Shed a light of wireless technology on portable mobile design of NIRS
NASA Astrophysics Data System (ADS)
Sun, Yunlong; Li, Ting
2016-03-01
Mobile internet is growing rapidly driven by high-tech companies including the popular Apple and Google. The wireless mini-NIRS is believed to deserve a great spread future, while there is sparse report on wireless NIRS device and even for the reported wireless NIRS, its wireless design is scarcely presented. Here we focused on the wireless design of NIRS devices. The widely-used wireless communication standards and wireless communication typical solutions were employed into our NIRS design and then compared on communication efficiency, distance, error rate, low-cost, power consumption, and stabilities, based on the requirements of NIRS applications. The properly-performed wireless communication methods matched with the characteristics of NIRS are picked out. Finally, we realized one recommended wireless communication in our NIRS, developed a test platform on wireless NIRS and tested the full properties on wireless communication. This study elaborated the wireless communication methods specified for NIRS and suggested one implementation with one example fully illustrated, which support the future mobile design on NIRS devices.
Diamond, Dermot; Lau, King Tong; Brady, Sarah; Cleary, John
2008-05-15
Rapid developments in wireless communications are opening up opportunities for new ways to perform many types of analytical measurements that up to now have been restricted in scope due to the need to have access to centralised facilities. This paper will address both the potential for new applications and the challenges that currently inhibit more widespread integration of wireless communications with autonomous sensors and analytical devices. Key issues are identified and strategies for closer integration of analytical information and wireless communications systems discussed.
76 FR 26620 - A National Broadband Plan for Our Future
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
... communications space on utility poles. For wireless attachments above the communications space, we adopt a...-authorized by the utilities to complete survey and make-ready work in the communications space, subject to a... and wireless attachments either in or above the communications space. This required response is...
User Needs and Advances in Space Wireless Sensing and Communications
NASA Technical Reports Server (NTRS)
Kegege, Obadiah
2017-01-01
Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions to other planets.
Progress on the Development of Future Airport Surface Wireless Communications Network
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Budinger, James M.; Brooks, David E.; Franklin, Morgan; DeHart, Steve; Dimond, Robert P.; Borden, Michael
2009-01-01
Continuing advances in airport surface management and improvements in airport surface safety are required to enable future growth in air traffic throughout the airspace, as airport arrival and departure delays create a major system bottleneck. These airport management and safety advances will be built upon improved communications, navigation, surveillance, and weather sensing, creating an information environment supporting system automation. The efficient movement of the digital data generated from these systems requires an underlying communications network infrastructure to connect data sources with the intended users with the required quality of service. Current airport surface communications consists primarily of buried copper or fiber cable. Safety related communications with mobile airport surface assets occurs over 25 kHz VHF voice and data channels. The available VHF spectrum, already congested in many areas, will be insufficient to support future data traffic requirements. Therefore, a broadband wireless airport surface communications network is considered a requirement for the future airport component of the air transportation system. Progress has been made on defining the technology and frequency spectrum for the airport surface wireless communications network. The development of a test and demonstration facility and the definition of required testing and standards development are now underway. This paper will review the progress and planned future work.
Wireless data transmission for high energy physics applications
NASA Astrophysics Data System (ADS)
Dittmeier, Sebastian; Brenner, Richard; Dancila, Dragos; Dehos, Cedric; De Lurgio, Patrick; Djurcic, Zelimir; Drake, Gary; Gonzalez Gimenez, Jose Luis; Gustafsson, Leif; Kim, Do-Won; Locci, Elizabeth; Pfeiffer, Ullrich; Röhrich, Dieter; Rydberg, Anders; Schöning, André; Siligaris, Alexandre; Soltveit, Hans Kristian; Ullaland, Kjetil; Vincent, Pierre; Rodriguez Vazquez, Pedro; Wiedner, Dirk; Yang, Shiming
2017-08-01
Silicon tracking detectors operated at high luminosity collider experiments pose a challenge for current and future readout systems regarding bandwidth, radiation, space and power constraints. With the latest developments in wireless communications, wireless readout systems might be an attractive alternative to commonly used wired optical and copper based readout architectures. The WADAPT group (Wireless Allowing Data and Power Transmission) has been formed to study the feasibility of wireless data transmission for future tracking detectors. These proceedings cover current developments focused on communication in the 60 GHz band. This frequency band offers a high bandwidth, a small form factor and an already mature technology. Motivation for wireless data transmission for high energy physics application and the developments towards a demonstrator prototype are summarized. Feasibility studies concerning the construction and operation of a wireless transceiver system have been performed. Data transmission tests with a transceiver prototype operating at even higher frequencies in the 240 GHz band are described. Data transmission at rates up to 10 Gb/s have been obtained successfully using binary phase shift keying.
Capacity on wireless quantum cellular communication system
NASA Astrophysics Data System (ADS)
Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen
2018-03-01
Quantum technology is making excellent prospects in future communication networks. Entanglement generation and purification are two major components in quantum networks. Combining these two techniques with classical cellular mobile communication, we proposed a novel wireless quantum cellular(WQC) communication system which is possible to realize commercial mobile quantum communication. In this paper, the architecture and network topology of WQC communication system are discussed, the mathematical model of WQC system is extracted and the serving capacity, indicating the ability to serve customers, is defined and calculated under certain circumstances.
NASA Astrophysics Data System (ADS)
Trzcinski, Peter; Karanassios, Vassili
2016-05-01
During the last several years, the world has moved from wired communications (e.g., a wired ethernet, wired telephone) to wireless communications (e.g., cell phones, smart phones, tablets). However, data acquisition has lagged behind and for the most part, data in laboratory settings are still acquired using wired communications (or even plug in boards). In this paper, approaches that can be used for wireless data acquisition are briefly discussed using a conceptual model of a future, mobile, portable micro-instrument as an example. In addition, past, present and near-future generations of communications are discussed; processors, operating systems and benchmarks are reviewed; networks that may be used for data acquisition in the field are examined; and, the possibility of connecting sensor or micro-instrument networks to the internet of things is postulated.
2015-03-01
for Public Release; Distribution Unlimited Final Report: Acquisition and Development of A Cognitive Radio based Wireless Monitoring and Surveillance...journals: Final Report: Acquisition and Development of A Cognitive Radio based Wireless Monitoring and Surveillance Testbed for Future Battlefield...Opeyemi Oduola, Nan Zou, Xiangfang Li, Husheng Li, Lijun Qian. Distributed Spectrum Monitoring and Surveillance using a Cognitive Radio based Testbed
Secure Intra-Body Wireless Communications (SIWiC) System Project
NASA Technical Reports Server (NTRS)
Ahmad, Aftab; Doggett, Terrence P.
2011-01-01
SIWiC System is a project to investigate, design and implement future wireless networks of implantable sensors in the body. This futuristic project is designed to make use of the emerging and yet-to-emerge technologies, including ultra-wide band (UWB) for wireless communications, smart implantable sensors, ultra low power networking protocols, security and privacy for bandwidth and power deficient devices and quantum computing. Progress in each of these fronts is hindered by the needs of breakthrough. But, as we will see in this paper, these major challenges are being met or will be met in near future. SIWiC system is a network of in-situ wireless devices that are implanted to coordinate sensed data inside the body, such as symptoms monitoring collected internally, or biometric data collected of an outside object from within the intra-body network. One node has the capability of communicating outside the body to send data or alarm to a relevant authority, e.g., a remote physician.
Ruiz-Garcia, Luis; Lunadei, Loredana; Barreiro, Pilar; Robla, Jose Ignacio
2009-01-01
The aim of the present paper is to review the technical and scientific state of the art of wireless sensor technologies and standards for wireless communications in the Agri-Food sector. These technologies are very promising in several fields such as environmental monitoring, precision agriculture, cold chain control or traceability. The paper focuses on WSN (Wireless Sensor Networks) and RFID (Radio Frequency Identification), presenting the different systems available, recent developments and examples of applications, including ZigBee based WSN and passive, semi-passive and active RFID. Future trends of wireless communications in agriculture and food industry are also discussed. PMID:22408551
NASA Astrophysics Data System (ADS)
Azmi, Noraini; Sudin, Sukhairi; Munirah Kamarudin, Latifah; Zakaria, Ammar; Visvanathan, Retnam; Chew Cheik, Goh; Mamduh Syed Zakaria, Syed Muhammad; Abdullah Alfarhan, Khudhur; Badlishah Ahmad, R.
2018-03-01
The advancement of Micro-Electro-Mechanical-Systems (MEMS), microcontroller technologies and the idea of Internet of Things (IoT) motivates the development of wireless modules (e.g. WiFi, Bluetooth, Zigbee, and LoRa) that are small and affordable. This paper aims to provide detailed information on the development of the LoRaFi board. The LoRaFi 1.0 is a multi-protocol communication board developed by Centre of Excellence for Advanced Sensor Technology (CEASTech). The board was developed for but not limited to monitor the indoor air quality. The board comprises two different wireless communication modules namely, Long-range technology (LoRa) and WiFi (using ESP8266). The board can be configured to communicate either using LoRa or WiFi or both. The board has been tested and the wireless communication operates successfully. Apart from LoRa, WiFi enables data to be forwarded to the cloud/server where the data can be stored for further data analysis. This helps provide users with real-time information on their smartphones or other applications. In the future, researchers will conduct tests to investigate the communication link quality. Newer version with reduced board size and additional wireless communication module will be developed in the future as to increase board flexibility and widen the range of applications that can use the board.
Research of the key technology in satellite communication networks
NASA Astrophysics Data System (ADS)
Zeng, Yuan
2018-02-01
According to the prediction, in the next 10 years the wireless data traffic will be increased by 500-1000 times. Not only the wireless data traffic will be increased exponentially, and the demand for diversified traffic will be increased. Higher requirements for future mobile wireless communication system had brought huge market space for satellite communication system. At the same time, the space information networks had been greatly developed with the depth of human exploration of space activities, the development of space application, the expansion of military and civilian application. The core of spatial information networks is the satellite communication. The dissertation presented the communication system architecture, the communication protocol, the routing strategy, switch scheduling algorithm and the handoff strategy based on the satellite communication system. We built the simulation platform of the LEO satellites networks and simulated the key technology using OPNET.
A Survey on M2M Systems for mHealth: A Wireless Communications Perspective
Kartsakli, Elli; Lalos, Aris S.; Antonopoulos, Angelos; Tennina, Stefano; Di Renzo, Marco; Alonso, Luis; Verikoukis, Christos
2014-01-01
In the new era of connectivity, marked by the explosive number of wireless electronic devices and the need for smart and pervasive applications, Machine-to-Machine (M2M) communications are an emerging technology that enables the seamless device interconnection without the need of human interaction. The use of M2M technology can bring to life a wide range of mHealth applications, with considerable benefits for both patients and healthcare providers. Many technological challenges have to be met, however, to ensure the widespread adoption of mHealth solutions in the future. In this context, we aim to provide a comprehensive survey on M2M systems for mHealth applications from a wireless communication perspective. An end-to-end holistic approach is adopted, focusing on different communication aspects of the M2M architecture. Hence, we first provide a systematic review of Wireless Body Area Networks (WBANs), which constitute the enabling technology at the patient's side, and then discuss end-to-end solutions that involve the design and implementation of practical mHealth applications. We close the survey by identifying challenges and open research issues, thus paving the way for future research opportunities. PMID:25264958
WEB - A Wireless Experiment Box for the Dextre Pointing Package ELC Payload
NASA Technical Reports Server (NTRS)
Bleier, Leor Z.; Marrero-Fontanez, Victor J.; Sparacino, Pietro A.; Moreau, Michael C.; Mitchell, Jason William
2012-01-01
The Wireless Experiment Box (WEB) was proposed to work with the International Space Station (ISS) External Wireless Communication (EWC) system to support high-definition video from the Dextre Pointing Package (DPP). DPP/WEB was a NASA GSFC proposed ExPRESS Logistics Carrier (ELC) payload designed to flight test an integrated suite of Autonomous Rendezvous and Docking (AR&D) technologies to enable a wide spectrum of future missions across NASA and other US Government agencies. The ISS EWC uses COTS Wireless Access Points (WAPs) to provide high-rate bi-directional communications to ISS. In this paper, we discuss WEB s packaging, operation, antenna development, and performance testing.
Web: A Wireless Experiment Box for the Dextre Pointing Package ELC Payload
NASA Technical Reports Server (NTRS)
Bleier, Leor Z.; Marrero-Fontanez, Victor J.; Sparacino, Pietro A.; Moreau, Michael C.; Mitchell, Jason W.
2012-01-01
The Wireless Experiment Box (WEB) was proposed to work with the International Space Station (ISS) External Wireless Communication (EWC) system to support high-definition video from the Dextre Pointing Package (DPP). DPP/WEB was a NASA GSFC proposed ExPRESS Logistics Carrier (ELC) payload designed to flight test an integrated suite of Autonomous Rendezvous and Docking (AR&D) technologies to enable a wide spectrum of future missions across NASA and other US Government agencies. The ISS EWC uses COTS Wireless Access Points (WAPs) to provide high-rate bi-directional communications to ISS. In this paper, we discuss WEB s packaging, operation, antenna development, and performance testing.
ARO PECASE: Information Assurance for Energy-Constrained Wireless Sensor Networks
2011-12-21
Distribution, 18th Annual IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), September 2007. 2. 2010 IEEE...received the following awards: Student Best Paper Award at the IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC...Localization in Wireless Ad Hoc Networks – Many current and future appli- cations of mobile ad hoc networks, including disaster response and event
Next Generation RFID-Based Medical Service Management System Architecture in Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Tolentino, Randy S.; Lee, Kijeong; Kim, Yong-Tae; Park, Gil-Cheol
Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide unlimited future potentials most especially in healthcare systems. RFID is used to detect presence and location of objects while WSN is used to sense and monitor the environment. Integrating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. However, there isn't any flexible and robust communication infrastructure to integrate these devices into an emergency care setting. An efficient wireless communication substrate for medical devices that addresses ad hoc or fixed network formation, naming and discovery, transmission efficiency of data, data security and authentication, as well as filtration and aggregation of vital sign data need to be study and analyze. This paper proposed an efficient next generation architecture for RFID-based medical service management system in WSN that possesses the essential elements of each future medical application that are integrated with existing medical practices and technologies in real-time, remote monitoring, in giving medication, and patient status tracking assisted by embedded wearable wireless sensors which are integrated in wireless sensor network.
Generation of THz Wave with Orbital Angular Momentum by Graphene Patch Reflectarray
2015-07-01
potential to significantly increase spectral efficiency and channel capacity for wireless communication [1]. A few techniques have been reported to...plane wave. The graphene-based OAM generation is very promising for future applications in THz wireless communication . ACKNOWLEDGEMENT This work is... Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” Journal of Applied Physics, vol. 103, no. 6, pp
Spin nano–oscillator–based wireless communication
Choi, Hyun Seok; Kang, Sun Yool; Cho, Seong Jun; Oh, Inn-Yeal; Shin, Mincheol; Park, Hyuncheol; Jang, Chaun; Min, Byoung-Chul; Kim, Sang-Il; Park, Seung-Young; Park, Chul Soon
2014-01-01
Spin–torque nano–oscillators (STNOs) have outstanding advantages of a high degree of compactness, high–frequency tunability, and good compatibility with the standard complementary metal–oxide–semiconductor process, which offer prospects for future wireless communication. There have as yet been no reports on wireless communication using STNOs, since the STNOs also have notable disadvantages such as lower output power and poorer spectral purity in comparison with those of LC voltage–controlled oscillators. Here we show that wireless communication is achieved by a proper choice of modulation scheme despite these drawbacks of STNOs. By adopting direct binary amplitude shift keying modulation and non–coherent demodulation, we demonstrate STNO–based wireless communication with 200–kbps data rate at a distance of 1 m between transmitter and receiver. It is shown, from the analysis of STNO noise, that the maximum data rate can be extended up to 1.48 Gbps with 1–ns turn–on time. For the fabricated STNO, the maximum data rate is 5 Mbps which is limited by the rise time measured in the total system. The result will provide a viable route to real microwave application of STNOs. PMID:24976064
Analysis of Pervasive Mobile Ad Hoc Routing Protocols
NASA Astrophysics Data System (ADS)
Qadri, Nadia N.; Liotta, Antonio
Mobile ad hoc networks (MANETs) are a fundamental element of pervasive networks and therefore, of pervasive systems that truly support pervasive computing, where user can communicate anywhere, anytime and on-the-fly. In fact, future advances in pervasive computing rely on advancements in mobile communication, which includes both infrastructure-based wireless networks and non-infrastructure-based MANETs. MANETs introduce a new communication paradigm, which does not require a fixed infrastructure - they rely on wireless terminals for routing and transport services. Due to highly dynamic topology, absence of established infrastructure for centralized administration, bandwidth constrained wireless links, and limited resources in MANETs, it is challenging to design an efficient and reliable routing protocol. This chapter reviews the key studies carried out so far on the performance of mobile ad hoc routing protocols. We discuss performance issues and metrics required for the evaluation of ad hoc routing protocols. This leads to a survey of existing work, which captures the performance of ad hoc routing algorithms and their behaviour from different perspectives and highlights avenues for future research.
NASA Astrophysics Data System (ADS)
Deng, Peng; Kavehrad, Mohsen; Lou, Yan
2017-01-01
Flexible wireless datacenter networks based on free space optical communication (FSO) links are being considered as promising solutions to meet the future datacenter demands of high throughput, robustness to dynamic traffic patterns, cabling complexity and energy efficiency. Robust and precise steerable FSO links over dynamic traffic play a key role in the reconfigurable optical wireless datacenter inter-rack network. In this work, we propose and demonstrate a reconfigurable 10Gbps FSO system incorporated with smart beam acquisition and tracking mechanism based on gimballess two-axis MEMS micro-mirror and retro-reflective film marked aperture. The fast MEMS-based beam acquisition switches laser beam of FSO terminal from one rack to the next for reconfigurable networks, and the precise beam tracking makes FSO device auto-correct the misalignment in real-time. We evaluate the optical power loss and bit error rate performance of steerable FSO links at various directions. Experimental results suggest that the MEMS based beam steerable FSO links hold considerable promise for the future reconfigurable wireless datacenter networks.
Secure Your Wireless Network: Going Wireless Comes with Its Own Special Set of Security Concerns
ERIC Educational Resources Information Center
Bloomquist, Jane; Musa, Atif
2004-01-01
Imagine a completely wireless school, an open network in which all students and staff can roam around using laptops or handheld computers to browse the Internet, access files and applications on the school server, and communicate with each other and the world via e-mail. It's a great picture--and at some schools the future is already here. But…
Capsule endoscopy—A mechatronics perspective
NASA Astrophysics Data System (ADS)
Lin, Lin; Rasouli, Mahdi; Kencana, Andy Prima; Tan, Su Lim; Wong, Kai Juan; Ho, Khek Yu; Phee, Soo Jay
2011-03-01
The recent advances in integrated circuit technology, wireless communication, and sensor technology have opened the door for development of miniature medical devices that can be used for enhanced monitoring and treatment of medical conditions. Wireless capsule endoscopy is one of such medical devices that has gained significant attention during the past few years. It is envisaged that future wireless capsule endoscopies replace traditional endoscopy procedures by providing advanced functionalities such as active locomotion, body fluid/tissue sampling, and drug delivery. Development of energy-efficient miniaturized actuation mechanisms is a key step toward achieving this goal. Here, we review some of the actuators that could be integrated into future wireless capsules and discuss the existing challenges.
ERIC Educational Resources Information Center
Simonic, Tomaz; Mlinar, Tomi
2000-01-01
Discusses the planning and provision of mobile communications in Slovenia and suggests areas that will be developed in the future. Topics include the global mobile market; digital mobile networks; evolution from voice to multimedia services; wireless application protocol; the Internet; general packet radio service; and universal mobile…
Modeling and Performance Analysis of 10 Gbps Inter-satellite Optical Wireless Communication Link
NASA Astrophysics Data System (ADS)
Singh, Mehtab
2017-12-01
Free-space optical (FSO) communication has the advantages of two of the most predominant data transmission technologies - optical fiber communication and wireless communication. Most of the technical aspects of FSO are similar to that of optical fiber communication, with major difference in the information signal propagation medium which is free space in case of FSO rather than silica glass in optical fiber communication. One of the most important applications of FSO is inter-satellite optical wireless communication (IsOWC) links which will be deployed in the future in space. The IsOWC links have many advantages over the previously existing microwave satellite communication technologies such as higher bandwidth, lower power consumption, low cost of implementation, light size, and weight. In this paper, modeling and performance analysis of a 10-Gbps inter-satellite communication link with two satellites separated at a distance of 1,200 km has been done using OPTISYSTEM simulation software. Performance has been analyzed on the basis of quality factor, signal to noise ratio (SNR), and total power of the received signal.
Wireless data transfer with mm-waves for future tracking detectors
NASA Astrophysics Data System (ADS)
Pelikan, D.; Bingefors, N.; Brenner, R.; Dancila, D.; Gustafsson, L.
2014-11-01
Wireless data transfer has revolutionized the consumer market for the last decade generating many products equipped with transmitters and receivers for wireless data transfer. Wireless technology opens attractive possibilities for data transfer in future tracking detectors. The reduction of wires and connectors for data links is certainly beneficial both for the material budget and the reliability of the system. An advantage of wireless data transfer is the freedom of routing signals which today is particularly complicated when bringing the data the first 50 cm out of the tracker. With wireless links intelligence can be built into a tracker by introducing communication between tracking layers within a region of interest which would allow the construction of track primitives in real time. The wireless technology used in consumer products is however not suitable for tracker readouts. The low data transfer capacity of current 5 GHz transceivers and the relatively large feature sizes of the components is a disadvantage.Due to the requirement of high data rates in tracking detectors high bandwidth is required. The frequency band around 60 GHz turns out to be a very promising candidate for data transfer in a detector system. The high baseband frequency allows for data transfer in the order of several Gbit/s. Due to the small wavelength in the mm range only small structures are needed for the transmitting and receiving electronics. The 60 GHz frequency band is a strong candidate for future WLAN applications hence components are already starting to be available on the market.Patch antennas produced on flexible Printed Circuit Board substrate that can be used for wireless communication in future trackers are presented in this article. The antennas can be connected to transceivers for data transmission/reception or be connected by wave-guides to structures capable of bringing the 60 GHz signal behind boundaries. Results on simulation and fabrication of these antennas are presented as well as studies on the sensitivity of production tolerances.
Securing Wireless Communications of the Internet of Things from the Physical Layer, An Overview
NASA Astrophysics Data System (ADS)
Zhang, Junqing; Duong, Trung; Woods, Roger; Marshall, Alan
2017-08-01
The security of the Internet of Things (IoT) is receiving considerable interest as the low power constraints and complexity features of many IoT devices are limiting the use of conventional cryptographic techniques. This article provides an overview of recent research efforts on alternative approaches for securing IoT wireless communications at the physical layer, specifically the key topics of key generation and physical layer encryption. These schemes can be implemented and are lightweight, and thus offer practical solutions for providing effective IoT wireless security. Future research to make IoT-based physical layer security more robust and pervasive is also covered.
Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA
2011-02-01
Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.
LiFi: transforming fibre into wireless
NASA Astrophysics Data System (ADS)
Yin, Liang; Islim, Mohamed Sufyan; Haas, Harald
2017-01-01
Light-fidelity (LiFi) uses energy-efficient light-emitting diodes (LEDs) for high-speed wireless communication, and it has a great potential to be integrated with fibre communication for future gigabit networks. However, by making fibre communication wireless, multiuser interference arises. Traditional methods use orthogonal multiple access (OMA) for interference avoidance. In this paper, multiuser interference is exploited with the use of non-orthogonal multiple access (NOMA) relying on successive interference cancellation (SIC). The residual interference due to imperfect SIC in practical scenarios is characterized with a proportional model. Results show that NOMA offers 5 -10 dB gain on the equivalent signal-to-interference-plus-noise ratio (SINR) over OMA. The bit error rate (BER) performance of direct current optical orthogonal frequency division multiplexing (DCO-OFDM) is shown to be significantly improved when SIC is used.
[An integrated system of blood pressure measurement with bluetooth communication].
Wang, Wei; Wang, Jing; Sun, Hongyang; Xu, Zuyang; Chai, Xinyu
2012-07-01
The development of the integrated blood pressure system with bluetooth communication function is introduced. Experimental results show that the system can complete blood pressure measurement and data transmission wireless effectively, which can be used in m-Health in future.
Scientific publishing in non industrialized countries: a pilot wireless internet project for Africa.
Azzi, Angelo
2005-01-01
There is general agreement that the internet is the major means of future scientific communication and education. However not everybody appreciates that the development of electronic communication in industrialized societies is not matched, even to a small extent, in developing countries. Several new technologies offer the potential for developing countries to provide connectivity. Terrestrial wireless and satellite technologies offer many advantages in that they do not require installation of wire-line networks. Satellite facilities can also be installed where communication is needed, even in remote and isolated areas, rather than waiting for terrestrial networks to be extended from the cities.
Information Delivery Systems: The Future Is Here.
ERIC Educational Resources Information Center
O'Malley, Penelope Grenoble
1993-01-01
Looks at developments in information delivery (including new interactive media formats, vastly increased channel capacity for standard cable television, and the development of wireless cable and other distribution technologies) that are revolutionizing the communications industry. Raises questions about the role technical communicators are being…
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Behbahani, Alireza
2012-01-01
Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.
Cammaerts, Marie-Claire; Johansson, Olle
2014-12-01
Society is confronted with an increasing number of applications making use of wireless communication. We also notice an increasing awareness about potentially harmful effects of the related electromagnetic fields on living organisms. At present, it is not realistic to expect that wireless communication will decrease or disappear within the near future. That is why we currently are investigating the mechanisms behind these effects and the effectiveness of possible solutions. In order to be efficient and effective, we designed and validated a fast and easy test on ants - these insects being used as a biological model - for revealing the effect of wireless equipments like mobile phones, smartphones, digital enhanced cordless telephone (DECT) phones, WiFi routers and so on. This test includes quantification of ants' locomotion under natural conditions, then in the vicinity of such wireless equipments. Observations, numerical results and statistical results allow detecting any effect of a radiating source on these living organisms.
Airborne wireless communication systems, airborne communication methods, and communication methods
Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID
2011-12-13
An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.
Recent advances in neural dust: towards a neural interface platform.
Neely, Ryan M; Piech, David K; Santacruz, Samantha R; Maharbiz, Michel M; Carmena, Jose M
2018-06-01
The neural dust platform uses ultrasonic power and communication to enable a scalable, wireless, and batteryless system for interfacing with the nervous system. Ultrasound offers several advantages over alternative wireless approaches, including a safe method for powering and communicating with sub mm-sized devices implanted deep in tissue. Early studies demonstrated that neural dust motes could wirelessly transmit high-fidelity electrophysiological data in vivo, and that theoretically, this system could be miniaturized well below the mm-scale. Future developments are focused on further minimization of the platform, better encapsulation methods as a path towards truly chronic neural interfaces, improved delivery mechanisms, stimulation capabilities, and finally refinements to enable deployment of neural dust in the central nervous system. Copyright © 2017. Published by Elsevier Ltd.
Space Link Extension (SLE) Emulation for High-Throughput Network Communication
NASA Technical Reports Server (NTRS)
Murawski, Robert W.; Tchorowski, Nicole; Golden, Bert
2014-01-01
As the data rate requirements for space communications increases, significant stress is placed not only on the wireless satellite communication links, but also on the ground networks which forward data from end-users to remote ground stations. These wide area network (WAN) connections add delay and jitter to the end-to-end satellite communication link, effects which can have significant impacts on the wireless communication link. It is imperative that any ground communication protocol can react to these effects such that the ground network does not become a bottleneck in the communication path to the satellite. In this paper, we present our SCENIC Emulation Lab testbed which was developed to test the CCSDS SLE protocol implementations proposed for use on future NASA communication networks. Our results show that in the presence of realistic levels of network delay, high-throughput SLE communication links can experience significant data rate throttling. Based on our observations, we present some insight into why this data throttling happens, and trace the probable issue back to non-optimal blocking communication which is sup-ported by the CCSDS SLE API recommended practices. These issues were presented as well to the SLE implementation developers which, based on our reports, developed a new release for SLE which we show fixes the SLE blocking issue and greatly improves the protocol throughput. In this paper, we also discuss future developments for our end-to-end emulation lab and how these improvements can be used to develop and test future space communication technologies.
