each county.
Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florita, A.; Hodge, B. M.; Milligan, M.
2012-08-01
The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites andmore » for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.« less
System-wide emissions implications of increased wind power penetration.
Valentino, Lauren; Valenzuela, Viviana; Botterud, Audun; Zhou, Zhi; Conzelmann, Guenter
2012-04-03
This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.
NREL Offshore Balance-of-System Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maness, Michael; Maples, Benjamin; Smith, Aaron
The U.S. Department of Energy (DOE) has investigated the potential for 20% of nationwide electricity demand to be generated from wind by 2030 and, more recently, 35% by 2050. Achieving this level of wind power generation may require the development and deployment of offshore wind technologies. DOE (2008) has indicated that reaching these 2030 and 2050 scenarios could result in approximately 10% and 20%, respectively, of wind energy generation to come from offshore resources. By the end of 2013, 6.5 gigawatts of offshore wind were installed globally. The first U.S. project, the Block Island Wind Farm off the coast ofmore » Rhode Island, has recently begun operations. One of the major reasons that offshore wind development in the United States is lagging behind global trends is the high capital expenditures required. An understanding of the costs and associated drivers of building a commercial-scale offshore wind plant in the United States will inform future research and help U.S. investors feel more confident in offshore wind development. In an effort to explain these costs, the National Renewable Energy Laboratory has developed the Offshore Balance-of-System model.« less
Wind power generation and dispatch in competitive power markets
NASA Astrophysics Data System (ADS)
Abreu, Lisias
Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.
Winds of Change: Toward a Realistic Vision for the Future of Cooperative Extension.
ERIC Educational Resources Information Center
Vitzthum, Edward F.
The extension and research systems of land-grant institutions are in trouble. Six factors demonstrate the scope of the problem: significant cuts for agriculture in the Clinton administration budget; lawmakers opposed to extension research; federal budget deficit; state budget constraints; decreased power of agriculture in Congress; and…
Reactive Power Pricing Model Considering the Randomness of Wind Power Output
NASA Astrophysics Data System (ADS)
Dai, Zhong; Wu, Zhou
2018-01-01
With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.
WEST-3 wind turbine simulator development. Volume 2: Verification
NASA Technical Reports Server (NTRS)
Sridhar, S.
1985-01-01
The details of a study to validate WEST-3, a new time wind turbine simulator developed by Paragib Pacific Inc., are presented in this report. For the validation, the MOD-0 wind turbine was simulated on WEST-3. The simulation results were compared with those obtained from previous MOD-0 simulations, and with test data measured during MOD-0 operations. The study was successful in achieving the major objective of proving that WEST-3 yields results which can be used to support a wind turbine development process. The blade bending moments, peak and cyclic, from the WEST-3 simulation correlated reasonably well with the available MOD-0 data. The simulation was also able to predict the resonance phenomena observed during MOD-0 operations. Also presented in the report is a description and solution of a serious numerical instability problem encountered during the study. The problem was caused by the coupling of the rotor and the power train models. The results of the study indicate that some parts of the existing WEST-3 simulation model may have to be refined for future work; specifically, the aerodynamics and procedure used to couple the rotor model with the tower and the power train models.
77 FR 27223 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-09
..., LLC, ESI Vansycle Partners, L.P., Florida Power & Light Co., FPL Energy Burleigh County Wind, LLC, FPL Energy Cabazon Wind, LLC, FPL Energy Cape, LLC, FPL Energy Cowboy Wind, LLC, FPL Energy Green Power Wind..., Garden Wind, LLC, Gray County Wind Energy, LLC, Hatch Solar Energy Center I, LLC, Hawkeye Power Partners...
77 FR 66457 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-05
..., Casselman Windpower LLC, Colorado Green Holdings LLC, Dillon Wind LLC, Dry Lake Wind Power, LLC, Dry Lake Wind Power II LLC, Elk River Windfarm, LLC, Elm Creek Wind, LLC, Elm Creek Wind II LLC, Farmers City Wind, LLC, Flat Rock Windpower LLC, Flat Rock Windpower II LLC, Flying Cloud Power Partners, LLC...
NASA Astrophysics Data System (ADS)
Shishido, Seiji; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Sugimasa, Masatoshi; Komura, Akiyoshi; Futami, Motoo; Ichinose, Masaya; Ide, Kazumasa
The spread of wind power generation is progressed hugely in recent years from a viewpoint of environmental problems including global warming. Though wind power is considered as a very prospective energy source, wind power fluctuation due to the random fluctuation of wind speed has still created some problems. Therefore, research has been performed how to smooth the wind power fluctuation. This paper proposes Energy Capacitor System (ECS) for the smoothing of wind power which consists of Electric Double-Layer Capacitor (EDLC) and power electronics devices and works as an electric power storage system. Moreover, hydrogen has received much attention in recent years from a viewpoint of exhaustion problem of fossil fuel. Therefore it is also proposed that a hydrogen generator is installed at the wind farm to generate hydrogen. In this paper, the effectiveness of the proposed system is verified by the simulation analyses using PSCAD/EMTDC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holttinen, Hannele; Kiviluoma, Juha; Forcione, Alain
2016-06-01
This report summarizes recent findings on wind integration from the 16 countries participating in the International Energy Agency (IEA) Wind collaboration research Task 25 in 2012-2014. Both real experience and studies are reported. The national case studies address several impacts of wind power on electric power systems. In this report, they are grouped under long-term planning issues and short-term operational impacts. Long-term planning issues include grid planning and capacity adequacy. Short-term operational impacts include reliability, stability, reserves, and maximizing the value in operational timescales (balancing related issues). The first section presents variability and uncertainty of power system-wide wind power, andmore » the last section presents recent wind integration studies for higher shares of wind power. Appendix 1 provides a summary of ongoing research in the national projects contributing to Task 25 in 2015-2017.« less
Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J.; Chowdhury, S.; Hodge, B. M.
2014-01-01
In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine powermore » generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less
76 FR 30699 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 1 Take notice.... Applicants: Evergreen Wind Power, LLC, Canandaigua Power Partners, LLC, Evergreen Wind Power V, LLC, Canandaigua Power Partners II, LLC, Stetson Wind II, LLC, Evergreen Gen Lead, LLC, Vermont Wind, LLC, Niagara...
76 FR 2898 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-18
...-002. Applicants: Fenton Power Partners I, LLC, Wapsipinicon Wind Project, LLC, Shiloh Wind Project 2, LLC, Hoosier Wind Project, LLC, Oasis Power Partners, LLC, Chanarambie Power Partners, LLC, Lakefield Wind Project, LLC. Description: Notice of Non-Material Change in Status of Chanarambie Power, et al...
The Spectrum of Wind Power Fluctuations
NASA Astrophysics Data System (ADS)
Bandi, Mahesh
2016-11-01
Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.
Observing System Simulation Experiment (OSSE) for a future Doppler Wind Lidar satellite in Japan:
NASA Astrophysics Data System (ADS)
Baron, Philippe; Ishii, Shoken; Okamoto, Kozo
2017-04-01
A feasibility study of tropospheric wind measurements by a coherent Doppler lidar aboard a super-low-altitude satellite is being conducted in Japan. We consider a coherent lidar with a laser light source at 2.05 μm whose characteristics correspond to an existing ground-based instrument (power=3.75 W, PRF=30 Hz and pulse width=200 ns). An Observing System Simulation Experiment (OSSE) has been implemented based on the Sensitivity Observing System experiment (SOSE) developed at the Japanese Meteorological-Research-Institute using the Japan Meteorological Agency global Numerical Weather Prediction model. The measurement simulator uses wind, aerosol and cloud 3-d global fields from the OSSE speudo-truth and the aerosol model MASINGAR. In this presentation, we will first discuss the measurement performances. Considering measurement horizontal resolutions of 100 km along the orbit track, we found that below 3 km, the median horizontal wind error is between 0.8-1 m/s for a vertical resolution of 0.5 km, and that near 50% of the data are valid measurements. Decreasing the vertical resolution to 1 km allows us to maintain similar performances up to 8 km almost over most latitudes. Above, the performances significantly fall down but a relatively good percentage of valid measurements (20-40%) are still found near the tropics where cirrus clouds frequently occur. The potential of the instrument to improve weather prediction models will be discussed using the OSSE results obtained for both polar and low inclination orbit satellites. The first results show positive improvements of short-term forecasts (<48 hours), in particular, on the wind speed at 850 hPa and 250 hPa. S. Ishii, K. Okamoto, P. Baron, T. Kubota, Y. Satoh, D. Sakaizawa, T. Ishibashi, T. Y. Tanaka, K. Yamashita, S. Ochiai, K. Gamo, M. Yasui, R. Oki, M. Satoh, and T. Iwasaki, "Measurement performance assessment of future space-borne Doppler wind lidar", SOLA, vol. 12, pp. 55-59, 2016. S. Ishii et al., "Feasibility study for future space-borne coherent Doppler wind lidar, Part 1: Instrumental Overview for Global Wind Profile Observation", submitted to J. Meteor. Soc. Japan, 2016 P. Baron et al., "Feasibility study for future space-borne coherent Doppler wind lidar, Part 2: Measurement simulation algorithms and retrieval error characterization", submitted to J. Meteor. Soc. Japan, 2016.
Three essays on the effect of wind generation on power system planning and operations
NASA Astrophysics Data System (ADS)
Davis, Clay Duane
While the benefits of wind generation are well known, some drawbacks are still being understood as wind power is integrated into the power grid at increasing levels. The primary difference between wind generation and other forms of generation is the intermittent, and somewhat unpredictable, aspect of this resource. The somewhat uncontrollable aspect of wind generation makes it important to consider the relationship between this resource and load, and also how the operation of other non-wind generation resources may be affected. The three essays that comprise this dissertation focus on these and other important issues related to wind generation; leading to an improved understanding of how to better plan for and utilize this resource. The first essay addresses the cost of increased levels of installed wind capacity from both a capacity planning and economic dispatch perspective to arrive at the total system cost of installing a unit of wind capacity. This total includes not only the cost of the wind turbine and associated infrastructure, but also the cost impact an additional unit of wind capacity has on the optimal mix and operation of other generating units in the electricity supply portfolio. The results of the model showed that for all wind expansion scenarios, wind capacity is not cost-effective regardless of the level of the wind production tax credit and carbon prices that were considered. Larger levels of installed wind capacity result in reduced variable cost, but this reduction is not able to offset increases in capital cost, as a unit of installed wind capacity does not result in an equal reduction in other non-wind capacity needs. The second essay develops a methodology to better handle unexpected short term fluctuations in wind generation within the existing power system. The methodology developed in this essay leads to lower expected costs by anticipating and planning for fluctuations in wind generation by focusing on key constraints in the system. The modified methodology achieves expected costs for the UC-ED problem that are as low as the full stochastic model and markedly lower than the deterministic model. The final essay focuses on valuing energy storage located at a wind site through multiple revenue streams, where energy storage is valued from the perspective of a profit maximizing investor. Given the current state of battery storage technology, a battery capacity of zero is optimal in the setting considered in this essay. The results presented in this essay are dependent on a technological breakthrough that substantially reduces battery cost and conclude that allowing battery storage to simultaneously participate in multiple wholesale markets is optimal relative to participating in any one market alone. Also, co-locating battery storage and wind provides value by altering the optimal transmission line capacity to the battery and wind site. This dissertation considers problems of wind integration from an economic perspective and builds on existing work in this area. The economics of wind integration and utilization are important because wind generation levels are already significant and will likely become more so in the future. While this dissertation adds to the existing literature, additional work is needed in this area to ensure wind generation adds as much value to the overall system as possible.
NASA Astrophysics Data System (ADS)
Kalina, E.; Cione, J.; Bryan, G. H.; Lenschow, D. H.; Fairall, C. W.
2016-12-01
Open-ocean measurements of turbulence variables in the tropical cyclone (TC) boundary layer are rare, given the dangers posed by convective downdrafts, high waves, and sea spray to manned hurricane reconnaissance aircraft. The Coyote Unmanned Aircraft System (UAS) represents an opportunity to mitigate the risk to personnel while simultaneously collecting low-altitude measurements of air pressure, temperature, humidity, and wind in TCs. In 2014, the Coyote UAS flew at a height of h = 760 m in Hurricane Edouard for 45 min. The resulting wind velocity measurements were used to estimate the turbulent eddy dissipation rate (ɛ) along the Coyote flight track, using power spectra and the second-order velocity structure function. Power spectra of both the longitudinal (Suu) and transverse wind components (Svv) exhibited well-defined inertial subranges with five-thirds scaling, as expected from Kolmogorov (1941). The ratio Svv:Suu was 4:3, in agreement with theory. Under the moderate wind speeds (15-25 m s-1) sampled by the Coyote, estimates of ɛ from the power spectra and structure function ranged from 2-3.5×10-4 m2 s-3. An idealized TC simulation with Cloud Model version 1 (CM1) and a horizontal grid spacing of dx = 20 m was then used to support the observed estimates of ɛ. Along the mock Coyote flight path, the model domain-averaged value of ɛ was 3.0×10-4 m2 s-3, which is within the range of the observationally-based estimates. This agreement was achieved despite the relatively slow sampling rate (1 Hz) of the Coyote sensors and occasional missing data. Therefore, a 1-Hz sampling rate may be adequate for estimating ɛ, and time series with missing samples may still contain the necessary information to estimate the power spectra and structure functions, and thus ɛ. These findings are motivating subsequent Coyote flights into high-wind regions of TCs to collect turbulence measurements that will be used to evaluate subgrid turbulence schemes for numerical models. Future flights in the surface layer (h < 100 m) will also be used to measure the surface drag coefficient at hurricane-force wind speeds.
NREL to Lead Novel Field Demonstration of Wind Turbine Control at the Wind
Power Plant Level | News | NREL to Lead Novel Field Demonstration of Wind Turbine Control at the Wind Power Plant Level NREL to Lead Novel Field Demonstration of Wind Turbine Control at the Wind to test wind turbine technology controls at the overall wind power plant level. This is a significant
Benefit-cost methodology study with example application of the use of wind generators
NASA Technical Reports Server (NTRS)
Zimmer, R. P.; Justus, C. G.; Mason, R. M.; Robinette, S. L.; Sassone, P. G.; Schaffer, W. A.
1975-01-01
An example application for cost-benefit methodology is presented for the use of wind generators. The approach adopted for the example application consisted of the following activities: (1) surveying of the available wind data and wind power system information, (2) developing models which quantitatively described wind distributions, wind power systems, and cost-benefit differences between conventional systems and wind power systems, and (3) applying the cost-benefit methodology to compare a conventional electrical energy generation system with systems which included wind power generators. Wind speed distribution data were obtained from sites throughout the contiguous United States and were used to compute plant factor contours shown on an annual and seasonal basis. Plant factor values (ratio of average output power to rated power) are found to be as high as 0.6 (on an annual average basis) in portions of the central U. S. and in sections of the New England coastal area. Two types of wind power systems were selected for the application of the cost-benefit methodology. A cost-benefit model was designed and implemented on a computer to establish a practical tool for studying the relative costs and benefits of wind power systems under a variety of conditions and to efficiently and effectively perform associated sensitivity analyses.
NASA Astrophysics Data System (ADS)
Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar
2017-12-01
Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.
The Future of Low-Carbon Electricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel
Here, we review future global demand for electricity and major technologies positioned to supply itwith minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal and biomass), nuclear fission, and fossil power with CO 2 capture and sequestration. Two breakthrough technologies (space solar power and nuclear fusion) are discussed as exciting but uncertain additional options for low net GHG emissions (“low-carbon”) electricity generation. Grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes) are also discussed. For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs and other issues as appropriate. While no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less
The Future of Low-Carbon Electricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel
We review future global demand for electricity and major technologies positioned to supply it with minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal, and biomass), nuclear fission, and fossil power with CO2 capture and sequestration. We discuss two breakthrough technologies (space solar power and nuclear fusion) as exciting but uncertain additional options for low-net GHG emissions (i.e., low-carbon) electricity generation. In addition, we discuss grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes). For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs, and other issues as appropriate. Although no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less
The Future of Low-Carbon Electricity
Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel; ...
2017-07-10
Here, we review future global demand for electricity and major technologies positioned to supply itwith minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal and biomass), nuclear fission, and fossil power with CO 2 capture and sequestration. Two breakthrough technologies (space solar power and nuclear fusion) are discussed as exciting but uncertain additional options for low net GHG emissions (“low-carbon”) electricity generation. Grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes) are also discussed. For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs and other issues as appropriate. While no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less
Building renewable electricity supply in Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, L.M.
1997-12-31
Bangladesh is experiencing a severe electric power capacity crisis that is only likely to worsen over the next 15 years. Further, over 80% of Bangladesh`s population still lives with no electricity, and the rate of grid expansion to connect rural villages is threatened by the looming capacity shortage. There are a number of underlying reasons for the crisis, but ultimately the country lacks the fossil fuel resources required to conduct a large scale grid-expansion program. Alternative approaches to electrifying the country must be found. This paper outlines the prospects for wind and solar power in Bangladesh, and estimates the potentialmore » for commercial applications now and in the future. This includes a technical assessment, a market assessment, an environmental assessment, and a policy assessment. The paper concludes that Bangladesh holds the potential to cost-effectively meet a significant fraction of its future electricity demand through the use of renewable generation technologies, possibly adding as much renewable capacity as the current overall electric power capacity of the country. Many parts of the country have favorable solar and wind conditions and there are many potentially cost-effective applications. But the country must develop a policy framework that allows and encourages private investors to develop renewable energy projects in order to realize the enormous potential of renewables.« less
NASA Astrophysics Data System (ADS)
Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang
2018-01-01
In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Cui, Mingjian; Hodge, Bri-Mathias
The large variability and uncertainty in wind power generation present a concern to power system operators, especially given the increasing amounts of wind power being integrated into the electric power system. Large ramps, one of the biggest concerns, can significantly influence system economics and reliability. The Wind Forecast Improvement Project (WFIP) was to improve the accuracy of forecasts and to evaluate the economic benefits of these improvements to grid operators. This paper evaluates the ramp forecasting accuracy gained by improving the performance of short-term wind power forecasting. This study focuses on the WFIP southern study region, which encompasses most ofmore » the Electric Reliability Council of Texas (ERCOT) territory, to compare the experimental WFIP forecasts to the existing short-term wind power forecasts (used at ERCOT) at multiple spatial and temporal scales. The study employs four significant wind power ramping definitions according to the power change magnitude, direction, and duration. The optimized swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental WFIP forecasts improve the accuracy of the wind power ramp forecasting. This improvement can result in substantial costs savings and power system reliability enhancements.« less
Response of Rocky Mountain elk (Cervus elaphus) to wind-power development
Walter, W. David; Leslie, David M.; Jenks, J.A.
2006-01-01
Wind-power development is occurring throughout North America, but its effects on mammals are largely unexplored. Our objective was to determine response (i.e., home-range, diet quality) of Rocky Mountain elk (Cervus elaphus) to wind-power development in southwestern Oklahoma. Ten elk were radiocollared in an area of wind-power development on 31 March 2003 and were relocated bi-weekly through March 2005. Wind-power construction was initiated on 1 June 2003 and was completed by December 2003 with 45 active turbines. The largest composite home range sizes (>80 km2) occurred April-June and September, regardless of the status of wind-power facility development. The smallest home range sizes (<50 km2) typically occurred in October-February when elk aggregated to forage on winter wheat. No elk left the study site during the study and elk freely crossed the gravel roads used to access the wind-power facility. Carbon and nitrogen isotopes and percent nitrogen in feces suggested that wind-power development did not affect nutrition of elk during construction. Although disturbance and loss of some grassland habitat was apparent, elk were not adversely affected by wind-power development as determined by home range and dietary quality.
Research Based on the Acoustic Emission of Wind Power Tower Drum Dynamic Monitoring Technology
NASA Astrophysics Data System (ADS)
Zhang, Penglin; Sang, Yuan; Xu, Yaxing; Zhao, Zhiqiang
Wind power tower drum is one of the key components of the wind power equipment. Whether the wind tower drum performs safety directly affects the efficiency, life, and performance of wind power equipment. Wind power tower drum in the process of manufacture, installation, and operation may lead to injury, and the wind load and gravity load and long-term factors such as poor working environment under the action of crack initiation or distortion, which eventually result in the instability or crack of the wind power tower drum and cause huge economic losses. Thus detecting the wind power tower drum crack damage and instability is especially important. In this chapter, acoustic emission is used to monitor the whole process of wind power tower drum material Q345E steel tensile test at first, and processing and analysis tensile failure signal of the material. And then based on the acoustic emission testing technology to the dynamic monitoring of wind power tower drum, the overall detection and evaluation of the existence of active defects in the whole structure, and the acoustic emission signals collected for processing and analysis, we could preliminarily master the wind tower drum mechanism of acoustic emission source. The acoustic emission is a kind of online, efficient, and economic method, which has very broad prospects for work. The editorial committee of nondestructive testing qualification and certification of personnel teaching material of science and technology industry of national defense, "Acoustic emission testing" (China Machine Press, 2005.1).
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-03
... Wind One (ATLW1) Commercial Leasing for Wind Power on the Outer Continental Shelf Offshore Virginia... Notice for Commercial Leasing for Wind Power on the Outer Continental Shelf Offshore Virginia. SUMMARY... (FONSI) for commercial wind lease issuance and site assessment activities on the Atlantic OCS offshore...
75 FR 61736 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 2 September... Wind Power LLC. Description: Klondike Wind Power LLC submits tariff filing per 35.12: Baseline Filing.... Applicants: Klondike Wind Power II LLC. Description: Klondike Wind Power II LLC submits tariff filing per 35...
A large-eddy simulation based power estimation capability for wind farms over complex terrain
NASA Astrophysics Data System (ADS)
Senocak, I.; Sandusky, M.; Deleon, R.
2017-12-01
There has been an increasing interest in predicting wind fields over complex terrain at the micro-scale for resource assessment, turbine siting, and power forecasting. These capabilities are made possible by advancements in computational speed from a new generation of computing hardware, numerical methods and physics modelling. The micro-scale wind prediction model presented in this work is based on the large-eddy simulation paradigm with surface-stress parameterization. The complex terrain is represented using an immersed-boundary method that takes into account the parameterization of the surface stresses. Governing equations of incompressible fluid flow are solved using a projection method with second-order accurate schemes in space and time. We use actuator disk models with rotation to simulate the influence of turbines on the wind field. Data regarding power production from individual turbines are mostly restricted because of proprietary nature of the wind energy business. Most studies report percentage drop of power relative to power from the first row. There have been different approaches to predict power production. Some studies simply report available wind power in the upstream, some studies estimate power production using power curves available from turbine manufacturers, and some studies estimate power as torque multiplied by rotational speed. In the present work, we propose a black-box approach that considers a control volume around a turbine and estimate the power extracted from the turbine based on the conservation of energy principle. We applied our wind power prediction capability to wind farms over flat terrain such as the wind farm over Mower County, Minnesota and the Horns Rev offshore wind farm in Denmark. The results from these simulations are in good agreement with published data. We also estimate power production from a hypothetical wind farm in complex terrain region and identify potential zones suitable for wind power production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, P.
The final performance report for the Wind Power Live! museum exhibit summarizes the goals and outcomes for the project. Project goals included: (1) help museum visitors understand why wind is being considered as a significant energy source; (2) enable visualization of the dynamics and power output of turbines; (3) exhibit a working wind turbine; (4) showcase wind as a technological success story; (5) consider the environmental costs and benefits of wind energy; (6) examine the economics of wind power, and (7) explain some of the limits to wind power as a commercial energy source. The methods of meeting the projectmore » goals through the museum exhibit are briefly outlined in the report. Goal number three, to introduce a working wind turbine, was dropped from the final project.« less
Multi-Temporal Decomposed Wind and Load Power Models for Electric Energy Systems
NASA Astrophysics Data System (ADS)
Abdel-Karim, Noha
This thesis is motivated by the recognition that sources of uncertainties in electric power systems are multifold and may have potentially far-reaching effects. In the past, only system load forecast was considered to be the main challenge. More recently, however, the uncertain price of electricity and hard-to-predict power produced by renewable resources, such as wind and solar, are making the operating and planning environment much more challenging. The near-real-time power imbalances are compensated by means of frequency regulation and generally require fast-responding costly resources. Because of this, a more accurate forecast and look-ahead scheduling would result in a reduced need for expensive power balancing. Similarly, long-term planning and seasonal maintenance need to take into account long-term demand forecast as well as how the short-term generation scheduling is done. The better the demand forecast, the more efficient planning will be as well. Moreover, computer algorithms for scheduling and planning are essential in helping the system operators decide what to schedule and planners what to build. This is needed given the overall complexity created by different abilities to adjust the power output of generation technologies, demand uncertainties and by the network delivery constraints. Given the growing presence of major uncertainties, it is likely that the main control applications will use more probabilistic approaches. Today's predominantly deterministic methods will be replaced by methods which account for key uncertainties as decisions are made. It is well-understood that although demand and wind power cannot be predicted at very high accuracy, taking into consideration predictions and scheduling in a look-ahead way over several time horizons generally results in more efficient and reliable utilization, than when decisions are made assuming deterministic, often worst-case scenarios. This change is in approach is going to ultimately require new electricity market rules capable of providing the right incentives to manage uncertainties and of differentiating various technologies according to the rate at which they can respond to ever changing conditions. Given the overall need for modeling uncertainties in electric energy systems, we consider in this thesis the problem of multi-temporal modeling of wind and demand power, in particular. Historic data is used to derive prediction models for several future time horizons. Short-term prediction models derived can be used for look-ahead economic dispatch and unit commitment, while the long-term annual predictive models can be used for investment planning. As expected, the accuracy of such predictive models depends on the time horizons over which the predictions are made, as well as on the nature of uncertain signals. It is shown that predictive models obtained using the same general modeling approaches result in different accuracy for wind than for demand power. In what follows, we introduce several models which have qualitatively different patterns, ranging from hourly to annual. We first transform historic time-stamped data into the Fourier Transform (Fr) representation. The frequency domain data representation is used to decompose the wind and load power signals and to derive predictive models relevant for short-term and long-term predictions using extracted spectral techniques. The short-term results are interpreted next as a Linear Prediction Coding Model (LPC) and its accuracy is analyzed. Next, a new Markov-Based Sensitivity Model (MBSM) for short term prediction has been proposed and the dispatched costs of uncertainties for different predictive models with comparisons have been developed. Moreover, the Discrete Markov Process (DMP) representation is applied to help assess probabilities of most likely short-, medium- and long-term states and the related multi-temporal risks. In addition, this thesis discusses operational impacts of wind power integration in different scenario levels by performing more than 9,000 AC Optimal Power Flow runs. The effects of both wind and load variations on system constraints and costs are presented. The limitations of DC Optimal Power Flow (DCOPF) vs. ACOPF are emphasized by means of system convergence problems due to the effect of wind power on changing line flows and net power injections. By studying the effect of having wind power on line flows, we found that the divergence problem applies in areas with high wind and hydro generation capacity share (cheap generations). (Abstract shortened by UMI.).
Characterization of wind power resource and its intermittency
NASA Astrophysics Data System (ADS)
Gunturu, U. B.; Schlosser, C. A.
2011-12-01
Wind resource in the continental and offshore United States has been calculated and characterized using metrics that describe - apart from abundance - its availability, persistence and intermittency. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) boundary layer flux data has been used to construct wind power density profiles at 50, 80, 100 and 120 m turbine hub heights. The wind power density estimates at 50 m are qualitatively similar to those in the US wind atlas developed by the National Renewable Energy Laboratory (NREL), but quantitatively a class less in some regions, but are within the limits of uncertainty. We also show that for long tailed distributions like those of the wind power density, the mean is an overestimation and median is a more robust metric for summary representation of wind power resource.Generally speaking, the largest and most available wind power density resources are found in off-shore regions of the Atlantic and Pacific coastline, and the largest on-shore resource potential lies in the central United States. However, the intermittency and widespread synchronicity of on-shore wind power density are substantial, and highlights areas where considerable back-up generation technologies will be required. Generation-duration curves are also presented for the independent systems operator (ISO) zones of the U.S. to highlight the regions with the largest capacity factor (MISO, ERCOT, and SWPP) as well as the periods and extent to which all ISOs contain no wind power and the potential benefits of aggregation on wind power intermittency in each region. The impact of raising the wind turbine hub height on metrics of abundance, persistence, variability and intermittency is analyzed. There is a general increase in availability and abundance of wind resource but there is also an increase in intermittency with respect to a 'usable wind power' crossing level in low resource regions. A similar perspective of wind resource for other regions of the world such as, Europe, India and China is also summarized and notable features highlighted.
ERIC Educational Resources Information Center
Pelka, David G.; And Others
1978-01-01
The large-scale generation of electrical power by wind turbine fields is discussed. It is shown that the maximum power that can be extracted by a wind turbine is 16/27 of the power available in the wind. (BB)
NASA Astrophysics Data System (ADS)
1992-02-01
This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication.
75 FR 76721 - Combined Notice of Filings No. 1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-09
.... Docket Numbers: ER11-2201-000. Applicants: Evergreen Wind Power III, LLC. Description: Evergreen Wind Power III, LLC submits tariff filing per 35.12: MBR Application of Evergreen Wind Power III, LLC to be... Tuesday, December 21, 2010. Docket Numbers: ER11-2212-000. Applicants: Oak Creek Wind Power, LLC...
77 FR 59599 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
.... Applicants: Dry Lake Wind Power II LLC, Central Maine Power Company, Flat Rock Windpower II LLC, Flat Rock Windpower LLC, Elk River Windfarm, LLC, Iberdrola Renewables, LLC, Dillion Wind LLC, Dry Lake Wind Power, LLC, Shiloh I Wind Project, LLC, Mountain View Power Partners III, LLC, Blue [[Page 59600
76 FR 358 - Combined Notice of Filings # 1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
..., 2011. Docket Numbers: ER11-2466-000. Applicants: Juniper Canyon Wind Power LLC. Description: Juniper Canyon Wind Power LLC submits tariff filing per 35.37: Revisions to Market-Based Rate Tariff to be... Wind Power LLC. Description: Klondike Wind Power LLC submits tariff filing per 35.37: Revisions to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draxl, C.; Hodge, B. M.; Orwig, K.
2013-10-01
Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather predictionmore » model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.« less
77 FR 41777 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-16
...., Commonwealth Edison Company, PECO Energy Company, Wind Capital Holdings, LLC, Constellation Power Source... Generation II, LLC, Constellation Mystic Power, LLC, Cassia Gulch Wind Park, LLC, Michigan Wind 1, LLC, Tuana Springs Energy, LLC, Harvest Windfarm, LLC, CR Clearing, LLC, Exelon Wind 4, LLC, Cow Branch Wind Power, L...
78 FR 91 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-02
... Cabazon Wind, LLC, FPL Energy Green Power Wind, LLC, FPL Energy Montezuma Wind, LLC, FPL Energy New Mexico... Interconnect, LLC, Peetz Table Wind Energy, LLC, NextEra Energy Power Marketing, LLC. Description: NextEra.... Docket Numbers: ER11-3959-003. Applicants: Post Rock Wind Power Project, LLC. Description: Notice of Non...
NASA Astrophysics Data System (ADS)
Nhu Y, Do
2018-03-01
Vietnam has many advantages of wind power resources. Time by time there are more and more capacity as well as number of wind power project in Vietnam. Corresponding to the increase of wind power emitted into national grid, It is necessary to research and analyze in order to ensure the safety and reliability of win power connection. In national distribution grid, voltage sag occurs regularly, it can strongly influence on the operation of wind power. The most serious consequence is the disconnection. The paper presents the analysis of distribution grid's transient process when voltage is sagged. Base on the analysis, the solutions will be recommended to improve the reliability and effective operation of wind power resources.
Investigation on wind energy-compressed air power system.
Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao
2004-03-01
Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Jain, Rishabh; Hodge, Bri-Mathias
A data-driven methodology is developed to analyze how ambient and wake turbulence affect the power generation of wind turbine(s). Using supervisory control and data acquisition (SCADA) data from a wind plant, we select two sets of wind velocity and power data for turbines on the edge of the plant that resemble (i) an out-of-wake scenario and (ii) an in-wake scenario. For each set of data, two surrogate models are developed to represent the turbine(s) power generation as a function of (i) the wind speed and (ii) the wind speed and turbulence intensity. Three types of uncertainties in turbine(s) power generationmore » are investigated: (i) the uncertainty in power generation with respect to the reported power curve; (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) the turbine(s) generally produce more power under the in-wake scenario than under the out-of-wake scenario with the same wind speed; and (ii) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less
Analysis of economic benefit of wind power based on system dynamics
NASA Astrophysics Data System (ADS)
Zhao, Weibo; Han, Yaru; Niu, Dongxiao
2018-04-01
The scale of renewable power generation, such as wind power, has increased gradually in recent years. Considering that the economic benefits of wind farms are affected by many dynamic factors. The dynamic simulation model of wind power economic benefit system is established based on the system dynamics method. By comparing the economic benefits of wind farms under different setting scenarios through this model, the impact of different factors on the economic benefits of wind farms can be reflected.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-03
... Wind Lease Sale 2 (ATLW2) Commercial Leasing for Wind Power on the Outer Continental Shelf Offshore...), Interior. ACTION: Proposed Sale Notice for commercial leasing for wind power on the Outer Continental Shelf... sale of commercial wind energy leases on the Outer Continental Shelf (OCS) offshore Rhode Island and...
Wind Powering America Podcasts, Wind Powering America (WPA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-04-01
Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource formore » podcast episodes.« less
NASA Astrophysics Data System (ADS)
Dar, Zamiyad
The amount of wind energy in power systems is increasing at a significant rate. With this increased penetration, there are certain problems associated with the operation of windfarms which need careful attention. In the operations side, the wake effects of upstream wind turbines on downstream wind turbines can cause a reduction in the total generated power of a windfarm. On the market side, the fluctuation of real-time prices can make the operation of windfarms less profitable. Similarly, the intermittent nature of wind power prevents the windfarms from participating in the day-ahead and forward markets. On the system side, the volatile nature of wind speeds is also an obstacle for windfarms to provide frequency regulation to the system. In this thesis, we address these issues and optimize the operation of windfarms in power systems and deregulated electricity markets. First, the total power generation in a windfarm is maximized by using yaw angle of wind turbines as a control variable. We extend the existing wake models to include the effects of yaw misalignment and wake deflection of wind turbines. A numerical study is performed to find the optimal values of induction factor and yaw misalignment angle of wind turbines in a single row of a windfarm for achieving the maximum total power with wake effects. The numerical study shows that the maximum power is achieved by keeping the induction factor close to 1/3 and only changing the yaw angle to deflect the wake. We then propose a Dynamic Programming Framework (DPF) to maximize the total power production of a windfarm using yaw angle as the control variable. We compare the windfarm efficiency achieved with our DPF with the efficiency values obtained through greedy control strategy and induction factor optimization. We also extend our expressions to a windfarm with multiple rows and columns of turbines and perform simulations on the 3x3 and 4x4 grid topologies. Our results show that the optimal induction factor for most turbines is quite close to 1/3 and yaw angle acts as the dominant optimization variable. In the next part of this dissertation, a system comprising of a windfarm and energy storage operating in real-time electricity markets is studied. An Energy-balancing Threshold Price (ETP) policy is proposed to maximize the revenue of a windfarm with on-site storage. We propose and analyze a scheme for a windfarm to store or sell energy based on a threshold price. The threshold price is calculated based on long-term distributions of the electricity price and wind power generation processes, and is chosen so as to balance the energy flows in and out of the storage-equipped windfarm. It is also shown mathematically that the proposed policy is optimal in terms of the long-term revenue generated. Comparing it with the optimal policy that has knowledge of the future, we observe that the revenue obtained by the proposed ETP policy is approximately 90% of the maximum attainable revenue at a storage capacity of 10-15 times the power rating of the windfarm. The intermittent nature of wind power is a hindrance to the efficient participation of windfarms in the day-ahead and forward electricity markets. In this regard, a flexible forward contract is proposed in this dissertation which allows the windfarms to enter into a forward contract with flexible load with an option to deviate from the contracted amount of power. Using such a flexible contract would allow the windfarms to supply more or less than the contracted amount of power in case of unexpected wind conditions or real-time prices. We also propose models for forecasting wind power and real-time electricity prices. The comparison between the proposed contracting framework and a simple fixed contract (currently existing in the market) for different levels of flexibility and load shows that there is a net gain in windfarm revenues, if the transaction price of the two contracts are set equal. Lastly, we present and analyze distributed control schemes for frequency regulation in a smart grid using energy storage, wind generators, demand response and conventional generators while having no communication or data sharing between them. We also propose a novel control scheme for frequency support by energy storage in which the power output of energy storage changes proportionally with the reduction in its available energy. The application of the proposed control schemes indicates an improvement in system frequency characteristics, when there is a sudden net loss of generation.
Lake Michigan Offshore Wind Feasibility Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boezaart, Arnold; Edmonson, James; Standridge, Charles
The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of futuremore » offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional anemometer cup technology. • During storms, mean Turbulent Kinetic Energy (TKE) increases with height above water; • Sufficient wind resources exist over Lake Michigan to generate 7,684 kWh of power using a 850 kW rated turbine at elevations between 90 - 125 meters, a height lower than originally anticipated for optimum power generation; • Based on initial assessments, wind characteristics are not significantly different at distant (thirty-two mile) offshore locations as compared to near-shore (six mile) locations; • Significant cost savings can be achieved in generation wind energy at lower turbine heights and locating closer to shore. • Siting must be sufficiently distant from shore to minimize visual impact and to address public sentiment about offshore wind development; • Project results show that birds and bats do frequent the middle of Lake Michigan, bats more so than birds; • Based on the wind resource assessment and depths of Lake Michigan encountered during the project, future turbine placement will most likely need to incorporate floating or anchored technology; • The most appropriate siting of offshore wind energy locations will enable direct routing of transmission cables to existing generating and transmission facilities located along the Michigan shoreline; • Wind turbine noise propagation from a wind energy generating facility at a five mile offshore location will not be audible at the shoreline over normal background sound levels.« less
Electric power from offshore wind via synoptic-scale interconnection
Kempton, Willett; Pimenta, Felipe M.; Veron, Dana E.; Colle, Brian A.
2010-01-01
World wind power resources are abundant, but their utilization could be limited because wind fluctuates rather than providing steady power. We hypothesize that wind power output could be stabilized if wind generators were located in a meteorologically designed configuration and electrically connected. Based on 5 yr of wind data from 11 meteorological stations, distributed over a 2,500 km extent along the U.S. East Coast, power output for each hour at each site is calculated. Each individual wind power generation site exhibits the expected power ups and downs. But when we simulate a power line connecting them, called here the Atlantic Transmission Grid, the output from the entire set of generators rarely reaches either low or full power, and power changes slowly. Notably, during the 5-yr study period, the amount of power shifted up and down but never stopped. This finding is explained by examining in detail the high and low output periods, using reanalysis data to show the weather phenomena responsible for steady production and for the occasional periods of low power. We conclude with suggested institutions appropriate to create and manage the power system analyzed here. PMID:20368464
The influence of large-scale wind power on global climate.
Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J
2004-11-16
Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.
Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer
NASA Technical Reports Server (NTRS)
Herrero, Federico A.; Finne, Theodore T.
2010-01-01
Determination of neutral winds and ion drifts in low-Earth-orbit missions requires measurements of the angular and energy distributions of the flux of neutrals and ions entering the satellite from the ram direction. The magnitude and direction of the neutral-wind (or ion-drift) determine the location of the maximum in the angular distribution of the flux. Knowledge of the angle of maximum flux with respect to satellite coordinates (pointing) is essential to determine the wind (or ion-drift) vector. The crossed Small-Deflection Energy Analyzer (SDEA) spectrometer (see Figure 1) occupies minimal volume and consumes minimal power. Designed for upper atmosphere/ionosphere investigations at Earth altitudes above 100 km, the spectrometer operates by detecting the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. In this configuration, the two detection planes actually cross at the spectrometer center. It is possible to merge two SDEAs so they share a common optical axis and alternate measurements between two perpendicular planes, and reduce the number of ion sources from two to one. This minimizes the volume and footprint significantly and reduces the ion source power by a factor of two. The area of the entrance aperture affects the number of ions detected/second and also determines the energy resolution. Thermionic emitters require heater power of about 100 mW to produce 1 mA of electron beam current. Typically, electron energy is about 100 eV and requires a 100-V supply for electron acceleration to supply an additional 100 mW of power. Thus, ion source power is at most 200 mW. If two ion sources were to be used, the ion source power would be, at most, 400 mW. Detector power, deflection voltage power, and microcontroller and other functions require less than 150 mW. A WTS (wind/ temperature spectrometer) with two separate optical axes would consume about 650 mW, while the crossed SDEA described here consumes about 350 mW. The entrance aperture has a diameter of 0.004 in. (0.10 mm) to provide the required energy resolution between 0.05 and 0.15. This design (see Figure 2) provides a WTS occupying a volume less than 40 cm(sup 3), on a footprint of diameter about 1.5 in. (38 mm). The Crossed SDEA offers many advantages in the measurements of neutral wind and ion drifts in the Earth's thermosphere. As such, it will be useful in future commercial satellites dedicated to monitoring the ionosphere with a view to improving the integrity and predictability of GPS operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katzner, Todd
2014-06-15
The future of the US economy, our national security, and our environmental quality all depend on decreasing our reliance on foreign oil and on fossil fuels. An essential component of decreasing this reliance is the development of alternative energy sources. Wind power is among the most important alternative energy sources currently available, and the mid-Atlantic region is a primary focus for wind power development. In addition to being important to the development of wind power, the mid-Atlantic region holds a special responsibility for the conservation of the eastern North America's golden eagles (Aquila chrysaetos). This small population breeds in northeasternmore » Canada, winters in the southern Appalachians, and nearly all of these birds pass through the mid-Atlantic region twice each year. Movement of these birds is not random and, particularly during spring and autumn, migrating golden eagles concentrate in a narrow 30-50 mile wide corridor in central Pennsylvania. Thus, because the fate of these rare birds may depend on responsible management of the habitat they use it is critical to use research to identify ways to mitigate prospective impacts on this and similar raptor species. The goal of this project was to develop high-resolution spatial risk maps showing migration corridors of and habitat use by eastern golden eagles in regions of high potential for wind development. To accomplish this, we first expanded existing models of raptor migration for the eastern USA to identify broad-scale migration patterns. We then used data from novel high-resolution tracking devices to discover routes of passage and detailed flight behavior of individual golden eagles throughout the eastern USA. Finally, we integrated these data and models to predict population-level migration patterns and individual eagle flight behavior on migration. We then used this information to build spatially explicit, probabilistic maps showing relative risk to birds from wind development. This project has numerous benefits to people and to wildlife, primarily because it will provide a framework for safer and less controversial development of wind power. Because golden eagles are an important "umbrella" for other raptors, this project benefits a suite of species that may be impacted by wind turbines. Finally this work is a recognized priority for central Appalachian states and it is explicitly called for in, and meets the goals of, numerous state wildlife conservation plans. The final product we created, a region-wide map of relative risk to eagles of development of wind power, has allowed us to make specific recommendations regarding siting and operation of and mitigation at wind facilities. This approach also serves as a model for other projects to protect eagles in other places and to conserve suites of species beyond raptors.« less
Lessons from wind policy in Portugal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peña, Ivonne; L. Azevedo, Inês; Marcelino Ferreira, Luís António Fialho
Wind capacity and generation grew rapidly in several European countries, such as Portugal. Wind power adoption in Portugal began in the early 2000s, incentivized by a continuous feed-in tariff policy mechanism, coupled with public tenders for connection licenses in 2001, 2002, and 2005. These policies led to an enormous success in terms of having a large share of renewables providing electricity services: wind alone accounts today for ~23.5% of electricity demand in Portugal. We explain the reasons wind power became a key part of Portugal's strategy to comply with European Commission climate and energy goals, and provide a detailed reviewmore » of the wind feed-in tariff mechanism. We describe the actors involved in wind power production growth. We estimate the environmental and energy dependency gains achieved through wind power generation, and highlight the correlation between wind electricity generation and electricity exports. Finally, we compare the Portuguese wind policies with others countries' policy designs and discuss the relevance of a feed-in tariff reform for subsequent wind power additions.« less
Review of Variable Generation Integration Charges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, K.; Fink, S.; Buckley, M.