Chaos-based wireless communication resisting multipath effects.
Yao, Jun-Liang; Li, Chen; Ren, Hai-Peng; Grebogi, Celso
2017-09-01
In additive white Gaussian noise channel, chaos has been shown to be the optimal coherent communication waveform in the sense of using a very simple matched filter to maximize the signal-to-noise ratio. Recently, Lyapunov exponent spectrum of the chaotic signals after being transmitted through a wireless channel has been shown to be unaltered, paving the way for wireless communication using chaos. In wireless communication systems, inter-symbol interference caused by multipath propagation is one of the main obstacles to achieve high bit transmission rate and low bit-error rate (BER). How to resist the multipath effect is a fundamental problem in a chaos-based wireless communication system (CWCS). In this paper, a CWCS is built to transmit chaotic signals generated by a hybrid dynamical system and then to filter the received signals by using the corresponding matched filter to decrease the noise effect and to detect the binary information. We find that the multipath effect can be effectively resisted by regrouping the return map of the received signal and by setting the corresponding threshold based on the available information. We show that the optimal threshold is a function of the channel parameters and of the information symbols. Practically, the channel parameters are time-variant, and the future information symbols are unavailable. In this case, a suboptimal threshold is proposed, and the BER using the suboptimal threshold is derived analytically. Simulation results show that the CWCS achieves a remarkable competitive performance even under inaccurate channel parameters.
Chaos-based wireless communication resisting multipath effects
NASA Astrophysics Data System (ADS)
Yao, Jun-Liang; Li, Chen; Ren, Hai-Peng; Grebogi, Celso
2017-09-01
In additive white Gaussian noise channel, chaos has been shown to be the optimal coherent communication waveform in the sense of using a very simple matched filter to maximize the signal-to-noise ratio. Recently, Lyapunov exponent spectrum of the chaotic signals after being transmitted through a wireless channel has been shown to be unaltered, paving the way for wireless communication using chaos. In wireless communication systems, inter-symbol interference caused by multipath propagation is one of the main obstacles to achieve high bit transmission rate and low bit-error rate (BER). How to resist the multipath effect is a fundamental problem in a chaos-based wireless communication system (CWCS). In this paper, a CWCS is built to transmit chaotic signals generated by a hybrid dynamical system and then to filter the received signals by using the corresponding matched filter to decrease the noise effect and to detect the binary information. We find that the multipath effect can be effectively resisted by regrouping the return map of the received signal and by setting the corresponding threshold based on the available information. We show that the optimal threshold is a function of the channel parameters and of the information symbols. Practically, the channel parameters are time-variant, and the future information symbols are unavailable. In this case, a suboptimal threshold is proposed, and the BER using the suboptimal threshold is derived analytically. Simulation results show that the CWCS achieves a remarkable competitive performance even under inaccurate channel parameters.
Wireless device monitoring systems and monitoring devices, and associated methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W
Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.
Climent, Salvador; Sanchez, Antonio; Capella, Juan Vicente; Meratnia, Nirvana; Serrano, Juan Jose
2014-01-06
This survey aims to provide a comprehensive overview of the current research on underwater wireless sensor networks, focusing on the lower layers of the communication stack, and envisions future trends and challenges. It analyzes the current state-of-the-art on the physical, medium access control and routing layers. It summarizes their security threads and surveys the currently proposed studies. Current envisioned niches for further advances in underwater networks research range from efficient, low-power algorithms and modulations to intelligent, energy-aware routing and medium access control protocols.
Chang, Gee-Kung; Cheng, Lin
2016-03-06
A multi-tier radio access network (RAN) combining the strength of fibre-optic and radio access technologies employing adaptive microwave photonics interfaces and radio-over-fibre (RoF) techniques is envisioned for future heterogeneous wireless communications. All-band radio spectrum from 0.1 to 100 GHz will be used to deliver wireless services with high capacity, high link speed and low latency. The multi-tier RAN will improve the cell-edge performance in an integrated heterogeneous environment enabled by fibre-wireless integration and networking for mobile fronthaul/backhaul, resource sharing and all-layer centralization of multiple standards with different frequency bands and modulation formats. In essence, this is a 'no-more-cells' architecture in which carrier aggregation among multiple frequency bands can be easily achieved with seamless handover between cells. In this way, current and future mobile network standards such as 4G and 5G can coexist with optimized and continuous cell coverage using multi-tier RoF regardless of the underlying network topology or protocol. In terms of users' experience, the future-proof approach achieves the goals of system capacity, link speed, latency and continuous heterogeneous cell coverage while overcoming the bandwidth crunch in next-generation communication networks. © 2016 The Author(s).
Mao, Shitong; Wang, Hao; Zhu, Chunbo; Mao, Zhi-Hong; Sun, Mingui
2017-10-01
Wireless Power Transfer (WPT) and wireless data communication are both important problems of research with various applications, especially in medicine. However, these two problems are usually studied separately. In this work, we present a joint study of both problems. Most medical electronic devices, such as smart implants, must have both a power supply to allow continuous operation and a communication link to pass information. Traditionally, separate wireless channels for power transfer and communication are utilized, which complicate the system structure, increase power consumption and make device miniaturization difficult. A more effective approach is to use a single wireless link with both functions of delivering power and passing information. We present a design of such a wireless link in which power and data travel in opposite directions. In order to aggressively miniaturize the implant and reduce power consumption, we eliminate the traditional multi-bit Analog-to-Digital Converter (ADC), digital memory and data transmission circuits all together. Instead, we use a pulse stream, which is obtained from the original biological signal, by a sigma-delta converter and an edge detector, to alter the load properties of the WPT channel. The resulting WPT signal is synchronized with the load changes therefore requiring no memory elements to record inter-pulse intervals. We take advantage of the high sensitivity of the resonant WPT to the load change, and the system dynamic response is used to transfer each pulse. The transient time of the WPT system is analyzed using the coupling mode theory (CMT). Our experimental results show that the memoryless approach works well for both power delivery and data transmission, providing a new wireless platform for the design of future miniaturized medical implants.
Space Link Extension (SLE) Emulation for High-Throughput Network Communication
NASA Technical Reports Server (NTRS)
Murawski, Robert; Tchorowski, Nicole; Golden, Bert
2014-01-01
As the data rate requirements for space communications increases, signicant stressis placed not only on the wireless satellite communication links, but also on the groundnetworks which forward data from end-users to remote ground stations. These wide areanetwork (WAN) connections add delay and jitter to the end-to-end satellite communicationlink, eects which can have signicant impacts on the wireless communication link. It isimperative that any ground communication protocol can react to these eects such that theground network does not become a bottleneck in the communication path to the satellite.In this paper, we present our SCENIC Emulation Lab testbed which was developed to testthe CCSDS SLE protocol implementations proposed for use on future NASA communica-tion networks. Our results show that in the presence of realistic levels of network delay,high-throughput SLE communication links can experience signicant data rate throttling.Based on our observations, we present some insight into why this data throttling happens,and trace the probable issue back to non-optimal blocking communication which is sup-ported by the CCSDS SLE API recommended practices. These issues were presented aswell to the SLE implementation developers which, based on our reports, developed a newrelease for SLE which we show xes the SLE blocking issue and greatly improves the pro-tocol throughput. In this paper, we also discuss future developments for our end-to-endemulation lab and how these improvements can be used to develop and test future spacecommunication technologies.
Vehicle Modeling for Future Generation Transportation Simulation
DOT National Transportation Integrated Search
2009-05-10
Recent development of inter-vehicular wireless communication technologies have motivated many innovative applications aiming at significantly increasing traffic throughput and improving highway safety. Powerful traffic simulation is an indispensable ...
49 CFR 220.37 - Testing radio and wireless communication equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Testing radio and wireless communication equipment... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.37 Testing radio and wireless communication equipment. (a) Each radio, and all...
49 CFR 220.37 - Testing radio and wireless communication equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Testing radio and wireless communication equipment... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.37 Testing radio and wireless communication equipment. (a) Each radio, and all...
49 CFR 220.37 - Testing radio and wireless communication equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Testing radio and wireless communication equipment... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.37 Testing radio and wireless communication equipment. (a) Each radio, and all...
49 CFR 220.37 - Testing radio and wireless communication equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Testing radio and wireless communication equipment... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.37 Testing radio and wireless communication equipment. (a) Each radio, and all...
49 CFR 220.37 - Testing radio and wireless communication equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Testing radio and wireless communication equipment... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.37 Testing radio and wireless communication equipment. (a) Each radio, and all...
Wireless Telemetry and Command (T and C) Program
NASA Technical Reports Server (NTRS)
Jiang, Hui; Horan, Stephen
2000-01-01
The Wireless Telemetry and Command (T&C) program is to investigate methods of using commercial telecommunications service providers to support command and telemetry services between a remote user and a base station. While the initial development is based on ground networks, the development is being done with an eye towards future space communications needs. Both NASA and the Air Force have indicated a plan to consider the use of commercial telecommunications providers to support their space missions. To do this, there will need to be an understanding of the requirements and limitations of interfacing with the commercial providers. The eventual payoff will be the reduced operations cost and the ability to tap into commercial services being developed by the commercial networks. This should enable easier realization of EP services to the end points, commercial routing of data, and quicker integration of new services into the space mission operations. Therefore, the ultimate goal of this program is not just to provide wireless radio communications for T&C services but to enhance those services through wireless networking and provider enhancements that come with the networks. In the following chapters, the detailed technical procedure will be showed step by step. Chapter 2 will talk about the general idea of simulation as well as the implementation of data acquisition including sensor array data and GPS data. Chapter 3 will talk about how to use LabVEEW and Component Works to do wireless communication simulation and how to distribute the real-time information over the Internet by using Visual Basic and ActiveX controls. Also talk about the test configuration and validation. Chapter 4 will show the test results both from In-Lab test and Networking Test. Chapter 5 will summarize the whole procedure and give the perspective for the future consideration.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... Communications System Server Software, Wireless Handheld Devices and Battery Packs; Notice of Investigation..., wireless handheld devices and battery packs by reason of infringement of certain claims of U.S. Patent Nos... certain wireless communications system server software, wireless handheld devices or battery packs that...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... Wireless Communication Devices, Tablet Computers, Media Players, and Televisions, and Components Thereof... devices, including wireless communication devices, tablet computers, media players, and televisions, and... wireless communication devices, tablet computers, media players, and televisions, and components thereof...
Climent, Salvador; Sanchez, Antonio; Capella, Juan Vicente; Meratnia, Nirvana; Serrano, Juan Jose
2014-01-01
This survey aims to provide a comprehensive overview of the current research on underwater wireless sensor networks, focusing on the lower layers of the communication stack, and envisions future trends and challenges. It analyzes the current state-of-the-art on the physical, medium access control and routing layers. It summarizes their security threads and surveys the currently proposed studies. Current envisioned niches for further advances in underwater networks research range from efficient, low-power algorithms and modulations to intelligent, energy-aware routing and medium access control protocols. PMID:24399155
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... importing wireless communication devices, portable music and data processing devices, and tablet computers... certain electronic devices, including wireless communication devices, portable music and data processing...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-01
..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and... electronic devices, including wireless communication devices, portable music and data processing devices, and...
A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments
Ghamari, Mohammad; Janko, Balazs; Sherratt, R. Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna
2016-01-01
Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments. PMID:27338377
A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments.
Ghamari, Mohammad; Janko, Balazs; Sherratt, R Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna
2016-06-07
Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.
75 FR 14483 - Third Meeting: RTCA Special Committee 223: Airport Surface Wireless Communications
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-25
... 223: Airport Surface Wireless Communications AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 223: Airport Surface Wireless Communications meeting. SUMMARY...: Airport Surface Wireless Communications. DATES: The meeting will be held April 13-14, 2010 from 9 a.m.-5 p...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... Committee 223, Airport Surface Wireless Communications AGENCY: Federal Aviation Administration (FAA), U.S... Wireless Communications. SUMMARY: The FAA is issuing this notice to advise the public of the thirteenth meeting of the RTCA Special Committee 223, Airport Surface Wireless Communications. DATES: The meeting...
ERIC Educational Resources Information Center
Maughan, George R.; Petitto, Karen R.; McLaughlin, Don
2001-01-01
Describes the connectivity features and options of modern campus communication and information system networks, including signal transmission (wire-based and wireless), signal switching, convergence of networks, and network assessment variables, to enable campus leaders to make sound future-oriented decisions. (EV)
Hybrid Communication Architectures for Distributed Smart Grid Applications
Zhang, Jianhua; Hasandka, Adarsh; Wei, Jin; ...
2018-04-09
Wired and wireless communications both play an important role in the blend of communications technologies necessary to enable future smart grid communications. Hybrid networks exploit independent mediums to extend network coverage and improve performance. However, whereas individual technologies have been applied in simulation networks, as far as we know there is only limited attention that has been paid to the development of a suite of hybrid communication simulation models for the communications system design. Hybrid simulation models are needed to capture the mixed communication technologies and IP address mechanisms in one simulation. To close this gap, we have developed amore » suite of hybrid communication system simulation models to validate the critical system design criteria for a distributed solar Photovoltaic (PV) communications system, including a single trip latency of 300 ms, throughput of 9.6 Kbps, and packet loss rate of 1%. In conclusion, the results show that three low-power wireless personal area network (LoWPAN)-based hybrid architectures can satisfy three performance metrics that are critical for distributed energy resource communications.« less
Hybrid Communication Architectures for Distributed Smart Grid Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianhua; Hasandka, Adarsh; Wei, Jin
Wired and wireless communications both play an important role in the blend of communications technologies necessary to enable future smart grid communications. Hybrid networks exploit independent mediums to extend network coverage and improve performance. However, whereas individual technologies have been applied in simulation networks, as far as we know there is only limited attention that has been paid to the development of a suite of hybrid communication simulation models for the communications system design. Hybrid simulation models are needed to capture the mixed communication technologies and IP address mechanisms in one simulation. To close this gap, we have developed amore » suite of hybrid communication system simulation models to validate the critical system design criteria for a distributed solar Photovoltaic (PV) communications system, including a single trip latency of 300 ms, throughput of 9.6 Kbps, and packet loss rate of 1%. In conclusion, the results show that three low-power wireless personal area network (LoWPAN)-based hybrid architectures can satisfy three performance metrics that are critical for distributed energy resource communications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derr, Kurt W.; Richardson, John G.
Monitoring devices and systems comprise a plurality of data channel modules coupled to processing circuitry. Each data channel module of the plurality of data channel modules is configured to capture wireless communications for a selected frequency channel. The processing circuitry is configured to receive captured wireless communications from the plurality of data channel modules and to organize received wireless communications according to at least one parameter. Related methods of monitoring wireless communications are also disclosed.
ERIC Educational Resources Information Center
Bell, Steven J.
1994-01-01
Profiles the major wireless data communications (WDC) systems, provides an overview of how they work, and compares their communication features. Topics addressed include the market for wireless data; applications for WDC; wireless online searching; cellular data communication; packet radio; digital cellular; criteria for evaluating WDC systems;…
What is a missing link among wireless persistent surveillance?
NASA Astrophysics Data System (ADS)
Hsu, Charles; Szu, Harold
2011-06-01
The next generation surveillance system will equip with versatile sensor devices and information focus capable of conducting regular and irregular surveillance and security environments worldwide. The community of the persistent surveillance must invest the limited energy and money effectively into researching enabling technologies such as nanotechnology, wireless networks, and micro-electromechanical systems (MEMS) to develop persistent surveillance applications for the future. Wireless sensor networks can be used by the military for a number of purposes such as monitoring militant activity in remote areas and force protection. Being equipped with appropriate sensors these networks can enable detection of enemy movement, identification of enemy force and analysis of their movement and progress. Among these sensor network technologies, covert communication is one of the challenging tasks in the persistent surveillance because it is highly demanded to provide secured sensor nodes and linkage for fear of deliberate sabotage. Due to the matured VLSI/DSP technologies, affordable COTS of UWB technology with noise-like direct sequence (DS) time-domain pulses is a potential solution to support low probability of intercept and low probability of detection (LPI/LPD) data communication and transmission. This paper will describe a number of technical challenges in wireless persistent surveillance development include covert communication, network control and routing, collaborating signal and information processing, and etc. The paper concludes by presenting Hermitian Wavelets to enhance SNR in support of secured communication.
Tags, wireless communication systems, tag communication methods, and wireless communications methods
Scott,; Jeff W. , Pratt; Richard, M [Richland, WA
2006-09-12
Tags, wireless communication systems, tag communication methods, and wireless communications methods are described. In one aspect, a tag includes a plurality of antennas configured to receive a plurality of first wireless communication signals comprising data from a reader, a plurality of rectifying circuits coupled with. respective individual ones of the antennas and configured to provide rectified signals corresponding to the first wireless communication signals, wherein the rectified signals are combined to produce a composite signal, an adaptive reference circuit configured to vary a reference signal responsive to the composite signal, a comparator coupled with the adaptive reference circuit and the rectifying circuits and configured to compare the composite signal with respect to the reference signal and to output the data responsive to the comparison, and processing circuitry configured to receive the data from the comparator and to process the data.
Yoshihiro, Akiko; Nakata, Norio; Harada, Junta; Tada, Shimpei
2002-01-01
Although local area networks (LANs) are commonplace in hospital-based radiology departments today, wireless LANs are still relatively unknown and untried. A linked wireless reporting system was developed to improve work throughput and efficiency. It allows radiologists, physicians, and technologists to review current radiology reports and images and instantly compare them with reports and images from previous examinations. This reporting system also facilitates creation of teaching files quickly, easily, and accurately. It consists of a Digital Imaging and Communications in Medicine 3.0-based picture archiving and communication system (PACS), a diagnostic report server, and portable laptop computers. The PACS interfaces with magnetic resonance imagers, computed tomographic scanners, and computed radiography equipment. The same kind of functionality is achievable with a wireless LAN as with a wired LAN, with comparable bandwidth but with less cabling infrastructure required. This wireless system is presently incorporated into the operations of the emergency and radiology departments, with future plans calling for applications in operating rooms, outpatient departments, all hospital wards, and intensive care units. No major problems have been encountered with the system, which is in constant use and appears to be quite successful. Copyright RSNA, 2002
Wide modulation bandwidth terahertz detection in 130 nm CMOS technology
NASA Astrophysics Data System (ADS)
Nahar, Shamsun; Shafee, Marwah; Blin, Stéphane; Pénarier, Annick; Nouvel, Philippe; Coquillat, Dominique; Safwa, Amr M. E.; Knap, Wojciech; Hella, Mona M.
2016-11-01
Design, manufacturing and measurements results for silicon plasma wave transistors based wireless communication wideband receivers operating at 300 GHz carrier frequency are presented. We show the possibility of Si-CMOS based integrated circuits, in which by: (i) specific physics based plasma wave transistor design allowing impedance matching to the antenna and the amplifier, (ii) engineering the shape of the patch antenna through a stacked resonator approach and (iii) applying bandwidth enhancement strategies to the design of integrated broadband amplifier, we achieve an integrated circuit of the 300 GHz carrier frequency receiver for wireless wideband operation up to/over 10 GHz. This is, to the best of our knowledge, the first demonstration of low cost 130 nm Si-CMOS technology, plasma wave transistors based fast/wideband integrated receiver operating at 300 GHz atmospheric window. These results pave the way towards future large scale (cost effective) silicon technology based terahertz wireless communication receivers.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-25
... Docket No. 90-357; RM- 8610; FCC 12-130] Operation of Wireless Communications Services in the 2.3 GHz... Amendment of part 27 of its rules to Govern the Operation of Wireless Communications Services in the 2.3 GHz... FURTHER INFORMATION CONTACT: Linda Chang, Federal Communications Commission, Wireless Telecommunications...
Kiourti, Asimina; Psathas, Konstantinos A; Nikita, Konstantina S
2014-01-01
Wireless medical telemetry permits the measurement of physiological signals at a distance through wireless technologies. One of the latest applications is in the field of implantable and ingestible medical devices (IIMDs) with integrated antennas for wireless radiofrequency (RF) communication (telemetry) with exterior monitoring/control equipment. Implantable medical devices (MDs) perform an expanding variety of diagnostic and therapeutic functions, while ingestible MDs receive significant attention in gastrointestinal endoscopy. Design of such wireless IIMD telemetry systems is highly intriguing and deals with issues related to: operation frequency selection, electronics and powering, antenna design and performance, and modeling of the wireless channel. In this paper, we attempt to comparatively review the current status and challenges of IIMDs with wireless telemetry functionalities. Full solutions of commercial IIMDs are also recorded. The objective is to provide a comprehensive reference for scientists and developers in the field, while indicating directions for future research. © 2013 Wiley Periodicals, Inc.
75 FR 54421 - Sixth Meeting: RTCA Special Committee 223: Airport Surface Wireless Communications
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-07
... 223: Airport Surface Wireless Communications AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 223: Airport Surface Wireless... Committee 223: Airport Surface Wireless Communications. DATES: The meeting will be held September 28-30...
76 FR 6179 - Eighth Meeting: RTCA Special Committee 223: Airport Surface Wireless Communications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-03
... Committee 223: Airport Surface Wireless Communications AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 223: Airport Surface Wireless... Committee 223: Airport Surface Wireless Communications. DATES: The meeting will be held February 22-23, 2011...
75 FR 66423 - Seventh Meeting: RTCA Special Committee 223: Airport Surface Wireless Communications
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-28
... Committee 223: Airport Surface Wireless Communications AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 223: Airport Surface Wireless... Committee 223: Airport Surface Wireless Communications. DATES: The meeting will be held November 16-17, 2010...
78 FR 33145 - Meeting: RTCA Special Committee 223, Airport Surface Wireless Communications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-03
..., Airport Surface Wireless Communications AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Meeting Notice of RTCA Special Committee 223, Airport Surface Wireless... Committee 223, Airport Surface Wireless Communications. DATES: The meeting will be held June 26-28, 2013...
Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas.
Yang, Yuanqing; Li, Qiang; Qiu, Min
2016-01-19
Owing to their high capacity and flexibility, broadband wireless communications have been widely employed in radio and microwave regimes, playing indispensable roles in our daily life. Their optical analogs, however, have not been demonstrated at the nanoscale. In this paper, by exploiting plasmonic nanoantennas, we demonstrate the complete design of broadband wireless links and networks in the realm of nanophotonics. With a 100-fold enhancement in power transfer superior to previous designs as well as an ultrawide bandwidth that covers the entire telecommunication wavelength range, such broadband nanolinks and networks are expected to pave the way for future optical integrated nanocircuits.
Nanotechnology enabled sensors and wireless sensing networks
NASA Astrophysics Data System (ADS)
Tsui, Ray; Zhang, Ruth; Mastroianni, Sal; Díaz Aguilar, Alvaro; Forzani, Erica; Tao, Nongjian
2009-05-01
The capabilities of future mobile communication devices will extend beyond merely transmitting and receiving voice, data, and video information. For example, first responders such as firefighters and emergency workers will wear environmentally- aware devices that will warn them of combustible and toxic gases as well as communicate that information wirelessly to the Command and Control Center. Similar sensor systems could alert warfighters of the presence of explosives or biological weapons. These systems can function either in the form of an individual stand-alone detector or part of a wireless sensor network. Novel sensors whose functionality is enhanced via nanotechnology will play a key role in realizing such systems. Such sensors are important because of their high sensitivity, low power consumption, and small size. This talk will provide an overview of some of the advances made in sensors through the use of nanotechnology, including those that make use of carbon nanotubes and nanoparticles. Their applicability in mobile sensing and wireless sensor networks for use in national security and public safety will be described. Other technical challenges associated with the development of such systems and networks will also be discussed.
Antenna Design Considerations for the Advanced Extravehicular Mobility Unit
NASA Technical Reports Server (NTRS)
Bakula, Casey J.; Theofylaktos, Onoufrios
2015-01-01
NASA is designing an Advanced Extravehicular Mobility Unit (AEMU)to support future manned missions beyond low-Earth orbit (LEO). A key component of the AEMU is the communications assembly that allows for the wireless transfer of voice, video, and suit telemetry. The Extravehicular Mobility Unit (EMU) currently used on the International Space Station (ISS) contains a radio system with a single omni-directional resonant cavity antenna operating slightly above 400 MHz capable of transmitting and receiving data at a rate of about 125 kbps. Recent wireless communications architectures are calling for the inclusion of commercial wireless standards such as 802.11 that operate in higher frequency bands at much higher data rates. The current AEMU radio design supports a 400 MHz band for low-rate mission-critical data and a high-rate band based on commercial wireless local area network (WLAN) technology to support video, communication with non-extravehicular activity (EVA) assets such as wireless sensors and robotic assistants, and a redundant path for mission-critical EVA data. This paper recommends the replacement of the existing EMU antenna with a new antenna that maintains the performance characteristics of the current antenna but with lower weight and volume footprints. NASA has funded several firms to develop such an antenna over the past few years, and the most promising designs are variations on the basic patch antenna. This antenna technology at UHF is considered by the authors to be mature and ready for infusion into NASA AEMU technology development programs.
Wireless infrared communications for space and terrestrial applications
NASA Technical Reports Server (NTRS)
Crimmins, James W.
1993-01-01
Voice and data communications via wireless (and fiberless) optical means has been commonplace for many years. However, continuous advances in optoelectronics and microelectronics have resulted in significant advances in wireless optical communications over the last decade. Wilton has specialized in diffuse infrared voice and data communications since 1979. In 1986, NASA Johnson Space Center invited Wilton to apply its wireless telecommunications and factory floor technology to astronaut voice communications aboard the shuttle. In September, 1988 a special infrared voice communications system flew aboard a 'Discovery' Shuttle mission as a flight experiment. Since then the technology has been further developed, resulting in a general purpose of 2Mbs wireless voice/data LAN which has been tested for a variety of applications including use aboard Spacelab. Funds for Wilton's wireless IR development were provided in part by NASA's Technology Utilization Office and by the NASA Small Business Innovative Research Program. As a consequence, Wilton's commercial product capability has been significantly enhanced to include diffuse infrared wireless LAN's as well as wireless infrared telecommunication systems for voice and data.
Wireless Multimedia Sensor Networks: Current Trends and Future Directions
Almalkawi, Islam T.; Zapata, Manel Guerrero; Al-Karaki, Jamal N.; Morillo-Pozo, Julian
2010-01-01
Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. In this paper, we outline the design challenges of WMSNs, give a comprehensive discussion of the proposed architectures, algorithms and protocols for the different layers of the communication protocol stack for WMSNs, and evaluate the existing WMSN hardware and testbeds. The paper will give the reader a clear view of the state of the art at all aspects of this research area, and shed the light on its main current challenges and future trends. We also hope it will foster discussions and new research ideas among its researchers. PMID:22163571
Wireless Network Communications Overview for Space Mission Operations
NASA Technical Reports Server (NTRS)
Fink, Patrick W.
2009-01-01
The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information.