2013-03-01
The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviewsmore » the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.« less
Development of GIS-based Wind Potential Map of Makkah Province, Saudi Arabia
NASA Astrophysics Data System (ADS)
Nayyar, Z. A.; Zaigham, N. A.; Aburizaiza, O. S.; Mahar, G. A.; Eusufi, S. N.
2011-12-01
Global energy scenario is changing drastically toward decline, as new major discoveries of fossil fuel are not coming up significantly on regional basis. In case of Saudi Arabia, one of the largest fossil fuel producers, the major oil fields have started exhausting significantly as revealed from the literature research study. Considering the future energy crisis, different other renewable options presently have became imperative to be consider anticipating for the national development. Wind energy in one of them. The development of wind energy technology requires the baseline data relevant to the wind trends and their potentials. Under the present study, an attempt has been made to develop wind power density map of the Makkah Province of Saudi Arabia based on the meteorological data collected at different sparsely located weather stations. GIS application has provided a good option to interpolate the gap areas between the sparsely located weather recording stations. This paper describe the methodology and results of the present study.
Feasible application of offshore wind turbines in Labuan Island, Sabah for energy complementary
NASA Astrophysics Data System (ADS)
Salleh, Nur Farahin; Chew, Boon Cheong; Hamid, Syaiful Rizal
2017-03-01
Nowadays, the world energy requirements are increasing at an alarming rate and the power demand is running ahead of supply. It is widely recognized that the fossil fuels such as coal, petroleum and natural gas are presently being used for electricity generation. Therefore, in future it may not be sufficient to keep pace with ever increasing demand of the electrical energy of the world. The renewable energy can provide clean sources of energy which is reliable and secure to society. This paper analyzed renewable energy adoption, focusing on offshore wind turbines. In this case study, Labuan, Sabah has been selected and suggested as the location to install the offshore wind turbines because of geographical advantage of the South China Sea. The technology is expected to provide great power energy with least environment impact and high sustainability as it is located within the windy area with no terrain features, buildings or other obstruction. This study used qualitative methods for both data collection and data analysis. This study proved the feasible application of offshore wind turbines in the South China Sea, Sabah produced the complementary energy to fossil fuels. Hence, the offshore wind turbines might become one of main energy sources in Sabah. The application of the offshore wind turbines to Sabah residential area develops a lot of benefit and support Malaysian government goal which is to be more competitive in renewable energy generation while sustaining national economic growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zack, J; Natenberg, E J; Knowe, G V
The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In this phase of the project the focus is on the Mid-Columbia Basin region, which encompasses the Bonneville Power Administration (BPA) wind generation area (Figure 1) that includes the Klondike, Stateline, and Hopkins Ridge wind plants. There are two tasks in the current project effort designed to validate themore » Ensemble Sensitivity Analysis (ESA) observational system deployment approach in order to move closer to the overall goal: (1) Perform an Observing System Experiment (OSE) using a data denial approach. The results of this task are presented in a separate report. (2) Conduct a set of Observing System Simulation Experiments (OSSE) for the Mid-Colombia basin region. This report presents the results of the OSSE task. The specific objective is to test strategies for future deployment of observing systems in order to suggest the best and most efficient ways to improve wind forecasting at BPA wind farm locations. OSSEs have been used for many years in meteorology to evaluate the potential impact of proposed observing systems, determine tradeoffs in instrument design, and study the most effective data assimilation methodologies to incorporate the new observations into numerical weather prediction (NWP) models (Atlas 1997; Lord 1997). For this project, a series of OSSEs will allow consideration of the impact of new observing systems of various types and in various locations.« less
Effect of accuracy of wind power prediction on power system operator
NASA Technical Reports Server (NTRS)
Schlueter, R. A.; Sigari, G.; Costi, T.
1985-01-01
This research project proposed a modified unit commitment that schedules connection and disconnection of generating units in response to load. A modified generation control is also proposed that controls steam units under automatic generation control, fast responding diesels, gas turbines and hydro units under a feedforward control, and wind turbine array output under a closed loop array control. This modified generation control and unit commitment require prediction of trend wind power variation one hour ahead and the prediction of error in this trend wind power prediction one half hour ahead. An improved meter for predicting trend wind speed variation is developed. Methods for accurately simulating the wind array power from a limited number of wind speed prediction records was developed. Finally, two methods for predicting the error in the trend wind power prediction were developed. This research provides a foundation for testing and evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.
Longrigg, Paul
1987-01-01
The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.
NASA Astrophysics Data System (ADS)
Valldecabres, L.; Friedrichs, W.; von Bremen, L.; Kühn, M.
2016-09-01
An analysis of the spatial and temporal power fluctuations of a simplified wind farm model is conducted on four offshore wind fields data sets, two from lidar measurements and two from LES under unstable and neutral atmospheric conditions. The integral length scales of the horizontal wind speed computed in the streamwise and the cross-stream direction revealed the elongation of the structures in the direction of the mean flow. To analyse the effect of the structures on the power output of a wind turbine, the aggregated equivalent power of two wind turbines with different turbine spacing in the streamwise and cross-stream direction is analysed at different time scales under 10 minutes. The fact of considering the summation of the power of two wind turbines smooths out the fluctuations of the power output of a single wind turbine. This effect, which is stronger with increasing spacing between turbines, can be seen in the aggregation of the power of two wind turbines in the streamwise direction. Due to the anti-correlation of the coherent structures in the cross-stream direction, this smoothing effect is stronger when the aggregated power is computed with two wind turbines aligned orthogonally to the mean flow direction.
Engineering innovation to reduce wind power COE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammerman, Curtt Nelson
There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.
NASA Astrophysics Data System (ADS)
Zeng, Ming; Yang, Lijun; Qiu, Hongji; Li, Yuanfei; Peng, Lilin
2017-01-01
The wind power and PV are the key fields of clean energy development in China in recent years. However, there are still many aspects of problems in wind power and PV industries at present, such as the insufficient consumptive ability and the limitation of market competition capability. The effective leading and support of government in the aspect of policies is especially needed in order to solve these problems. Based on the analysis of main policies system of wind power and PV in our country, Spain, the United Kingdom and Germany are chosen as typical countries because of their wind power and PV industries are relatively developed. Their policies of wind power and PV industries are studied respectively from five aspects, namely macroscopic laws, development planning, administrative policies, fiscal and tax policies and price policies. Then the comparison among typical countries and China is made and the exiting problems in China's policies of wind power and PV industries are summed up. Finally, the suggestions to promote China's wind power and PV industries development are presented.
Reference Manual for the System Advisor Model's Wind Power Performance Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, J.; Jorgenson, J.; Gilman, P.
2014-08-01
This manual describes the National Renewable Energy Laboratory's System Advisor Model (SAM) wind power performance model. The model calculates the hourly electrical output of a single wind turbine or of a wind farm. The wind power performance model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs. In SAM, the performance model can be coupled to one of the financial models to calculate economic metrics for residential, commercial, or utility-scale wind projects. This manual describes the algorithms used by the wind power performance model, which is available in the SAM user interface andmore » as part of the SAM Simulation Core (SSC) library, and is intended to supplement the user documentation that comes with the software.« less
Wind and Water Power Fact Sheets | Wind | NREL
Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and and Water Power Fact Sheets Wind and Water Power Fact Sheets The capabilities for research at the National Wind Technology Center (NWTC) are numerous. Below you will find fact sheets about the many
ERIC Educational Resources Information Center
Journal of College Science Teaching, 2005
2005-01-01
This brief article describes a new global wind-power map that has quantified global wind power and may help planners place turbines in locations that can maximize power from the winds and provide widely available low-cost energy. The researchers report that their study can assist in locating wind farms in regions known for strong and consistent…
Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy
Modeling a Linear Generator for Energy Harvesting Applications
2014-12-01
sensors where electrical power is not available (e.g., wireless sensors on train cars). While piezoelectric harvesters are primarily utilized in...Ship and the Future of Electricity Generation ............3 2. Unmanned Sensor Energy Needs .......................................................4...18 Figure 8. Example two-pole, three-phase salient-pole synchronous machine showing the general layout of windings and major axis
ERIC Educational Resources Information Center
Odora Hoppers, Catherine A.
2015-01-01
"In a time of unacceptable global injustice, growing inequalities in the distribution of power, accelerating climate change, and unwavering racism and social exclusion, we are today facing the biggest challenges of human history" (European Conference on Intercultural Dialogue in Development Education, 2008: 1). A favourable wind is…
A summary of impacts of wind power integration on power system small-signal stability
NASA Astrophysics Data System (ADS)
Yan, Lei; Wang, Kewen
2017-05-01
Wind power has been increasingly integrated into power systems over the last few decades because of the global energy crisis and the pressure on environmental protection, and the stability of the system connected with wind power is becoming more prominent. This paper summaries the research status, achievements as well as deficiencies of the research on the impact of wind power integration on power system small-signal stability. In the end, the further research needed are discussed.
Hydrogen fuel - Universal energy
NASA Astrophysics Data System (ADS)
Prince, A. G.; Burg, J. A.
The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.
Measuring Tropospheric Winds from Space Using a Coherent Doppler Lidar Technique
NASA Technical Reports Server (NTRS)
Miller, Timothy L.; Kavaya, Michael J.; Emmitt, G. David
1999-01-01
The global measurement of tropospheric wind profiles has been cited by the operational meteorological community as the most important missing element in the present and planned observing system. The most practical and economical method for obtaining this measurement is from low earth orbit, utilizing a Doppler lidar (laser radar) technique. Specifically, this paper will describe the coherent Doppler wind lidar (CDWL) technique, the design and progress of a current space flight project to fly such a system on the Space Shuttle, and plans for future flights of similar instruments. The SPARCLE (SPAce Readiness Coherent Lidar Experiment) is a Shuttle-based instrument whose flight is targeted for March, 2001. The objectives of SPARCLE are three-fold: Confirm that the coherent Doppler lidar technique can measure line-of-sight winds to within 1-2 m/s accuracy; Collect data to permit validation and improvement of instrument performance models to enable better design of future missions; and Collect wind and backscatter data for future mission optimization and for atmospheric studies. These objectives reflect the nature of the experiment and its program sponsor, NASA's New Millennium Program. The experiment is a technology validation mission whose primary purpose is to provide a space flight validation of this particular technology. (It should be noted that the CDWL technique has successfully been implemented from ground-based and aircraft-based platforms for a number of years.) Since the conduct of the SPARCLE mission is tied to future decisions on the choice of technology for free-flying, operational missions, the collection of data is intrinsically tied to the validation and improvement of instrument performance models that predict the sensitivity and accuracy of any particular present or future instrument system. The challenges unique to space flight for an instrument such as SPARCLE and follow-ons include: Obtaining the required lidar sensitivity from the long distance of orbit height to the lower atmosphere; Maintaining optical alignments after launch to orbit, and during operations in "microgravity"; Obtaining pointing knowledge of sufficient accuracy to remove the speed of the spacecraft (and the rotating Earth) from the measurements; Providing sufficient power (not a problem on the Shuttle) and cooling to the instrument. The paper will describe the status and challenges of the SPARCLE project, the value of obtaining wind data from orbit, and will present a roadmap to future instruments for scientific research and operational meteorology.
Analysis of chaos in high-dimensional wind power system.
Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping
2018-01-01
A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.
DOE/NREL supported wind energy activities in Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drouilhet, S.
1997-12-01
This paper describes three wind energy related projects which are underway in Indonesia. The first is a USAID/Winrock Wind for Island and Nongovernmental Development (WIND) project. The objectives of this project are to train local nongovernmental organizations (NGOs) in the siting, installation, operation, and maintenance of small wind turbines. Then to install up to 20 wind systems to provide electric power for productive end uses while creating micro-enterprises which will generate enough revenue to sustain the wind energy systems. The second project is a joint Community Power Corporation/PLN (Indonesian National Electric Utility) case study of hybrid power systems in villagemore » settings. The objective is to evaluate the economic viability of various hybrid power options for several different situations involving wind/photovoltaics/batteries/diesel. The third project is a World Bank/PLN preliminary market assessment for wind/diesel hybrid systems. The objective is to estimate the size of the total potential market for wind/diesel hybrid power systems in Indonesia. The study will examine both wind retrofits to existing diesel mini-grids and new wind-diesel plants in currently unelectrified villages.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahidehpour, Mohammad
Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practicesmore » can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision results are often text-based demonstrations. WINS includes a powerful visualization tool and user interface capability for transmission analyses, planning, and assessment, which will be of great interest to power market participants, power system planners and operators, and state and federal regulatory entities; and (3) WINS can handle extended transmission models for wind integration studies. WINS models include limitations on transmission flow as well as bus voltage for analyzing power system states. The existing decision tools often consider transmission flow constraints (dc power flow) alone which could result in the over-utilization of existing resources when analyzing wind integration. WINS can be used to assist power market participants including transmission companies, independent system operators, power system operators in vertically integrated utilities, wind energy developers, and regulatory agencies to analyze economics, security, and reliability of various options for wind integration including transmission upgrades and the planning of new transmission facilities. WINS can also be used by industry for the offline training of reliability and operation personnel when analyzing wind integration uncertainties, identifying critical spots in power system operation, analyzing power system vulnerabilities, and providing credible decisions for examining operation and planning options for wind integration. Researches in this project on wind integration included (1) Development of WINS; (2) Transmission Congestion Analysis in the Eastern Interconnection; (3) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (4) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection. The research resulted in 33 papers, 9 presentations, 9 PhD degrees, 4 MS degrees, and 7 awards. The education activities in this project on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-18
... Delta LLC; Mountain View Solar, LLC; Pheasant Run Wind, LLC; Pheasant Run Wind II, LLC; Tuscola Wind II, LLC; Mountain Wind Power, LLC; Mountain Wind Power II, LLC; Summerhaven Wind, LP; Notice of...
Wind energy in electric power production, preliminary study
NASA Astrophysics Data System (ADS)
Lento, R.; Peltola, E.
1984-01-01
The wind speed conditions in Finland have been studied with the aid of the existing statistics of the Finnish Meteorological Institute. With the aid of the statistics estimates on the available wind energy were also made. Eight hundred wind power plants, 1.5 MW each, on the windiest west coast would produce about 2 TWh energy per year. Far more information on the temporal, geographical and vertical distribution of the wind speed than the present statistics included is needed when the available wind energy is estimated, when wind power plants are dimensioned optimally, and when suitable locations are chosen for them. The investment costs of a wind power plant increase when the height of the tower or the diameter of the rotor is increased, but the energy production increases, too. Thus, overdimensioning the wind power plant in view of energy needs or the wind conditions caused extra costs. The cost of energy produced by wind power can not yet compete with conventional energy, but the situation changes to the advantage of wind energy, if the real price of the plants decreases (among other things due to large series production and increasing experience), or if the real price of fuels rises. The inconvinience on the environment caused by the wind power plants is considered insignificant. The noise caused by the plant attenuates rapidly with distance. No harmful effects to birds and other animals caused by the wind power plants have been observed in the studies made abroad. Parts of the plant getting loose during an accident, or ice forming on the blades are estimated to fly even from a large plant only a few hundred meters.
75 FR 8687 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-25
... Partners LLC, Fenton Power Partners I, LLC, Hoosier Wind Project, LLC, Northwest Wind Partners, LLC, Oasis Power Partners, LLC, Shiloh Wind Project 2, LLC, Wapsipinicon Wind Project, LLC. Description... Service Company of Colorado; Southwestern Public Service Company. Description: Northern States Power...
Dynamic model based novel findings in power systems analysis and frequency measurement verification
NASA Astrophysics Data System (ADS)
Kook, Kyung Soo
This study selects several new advanced topics in power systems, and verifies their usefulness using the simulation. In the study on ratio of the equivalent reactance and resistance of the bulk power systems, the simulation results give us the more correct value of X/R of the bulk power system, which can explain why the active power compensation is also important in voltage flicker mitigation. In the application study of the Energy Storage System(ESS) to the wind power, the new model implementation of the ESS connected to the wind power is proposed, and the control effect of ESS to the intermittency of the wind power is verified. Also this study conducts the intensive simulations for clarifying the behavior of the wide-area power system frequency as well as the possibility of the on-line instability detection. In our POWER IT Laboratory, since 2003, the U.S. national frequency monitoring network (FNET) has been being continuously operated to monitor the wide-area power system frequency in the U.S. Using the measured frequency data, the event of the power system is triggered, and its location and scale are estimated. This study also looks for the possibility of using the simulation technologies to contribute the applications of FNET, finds similarity of the event detection orders between the frequency measurements and the simulations in the U.S. Eastern power grid, and develops the new methodology for estimating the event location based on the simulated N-1 contingencies using the frequency measurement. It has been pointed out that the simulation results can not represent the actual response of the power systems due to the inevitable limit of modeling power systems and different operating conditions of the systems at every second. However, in the circumstances that we need to test such an important infrastructure supplying the electric energy without taking any risk of it, the software based simulation will be the best solution to verify the new technologies in power system engineering and, for doing this, new models and better application of the simulation should be proposed. Conducting extensive simulation studies, this dissertation verified that the actual X/R ratio of the bulk power systems is much lower than what has been known as its typical value, showed the effectiveness of the ESS control to mitigate the intermittence of the wind power from the perspective of the power grid using the newly proposed simulation model of ESS connected to the wind power, and found many characteristics of the wide-area frequency wave propagation. Also the possibility of using the simulated responses of the power system for replacing the measured data could be confirmed and this is very promising to the future application of the simulation to the on-line analysis of the power systems based on the FNET measurements.
Wind Generation Feasibility Study for Sac & Fox Tribe of the Mississippi in Iowa (Meskwaki Nation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasley, Larry C.
1.2 Overview The Meskwaki Nation will obtain an anemometer tower. Install the tower at the site that has been pre-qualified as the site most likely to produce maximum electric power from the wind. It will collect meteorological data from the tower's sensors for a one year period, as required for due diligence to identify the site as appropriate for the installation of a wind turbine to provide electric power for the community. Have the collected data analyzed by a meteorologist and a professionally certified wind engineer to produce the reports of expected power generation at the site, for the specificmore » wind turbine(s) under consideration for installation. 1.2.1 Goals of the Tribe The feasibility study reports, including technical and business analyses will be used to obtain contracts and financing required to develop and implement a wind turbine project on the Meskwaki Settlement. Our goal is to produce two (2) mega watts of power and to reduce the cost for electricity currently being paid by the Meskwaki Casino. 1.2.2 Project Objectives Meet the energy needs of the community with clean energy. Bring renewable energy to the settlement in a responsible, affordable manner. Maximize both the economic and the spiritual benefits to the tribe from energy independence. Integrate the Tribe's energy policies with its economic development goals. Contribute to achieving the Tribe's long-term goals of self-determination and sovereignty. 1.2.3 Project Location The precise location proposed for the tower is at the following coordinates: 92 Degrees, 38 Minutes, 46.008 Seconds West Longitude 41 Degrees, 59 Minutes, 45.311 Seconds North Latitude. A circle of radius 50.64 meters, enclosing and area of 1.98 acres in PLSS Township T83N, Range R15W, in Iowa. In relative directions, the site is 1,650 feet due west of the intersection of Highway 30 and 305th Street in Tama, Iowa, as approached from the direction of Toledo, Iowa. It is bounded on the north by Highway 30 and on the south by 305th Street, a street which runs along a meandering west-south-west heading from this intersection with Highway 30. In relation to Settlement landmarks, it is 300 meters west of the Meskwaki water tower found in front of the Meskwaki Public Works Department, and is due north of the athletic playing fields of the Meskwaki Settlement School. The accompanying maps (in the Site Resource Maps File) use a red pushpin marker to indicate the exact location, both in the overview frames and in the close-up frame. 1.2.4 Long Term Energy Vision The Meskwaki Tribe is committed to becoming energy self-sufficient, improving the economic condition of the tribe, and maintaining Tribal Values of closeness with Grandmother Earth. The details of the Tribe's long-term vision continues to evolve. A long term vision exists of: 1) a successful assessment program; 2) a successful first wind turbine project reducing the Tribe's cost of electricity; 3) creation of a Meskwaki Tribal Power Utility/Coop under the auspices of the new tribal Corporation, as we implement a master plan for economic and business development; 4), and opening the doors for additional wind turbines/renewable energy sources on the community. The additional turbines could lead directly to energy self-sufficiency, or might be the one leg of a multi-leg approach using multiple forms of renewable energy to achieve self-sufficiency. We envision current and future assessment projects providing the data needed to qualify enough renewable energy projects to provide complete coverage for the entire Meskwaki Settlement, including meeting future economic development projects energy needs. While choosing not to engage in excessive optimism, we can imagine that in the future the Iowa rate-setting bodies will mandate that grid operators pay fair rates (tariffs) to renewable suppliers. We will be ready to expand renewable production of electricity for export, when that time comes. The final report includes the Wind Generation Feasibility Study prepared by Wind Utility Consulting, PC and Preliminary Environmental Documentation Report prepared by Snyder & Associates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, A.A.; Daniel, A.R.; Daniel, S.T.
1990-01-01
Parameters to evaluate the potential for using wind energy to generate electricity in Jamaica were obtained. These include the average wind power scaled to a height of 20 m at existing weather stations and temporary anemometer sites, the variation in annual and monthly wind power, and the frequency distribution of wind speed and wind energy available. Four small commercial turbines were assumed to be operating at some of the sites, and the estimated energy captured by them, the time they operated above their cut-in speed and their capacity factors were also determined. Diurnal variations of wind speed and prevailing windmore » directions are discussed and a map showing wind power at various sites was produced. Two stations with long-term averages, Manley and Morant Point, gave results which warranted further investigation. Results from some temporary stations are also encouraging. Mean wind speeds at two other sites in the Caribbean are given for comparison. A method for estimating the power exponent for scaling the wind speed from climatic data is described in Appendix 2.« less
Wind Power Potential at Abandoned Mines in Korea
NASA Astrophysics Data System (ADS)
jang, M.; Choi, Y.; Park, H.; Go, W.
2013-12-01
This study performed an assessment of wind power potential at abandoned mines in the Kangwon province by analyzing gross energy production, greenhouse gas emission reduction and economic effects estimated from a 600 kW wind turbine. Wind resources maps collected from the renewable energy data center in Korea Institute of Energy Research(KIER) were used to determine the average wind speed, temperature and atmospheric pressure at hub height(50 m) for each abandoned mine. RETScreen software developed by Natural Resources Canada(NRC) was utilized for the energy, emission and financial analyses of wind power systems. Based on the results from 5 representative mining sites, we could know that the average wind speed at hub height is the most critical factor for assessing the wind power potential. Finally, 47 abandoned mines that have the average wind speed faster than 6.5 m/s were analyzed, and top 10 mines were suggested as relatively favorable sites with high wind power potential in the Kangwon province.
NASA Astrophysics Data System (ADS)
Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.
2008-12-01
Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.
75 FR 70234 - Notice of Effectiveness of Exempt Wholesale Generator Status
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Lakefield Wind Project, LLC, EG10-57-000; Constellation Mystic Power, LLC, EG10-58-000; Pattern Gulf Wind, LLC, EG10-59-000; New Harvest Wind Project, LLC, EG10-60-000; Dry Lake Wind Power, II LLC, EG10-61-000; Learning Jupiter Wind Power...
Dynamic hydrologic economic modeling of tradeoffs in hydroelectric systems
NASA Astrophysics Data System (ADS)
Kern, Jordan D.
Hydropower producers face a future beset by unprecedented changes in the electric power industry, including the rapid growth of installed wind power capacity and a vastly increased supply of natural gas due to horizontal hydraulic fracturing (or "fracking"). There is also increased concern surrounding the potential for climate change to impact the magnitude and frequency of droughts. These developments may significantly alter the financial landscape for hydropower producers and have important ramifications for the environmental impacts of dams. Incorporating wind energy into electric power systems has the potential to affect price dynamics in electricity markets and, in so doing, alter the short-term financial signals on which dam operators rely to schedule reservoir releases. Chapter 1 of this doctoral dissertation develops an integrated reservoir-power system model for assessing the impact of large scale wind power integration of hydropower resources. Chapter 2 explores how efforts to reduce the carbon footprint of electric power systems by using wind energy to displace fossil fuel-based generation may inadvertently yield further impacts to river ecosystems by disrupting downstream flow patterns. Increased concern about the potential for climate change to alter the frequency and magnitude of droughts has led to growing interest in "index insurance" that compensates hydropower producers when values of an environmental variable (or index), such as reservoir inflows, crosses an agreed upon threshold (e.g., low flow conditions). Chapter 3 demonstrates the need for such index insurance contracts to also account for changes in natural gas prices in order to be cost-effective. Chapter 4 of this dissertation analyzes how recent low natural gas prices (partly attributable to fracking) have reduced the cost of implementing ramp rate restrictions at dams, which help restore sub-daily variability in river flows by limiting the flexibility of dam operators in scheduling reservoir releases concurrent with peak electricity demand.
The Wind Integration National Dataset (WIND) toolkit (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caroline Draxl: NREL
2014-01-01
Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.
Near real time wind energy forecasting incorporating wind tunnel modeling
NASA Astrophysics Data System (ADS)
Lubitz, William David
A series of experiments and investigations were carried out to inform the development of a day-ahead wind power forecasting system. An experimental near-real time wind power forecasting system was designed and constructed that operates on a desktop PC and forecasts 12--48 hours in advance. The system uses model output of the Eta regional scale forecast (RSF) to forecast the power production of a wind farm in the Altamont Pass, California, USA from 12 to 48 hours in advance. It is of modular construction and designed to also allow diagnostic forecasting using archived RSF data, thereby allowing different methods of completing each forecasting step to be tested and compared using the same input data. Wind-tunnel investigations of the effect of wind direction and hill geometry on wind speed-up above a hill were conducted. Field data from an Altamont Pass, California site was used to evaluate several speed-up prediction algorithms, both with and without wind direction adjustment. These algorithms were found to be of limited usefulness for the complex terrain case evaluated. Wind-tunnel and numerical simulation-based methods were developed for determining a wind farm power curve (the relation between meteorological conditions at a point in the wind farm and the power production of the wind farm). Both methods, as well as two methods based on fits to historical data, ultimately showed similar levels of accuracy: mean absolute errors predicting power production of 5 to 7 percent of the wind farm power capacity. The downscaling of RSF forecast data to the wind farm was found to be complicated by the presence of complex terrain. Poor results using the geostrophic drag law and regression methods motivated the development of a database search method that is capable of forecasting not only wind speeds but also power production with accuracy better than persistence.
A study on the power generation potential of mini wind turbine in east coast of Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Basrawi, Firdaus; Ismail, Izwan; Ibrahim, Thamir Khalil; Idris, Daing Mohamad Nafiz Daing; Anuar, Shahrani
2017-03-01
A small-scale wind turbine is an attractive renewable energy source, but its economic viability depends on wind speed. The aim of this study is to determine economic viability of small-scale wind turbine in East Coast of Peninsular Malaysia. The potential energy generated has been determined by wind speed data and power curved of. Hourly wind speed data of Kuantan throughout 2015 was collected as the input. Then, a model of wind turbine was developed based on a commercial a 300W mini wind turbine. It was found that power generation is 3 times higher during northeast monsoon season at 15 m elevation. This proved that the northeast monsoon season has higher potential in generating power by wind turbine in East Coast of Peninsular Malaysia. However, only a total of 153.4 kWh/year of power can be generated at this condition. The power generator utilization factor PGUI or capacity ratio was merely 0.06 and it is not technically viable. By increasing the height of wind turbine to 60 m elevation, power generation amount drastically increased to 344 kWh/year, with PGUI of 0.13. This is about two-thirds of PGUI for photovoltaic technology which is 0.21 at this site. If offshore condition was considered, power generation amount further increased to 1,328 kWh/year with PGUI of 0.51. Thus, for a common use of mini wind turbine that is usually installed on-site at low elevation, it has low power generation potential. But, if high elevation as what large wind turbine needed is implemented, it is technically viable option in East Coast of Peninsular Malaysia.
Teaching About the Sun-Earth Connection
NASA Technical Reports Server (NTRS)
Poland, Arthur I.; Fisher, Richard R. (Technical Monitor)
2001-01-01
This talk will be about the Sun: how it changes with time, its magnetic cycle, flares, and the solar wind. The solar wind and what space is like between the Sun and Earth will be presented. Also, the Earth, its magnetic field, how the solar wind interacts with the Earth, Aurora, and how these affect human systems will be discussed. These interactions dictate how we build our systems in space (communications satellites, GPS, etc), and some of our ground systems (power grids). Some simple classroom activities will be presented that can be done using new data from space that is available daily on the internet, and how you can use the internet to get space questions answered within about 1 day. Finally, some career opportunities for jobs related to space for the future will be discussed.
Solar power. [comparison of costs to wind, nuclear, coal, oil and gas
NASA Technical Reports Server (NTRS)
Walton, A. L.; Hall, Darwin C.
1990-01-01
This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.
Characterizing wind power resource reliability in southern Africa
Fant, Charles; Gunturu, Bhaskar; Schlosser, Adam
2015-08-29
Producing electricity from wind is attractive because it provides a clean, low-maintenance power supply. However, wind resource is intermittent on various timescales, thus occasionally introducing large and sudden changes in power supply. A better understanding of this variability can greatly benefit power grid planning. In the following study, wind resource is characterized using metrics that highlight these intermittency issues; therefore identifying areas of high and low wind power reliability in southern Africa and Kenya at different time-scales. After developing a wind speed profile, these metrics are applied at various heights in order to assess the added benefit of raising themore » wind turbine hub. Furthermore, since the interconnection of wind farms can aid in reducing the overall intermittency, the value of interconnecting near-by sites is mapped using two distinct methods. Of the countries in this region, the Republic of South Africa has shown the most interest in wind power investment. For this reason, we focus parts of the study on wind reliability in the country. The study finds that, although mean Wind Power Density is high in South Africa compared to its neighboring countries, wind power resource tends to be less reliable than in other parts of southern Africa—namely central Tanzania. We also find that South Africa’s potential varies over different timescales, with higher reliability in the summer than winter, and higher reliability during the day than at night. This study is concluded by introducing two methods and measures to characterize the value of interconnection, including the use of principal component analysis to identify areas with a common signal.« less
Characterizing wind power resource reliability in southern Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fant, Charles; Gunturu, Bhaskar; Schlosser, Adam
Producing electricity from wind is attractive because it provides a clean, low-maintenance power supply. However, wind resource is intermittent on various timescales, thus occasionally introducing large and sudden changes in power supply. A better understanding of this variability can greatly benefit power grid planning. In the following study, wind resource is characterized using metrics that highlight these intermittency issues; therefore identifying areas of high and low wind power reliability in southern Africa and Kenya at different time-scales. After developing a wind speed profile, these metrics are applied at various heights in order to assess the added benefit of raising themore » wind turbine hub. Furthermore, since the interconnection of wind farms can aid in reducing the overall intermittency, the value of interconnecting near-by sites is mapped using two distinct methods. Of the countries in this region, the Republic of South Africa has shown the most interest in wind power investment. For this reason, we focus parts of the study on wind reliability in the country. The study finds that, although mean Wind Power Density is high in South Africa compared to its neighboring countries, wind power resource tends to be less reliable than in other parts of southern Africa—namely central Tanzania. We also find that South Africa’s potential varies over different timescales, with higher reliability in the summer than winter, and higher reliability during the day than at night. This study is concluded by introducing two methods and measures to characterize the value of interconnection, including the use of principal component analysis to identify areas with a common signal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Cathy
2014-04-30
This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.« less
Tail Shape Design of Boat Wind Turbines
NASA Astrophysics Data System (ADS)
Singamsitty, Venkatesh
Wind energy is a standout among the most generally utilized sustainable power source assets. A great deal of research and improvements have been happening in the wind energy field. Wind turbines are mechanical devices that convert kinetic energy into electrical power. Boat wind turbines are for the small-scale generation of electric power. In order to catch wind energy effectively, boat wind turbines need to face wind direction. Tails are used in boat wind turbines to alter the wind turbine direction and receive the variation of the incoming direction of wind. Tails are used to change the performance of boat wind turbines in an effective way. They are required to generate a quick and steady response as per change in wind direction. Tails can have various shapes, and their effects on boat wind turbines are different. However, the effects of tail shapes on the performance of boat wind turbines are not thoroughly studied yet. In this thesis, five tail shapes were studied. Their effects on boat wind turbines were investigated. The power extracted by the turbines from the air and the force acting on the boat wind turbine tail were analyzed. The results of this thesis provide a guideline of tail shape design for boat wind turbines.
Effects of turbine technology and land use on wind power resource potential
NASA Astrophysics Data System (ADS)
Rinne, Erkka; Holttinen, Hannele; Kiviluoma, Juha; Rissanen, Simo
2018-06-01
Estimates of wind power potential are relevant for decision-making in energy policy and business. Such estimates are affected by several uncertain assumptions, most significantly related to wind turbine technology and land use. Here, we calculate the technical and economic onshore wind power potentials with the aim to evaluate the impact of such assumptions using the case-study area of Finland as an example. We show that the assumptions regarding turbine technology and land use policy are highly significant for the potential estimate. Modern turbines with lower specific ratings and greater hub heights improve the wind power potential considerably, even though it was assumed that the larger rotors decrease the installation density and increase the turbine investment costs. New technology also decreases the impact of strict land use policies. Uncertainty in estimating the cost of wind power technology limits the accuracy of assessing economic wind power potential.
High Voltage Power Transmission for Wind Energy
NASA Astrophysics Data System (ADS)
Kim, Young il
The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.
Grid Integration Research | Wind | NREL
-generated simulation of a wind turbine. Wind Power Plant Modeling and Simulation Engineers at the National computer-aided engineering tool, FAST, as well as their wind power plant simulation tool, Wind-Plant
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
.... 1. In this order, the Commission accepts an updated market power analysis filed by Vantage Wind.... Background 3. On December 20, 2010, Vantage Wind filed an updated market power analysis in compliance with... power analysis filed by Puget Sound Energy, Inc. (Puget).\\4\\ \\3\\ See Vantage Wind Energy LLC, Docket No...
Design and Study of a Low-Cost Laboratory Model Digital Wind Power Meter
ERIC Educational Resources Information Center
Radhakrishnan, Rugmini; Karthika, S.
2010-01-01
A vane-type low-cost laboratory model anemometer cum power meter is designed and constructed for measuring low wind energy created from accelerating fluids. The constructed anemometer is a device which records the electrical power obtained by the conversion of wind power using a wind sensor coupled to a DC motor. It is designed for its…
Assessing spring direct mortality to avifauna from wind energy facilities in the Dakotas
Graff, Brianna J.; Jenks, Jonathan A.; Stafford, Joshua D.; Jensen, Kent C.; Grovenburg, Troy W.
2016-01-01
The Northern Great Plains (NGP) contains much of the remaining temperate grasslands, an ecosystem that is one of the most converted and least protected in the world. Within the NGP, the Prairie Pothole Region (PPR) provides important habitat for >50% of North America's breeding waterfowl and many species of shorebirds, waterbirds, and grassland songbirds. This region also has high wind energy potential, but the effects of wind energy developments on migratory and resident bird and bat populations in the NGP remains understudied. This is troubling considering >2,200 wind turbines are actively generating power in the region and numerous wind energy projects have been proposed for development in the future. Our objectives were to estimate avian and bat fatality rates for wind turbines situated in cropland- and grassland-dominated landscapes, document species at high risk to direct mortality, and assess the influence of habitat variables on waterfowl mortality at 2 wind farms in the NGP. From 10 March to 7 June 2013–2014, we completed 2,398 searches around turbines for carcasses at the Tatanka Wind Farm (TAWF) and the Edgeley-Kulm Wind Farm (EKWF) in South Dakota and North Dakota. During spring, we found 92 turbine-related mortalities comprising 33 species and documented a greater diversity of species (n = 30) killed at TAWF (predominately grassland) than at EKWF (n = 9; predominately agricultural fields). After accounting for detection rates, we estimated spring mortality of 1.86 (SE = 0.22) deaths/megawatt (MW) at TAWF and 2.55 (SE = 0.51) deaths/MW at EKWF. Waterfowl spring (Mar–Jun) fatality rates were 0.79 (SE = 0.11) and 0.91 (SE = 0.10) deaths/MW at TAWF and EKWF, respectively. Our results suggest that future wind facility siting decisions consider avoiding grassland habitats and locate turbines in pre-existing fragmented and converted habitat outside of high densities of breeding waterfowl and major migration corridors.
Power quality improvement of a stand-alone power system subjected to various disturbances
NASA Astrophysics Data System (ADS)
Lone, Shameem Ahmad; Mufti, Mairaj Ud-Din
In wind-diesel stand-alone power systems, the disturbances like random nature of wind power, turbulent wind, sudden changes in load demand and the wind park disconnection effect continuously the system voltage and frequency. The satisfactory operation of such a system is not an easy task and the control design has to take in to account all these subtleties. For maintaining the power quality, generally, a short-term energy storage device is used. In this paper, the performance of a wind-diesel system associated with a superconducting magnetic energy storage (SMES) system is studied. The effect of installing SMES at wind park bus/load bus, on the system performance is investigated. To control the exchange of real and reactive powers between the SMES unit and the wind-diesel system, a control strategy based on fuzzy logic is proposed. The dynamic models of the hybrid power system for most common scenarios are developed and the results presented.
77 FR 5002 - Wind and Water Power Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
... with offshore wind turbine support structures, will not be accepted. DOE may fund specific technical... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program...-solicitation public meeting, request for comment. SUMMARY: The Wind and Water Power Program (WWPP) within the U...
77 FR 58120 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
.... Applicants: Constellation Energy Commodities Group, Inc., R.E. Ginna Nuclear Power Plant, LLC, PECO Energy... Point Nuclear Station, LLC, Constellation Mystic Power, LLC, Cassia Gulch Wind Park, LLC, Michigan Wind 1, LLC, Harvest Windfarm, LLC, Exelon Wind 4, LLC, Criterion Power Partners, LLC, Cow Branch Wind...
Power Class Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants. Description: Abstract: Annual average
Wind Fins: Novel Lower-Cost Wind Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
David C. Morris; Dr. Will D. Swearingen
This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic designmore » improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.« less
76 FR 66284 - Wind and Water Power Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-26
... projects and the overall Water Power Program research portfolio, a report will be compiled by DOE, which... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2011 Wind and Water Power Program, Water Power Peer Review Meeting will review the Program's...
NASA Astrophysics Data System (ADS)
Iungo, G.; Said, E. A.; Santhanagopalan, V.; Zhan, L.
2016-12-01
Power production of a wind farm and durability of wind turbines are strongly dependent on non-linear wake interactions occurring within a turbine array. Wake dynamics are highly affected by the specific site conditions, such as topography and local atmospheric conditions. Furthermore, contingencies through the life of a wind farm, such as turbine ageing and off-design operations, make prediction of wake interactions and power performance a great challenge in wind energy. In this work, operations of an onshore wind turbine array were monitored through lidar measurements, SCADA and met-tower data. The atmospheric wind field investing the wind farm was estimated by using synergistically the available data through five different methods, which are characterized by different confidence levels. By combining SCADA data and the lidar measurements, it was possible to estimate power losses connected with wake interactions. For this specific array, power losses were estimated to be 4% and 2% of the total power production for stable and convective atmospheric regimes, respectively. The entire dataset was then leveraged for the calibration of a data-driven RANS (DDRANS) solver for prediction of wind turbine wakes and power production. The DDRANS is based on a parabolic formulation of the Navier-Stokes equations with axisymmetry and boundary layer approximations, which allow achieving very low computational costs. Accuracy in prediction of wind turbine wakes and power production is achieved through an optimal tuning of the turbulence closure model. The latter is based on a mixing length model, which was developed based on previous wind turbine wake studies carried out through large eddy simulations and wind tunnel experiments. Several operative conditions of the wind farm under examination were reproduced through DDRANS for different stability regimes, wind directions and wind velocity. The results show that DDRANS is capable of achieving a good level of accuracy in prediction of power production and wake velocity field associated with the turbine array.
2013 Wind Technologies Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, R.; Bolinger, M.; Barbose, G.
2014-08-01
This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.
Predicting Wind Noise Inside Porous Dome Filters for Infrasound Sensing on Mars
NASA Astrophysics Data System (ADS)
Pitre, Kevin M.
The study described in this thesis aims to assess the effects of wind-generated noise on potential infrasound measurements on future Mars missions. Infrasonic sensing on Mars is being considered as a means to probe the long-scale atmospheric dynamics, thermal balance, and also to infer bolide impact statistics. In this study, a preliminary framework for predicting the principal wind noise mechanisms to the signal detected by a sensor placed inside a hemispherical porous dome on the Martian surface is developed. The method involves calculating the pressure power density spectra in the infrasonic range generated by turbulent interactions and filtered by dome shaped filters of varying porosities. Knowing the overall noise power spectrum will allow it to be subtracted from raw signals of interest and aid in the development of infrasound sensors for the Martian environment. In order to make these power spectral predictions, the study utilizes the Martian Climate Database (MCD) global circulation model, developed by Laboratoire de Meteorologie Dynamique in Paris, France. Velocity profiles are generated and used in semi empirical functions generated by von Karman along with equations for describing the physical turbulent interactions. With these, turbulent interactions in the free atmosphere above the Martian surface are described. For interactions of turbulence with the porous filter, semi-empirical formulations are adapted to the Martian parameters generated by the MCD and plotted alongside contributions in the free atmosphere outside and inside the dome to obtain the total wind noise contribution from turbulence. In conclusion, the plots of power spectral densities versus frequency are analyzed to determine what porosity filter would provide the best wind-noise suppression when measured at the center the dome. The study shows that 55% (0.02 to 5 Hz) and 80% (6 to 20 Hz) porosities prove to be the better of the five porosities tested.
NASA Astrophysics Data System (ADS)
Jayalakshmi, N. S.; Gaonkar, D. N.
2016-08-01
The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.
Quantifying the hurricane catastrophe risk to offshore wind power.
Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Apt, Jay
2013-12-01
The U.S. Department of Energy has estimated that over 50 GW of offshore wind power will be required for the United States to generate 20% of its electricity from wind. Developers are actively planning offshore wind farms along the U.S. Atlantic and Gulf coasts and several leases have been signed for offshore sites. These planned projects are in areas that are sometimes struck by hurricanes. We present a method to estimate the catastrophe risk to offshore wind power using simulated hurricanes. Using this method, we estimate the fraction of offshore wind power simultaneously offline and the cumulative damage in a region. In Texas, the most vulnerable region we studied, 10% of offshore wind power could be offline simultaneously because of hurricane damage with a 100-year return period and 6% could be destroyed in any 10-year period. We also estimate the risks to single wind farms in four representative locations; we find the risks are significant but lower than those estimated in previously published results. Much of the hurricane risk to offshore wind turbines can be mitigated by designing turbines for higher maximum wind speeds, ensuring that turbine nacelles can turn quickly to track the wind direction even when grid power is lost, and building in areas with lower risk. © 2013 Society for Risk Analysis.