Communication Optimizations for a Wireless Distributed Prognostic Framework
NASA Technical Reports Server (NTRS)
Saha, Sankalita; Saha, Bhaskar; Goebel, Kai
2009-01-01
Distributed architecture for prognostics is an essential step in prognostic research in order to enable feasible real-time system health management. Communication overhead is an important design problem for such systems. In this paper we focus on communication issues faced in the distributed implementation of an important class of algorithms for prognostics - particle filters. In spite of being computation and memory intensive, particle filters lend well to distributed implementation except for one significant step - resampling. We propose new resampling scheme called parameterized resampling that attempts to reduce communication between collaborating nodes in a distributed wireless sensor network. Analysis and comparison with relevant resampling schemes is also presented. A battery health management system is used as a target application. A new resampling scheme for distributed implementation of particle filters has been discussed in this paper. Analysis and comparison of this new scheme with existing resampling schemes in the context for minimizing communication overhead have also been discussed. Our proposed new resampling scheme performs significantly better compared to other schemes by attempting to reduce both the communication message length as well as number total communication messages exchanged while not compromising prediction accuracy and precision. Future work will explore the effects of the new resampling scheme in the overall computational performance of the whole system as well as full implementation of the new schemes on the Sun SPOT devices. Exploring different network architectures for efficient communication is an importance future research direction as well.
Wireless communication devices and movement monitoring methods
Skorpik, James R.
2006-10-31
Wireless communication devices and movement monitoring methods are described. In one aspect, a wireless communication device includes a housing, wireless communication circuitry coupled with the housing and configured to communicate wireless signals, movement circuitry coupled with the housing and configured to provide movement data regarding movement sensed by the movement circuitry, and event processing circuitry coupled with the housing and the movement circuitry, wherein the event processing circuitry is configured to process the movement data, and wherein at least a portion of the event processing circuitry is configured to operate in a first operational state having a different power consumption rate compared with a second operational state.
Tradeoff Analysis for Combat Service Support Wireless Communications Alternatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnette, John R.; Thibodeau, Christopher C.; Greitzer, Frank L.
2002-02-28
As the Army moves toward more mobile and agile forces and continued sustainment of numerous high-cost legacy logistics management systems, the requirement for wireless connectivity and a wireless network to supporting organizations has become ever more critical. There are currently several Army communications initiatives underway to resolve this wireless connectivity issue. However, to fully appreciate and understand the value of these initiatives, a Tradeoff Analysis is needed. The present study seeks to identify and assess solutions. The analysis identified issues that impede Interim Brigade Combat Team (IBCT) communication system integration and outlined core requirements for sharing of logistics data betweenmore » the field and Army battle command systems. Then, the analysis examined wireless communication alternatives as possible solutions for IBCT logistics communications problems. The current baseline system was compared with possible alternatives involving tactical radio systems, wireless/near term digital radio, cellular satellite, and third-generation (3G) wireless technologies. Cellular satellite and 3G wireless technologies offer clear advantages and should be considered for later IBCTs.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-02
... INTERNATIONAL TRADE COMMISSION [DN 2926] Certain Wireless Communications Equipment and Articles... complaint entitled Certain Wireless Communications Equipment and Articles Therein, DN 2926; the Commission... communications equipment and articles therein. The complaint names as respondents Ericsson Inc. of TX and...
High Temperature Wireless Communication And Electronics For Harsh Environment Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y
2007-01-01
In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable operation in harsh 500C environments. This has included world record operation of SiC-based transistor technology (including packaging) that has demonstrated continuous electrical operation at 500C for over 2000 hours. Based on SiC electronics, development of high temperature wireless communication has been on-going. This work has concentrated on maturing the SiC electronic devices for communication purposes as well as the passive components such as resistors and capacitors needed to enable a high temperature wireless system. The objective is to eliminate wires associated with high temperature sensors which add weight to a vehicle and can be a cause of sensor unreliability. This paper discusses the development of SiC based electronics and wireless communications technology for harsh environment applications such as propulsion health management systems and in Venus missions. A brief overview of the future directions in sensor technology is given including maturing of near-room temperature "Lick and Stick" leak sensor technology for possible implementation in the Crew Launch Vehicle program. Then an overview of high temperature electronics and the development of high temperature communication systems is presented. The maturity of related technologies such as sensor and packaging will also be discussed. It is concluded that a significant component of efforts to improve the intelligence of harsh environment operating systems is the development and implementation of high temperature wireless technology
Next-generation optical wireless communications for data centers
NASA Astrophysics Data System (ADS)
Arnon, Shlomi
2015-01-01
Data centers collect and process information with a capacity that has been increasing from year to year at an almost exponential pace. Traditional fiber/cable data center network interconnections suffer from bandwidth overload, as well as flexibility and scalability issues. Therefore, a technology-shift from the fiber and cable to wireless has already been initiated in order to meet the required data-rate, flexibility and scalability demands for next-generation data center network interconnects. In addition, the shift to wireless reduces the volume allocated to the cabling/fiber and increases the cooling efficiency. Optical wireless communication (OWC), or free space optics (FSO), is one of the most effective wireless technologies that could be used in future data centers and could provide ultra-high capacity, very high cyber security and minimum latency, due to the low index of refraction of air in comparison to fiber technologies. In this paper we review the main concepts and configurations for next generation OWC for data centers. Two families of technologies are reviewed: the first technology regards interconnects between rack units in the same rack and the second technology regards the data center network that connects the server top of rack (TOR) to the switch. A comparison between different network technologies is presented.
Global ring satellite communications system for future broadband network
NASA Astrophysics Data System (ADS)
Iida, Takashi; Suzuki, Yoshiaki; Arimoto, Yoshinori; Akaishi, Akira
2005-04-01
The purpose of this paper is to examine a cost model of a global ring satellite communications system as a 2G-satellite (second generation Internet satellite) for the future Internet satellite, whose capacity is around 120 Gbps. The authors proposed the future needs of research and development of communications satellite for the next 30 years and also proposed the approach of three generations for the future Internet satellites. First, the paper reviews and updates the original proposal for the future needs of communications satellite, considering the recent development of the quantum communication technology. It also examines the communications satellite applicability for bridging the digital divide in the Asia-Oceania as an example. The paper clarifies this possibility of communications satellite by showing various relationships among Internet penetration, land area, population growth, etc. Second, the cost of the global ring satellite is examined. The user terminal is considered as a combination of an earth terminal and wireless local area network for a user community. This paper shows that the global ring satellite has a possibility of a good cost-competitiveness to the terrestrial system because of the global communications system can be configured only by satellite system.
Microsystems Technology Symposium: Enabling Future Capability (BRIEFING CHARTS)
2007-03-07
Microsystems I t r t i r t Wireless and Networked Systems Embedded Computation Signal Processing Communications 4 Microsystems Technology Office: Enabling...Regency Ballroom) (Regency Ballroom) 1330 1400 Communciation Actuation 1430 (Imperial Ballroom) (Imperial Ballroom) 1500 1530 1600 1630 1700 1730 1800
History of Antenna Technology for Mobile Communications in Korea
NASA Astrophysics Data System (ADS)
Min, Kyeong-Sik; Park, Chul-Keun; Kang, Suk-Youb
In this paper, we discuss the development of wireless and mobile communications in Korea, current technological trends, and the future outlook on technological developments. Since the introduction of the telegraph and the telephone in September 1885, Korea's wired and wireless communications industry has consistently developed for over 100 years. Since 1984, upon the provision of the mobile telecommunications service, the industry has seen drastic qualitative and quantitative growth in terms of both technical and economic aspects, which played a crucial role in the rapid growth of the digital industry in Korea. After the era of the analog cellular service based on the Advanced Mobile Phone System (AMPS), a precursor to the modern mobile service, Korea became the world's first country to commercialize Code Division Multiple Access (CDMA) in 1996 and succeeded in commercializing CDMA 2000 lx (IMT 2000) in 2001. With further developments in the mobile communication technology, the technology for antennas also saw drastic advancements. As the mobile antennas moved from the second to the third generation, they grew from external models to very small internal models. At the same time, they evolved into highly functional and high performance multiple band and wide band antennas. Furthermore, Korea was the first country to commercialize and offer the Wireless Broadband Internet (WiBro) service in 2006. By leading the wireless communications standardization and exerting remarkable efforts in research and development, Korea is consolidating its status as an Information Technology (IT) leader in the global market. The antenna's inherent importance will be further emphasized in the near future as it satisfies the performance and structural needs of portable terminals necessary for realizing the projected establishment of the ubiquitous world. It is thought that antenna technologies will not be limited to simple concepts as previously experienced but will utilize various kinds of materials that build the terminals' structure and framework. Moreover, studies will be performed with an emphasis on multiple band, multiple directivity, and ultra-wide band. Accordingly, antenna technologies to which new concepts are applied, such as SMART antenna and MIMO antenna technologies and meta-materials, will surely be effective alternatives.
Processing module operating methods, processing modules, and communications systems
McCown, Steven Harvey; Derr, Kurt W.; Moore, Troy
2014-09-09
A processing module operating method includes using a processing module physically connected to a wireless communications device, requesting that the wireless communications device retrieve encrypted code from a web site and receiving the encrypted code from the wireless communications device. The wireless communications device is unable to decrypt the encrypted code. The method further includes using the processing module, decrypting the encrypted code, executing the decrypted code, and preventing the wireless communications device from accessing the decrypted code. Another processing module operating method includes using a processing module physically connected to a host device, executing an application within the processing module, allowing the application to exchange user interaction data communicated using a user interface of the host device with the host device, and allowing the application to use the host device as a communications device for exchanging information with a remote device distinct from the host device.
Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations.
Khalifa, Tarek; Abdrabou, Atef; Shaban, Khaled; Gaouda, A M
2018-05-11
Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G) to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas) over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs) in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids.
Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations
Khalifa, Tarek; Abdrabou, Atef; Gaouda, A. M.
2018-01-01
Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G) to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas) over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs) in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids. PMID:29751633
Flexible network wireless transceiver and flexible network telemetry transceiver
Brown, Kenneth D.
2008-08-05
A transceiver for facilitating two-way wireless communication between a baseband application and other nodes in a wireless network, wherein the transceiver provides baseband communication networking and necessary configuration and control functions along with transmitter, receiver, and antenna functions to enable the wireless communication. More specifically, the transceiver provides a long-range wireless duplex communication node or channel between the baseband application, which is associated with a mobile or fixed space, air, water, or ground vehicle or other platform, and other nodes in the wireless network or grid. The transceiver broadly comprises a communication processor; a flexible telemetry transceiver including a receiver and a transmitter; a power conversion and regulation mechanism; a diplexer; and a phased array antenna system, wherein these various components and certain subcomponents thereof may be separately enclosed and distributable relative to the other components and subcomponents.
An investigation of the safety implications of wireless communications in vehicles
DOT National Transportation Integrated Search
1997-11-01
The extensive growth in the wireless communications industry over the past ten years has been accompanied by growing concern for the potential hazards of drivers using wireless communication devices from moving vehicles. Given the National Highway Tr...
Bluetooth Communication for Battery Powered Medical Devices
NASA Astrophysics Data System (ADS)
Babušiak, Branko; Borik, Štefan
2016-01-01
wireless communication eliminates obtrusive cables associated with wearable sensors and considerably increases patient comfort during measurement and collection of medical data. Wireless communication is very popular in recent years and plays a significant role in telemedicine and homecare applications. Bluetooth technology is one of the most commonly used wireless communication types in medicine. This paper describes the design of a universal wireless communication device with excellent price/performance ratio. The said device is based on the low-cost RN4020 Bluetooth module with Microchip Low-energy Data Profile (MLDP) and due to low-power consumption is especially suitable for the transmission of biological signals (ECG, EMG, PPG, etc.) from wearable medical/personal health devices. A unique USB dongle adaptor was developed for wireless communication via UART interface and power consumption was evaluated under various conditions.
Infrared Communications for Small Spacecraft: From a Wireless Bus to Cluster Concepts
NASA Technical Reports Server (NTRS)
Webb, Suzanne C.; Schneider, Wolfger; Darrin, M. Ann G.; Boone, Bradley G.; Luers, Philip J.; Day, John H. (Technical Monitor)
2001-01-01
Nanosatellites operating singly or in clusters are anticipated for future space science missions. To implement this new communications paradigm, we are approaching cluster communications by first developing an infrared (IR) intra-craft wireless bus capability, following initially the MIL-STD-1553B protocol. Benefits of an IR wireless bus are low mass, size, power, and cost, simplicity of implementation, ease of use, minimum EMI, and efficient and reliable data transfer. Our goals are to maximize the reliable link margin in order to afford greater flexibility in receiver placement, which will ease technology insertion. We have developed a concept demonstration using a high-speed visible-band silicon PIN photodiode and a high-efficiency visible LED operating at a data rate up to 4 Mb/sec. In designing an internal IR wireless bus, we have characterized various candidate materials, emitters, and geometries, assuming a single reflection. Thus, we have measured the bidirectional reflectance distribution function (BRDF) for five different materials characteristic of typical spacecraft structures, which range from nearly Lambertian to highly specular. We have fit our data to empirical BRDF functions and modeled the detected irradiance anywhere in the plane of incidence for a divergent (LED) emitter. We have also determined the angular limits on the link geometry to remain within the required bit error rate by determining the received signal-to-noise ratio (SNR) for minimum values of irradiance received at the detector.
Reduced cost alternatives to premise wiring using ATM and microcellular technologies
NASA Technical Reports Server (NTRS)
Gejji, Raghvendra R.
1993-01-01
The cost of premises wiring keeps increasing due to personnel moves, new equipment, capacity upgrades etc. It would be desirable to have a wireless interface from the workstations to the fixed network, so as to minimize the wiring changes needed. New technologies such as microcellular personal communication systems are promising to bring down the cost of wireless communication. Another promising technology is Code Division Multiple Access (CDMA), which could dramatically increase the bandwidth available for wireless connections. In addition, Asynchronous Transfer Mode (ATM) technology is emerging as a technique for integrated management of voice, data, and video traffic on a single network. The focus of this investigation will be to assess the future utility of these new technologies for reducing the premise wiring cost at KSC. One of the issues to be studied is the cost comparison of 'old' versus 'new,' especially as time and technology progress. An additional issue for closer study is a feasible time-line for progress in technological capability.
Xie, Kejun; Zhang, Shaomin; Dong, Shurong; Li, Shijian; Yu, Chaonan; Xu, Kedi; Chen, Wanke; Guo, Wei; Luo, Jikui; Wu, Zhaohui
2017-08-10
In this paper, we present a portable wireless electrocorticography (ECoG) system. It uses a high resolution 32-channel flexible ECoG electrodes array to collect electrical signals of brain activities and to stimulate the lesions. Electronic circuits are designed for signal acquisition, processing and transmission using Bluetooth Low Energy 4 (LTE4) for wireless communication with cell phone. In-vivo experiments on a rat show that the flexible ECoG system can accurately record electrical signals of brain activities and transmit them to cell phone with a maximal sampling rate of 30 ksampling/s per channel. It demonstrates that the epilepsy lesions can be detected, located and treated through the ECoG system. The wireless ECoG system has low energy consumption and high brain spatial resolution, thus has great prospects for future application.
DAWN: Dynamic Ad-hoc Wireless Network
2016-06-19
DAWN: Dynamic Ad-hoc Wireless Network The DAWN (Dynamic Ad-hoc Wireless Networks) project is developing a general theory of complex and dynamic... wireless communication networks. To accomplish this, DAWN adopts a very different approach than those followed in the past and summarized above. DAWN... wireless communication networks. The members of DAWN investigated difference aspects of wireless mobile ad hoc networks (MANET). The views, opinions and/or
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-19
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...
A Review of Assistive Listening Device and Digital Wireless Technology for Hearing Instruments
Kim, Chun Hyeok
2014-01-01
Assistive listening devices (ALDs) refer to various types of amplification equipment designed to improve the communication of individuals with hard of hearing to enhance the accessibility to speech signal when individual hearing instruments are not sufficient. There are many types of ALDs to overcome a triangle of speech to noise ratio (SNR) problems, noise, distance, and reverberation. ALDs vary in their internal electronic mechanisms ranging from simple hard-wire microphone-amplifier units to more sophisticated broadcasting systems. They usually use microphones to capture an audio source and broadcast it wirelessly over a frequency modulation (FM), infra-red, induction loop, or other transmission techniques. The seven types of ALDs are introduced including hardwire devices, FM sound system, infra-red sound system, induction loop system, telephone listening devices, television, and alert/alarm system. Further development of digital wireless technology in hearing instruments will make possible direct communication with ALDs without any accessories in the near future. There are two technology solutions for digital wireless hearing instruments improving SNR and convenience. One is near-field magnetic induction combined with Bluetooth radio frequency (RF) transmission or proprietary RF transmission and the other is proprietary RF transmission alone. Recently launched digital wireless hearing aid applying this new technology can communicate from the hearing instrument to personal computer, phones, Wi-Fi, alert systems, and ALDs via iPhone, iPad, and iPod. However, it comes with its own iOS application offering a range of features but there is no option for Android users as of this moment. PMID:25566400
A review of assistive listening device and digital wireless technology for hearing instruments.
Kim, Jin Sook; Kim, Chun Hyeok
2014-12-01
Assistive listening devices (ALDs) refer to various types of amplification equipment designed to improve the communication of individuals with hard of hearing to enhance the accessibility to speech signal when individual hearing instruments are not sufficient. There are many types of ALDs to overcome a triangle of speech to noise ratio (SNR) problems, noise, distance, and reverberation. ALDs vary in their internal electronic mechanisms ranging from simple hard-wire microphone-amplifier units to more sophisticated broadcasting systems. They usually use microphones to capture an audio source and broadcast it wirelessly over a frequency modulation (FM), infra-red, induction loop, or other transmission techniques. The seven types of ALDs are introduced including hardwire devices, FM sound system, infra-red sound system, induction loop system, telephone listening devices, television, and alert/alarm system. Further development of digital wireless technology in hearing instruments will make possible direct communication with ALDs without any accessories in the near future. There are two technology solutions for digital wireless hearing instruments improving SNR and convenience. One is near-field magnetic induction combined with Bluetooth radio frequency (RF) transmission or proprietary RF transmission and the other is proprietary RF transmission alone. Recently launched digital wireless hearing aid applying this new technology can communicate from the hearing instrument to personal computer, phones, Wi-Fi, alert systems, and ALDs via iPhone, iPad, and iPod. However, it comes with its own iOS application offering a range of features but there is no option for Android users as of this moment.
DOT National Transportation Integrated Search
1999-03-01
The Mobile Surveillance and Wireless Communication Systems Field Operational Test (FOT) evaluated the performance of wireless traffic detection and communications systems in areas where permanent detectors, electrical power, and landline communicatio...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-26
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Commission Decision... importation of certain wireless communication devices, portable music and data processing devices, computers...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Commission Decision... importation of certain wireless communication devices, portable music and data processing devices, computers...
Wireless Communications in Smart Grid
NASA Astrophysics Data System (ADS)
Bojkovic, Zoran; Bakmaz, Bojan
Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.
NASA Astrophysics Data System (ADS)
Xin, Qin; Yao, Xiaolan; Engelstad, Paal E.
2010-09-01
Wireless Mesh Networking is an emerging communication paradigm to enable resilient, cost-efficient and reliable services for the future-generation wireless networks. We study here the minimum-latency communication primitive of gossiping (all-to-all communication) in multi-hop ad-hoc Wireless Mesh Networks (WMNs). Each mesh node in the WMN is initially given a message and the objective is to design a minimum-latency schedule such that each mesh node distributes its message to all other mesh nodes. Minimum-latency gossiping problem is well known to be NP-hard even for the scenario in which the topology of the WMN is known to all mesh nodes in advance. In this paper, we propose a new latency-efficient approximation scheme that can accomplish gossiping task in polynomial time units in any ad-hoc WMN under consideration of Large Interference Range (LIR), e.g., the interference range is much larger than the transmission range. To the best of our knowledge, it is first time to investigate such a scenario in ad-hoc WMNs under LIR, our algorithm allows the labels (e.g., identifiers) of the mesh nodes to be polynomially large in terms of the size of the WMN, which is the first time that the scenario of large labels has been considered in ad-hoc WMNs under LIR. Furthermore, our gossiping scheme can be considered as a framework which can be easily implied to the scenario under consideration of mobility-related issues since we assume that the mesh nodes have no knowledge on the network topology even for its neighboring mesh nodes.
... scientific issues related to RF exposure from wireless communications technology from an international perspective. Specific topics addressed have included: health effects of emerging wireless technologies recent biological ... - Wireless FAQs Federal Communications Commission - Radiofrequency Safety ...
A Wireless Communications Systems Laboratory Course
ERIC Educational Resources Information Center
Guzelgoz, Sabih; Arslan, Huseyin
2010-01-01
A novel wireless communications systems laboratory course is introduced. The course teaches students how to design, test, and simulate wireless systems using modern instrumentation and computer-aided design (CAD) software. One of the objectives of the course is to help students understand the theoretical concepts behind wireless communication…
47 CFR 2.1091 - Radiofrequency radiation exposure evaluation: mobile devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... transmission of a signal. In general, maximum average power levels must be used to determine compliance. (3) If... workers that can be easily re-located, such as wireless devices associated with a personal computer, are... Satellite Communications Services, the General Wireless Communications Service, the Wireless Communications...
Terahertz wireless communications based on photonics technologies.
Nagatsuma, Tadao; Horiguchi, Shogo; Minamikata, Yusuke; Yoshimizu, Yasuyuki; Hisatake, Shintaro; Kuwano, Shigeru; Yoshimoto, Naoto; Terada, Jun; Takahashi, Hiroyuki
2013-10-07
There has been an increasing interest in the application of terahertz (THz) waves to broadband wireless communications. In particular, use of frequencies above 275 GHz is one of the strong concerns among radio scientists and engineers, because these frequency bands have not yet been allocated at specific active services, and there is a possibility to employ extremely large bandwidths for ultra-broadband wireless communications. Introduction of photonics technologies for signal generation, modulation and detection is effective not only to enhance the bandwidth and/or the data rate, but also to combine fiber-optic (wired) and wireless networks. This paper reviews recent progress in THz wireless communications using telecom-based photonics technologies towards 100 Gbit/s.
Performance Analysis of IEEE 802.15.3 MAC Protocol with Different ACK Polices
NASA Astrophysics Data System (ADS)
Mehta, S.; Kwak, K. S.
The wireless personal area network (WPAN) is an emerging wireless technology for future short range indoor and outdoor communication applications. The IEEE 802.15.3 medium access control (MAC) is proposed, specially, for short range high data rates applications, to coordinate the access to the wireless medium among the competing devices. This paper uses analytical model to study the performance analysis of WPAN (IEEE 802.15.3) MAC in terms of throughput, efficient bandwidth utilization, and delay with various acknowledgment schemes under different parameters. Also, some important observations are obtained, which can be very useful to the protocol architectures. Finally, we come up with some important research issues to further investigate the possible improvements in the WPAN MAC.
Mobile wireless network for the urban environment
NASA Astrophysics Data System (ADS)
Budulas, Peter; Luu, Brian; Gopaul, Richard
2005-05-01
As the Army transforms into the Future Force, particular attention must be paid to operations in Complex and Urban Terrain. Our adversaries increasingly draw us into operations in the urban environment and one can presume that this trend will continue in future battles. In order to ensure that the United States Army maintains battlefield dominance, the Army Research Laboratory (ARL) is developing technology to equip our soldiers for the urban operations of the future. Sophisticated soldier borne systems will extend sensing to the individual soldier, and correspondingly, allow the soldier to establish an accurate picture of their surrounding environment utilizing information from local and remote assets. Robotic platforms will be an integral part of the future combat team. These platforms will augment the team with remote sensing modalities, task execution capabilities, and enhanced communication systems. To effectively utilize the products provided by each of these systems, collected data must be exchanged in real time to all affected entities. Therefore, the Army Research Laboratory is also developing the technology that will be required to support high bandwidth mobile communication in urban environments. This technology incorporates robotic systems that will allow connectivity in areas unreachable by traditional systems. This paper will address some of the issues of providing wireless connectivity in complex and urban terrain. It will further discuss approaches developed by the Army Research Laboratory to integrate communications capabilities into soldier and robotic systems and provide seamless connectivity between the elements of a combat team, and higher echelons.
Wireless microphone communication system telephonics P/N 484D000-1
NASA Technical Reports Server (NTRS)
1980-01-01
The wireless microphone is a lightweight, portable, wireless voice communications device for use by the crew of the space shuttle orbiter. The wireless microphone allows the crew to have normal hands-free voice communication while they are performing various mission activities. The unit is designed to transmit at 455 or 500 kilohertz and employs narrow band FM modulation. Two orthogonally placed antennas are used to insure good reception at the receiver.
Buttles, John W [Idaho Falls, ID
2011-12-20
Wireless communication devices include a software-defined radio coupled to processing circuitry. The processing circuitry is configured to execute computer programming code. Storage media is coupled to the processing circuitry and includes computer programming code configured to cause the processing circuitry to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.
Buttles, John W
2013-04-23
Wireless communication devices include a software-defined radio coupled to processing circuitry. The system controller is configured to execute computer programming code. Storage media is coupled to the system controller and includes computer programming code configured to cause the system controller to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-18
... FEDERAL COMMUNICATIONS COMMISSION [WT Docket No. 11-35; DA 11-613] Wireless Telecommunications... Clarify the Scope of Preemption of Wireless Entry Regulation AGENCY: Federal Communications Commission. ACTION: Notice; extension of filing and reply comment period. SUMMARY: In this document, the Wireless...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Collocation of Wireless Antennas B Appendix B to Part 1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... the Collocation of Wireless Antennas Nationwide Programmatic Agreement for the Collocation of Wireless Antennas Executed by the Federal Communications Commission, the National Conference of State Historic...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Collocation of Wireless Antennas B Appendix B to Part 1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... the Collocation of Wireless Antennas Nationwide Programmatic Agreement for the Collocation of Wireless Antennas Executed by the Federal Communications Commission, the National Conference of State Historic...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Collocation of Wireless Antennas B Appendix B to Part 1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... the Collocation of Wireless Antennas Nationwide Programmatic Agreement for the Collocation of Wireless Antennas Executed by the Federal Communications Commission, the National Conference of State Historic...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Collocation of Wireless Antennas B Appendix B to Part 1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... the Collocation of Wireless Antennas Nationwide Programmatic Agreement for the Collocation of Wireless Antennas Executed by the Federal Communications Commission, the National Conference of State Historic...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Collocation of Wireless Antennas B Appendix B to Part 1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... the Collocation of Wireless Antennas Nationwide Programmatic Agreement for the Collocation of Wireless Antennas Executed by the Federal Communications Commission, the National Conference of State Historic...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... Mobile, LLC, Licensee of Various Authorizations in the Wireless Radio Services, Applicant for Modification of Various Authorizations in the Wireless Radio Services AGENCY: Federal Communications Commission... Confidential Treatment from Patricia J. Paoletta and Jonathan B. Mirsky, Counsel to Wireless Properties of...
Communication protocol in chassis detecting wireless transmission system based on WiFi
USDA-ARS?s Scientific Manuscript database
In chassis detecting wireless transmission system, the wireless network communication protocol plays a key role in the information exchange and synchronization between the host and chassis PDA. This paper presents a wireless network transmission protocol based on TCP/IP which makes the rules of info...
Electromagnetic assessment of embedded micro antenna for a novel sphincter in the human body.
Zan, Peng; Liu, Jinding; Ai, Yutao; Jiang, Enyu
2013-05-01
This paper presents a wireless, miniaturized, bi-directional telemetric artificial anal sphincter system that can be used for controlling patients' anal incontinence. The artificial anal sphincter system is mainly composed of an executive mechanism, a wireless power supply system and a wireless communication system. The wireless communication system consists of an internal RF transceiver, an internal RF antenna, a data transmission pathway, an external RF antenna and an external RF control transceiver. A micro NMHA (Normal Mode Helical Antenna) has been used for the transceiver of the internal wireless communication system and a quarter wave-length whip antenna of 7.75 cm has been used for the external wireless communication system. The RF carrier frequency of wireless communication is located in a license-free 433.1 MHz ISM (Industry, Science, and Medical) band. The radiation characteristics and SAR (Specific Absorption Rate) are evaluated using the finite difference time-domain method and 3D human body model. Results show that the SAR values of the antenna satisfy the ICNIRP (International Commission on Nonionizing Radiation Protection) limitations.