GPP Webinar: Market Outlook and Innovations in Wind and Solar Power
Green Power Partnership webinar reviewing the state of the renewable energy industry as a whole, with a focus on wind and solar power and exploring recent marketplace innovations in wind and solar power and renewable energy purchases.
Lu, Xi; McElroy, Michael B; Sluzas, Nora A
2011-04-01
Wind power can make an important contribution to the goal of reducing emissions of CO2. The major problem relates to the intrinsic variability of the source and the difficulty of reconciling the supply of electricity with demand particularly at high levels of wind penetration. This challenge is explored for the case of the ERCOT system in Texas. Demand for electricity in Texas is projected to increase by approximately 60% by 2030. Considering hourly load data reported for 2006, assuming that the pattern of demand in 2030 should be similar to 2006, and adopting as a business as usual (BAU) reference an assumption that the anticipated additional electricity should be supplied by a combination of coal and gas with prices, discounted to 2007 dollars of $2 and $6 per MMBTU respectively, we conclude that the bus-bar price for electricity would increase by about 1.1 ¢/kWh at a wind penetration level of 30%, by about 3.4 ¢/kWh at a penetration level of 80%. Corresponding costs for reductions in CO2 range from $20/ton to $60/ton. A number of possibilities are discussed that could contribute to a reduction in these costs including the impact of an expanded future fleet of electrically driven vehicles.
Control of large wind turbine generators connected to utility networks
NASA Technical Reports Server (NTRS)
Hinrichsen, E. N.
1983-01-01
This is an investigation of the control requirements for variable pitch wind turbine generators connected to electric power systems. The requirements include operation in very small as well as very large power systems. Control systems are developed for wind turbines with synchronous, induction, and doubly fed generators. Simulation results are presented. It is shown how wind turbines and power system controls can be integrated. A clear distinction is made between fast control of turbine torque, which is a peculiarity of wind turbines, and slow control of electric power, which is a traditional power system requirement.
A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project
NASA Technical Reports Server (NTRS)
Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H.
2007-01-01
The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper.
NASA Astrophysics Data System (ADS)
Qiu, J. P.; Niu, D. X.
Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.
Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, V.; Singh, M.; Muljadi, E.
2011-12-01
In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmissionmore » requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.« less
Wind energy utilization: A bibliography with abstracts - Cumulative volume 1944/1974
NASA Technical Reports Server (NTRS)
1975-01-01
Bibliography, up to 1974 inclusive, of articles and books on utilization of wind power in energy generation. Worldwide literature is surveyed, and short abstracts are provided in many cases. The citations are grouped by subject: (1) general; (2) utilization; (3) wind power plants; (4) wind power generators (rural, synchronous, remote station); (5) wind machines (motors, pumps, turbines, windmills, home-built); (6) wind data and properties; (7) energy storage; and (8) related topics (control and regulation devices, wind measuring devices, blade design and rotors, wind tunnel simulation, aerodynamics). Gross-referencing is aided by indexes of authors, corporate sources, titles, and keywords.
Oahu wind power survey, first report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramage, C.S.; Daniels, P.A.; Schroeder, T.A.
1977-05-01
A wind power survey has been conducted on Oahu since summer 1975. At seventeen potentially windy sites, calibrated anemometers and wind vanes were installed and recordings made on computer-processable magnetic tape cassettes. From monthly mean wind speeds--normalized by comparing with Honolulu Airport means winds--it was concluded that about 23 mi/hr represented the highest average annual wind speed likely to be attained on Oahu and that the Koko Head and Kahuku areas gave the most promise for wind energy generation. Diurnal variation of the wind in these areas roughly parallels diurnal variation of electric power demand.
75 FR 63457 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... Company, Wind Capital Holdings, LLC, CR Clearing, LLC, Cow Branch Wind Power LLC, JD WIND 4, LLC, Harvest... Power Marketing, LP, Exelon Energy Company, Cassia Gulch Wind Park, Michigan Wind 1, LLC, Tuana Springs...-000. Applicants: Ashtabula Wind III, LLC. Description: Notice of Self-Certification of Exempt...
Power-Production Diagnostic Tools for Low-Density Wind Farms with Applications to Wake Steering
NASA Astrophysics Data System (ADS)
Takle, E. S.; Herzmann, D.; Rajewski, D. A.; Lundquist, J. K.; Rhodes, M. E.
2016-12-01
Hansen (2011) provided guidelines for wind farm wake analysis with applications to "high density" wind farms (where average distance between turbines is less than ten times rotor diameter). For "low-density" (average distance greater than fifteen times rotor diameter) wind farms, or sections of wind farms we demonstrate simpler sorting and visualization tools that reveal wake interactions and opportunities for wind farm power prediction and wake steering. SCADA data from a segment of a large mid-continent wind farm, together with surface flux measurements and lidar data are subjected to analysis and visualization of wake interactions. A time-history animated visualization of a plan view of power level of individual turbines provides a quick analysis of wake interaction dynamics. Yaw-based sectoral histograms of enhancement/decline of wind speed and power from wind farm reference levels reveals angular width of wake interactions and identifies the turbine(s) responsible for the power reduction. Concurrent surface flux measurements within the wind farm allowed us to evaluate stability influence on wake loss. A one-season climatology is used to identify high-priority candidates for wake steering based on estimated power recovery. Typical clearing prices on the day-ahead market are used to estimate the added value of wake steering. Current research is exploring options for identifying candidate locations for wind farm "build-in" in existing low-density wind farms.
Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan
2008-12-01
Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.
Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, I.
2009-05-01
Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.
Onshore Wind Farms: Value Creation for Stakeholders in Lithuania
NASA Astrophysics Data System (ADS)
Burinskienė, Marija; Rudzkis, Paulius; Kanopka, Adomas
With the costs of fossil fuel consistently rising worldwide over the last decade, the development of green technologies has become a major goal in many countries. Therefore the evaluation of wind power projects becomes a very important task. To estimate the value of the technologies based on renewable resources also means taking into consideration social, economic, environmental, and scientific value of such projects. This article deals with economic evaluation of electricity generation costs of onshore wind farms in Lithuania and the key factors that have influence on wind power projects and offer a better understanding of social-economic context behind wind power projects. To achieve these goals, this article makes use of empirical data of Lithuania's wind power farms as well as data about the investment environment of the country.Based on empirical data of wind power parks, the research investigates the average wind farm generation efficiency in Lithuania. Employing statistical methods the return on investments of wind farms in Lithuania is calculated. The value created for every party involved and the total value of the wind farm is estimated according to Stakeholder theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy's (DOE's) Wind Energy Technologies Office (WETO) works to accelerate the development and deployment of wind power. The office provides information for researchers, developers, businesses, manufacturers, communities, and others seeking various types of federal assistance available for advancing wind projects. This fact sheet outlines the primary federal incentives for developing and investing in wind power, resources for funding wind power, and opportunities to partner with DOE and other federal agencies on efforts to move the U.S. wind industry forward.
Prospects for generating electricity by large onshore and offshore wind farms
NASA Astrophysics Data System (ADS)
Volker, Patrick J. H.; Hahmann, Andrea N.; Badger, Jake; Jørgensen, Hans E.
2017-03-01
The decarbonisation of energy sources requires additional investments in renewable technologies, including the installation of onshore and offshore wind farms. For wind energy to remain competitive, wind farms must continue to provide low-cost power even when covering larger areas. Inside very large wind farms, winds can decrease considerably from their free-stream values to a point where an equilibrium wind speed is reached. The magnitude of this equilibrium wind speed is primarily dependent on the balance between turbine drag force and the downward momentum influx from above the wind farm. We have simulated for neutral atmospheric conditions, the wind speed field inside different wind farms that range from small (25 km2) to very large (105 km2) in three regions with distinct wind speed and roughness conditions. Our results show that the power density of very large wind farms depends on the local free-stream wind speed, the surface characteristics, and the turbine density. In onshore regions with moderate winds the power density of very large wind farms reaches 1 W m-2, whereas in offshore regions with very strong winds it exceeds 3 W m-2. Despite a relatively low power density, onshore regions with moderate winds offer potential locations for very large wind farms. In offshore regions, clusters of smaller wind farms are generally preferable; under very strong winds also very large offshore wind farms become efficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, T.L.; Gulman, P.J.; McKenna, E.
2000-12-11
The purpose of this report is to evaluate the wind power benefits and impacts to the San Clement Island wind power system, including energy savings, emissions reduction, system stability, and decreased naval dependence on fossil fuel at the island. The primary goal of the SCI wind power system has been to operate with the existing diesel power plant and provide equivalent or better power quality and system reliability than the existing diesel system. The wind system is intended to reduce, as far as possible, the use of diesel fuel and the inherent generation of nitrogen oxide emissions and other pollutants.
Horizontal geometrical reaction time model for two-beam nacelle LiDARs
NASA Astrophysics Data System (ADS)
Beuth, Thorsten; Fox, Maik; Stork, Wilhelm
2015-06-01
Wind energy is one of the leading sustainable energies. To attract further private and state investment in this technology, a broad scaled drop of the cost of energy has to be enforced. There is a trend towards using Laser Doppler Velocimetry LiDAR systems for enhancing power output and minimizing downtimes, fatigue and extreme forces. Since most used LiDARs are horizontally setup on a nacelle and work with two beams, it is important to understand the geometrical configuration which is crucial to estimate reaction times for the actuators to compensate wind gusts. In the beginning of this article, the basic operating modes of wind turbines are explained and the literature on wind behavior is analyzed to derive specific wind speed and wind angle conditions in relation to the yaw angle of the hub. A short introduction to the requirements for the reconstruction of the wind vector length and wind angle leads to the problem of wind shear detection of angled but horizontal homogeneous wind fronts due to the spatial separation of the measuring points. A distance is defined in which the wind shear of such homogeneous wind fronts is not present which is used as a base to estimate further distance calculations. The reaction time of the controller and the actuators are having a negative effect on the effective overall reaction time for wind regulation as well. In the end, exemplary calculations estimate benefits and disadvantages of system parameters for wind gust regulating LiDARs for a wind turbine of typical size. An outlook shows possible future improvements concerning the vertical wind behavior.
Maximum wind energy extraction strategies using power electronic converters
NASA Astrophysics Data System (ADS)
Wang, Quincy Qing
2003-10-01
This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through continuously improving the performance of wind power generation systems. This algorithm is independent of wind power generation system characteristics, and does not need wind speed and turbine speed measurements. Therefore, it can be easily implemented into various wind energy generation systems with different turbine inertia and diverse system hardware environments. In addition to the detailed description of the proposed algorithm, computer simulation results are presented in the thesis to demonstrate the advantage of this algorithm. As a final confirmation of the algorithm feasibility, the algorithm has been implemented inside a single-phase IGBT inverter, and tested with a wind simulator system in research laboratory. Test results were found consistent with the simulation results. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan
2015-11-01
To optimize wind farm layouts for a maximum power output and wind turbine lifetime, mean power output measurements in wind tunnel studies are not sufficient. Instead, detailed temporal information about the power output and unsteady loading from every single wind turbine in the wind farm is needed. A very small porous disc model with a realistic thrust coefficient of 0.75 - 0.85, was designed. The model is instrumented with a strain gage, allowing measurements of the thrust force, incoming velocity and power output with a frequency response up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow. Thanks to its small size and compact instrumentation, the model allows wind tunnel studies of large wind turbine arrays with detailed temporal information from every wind turbine. Translating to field conditions with a length-scale ratio of 1:3,000 the frequencies studied from the data reach from 10-4 Hz up to about 6 .10-2 Hz. The model's capabilities are demonstrated with a large wind farm measurement consisting of close to 100 instrumented models. A high correlation is found between the power outputs of stream wise aligned wind turbines, which is in good agreement with results from prior LES simulations. Work supported by ERC (ActiveWindFarms, grant no. 306471) and by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project).
Wind for Schools: A Wind Powering America Project
ERIC Educational Resources Information Center
US Department of Energy, 2007
2007-01-01
The U.S. Department of Energy's (DOE's) Wind Powering America program (based at the National Renewable Energy Laboratory) sponsors the Wind for Schools Project to raise awareness in rural America about the benefits of wind energy while simultaneously educating college seniors regarding wind energy applications. The three primary project goals of…
ERIC Educational Resources Information Center
Liming, Drew; Hamilton, James
2011-01-01
As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…
Power Generation for River and Tidal Generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Wright, Alan; Gevorgian, Vahan
Renewable energy sources are the second largest contributor to global electricity production, after fossil fuels. The integration of renewable energy continued to grow in 2014 against a backdrop of increasing global energy consumption and a dramatic decline in oil prices during the second half of the year. As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded from primarily wind and solar to include new types with promising future applications, such as hydropower generation, including river and tidal generation. Today, hydropower is considered onemore » of the most important renewable energy sources. In river and tidal generation, the input resource flow is slower but also steadier than it is in wind or solar generation, yet the level of water turbulent flow may vary from one place to another. This report focuses on hydrokinetic power conversion.« less
Johnson Space Center's Solar and Wind-Based Renewable Energy System
NASA Technical Reports Server (NTRS)
Vasquez, A.; Ewert, M.; Rowlands, J.; Post, K.
2009-01-01
The NASA Johnson Space Center (JSC) in Houston, Texas has a Sustainability Partnership team that seeks ways for earth-based sustainability practices to also benefit space exploration research. A renewable energy gathering system was installed in 2007 at the JSC Child Care Center (CCC) which also offers a potential test bed for space exploration power generation and remote monitoring and control concepts. The system comprises: 1) several different types of photovoltaic panels (29 kW), 2) two wind-turbines (3.6 kW total), and 3) one roof-mounted solar thermal water heater and tank. A tie to the JSC local electrical grid was provided to accommodate excess power. The total first year electrical energy production was 53 megawatt-hours. A web-based real-time metering system collects and reports system performance and weather data. Improvements in areas of the CCC that were detected during subsequent energy analyses and some concepts for future efforts are also presented.
Energy 101: Wind Turbines - 2014 Update
None
2018-05-11
See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.
Wind Integration Data Sets | Grid Modernization | NREL
Wind Integration Data Sets Wind Integration Data Sets NREL's wind integration data sets provide the Integration Data Sets Ten-minute time-series wind data for 2004, 2005, and 2006 to help energy professionals perform wind integration studies and estimate power production from hypothetical wind power plants. Access
Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum
NASA Astrophysics Data System (ADS)
Fedak, Waldemar; Anweiler, Stanisław; Gancarski, Wojciech; Ulbrich, Roman
2017-10-01
Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.
The Potential Wind Power Resource in Australia: A New Perspective
Hallgren, Willow; Gunturu, Udaya Bhaskar; Schlosser, Adam
2014-01-01
Australia’s wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia’s electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia’s energy mix, this study sets out to analyze and interpret the nature of Australia’s wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast’s electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it’s intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale. PMID:24988222
The potential wind power resource in Australia: a new perspective.
Hallgren, Willow; Gunturu, Udaya Bhaskar; Schlosser, Adam
2014-01-01
Australia's wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia's electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia's energy mix, this study sets out to analyze and interpret the nature of Australia's wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast's electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it's intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale.
Direct mechanical torque sensor for model wind turbines
NASA Astrophysics Data System (ADS)
Kang, Hyung Suk; Meneveau, Charles
2010-10-01
A torque sensor is developed to measure the mechanical power extracted by model wind turbines. The torque is measured by mounting the model generator (a small dc motor) through ball bearings to the hub and by preventing its rotation by the deflection of a strain-gauge-instrumented plate. By multiplying the measured torque and rotor angular velocity, a direct measurement of the fluid mechanical power extracted from the flow is obtained. Such a measurement is more advantageous compared to measuring the electrical power generated by the model generator (dc motor), since the electrical power is largely affected by internal frictional, electric and magnetic losses. Calibration experiments are performed, and during testing, the torque sensor is mounted on a model wind turbine in a 3 rows × 3 columns array of wind turbines in a wind tunnel experiment. The resulting electrical and mechanical powers are quantified and compared over a range of applied loads, for three different incoming wind velocities. Also, the power coefficients are obtained as a function of the tip speed ratio. Significant differences between the electrical and mechanical powers are observed, which highlights the importance of using the direct mechanical power measurement for fluid dynamically meaningful results. A direct calibration with the measured current is also explored. The new torque sensor is expected to contribute to more accurate model wind tunnel tests which should provide added flexibility in model studies of the power that can be harvested from wind turbines and wind-turbine farms.
75 FR 2531 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-15
... Power, LLC, Terra-Gen VG Wind, LLC, Terra-Gen 251 Wind, LLC, Chandler Wind Partners, LLC. Description... Power Source Generation, Inc., Calvert Cliffs Nuclear Power Plant LLC, Constellation Energy Commodities..., Inc., Constellation Energy Commodities Group Maine, LLC, R.E. Ginna Nuclear Power Plant, Raven One...
NASA Astrophysics Data System (ADS)
Thiesen, J.; Gulstad, L.; Ristic, I.; Maric, T.
2010-09-01
Summit: The wind power predictability is often a forgotten decision and planning factor for most major wind parks, both onshore and offshore. The results of the predictability are presented after having examined a number of European offshore and offshore parks power predictability by using three(3) mesoscale model IRIE_GFS and IRIE_EC and WRF. Full description: It is well known that the potential wind production is changing with latitude and complexity in terrain, but how big are the changes in the predictability and the economic impacts on a project? The concept of meteorological predictability has hitherto to some degree been neglected as a risk factor in the design, construction and operation of wind power plants. Wind power plants are generally built in places where the wind resources are high, but these are often also sites where the predictability of the wind and other weather parameters is comparatively low. This presentation addresses the question of whether higher predictability can outweigh lower average wind speeds with regard to the overall economy of a wind power project. Low predictability also tends to reduce the value of the energy produced. If it is difficult to forecast the wind on a site, it will also be difficult to predict the power production. This, in turn, leads to increased balance costs and a less reduced carbon emission from the renewable source. By investigating the output from three(3) mesoscale models IRIE and WRF, using ECMWF and GFS as boundary data over a forecasting period of 3 months for 25 offshore and onshore wind parks in Europe, the predictability are mapped. Three operational mesoscale models with two different boundary data have been chosen in order to eliminate the uncertainty with one mesoscale model. All mesoscale models are running in a 10 km horizontal resolution. The model output are converted into "day a head" wind turbine generation forecasts by using a well proven advanced physical wind power model. The power models are using a number of weather parameters like wind speed in different heights, friction velocity and DTHV. The 25 wind sites are scattered around in Europe and contains 4 offshore parks and 21 onshore parks in various terrain complexity. The "day a head" forecasts are compared with production data and predictability for the period February 2010-April 2010 are given in Mean Absolute Errors (MAE) and Root Mean Squared Errors (RMSE). The power predictability results are mapped for each turbine giving a clear picture of the predictability in Europe. . Finally a economic analysis are shown for each wind parks in different regimes of predictability will be compared with regard to the balance costs that result from errors in the wind power prediction. Analysis shows that it may very well be profitable to place wind parks in regions of lower, but more predictable wind ressource. Authors: Ivan Ristic, CTO Weather2Umberlla D.O.O Tomislav Maric, Meteorologist at Global Flow Solutions Vestas Wind Technology R&D Line Gulstad, Manager Global Flow Solutions Vestas Wind Technology R&D Jesper Thiesen, CEO ConWx ApS
Wind for Schools Project Power System Brief
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2007-08-01
This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(TM) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, D.K.
1996-12-31
Electricity production from biomass fuel has been hailed in recent years as an environmentally acceptable energy source that delivers on its promise of economically viable renewable energy. A Wall Street Journal article from three years ago proclaimed wood to be {open_quotes}moving ahead of costly solar panels and wind turbines as the leading renewable energy alternative to air-fouling fossils fuels and scary nuclear plants.{close_quotes} Biomass fuel largely means wood; about 90% of biomass generated electricity comes from burning waste wood, the remainder from agricultural wastes. Biomass power now faces an uncertain future. The maturing of the cogeneration and independent power plantmore » market, restructuring of the electric industry, and technological advances with power equipment firing other fuels have placed biomass power in a competitive disadvantage with other power sources.« less
An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine
NASA Astrophysics Data System (ADS)
Ahmed, D.; Ahmad, A.
2013-06-01
Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.
Use of meteorological information in the risk analysis of a mixed wind farm and solar
NASA Astrophysics Data System (ADS)
Mengelkamp, H.-T.; Bendel, D.
2010-09-01
Use of meteorological information in the risk analysis of a mixed wind farm and solar power plant portfolio H.-T. Mengelkamp*,** , D. Bendel** *GKSS Research Center Geesthacht GmbH **anemos Gesellschaft für Umweltmeteorologie mbH The renewable energy industry has rapidly developed during the last two decades and so have the needs for high quality comprehensive meteorological services. It is, however, only recently that international financial institutions bundle wind farms and solar power plants and offer shares in these aggregate portfolios. The monetary value of a mixed wind farm and solar power plant portfolio is determined by legal and technical aspects, the expected annual energy production of each wind farm and solar power plant and the associated uncertainty of the energy yield estimation or the investment risk. Building an aggregate portfolio will reduce the overall uncertainty through diversification in contrast to the single wind farm/solar power plant energy yield uncertainty. This is similar to equity funds based on a variety of companies or products. Meteorological aspects contribute to the diversification in various ways. There is the uncertainty in the estimation of the expected long-term mean energy production of the wind and solar power plants. Different components of uncertainty have to be considered depending on whether the power plant is already in operation or in the planning phase. The uncertainty related to a wind farm in the planning phase comprises the methodology of the wind potential estimation and the uncertainty of the site specific wind turbine power curve as well as the uncertainty of the wind farm effect calculation. The uncertainty related to a solar power plant in the pre-operational phase comprises the uncertainty of the radiation data base and that of the performance curve. The long-term mean annual energy yield of operational wind farms and solar power plants is estimated on the basis of the actual energy production and it's relation to a climatologically stable long-term reference period. These components of uncertainty are of technical nature and based on subjective estimations rather than on a statistically sound data analysis. And then there is the temporal and spatial variability of the wind speed and radiation. Their influence on the overall risk is determined by the regional distribution of the power plants. These uncertainty components are calculated on the basis of wind speed observations and simulations and satellite derived radiation data. The respective volatility (temporal variability) is calculated from the site specific time series and the influence on the portfolio through regional correlation. For an exemplary portfolio comprising fourteen wind farms and eight solar power plants the annual mean energy production to be expected is calculated, the different components of uncertainty are estimated for each single wind farm and solar power plant and for the portfolio as a whole. The reduction in uncertainty (or risk) through bundling the wind farms and the solar power plants (the portfolio effect) is calculated by Markowitz' Modern Portfolio Theory. This theory is applied separately for the wind farm and the solar power plant bundle and for the combination of both. The combination of wind and photovoltaic assets clearly shows potential for a risk reduction. Even assets with a comparably low expected return can lead to a significant risk reduction depending on their individual characteristics.
A Novel Low-Power-Consumption All-Fiber-Optic Anemometer with Simple System Design.
Zhang, Yang; Wang, Fang; Duan, Zhihui; Liu, Zexu; Liu, Zigeng; Wu, Zhenlin; Gu, Yiying; Sun, Changsen; Peng, Wei
2017-09-14
A compact and low-power consuming fiber-optic anemometer based on single-walled carbon nanotubes (SWCNTs) coated tilted fiber Bragg grating (TFBG) is presented. TFBG as a near infrared in-fiber sensing element is able to excite a number of cladding modes and radiation modes in the fiber and effectively couple light in the core to interact with the fiber surrounding mediums. It is an ideal in-fiber device used in a fiber hot-wire anemometer (HWA) as both coupling and sensing elements to simplify the sensing head structure. The fabricated TFBG was immobilized with an SWCNT film on the fiber surface. SWCNTs, a kind of innovative nanomaterial, were utilized as light-heat conversion medium instead of traditional metallic materials, due to its excellent infrared light absorption ability and competitive thermal conductivity. When the SWCNT film strongly absorbs the light in the fiber, the sensor head can be heated and form a "hot wire". As the sensor is put into wind field, the wind will take away the heat on the sensor resulting in a temperature variation that is then accurately measured by the TFBG. Benefited from the high coupling and absorption efficiency, the heating and sensing light source was shared with only one broadband light source (BBS) without any extra pumping laser complicating the system. This not only significantly reduces power consumption, but also simplifies the whole sensing system with lower cost. In experiments, the key parameters of the sensor, such as the film thickness and the inherent angle of the TFBG, were fully investigated. It was demonstrated that, under a very low BBS input power of 9.87 mW, a 0.100 nm wavelength response can still be detected as the wind speed changed from 0 to 2 m/s. In addition, the sensitivity was found to be -0.0346 nm/(m/s) under the wind speed of 1 m/s. The proposed simple and low-power-consumption wind speed sensing system exhibits promising potential for future long-term remote monitoring and on-chip sensing in practical applications.
NASA Astrophysics Data System (ADS)
Lee, Joseph C. Y.; Lundquist, Julie K.
2017-11-01
Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. This paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustrate with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind-downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.
Lee, Joseph C. Y.; Lundquist, Julie K.
2017-11-23
Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. Our paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustratemore » with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind–downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Joseph C. Y.; Lundquist, Julie K.
Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. Our paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustratemore » with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind–downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.« less
Wind Power: A Turning Point. Worldwatch Paper 45.
ERIC Educational Resources Information Center
Flavin, Christopher
Recent studies have shown wind power to be an eminently practical and potentially substantial source of electricity and direct mechanical power. Wind machines range from simple water-pumping devices made of wood and cloth to large electricity producing turbines with fiberglass blades nearly 300 feet long. Wind is in effect a form of solar…
77 FR 274 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-04
... Capital Holdings, LLC, Cow Branch Wind Power, L.L.C. Description: Updated Market Power Analysis of Exelon..., LLC, AES Alamitos, LLC, AES Redondo Beach, L.L.C., Condon Wind Power, LLC, AES Huntington Beach, L.L.C...-000. Applicants: Erie Wind, LLC. Description: Self-Certification of EWG Status of Erie Wind, LLC...
77 FR 5007 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
...; ER11-2488-002; ER10-3032-002; ER11-2475-002. Applicants: Klondike Wind Power III LLC, Northern Iowa... Windpower LLC, Flying Cloud Power Partners, LLC, Klamath Energy LLC, Klamath Generation LLC, Moraine Wind LLC, Mountain View Power Partners III, LLC, Shiloh I Wind Project, LLC, Trimont Wind I LLC, Locust...
Wind Resource Assessment of Gujarat (India)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draxl, C.; Purkayastha, A.; Parker, Z.
India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes.more » While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.« less
Wind Power Forecasting Error Distributions: An International Comparison; Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, B. M.; Lew, D.; Milligan, M.
2012-09-01
Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.
Determination of the wind power systems load to achieve operation in the maximum energy area
NASA Astrophysics Data System (ADS)
Chioncel, C. P.; Tirian, G. O.; Spunei, E.; Gillich, N.
2018-01-01
This paper analyses the operation of the wind turbine, WT, in the maximum power point, MPP, by linking the load of the Permanent Magnet Synchronous Generator, PMSG, with the wind speed value. The load control methods at wind power systems aiming an optimum performance in terms of energy are based on the fact that the energy captured by the wind turbine significantly depends on the mechanical angular speed of the wind turbine. The presented control method consists in determining the optimal mechanical angular speed, ωOPTIM, using an auxiliary low power wind turbine, WTAUX, operating without load, at maximum angular velocity, ωMAX. The method relies on the fact that the ratio ωOPTIM/ωMAX has a constant value for a given wind turbine and does not depend on the time variation of the wind speed values.
An assessment of wind energy potential in Iberia under climate change
NASA Astrophysics Data System (ADS)
Liberato, Margarida L. R.; Santos, João A.; Rochinha, Carlos; Reyers, Mark; Pinto, Joaquim G.
2015-04-01
Wind energy potential in Iberia is assessed for recent-past (1961-2000) and future (2041-2070) climates. For recent-past, a COSMO-CLM simulation driven by ERA-40 is used. COSMO-CLM simulations driven by ECHAM5 following the A1B scenario are used for future projections. A 2 MW rated power wind turbine is selected. Mean potentials, inter-annual variability and irregularity are discussed on annual/seasonal scales and on a grid resolution of 20 km. For detailed regional assessments eight target sites are considered. For recent-past conditions, the highest daily mean potentials are found in winter over northern and eastern Iberia, particularly on high-elevation or coastal regions. In northwestern Iberia, daily potentials frequently reach maximum wind energy output (50 MWh day-1), particularly in winter. Southern Andalucía reveals high potentials throughout the year, whereas the Ebro valley and central-western coast show high potentials in summer. The irregularity in annual potentials is moderate (<15% of mean output), but exacerbated in winter (40%). Climate change projections show significant decreases over most of Iberia (<2 MWh day-1). The strong enhancement of autumn potentials in Southern Andalucía is noteworthy (>2 MWh day-1). The northward displacement of North Atlantic westerly winds (autumn-spring) and the strengthening of easterly flows (summer) are key drivers of future projections. Santos, J.A.; Rochinha, C.; Liberato, M.L.R.; Reyers, M.; Pinto, J.G. (2015) Projected changes in wind energy potentials over Iberia. Renewable Energy, 75, 1: 68-80. doi: 10.1016/j.renene.2014.09.026 Acknowledgements: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER-019524 (PTDC/AAC-CLI/121339/2010).
IMPROVED CAPABILITIES FOR SITING WIND FARMS AND MITIGATING IMPACTS ON RADAR OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiswell, S.
2010-01-15
The development of efficient wind energy production involves challenges in technology and interoperability with other systems critical to the national mission. Wind turbines impact radar measurements as a result of their large reflectivity cross section as well as through the Doppler phase shift of their rotating blades. Wind farms can interfere with operational radar in multiple contexts, with degradation impacts on: weather detection such as tornado location, wind shear, and precipitation monitoring; tracking of airplanes where air traffic control software can lose the tracks of aircraft; and in identification of other low flying targets where a wind farm located closemore » to a border might create a dead zone for detecting intruding objects. Objects in the path of an electromagnetic wave affect its propagation characteristics. This includes actual blockage of wave propagation by large individual objects and interference in wave continuity due to diffraction of the beam by individual or multiple objects. As an evolving industry, and the fastest growing segment of the energy sector, wind power is poised to make significant contributions in future energy generation requirements. The ability to develop comprehensive strategies for designing wind turbine locations that are mutually beneficial to both the wind industry that is dependent on production, and radar sites which the nation relies on, is critical to establishing reliable and secure wind energy. The mission needs of the Department of Homeland Security (DHS), Department of Defense (DOD), Federal Aviation Administration (FAA), and National Oceanographic and Atmospheric Administration (NOAA) dictate that the nation's radar systems remain uninhibited, to the maximum extent possible, by man-made obstructions; however, wind turbines can and do impact the surveillance footprint for monitoring airspace both for national defense as well as critical weather conditions which can impact life and property. As a result, a number of potential wind power locations have been contested on the basis of radar line of site. Radar line of site is dependent on local topography, and varies with atmospheric refractive index which is affected by weather and geographic conditions.« less
NASA Astrophysics Data System (ADS)
Ehrke, Elizabeth
Nearly every aspect of human existence relies on energy in some way. Most of this energy is currently derived from fossil fuel resources. Increasing energy demands coupled with environmental and national security concerns have facilitated the move towards renewable energy sources. Biofuels like corn ethanol are one of the ways the U.S. has significantly reduced petroleum consumption. However, the large energy requirement of corn ethanol limits the net benefit of the fuel. Using renewable energy sources to produce ethanol can greatly improve its economic and environmental benefits. The main purpose of this study was to model the useful energy received from a solar thermal array and a wind turbine at various locations to determine the feasibility of applying these technologies at ethanol plants around the country. The model calculates thermal energy received from a solar collector array and electricity generated by a wind turbine utilizing various input data to characterize the equipment. Project cost and energy rate inputs are used to evaluate the profitability of the solar array or wind turbine. The current state of the wind and solar markets were examined to give an accurate representation of the economics of each industry. Eighteen ethanol plant locations were evaluated for the viability of a solar thermal array and/or wind turbine. All ethanol plant locations have long payback periods for solar thermal arrays, but high natural gas prices significantly reduce this timeframe. Government incentives will be necessary for the economic feasibility of solar thermal arrays. Wind turbines can be very profitable for ethanol plants in the Midwest due to large wind resources. The profitability of wind power is sensitive to regional energy prices. However, government incentives for wind power do not significantly change the economic feasibility of a wind turbine. This model can be used by current or future ethanol facilities to investigate or begin the planning process for a solar thermal array or wind turbine. The model is meant to aide in the planning stages of a renewable energy project, and advanced investigation will be needed to move forward with that project.
78 FR 42060 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
... Harbor Water Power Corporation, PECO Energy Company, Michigan Wind 1, LLC, Michigan Wind 2, LLC, Harvest... Clearing, LLC, Cow Branch Wind Power, L.L.C., Constellation Power Source Generation Inc., Constellation New..., Calvert Cliffs Nuclear Power Plant, LLC, Nine Mine Point Nuclear Station, LLC. Description: Revised...
A process for providing positive primary control power by wind turbines
NASA Astrophysics Data System (ADS)
Marschner, V.; Michael, J.; Liersch, J.
2014-12-01
Due to the increasing share of wind energy in electricity generation, wind turbines have to fulfil additional requirements in the context of grid integration. The paper examines to which extent wind turbines can provide positive control power following the related grid code. The additional power has to be obtained from the rotating flywheel mass of the wind turbine's rotor. A simple physical model is developed that allows to draw conclusions about appropriate concepts by means of a dynamic simulation of the variables rotational speed, torque, power output and rotor power. The paper discusses scenarios to provide control power. The supply of control power at partial load is examined in detail using simulations. Under partial load conditions control power can be fed into the grid for a short time. Thereby the rotational speed drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after the control process. In this way an unfavourable situation for the grid control is produced, therefore the paper proposes a modified partial load condition with a higher rotational speed. By providing primary control power the rotor is delayed to the optimum rotational speed so that more rotational energy can be fed in and fed-in power can be increased persistently. However, as the rotor does not operate at optimum speed, a small amount of the energy yield is lost. Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind turbines work under modified partial load conditions can compensate the decrease of power of the wind turbines working under partial load conditions. Therefore the requested control power is provided and afterwards the original value of power is maintained.
Wind-assist irrigation and electrical-power generation
NASA Astrophysics Data System (ADS)
Nelson, V.; Starcher, K.
1982-07-01
A wind turbine is mechanically connected to an existing irrigation well. The system can be operated in three modes: electric motor driving the water turbine pump. Wind assist mode where wind turbine supplements power from the utility line to drive the water turbine pump. At wind speeds of 12 m/s and greater, the wind turbine can pump water (15 kW) and feed power (10 kW) back into the utility grid at the same time. Electrical generation mode where the water pump is disconnected and all power is fed back to the utility grid. The concept is technically viable as the mechanical connection allows for a smooth transfer of power in parallel with an existing power source. Minor problems caused delays and major problems of two rotor failures precluded enough operation time to obtain a good estimation of the economics. Because reliability and maintenance are difficult problems with prototype or limited production wind energy conversion systems, the expense of the demonstration project has exceeded the estimated cost by a large amount.
Mousa, Mohamed G; Allam, S M; Rashad, Essam M
2018-01-01
This paper proposes an advanced strategy to synchronize the wind-driven Brushless Doubly-Fed Reluctance Generator (BDFRG) to the grid-side terminals. The proposed strategy depends mainly upon determining the electrical angle of the grid voltage, θ v and using the same transformation matrix of both the power winding and grid sides to ensure that the generated power-winding voltage has the same phase-sequence of the grid-side voltage. On the other hand, the paper proposes a vector-control (power-winding flux orientation) technique for maximum wind-power extraction under two schemes summarized as; unity power-factor operation and minimum converter-current. Moreover, a soft-starting method is suggested to avoid the employed converter over-current. The first control scheme is achieved by adjusting the command power-winding reactive power at zero for a unity power-factor operation. However, the second scheme depends on setting the command d-axis control-winding current at zero to maximize the ratio of the generator electromagnetic-torque per the converter current. This enables the system to get a certain command torque under minimum converter current. A sample of the obtained simulation and experimental results is presented to check the effectiveness of the proposed control strategies. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Wind for Schools: A Wind Powering America Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2007-12-01
This brochure serves as an introduction to Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, and the basic configurations of the project.
A Wind Energy Powered Wireless Temperature Sensor Node
Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang
2015-01-01
A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally. PMID:25734649
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligan, M.; Holttinen, H.; Soder, L.
2012-09-01
Wind and solar power will give rise to challenges in electricity markets regarding flexibility, capacity adequacy, and the participation of wind and solar generators to markets. Large amounts of wind power will have impacts on bulk power system markets and electricity prices. If the markets respond to increased wind power by increasing investments in low-capital, high-cost or marginal-cost power, the average price may remain in the same range. However, experiences so far from Denmark, Germany, Spain, and Ireland are such that the average market prices have decreased because of wind power. This reduction may result in additional revenue insufficiency, whichmore » may be corrected with a capacity market, yet capacity markets are difficult to design. However, the flexibility attributes of the capacity also need to be considered. Markets facilitating wind and solar integration will include possibilities for trading close to delivery (either by shorter gate closure times or intraday markets). Time steps chosen for markets can enable more flexibility to be assessed. Experience from 5- and 10-minute markets has been encouraging.« less
A wind energy powered wireless temperature sensor node.
Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang
2015-02-27
A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.
75 FR 45617 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... Numbers: ER08-1226-007; ER08-1225-010; ER08-1111-008. Applicants: Cloud County Wind Farm, LLC, Pioneer Prairie Wind Farm I, LLC, Arlington Wind Power Project LLC. Description: Arlington Wind Power Project LLC... Wind Farm, L.P. Description: Waymart Wind Farm, L.P. submits tariff filing per 35.12: Waymart Baseline...
Solar and Wind Forecasting | Grid Modernization | NREL
and Wind Forecasting Solar and Wind Forecasting As solar and wind power become more common system operators. An aerial photo of the National Wind Technology Center's PV arrays. Capabilities value of accurate forecasting Wind power visualization to direct questions and feedback during industry
A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System
NASA Astrophysics Data System (ADS)
Altin, Necmi; Eyimaya, Süleyman Emre
2018-03-01
From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.
NASA Astrophysics Data System (ADS)
Nelson, L. L.
1982-05-01
The Bureau of Reclamation (Bureau) conducted studies for a wind turbine field of 100 MW at a site near Medicine Bow, WY, one of the windiest areas in the United States. The wind turbine system would be electrically interconnected to the existing Federal power grid through the substation at Medicine Bow. Power output from the wind turbines would thus be integrated with the existing hydroelectric system, which serves as the energy storage system. An analysis based on 'willingness to pay' was developed. Based on information from the Department of Energy's Western Area Power Administration (Western), it was assumed that 90 mills per kWh would represent the 'willingness to pay' for onpeak power, and 45 mills per kWh for offpeak power. The report concludes that a 100-MW wind field at Medicine Bow has economic and financial feasibility. The Bureau's construction of the Medicine Bow wind field could demonstrate to the industry the feasibility of wind energy.
Wind power prediction based on genetic neural network
NASA Astrophysics Data System (ADS)
Zhang, Suhan
2017-04-01
The scale of grid connected wind farms keeps increasing. To ensure the stability of power system operation, make a reasonable scheduling scheme and improve the competitiveness of wind farm in the electricity generation market, it's important to accurately forecast the short-term wind power. To reduce the influence of the nonlinear relationship between the disturbance factor and the wind power, the improved prediction model based on genetic algorithm and neural network method is established. To overcome the shortcomings of long training time of BP neural network and easy to fall into local minimum and improve the accuracy of the neural network, genetic algorithm is adopted to optimize the parameters and topology of neural network. The historical data is used as input to predict short-term wind power. The effectiveness and feasibility of the method is verified by the actual data of a certain wind farm as an example.
Weber, Juliane; Zachow, Christopher; Witthaut, Dirk
2018-03-01
Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.
NASA Astrophysics Data System (ADS)
Weber, Juliane; Zachow, Christopher; Witthaut, Dirk
2018-03-01
Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.
Impact of active and break wind spells on the demand-supply balance in wind energy in India
NASA Astrophysics Data System (ADS)
Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal
2018-02-01
With an installed capacity of over 19,000 MW, the wind power currently accounts for almost 70% of the total installed capacity among the renewable energy sector in India. The extraction of wind power mainly depends on prevailing meteorology which is strongly influenced by monsoon variability. The monsoon season is characterized by significant fluctuations in between periods of wet and dry spells. During the dry spells, the demand for power from agriculture and cooling equipment increases, whereas during the wet periods, such demand reduces, although, at the same time, the power supply increases because of strong westerly winds contributing to an enhanced production of wind energy. At this backdrop, we aim to assess the impact of intra-seasonal wind variability on the balance of energy supply and demand during monsoon seasons in India. Further, we explore the probable cause of wind variability by relating it to El Nino events. It is observed that the active and break phases in wind significantly impact the overall wind potential output. Although the dry spells are generally found to reduce the overall wind potential, their impact on the potential seems to have declined after the year 2000. The impact of meteorological changes on variations in wind power studied in this work should find applications typically in taking investment decisions on conventional generation facilities, like thermal, which are currently used to maintain the balance of power supply and demand.
Active Power Control of Waked Wind Farms: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Paul A; van Wingerden, Jan-Willem; Pao, Lucy
Active power control can be used to balance the total power generated by wind farms with the power consumed on the electricity grid. With the increasing penetration levels of wind energy, there is an increasing need for this ancillary service. In this paper, we show that the tracking of a certain power reference signal provided by the transmission system operator can be significantly improved by using feedback control at the wind farm level. We propose a simple feedback control law that significantly improves the tracking behavior of the total power output of the farm, resulting in higher performance scores. Themore » effectiveness of the proposed feedback controller is demonstrated using high-fidelity computational fluid dynamics simulations of a small wind farm.« less
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced.more » The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
2017-08-31
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) ismore » analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
Wait for It: Post-supernova Winds Driven by Delayed Radioactive Decays
NASA Astrophysics Data System (ADS)
Shen, Ken J.; Schwab, Josiah
2017-01-01
In most astrophysical situations, the radioactive decay of {}56{Ni} to {}56{Co} occurs via electron capture with a fixed half-life of 6.1 days. However, this decay rate is significantly slowed when the nuclei are fully ionized because K-shell electrons are unavailable for capture. In this paper, we explore the effect of these delayed decays on white dwarfs (WDs) that may survive Type Ia and Type Iax supernovae (SNe Ia and SNe Iax). The energy released by the delayed radioactive decays of {}56{Ni} and {}56{Co} drives a persistent wind from the surviving WD’s surface that contributes to the late-time appearance of these SNe after emission from the bulk of the SN ejecta has faded. We use the stellar evolution code MESA to calculate the hydrodynamic evolution and resulting light curves of these winds. Our post-SN Ia models conflict with late-time observations of SN 2011fe, but uncertainties in our initial conditions prevent us from ruling out the existence of surviving WD donors. Much better agreement with observations is achieved with our models of post-SN Iax bound remnants, providing evidence that these explosions are due to deflagrations in accreting WDs that fail to completely unbind the WDs. Future radiative transfer calculations and wind models utilizing simulations of explosions for more accurate initial conditions will extend our study of radioactively powered winds from post-SN surviving WDs and enable their use as powerful discriminants among the various SN Ia and SN Iax progenitor scenarios.
Guest Editorial Modeling and Advanced Control of Wind Turbines/Wind Farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, J.; Hou, Y.; Zhu, Z.