Embedded sensor systems for health - providing the tools in future healthcare.
Lindén, Maria; Björkman, Mats
2014-01-01
Wearable, embedded sensor systems for health applications are foreseen to be enablers in the future healthcare. They will provide ubiquitous monitoring of multiple parameters without restricting the person to stay at home or in the hospital. By following trend changes in the health status, early deteriorations will be detected and treatment can start earlier. Also health prevention will be supported. Such future healthcare requires technology development, including miniaturized sensors, smart textiles and wireless communication. The tremendous amount of data generated by these systems calls for both signal processing and decision support to guarantee the quality of data and avoid overflow of information. Safe and secure communications have to protect the integrity of the persons monitored.
Real-Time Wireless Data Acquisition System
NASA Technical Reports Server (NTRS)
Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos
2007-01-01
Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non-time critical applications. Current wireless standards such as Zigbee(TradeMark) and Bluetooth(Registered TradeMark) do not have these capabilities and can not meet the needs that are provided by the SensorNet technology. Additionally, the system has the ability to automatically reconfigure the wireless communication link to a secondary frequency if interference is encountered and can autonomously search for a sensor that was perceived to be lost using the relay capabilities of the sensors and the secondary frequency. The RFHN and the SensorNet designs are based on modular architectures that allow for future increases in capability and the ability to expand or upgrade with relative ease. The RFHN and SensorNet sensors .can also perform data processing which forms a distributed processing architecture allowing the system to pass along information rather than just sending "raw data points" to the next higher level system. With a relatively small size, weight and power consumption, this system has the potential for both spacecraft and aircraft applications as well as ground applications that require time critical data.
Building a "cyber forest" in complex terrain at the Andrews Experimental Forest
Donald L. Henshaw; Fred Bierlmaier; Barbara J. Bond; Kari B. O' Connell
2008-01-01
Our vision for a future "cyber forest" at the Andrews Experimental Forest foresees high performance wireless communications enhancing connectivity among remote field research locations, station headquarters, and beyond to the university and outside world. New sensor technologies and collaboration tools foretell exponential increases in data and information...
78 FR 16675 - First Technology Transitions; Policy Task Force Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
... FEDERAL COMMUNICATIONS COMMISSION [GN Docket No. 13-5; DA 13-383] First Technology Transitions... workshops to analyze technology transitions from narrowband to broadband; from time-division multiplexing... capabilities of wireless and wireline (copper, fiber and coax) technologies today and in the future. 11:30 a.m...
A Survey on Energy Conserving Mechanisms for the Internet of Things: Wireless Networking Aspects.
Abbas, Zeeshan; Yoon, Wonyong
2015-09-25
The Internet of Things (IoT) is an emerging key technology for future industries and everyday lives of people, where a myriad of battery operated sensors, actuators, and smart objects are connected to the Internet to provide services such as mobile healthcare, intelligent transport system, environmental monitoring, etc. Since energy efficiency is of utmost importance to these battery constrained IoT devices, IoT-related standards and research works have focused on the device energy conserving issues. This paper presents a comprehensive survey on energy conserving issues and solutions in using diverse wireless radio access technologies for IoT connectivity, e.g., the 3rd Generation Partnership Project (3GPP) machine type communications, IEEE 802.11ah, Bluetooth Low Energy (BLE), and Z-Wave. We look into the literature in broad areas of standardization, academic research, and industry development, and structurally summarize the energy conserving solutions based on several technical criteria. We also propose future research directions regarding energy conserving issues in wireless networking-based IoT.
A Survey on Energy Conserving Mechanisms for the Internet of Things: Wireless Networking Aspects
Abbas, Zeeshan; Yoon, Wonyong
2015-01-01
The Internet of Things (IoT) is an emerging key technology for future industries and everyday lives of people, where a myriad of battery operated sensors, actuators, and smart objects are connected to the Internet to provide services such as mobile healthcare, intelligent transport system, environmental monitoring, etc. Since energy efficiency is of utmost importance to these battery constrained IoT devices, IoT-related standards and research works have focused on the device energy conserving issues. This paper presents a comprehensive survey on energy conserving issues and solutions in using diverse wireless radio access technologies for IoT connectivity, e.g., the 3rd Generation Partnership Project (3GPP) machine type communications, IEEE 802.11ah, Bluetooth Low Energy (BLE), and Z-Wave. We look into the literature in broad areas of standardization, academic research, and industry development, and structurally summarize the energy conserving solutions based on several technical criteria. We also propose future research directions regarding energy conserving issues in wireless networking-based IoT. PMID:26404275
Assessment of the 802.11g Wireless Protocol for Lunar Surface Communications
NASA Technical Reports Server (NTRS)
Chelmins, David T.; Bguyen, Hung D.; Foore, Lawrence R.
2009-01-01
Future lunar surface missions supporting the NASA Vision for Space Exploration will rely on wireless networks to transmit voice and data. The ad hoc network architecture is of particular interest since it does not require a complex infrastructure. In this report, we looked at data performance over an ad hoc network with varying distances between Apple AirPort wireless cards. We developed a testing program to transmit data packets at precise times and then monitored the receive time to characterize connection delay, packet loss, and data rate. Best results were received for wireless links of less than 75 ft, and marginally acceptable (25-percent) packet loss was received at 150 ft. It is likely that better results will be obtained on the lunar surface because of reduced radiofrequency interference; however, higher power transmitters or receivers will be needed for significant performance gains.
The Impact of Hands-On Simulation Laboratories on Teaching of Wireless Communications
ERIC Educational Resources Information Center
Chou, Te-Shun; Vanderbye, Aaron
2017-01-01
Aim/Purpose: To prepare students with both theoretical knowledge and practical skills in the field of wireless communications. Background: Teaching wireless communications and networking is not an easy task because it involves broad subjects and abstract content. Methodology: A pedagogical method that combined lectures, labs, assignments, exams,…
Communications interface for wireless communications headset
NASA Technical Reports Server (NTRS)
Culotta, Jr., Anthony Joseph (Inventor); Seibert, Marc A. (Inventor)
2004-01-01
A universal interface adapter circuit interfaces, for example, a wireless communications headset with any type of communications system, including those that require push-to-talk (PTT) signaling. The interface adapter is comprised of several main components, including an RF signaling receiver, a microcontroller and associated circuitry for decoding and processing the received signals, and programmable impedance matching and line interfacing circuitry for interfacing a wireless communications headset system base to a communications system. A signaling transmitter, which is preferably portable (e.g., handheld), is employed by the wireless headset user to send signals to the signaling receiver. In an embodiment of the invention directed specifically to push-to-talk (PTT) signaling, the wireless headset user presses a button on the signaling transmitter when they wish to speak. This sends a signal to the microcontroller which decodes the signal and recognizes the signal as being a PTT request. In response, the microcontroller generates a control signal that closes a switch to complete a voice connection between the headset system base and the communications system so that the user can communicate with the communications system. With this arrangement, the wireless headset can be interfaced to any communications system that requires PTT signaling, without modification of the headset device. In addition, the interface adapter can also be configured to respond to or deliver any other types of signals, such as dual-tone-multiple-frequency (DTMF) tones, and on/off hook signals. The present invention is also scalable, and permits multiple wireless users to operate independently in the same environment through use of a plurality of the interface adapters.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-706] In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld Devices and Battery Packs: Notice of Commission... handheld devices and battery packs by reason of infringement of certain claims of U.S. Patent Nos. 5,319...
Scaled position-force tracking for wireless teleoperation of miniaturized surgical robotic system.
Guo, Jing; Liu, Chao; Poignet, Philippe
2014-01-01
Miniaturized surgical robotic system presents promising trend for reducing invasiveness during operation. However, cables used for power and communication may affect its performance. In this paper we chose Zigbee wireless communication as a means to replace communication cables for miniaturized surgical robot. Nevertheless, time delay caused by wireless communication presents a new challenge to performance and stability of the teleoperation system. We proposed a bilateral wireless teleoperation architecture taking into consideration of the effect of position-force scaling between operator and slave. Optimal position-force tracking performance is obtained and the overall system is shown to be passive with a simple condition on the scaling factors satisfied. Simulation studies verify the efficiency of the proposed scaled wireless teleoperation scheme.
Implemented a wireless communication system for VGA capsule endoscope.
Moon, Yeon-Kwan; Lee, Jyung Hyun; Park, Hee-Joon; Cho, Jin-Ho; Choi, Hyun-Chul
2014-01-01
Recently, several medical devices that use wireless communication are under development. In this paper, the small size frequency shift keying (FSK) transmitter and a monofilar antenna for the capsule endoscope, enabling the medical device to transmit VGA-size images of the intestine. To verify the functionality of the proposed wireless communication system, computer simulations and animal experiments were performed with the implemented capsule endoscope that includes the proposed wireless communication system. Several fundamental experiments are carried out using the implemented transmitter and antenna, and animal in-vivo experiments were performed to verify VGA image transmission.
Guarascio-Howard, Linda
2011-01-01
A medical-surgical unit in a southwestern United States hospital examined the results of adding wireless communication technology to assist nurses in identifying patient bed status changes and enhancing team communication. Following the addition of wireless communication, response time to patient calls and the number of nurse-initiated communications were compared to pre-wireless calls and response time sampling period. In the baseline study, nurse-initiated communications and response time to patient calls were investigated for a team nursing model (Guarascio-Howard & Malloch, 2007). At this time, technology consisted of a nurse call system and telephones located at each decentralized nurse station and health unit coordinator (HUC) station. For this follow-up study, a wireless device was given to nurses and their team members following training on device use and privacy issues. Four registered nurses (RNs) were shadowed for 8 hours (32 hours total) before and after the introduction of the wireless devices. Data were collected regarding patient room visits, number of patient calls, bed status calls, response time to calls, and the initiator of the communication episodes. Follow-up study response time to calls significantly decreased (t-test p = .03). RNs and licensed practical nurses responded to bed status calls in less than 1 minute-62% of the 37 calls. Communication results indicated a significant shift (One Proportion Z Test) in RN-initiated communications, suggesting an enhanced ability to communicate with team members and to assist in monitoring patient status. Patient falls trended downward, although not significantly (p > .05), for a 6-month period of wireless technology use compared to the same period the previous year. The addition of a wireless device has advantages in team nursing, namely increasing communication with staff members and decreasing response time to patient and bed status calls. Limitations of the study included a change in caregiver team members and issues regarding wireless device and locator badge compliance. Administrative issues that arose during this field study included bed and cable maintenance, device battery charging, and the training of new and floating team members.
Wireless Augmented Reality Communication System
NASA Technical Reports Server (NTRS)
Agan, Martin (Inventor); Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor)
2015-01-01
A portable unit is for video communication to select a user name in a user name network. A transceiver wirelessly accesses a communication network through a wireless connection to a general purpose node coupled to the communication network. A user interface can receive user input to log on to a user name network through the communication network. The user name network has a plurality of user names, at least one of the plurality of user names is associated with a remote portable unit, logged on to the user name network and available for video communication.
Wireless Augmented Reality Communication System
NASA Technical Reports Server (NTRS)
Jedrey, Thomas (Inventor); Agan, Martin (Inventor); Devereaux, Ann (Inventor)
2017-01-01
A portable unit is for video communication to select a user name in a user name network. A transceiver wirelessly accesses a communication network through a wireless connection to a general purpose node coupled to the communication network. A user interface can receive user input to log on to a user name network through the communication network. The user name network has a plurality of user names, at least one of the plurality of user names is associated with a remote portable unit, logged on to the user name network and available for video communication.
SystemC modelling of wireless communication channel
NASA Astrophysics Data System (ADS)
Conti, Massimo; Orcioni, Simone
2011-05-01
This paper presents the definition in SystemC of wireless channels at different levels of abstraction. The different levels of description of the wireless channel can be easily interchanged allowing the reuse of the application and baseband layers in a high level analysis of the network or in a deep analysis of the communication between the wireless devices.
47 CFR 27.1 - Basis and purpose.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS... rules for miscellaneous wireless communications services (WCS) in this part are promulgated under the... states the conditions under which spectrum is made available and licensed for the provision of wireless...
NASA Astrophysics Data System (ADS)
Sklavos, N.; Selimis, G.; Koufopavlou, O.
2005-01-01
The explosive growth of internet and consumer demand for mobility has fuelled the exponential growth of wireless communications and networks. Mobile users want access to services and information, from both internet and personal devices, from a range of locations without the use of a cable medium. IEEE 802.11 is one of the most widely used wireless standards of our days. The amount of access and mobility into wireless networks requires a security infrastructure that protects communication within that network. The security of this protocol is based on the wired equivalent privacy (WEP) scheme. Currently, all the IEEE 802.11 market products support WEP. But recently, the 802.11i working group introduced the advanced encryption standard (AES), as the security scheme for the future IEEE 802.11 applications. In this paper, the hardware integrations of WEP and AES are studied. A field programmable gate array (FPGA) device has been used as the hardware implementation platform, for a fair comparison between the two security schemes. Measurements for the FPGA implementation cost, operating frequency, power consumption and performance are given.
Exploring the physical layer frontiers of cellular uplink: The Vienna LTE-A Uplink Simulator.
Zöchmann, Erich; Schwarz, Stefan; Pratschner, Stefan; Nagel, Lukas; Lerch, Martin; Rupp, Markus
Communication systems in practice are subject to many technical/technological constraints and restrictions. Multiple input, multiple output (MIMO) processing in current wireless communications, as an example, mostly employs codebook-based pre-coding to save computational complexity at the transmitters and receivers. In such cases, closed form expressions for capacity or bit-error probability are often unattainable; effects of realistic signal processing algorithms on the performance of practical communication systems rather have to be studied in simulation environments. The Vienna LTE-A Uplink Simulator is a 3GPP LTE-A standard compliant MATLAB-based link level simulator that is publicly available under an academic use license, facilitating reproducible evaluations of signal processing algorithms and transceiver designs in wireless communications. This paper reviews research results that have been obtained by means of the Vienna LTE-A Uplink Simulator, highlights the effects of single-carrier frequency-division multiplexing (as the distinguishing feature to LTE-A downlink), extends known link adaptation concepts to uplink transmission, shows the implications of the uplink pilot pattern for gathering channel state information at the receiver and completes with possible future research directions.
NASA Astrophysics Data System (ADS)
Karaaslan, Muharrem; Bağmancı, Mehmet; Ünal, Emin; Akgol, Oguzhan; Sabah, Cumali
2017-06-01
We propose the design of a multiband absorber based on multi-layered square split ring (MSSR) structure. The multi-layered metamaterial structure is designed to be used in the frequency bands such as WIMAX, WLAN and satellite communication region. The absorption levels of the proposed structure are higher than 90% for all resonance frequencies. In addition, the incident angle and polarization dependence of the multi-layered metamaterial absorber and harvester is also investigated and it is observed that the structure has polarization angle independent frequency response with good absorption characteristics in the entire working frequency band. The energy harvesting ratios of the structure is investigated especially for the resonance frequencies at which the maximum absorption occurs. The energy harvesting potential of the proposed MSSRs is as good as those of the structures given in the literature. Therefore, the suggested design having good absorption, polarization and angle independent characteristics with a wide bandwidth is a potential candidate for future energy harvesting applications in commonly used wireless communication bands, namely WIMAX, WLAN and satellite communication bands.
An Open Avionics and Software Architecture to Support Future NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Schlesinger, Adam
2017-01-01
The presentation describes an avionics and software architecture that has been developed through NASAs Advanced Exploration Systems (AES) division. The architecture is open-source, highly reliable with fault tolerance, and utilizes standard capabilities and interfaces, which are scalable and customizable to support future exploration missions. Specific focus areas of discussion will include command and data handling, software, human interfaces, communication and wireless systems, and systems engineering and integration.
Wireless Intra-Spacecraft Communication: The Benefits and the Challenges
NASA Technical Reports Server (NTRS)
Zheng, Will H.; Armstrong, John T.
2010-01-01
In this paper we present a systematic study of how intra-spacecraft wireless communication can be adopted to various subsystems of the spacecraft including C&DH (Command & Data Handling), Telecom, Power, Propulsion, and Payloads, and the interconnects between them. We discuss the advantages of intra-spacecraft wireless communication and the disadvantages and challenges and a proposal to address them.
DOT National Transportation Integrated Search
1999-03-01
This study focused on assessing the application of traffic monitoring and management systems which use transportable surveillance and ramp meter trailers, video image processors, and wireless communications. The mobile surveillance and wireless commu...
49 CFR 220.38 - Communication equipment failure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.38 Communication equipment failure. (a) Any radio or wireless communication device found not to be... other employee designated by the railroad shall be so notified as soon as practicable. (b) If a radio or...
49 CFR 220.38 - Communication equipment failure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.38 Communication equipment failure. (a) Any radio or wireless communication device found not to be... other employee designated by the railroad shall be so notified as soon as practicable. (b) If a radio or...
49 CFR 220.38 - Communication equipment failure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Radio and Wireless Communication Procedures § 220.38 Communication equipment failure. (a) Any radio or wireless communication device found not to be... other employee designated by the railroad shall be so notified as soon as practicable. (b) If a radio or...
A wireless laser displacement sensor node for structural health monitoring.
Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok
2013-09-30
This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.
Vehicular Visible Light Networks for Urban Mobile Crowd Sensing
2018-01-01
Crowd sensing is a powerful tool to map and predict interests and events. In the future, it could be boosted by an increasing number of connected vehicles sharing information and intentions. This will be made available by on board wireless connected devices able to continuously communicate with other vehicles and with the environment. Among the enabling technologies, visible light communication (VLC) represents a low cost solution in the short term. In spite of the fact that vehicular communications cannot rely on the sole VLC due to the limitation provided by the light which allows communications in visibility only, VLC can however be considered to complement other wireless communication technologies which could be overloaded in dense scenarios. In this paper we evaluate the performance of VLC connected vehicles when urban crowd sensing is addressed and we compare the performance of sole vehicular visible light networks with that of VLC as a complementary technology of IEEE 802.11p. Results, obtained through a realistic simulation tool taking into account both the roadmap constraints and the technologies protocols, help to understand when VLC provides the major improvement in terms of delivered data varying the number and position of RSUs and the FOV of the receiver. PMID:29649149
Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms
NASA Astrophysics Data System (ADS)
Wang, Jianrong; Wang, Jianping; Han, Dun
2017-01-01
In recent years, wireless communication plays an important role in our lives. Cooperative communication, is used by a mobile station with single antenna to share with each other forming a virtual MIMO antenna system, will become a development with a diversity gain for wireless communication in tendency future. In this paper, a fitness model of evolution network based on complex networks with mixed attachment mechanisms is devised in order to study an actual network-CCFN (cooperative communication fitness network). Firstly, the evolution of CCFN is given by four cases with different probabilities, and the rate equations of nodes degree are presented to analyze the evolution of CCFN. Secondly, the degree distribution is analyzed by calculating the rate equation and numerical simulation with the examples of four fitness distributions such as power law, uniform fitness distribution, exponential fitness distribution and Rayleigh fitness distribution. Finally, the robustness of CCFN is studied by numerical simulation with four fitness distributions under random attack and intentional attack to analyze the effects of degree distribution, average path length and average degree. The results of this paper offers insights for building CCFN systems in order to program communication resources.
Software-Defined Radio for Space-to-Space Communications
NASA Technical Reports Server (NTRS)
Fisher, Ken; Jih, Cindy; Moore, Michael S.; Price, Jeremy C.; Abbott, Ben A.; Fritz, Justin A.
2011-01-01
A paper describes the Space- to-Space Communications System (SSCS) Software- Defined Radio (SDR) research project to determine the most appropriate method for creating flexible and reconfigurable radios to implement wireless communications channels for space vehicles so that fewer radios are required, and commonality in hardware and software architecture can be leveraged for future missions. The ability to reconfigure the SDR through software enables one radio platform to be reconfigured to interoperate with many different waveforms. This means a reduction in the number of physical radio platforms necessary to support a space mission s communication requirements, thus decreasing the total size, weight, and power needed for a mission.
NASA Astrophysics Data System (ADS)
Latinovic, T. S.; Kalabic, S. B.; Barz, C. R.; Petrica, P. Paul; Pop-Vădean, A.
2018-01-01
This paper analyzes the influence of the Doppler Effect on the length of time to establish synchronization pseudorandom sequences in radio communications systems with an expanded spectrum. Also, this paper explores the possibility of using secure wireless communication for modular robots. Wireless communication could be used for local and global communication. We analyzed a radio communication system integrator, including the two effects of the Doppler signal on the duration of establishing synchronization of the received and locally generated pseudorandom sequence. The effects of the impact of the variability of the phase were analyzed between the said sequences and correspondence of the phases of these signals with the interval of time of acquisition of received sequences. An analysis of these impacts is essential in the transmission of signal and protection of the transfer of information in the communication systems with an expanded range (telecommunications, mobile telephony, Global Navigation Satellite System GNSS, and wireless communication). Results show that wireless communication can provide a safety approach for communication with mobile robots.
NASA Astrophysics Data System (ADS)
1991-01-01
A technology utilization project led to the commercial adaptation of a Space Shuttle Orbiter wireless infrared voice communications system. The technology was adapted to a LAN system by Wilton Industries, one of the participants. Because the system is cable-free, installation charges are saved, and it can be used where cable is impractical. Resultant products include the IRplex 6000. Transceivers can be located anywhere and can include mobile receivers. The system provides wireless LAN coverage up to 44,000 square feet. applications include stock exchange communications, trade shows, emergency communications, etc.
Terahertz (THz) Wireless Systems for Space Applications
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; deSilva, Kanishka B.; Jih, Cindy T.
2013-01-01
NASA has been leading the Terahertz (THz) technology development for the sensors and instruments in astronomy in the past 20 years. THz technologies are expanding into much broader applications in recent years. Due to the vast available multiple gigahertz (GHz) broad bandwidths, THz radios offer the possibility for wireless transmission of high data rates. Multi-Gigabits per second (MGbps) broadband wireless access based on THz waves are closer to reality. The THz signal high atmosphere attenuation could significantly decrease the communication ranges and transmittable data rates for the ground systems. Contrary to the THz applications on the ground, the space applications in the atmosphere free environment do not suffer the atmosphere attenuation. The manufacturing technologies for the THz electronic components are advancing and maturing. There is great potential for the NASA future high data wireless applications in environments with difficult cabling and size/weight constraints. In this study, the THz wireless systems for potential space applications were investigated. The applicability of THz systems for space applications was analyzed. The link analysis indicates that MGbps data rates are achievable with compact sized high gain antennas.
Implementation Of Secure 6LoWPAN Communications For Tactical Wireless Sensor Networks
2016-09-01
wireless sensor networks (WSN) consist of power -constrained devices spread throughout a region-of-interest to provide data extraction in real time...1 A. LOW POWER WIRELESS SENSOR NETWORKS ............................1 B. INTRODUCTION TO...communication protocol for low power wireless personal area networks Since the IEEE 802.15.4 standard only defines the first two layers of the Open
2016-03-21
2016 2 i.e., wireless power transfer (WPT) and wireless information transfer (WIT), fundamental changes to the designs of green communication networks...simulta- neous wireless information and power transfer ,” IEEE Commun. Mag., vol. 53, no. 4, pp. 86–93, Apr. 2015. [6] H. Tabassum, E. Hossain, A...broadcasting for simultaneous wire- less information and power transfer ,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 1989–2001, May 2013. [9] K. Huang
Enabling Wireless Avionics Intra-Communications
NASA Technical Reports Server (NTRS)
Torres, Omar; Nguyen, Truong; Mackenzie, Anne
2016-01-01
The Electromagnetics and Sensors Branch of NASA Langley Research Center (LaRC) is investigating the potential of an all-wireless aircraft as part of the ECON (Efficient Reconfigurable Cockpit Design and Fleet Operations using Software Intensive, Networked and Wireless Enabled Architecture) seedling proposal, which is funded by the Convergent Aeronautics Solutions (CAS) project, Transformative Aeronautics Concepts (TAC) program, and NASA Aeronautics Research Institute (NARI). The project consists of a brief effort carried out by a small team in the Electromagnetic Environment Effects (E3) laboratory with the intention of exposing some of the challenges faced by a wireless communication system inside the reflective cavity of an aircraft and to explore potential solutions that take advantage of that environment for constructive gain. The research effort was named EWAIC for "Enabling Wireless Aircraft Intra-communications." The E3 laboratory is a research facility that includes three electromagnetic reverberation chambers and equipment that allow testing and generation of test data for the investigation of wireless systems in reflective environments. Using these chambers, the EWAIC team developed a set of tests and setups that allow the intentional variation of intensity of a multipath field to reproduce the environment of the various bays and cabins of large transport aircraft. This setup, in essence, simulates an aircraft environment that allows the investigation and testing of wireless communication protocols that can effectively be used as a tool to mitigate some of the risks inherent to an aircraft wireless system for critical functions. In addition, the EWAIC team initiated the development of a computational modeling tool to illustrate the propagation of EM waves inside the reflective cabins and bays of aircraft and to obtain quantifiable information regarding the degradation of signals in aircraft subassemblies. The nose landing gear of a UAV CAD model was used to model the propagation of a system in a "deployed" configuration versus a "stowed" configuration. The differences in relative field strength provide valuable information about the distribution of the field that can be used to engineer RF links with optimal radiated power and antenna configuration that accomplish the intended system reliability. Such modeling will be necessary in subsequent studies for managing multipath propagation characteristics inside a main cabin and to understand more complex environments, such as the inside wings, landing gear bays, cargo bays, avionics bays, etc. The results of the short research effort are described in the present document. The team puts forth a set of recommendations with the intention of informing the project and program leadership of the future work that, in the opinion of the EWAIC team, would assist the ECON team reach the intended goal of developing an all-wireless aircraft.
Analysis and Testing of Mobile Wireless Networks
NASA Technical Reports Server (NTRS)
Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)
2002-01-01
Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.
NASA Technical Reports Server (NTRS)
Ponchak, Denise S.; Apaza, Rafael D.; Wichgers, Joel M.; Haynes, Brian; Roy, Aloke
2015-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present the final results describing the communications challenges and opportunities that have been identified as part of the study.
Wireless Coexistence and EMC of Bluetooth and 802.11b Devices in Controlled Laboratory Settings
Seidman, Seth; Kainz, Wolfgang; Ruggera, Paul; Mendoza, Gonzalo
2011-01-01
This paper presents experimental testing that has been performed on wireless communication devices as victims of electromagnetic interference (EMI). Wireless victims included universal serial bus (USB) network adapters and personal digital assistants (PDAs) equipped with IEEE 802.11b and Bluetooth technologies. The experimental data in this paper was gathered in an anechoic chamber and a gigahertz transverse electromagnetic (GTEM) cell to ensure reliable and repeatable results. This testing includes: Electromagnetic compatibility (EMC) testing performed in accordance with IEC 60601-1-2, an in-band sweep of EMC testing, and coexistence testing. The tests in this study show that a Bluetooth communication was able to coexist with other Bluetooth devices with no decrease in throughput and no communication breakdowns. However, testing revealed a significant decrease in throughput and increase in communication breakdowns when an 802.11b source is near an 802.11b victim. In a hospital setting decreased throughput and communication breakdowns can cause wireless medical devices to fail. It is therefore vital to have an understanding of the effect EMI can have on wireless communication devices. PMID:22043254
Wireless Coexistence and EMC of Bluetooth and 802.11b Devices in Controlled Laboratory Settings.
Seidman, Seth; Kainz, Wolfgang; Ruggera, Paul; Mendoza, Gonzalo
2011-01-01
This paper presents experimental testing that has been performed on wireless communication devices as victims of electromagnetic interference (EMI). Wireless victims included universal serial bus (USB) network adapters and personal digital assistants (PDAs) equipped with IEEE 802.11b and Bluetooth technologies. The experimental data in this paper was gathered in an anechoic chamber and a gigahertz transverse electromagnetic (GTEM) cell to ensure reliable and repeatable results. This testing includes: Electromagnetic compatibility (EMC) testing performed in accordance with IEC 60601-1-2, an in-band sweep of EMC testing, and coexistence testing. The tests in this study show that a Bluetooth communication was able to coexist with other Bluetooth devices with no decrease in throughput and no communication breakdowns. However, testing revealed a significant decrease in throughput and increase in communication breakdowns when an 802.11b source is near an 802.11b victim. In a hospital setting decreased throughput and communication breakdowns can cause wireless medical devices to fail. It is therefore vital to have an understanding of the effect EMI can have on wireless communication devices.
Ortega, Gil R; Taksali, Sudeep; Smart, Ryan; Baumgaertner, Michael R
2009-01-01
Cellular phone use within the hospital setting has increased as physicians, nurses, and ancillary staff incorporate wireless technologies in improving efficiencies, cost, and maintaining patient safety and high quality healthcare [11]. Through the use of wireless, cellular communication, an overall improvement in communication accuracy and efficiency between intraoperative orthopaedic surgeons and floor nurses may be achieved. Both communication types occurred while the surgeon was scrubbed in the operating room (OR). Indirect communication occurred when the pager call was answered by the OR circulating nurse with communication between the surgeon, circulating nurse, and floor nurse. Direct communication consisted of cell phone and Jabra Bluetooth BT200 wireless ear piece used by the surgeon. The surgeon answered the floor nurse's cellular call by phone ring-activated automatic answering. The study was conducted during scheduled orthopaedic procedures. An independent observer measured time variables with a stop-watch while orthopaedic nurses randomly called via pager or cell phone. The nurses asked for patient caregiver confirmation and answers to 30 different patient-care questions. Sixty trials were performed with 30 cell and 30 page communications. Direct cellular communication showed a better response rate than indirect page (Cell 100%, Page 73%). Indirect page communication allowed a 27% and 33% error rate with patient problem and surgeon solution communications, respectively. There were no reported communication errors while using direct wireless, cellular communication. When compared to page communications, cellular communications showed statistically significant improvements in mean time intervals in response time (Cell = 11s, Page = 211s), correct patient identification (Cell = 5s, Page = 172s), patient problem and solution time (Cell = 13s, Page = 189s), and total communication time (Cell = 32s, Page = 250s) (s = seconds, all P < 0.001). Floor nurse satisfaction ratings (dependent on communication times and/or difficulties) were improved with direct cellular communication (Cell = 29 excellent, Page = 11 excellent). Intraoperative case interruptions (defined as delaying surgical progress) were more frequent with indirect page communication (10 page v. 0 cell). Our study demonstrates that direct wireless communication may be used to improve intraoperative communication and enhance patient safety. Direct wireless, cellular intraoperative communication improves communication times, communication accuracy, communication satisfaction, and minimizes intraoperative case interruption. As a result of this study, we hope to maintain our transition to direct wireless, cellular intraoperative orthopaedic communication to reduce medical errors, improve patient care, and enhance both orthopaedic surgeon and nursing efficiencies.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
... the 2310-2360 MHz Frequency Band AGENCY: Federal Communications Commission. ACTION: Final rule... communicate, the frequencies and emission designations of such communications, and the frequencies and...(4). 28. WCS Licensees. The Wireless Communication Service in the 2305- 2360 MHz (2.3 GHz) frequency...
High Throughput via Cross-Layer Interference Alignment for Mobile Ad Hoc Networks
2013-08-26
MIMO zero-forcing receiver in the presence of channel estimation error,” IEEE Transactions on Wireless Communications , vol. 6 , no. 3, pp. 805–810, Mar...Robert W. Heath, Nachiappan Valliappan. Antenna Subset Modulation for Secure Millimeter-Wave Wireless Communication , IEEE Transactions on...in MIMO Interference Alignment Networks, IEEE Transactions on Wireless Communications , (02 2012): 0. doi: 10.1109/TWC.2011.120511.111088 TOTAL: 2
Use of consumer wireless devices by South Africans with severe communication disability
Bryen, Diane Nelson; Moolman, Enid; Morris, John
2016-01-01
Background Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. Objectives To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Method Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC) technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. Results All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3%) needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends), for leisure activities (e.g. listening to music, watching videos, playing games), and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance). Conclusion These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population. PMID:28730045
Use of consumer wireless devices by South Africans with severe communication disability.
Bornman, Juan; Bryen, Diane Nelson; Moolman, Enid; Morris, John
2016-01-01
Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC) technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3%) needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends), for leisure activities (e.g. listening to music, watching videos, playing games), and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance). These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population.
The potential of FBMC over OFDM for the future 5G mobile communication technology
NASA Astrophysics Data System (ADS)
Ibrahim, A. N.; Abdullah, M. F. L.
2017-09-01
Fifth Generation (5G) is the new evolution of mobile communication technology and will be launched soon in many countries. The researchers and designers of mobile communication technology have been facing the increasing demand of the mobile consumers, high data rates and mobility requirements needed by new wireless applications. Most of the countries have started research on 5G mobile communication technology that is predictable to be launched on 2020 in conjunction with the Olympic Games in Tokyo. Filterbank Multicarrier (FBMC) is one of the modulation techniques for the future 5G mobile communication technology. It uses the multicarrier techniques that are immune to fading caused by transmission of more than one path at a time and also immune to intersymbol interference besides able to function effectively compared to Orthogonal Frequency Division Multiplexing (OFDM) which is used in Fourth Generation (4G) mobile communications technology. This paper discusses the performance of FBMC over OFDM based on the previous journals that were investigated by researchers.
NASA Astrophysics Data System (ADS)
The present conference on global telecommunications discusses topics in the fields of Integrated Services Digital Network (ISDN) technology field trial planning and results to date, motion video coding, ISDN networking, future network communications security, flexible and intelligent voice/data networks, Asian and Pacific lightwave and radio systems, subscriber radio systems, the performance of distributed systems, signal processing theory, satellite communications modulation and coding, and terminals for the handicapped. Also discussed are knowledge-based technologies for communications systems, future satellite transmissions, high quality image services, novel digital signal processors, broadband network access interface, traffic engineering for ISDN design and planning, telecommunications software, coherent optical communications, multimedia terminal systems, advanced speed coding, portable and mobile radio communications, multi-Gbit/second lightwave transmission systems, enhanced capability digital terminals, communications network reliability, advanced antimultipath fading techniques, undersea lightwave transmission, image coding, modulation and synchronization, adaptive signal processing, integrated optical devices, VLSI technologies for ISDN, field performance of packet switching, CSMA protocols, optical transport system architectures for broadband ISDN, mobile satellite communications, indoor wireless communication, echo cancellation in communications, and distributed network algorithms.
[Advances in sensor node and wireless communication technology of body sensor network].
Lin, Weibing; Lei, Sheng; Wei, Caihong; Li, Chunxiang; Wang, Cang
2012-06-01
With the development of the wireless communication technology, implantable biosensor technology, and embedded system technology, Body Sensor Network (BSN) as one branch of wireless sensor networks and important part of the Internet of things has caught more attention of researchers and enterprises. This paper offers the basic concept of the BSN and analyses the related research. We focus on sensor node and wireless communication technology from perspectives of technology challenges, research advance and development trend in the paper. Besides, we also present a relative overview of domestic and overseas projects for the BSN.
Modeling, Evaluation and Detection of Jamming Attacks in Time-Critical Wireless Applications
2014-08-01
computing, modeling and analysis of wireless networks , network topol- ogy, and architecture design. Dr. Wang has been a Member of the Association for...important, yet open research question is how to model and detect jamming attacks in such wireless networks , where communication traffic is more time...against time-critical wireless networks with applications to the smart grid. In contrast to communication networks where packets-oriented metrics
Campbell, Robert J; Durigon, Louis
2003-01-01
Increasingly, health care professionals will need to retrieve, store, share, and send data using several types of wireless devices. These devices include personal digital assistants, laptops, Web tablets, cell phones, and clothing that monitor heart rate and blood pressure. Regardless of the device, several standards will vie for the right to provide the wireless communications link between the health care professional and the wired data resources located within a health care organization. This article identifies the top three technologies in the wireless communications field: Wireless Fidelity (WiFi), Mobile Communications, and Bluetooth; breaks down each according to its strengths and weaknesses; and makes recommendations for their use by health care professionals located inside and outside a health care facility. Where appropriate the discussion includes an explication of how a specific technology can be made secure from hackers and other security breeches.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the Broadband Radio Service to the Advanced Wireless Service. 27.1250 Section 27.1250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service Relocation Procedures for the...
Code of Federal Regulations, 2012 CFR
2012-10-01
... the Broadband Radio Service to the Advanced Wireless Service. 27.1250 Section 27.1250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service Relocation Procedures for the...
Code of Federal Regulations, 2014 CFR
2014-10-01
... the Broadband Radio Service to the Advanced Wireless Service. 27.1250 Section 27.1250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service Relocation Procedures for the...
78 FR 2912 - Prohibition on Personal Use of Electronic Devices on the Flight Deck
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-15
....C. 332(c)(7)(C)(i). In general, wireless telecommunications is the transfer of information between... personal wireless communications device or laptop computer for personal use while at their duty station on.... Personal Wireless Communications Device IV. Regulatory Notices and Analyses A. Regulatory Evaluation B...
NASA Astrophysics Data System (ADS)
Pleros, N.; Kalfas, G.; Mitsolidou, C.; Vagionas, C.; Tsiokos, D.; Miliou, A.
2017-01-01
Future broadband access networks in the 5G framework will need to be bilateral, exploiting both optical and wireless technologies. This paper deals with new approaches and synergies on radio-over-fiber (RoF) technologies and how those can be leveraged to seamlessly converge wireless technology for agility and mobility with passive optical networks (PON)-based backhauling. The proposed convergence paradigm is based upon a holistic network architecture mixing mm-wave wireless access with photonic integration, dynamic capacity allocation and network coding schemes to enable high bandwidth and low-latency fixed and 60GHz wireless personal area communications for gigabit rate per user, proposing and deploying on top a Medium-Transparent MAC (MT-MAC) protocol as a low-latency bandwidth allocation mechanism. We have evaluated alternative network topologies between the central office (CO) and the access point module (APM) for data rates up to 2.5 Gb/s and SC frequencies up to 60 GHz. Optical network coding is demonstrated for SCM-based signaling to enhance bandwidth utilization and facilitate optical-wireless convergence in 5G applications, reporting medium-transparent network coding directly at the physical layer between end-users communicating over a RoF infrastructure. Towards equipping the physical layer with the appropriate agility to support MT-MAC protocols, a monolithic InP-based Remote Antenna Unit optoelectronic PIC interface is shown that ensures control over the optical resource allocation assisting at the same time broadband wireless service. Finally, the MT-MAC protocol is analysed and simulation and analytical theoretical results are presented that are found to be in good agreement confirming latency values lower than 1msec for small- to mid-load conditions.
NASA Astrophysics Data System (ADS)
Gupta, Amit; Nagpal, Shaina
2017-05-01
Inter-satellite optical wireless communication (IsOWC) systems can be chosen over existing microwave satellite systems for deploying in space in the future due to their high bandwidth, small size, light weight, low power and low cost. However, the IsOWC system suffers from various attenuations due to weather conditions, turbulence or scintillations which limit its performance and decreases its availability. So, in order to improve the performance, IsOWC system using directly modulated laser source is proposed in this work. The system is designed and evaluated to be suitable for high data rate transmissions up to 10 Gbps. The performance of the system is investigated in order to reduce the cost and complexity of link and improving the quality of information signal. Further the proposed IsOWC system is analysed using BER analyser, power meter and oscilloscope Visualizer.
Privacy-preserving data aggregation protocols for wireless sensor networks: a survey.
Bista, Rabindra; Chang, Jae-Woo
2010-01-01
Many wireless sensor network (WSN) applications require privacy-preserving aggregation of sensor data during transmission from the source nodes to the sink node. In this paper, we explore several existing privacy-preserving data aggregation (PPDA) protocols for WSNs in order to provide some insights on their current status. For this, we evaluate the PPDA protocols on the basis of such metrics as communication and computation costs in order to demonstrate their potential for supporting privacy-preserving data aggregation in WSNs. In addition, based on the existing research, we enumerate some important future research directions in the field of privacy-preserving data aggregation for WSNs.
A Wireless MEMS-Based Inclinometer Sensor Node for Structural Health Monitoring
Ha, Dae Woong; Park, Hyo Seon; Choi, Se Woon; Kim, Yousok
2013-01-01
This paper proposes a wireless inclinometer sensor node for structural health monitoring (SHM) that can be applied to civil engineering and building structures subjected to various loadings. The inclinometer used in this study employs a method for calculating the tilt based on the difference between the static acceleration and the acceleration due to gravity, using a micro-electro-mechanical system (MEMS)-based accelerometer. A wireless sensor node was developed through which tilt measurement data are wirelessly transmitted to a monitoring server. This node consists of a slave node that uses a short-distance wireless communication system (RF 2.4 GHz) and a master node that uses a long-distance telecommunication system (code division multiple access—CDMA). The communication distance limitation, which is recognized as an important issue in wireless monitoring systems, has been resolved via these two wireless communication components. The reliability of the proposed wireless inclinometer sensor node was verified experimentally by comparing the values measured by the inclinometer and subsequently transferred to the monitoring server via wired and wireless transfer methods to permit a performance evaluation of the wireless communication sensor nodes. The experimental results indicated that the two systems (wired and wireless transfer systems) yielded almost identical values at a tilt angle greater than 1°, and a uniform difference was observed at a tilt angle less than 0.42° (approximately 0.0032° corresponding to 0.76% of the tilt angle, 0.42°) regardless of the tilt size. This result was deemed to be within the allowable range of measurement error in SHM. Thus, the wireless transfer system proposed in this study was experimentally verified for practical application in a structural health monitoring system. PMID:24287533
Performance Evaluation of High Speed Multicarrier System for Optical Wireless Communication
NASA Astrophysics Data System (ADS)
Mathur, Harshita; Deepa, T.; Bartalwar, Sophiya
2018-04-01
Optical wireless communication (OWC) in the infrared and visible range is quite impressive solution, especially where radio communication face challenges. Visible light communication (VLC) uses visible light over a range of 400 and 800 THz and is a subdivision of OWC technologies. With an increasing demand for use of wireless communications, wireless access via Wi-Fi is facing many challenges especially in terms of capacity, availability, security and efficiency. VLC uses intensity modulation and direct detection (IM/DD) techniques and hence they require the signals to certainly be real valued positive sequences. These constraints pose limitation on digital modulation techniques. These limitations result in spectrum-efficiency or power-efficiency losses. In this paper, we investigate an amplitude shift keying (ASK) based orthogonal frequency division multiplexing (OFDM) signal transmission scheme using LabVIEW for VLC technology.
Toward Reliable and Energy Efficient Wireless Sensing for Space and Extreme Environments
NASA Technical Reports Server (NTRS)
Choi, Baek-Young; Boyd, Darren; Wilkerson, DeLisa
2017-01-01
Reliability is the critical challenge of wireless sensing in space systems operating in extreme environments. Energy efficiency is another concern for battery powered wireless sensors. Considering the physics of wireless communications, we propose an approach called Software-Defined Wireless Communications (SDC) that dynamically decide a reliable channel(s) avoiding unnecessary redundancy of channels, out of multiple distinct electromagnetic frequency bands such as radio and infrared frequencies.We validate the concept with Android and Raspberry Pi sensors and pseudo extreme experiments. SDC can be utilized in many areas beyond space applications.
Real-time software-based end-to-end wireless visual communications simulation platform
NASA Astrophysics Data System (ADS)
Chen, Ting-Chung; Chang, Li-Fung; Wong, Andria H.; Sun, Ming-Ting; Hsing, T. Russell
1995-04-01
Wireless channel impairments pose many challenges to real-time visual communications. In this paper, we describe a real-time software based wireless visual communications simulation platform which can be used for performance evaluation in real-time. This simulation platform consists of two personal computers serving as hosts. Major components of each PC host include a real-time programmable video code, a wireless channel simulator, and a network interface for data transport between the two hosts. The three major components are interfaced in real-time to show the interaction of various wireless channels and video coding algorithms. The programmable features in the above components allow users to do performance evaluation of user-controlled wireless channel effects without physically carrying out these experiments which are limited in scope, time-consuming, and costly. Using this simulation platform as a testbed, we have experimented with several wireless channel effects including Rayleigh fading, antenna diversity, channel filtering, symbol timing, modulation, and packet loss.
NASA Astrophysics Data System (ADS)
Rao, Jionghui; Yao, Wenming; Wen, Linqiang
2015-10-01
Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.
DOT National Transportation Integrated Search
2000-08-01
This guidebook is divided into four parts: Part 1. Planning and Managing a Communications Project: Discusses the overall scope of a project, including planning, funding, procurement, and management. Part 2. Wireless Communications Technology: Discuss...
78 FR 38975 - Sunshine Act Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-28
... FEDERAL COMMUNICATIONS COMMISSION Sunshine Act Meetings Open Commission Meeting Thursday, June 27, 2013 The Federal Communications Commission will hold an Open Meeting on the subjects listed below on... data. 2 WIRELESS TELE- TITLE: Service Rules for COMMUNICATIONS. Advanced Wireless Services H Block...
New challenges in propagation research in the US
NASA Technical Reports Server (NTRS)
Davarian, Faramaz
1993-01-01
Earth/space propagation research in the U.S. is tied to new developments in satellite communications. In spite of the fiber optics competition for trunked point-to-point communications, a host of emerging services are discovering the great potential of satellites for wireless communications. The application of satellites for radio communications appears to grow with a rapid pace in the areas of thin-route and mobile/personal communications. An important factor influencing the future of satellite communications is the congestion of the spectral slots at Ku- and lower bands. This heavy usage of the spectrum gives rise to conflicts among the users and consequently forces regulatory organizations to relocate frequency assignments, a decision that, for obvious reasons, is unpopular with the relocated service. Because of this frequency shortage, frequencies in Ka- and higher spectral bands are currently viewed as good candidates for Earth/space communications in the future. Therefore, new challenges in propagation research in the U.S. include the characterization of mobile/personal links and the investigation of higher bands for satellite communications. The plans and the challenges of the propagation research in the U.S. are briefly reviewed.
Flexible quality of service model for wireless body area sensor networks.
Liao, Yangzhe; Leeson, Mark S; Higgins, Matthew D
2016-03-01
Wireless body area sensor networks (WBASNs) are becoming an increasingly significant breakthrough technology for smart healthcare systems, enabling improved clinical decision-making in daily medical care. Recently, radio frequency ultra-wideband technology has developed substantially for physiological signal monitoring due to its advantages such as low-power consumption, high transmission data rate, and miniature antenna size. Applications of future ubiquitous healthcare systems offer the prospect of collecting human vital signs, early detection of abnormal medical conditions, real-time healthcare data transmission and remote telemedicine support. However, due to the technical constraints of sensor batteries, the supply of power is a major bottleneck for healthcare system design. Moreover, medium access control (MAC) needs to support reliable transmission links that allow sensors to transmit data safely and stably. In this Letter, the authors provide a flexible quality of service model for ad hoc networks that can support fast data transmission, adaptive schedule MAC control, and energy efficient ubiquitous WBASN networks. Results show that the proposed multi-hop communication ad hoc network model can balance information packet collisions and power consumption. Additionally, wireless communications link in WBASNs can effectively overcome multi-user interference and offer high transmission data rates for healthcare systems.
ORNL Experience and Challenges Facing Dynamic Wireless Power Charging of EV's
Miller, John M.; Jones, Perry T.; Li, Jan-Mou; ...
2015-05-21
As visionary as dynamic, or in-motion, wireless charging of electric vehicles appears the concept is well over a century old as this paper will show. This is because the concept of magnetic induction dates back to the pioneering work of physicist Michael Faraday in the early 19th century. Today wireless power transfer (WPT) is being standardized for stationary and quasi-stationary charging of electric vehicles (EV). The Society of Automotive Engineers (SAE) has undertaken the standardization of stationary charging and will make this public during 2016. In addition to this the IEEE-SA (Standards Activities) initiated standards development for EV?s in theirmore » EVWPT working group in 2012. This study introduces the many challenges facing EVWPT in not only high power transfer to a moving vehicle and energy management at a utility scale, but communications in a vehicle to infrastructure (V2I) environment and management of high data rates, ultra-low latency, and dealing with communications loss in dense urban areas. Finally, future concepts such as guideway powering of EV?s are presented to illustrate one technical trajectory EVWPT may take.« less
García Diego, Fernando-Juan; Esteban, Borja; Merello, Paloma
2015-01-01
Preventive conservation represents a working method and combination of techniques which helps in determining and controlling the deterioration process of cultural heritage in order to take the necessary actions before it occurs. It is acknowledged as important, both in terms of preserving and also reducing the cost of future conservation measures. Therefore, long-term monitoring of physical parameters influencing cultural heritage is necessary. In the context of Smart Cities, monitoring of cultural heritage is of interest in order to perform future comparative studies and load information into the cloud that will be useful for the conservation of other heritage sites. In this paper the development of an economical and appropriate acquisition data system combining wired and wireless communication, as well as third party hardware for increased versatility, is presented. The device allows monitoring a complex network of points with high sampling frequency, with wired sensors in a 1-wire bus and a wireless centralized system recording data for monitoring of physical parameters, as well as the future possibility of attaching an alarm system or sending data over the Internet. This has been possible with the development of three board’s designs and more than 5000 algorithm lines. System tests have shown an adequate system operation. PMID:25815447
García Diego, Fernando-Juan; Esteban, Borja; Merello, Paloma
2015-03-25
Preventive conservation represents a working method and combination of techniques which helps in determining and controlling the deterioration process of cultural heritage in order to take the necessary actions before it occurs. It is acknowledged as important, both in terms of preserving and also reducing the cost of future conservation measures. Therefore, long-term monitoring of physical parameters influencing cultural heritage is necessary. In the context of Smart Cities, monitoring of cultural heritage is of interest in order to perform future comparative studies and load information into the cloud that will be useful for the conservation of other heritage sites. In this paper the development of an economical and appropriate acquisition data system combining wired and wireless communication, as well as third party hardware for increased versatility, is presented. The device allows monitoring a complex network of points with high sampling frequency, with wired sensors in a 1-wire bus and a wireless centralized system recording data for monitoring of physical parameters, as well as the future possibility of attaching an alarm system or sending data over the Internet. This has been possible with the development of three board's designs and more than 5000 algorithm lines. System tests have shown an adequate system operation.
Implantable radio frequency identification sensors: wireless power and communication.
Hutchens, Chriswell; Rennaker, Robert L; Venkataraman, Srinivasan; Ahmed, Rehan; Liao, Ran; Ibrahim, Tamer
2011-01-01
There are significant technical challenges in the development of a fully implantable wirelessly powered neural interface. Challenges include wireless transmission of sufficient power to the implanted device to ensure reliable operation for decades without replacement, minimizing tissue heating, and adequate reliable communications bandwidth. Overcoming these challenges is essential for the development of implantable closed loop system for the treatment of disorders ranging from epilepsy, incontinence, stroke and spinal cord injury. We discuss the development of the wireless power, communication and control for a Radio-Frequency Identification Sensor (RFIDS) system with targeted power range for a 700 mV, 30 to 40 uA load attained at -2 dBm.
An Investigation on Ground Electrodes of Capacitive Coupling Human Body Communication.
Mao, Jingna; Yang, Huazhong; Zhao, Bo
2017-08-01
Utilizing the body surface as the signal transmission medium, capacitive coupling human body communication (CC-HBC) can achieve a much higher energy efficiency than conventional wireless communications in future wireless body area network (WBAN) applications. Under the CC-HBC scheme, the body surface serves as the forward signal path, whereas the backward path is formed by the capacitive coupling between the ground electrodes (GEs) of transmitter (TX) and receiver (RX). So the type of communication benefits from a low forward loss, while the backward loss depending on the GE coupling strength dominates the total transmission loss. However, none of the previous works have shown a complete research on the effects of GEs. In this paper, all kinds of GE effects on CC-HBC are investigated by both finite element method (FEM) analysis and human body measurement. We set the TX GE and RX GE at different heights, separation distances, and dimensions to study the corresponding influence on the overall signal transmission path loss. In addition, we also investigate the effects of GEs with different shapes and different TX-to-RX relative angles. Based on all the investigations, an analytical model is derived to evaluate the GE related variations of channel loss in CC-HBC.
Impact of wireless communication on multimedia application performance
NASA Astrophysics Data System (ADS)
Brown, Kevin A.
1999-01-01
Multimedia applications and specifically voice and video conferencing tools are widely used in business communications, and are quickly being discovered by the consumer market as well. At the same time, wireless communication services such as PCS voice and cellular data are becoming very popular, leading to the desire to deploy multimedia applications in the wireless environment. Wireless links, however, exhibit several characteristics which are different from traditional wired networks. These include: dynamically changing bandwidth due to mobile host movement in and out of cell where bandwidth is shared, high rates of packet corruption and subsequent loss, and frequent are lengthy disconnections due to obstacles, fading, and movement between cells. In addition, these effects are short-lived and difficult to reproduce, leading to a lack of adequate testing and analysis for applications used in wireless environments.
DOT National Transportation Integrated Search
2003-01-01
This guidebook was created to help unravel the confusing issues, terms, and options surrounding wireless communications, particularly as it involves commercially available communications services. The target audience consists of those middle and uppe...
NASA Lunar Base Wireless System Propagation Analysis
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.
2007-01-01
There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The results from this paper are important for the lunar wireless system link margin analysis in order to determine the limits on the reliable communication range, achievable data rate and RF coverage performance at planned lunar base work sites.
Energy scavenging sensors for ultra-low power sensor networks
NASA Astrophysics Data System (ADS)
O'Brien, Dominic C.; Liu, Jing Jing; Faulkner, Grahame E.; Vachiramon, Pithawat; Collins, Steve; Elston, Steven J.
2010-08-01
The 'internet of things' will require very low power wireless communications, preferably using sensors that scavenge power from their environment. Free space optics allows communications over long ranges, with simple transceivers at each end, offering the possibility of low energy consumption. In addition there can be sufficient energy in the communications beam to power simple terminals. In this paper we report experimental results from an architecture that achieves this. A base station that tracks sensors in its coverage area and communicates with them using low divergence optical beams is presented. Sensor nodes use modulated retro-reflectors to communicate with the base station, and the nodes are powered by the illuminating beam. The paper presents design and implementation details, as well as future directions for this work.
Morak, Jürgen; Kumpusch, Hannes; Hayn, Dieter; Modre-Osprian, Robert; Schreier, Günter
2012-01-01
Utilization of information and communication technologies such as mobile phones and wireless sensor networks becomes more and more common in the field of telemonitoring for chronic diseases. Providing elderly people with a mobile-phone-based patient terminal requires a barrier-free design of the overall user interface including the setup of wireless communication links to sensor devices. To easily manage the connection between a mobile phone and wireless sensor devices, a concept based on the combination of Bluetooth and near-field communication technology has been developed. It allows us initiating communication between two devices just by bringing them close together for a few seconds without manually configuring the communication link. This concept has been piloted with a sensor device and evaluated in terms of usability and feasibility. Results indicate that this solution has the potential to simplify the handling of wireless sensor networks for people with limited technical skills.
SHER: a colored petri net based random mobility model for wireless communications.