2017-09-01
The papers in this special section brings together papers focused on the recent advancements and breakthroughs in the technology of modeling and enhanced active/reactive power control of wind power conversion systems, ranging from components of wind turbines to wind farms.
Control Strategy: Wind Energy Powered Variable Chiller with Thermal Ice Storage
2014-12-01
New York, 2013. [8] A. Togelou et al., “Wind power forecasting in the absence of historical data,” IEEE trans. on sustainable energy, vol. 3, no...WIND ENERGY POWERED VARIABLE CHILLER WITH THERMAL ICE STORAGE by Rex A. Boonyobhas December 2014 Thesis Advisor: Anthony J. Gannon Co...AND DATES COVERED December 20 14 Master ’s Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS CONTROL STRATEGY: WIND ENERGY POWERED VARIABLE CHILLER
NASA Astrophysics Data System (ADS)
Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji
This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.
Contribution of strong discontinuities to the power spectrum of the solar wind.
Borovsky, Joseph E
2010-09-10
Eight and a half years of magnetic field measurements (2(22) samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the "inertial subrange" with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this "inertial subrange." Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.
Economically Feasible Potentials for Wind Power in China and the US
NASA Astrophysics Data System (ADS)
Lu, X.; McElroy, M. B.; Chris, N. P.; Tchou, J.
2011-12-01
The present study is intended to explore the economic feasible potentials for wind energy in China and the U.S. subject to their policy systems for renewable energy. These two countries were chosen as subject locales for three reasons: first, they are the two largest countries responsible for energy consumption and CO2 emissions; second, these two countries have the largest installed capacities and the fastest annual growth of wind power in the world; third, China and the U.S. have adopted two distinct but representative incentive policies to accelerate exploitation of the renewable energy source from wind. Investments in large-scale wind farms in China gain privileges from the concession policy established under China's Renewable Energy Law. The electricity generated from wind can be sold at a guaranteed price for a concession period (typically the first ten operational years of a wind farm) to ensure the profitability of the wind farm development. The effectiveness of this policy has been evidenced by the swift growth of total installed capacities for wind power over the past five years in China. A spatial financial model was developed to evaluate the bus-bar prices of wind-generated electricity in China following this wind concession policy. The results indicated that wind could accommodate all of the demand for electricity projected for 2030 assuming a guaranteed bus-bar price of 7.6 U.S. Cents per kWh over the concession period. It is noteworthy that the prices of wind-generated electricity could be as cheap as conventional power generation in the years following the concession period. The power market in the U.S. is more deregulated and electricity is normally traded in a bidding process an hour to a day ahead of real time. Accordingly, the market-oriented policy instrument of PTC subsidies was instituted in the U.S. to ensure the competitiveness of wind power compared to the conventional power generation in the regional power markets. The spatial financial model developed for previous analysis of wind energy in China was tailored to simulate the relevant investment environments for U.S. wind projects. A particular problem was investigated as to how the profitability and competitiveness of onshore wind power in the U.S. would be influenced by PTC subsidy levels varying from 0 to 4 cents per kWh. The results suggested that the current PTC level (2.1 cent per kWh) is at a critical point in determining the competitiveness of wind-generated electricity under normal costs. Setting system integration challenges aside, the potential for profitable wind-generated electricity could accommodate more than seven times U.S. electricity demand at the current PTC subsidy. Similar to the concession policy adopted in China, PTC subsidies are only available for the first ten years following the initiation of wind farms; wind power would still offer a renewable energy source for profitable electricity generation during the post-PTC period.
Methods and apparatus for rotor load control in wind turbines
Moroz, Emilian Mieczyslaw
2006-08-22
A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.
NASA Astrophysics Data System (ADS)
Radziukynas, V.; Klementavičius, A.
2016-04-01
The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).
Policies to Support Wind Power Deployment: Key Considerations and Good Practices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sadie; Tegen, Suzanne; Baring-Gould, Ian
2015-05-19
Policies have played an important role in scaling up wind deployment and increasing its economic viability while also supporting country-specific economic, social, and environmental development goals. Although wind power has become cost-competitive in several contexts, challenges to wind power deployment remain. Within the context of country-specific goals and challenges, policymakers are seeking
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
...] Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore North Carolina--Call for... Commercial Leasing for Wind Power Offshore North Carolina (Call), published on December 13, 2012 (77 FR 7204). DATES: BOEM must receive your nomination describing your interest in obtaining a commercial wind lease...
Performance of wind-powered soil electroremediation process for the removal of 2,4-D from soil.
Souza, F L; Llanos, J; Sáez, C; Lanza, M R V; Rodrigo, M A; Cañizares, P
2016-04-15
In this work, it is studied a wind-powered electrokinetic soil flushing process for the removal of pesticides from soil. This approach aims to develop an eco-friendly electrochemical soil treatment technique and to face the in-situ treatment of polluted soils at remote locations. Herbicide 2,4 dichlorophenoxyacetic acid (2,4-D) is selected as a model pollutant for the soil treatment tests. The performance of the wind-powered process throughout a 15 days experiment is compared to the same remediation process powered by a conventional DC power supply. The wind-powered test covered many different wind conditions (from calm to near gale), being performed 20.7% under calm conditions and 17% under moderate or gentle breeze. According to the results obtained, the wind-powered soil treatment is feasible, obtaining a 53.9% removal of 2,4-D after 15 days treatment. Nevertheless, the remediation is more efficient if it is fed by a constant electric input (conventional DC power supply), reaching a 90.2% removal of 2,4-D with a much lower amount of charge supplied (49.2 A h kg(-1) and 4.33 A h kg(-1) for wind-powered and conventional) within the same operation time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wind-Friendly Flexible Ramping Product Design in Multi-Timescale Power System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Mingjian; Zhang, Jie; Wu, Hongyu
With increasing wind power penetration in the electricity grid, system operators are recognizing the need for additional flexibility, and some are implementing new ramping products as a type of ancillary service. However, wind is generally thought of as causing the need for ramping services, not as being a potential source for the service. In this paper, a multi-timescale unit commitment and economic dispatch model is developed to consider the wind power ramping product (WPRP). An optimized swinging door algorithm with dynamic programming is applied to identify and forecast wind power ramps (WPRs). Designed as positive characteristics of WPRs, the WPRPmore » is then integrated into the multi-timescale dispatch model that considers new objective functions, ramping capacity limits, active power limits, and flexible ramping requirements. Numerical simulations on the modified IEEE 118-bus system show the potential effectiveness of WPRP in increasing the economic efficiency of power system operations with high levels of wind power penetration. It is found that WPRP not only reduces the production cost by using less ramping reserves scheduled by conventional generators, but also possibly enhances the reliability of power system operations. Moreover, wind power forecasts play an important role in providing high-quality WPRP service.« less
Scaling forecast models for wind turbulence and wind turbine power intermittency
NASA Astrophysics Data System (ADS)
Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy
2017-04-01
The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.
Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2010-02-01
This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.
Wind for Schools: A Wind Powering America Project (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, I.
2009-08-01
This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.
An improved AVC strategy applied in distributed wind power system
NASA Astrophysics Data System (ADS)
Zhao, Y. N.; Liu, Q. H.; Song, S. Y.; Mao, W.
2016-08-01
Traditional AVC strategy is mainly used in wind farm and only concerns about grid connection point, which is not suitable for distributed wind power system. Therefore, this paper comes up with an improved AVC strategy applied in distributed wind power system. The strategy takes all nodes of distribution network into consideration and chooses the node having the most serious voltage deviation as control point to calculate the reactive power reference. In addition, distribution principles can be divided into two conditions: when wind generators access to network on single node, the reactive power reference is distributed according to reactive power capacity; when wind generators access to network on multi-node, the reference is distributed according to sensitivity. Simulation results show the correctness and reliability of the strategy. Compared with traditional control strategy, the strategy described in this paper can make full use of generators reactive power output ability according to the distribution network voltage condition and improve the distribution network voltage level effectively.
Experimental verification of a real-time power curve for downregulated offshore wind power plants
NASA Astrophysics Data System (ADS)
Giebel, Gregor; Göcmen Bozkurt, Tuhfe; Sørensen, Poul; Rajczyk Skjelmose, Mads; Runge Kristoffersen, Jesper
2015-04-01
Wind farm scale experiments with wakes under downregulation have been initiated in Horns Rev wind farm in the frame of the PossPOW project (see posspow.dtu.dk). The experiments will be compared with the results of the calibrated GCLarsen wake model for real-time which is used not only to obtain real-time power curve but also to estimate the available power in wind farm level. Available (or Possible) Power is the power that a down-regulated (or curtailed) turbine or a wind power plant would produce if it were to operate in normal operational conditions and it is becoming more of particular interest due to increasing number of curtailment periods. Currently, the Transmission System Operators (TSOs) have no real way to determine exactly the available power of a down-regulated wind farm and the PossPOW project is addressing that need. What makes available power calculation interesting at the wind farm level is the change in the wake characteristics for different operational states. Even though the single turbine level available power is easily estimated, the sum of those signals from all turbines in a wind farm overestimates the power since the wake losses significantly decrease during curtailment. In order to calculate that effect, the turbine wind speed is estimated real-time from the produced power, the pitch angle and the rotor speed using a proximate Cp curve. A real-time wake estimation of normal operation is then performed and advected to the next downstream turbine, and so on until the entire wind farm is calculated. The estimation of the rotor effective wind speed, the parameterization of the GCLarsen wake model for real-time use (i.e., 1-sec data from Horns Rev and Thanet) and the details of the advection are the topic can be found in Göcmen et al. [1] Here we plan to describe the experiments using the Horns Rev wind farm and hopefully present the first validation results. Assuming similarity of the wind speeds between neighbouring rows of turbines, the power produced by the second turbines in the line can be compared when some of the front row turbines are down-regulated. To get a good signal, a trigger mechanism is employed which assures that the experiment is only started if the wind is blowing directly down the line of turbines, and in a strength which is below rated power. The design of the experiments is finalized and the triggers have been introduced to the controller - they will run during the first quarter of 2015. A verified algorithm could be employed by manufacturers and operators world-wide, both for the determination of compensation payments during mandated down-regulation as well as for the exact determination of reserve power for use in ancillary services markets. [1] T. Göcmen Bozkurt, G. Giebel, P. Rethore, M. Mirzaei, N. Poulsen, Effective wind speed estimation and real-time wake model re-calibration for down-regulated turbines, in: Wind Integration Workshop 2014.
Voltage regulation and power losses reduction in a wind farm integrated MV distribution network
NASA Astrophysics Data System (ADS)
Fandi, Ghaeth; Igbinovia, Famous Omar; Tlusty, Josef; Mahmoud, Rateb
2018-01-01
A medium-voltage (MV) wind production system is proposed in this paper. The system applies a medium-voltage permanent magnet synchronous generator (PMSG) as well as MV interconnection and distribution networks. The simulation scheme of an existing commercial electric-power system (Case A) and a proposed wind farm with a gearless PMSG insulated gate bipolar transistor (IGBT) power electronics converter scheme (Case B) is compared. The analyses carried out in MATLAB/Simulink environment shows an enhanced voltage profile and reduced power losses, thus, efficiency in installed IGBT power electronics devices in the wind farm. The resulting wind energy transformation scheme is a simple and controllable medium voltage application since it is not restrained by the IGBT power electronics voltage source converter (VSC) arrangement. Active and reactive power control is made possible with the aid of the gearless PMSG IGBT power converters.
NASA Astrophysics Data System (ADS)
Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro
In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.
NASA Astrophysics Data System (ADS)
Dvornikov, Anton Y.; Martyanov, Stanislav D.; Ryabchenko, Vladimir A.; Eremina, Tatjana R.; Isaev, Alexey V.; Sein, Dmitry V.
2017-04-01
The results of the study aimed to assess the influence of future nuclear power plant Hanhikivi-1
upon the local thermal conditions in the Bothnian Bay in the Baltic Sea are presented. A number of experiments with different numerical models were also carried out in order to estimate the extreme hydro-meteorological conditions in the area of the construction. The numerical experiments were fulfilled both with analytically specified external forcing and with real external forcing for 2 years: a cold year (2010) and a warm year (2014). The study has shown that the extreme values of sea level and water temperature and the characteristics of wind waves and sea ice in the vicinity of the future nuclear power plant can be significant and sometimes catastrophic. Permanent release of heat into the marine environment from an operating nuclear power plant will lead to a strong increase in temperature and the disappearance of ice cover within a 2 km vicinity of the station. These effects should be taken into account when assessing local climate changes in the future.
Potentiality of wind power generation along the Bangladesh coast
NASA Astrophysics Data System (ADS)
Shaikh, Md. Akramuzzaman; Chowdhury, K. M. Azam; Sen, Sukanta; Islam, Mohammad Masudul
2017-12-01
Nowadays Bangladesh is facing the problem with electricity as the production is less comparing to the demand. A significant amount of electricity is consumed in urban areas especially by industries whereas in rural or coastal areas most of the people are not having it. Around 40 millions of people living in the 724 km long coast in Bangladesh. Moreover, it is surprising that throughout the year there is sufficient wind blow in coastal areas by which we can produce a massive amount of electricity. However, day by day the utilization of wind energy is increasing in the world which reduces costs of renewable energy technology, improves efficiency. It would be a good alternative solution instead of dependency on natural gas. Wind energy is mainly potential in coastal and offshore areas with strong wind regimes. Wind energy is vital for ensuring a green energy for the future. The agricultural land of Bangladesh needs the supply of water at right time for better yielding. The installation of windmills will be very much convenient for operating the water supply pumps. This research highlights the possibility of wind energy and describes the necessary steps to implement and develop wind energy sector in Bangladesh by using other's successful ideas. Supportive policies, rules, and decree can be applied to make government, non-government organization, and donor organizations work together to develop wind energy sector in Bangladesh.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... Power Project Overview Beech Ridge Energy LLC is developing a wind power project in Greenbrier and... permanent width of 4.9 m (16 ft). (2) A power collection system delivers power generated by the wind... bat, as well as unlisted bats and birds; (2) relevant data concerning wind power and bat and bird...
Crack Monitoring of Operational Wind Turbine Foundations
McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim
2017-01-01
The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μm. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations. PMID:28825687
Crack Monitoring of Operational Wind Turbine Foundations.
Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim
2017-08-21
The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.
Estimation of the mid-century Etesians wind pattern from EURO-CORDEX models
NASA Astrophysics Data System (ADS)
Dafka, Stella; Toreti, Andrea; Luterbacher, Juerg; Zanis, Prodromos; Tyrlis, Evangelos; Xoplaki, Elena
2017-04-01
The Etesians are one of the major and most prominent wind system, prevailing over the Aegean Sea during summer and early autumn. Here, projections of changes in 30-year (2021-2050) wind speeds relative to 1971-2000, under the 8.5 and 4.5 Representative Concentration Pathways, have been produced for Etesians. Future changes in the number of Etesian days and the associated large scale dynamics are also considered. We analyze seven simulations from three EURO-CORDEX regional climate models at a 12 km grid resolution. Both scenarios indicate that in most RCMs daily wind speeds are projected to increase by 1-1.5m/s over the Aegean Sea, suggesting that the current estimate of wind power potential for Aegean Sea will be increased with the greenhouse gas forcing in the coming decades (2021-2050). Wind direction at 10-m as well as the number of Etesian days have shown to undergo minor changes. The projected changes in sea level pressure and geopotential height anomalies at 500 hPa have a large spread among the seven simulations with a disperse tendency of strengthening of the ridge over the Balkans.
Distributed Wind Research | Wind | NREL
evaluation, and improve wind turbine and wind power plant performance. A photo of a snowy road leading to a single wind turbine surrounded by snow-covered pine trees against blue sky. Capabilities NREL's power plant and small wind turbine development. Algorithms and programs exist for simulating, designing
A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network
NASA Astrophysics Data System (ADS)
Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.
2017-05-01
Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.
2015 Wind Technologies Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ryan; Bolinger, Mark; Barbose, Galen
This annual report--now in its tenth year--provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2015. The report begins with an overview of key installation trends and then covers an array of industry and technology trends. The report also discusses project performance, wind turbine prices, project costs, operations and maintenance expenses, and prices paid for wind power in the United States. The report examines policy and market factors impacting the domestic wind power market and provides a preview of possible near-term market developments, expenses, and prices paid for wind powermore » in the United States. The report examines policy and market factors impacting the domestic wind power market and provides a preview of possible near-term market developments.« less
Fatigue minimising power reference control of a de-rated wind farm
NASA Astrophysics Data System (ADS)
Jensen, T. N.; Knudsen, T.; Bak, T.
2016-09-01
Modern wind farms (cluster of wind turbines) can be required to control the total power output to meet a set-point, and would then profit by minimising the structural loads and thereby the cost of energy. In this paper, we propose a new control strategy for a derated wind farm with the objective of maintaining a desired reference power production for the wind farm, while minimising the sum of fatigues on the wind turbines in steady-state. The controller outputs a vector of power references for the individual turbines. It exploits the positive correlation between fatigue and added turbulence to minimise fatigue indirectly by minimising the added turbulence. Simulated results for a wind farm with three turbines demonstrate the efficacy of the proposed solution by assessing the damage equivalent loads.
Verification and Calibration of a Reduced Order Wind Farm Model by Wind Tunnel Experiments
NASA Astrophysics Data System (ADS)
Schreiber, J.; Nanos, E. M.; Campagnolo, F.; Bottasso, C. L.
2017-05-01
In this paper an adaptation of the FLORIS approach is considered that models the wind flow and power production within a wind farm. In preparation to the use of this model for wind farm control, this paper considers the problem of its calibration and validation with the use of experimental observations. The model parameters are first identified based on measurements performed on an isolated scaled wind turbine operated in a boundary layer wind tunnel in various wind-misalignment conditions. Next, the wind farm model is verified with results of experimental tests conducted on three interacting scaled wind turbines. Although some differences in the estimated absolute power are observed, the model appears to be capable of identifying with good accuracy the wind turbine misalignment angles that, by deflecting the wake, lead to maximum power for the investigated layouts.
Design and Characterization of the UTIAS Anechoic Wind Tunnel
NASA Astrophysics Data System (ADS)
Chow, Derrick H. F.
The anechoic open-jet wind tunnel facility at the University of Toronto Institute for Aerospace Studies was updated and characterized to meet the needs of current and future aeroacoustic experiments. The wind tunnel inlet was resurfaced and flow-conditioning screens were redesigned to improve the freestream turbulence intensity to below 0.4% in the test section. The circular nozzle was replaced with a square secondary contraction that increased the maximum test section velocity to 75 m/s and improved flow uniformity to over 99% across a usable cross-sectional area of 500 mm x 500 mm. Acoustic baffles were installed in front of the wind tunnel inlet and foam wedges were installed in the anechoic chamber. The overall background sound pressure levels in the chamber were improved by 8-18 db over the range of operational freestream velocities. The anechoic chamber cut-off frequency is 170 Hz and the reverberation time for a 60 dB sound power decay is 0.032 s.
NASA Astrophysics Data System (ADS)
Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Song, Jun
2016-08-01
A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico (GOM), and the Caribbean Sea. The statistical relationship is built upon linear regressions between the empirical orthogonal function (EOF) spaces of a cross- calibrated, multi-platform, multi-instrument ocean surface wind velocity dataset (predictand) and the global NCEP wind reanalysis (predictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured at 16 National Data Buoy Center (NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992-1999. The predictand-predictor relationship is applied to IPCC GFDL model output (2.0°×2.5°) of downscaled coastal wind at 0.25°×0.25° resolution. The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further quantified. It is shown that wind speed and power would significantly be reduced in the high CO2 climate scenario offshore of the mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value.
Multi-decadal Variability of the Wind Power Output
NASA Astrophysics Data System (ADS)
Kirchner Bossi, Nicolas; García-Herrera, Ricardo; Prieto, Luis; Trigo, Ricardo M.
2014-05-01
The knowledge of the long-term wind power variability is essential to provide a realistic outlook on the power output during the lifetime of a planned wind power project. In this work, the Power Output (Po) of a market wind turbine is simulated with a daily resolution for the period 1871-2009 at two different locations in Spain, one at the Central Iberian Plateau and another at the Gibraltar Strait Area. This is attained through a statistical downscaling of the daily wind conditions. It implements a Greedy Algorithm as classificator of a geostrophic-based wind predictor, which is derived by considering the SLP daily field from the 56 ensemble members of the longest homogeneous reanalysis available (20CR, 1871-2009). For calibration and validation purposes we use 10 years of wind observations (the predictand) at both sites. As a result, a series of 139 annual wind speed Probability Density Functions (PDF) are obtained, with a good performance in terms of wind speed uncertainty reduction (average daily wind speed MAE=1.48 m/s). The obtained centennial series allow to investigate the multi-decadal variability of wind power from different points of view. Significant periodicities around the 25-yr frequency band, as well as long-term linear trends are detected at both locations. In addition, a negative correlation is found between annual Po at both locations, evidencing the differences in the dynamical mechanisms ruling them (and possible complementary behavior). Furthermore, the impact that the three leading large-scale circulation patterns over Iberia (NAO, EA and SCAND) exert over wind power output is evaluated. Results show distinct (and non-stationary) couplings to these forcings depending on the geographical position and season or month. Moreover, significant non-stationary correlations are observed with the slow varying Atlantic Multidecadal Oscillation (AMO) index for both case studies. Finally, an empirical relationship is explored between the annual Po and the parameters of the Weibull PDF. This allowed us to derive a linear model to estimate the annual power output from those parameters, which results especially useful when no wind power data is available.
Optimization Scheduling Model for Wind-thermal Power System Considering the Dynamic penalty factor
NASA Astrophysics Data System (ADS)
PENG, Siyu; LUO, Jianchun; WANG, Yunyu; YANG, Jun; RAN, Hong; PENG, Xiaodong; HUANG, Ming; LIU, Wanyu
2018-03-01
In this paper, a new dynamic economic dispatch model for power system is presented.Objective function of the proposed model presents a major novelty in the dynamic economic dispatch including wind farm: introduced the “Dynamic penalty factor”, This factor could be computed by using fuzzy logic considering both the variable nature of active wind power and power demand, and it could change the wind curtailment cost according to the different state of the power system. Case studies were carried out on the IEEE30 system. Results show that the proposed optimization model could mitigate the wind curtailment and the total cost effectively, demonstrate the validity and effectiveness of the proposed model.