Khan, Naeem Akhtar; Ahmad, Farooq; Khan, Sher Afzal
2015-01-01
In wireless network research, simulation is the most imperative technique to investigate the network's behavior and validation. Wireless networks typically consist of mobile hosts; therefore, the degree of validation is influenced by the underlying mobility model, and synthetic models are implemented in simulators because real life traces are not widely available. In wireless communications, mobility is an integral part while the key role of a mobility model is to mimic the real life traveling patterns to study. The performance of routing protocols and mobility management strategies e.g. paging, registration and handoff is highly dependent to the selected mobility model. In this paper, we devise and evaluate the Show Home and Exclusive Regions (SHER), a novel two-dimensional (2-D) Colored Petri net (CPN) based formal random mobility model, which exhibits sociological behavior of a user. The model captures hotspots where a user frequently visits and spends time. Our solution eliminates six key issues of the random mobility models, i.e., sudden stops, memoryless movements, border effect, temporal dependency of velocity, pause time dependency, and speed decay in a single model. The proposed model is able to predict the future location of a mobile user and ultimately improves the performance of wireless communication networks. The model follows a uniform nodal distribution and is a mini simulator, which exhibits interesting mobility patterns. The model is also helpful to those who are not familiar with the formal modeling, and users can extract meaningful information with a single mouse-click. It is noteworthy that capturing dynamic mobility patterns through CPN is the most challenging and virulent activity of the presented research. Statistical and reachability analysis techniques are presented to elucidate and validate the performance of our proposed mobility model. The state space methods allow us to algorithmically derive the system behavior and rectify the errors of our proposed model.
SHER: A Colored Petri Net Based Random Mobility Model for Wireless Communications
Khan, Naeem Akhtar; Ahmad, Farooq; Khan, Sher Afzal
2015-01-01
In wireless network research, simulation is the most imperative technique to investigate the network’s behavior and validation. Wireless networks typically consist of mobile hosts; therefore, the degree of validation is influenced by the underlying mobility model, and synthetic models are implemented in simulators because real life traces are not widely available. In wireless communications, mobility is an integral part while the key role of a mobility model is to mimic the real life traveling patterns to study. The performance of routing protocols and mobility management strategies e.g. paging, registration and handoff is highly dependent to the selected mobility model. In this paper, we devise and evaluate the Show Home and Exclusive Regions (SHER), a novel two-dimensional (2-D) Colored Petri net (CPN) based formal random mobility model, which exhibits sociological behavior of a user. The model captures hotspots where a user frequently visits and spends time. Our solution eliminates six key issues of the random mobility models, i.e., sudden stops, memoryless movements, border effect, temporal dependency of velocity, pause time dependency, and speed decay in a single model. The proposed model is able to predict the future location of a mobile user and ultimately improves the performance of wireless communication networks. The model follows a uniform nodal distribution and is a mini simulator, which exhibits interesting mobility patterns. The model is also helpful to those who are not familiar with the formal modeling, and users can extract meaningful information with a single mouse-click. It is noteworthy that capturing dynamic mobility patterns through CPN is the most challenging and virulent activity of the presented research. Statistical and reachability analysis techniques are presented to elucidate and validate the performance of our proposed mobility model. The state space methods allow us to algorithmically derive the system behavior and rectify the errors of our proposed model. PMID:26267860
Statewide Cellular Coverage Map
DOT National Transportation Integrated Search
2002-02-01
The role of wireless communications in transportation is becoming increasingly important. Wireless communications are critical for many applications of Intelligent Transportation Systems (ITS) such as Automatic Vehicle Location (AVL) and Automated Co...
NASA Astrophysics Data System (ADS)
Kirov, Boian; Batchvarov, Ditchko; Krasteva, Rumiana; Boneva, Ani; Nedkov, Rumen; Klimov, Stanislav; Stainov, Gencho
The advance of the new wireless communications provides additional opportunities for spaceborne experiments. It is now possible to have one basic instrument collecting information from several sensors without burdensome harnessing among them. Besides, the wireless connection among various elements inside the instrument allows the hardware upgrading to be realized without changing globally the whole instrument. In complex experiments consisting of several instruments, the possibility is provided for continuous communication among the instruments, and for optimal choice of the appropriate mode of operation by the central processor. In the present paper, the LP instrument (electrostatic Langmuir probe) is described - an element of "Obstanovka" experiment designed to operate aboard the International Space Station, emphasizing on the use of wireless communication between the sensors and the main instrument.
Using Public Network Infrastructures for UAV Remote Sensing in Civilian Security Operations
2011-03-01
leveraging public wireless communication networks for UAV-based sensor networks with respect to existing constraints and user requirements...Detection with an Autonomous Micro UAV Mesh Network . In the near future police departments, fire brigades and other homeland security ...UAV-based sensor networks with respect to existing constraints and user requirements. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION
Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks.
Arunraja, Muruganantham; Malathi, Veluchamy; Sakthivel, Erulappan
2015-11-01
Wireless sensor networks are engaged in various data gathering applications. The major bottleneck in wireless data gathering systems is the finite energy of sensor nodes. By conserving the on board energy, the life span of wireless sensor network can be well extended. Data communication being the dominant energy consuming activity of wireless sensor network, data reduction can serve better in conserving the nodal energy. Spatial and temporal correlation among the sensor data is exploited to reduce the data communications. Data similar cluster formation is an effective way to exploit spatial correlation among the neighboring sensors. By sending only a subset of data and estimate the rest using this subset is the contemporary way of exploiting temporal correlation. In Distributed Similarity based Clustering and Compressed Forwarding for wireless sensor networks, we construct data similar iso-clusters with minimal communication overhead. The intra-cluster communication is reduced using adaptive-normalized least mean squares based dual prediction framework. The cluster head reduces the inter-cluster data payload using a lossless compressive forwarding technique. The proposed work achieves significant data reduction in both the intra-cluster and the inter-cluster communications, with the optimal data accuracy of collected data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Guo, Hua; Zheng, Yandong; Zhang, Xiyong; Li, Zhoujun
2016-01-01
In resource-constrained wireless networks, resources such as storage space and communication bandwidth are limited. To guarantee secure communication in resource-constrained wireless networks, group keys should be distributed to users. The self-healing group key distribution (SGKD) scheme is a promising cryptographic tool, which can be used to distribute and update the group key for the secure group communication over unreliable wireless networks. Among all known SGKD schemes, exponential arithmetic based SGKD (E-SGKD) schemes reduce the storage overhead to constant, thus is suitable for the the resource-constrained wireless networks. In this paper, we provide a new mechanism to achieve E-SGKD schemes with backward secrecy. We first propose a basic E-SGKD scheme based on a known polynomial-based SGKD, where it has optimal storage overhead while having no backward secrecy. To obtain the backward secrecy and reduce the communication overhead, we introduce a novel approach for message broadcasting and self-healing. Compared with other E-SGKD schemes, our new E-SGKD scheme has the optimal storage overhead, high communication efficiency and satisfactory security. The simulation results in Zigbee-based networks show that the proposed scheme is suitable for the resource-restrained wireless networks. Finally, we show the application of our proposed scheme. PMID:27136550
Wireless sensor systems for sense/decide/act/communicate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Nina M.; Cushner, Adam; Baker, James A.
2003-12-01
After 9/11, the United States (U.S.) was suddenly pushed into challenging situations they could no longer ignore as simple spectators. The War on Terrorism (WoT) was suddenly ignited and no one knows when this war will end. While the government is exploring many existing and potential technologies, the area of wireless Sensor networks (WSN) has emerged as a foundation for establish future national security. Unlike other technologies, WSN could provide virtual presence capabilities needed for precision awareness and response in military, intelligence, and homeland security applications. The Advance Concept Group (ACG) vision of Sense/Decide/Act/Communicate (SDAC) sensor system is an instantiationmore » of the WSN concept that takes a 'systems of systems' view. Each sensing nodes will exhibit the ability to: Sense the environment around them, Decide as a collective what the situation of their environment is, Act in an intelligent and coordinated manner in response to this situational determination, and Communicate their actions amongst each other and to a human command. This LDRD report provides a review of the research and development done to bring the SDAC vision closer to reality.« less
77 FR 64446 - Wireless Microphones Proceeding
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 15, 74, and 90 [WT Docket Nos. 08-166, 08-167, ET Docket No. 10-24; DA 12-1570] Wireless Microphones Proceeding AGENCY: Federal Communications Commission.... [ssquf] Federal Communications Commission's Web site: http://www.fcc.gov/cgb/ecfs2/ . Follow the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-21
... Devices, Portable Music and Data Processing Devices, Computers, and Components Thereof; Institution of... communication devices, portable music and data processing devices, computers, and components thereof by reason... certain wireless communication devices, portable music and data processing devices, computers, and...
Hyper-Spectral Networking Concept of Operations and Future Air Traffic Management Simulations
NASA Technical Reports Server (NTRS)
Davis, Paul; Boisvert, Benjamin
2017-01-01
The NASA sponsored Hyper-Spectral Communications and Networking for Air Traffic Management (ATM) (HSCNA) project is conducting research to improve the operational efficiency of the future National Airspace System (NAS) through diverse and secure multi-band, multi-mode, and millimeter-wave (mmWave) wireless links. Worldwide growth of air transportation and the coming of unmanned aircraft systems (UAS) will increase air traffic density and complexity. Safe coordination of aircraft will require more capable technologies for communications, navigation, and surveillance (CNS). The HSCNA project will provide a foundation for technology and operational concepts to accommodate a significantly greater number of networked aircraft. This paper describes two of the HSCNA projects technical challenges. The first technical challenge is to develop a multi-band networking concept of operations (ConOps) for use in multiple phases of flight and all communication link types. This ConOps will integrate the advanced technologies explored by the HSCNA project and future operational concepts into a harmonized vision of future NAS communications and networking. The second technical challenge discussed is to conduct simulations of future ATM operations using multi-bandmulti-mode networking and technologies. Large-scale simulations will assess the impact, compared to todays system, of the new and integrated networks and technologies under future air traffic demand.
47 CFR 1.951 - Duty to respond to official communications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Wireless Radio Services Applications and Proceedings Application Requirements and Procedures § 1.951 Duty to respond to official communications. Licensees or applicants in the Wireless Radio Services...
47 CFR 1.951 - Duty to respond to official communications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Wireless Radio Services Applications and Proceedings Application Requirements and Procedures § 1.951 Duty to respond to official communications. Licensees or applicants in the Wireless Radio Services...
NASA Astrophysics Data System (ADS)
Singh, Mehtab
2017-12-01
Optical wireless communication (OWC) systems also known as Free space optics (FSO) are capable of providing high channel bandwidth, high data transmission rates, low power consumption, and high security. OWC links are being considered in different applications such as inter-satellite links, terrestrial links, and inter-aircraft communication links. This paper investigates the impact of different system parameters such as transmission power level, operating wavelength, transmitter pointing error angle, bit transmission rate, atmospheric attenuation, antenna aperture diameter, geometric losses, the responsivity of the photodetector, and link range on the performance of inter-aircraft optical wireless communication link.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Han-Chung; Liu, Yung Y.; Lee, Hok L.
A system for monitoring a plurality radio frequency identification tags is described. The system uses at least one set of radio frequency identification tags. Each tag is attached to a container and includes several sensors for detecting physical conditions of said container. The system includes at least one autonomous intermediate reader in wireless communication with the frequency identification tags. The intermediate reader includes external wireless communication system, intermediate reader logic controller, and a self-contained rechargeable power supply. The system uses a central status reporting system in communication the intermediate reader.
Yau, Her-Terng; Hung, Tzu-Hsiang; Hsieh, Chia-Chun
2012-01-01
This study used the complex dynamic characteristics of chaotic systems and Bluetooth to explore the topic of wireless chaotic communication secrecy and develop a communication security system. The PID controller for chaos synchronization control was applied, and the optimum parameters of this PID controller were obtained using a Particle Swarm Optimization (PSO) algorithm. Bluetooth was used to realize wireless transmissions, and a chaotic wireless communication security system was developed in the design concept of a chaotic communication security system. The experimental results show that this scheme can be used successfully in image encryption.
Experimental validation of wireless communication with chaos.
Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S; Grebogi, Celso
2016-08-01
The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.
Experimental validation of wireless communication with chaos
NASA Astrophysics Data System (ADS)
Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S.; Grebogi, Celso
2016-08-01
The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.
Experimental validation of wireless communication with chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Hai-Peng; Bai, Chao; Liu, Jian
The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and anmore » integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.« less
A Study of Future Communications Concepts and Technologies for the National Airspace System-Part I
NASA Technical Reports Server (NTRS)
Ponchak, Denise S.; Apaza, Rafael D.; Wichgers, Joel M.; Haynes, Brian; Roy, Aloke
2013-01-01
The National Aviation and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present progress made in the studies and describe the communications challenges and opportunities that have been identified during the studies' first phase.
NASA Technical Reports Server (NTRS)
Ponchak, Denise S.; Apaza, Rafael D.; Haynes, Brian; Wichgers, Joel M.; Roy, Aloke
2014-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present progress made in the studies and describe the communications challenges and opportunities that have been identified during the studies' first year.
Performance analysis and improvement of WPAN MAC for home networks.
Mehta, Saurabh; Kwak, Kyung Sup
2010-01-01
The wireless personal area network (WPAN) is an emerging wireless technology for future short range indoor and outdoor communication applications. The IEEE 802.15.3 medium access control (MAC) is proposed to coordinate the access to the wireless medium among the competing devices, especially for short range and high data rate applications in home networks. In this paper we use analytical modeling to study the performance analysis of WPAN (IEEE 802.15.3) MAC in terms of throughput, efficient bandwidth utilization, and delay with various ACK policies under error channel condition. This allows us to introduce a K-Dly-ACK-AGG policy, payload size adjustment mechanism, and Improved Backoff algorithm to improve the performance of the WPAN MAC. Performance evaluation results demonstrate the impact of our improvements on network capacity. Moreover, these results can be very useful to WPAN application designers and protocol architects to easily and correctly implement WPAN for home networking.
Performance Analysis and Improvement of WPAN MAC for Home Networks
Mehta, Saurabh; Kwak, Kyung Sup
2010-01-01
The wireless personal area network (WPAN) is an emerging wireless technology for future short range indoor and outdoor communication applications. The IEEE 802.15.3 medium access control (MAC) is proposed to coordinate the access to the wireless medium among the competing devices, especially for short range and high data rate applications in home networks. In this paper we use analytical modeling to study the performance analysis of WPAN (IEEE 802.15.3) MAC in terms of throughput, efficient bandwidth utilization, and delay with various ACK policies under error channel condition. This allows us to introduce a K-Dly-ACK-AGG policy, payload size adjustment mechanism, and Improved Backoff algorithm to improve the performance of the WPAN MAC. Performance evaluation results demonstrate the impact of our improvements on network capacity. Moreover, these results can be very useful to WPAN application designers and protocol architects to easily and correctly implement WPAN for home networking. PMID:22319274
PalmCIS: A Wireless Handheld Application for Satisfying Clinician Information Needs
Chen, Elizabeth S.; Mendonça, Eneida A.; McKnight, Lawrence K.; Stetson, Peter D.; Lei, Jianbo; Cimino, James J.
2004-01-01
Wireless handheld technology provides new ways to deliver and present information. As with any technology, its unique features must be taken into consideration and its applications designed accordingly. In the clinical setting, availability of needed information can be crucial during the decision-making process. Preliminary studies performed at New York Presbyterian Hospital (NYPH) determined that there are inadequate access to information and ineffective communication among clinicians (potential proximal causes of medical errors). In response to these findings, the authors have been developing extensions to their Web-based clinical information system including PalmCIS, an application that provides access to needed patient information via a wireless personal digital assistant (PDA). The focus was on achieving end-to-end security and developing a highly usable system. This report discusses the motivation behind PalmCIS, design and development of the system, and future directions. PMID:14527976
Invited Article: Channel performance for indoor and outdoor terahertz wireless links
NASA Astrophysics Data System (ADS)
Ma, Jianjun; Shrestha, Rabi; Moeller, Lothar; Mittleman, Daniel M.
2018-05-01
One of the most exciting future applications of terahertz technology is in the area of wireless communications. As 5G systems incorporating a standard for millimeter-wave wireless links approach commercial roll-out, it is becoming clear that even this new infrastructure will not be sufficient to keep pace with the rapidly increasing global demand for bandwidth. One favorable solution that is attracting increasing attention for subsequent generations of wireless technology is to use higher frequencies, above 100 GHz. The implementation of such links will require significant advances in hardware, algorithms, and architecture. Although numerous research groups are exploring aspects of this challenging problem, many basic questions remain unaddressed. Here, we present an experimental effort to characterize THz wireless links in both indoor and outdoor environments. We report measurements at 100, 200, 300, and 400 GHz, using a link with a data rate of 1 Gbit/s. We demonstrate both line-of-sight and non-line-of-sight (specular reflection) links off of interior building walls. This work represents a first step to establish the feasibility of using THz carrier waves for data transmission in diverse situations and environments.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-31
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 22 and 90 [DA 12-643] Wireless Telecommunications... Applications for 470-512 MHz Spectrum AGENCY: Federal Communications Commission. ACTION: Final rule; limited suspension of specific applications. SUMMARY: In this document, the Federal Communications Commission...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of... communication devices, portable music and data processing devices, computers and components thereof by reason of...
The Challenge of Wireless Reliability and Coexistence.
Berger, H Stephen
2016-09-01
Wireless communication plays an increasingly important role in healthcare delivery. This further heightens the importance of wireless reliability, but quantifying wireless reliability is a complex and difficult challenge. Understanding the risks that accompany the many benefits of wireless communication should be a component of overall risk management. The emerging trend of using sensors and other device-to-device communications, as part of the emerging Internet of Things concept, is evident in healthcare delivery. The trend increases both the importance and complexity of this challenge. As with most system problems, finding a solution requires breaking down the problem into manageable steps. Understanding the operational reliability of a new wireless device and its supporting system requires developing solid, quantified answers to three questions: 1) How well can this new device and its system operate in a spectral environment where many other wireless devices are also operating? 2) What is the spectral environment in which this device and its system are expected to operate? Are the risks and reliability in its operating environment acceptable? 3) How might the new device and its system affect other devices and systems already in use? When operated under an insightful risk management process, wireless technology can be safely implemented, resulting in improved delivery of care.
Energy scavenging for long-term deployable wireless sensor networks.
Mathúna, Cian O; O'Donnell, Terence; Martinez-Catala, Rafael V; Rohan, James; O'Flynn, Brendan
2008-05-15
The coming decade will see the rapid emergence of low cost, intelligent, wireless sensors and their widespread deployment throughout our environment. While wearable systems will operate over communications ranges of less than a meter, building management systems will operate with inter-node communications ranges of the order of meters to tens of meters and remote environmental monitoring systems will require communications systems and associated energy systems that will allow reliable operation over kilometers. Autonomous power should allow wireless sensor nodes to operate in a "deploy and forget" mode. The use of rechargeable battery technology is problematic due to battery lifetime issues related to node power budget, battery self-discharge, number of recharge cycles and long-term environmental impact. Duty cycling of wireless sensor nodes with long "SLEEP" times minimises energy usage. A case study of a multi-sensor, wireless, building management system operating using the Zigbee protocol demonstrates that, even with a 1 min cycle time for an 864 ms "ACTIVE" mode, the sensor module is already in SLEEP mode for almost 99% of the time. For a 20-min cycle time, the energy utilisation in SLEEP mode exceeds the ACTIVE mode energy by almost a factor of three and thus dominates the module energy utilisation thereby providing the ultimate limit to the power system lifetime. Energy harvesting techniques can deliver energy densities of 7.5 mW/cm(2) from outdoor solar, 100 microW/cm(2) from indoor lighting, 100 microW/cm(3) from vibrational energy and 60 microW/cm(2) from thermal energy typically found in a building environment. A truly autonomous, "deploy and forget" battery-less system can be achieved by scaling the energy harvesting system to provide all the system energy needs. In the building management case study discussed, for duty cycles of less than 0.07% (i.e. in ACTIVE mode for 0.864 s every 20 min), energy harvester device dimensions of approximately 2 cm on a side would be sufficient to supply the complete wireless sensor node energy. Key research challenges to be addressed to deliver future, remote, wireless, chemo-biosensing systems include the development of low cost, low-power sensors, miniaturised fluidic transport systems, anti-bio-fouling sensor surfaces, sensor calibration, reliable and robust system packaging, as well as associated energy delivery systems and energy budget management.
Hanada, Eisuke; Kudou, Takato; Tsumoto, Shusaku
2013-06-01
Wireless technologies as part of the data communication infrastructure of modern hospitals are being rapidly introduced. Even though there are concerns about problems associated with wireless communication security, the demand is remarkably large. In addition, insuring that the network is always available is important. Herein, we discuss security countermeasures and points to insure availability that must be taken to insure safe hospital/business use of wireless LAN systems, referring to the procedures introduced at Shimane University Hospital. Security countermeasures differ according to their purpose, such as for preventing illegal use or insuring availability, both of which are discussed. It is our hope that this information will assist others in their efforts to insure safe implementation of wireless LAN systems, especially in hospitals where they have the potential to greatly improve information sharing and patient safety.
Wireless communication with implanted medical devices using the conductive properties of the body.
Ferguson, John E; Redish, A David
2011-07-01
Many medical devices that are implanted in the body use wires or wireless radiofrequency telemetry to communicate with circuitry outside the body. However, the wires are a common source of surgical complications, including breakage, infection and electrical noise. In addition, radiofrequency telemetry requires large amounts of power and results in low-efficiency transmission through biological tissue. As an alternative, the conductive properties of the body can be used to enable wireless communication with implanted devices. In this article, several methods of intrabody communication are described and compared. In addition to reducing the complications that occur with current implantable medical devices, intrabody communication can enable novel types of miniature devices for research and clinical applications.
Wireless communication and spectrum sharing for public safety in the United States.
Kapucu, Naim; Haupt, Brittany; Yuksel, Murat
2016-01-01
With the vast number of fragmented, independent public safety wireless communication systems, the United States is encountering major challenges with enhancing interoperability and effectively managing costs while sharing limited availability of critical spectrum. The traditional hierarchical approach of emergency management does not always allow for needed flexibility and is not a mandate. A national system would reduce equipment needs, increase effectiveness, and enrich quality and coordination of response; however, it is dependent on integrating the commercial market. This article discusses components of an ideal national wireless public safety system consists along with key policies in regulating wireless communication and spectrum sharing for public safety and challenges for implementation.
Advanced wireless mobile collaborative sensing network for tactical and strategic missions
NASA Astrophysics Data System (ADS)
Xu, Hao
2017-05-01
In this paper, an advanced wireless mobile collaborative sensing network will be developed. Through properly combining wireless sensor network, emerging mobile robots and multi-antenna sensing/communication techniques, we could demonstrate superiority of developed sensing network. To be concrete, heterogeneous mobile robots including unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) are equipped with multi-model sensors and wireless transceiver antennas. Through real-time collaborative formation control, multiple mobile robots can team the best formation that can provide most accurate sensing results. Also, formatting multiple mobile robots can also construct a multiple-input multiple-output (MIMO) communication system that can provide a reliable and high performance communication network.
ERIC Educational Resources Information Center
Terasawa, Ikuo
2016-01-01
The challenge study is a project based learning curriculum at Technical High School aimed at the construction of a wireless communication system. The first period was engineering issues in the construction of an artificial satellite and the second period was a positional locating system based on the general purpose wire-less device--ZigBee device.…
Network Coding Opportunities for Wireless Grids Formed by Mobile Devices
NASA Astrophysics Data System (ADS)
Nielsen, Karsten Fyhn; Madsen, Tatiana K.; Fitzek, Frank H. P.
Wireless grids have potential in sharing communication, computa-tional and storage resources making these networks more powerful, more robust, and less cost intensive. However, to enjoy the benefits of cooperative resource sharing, a number of issues should be addressed and the cost of the wireless link should be taken into account. We focus on the question how nodes can efficiently communicate and distribute data in a wireless grid. We show the potential of a network coding approach when nodes have the possibility to combine packets thus increasing the amount of information per transmission. Our implementation demonstrates the feasibility of network coding for wireless grids formed by mobile devices.
Technology of short-distance wireless communication and its application based on equipment support
NASA Astrophysics Data System (ADS)
Yu, Yang; Zheng, Liping; Zhu, Jianjie; Cao, Yingxiu; Hu, Bei
2018-04-01
This paper briefly introduces some common short-region wireless communication technologies, comprehensively compares the application characteristics of each technology, and summarizes the application prospect of these technologies in equipment support.
Managing healthcare information using short message service (SMS) in wireless broadband networks
NASA Astrophysics Data System (ADS)
Documet, Jorge; Tsao, Sinchai; Documet, Luis; Liu, Brent J.; Zhou, Zheng; Joseph, Anika O.
2007-03-01
Due to the ubiquity of cell phones, SMS (Short Message Service) has become an ideal means to wirelessly manage a Healthcare environment and in particular PACS (Picture Archival and Communications System) data. SMS is a flexible and mobile method for real-time access and control of Healthcare information systems such as HIS (Hospital Information System) or PACS. Unlike conventional wireless access methods, SMS' mobility is not limited by the presence of a WiFi network or any other localized signal. It provides a simple, reliable yet flexible method to communicate with an information system. In addition, SMS services are widely available for low costs from cellular phone service providers and allows for more mobility than other services such as wireless internet. This paper aims to describe a use case of SMS as a means of remotely communicating with a PACS server. Remote access to a PACS server and its Query-Retrieve services allows for a more convenient, flexible and streamlined radiology workflow. Wireless access methods such as SMS will increase dedicated PACS workstation availability for more specialized DICOM (Digital Imaging and Communications in Medicine) workflow management. This implementation will address potential security, performance and cost issues of applying SMS as part of a healthcare information management system. This is in an effort to design a wireless communication system with optimal mobility and flexibility at minimum material and time costs.
Ubiquitous wireless ECG recording: a powerful tool physicians should embrace.
Saxon, Leslie A
2013-04-01
The use of smart phones has increased dramatically and there are nearly a billion users on 3G and 4G networks worldwide. Nearly 60% of the U.S. population uses smart phones to access the internet, and smart phone sales now surpass those of desktop and laptop computers. The speed of wireless communication technology on 3G and 4G networks and the widespread adoption and use of iOS equipped smart phones (Apple Inc., Cupertino, CA, USA) provide infrastructure for the transmission of wireless biomedical data, including ECG data. These technologies provide an unprecedented opportunity for physicians to continually access data that can be used to detect issues before symptoms occur or to have definitive data when symptoms are present. The technology also greatly empowers and enables the possibility for unprecedented patient participation in their own medical education and health status as well as that of their social network. As patient advocates, physicians and particularly cardiac electrophysiologists should embrace the future and promise of wireless ECG recording, a technology solution that can truly scale across the global population. © 2013 Wiley Periodicals, Inc.
Body area network--a key infrastructure element for patient-centered telemedicine.
Norgall, Thomas; Schmidt, Robert; von der Grün, Thomas
2004-01-01
The Body Area Network (BAN) extends the range of existing wireless network technologies by an ultra-low range, ultra-low power network solution optimised for long-term or continuous healthcare applications. It enables wireless radio communication between several miniaturised, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN components via usual network infrastructure. The BAN network protocol maintains dynamic ad-hoc network configuration scenarios and co-existence of multiple networks.BAN is expected to become a basic infrastructure element for electronic health services: By integrating patient-attached sensors and mobile actor units, distributed information and data processing systems, the range of medical workflow can be extended to include applications like wireless multi-parameter patient monitoring and therapy support. Beyond clinical use and professional disease management environments, private personal health assistance scenarios (without financial reimbursement by health agencies / insurance companies) enable a wide range of applications and services in future pervasive computing and networking environments.
Proactive AP Selection Method Considering the Radio Interference Environment
NASA Astrophysics Data System (ADS)
Taenaka, Yuzo; Kashihara, Shigeru; Tsukamoto, Kazuya; Yamaguchi, Suguru; Oie, Yuji
In the near future, wireless local area networks (WLANs) will overlap to provide continuous coverage over a wide area. In such ubiquitous WLANs, a mobile node (MN) moving freely between multiple access points (APs) requires not only permanent access to the Internet but also continuous communication quality during handover. In order to satisfy these requirements, an MN needs to (1) select an AP with better performance and (2) execute a handover seamlessly. To satisfy requirement (2), we proposed a seamless handover method in a previous study. Moreover, in order to achieve (1), the Received Signal Strength Indicator (RSSI) is usually employed to measure wireless link quality in a WLAN system. However, in a real environment, especially if APs are densely situated, it is difficult to always select an AP with better performance based on only the RSSI. This is because the RSSI alone cannot detect the degradation of communication quality due to radio interference. Moreover, it is important that AP selection is completed only on an MN, because we can assume that, in ubiquitous WLANs, various organizations or operators will manage APs. Hence, we cannot modify the APs for AP selection. To overcome these difficulties, in the present paper, we propose and implement a proactive AP selection method considering wireless link condition based on the number of frame retransmissions in addition to the RSSI. In the evaluation, we show that the proposed AP selection method can appropriately select an AP with good wireless link quality, i.e., high RSSI and low radio interference.
Broadband and High power Reactive Jamming Resilient Wireless Communication
2017-10-21
Broadband and High -power Reactive Jamming Resilient Wireless Communication The views, opinions and/or findings contained in this report are those of... available in extremely hostile environments, where FHSS and DSSS are completely defeated by a broadband and high -power reactive jammer. b. Wireless...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS
Optical wireless communication in data centers
NASA Astrophysics Data System (ADS)
Arnon, Shlomi
2018-01-01
In the last decade data centers have become a crucial element in modern human society. However, to keep pace with internet data rate growth, new technologies supporting data center should develop. Integration of optical wireless communication (OWC) in data centers is one of the proposed technologies as augmented technology to the fiber network. One implementation of the OWC technology is deployment of optical wireless transceiver on top of the existing cable/fiber network as extension to the top of rack (TOR) switch; in this way, a dynamic and flexible network is created. Optical wireless communication could reduce energy consumption, increase the data rate, reduce the communication latency, increase flexibility and scalability, and reduce maintenance time and cost, in comparison to extra fiber network deployment. In this paper we review up to date literature in the field, propose an implementation scheme of OWC network, discuss ways to reduce energy consumption by parallel link communication and report preliminary measurement result of university data center environment.
Wireless Computers: Radio and Light Communications May Bring New Freedom to Computing.
ERIC Educational Resources Information Center
Hartmann, Thom
1984-01-01
Describes systems which use wireless terminals to communicate with mainframe computers or minicomputers via radio band, discusses their limitations, and gives examples of networks using such systems. The use of communications satellites to increase their range and the possibility of using light beams to transmit data are also discussed. (MBR)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-08
... Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of... within the United States after importation of certain wireless communication devices, portable music and... music and data processing devices, computers and components thereof that infringe one or more of claim...
NASA Astrophysics Data System (ADS)
Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung
2010-12-01
This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.
2018-01-01
As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation. PMID:29329248
Jung, Haejoon; Lee, In-Ho
2018-01-12
As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.
Anti-jamming Technology in Small Satellite Communication
NASA Astrophysics Data System (ADS)
Jia, Zixiang
2018-01-01
Small satellite communication has an increasingly important position among the wireless communications due to the advantages of low cost and high technology. However, in view of the case that its relay station stays outside the earth, its uplink may face interference from malicious signal frequently. Here this paper classified enumerates existing interferences, and proposes channel signals as main interference by comparison. Based on a basic digital communication process, then this paper discusses the possible anti - jamming techniques that commonly be realized at all stages in diverse processes, and comes to the conclusion that regarding the spread spectrum technology and antenna anti-jamming technology as fundamental direction of future development. This work provides possible thought for the design of new small satellite communication system with the coexistence of multi - technologies. This basic popular science can be consulted for people interested in small satellite communication.
Towards secure quantum key distribution protocol for wireless LANs: a hybrid approach
NASA Astrophysics Data System (ADS)
Naik, R. Lalu; Reddy, P. Chenna
2015-12-01
The primary goals of security such as authentication, confidentiality, integrity and non-repudiation in communication networks can be achieved with secure key distribution. Quantum mechanisms are highly secure means of distributing secret keys as they are unconditionally secure. Quantum key distribution protocols can effectively prevent various attacks in the quantum channel, while classical cryptography is efficient in authentication and verification of secret keys. By combining both quantum cryptography and classical cryptography, security of communications over networks can be leveraged. Hwang, Lee and Li exploited the merits of both cryptographic paradigms for provably secure communications to prevent replay, man-in-the-middle, and passive attacks. In this paper, we propose a new scheme with the combination of quantum cryptography and classical cryptography for 802.11i wireless LANs. Since quantum cryptography is premature in wireless networks, our work is a significant step forward toward securing communications in wireless networks. Our scheme is known as hybrid quantum key distribution protocol. Our analytical results revealed that the proposed scheme is provably secure for wireless networks.
Flexible Film Bulk Acoustic Wave Filters toward Radiofrequency Wireless Communication.
Jiang, Yuan; Zhao, Yuan; Zhang, Lin; Liu, Bohua; Li, Quanning; Zhang, Menglun; Pang, Wei
2018-03-30
This paper presents a flexible radiofrequency filter with a central frequency of 2.4 GHz based on film bulk acoustic wave resonators (FBARs). The flexible filter consists of five air-gap type FBARs, each comprised of an aluminum nitride piezoelectric thin film sandwiched between two thin-film electrodes. By transfer printing the inorganic film structure from a silicon wafer to an ultrathin polyimide substrate, high electrical performance and mechanical flexibility are achieved. The filter has a peak insertion loss of -1.14 dB, a 3 dB bandwidth of 107 MHz, and a temperature coefficient of frequency of -27 ppm °C -1 . The passband and roll-off characteristics of the flexible filter are comparable with silicon-based commercial products. No electrical performance degradation and mechanical failure occur under bending tests with a bending radius of 2.5 mm or after 100 bending cycles. The flexible FBAR filters are believed to be promising candidates for future flexible wireless communication systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multi-carrier transmission for hybrid radio frequency with optical wireless communications
NASA Astrophysics Data System (ADS)
Wang, Gang; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik; Nguyen, Tien M.
2015-05-01
Radio frequency (RF) wireless communication is reaching its capacity to support large data rate transmissions due to hardware constraints (e.g., silicon processes), software strategies (e.g., information theory), and consumer desire for timely large file exchanges (e.g., big data and mobile cloud computing). A high transmission rate performance must keep pace with the generated huge volumes of data for real-time processing. Integrated RF and optical wireless communications (RF/OWC) could be the next generation transmission technology to satisfy both the increased data rate exchange and the communications constraints. However, with the promising benefits of RF/OWC, challenges remain to fully develop hybrid RF with wireless optical communications such as uniform waveform design for information transmission and detection. In this paper, an orthogonal frequency division multiplexing (OFDM) transmission scheme, which widely employed in RF communications, is developed for optical communications. The traditional high peak-to-average power ratio (PAPR) in OFDM is reduced to improve system performance. The proposed multi-carrier waveform is evaluated with a frequency-selective fading channel. The results demonstrate that bit error rate (BER) performance of our proposed optical OFDM transmission technique outperforms the traditional OWC on-off keying (OOK) transmission scheme.
Improving management performance of P2PSIP for mobile sensing in wireless overlays.
Sendín-Raña, Pablo; González-Castaño, Francisco Javier; Gómez-Cuba, Felipe; Asorey-Cacheda, Rafael; Pousada-Carballo, José María
2013-11-08
Future wireless communications are heading towards an all-Internet Protocol (all-IP) design, and will rely on the Session Initiation Protocol (SIP) to manage services, such as voice over IP (VoIP). The centralized architecture of traditional SIP has numerous disadvantages for mobile ad hoc services that may be possibly overcome by advanced peer-to-peer (P2P) technologies initially developed for the Internet. In the context of mobile sensing, P2PSIP protocols facilitate decentralized and fast communications with sensor-enabled terminals. Nevertheless, in order to make P2PSIP protocols feasible in mobile sensing networks, it is necessary to minimize overhead transmissions for signaling purposes, which reduces the battery lifetime. In this paper, we present a solution to improve the management of wireless overlay networks by defining an adaptive algorithm for the calculation of refresh time. The main advantage of the proposed algorithm is that it takes into account new parameters, such as the delay between nodes, and provides satisfactory performance and reliability levels at a much lower management overhead than previous approaches. The proposed solution can be applied to many structured P2P overlays or P2PSIP protocols. We evaluate it with Kademlia-based distributed hash tables (DHT) and dSIP.
Improving Management Performance of P2PSIP for Mobile Sensing in Wireless Overlays
Sendín-Raña, Pablo; González-Castaño, Francisco Javier; Gómez-Cuba, Felipe; Asorey-Cacheda, Rafael; Pousada-Carballo, José María
2013-01-01
Future wireless communications are heading towards an all-Internet Protocol (all-IP) design, and will rely on the Session Initiation Protocol (SIP) to manage services, such as voice over IP (VoIP). The centralized architecture of traditional SIP has numerous disadvantages for mobile ad hoc services that may be possibly overcome by advanced peer-to-peer (P2P) technologies initially developed for the Internet. In the context of mobile sensing, P2PSIP protocols facilitate decentralized and fast communications with sensor-enabled terminals. Nevertheless, in order to make P2PSIP protocols feasible in mobile sensing networks, it is necessary to minimize overhead transmissions for signaling purposes, which reduces the battery lifetime. In this paper, we present a solution to improve the management of wireless overlay networks by defining an adaptive algorithm for the calculation of refresh time. The main advantage of the proposed algorithm is that it takes into account new parameters, such as the delay between nodes, and provides satisfactory performance and reliability levels at a much lower management overhead than previous approaches. The proposed solution can be applied to many structured P2P overlays or P2PSIP protocols. We evaluate it with Kademlia-based distributed hash tables (DHT) and dSIP PMID:24217358
47 CFR 1.915 - General application requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... all Wireless Radio Services, station licenses, as defined in section 308(a) of the Communications Act... 1.915 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless Radio Services Applications and Proceedings Application Requirements and Procedures § 1.915 General...
47 CFR 1.915 - General application requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... all Wireless Radio Services, station licenses, as defined in section 308(a) of the Communications Act... 1.915 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless Radio Services Applications and Proceedings Application Requirements and Procedures § 1.915 General...
Unattended Ground Sensors for Expeditionary Force 21 Intelligence Collections
2015-06-01
tamper. 55 Size: 3 ½ x 3 ½ x 1 ¾ inches. Wireless RF networked communications. Built in seismic, acoustic , magnetic, and PIR sensors ...Marine Corps VHF Very High Frequency WSN Wireless Sensor Network xvi THIS PAGE INTENTIONALLY LEFT BLANK xvii ACKNOWLEDGMENTS I want...that allow digital wireless RF communications from each sensor interfaced into a variety of network architectures to relay critical data to a final
NASA Astrophysics Data System (ADS)
Huang, Xu-Hong; Lu, Hai-Han; Donati, Silvano; Li, Chung-Yi; Wang, Yun-Chieh; Jheng, Yu-Bo; Chang, Jen-Chieh
2018-07-01
Two-way wireless-over-fiber and free-space optical (FSO)-over-fiber communication systems, with an optical carrier transmission for a hybrid 10 Gbps baseband data stream, are proposed and practically demonstrated. 10 Gbps/50 GHz and 10 Gbps/100 GHz millimeter-wave data signal transmissions are also proposed and practically demonstrated. An optical carrier with a 10 Gbps baseband data stream is delivered via a 50 km single-mode fiber transportation to effectively lower dispersion-induced limitation due to fiber links and distortion produced by beating among multiple optical sidebands. To our understanding, this experiment is foremost in employing an optical carrier transmission approach to a two-way wireless-over-fiber and FSO-over-fiber communication system to suppress fiber dispersion and distortion effectively. Bit error rate performs well for downlink and uplink deliveries via a 50 km single-mode fiber transportation with a 100 m FSO link/5 m RF wireless delivery. The offered two-way wireless-over-fiber and FSO-over-fiber communication system with an optical carrier transmission is a promising option. It should be interesting for signifying the progress in the integration of long-haul fiber-based trunks and short-range RF/optical wireless link-based branches.
NASA Astrophysics Data System (ADS)
Dragos, Kosmas; Smarsly, Kay
2016-04-01
System identification has been employed in numerous structural health monitoring (SHM) applications. Traditional system identification methods usually rely on centralized processing of structural response data to extract information on structural parameters. However, in wireless SHM systems the centralized processing of structural response data introduces a significant communication bottleneck. Exploiting the merits of decentralization and on-board processing power of wireless SHM systems, many system identification methods have been successfully implemented in wireless sensor networks. While several system identification approaches for wireless SHM systems have been proposed, little attention has been paid to obtaining information on the physical parameters (e.g. stiffness, damping) of the monitored structure. This paper presents a hybrid system identification methodology suitable for wireless sensor networks based on the principles of component mode synthesis (dynamic substructuring). A numerical model of the monitored structure is embedded into the wireless sensor nodes in a distributed manner, i.e. the entire model is segmented into sub-models, each embedded into one sensor node corresponding to the substructure the sensor node is assigned to. The parameters of each sub-model are estimated by extracting local mode shapes and by applying the equations of the Craig-Bampton method on dynamic substructuring. The proposed methodology is validated in a laboratory test conducted on a four-story frame structure to demonstrate the ability of the methodology to yield accurate estimates of stiffness parameters. Finally, the test results are discussed and an outlook on future research directions is provided.
The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey
Costa, Daniel G.; Guedes, Luiz Affonso
2010-01-01
Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks. PMID:22163651
[Wireless human body communication technology].
Sun, Lei; Zhang, Xiaojuan
2014-12-01
The Wireless Body Area Network (WBAN) is a key part of the wearable monitoring technologies, which has many communication technologies to choose from, like Bluetooth, ZigBee, Ultra Wideband, and Wireless Human Body Communication (WHBC). As for the WHBC developed in recent years, it is worthy to be further studied. The WHBC has a strong momentum of growth and a natural advantage in the formation of WBAN. In this paper, we first briefly describe the technical background of WHBC, then introduce theoretical model of human-channel communication and digital transmission machine based on human channel. And finally we analyze various of the interference of the WHBC and show the AFH (Adaptive Frequency Hopping) technology which can effectively deal with the interference.
An underwater optical wireless communication network
NASA Astrophysics Data System (ADS)
Arnon, Shlomi
2009-08-01
The growing need for underwater observation and sub-sea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, bio-geochemical, evolutionary and ecological changes in the sea, ocean and lake environments and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. We present models of three kinds of optical wireless communication links a) a line-of-sight link, b) a modulating retro-reflector link and c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered lighted it was possible to mitigate this decrease in some cases. We conclude from the analysis that a high data rate underwater optical wireless network is a feasible solution for emerging applications such as UUV to UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.
Underwater optical wireless communication network
NASA Astrophysics Data System (ADS)
Arnon, Shlomi
2010-01-01
The growing need for underwater observation and subsea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, biogeochemical, evolutionary, and ecological changes in the sea, ocean, and lake environments, and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. Models are presented for three kinds of optical wireless communication links: (a) a line-of-sight link, (b) a modulating retroreflector link, and (c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered light it was possible to mitigate this decrease in some cases. It is concluded from the analysis that a high-data-rate underwater optical wireless network is a feasible solution for emerging applications such as UUV-to-UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.
NASA Astrophysics Data System (ADS)
Khursheed, Khursheed; Imran, Muhammad; Ahmad, Naeem; O'Nils, Mattias
2012-06-01
Wireless Visual Sensor Network (WVSN) is an emerging field which combines image sensor, on board computation unit, communication component and energy source. Compared to the traditional wireless sensor network, which operates on one dimensional data, such as temperature, pressure values etc., WVSN operates on two dimensional data (images) which requires higher processing power and communication bandwidth. Normally, WVSNs are deployed in areas where installation of wired solutions is not feasible. The energy budget in these networks is limited to the batteries, because of the wireless nature of the application. Due to the limited availability of energy, the processing at Visual Sensor Nodes (VSN) and communication from VSN to server should consume as low energy as possible. Transmission of raw images wirelessly consumes a lot of energy and requires higher communication bandwidth. Data compression methods reduce data efficiently and hence will be effective in reducing communication cost in WVSN. In this paper, we have compared the compression efficiency and complexity of six well known bi-level image compression methods. The focus is to determine the compression algorithms which can efficiently compress bi-level images and their computational complexity is suitable for computational platform used in WVSNs. These results can be used as a road map for selection of compression methods for different sets of constraints in WVSN.
ERIC Educational Resources Information Center
McNeal, McKenzie, III.
2012-01-01
Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…
ERIC Educational Resources Information Center
Fry, Joan Marian; Hin, Michael Koh Teik
2006-01-01
In technology-savvy Singapore, wireless communication devices were used over four weekly lessons to facilitate communication between pairs of student teachers (STs). In the naturalistic setting of a neighbourhood primary school, one ST used the technology to coach the other who was engaged in teaching. (Both were familiar with the lesson plan and…
Energy scavenging system by acoustic wave and integrated wireless communication
NASA Astrophysics Data System (ADS)
Kim, Albert
The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..
Underwater fiber-wireless communication with a passive front end
NASA Astrophysics Data System (ADS)
Xu, Jing; Sun, Bin; Lyu, Weichao; Kong, Meiwei; Sarwar, Rohail; Han, Jun; Zhang, Wei; Deng, Ning
2017-11-01
We propose and experimentally demonstrate a novel concept on underwater fiber-wireless (Fi-Wi) communication system with a fully passive wireless front end. A low-cost step-index (SI) plastic optical fiber (POF) together with a passive collimating lens at the front end composes the underwater Fi-Wi architecture. We have achieved a 1.71-Gb/s transmission at a mean BER of 4.97 × 10-3 (1.30 × 10-3 when using power loading) over a 50-m SI-POF and 2-m underwater wireless channel using orthogonal frequency division multiplexing (OFDM). Although the wireless part is very short, it actually plays a crucial role in practical underwater implementation, especially in deep sea. Compared with the wired solution (e.g. using a 52-m POF cable without the UWOC part), the proposed underwater Fi-Wi scheme can save optical wet-mate connectors that are sophisticated, very expensive and difficult to install in deep ocean. By combining high-capacity robust POF with the mobility and ubiquity of underwater wireless optical communication (UWOC), the proposed underwater Fi-Wi technology will find wide application in ocean exploration.
Roadside-based communication system and method
NASA Technical Reports Server (NTRS)
Bachelder, Aaron D. (Inventor)
2007-01-01
A roadside-based communication system providing backup communication between emergency mobile units and emergency command centers. In the event of failure of a primary communication, the mobile units transmit wireless messages to nearby roadside controllers that may take the form of intersection controllers. The intersection controllers receive the wireless messages, convert the messages into standard digital streams, and transmit the digital streams along a citywide network to a destination intersection or command center.
Applications of Time-Reversal Processing for Planetary Surface Communications
NASA Technical Reports Server (NTRS)
Barton, Richard J.
2007-01-01
Due to the power constraints imposed on wireless sensor and communication networks deployed on a planetary surface during exploration, energy efficient transfer of data becomes a critical issue. In situations where groups of nodes within a network are located in relatively close proximity, cooperative communication techniques can be utilized to improve the range, data rate, power efficiency, and lifetime of the network. In particular, if the point-to-point communication channels on the network are well modeled as frequency non-selective, distributed or cooperative beamforming can employed. For frequency-selective channels, beamforming itself is not generally appropriate, but a natural generalization of it, time-reversal communication (TRC), can still be effective. Time-reversal processing has been proposed and studied previously for other applications, including acoustical imaging, electromagnetic imaging, underwater acoustic communication, and wireless communication channels. In this paper, we study both the theoretical advantages and the experimental performance of cooperative TRC for wireless communication on planetary surfaces. We give a brief introduction to TRC and present several scenarios where TRC could be profitably employed during planetary exploration. We also present simulation results illustrating the performance of cooperative TRC employed in a complex multipath environment and discuss the optimality of cooperative TRC for data aggregation in wireless sensor networks
Acemind new indoor full duplex optical wireless communication prototype
NASA Astrophysics Data System (ADS)
Bouchet, Olivier; Perrufel, Micheline; Topsu, Suat; Guan, Hongyu
2016-09-01
For over a century and Mr. Guglielmo Marconi invention, systems using radio waves have controlled over wireless telecommunication solutions; from Amplitude Modulation (AM) radio products to satellite communications for instance. But beyond an increasingly negative opinion face to radio waves and radio spectrum availability more and more reduced; there is an unprecedented opportunity with LED installation in displays and lighting to provide optical wireless communication solutions. As a result, technologically mature solutions are already commercially available for services such as Location Based Services (LBS), broadcast diffusion or Intelligent Transport Services (ITS). Pending finalization of the standard review process IEEE 802.15.7 r1, our paper presents the results of the European collaborative project named "ACEMIND". It offers an indoor bilateral optical wireless communication prototype having the following characteristics: use of the existing electrical infrastructure, through judicious combination with Light Fidelity (LiFi), Power Line Communication (PLC) and Ethernet to reduce the implementation cost. We propose a bilateral optical wireless communication even when the light is switched off by using Visible Light Communication (VLC) and Infra-Red Communication (IRC) combined to a remote optical switch. Dimensionally optimized LiFi module is presented in order to offer the possibility for integration inside a laptop. Finally, there is operational mechanism implementation such as OFDM/DMT to increase throughput. After the introduction, we will present the results of a market study from Orange Labs customers about their opinion on LiFi components. Then we will detail the LiFi prototype, from the physical layer aspect to MAC layer before concluding on commercial development prospects.
Wang, Xinheng
2008-01-01
Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.
Lunar Surface Propagation Modeling and Effects on Communications
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.
2008-01-01
This paper analyzes the lunar terrain effects on the signal propagation of the planned NASA lunar wireless communication and sensor systems. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate that the terrain geometry, antenna location, and lunar surface material are important factors determining the propagation characteristics of the lunar wireless communication systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, operating frequency, and surface material. The analysis results from this paper are important for the lunar communication link margin analysis in determining the limits on the reliable communication range and radio frequency coverage performance at planned lunar base worksites. Key Words lunar, multipath, path loss, propagation, wireless.
Evaluation of communication in wireless underground sensor networks
NASA Astrophysics Data System (ADS)
Yu, X. Q.; Zhang, Z. L.; Han, W. T.
2017-06-01
Wireless underground sensor networks (WUSN) are an emerging area of research that promises to provide communication capabilities to buried sensors. In this paper, experimental measurements have been conducted with commodity sensor motes at the frequency of 2.4GHz and 433 MHz, respectively. Experiments are run to examine the received signal strength of correctly received packets and the packet error rate for a communication link. The tests show the potential feasibility of the WUSN with the use of powerful RF transceivers at 433MHz frequency. Moreover, we also illustrate a classification for wireless underground sensor network communication. Finally, we conclude that the effects of burial depth, inter-node distance and volumetric water content of the soil on the signal strength and packet error rate in communication of WUSN.
Transparent graphene microstrip filters for wireless communications
NASA Astrophysics Data System (ADS)
Wang, Jinchen; Guan, Yifei; Yu, Hua; Li, Na; Wang, Shuopei; Shen, Cheng; Dai, Zhijiang; Gan, Decheng; Yang, Rong; He, Songbai; Zhang, Guangyu
2017-08-01
A microstrip is an indispensable component for wireless communication circuits. With the development of 5G technology, optically transparent microstrip filters urgently need to be developed. In this work, we have theoretically and experimentally demonstrated the immense potential of graphene microstrips for transparent wireless communication circuits in the 5G era. Both wideband and dual-band transparent graphene microstrip filters have shown more than 80% optical transmissivity in the region from 250 nm to 2000 nm with good frequency responses. S and C band microwave signals can transmit along the graphene microstrip lines effectively while coupling excitations produce relatively large insertion losses. Our results show that transparent microstrips designed with high-quality graphene will largely scale down the size of the wireless devices and thus play an irreplaceable role in the 5G era.
Future Optical Communications Systems
2008-06-01
rich handsets are driving growth in the wireless backhaul market. Both the iPhone and Blackberry are growing in popularity. Figure 49 forecasts the...electronic emission and tunneling , and hetero-barrier leakage. In barrier thermo-electronic emission, the conduction band of the quantum well laser is...barrier can reduce the mod- ulation bandwidth of the laser and reduce high-temperature performance due to tunneling out of the p-n junction or due
Socioeconomic Impact Assessment: Communications Industry. Phase III. Technology Forecast.
1979-02-02
8217. Some add-on devices , such as automatic answering systems, have already penetrated the home market substantially. In the future, however, ( major changes ...equipment. This class includes garage door openers, wireless micro- phones , cordless telephones, and radio and TV receivers. These -( devices can...ACUMENICS 1-9 1.2.2 Switching Devices The first automatic switching devices which began to replace operator-switched telephone traffic in the early
Waveguide-coupled resonator filters on AlN on silicon
NASA Technical Reports Server (NTRS)
Liaw, H. M.; Cameron, T. P.; Hunt, W. D.; Hickernell, F. S.
1994-01-01
In the effort to continually reduce the size and cost of wireless communications products the level of integration has improved dramatically in recent years. In order to reduce future generations of wireless systems to single chip form, there is a need for on-chip filtering capabilities. In this paper, the first report of an experimental waveguide-coupled resonator filter for cellular radio applications is presented. Measured results indicate a typical insertion loss of 26 dB at a center frequency of 132 MHz using a 2 um AlN film on (001) less than 110 greater than Si. In addition, a laser probe analysis has been conducted and a theoretical analysis of the first order reflection coefficients is presented.
Effect of feeders in 3D modeling of low impedance multilayer CPW transmission line
NASA Astrophysics Data System (ADS)
Zaini, R. I.; Kyabaggu, P. B. K.; Sinulingga, E. P.
2018-02-01
Improved characteristics with low dissipation loss MMICs are highly desirable for wireless communications. However, the current industrial MMIC design is mainly based on microstrip concept which suffered from parasitic and unwanted phenomenon especially at higher frequency (>20 GHz). On the other hand, for future wireless technology, higher frequency operation is required and on-wafer microwave characterizations as well as precise modeling of 3D Multilayer CPW components are vital. This project concerns with understanding of the microwave characteristics behavior of Multilayer CPW components in MMIC applications. Feeder effect as unwanted parts in the characteristics has been investigated to determine its relation with the half wavelength resonance of the Multilayer CPW Low Impedance Transmission Line.
Mobility management techniques for the next-generation wireless networks
NASA Astrophysics Data System (ADS)
Sun, Junzhao; Howie, Douglas P.; Sauvola, Jaakko J.
2001-10-01
The tremendous demands from social market are pushing the booming development of mobile communications faster than ever before, leading to plenty of new advanced techniques emerging. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Mobility management is an important issue in the area of mobile communications, which can be best solved at the network layer. One of the key features of the next generation wireless networks is all-IP infrastructure. This paper discusses the mobility management schemes for the next generation mobile networks through extending IP's functions with mobility support. A global hierarchical framework model for the mobility management of wireless networks is presented, in which the mobility management is divided into two complementary tasks: macro mobility and micro mobility. As the macro mobility solution, a basic principle of Mobile IP is introduced, together with the optimal schemes and the advances in IPv6. The disadvantages of the Mobile IP on solving the micro mobility problem are analyzed, on the basis of which three main proposals are discussed as the micro mobility solutions for mobile communications, including Hierarchical Mobile IP (HMIP), Cellular IP, and Handoff-Aware Wireless Access Internet Infrastructure (HAWAII). A unified model is also described in which the different micro mobility solutions can coexist simultaneously in mobile networks.
Sensing Traffic Density Combining V2V and V2I Wireless Communications.