Small and Shaping the Future Energy Eco-house System
NASA Astrophysics Data System (ADS)
Furukawa, Ryuzo; Takahashi, Hideyuki; Sato, Yoshinori; Sasaki, Hiroshi; Isu, Norifumi; Ohtsuka, Masuo; Tohji, Kazuyuki
2010-11-01
The objective of this research is to develop the elemental technology of the small and thin energy collection system from water, wind, and others in the house, and examine them at the eco-house which will be built at Tohoku University on March 2010. This small energy storage system will contribute to reduce 10% of greenhouse gas emission from household electricity. This project is done by three following groups. 1st group (NEC-Tokin Co. Ltd.) will develop the technologies on the accumulation of electric power pressured from low electric power in which electricity is generated and on the cooperation with AC power supply used for domestic use for this eco-house system. 2nd group (INAX Co. Ltd.) will develop the elemental technology of the slight energy collection system from tap water in the home using a small hydroelectric generator for this eco-house system. 3rd group (Shoei Co. Ltd.) will develop the technologies on existent magnetic gear device, health appliances (Exercise bike), wind power generator, for this eco-house system. Tokoku University compiles these groups. Furthermore, I develop a search of unused small energy and the use technology, and propose a new energy supply system using solar cell and Li ion secondary battery.
Are Wave and Tidal Energy Plants New Green Technologies?
Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca
2016-07-19
Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Wind Power Today and Tomorrow is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today and Tomorrow is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describemore » the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2003 edition of the program overview also includes discussions about wind industry growth in 2003, how DOE is taking advantage of low wind speed region s through advancing technology, and distributed applications for small wind turbines.« less
Operating wind turbines in strong wind conditions by using feedforward-feedback control
NASA Astrophysics Data System (ADS)
Feng, Ju; Sheng, Wen Zhong
2014-12-01
Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades.
Ultra-Short-Term Wind Power Prediction Using a Hybrid Model
NASA Astrophysics Data System (ADS)
Mohammed, E.; Wang, S.; Yu, J.
2017-05-01
This paper aims to develop and apply a hybrid model of two data analytical methods, multiple linear regressions and least square (MLR&LS), for ultra-short-term wind power prediction (WPP), for example taking, Northeast China electricity demand. The data was obtained from the historical records of wind power from an offshore region, and from a wind farm of the wind power plant in the areas. The WPP achieved in two stages: first, the ratios of wind power were forecasted using the proposed hybrid method, and then the transformation of these ratios of wind power to obtain forecasted values. The hybrid model combines the persistence methods, MLR and LS. The proposed method included two prediction types, multi-point prediction and single-point prediction. WPP is tested by applying different models such as autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) and artificial neural network (ANN). By comparing results of the above models, the validity of the proposed hybrid model is confirmed in terms of error and correlation coefficient. Comparison of results confirmed that the proposed method works effectively. Additional, forecasting errors were also computed and compared, to improve understanding of how to depict highly variable WPP and the correlations between actual and predicted wind power.
Prediction of Wind Energy Resources (PoWER) Users Guide
2016-01-01
ARL-TR-7573● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER) User’s Guide by David P Sauter...not return it to the originator. ARL-TR-7573 ● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER...2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 09/2015–11/2015 4. TITLE AND SUBTITLE Prediction of Wind Energy Resources (PoWER) User’s
A comparison of methods for assessing power output in non-uniform onshore wind farms
Staid, Andrea; VerHulst, Claire; Guikema, Seth D.
2017-10-02
Wind resource assessments are used to estimate a wind farm's power production during the planning process. It is important that these estimates are accurate, as they can impact financing agreements, transmission planning, and environmental targets. Here, we analyze the challenges in wind power estimation for onshore farms. Turbine wake effects are a strong determinant of farm power production. With given input wind conditions, wake losses typically cause downstream turbines to produce significantly less power than upstream turbines. These losses have been modeled extensively and are well understood under certain conditions. Most notably, validation of different model types has favored offshoremore » farms. Models that capture the dynamics of offshore wind conditions do not necessarily perform equally as well for onshore wind farms. We analyze the capabilities of several different methods for estimating wind farm power production in 2 onshore farms with non-uniform layouts. We compare the Jensen model to a number of statistical models, to meteorological downscaling techniques, and to using no model at all. In conclusion, we show that the complexities of some onshore farms result in wind conditions that are not accurately modeled by the Jensen wake decay techniques and that statistical methods have some strong advantages in practice.« less
A comparison of methods for assessing power output in non-uniform onshore wind farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staid, Andrea; VerHulst, Claire; Guikema, Seth D.
Wind resource assessments are used to estimate a wind farm's power production during the planning process. It is important that these estimates are accurate, as they can impact financing agreements, transmission planning, and environmental targets. Here, we analyze the challenges in wind power estimation for onshore farms. Turbine wake effects are a strong determinant of farm power production. With given input wind conditions, wake losses typically cause downstream turbines to produce significantly less power than upstream turbines. These losses have been modeled extensively and are well understood under certain conditions. Most notably, validation of different model types has favored offshoremore » farms. Models that capture the dynamics of offshore wind conditions do not necessarily perform equally as well for onshore wind farms. We analyze the capabilities of several different methods for estimating wind farm power production in 2 onshore farms with non-uniform layouts. We compare the Jensen model to a number of statistical models, to meteorological downscaling techniques, and to using no model at all. In conclusion, we show that the complexities of some onshore farms result in wind conditions that are not accurately modeled by the Jensen wake decay techniques and that statistical methods have some strong advantages in practice.« less
75 FR 30391 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-01
... Time on Tuesday, June 8, 2010. Docket Numbers: EC10-72-000. Applicants: Cloud County Wind Farm, LLC, Pioneer Prairie Wind Farm I, LLC, Arlington Wind Power Project LLC. Description: Application for... Power Project LLC, Cloud County Wind Farm, LLC, and Pioneer Prairie Wind Farm I, LLC. Filed Date: 05/20...
Market Acceleration | Wind | NREL
model of a shrouded wind turbine at the 2016 Collegiate Wind Competition. Workforce Development and accurate information that articulates the potential impacts and benefits of wind and water power on education, rural economic development, public power partnerships, and small wind systems. An
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... megawatts of electricity from wind turbine generators (WTGs). The proposed project includes a wind energy... about the installation of red flashing lights on wind turbine generators per Federal Aviation... DEPARTMENT OF ENERGY Western Area Power Administration; Grapevine Canyon Wind Project Record of...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-01
... transmission line on public land to support the construction of up to 52 wind turbines and ancillary facilities... Wind Power Right-of-Way, Crook and Deschutes Counties, OR AGENCY: Bureau of Land Management, Interior... Final Environmental Impact Statement (EIS) for the West Butte Wind Power Right-of-Way and by this Notice...
Exploring the Power Output of Small Wind Turbines in Urban San Antonio, Texas
NASA Astrophysics Data System (ADS)
Casillas, Jose; Sperduti, Stephanie; Cardenas, Rosa
2015-03-01
The means of transporting power from a centralized power plant by transmission lines has several disadvantages. Electricity transmission and distribution networks are costly, require long planning processes and are unsightly to residents. These networks are also susceptible to natural disasters creating massive disruptions to consumers. For these reasons distributed power sources such as solar panels and small wind turbines are becoming a more desirable and viable means of energy production. We report on the status of a study to determine the maximum output power of small wind turbines in urban San Antonio, Texas. Wind speed data along with power measurements from small wind turbines in urban San Antonio will be reported. U.S. Department of Education Title V HSI-STEM and Articulation Award No. P031C110145.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Peter H.; LaCommare, Kristina H.; Eto, Joseph H.
Here, this study examines the relationship between annual changes in electricity reliability reported by a large cross-section of U.S. electricity distribution utilities over a period of 13 years and a broad set of potential explanatory variables, including weather and utility characteristics. We find statistically significant correlations between the average number of power interruptions experienced annually and above average wind speeds, precipitation, lightning strikes, and a measure of population density: customers per line mile. We also find significant relationships between the average number of minutes of power interruptions experienced and above average wind speeds, precipitation, cooling degree-days, and one strategy usedmore » to mitigate the impacts of severe weather: the amount of underground transmission and distribution line miles. Perhaps most importantly, we find a significant time trend of increasing annual average number of minutes of power interruptions over time—especially when interruptions associated with extreme weather are included. Lastly, the research method described in this analysis can provide a basis for future efforts to project long-term trends in reliability and the associated benefits of strategies to improve grid resiliency to severe weather—both in the U.S. and abroad.« less
The Future of Wind Energy in California: Future Projections in Variable-Resolution CESM
NASA Astrophysics Data System (ADS)
Wang, M.; Ullrich, P. A.; Millstein, D.; Collier, C.
2017-12-01
This study focuses on the wind energy characterization and future projection at five primary wind turbine sites in California. Historical (1980-2000) and mid-century (2030-2050) simulations were produced using the Variable-Resolution Community Earth System Model (VR-CESM) to analyze the trends and variations in wind energy under climate change. Datasets from Det Norske Veritas Germanischer Llyod (DNV GL), MERRA-2, CFSR, NARR, as well as surface observational data were used for model validation and comparison. Significant seasonal wind speed changes under RCP8.5 were detected from several wind farm sites. Large-scale patterns were then investigated to analyze the synoptic-scale impact on localized wind change. The agglomerative clustering method was applied to analyze and group different wind patterns. The associated meteorological background of each cluster was investigated to analyze the drivers of different wind patterns. This study improves the characterization of uncertainty around the magnitude and variability in space and time of California's wind resources in the near future, and also enhances understanding of the physical mechanisms related to the trends in wind resource variability.
An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements
NASA Astrophysics Data System (ADS)
Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.
2015-12-01
As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, Sonia; Newman, Jennifer F.
The role of atmospheric turbulence in influencing wind-turbine power production remains an unsolved mystery despite a growing number of researchers who have attempted to make sense of this issue. Turbulence, a term for short-term deviations around the average wind speed, can cause fluctuations in turbine power production and structural loads. While research strongly suggests that ignoring atmospheric turbulence can result in significant errors in power-curve measurements and annual energy production, it appears that there may be no universal relationship between turbulence and power production. Typically when we think of a wind farm operating in a turbulent atmosphere, we picture amore » waked turbine, battered by vortex eddies (circular wind flow) shed from turbine blades upwind. However, turbulence is present nearly everywhere, and is constantly produced and diminished over a wide range of temporal and spatial scales. This article aims to unravel some of the complex factors that remain unsolved regarding turbulence and wind power« less
Wind, Wave, and Tidal Energy Without Power Conditioning
NASA Technical Reports Server (NTRS)
Jones, Jack A.
2013-01-01
Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines
Wharton, Sonia; Newman, Jennifer F.
2017-09-11
The role of atmospheric turbulence in influencing wind-turbine power production remains an unsolved mystery despite a growing number of researchers who have attempted to make sense of this issue. Turbulence, a term for short-term deviations around the average wind speed, can cause fluctuations in turbine power production and structural loads. While research strongly suggests that ignoring atmospheric turbulence can result in significant errors in power-curve measurements and annual energy production, it appears that there may be no universal relationship between turbulence and power production. Typically when we think of a wind farm operating in a turbulent atmosphere, we picture amore » waked turbine, battered by vortex eddies (circular wind flow) shed from turbine blades upwind. However, turbulence is present nearly everywhere, and is constantly produced and diminished over a wide range of temporal and spatial scales. This article aims to unravel some of the complex factors that remain unsolved regarding turbulence and wind power« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-18
...: Nameplate capacity is the maximum rated electric output, expressed in MW, which the turbines of the wind facility under commercial operations can produce at their rated wind speed as designated by the turbine's...; MMAA104000] Atlantic Wind Lease Sale 3 (ATLW3) Commercial Leasing for Wind Power on the Outer Continental...
NASA Astrophysics Data System (ADS)
Khayyat, Abdulkareem Hawta Abdullah Kak Ahmed
Scope and Method of Study: Most developing countries, including Iraq, have very poor wind data. Existing wind speed measurements of poor quality may therefore be a poor guide to where to look for the best wind resources. The main focus of this study is to examine how effectively a GIS spatial model estimates wind power potential in regions where high-quality wind data are very scarce, such as Iraq. The research used a mixture of monthly and hourly wind data from 39 meteorological stations. The study applied spatial analysis statistics and GIS techniques in modeling wind power potential. The model weighted important human, environmental and geographic factors that impact wind turbine siting, such as roughness length, land use⪉nd cover type, airport locations, road access, transmission lines, slope and aspect. Findings and Conclusions: The GIS model provided estimations for wind speed and wind power density and identified suitable areas for wind power projects. Using a high resolution (30*30m) digital elevation model DEM improved the GIS wind suitability model. The model identified areas suitable for wind farm development on different scales. The model showed that there are many locations available for large-scale wind turbines in the southern part of Iraq. Additionally, there are many places in central and northern parts (Kurdistan Region) for smaller scale wind turbine placement.
Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas
2015-09-01
Penetration of renewable energy resources, such as wind and solar power, into power systems significantly increases the uncertainties on system operation, stability, and reliability in smart grids. In this paper, the nonparametric neural network-based prediction intervals (PIs) are implemented for forecast uncertainty quantification. Instead of a single level PI, wind power forecast uncertainties are represented in a list of PIs. These PIs are then decomposed into quantiles of wind power. A new scenario generation method is proposed to handle wind power forecast uncertainties. For each hour, an empirical cumulative distribution function (ECDF) is fitted to these quantile points. The Monte Carlo simulation method is used to generate scenarios from the ECDF. Then the wind power scenarios are incorporated into a stochastic security-constrained unit commitment (SCUC) model. The heuristic genetic algorithm is utilized to solve the stochastic SCUC problem. Five deterministic and four stochastic case studies incorporated with interval forecasts of wind power are implemented. The results of these cases are presented and discussed together. Generation costs, and the scheduled and real-time economic dispatch reserves of different unit commitment strategies are compared. The experimental results show that the stochastic model is more robust than deterministic ones and, thus, decreases the risk in system operations of smart grids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiao; Gao, Wenzhong; Scholbrock, Andrew
To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale wind power integration, the frequency support capabilities of variable-speed wind turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine - controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed-power plane.more » The wind turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated wind power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different wind speeds and different wind power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.« less
An integrated modeling method for wind turbines
NASA Astrophysics Data System (ADS)
Fadaeinedjad, Roohollah
To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a Simulink environment to study the flicker contribution of the wind turbine in the wind-diesel system. By using a new wind power plant representation method, a large wind farm (consisting of 96 fixed speed wind turbines) is modelled to study the power quality of wind power system. The flicker contribution of wind farm is also studied with different wind turbine numbers, using the flickermeter model. Keywords. Simulink, FAST, TurbSim, AreoDyn, wind energy, doubly-fed induction generator, variable speed wind turbine, voltage sag, tower vibration, power quality, flicker, fixed speed wind turbine, wind shear, tower shadow, and yaw error.
Probabilistic power flow using improved Monte Carlo simulation method with correlated wind sources
NASA Astrophysics Data System (ADS)
Bie, Pei; Zhang, Buhan; Li, Hang; Deng, Weisi; Wu, Jiasi
2017-01-01
Probabilistic Power Flow (PPF) is a very useful tool for power system steady-state analysis. However, the correlation among different random injection power (like wind power) brings great difficulties to calculate PPF. Monte Carlo simulation (MCS) and analytical methods are two commonly used methods to solve PPF. MCS has high accuracy but is very time consuming. Analytical method like cumulants method (CM) has high computing efficiency but the cumulants calculating is not convenient when wind power output does not obey any typical distribution, especially when correlated wind sources are considered. In this paper, an Improved Monte Carlo simulation method (IMCS) is proposed. The joint empirical distribution is applied to model different wind power output. This method combines the advantages of both MCS and analytical method. It not only has high computing efficiency, but also can provide solutions with enough accuracy, which is very suitable for on-line analysis.
Wind-Driven Ecological Flow Regimes Downstream from Hydropower Dams
NASA Astrophysics Data System (ADS)
Kern, J.; Characklis, G. W.
2012-12-01
Conventional hydropower can be turned on and off quicker and less expensively than thermal generation (coal, nuclear, or natural gas). These advantages enable hydropower utilities to respond to rapid fluctuations in energy supply and demand. More recently, a growing renewable energy sector has underlined the need for flexible generation capacity that can complement intermittent renewable resources such as wind power. While wind power entails lower variable costs than other types of generation, incorporating it into electric power systems can be problematic. Due to variable and unpredictable wind speeds, wind power is difficult to schedule and must be used when available. As a result, integrating large amounts of wind power into the grid may result in atypical, swiftly changing demand patterns for other forms of generation, placing a premium on sources that can be rapidly ramped up and down. Moreover, uncertainty in wind power forecasts will stipulate increased levels of 'reserve' generation capacity that can respond quickly if real-time wind supply is less than expected. These changes could create new hourly price dynamics for energy and reserves, altering the short-term financial signals that hydroelectric dam operators use to schedule water releases. Traditionally, hourly stream flow patterns below hydropower dams have corresponded in a very predictable manner to electricity demand, whose primary factors are weather (hourly temperature) and economic activity (workday hours). Wind power integration has the potential to yield more variable, less predictable flows at hydro dams, flows that at times could resemble reciprocal wind patterns. An existing body of research explores the impacts of standard, demand-following hydroelectric dams on downstream ecological flows; but weighing the benefits of increased reliance on wind power against further impacts to ecological flows may be a novel challenge for the environmental community. As a preliminary step in meeting this challenge, the following study was designed to investigate the potential for wind power integration to alter riparian flow regimes below hydroelectric dams. A hydrological model of a three-dam cascade in the Roanoke River basin (Virginia, USA) is interfaced with a simulated electricity market (i.e. a unit commitment problem) representing the Dominion Zone of PJM Interconnection. Incorporating forecasts of electricity demand, hydro capacity and wind availability, a mixed-integer optimization program minimizes the system cost of meeting hourly demand and reserve requirements by means of a diverse generation portfolio (e.g. nuclear, fossil, hydro, and biomass). A secondary 'balancing' energy market is executed if real-time wind generation is less than the day-ahead forecast, calling upon reserved generation resources to meet the supply shortfall. Hydropower release schedules are determined across a range of wind development scenarios (varying wind's fraction of total installed generating capacity, as well as its geographical source region). Flow regimes for each wind development scenario are compared against both historical and simulated flows under current operations (negligible wind power), as well as simulated natural flows (dam removal), in terms of ecologically relevant flow metrics. Results quantify the ability of wind power development to alter within-week stream flows downstream from hydropower dams.
Men, Zhongxian; Yee, Eugene; Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian
2014-01-01
Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an "optimal" weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds.
Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian
2014-01-01
Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an “optimal” weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds. PMID:27382627
Darrieus wind-turbine and pump performance for low-lift irrigation pumping
NASA Astrophysics Data System (ADS)
Hagen, L. J.; Sharif, M.
1981-10-01
In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.
Wind turbine power tracking using an improved multimodel quadratic approach.
Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier
2010-07-01
In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Energy Storage Applications in Power Systems with Renewable Energy Generation
NASA Astrophysics Data System (ADS)
Ghofrani, Mahmoud
In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to demonstrate our operational-planning framework and economic justification for different storage applications. A new reliability model is proposed for security and adequacy assessment of power networks containing renewable resources and energy storage systems. The proposed model is used in combination with the operational-planning framework to enhance the reliability and operability of wind integration. The proposed framework optimally utilizes the storage capacity for reliability applications of wind integration. This is essential for justification of storage deployment within regulated utilities where the absence of market opportunities limits the economic advantage of storage technologies over gas-fired generators. A control strategy is also proposed to achieve the maximum reliability using energy storage systems. A cost-benefit analysis compares storage technologies and conventional alternatives to reliably and efficiently integrate different wind penetrations and determines the most economical design. Our simulation results demonstrate the necessity of optimal storage placement for different wind applications. This dissertation also proposes a new stochastic framework to optimally charge and discharge electric vehicles (EVs) to mitigate the effects of wind power uncertainties. Vehicle-to-grid (V2G) service for hedging against wind power imbalances is introduced as a novel application for EVs. This application enhances the predictability of wind power and reduces the power imbalances between the scheduled output and actual power. An Auto Regressive Moving Average (ARMA) wind speed model is developed to forecast the wind power output. Driving patterns of EVs are stochastically modeled and the EVs are clustered in the fleets of similar daily driving patterns. Monte Carlo Simulation (MCS) simulates the system behavior by generating samples of system states using the wind ARMA model and EVs driving patterns. A Genetic Algorithm (GA) is used in combination with MCS to optimally coordinate the EV fleets for their V2G services and minimize the penalty cost associated with wind power imbalances. The economic characteristics of automotive battery technologies and costs of V2G service are incorporated into a cost-benefit analysis which evaluates the economic justification of the proposed V2G application. Simulation results demonstrate that the developed algorithm enhances wind power utilization and reduces the penalty cost for wind power under-/over-production. This offers potential revenues for the wind producer. Our cost-benefit analysis also demonstrates that the proposed algorithm will provide the EV owners with economic incentives to participate in V2G services. The proposed smart scheduling strategy develops a sustainable integrated electricity and transportation infrastructure.
Rising Economy of India: How Can Nepal Draw Economic Benefit
2016-06-10
of Wind Energy, which take into consideration only land deemed suitable for wind turbine installations9, put total onshore wind power potential with...68 Wind Power...coal and oil in the period to 2040 and becomes a significant player in a series of other markets, from wind and solar to nuclear, hydropower and
Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy
Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy
Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2008-10-01
The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.