Sanguesa, Julio A; Barrachina, Javier; Fogue, Manuel; Garrido, Piedad; Martinez, Francisco J; Cano, Juan-Carlos; Calafate, Carlos T; Manzoni, Pietro
2015-12-16
Wireless technologies are making the development of new applications and services in vehicular environments possible since they enable mobile communication between vehicles (V2V), as well as communication between vehicles and infrastructure nodes (V2I). Usually, V2V communications are dedicated to the transmission of small messages mainly focused on improving traffic safety. Instead, V2I communications allow users to access the Internet and benefit from higher level applications. The combination of both V2V and V2I, known as V2X communications, can increase the benefits even further, thereby making intelligent transportation systems (ITS) a reality. In this paper, we introduce V2X-d, a novel architecture specially designed to estimate traffic density on the road. In particular, V2X-d exploits the combination of V2V and V2I communications. Our approach is based on the information gathered by sensors (i.e., vehicles and road side units (RSUs)) and the characteristics of the roadmap topology to accurately make an estimation of the instant vehicle density. The combination of both mechanisms improves the accuracy and coverage area of the data gathered, while increasing the robustness and fault tolerance of the overall approach, e.g., using the information offered by V2V communications to provide additional density information in areas where RSUs are scarce or malfunctioning. By using our collaborative sensing scheme, future ITS solutions will be able to establish adequate dissemination protocols or to apply more efficient traffic congestion reduction policies, since they will be aware of the instantaneous density of vehicles.
Wireless Battery Management System of Electric Transport
NASA Astrophysics Data System (ADS)
Rahman, Ataur; Rahman, Mizanur; Rashid, Mahbubur
2017-11-01
Electric vehicles (EVs) are being developed and considered as the future transportation to reduce emission of toxic gas, cost and weight. The battery pack is one of the main crucial parts of the electric vehicle. The power optimization of the battery pack has been maintained by developing a two phase evaporative thermal management system which operation has been controlled by using a wireless battery management system. A large number of individual cells in a battery pack have many wire terminations that are liable for safety failure. To reduce the wiring problem, a wireless battery management system based on ZigBee communication protocol and point-to-point wireless topology has been presented. Microcontrollers and wireless modules are employed to process the information from several sensors (voltage, temperature and SOC) and transmit to the display devices respectively. The WBMS multistage charge balancing system offering more effective and efficient responses for several numbers of series connected battery cells. The concept of double tier switched capacitor converter and resonant switched capacitor converter is used for reducing the charge balancing time of the cells. The balancing result for 2 cells and 16 cells are improved by 15.12% and 25.3% respectively. The balancing results are poised to become better when the battery cells are increased.
A digital wireless system for closed-loop inhibition of nociceptive signals
NASA Astrophysics Data System (ADS)
Zuo, Chao; Yang, Xiaofei; Wang, Yang; Hagains, Christopher E.; Li, Ai-Ling; Peng, Yuan B.; Chiao, J.-C.
2012-10-01
Neurostimulation of the spinal cord or brain has been used to inhibit nociceptive signals in pain management applications. Nevertheless, most of the current neurostimulation models are based on open-loop system designs. There is a lack of closed-loop systems for neurostimulation in research with small freely-moving animals and in future clinical applications. Based on our previously developed analog wireless system for closed-loop neurostimulation, a digital wireless system with real-time feedback between recorder and stimulator modules has been developed to achieve multi-channel communication. The wireless system includes a wearable recording module, a wearable stimulation module and a transceiver connected to a computer for real-time and off-line data processing, display and storage. To validate our system, wide dynamic range neurons in the spinal cord dorsal horn have been recorded from anesthetized rats in response to graded mechanical stimuli (brush, pressure and pinch) applied in the hind paw. The identified nociceptive signals were used to automatically trigger electrical stimulation at the periaqueductal gray in real time to inhibit their own activities by the closed-loop design. Our digital wireless closed-loop system has provided a simplified and efficient method for further study of pain processing in freely-moving animals and potential clinical application in patients. Groups 1, 2 and 3 contributed equally to this project.
Security issues in healthcare applications using wireless medical sensor networks: a survey.
Kumar, Pardeep; Lee, Hoon-Jae
2012-01-01
Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs.
Security Issues in Healthcare Applications Using Wireless Medical Sensor Networks: A Survey
Kumar, Pardeep; Lee, Hoon-Jae
2012-01-01
Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs. PMID:22368458
Wireless avionics for space applications of fundamental physics
NASA Astrophysics Data System (ADS)
Wang, Linna; Zeng, Guiming
2016-07-01
Fundamental physics (FP) research in space relies on a strong support of spacecraft. New types of spacecraft including reusable launch vehicles, reentry space vehicles, long-term on-orbit spacecraft or other new type of spacecraft will pave the way for FP missions. In order to test FP theories in space, flight conditions have to be controlled to a very high precision, data collection and handling abilities have to be improved, real-time and reliable communications in critical environments are needed. These challenge the existing avionics of spacecraft. Avionics consists of guidance, navigation & control, TT&C, the vehicle management, etc. Wireless avionics is one of the enabling technologies to address the challenges. Reasons are expatiated of why it is of great advantage. This paper analyses the demands for wireless avionics by reviewing the FP missions and on-board wireless systems worldwide. Main types of wireless communication are presented. Preliminary system structure of wireless avionics are given. The characteristics of wireless network protocols and wireless sensors are introduced. Key technologies and design considerations for wireless avionics in space applications are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-03
... FEDERAL COMMUNICATIONS COMMISSION [WT Docket No. 11-35; DA 11-353] Wireless Telecommunications... Wireless Telecommunications Bureau seeks comment on a December 3, 2010 petition for declaratory ruling (Petition) filed by CTIA-The Wireless Association (Petitioners). The Petitioners ask the Federal...
Evaluation of Communication Alternatives for Intelligent Transportation Systems
DOT National Transportation Integrated Search
2010-08-31
The primary focus of this study involved developing a process for the evaluation of wireless technologies : for intelligent transportation systems, and for conducting experiments of potential wireless technologies : and topologies. Two wireless techn...
47 CFR 1.9005 - Included services.
Code of Federal Regulations, 2011 CFR
2011-10-01
... following services, which include Wireless Radio Services in which commercial or private licensees hold...) The broadband Personal Communications Service (part 24 of this chapter); (h) The Broadband Radio...) The Wireless Communications Service in the 698-746 MHz band (part 27 of this chapter); (k) The...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-12
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-778] Certain Equipment for Communications Networks, Including Switches, Routers, Gateways, Bridges, Wireless Access Points, Cable Modems, IP Phones... networks, including switches, routers, gateways, bridges, wireless access points, cable modems, IP phones...
47 CFR 27.1307 - Spectrum use in the network.
Code of Federal Regulations, 2012 CFR
2012-10-01
....1307 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 700 MHz Public/Private Partnership § 27.1307 Spectrum use in the network. (a) Spectrum use. The shared wireless broadband network developed by the 700 MHz Public/Private...
Terabit Wireless Communication Challenges
NASA Technical Reports Server (NTRS)
Hwu, Shian U.
2012-01-01
This presentation briefly discusses a research effort on Terabit Wireless communication systems for possible space applications. Recently, terahertz (THz) technology (300-3000 GHz frequency) has attracted a great deal of interest from academia and industry. This is due to a number of interesting features of THz waves, including the nearly unlimited bandwidths available, and the non-ionizing radiation nature which does not damage human tissues and DNA with minimum health threat. Also, as millimeter-wave communication systems mature, the focus of research is, naturally, moving to the THz range. Many scientists regard THz as the last great frontier of the electromagnetic spectrum, but finding new applications outside the traditional niches of radio astronomy, Earth and planetary remote sensing, and molecular spectroscopy particularly in biomedical imaging and wireless communications has been relatively slow. Radiologists find this area of study so attractive because t-rays are non-ionizing, which suggests no harm is done to tissue or DNA. They also offer the possibility of performing spectroscopic measurements over a very wide frequency range, and can even capture signatures from liquids and solids. According to Shannon theory, the broad bandwidth of the THz frequency bands can be used for terabit-per-second (Tb/s) wireless communication systems. This enables several new applications, such as cell phones with 360 degrees autostereoscopic displays, optic-fiber replacement, and wireless Tb/s file transferring. Although THz technology could satisfy the demand for an extremely high data rate, a number of technical challenges need to be overcome before its development. This presentation provides an overview the state-of-the- art in THz wireless communication and the technical challenges for an emerging application in Terabit wireless systems. The main issue for THz wave propagation is the high atmospheric attenuation, which is dominated by water vapor absorption in the THz frequency band. The technical challenges in design such a system and the techniques to overcome the challenges will be discussed in this presentation.
Modeling of Radiowave Propagation in a Forested Environment
2014-09-01
is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Propagation models used in wireless communication system design play an...domains. Applications in both domains require communication devices and sensors to be operated in forested environments. Various methods have been...wireless communication system design play an important role in overall link performance. Propagation models in a forested environment, in particular
Wireless communication link for capsule endoscope at 600 MHz.
Khaleghi, A; Balasingham, I
2015-01-01
Simulation of a wireless communication link for a capsule endoscopy is presented for monitoring of small intestine in humans. The realized communication link includes the transmitting capsule antenna, the outside body receiving antenna and the model of the human body. The capsule antenna is designed for operating at the frequency band of 600 MHz with an impedance bandwidth of 10 MHz and omnidirectional radiation pattern. The quality of the communication link is improved by using directive antenna outside body inside matching layer for electromagnetic wave tuning to the body. The outside body antenna has circular polarization that guaranteeing the communication link for different orientations of the capsule inside intestine. It is shown that the path loss for the capsule in 60 mm from the abdomen surface varies between 37-47 dB in relation to the antenna orientation. This link can establish high data rate wireless communications for capsule endoscopy.
Study and design on USB wireless laser communication system
NASA Astrophysics Data System (ADS)
Wang, Aihua; Zheng, Jiansheng; Ai, Yong
2004-04-01
We give the definition of USB wireless laser communication system (WLCS) and the brief introduction to the protocol of USB, the standard of hardware is also given. The paper analyses the hardware and software of USB WLCS. Wireless laser communication part and USB interface circuit part are discussed in detail. We also give the periphery design of the chip AN2131Q, the control circuit to realize the transformation from parallel port to serial bus, and the circuit of laser sending and receiving of laser communication part, which are simply, cheap and workable. And then the four part of software are analyzed as followed. We have consummated the ISR in the firmware frame to develop the periphery device of USB. We have debugged and consummated the 'ezload,' and the GPD of the drivers. Windows application performs functions and schedules the corresponding API functions to let the interface practical and beautiful. The system can realize USB wireless laser communication between computers, which distance is farther than 50 meters, and top speed can be bigger than 8 Mbps. The system is of great practical sense to resolve the issues of high-speed communication among increasing districts without fiber trunk network.
Entanglement routers via a wireless quantum network based on arbitrary two qubit systems
NASA Astrophysics Data System (ADS)
Metwally, N.
2014-12-01
A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.
Design of Hybrid Mobile Communication Networks for Planetary Exploration
NASA Technical Reports Server (NTRS)
Alena, Richard L.; Ossenfort, John; Lee, Charles; Walker, Edward; Stone, Thom
2004-01-01
The Mobile Exploration System Project (MEX) at NASA Ames Research Center has been conducting studies into hybrid communication networks for future planetary missions. These networks consist of space-based communication assets connected to ground-based Internets and planetary surface-based mobile wireless networks. These hybrid mobile networks have been deployed in rugged field locations in the American desert and the Canadian arctic for support of science and simulation activities on at least six occasions. This work has been conducted over the past five years resulting in evolving architectural complexity, improved component characteristics and better analysis and test methods. A rich set of data and techniques have resulted from the development and field testing of the communication network during field expeditions such as the Haughton Mars Project and NASA Mobile Agents Project.
Wireless Local Area Networks: The Next Evolutionary Step.
ERIC Educational Resources Information Center
Wodarz, Nan
2001-01-01
The Institute of Electrical and Electronics Engineers recently approved a high-speed wireless standard that enables devices from different manufacturers to communicate through a common backbone, making wireless local area networks more feasible in schools. Schools can now use wireless access points and network cards to provide flexible…
Code of Federal Regulations, 2012 CFR
2012-10-01
... filings in the wireless telecommunications services. 1.1102 Section 1.1102 Telecommunication FEDERAL... wireless telecommunications services. Those services designated with an asterisk in the payment type code... manual filings and/or payment for these services to the: Federal Communications Commission, Wireless...
Code of Federal Regulations, 2013 CFR
2013-10-01
... filings in the wireless telecommunications services. 1.1102 Section 1.1102 Telecommunication FEDERAL... wireless telecommunications services. Those services designated with an asterisk in the payment type code... manual filings and/or payment for these services to the: Federal Communications Commission, Wireless...
Code of Federal Regulations, 2010 CFR
2010-10-01
... filings in the wireless telecommunications services. 1.1102 Section 1.1102 Telecommunication FEDERAL... § 1.1102 Schedule of charges for applications and other filings in the wireless telecommunications... for these services to the: Federal Communications Commission, Wireless Bureau Applications, P.O. Box...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-16
... FEDERAL COMMUNICATIONS COMMISSION [AU Docket No. 10-107; DA 10-1630] Wireless Telecommunications... Auction 89. FOR FURTHER INFORMATION CONTACT: Wireless Telecommunications Bureau, Auctions and Spectrum... by the Chief, Wireless Telecommunications Bureau pursuant to authority delegated by 47 CFR 0.131...
Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks
ERIC Educational Resources Information Center
Yu, Chao
2013-01-01
In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…
NASA Technical Reports Server (NTRS)
Matolak, David W.
2017-01-01
NASA's Aeronautics Research Mission Directorate (ARMD) has recently solicited proposals and awarded funds for research and development to achieve and exceed the goals envisioned in the ARMD Strategic Implementation Plan (SIP). The Hyper-Spectral Communications and Networking for Air Traffic Management (ATM) (HSCNA) project is the only University Leadership Initiative (ULI) program to address communications and networking (and to a degree, navigation and surveillance). This paper will provide an overview of the HSCNA project, and specifically describe two of the project's technical challenges: comprehensive aviation communications and networking assessment, and proposed multi-band and multimode communications and networking. The primary goals will be described, as will be research and development aimed to achieve and exceed these goals. Some example initial results are also provided.
NASA Astrophysics Data System (ADS)
Raju, Kota Solomon; Merugu, Naresh Babu; Neetu, Babu, E. Ram
2016-03-01
ZigBee is well-accepted industrial standard for wireless sensor networks based on IEEE 802.15.4 standard. Wireless Sensor Networks is the major concern of communication these days. These Wireless Sensor Networks investigate the properties of networks of small battery-powered sensors with wireless communication. The communication between any two wireless nodes of wireless sensor networks is carried out through a protocol stack. This protocol stack has been designed by different vendors in various ways. Every custom vendor possesses his own protocol stack and algorithms especially at the MAC layer. But, many applications require modifications in their algorithms at various layers as per their requirements, especially energy efficient protocols at MAC layer that are simulated in Wireless sensor Network Simulators which are not being tested in real time systems because vendors do not allow the programmability of each layer in their protocol stack. This problem can be quoted as Vendor-Interoperability. The solution is to develop the programmable protocol stack where we can design our own application as required. As a part of the task first we tried implementing physical layer and transmission of data using physical layer. This paper describes about the transmission of the total number of bytes of Frame according to the IEEE 802.15.4 standard using Physical Layer.
NASA Astrophysics Data System (ADS)
Abou-Elnour, Ali; Thabt, A.; Helmy, S.; Kashf, Y.; Hadad, Y.; Tarique, M.; Abo-Elnor, Ossama
2014-04-01
In the present work, wireless sensor network and smart real-time controlling and monitoring system are integrated for efficient energy management of standalone photovoltaic system. The proposed system has two main components namely the monitoring and controlling system and the wireless communication system. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee wireless modules have been used to implement the wireless system. The main functions of monitoring and controlling unit is to efficiently control the energy consumption form the photovoltaic system based on accurate determination of the periods of times at which the loads are required to be operated. The wireless communication system send the data from the monitoring and controlling unit to the loads at which desired switching operations are performed. The wireless communication system also continuously feeds the monitoring and controlling unit with updated input data from the sensors and from the photovoltaic module send to calculate and record the generated, the consumed, and the stored energy to apply load switching saving schemes if necessary. It has to be mentioned that our proposed system is a low cost and low power system because and it is flexible to be upgraded to fulfill additional users' requirements.
NASA Astrophysics Data System (ADS)
Ishihara, Koichi; Asai, Yusuke; Kudo, Riichi; Ichikawa, Takeo; Takatori, Yasushi; Mizoguchi, Masato
2013-12-01
Multiuser multiple-input multiple-output (MU-MIMO) has been proposed as a means to improve spectrum efficiency for various future wireless communication systems. This paper reports indoor experimental results obtained for a newly developed and implemented downlink (DL) MU-MIMO orthogonal frequency division multiplexing (OFDM) transceiver for gigabit wireless local area network systems in the microwave band. In the transceiver, the channel state information (CSI) is estimated at each user and fed back to an access point (AP) on a real-time basis. At the AP, the estimated CSI is used to calculate the transmit beamforming weight for DL MU-MIMO transmission. This paper also proposes a recursive inverse matrix computation scheme for computing the transmit weight in real time. Experiments with the developed transceiver demonstrate its feasibility in a number of indoor scenarios. The experimental results clarify that DL MU-MIMO-OFDM transmission can achieve a 972-Mbit/s transmission data rate with simple digital signal processing of single-antenna users in an indoor environment.
Wireless Crew Communication Feasibility Assessment
NASA Technical Reports Server (NTRS)
Archer, Ronald D.; Romero, Andy; Juge, David
2016-01-01
Ongoing discussions with crew currently onboard the ISS as well as the crew debriefs from completed ISS missions indicate that issues associated with the lack of wireless crew communication results in increased crew task completion times and lower productivity, creates cable management issues, and increases crew frustration.
78 FR 61203 - Aviation Services
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-03
... 4, 2013. FOR FURTHER INFORMATION CONTACT: Tim Maguire, Mobility Division, Wireless... uses the SBA small business size standard for the category Wireless Telecommunications Carriers (except... wireless communications equipment manufacturers. The Census Bureau defines this category as follows: ``This...
Commercial wireless technologies for public safety users
DOT National Transportation Integrated Search
2000-07-01
This report on commercial wireless for public safety addresses the issues associated with the use of commercial services for public safety. It then reviews available wireless services for wide area data services: cellular, personal communication and ...
A Reliable Wireless Control System for Tomato Hydroponics
Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi
2016-01-01
Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants’ growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation. PMID:27164105
A Reliable Wireless Control System for Tomato Hydroponics.
Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi
2016-05-05
Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants' growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation.
Implementation of a WAP-based telemedicine system for patient monitoring.
Hung, Kevin; Zhang, Yuan-Ting
2003-06-01
Many parties have already demonstrated telemedicine applications that use cellular phones and the Internet. A current trend in telecommunication is the convergence of wireless communication and computer network technologies, and the emergence of wireless application protocol (WAP) devices is an example. Since WAP will also be a common feature found in future mobile communication devices, it is worthwhile to investigate its use in telemedicine. This paper describes the implementation and experiences with a WAP-based telemedicine system for patient-monitoring that has been developed in our laboratory. It utilizes WAP devices as mobile access terminals for general inquiry and patient-monitoring services. Authorized users can browse the patients' general data, monitored blood pressure (BP), and electrocardiogram (ECG) on WAP devices in store-and-forward mode. The applications, written in wireless markup language (WML), WMLScript, and Perl, resided in a content server. A MySQL relational database system was set up to store the BP readings, ECG data, patient records, clinic and hospital information, and doctors' appointments with patients. A wireless ECG subsystem was built for recording ambulatory ECG in an indoor environment and for storing ECG data into the database. For testing, a WAP phone compliant with WAP 1.1 was used at GSM 1800 MHz by circuit-switched data (CSD) to connect to the content server through a WAP gateway, which was provided by a mobile phone service provider in Hong Kong. Data were successfully retrieved from the database and displayed on the WAP phone. The system shows how WAP can be feasible in remote patient-monitoring and patient data retrieval.
A Survey on Simultaneous Wireless Information and Power Transfer
NASA Astrophysics Data System (ADS)
Perera, T. D. P.; Jayakody, D. N. K.; De, S.; Ivanov, M. A.
2017-01-01
This paper presents a comprehensive study related to simultaneous wireless information and power transfer (SWIPT) in different types of wireless communication setups. Harvesting energy using SWIPT is an appealing solution in the context of extending battery life of wireless devices for a fully sustainable communication system. Strong signal power increases power transfer, but also causes more interference in information transfer, causing realization of the SWIPT challenging problem. This article provides an overview of technical evolution of SWIPT. A survey and qualitative comparison of the existing SWIPT schemes is provided to demonstrate their limitations in the current and 5G networks. Open challenges are emphasized and guidelines are provided to adapt the existing schemes in order to overcome these limitations and make them fit for integrating with the modern and emerging next generation communication networks, such as 5G systems.
Efficiently sphere-decodable physical layer transmission schemes for wireless storage networks
NASA Astrophysics Data System (ADS)
Lu, Hsiao-Feng Francis; Barreal, Amaro; Karpuk, David; Hollanti, Camilla
2016-12-01
Three transmission schemes over a new type of multiple-access channel (MAC) model with inter-source communication links are proposed and investigated in this paper. This new channel model is well motivated by, e.g., wireless distributed storage networks, where communication to repair a lost node takes place from helper nodes to a repairing node over a wireless channel. Since in many wireless networks nodes can come and go in an arbitrary manner, there must be an inherent capability of inter-node communication between every pair of nodes. Assuming that communication is possible between every pair of helper nodes, the newly proposed schemes are based on various smart time-sharing and relaying strategies. In other words, certain helper nodes will be regarded as relays, thereby converting the conventional uncooperative multiple-access channel to a multiple-access relay channel (MARC). The diversity-multiplexing gain tradeoff (DMT) of the system together with efficient sphere-decodability and low structural complexity in terms of the number of antennas required at each end is used as the main design objectives. While the optimal DMT for the new channel model is fully open, it is shown that the proposed schemes outperform the DMT of the simple time-sharing protocol and, in some cases, even the optimal uncooperative MAC DMT. While using a wireless distributed storage network as a motivating example throughout the paper, the MAC transmission techniques proposed here are completely general and as such applicable to any MAC communication with inter-source communication links.
NASA Bluetooth Wireless Communications
NASA Technical Reports Server (NTRS)
Miller, Robert D.
2007-01-01
NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.
Recent advances in environmental monitoring using commercial microwave links
NASA Astrophysics Data System (ADS)
Alpert, Pinhas; Guez, Oded; Messer, Hagit; David, Noam; Harel, Oz; Eshel, Adam; Cohen, Ori
2016-04-01
Recent advances in environmental monitoring using commercial microwave links Pinhas Alpert, H. Messer, N. David, O. Guez, O. Cohen, O. Harel, A. Eshel Tel Aviv University, Israel The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for semi-arid region cases when floods occurred in the Judean desert in Israel with comparison to hydrological measurements in the Dead Sea area. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, fog, dew, atmospheric moisture. References: N. David, P. Alpert, and H. Messer, "Technical Note: Novel method for water vapor monitoring using wireless communication networks measurements", Atmos. Chem. Phys., 9, 2413-2418, 2009. A. Rayitsfeld, R. Samuels, A. Zinevich, U. Hadar and P. Alpert,"Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system", Atmospheric Research 104-105, 119-127, 2012. N. David, O. Sendik, H. Messer and P. Alpert, "Cellular network infrastructure-the future of fog monitoring?" BAMS (Oct. issue), 1687-1698, 2015. O. Harel, David, N., Alpert, P. and Messer, H., "The potential of microwave communication networks to detect dew using the GLRT- experimental study", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015.
Wireless security in mobile health.
Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan
2012-12-01
Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats.
Cost-Effectiveness Analysis of Aerial Platforms and Suitable Communication Payloads
2014-03-01
High altitude long endurance (HALE) platforms for tactical wireless communications and sensor use in military operations. (Master’s thesis, Naval...the ground, which can offer near limitless endurance. Additionally, running data over wired networks reduces wireless congestion. The most...system that utilizes different wind speeds and wind directions at different altitudes in an attempt to position the balloons for optimal communications
75 FR 17349 - Operations of Wireless Communications Services in the 2.3 GHz Band
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-06
...The Federal Communications Commission (Commission) seeks comment on revising the performance requirements for the 2.3 GHz Wireless Communications Service (WCS) band. The Commission is seeking comment on possible revision of the performance requirements (also known as buildout or construction requirements) for the 2.3 GHz WCS band to ensure that that the spectrum is used intensively in the public interest.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-25
... Devices and Systems, Components Thereof, and Products Containing Same; Notice of Commission Determination... certain wireless communication devices and systems, components thereof, and products containing the same..., California; Apple Inc. of Cupertino, California; Aruba Networks, Inc. of Sunnyvale, California; Meru Networks...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-29
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-856] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers, and Components Thereof AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-24
... Music and Data Processing Devices, Computers, and Components Thereof; Notice of Receipt of Complaint... complaint entitled Wireless Communication Devices, Portable Music and Data Processing Devices, Computers..., portable music and data processing devices, computers, and components thereof. The complaint names as...
Scalable Architecture for Multihop Wireless ad Hoc Networks
NASA Technical Reports Server (NTRS)
Arabshahi, Payman; Gray, Andrew; Okino, Clayton; Yan, Tsun-Yee
2004-01-01
A scalable architecture for wireless digital data and voice communications via ad hoc networks has been proposed. Although the details of the architecture and of its implementation in hardware and software have yet to be developed, the broad outlines of the architecture are fairly clear: This architecture departs from current commercial wireless communication architectures, which are characterized by low effective bandwidth per user and are not well suited to low-cost, rapid scaling in large metropolitan areas. This architecture is inspired by a vision more akin to that of more than two dozen noncommercial community wireless networking organizations established by volunteers in North America and several European countries.
47 CFR 1.946 - Construction and coverage requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Wireless Radio Services, requirements for construction and commencement of service or commencement of... certain Wireless Radio Services, licensees must comply with geographic coverage requirements or... Section 1.946 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless...
47 CFR 1.933 - Public notices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless Radio Services.... Periodically, the Commission issues Public Notices in the Wireless Radio Services listing information of public... for filing prior to grant: (1) Wireless Telecommunications Services. (2) Industrial radiopositioning...
47 CFR 1.933 - Public notices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless Radio Services.... Periodically, the Commission issues Public Notices in the Wireless Radio Services listing information of public... for filing prior to grant: (1) Wireless Telecommunications Services. (2) Industrial radiopositioning...
47 CFR 1.946 - Construction and coverage requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Wireless Radio Services, requirements for construction and commencement of service or commencement of... certain Wireless Radio Services, licensees must comply with geographic coverage requirements or... Section 1.946 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless...
Wireless Technologies in Support of ISS Experimentation and Operations
NASA Technical Reports Server (NTRS)
Wagner, Raymond; Fink, Patrick
2012-01-01
Presentation reviews: (1) Wireless Communications (a) Internal (b) External (2) RFID (Radio Frequency Identification) (a) Existing and R&D (3) Wireless Sensor Networks (a) Existing and R&D (4) Ultra-Wide Band (UWB) (a) R&D
NASA Astrophysics Data System (ADS)
Khan, Sohel Rana; Ajij, Sayyad
2017-12-01
This review paper focuses on the basic relations between wireless power transfer, wireless information transfer and combined phenomenon of simultaneous wireless information and power transfer. The authors reviewed and discussed electromagnetic fields behaviour (EMB) for enhancing the power allocation strategies (PAS) in energy harvesting (EH) wireless communication systems. Further, this paper presents relations between Friis transmission equation and Maxwell's equations to be used in propagation models for reduction in specific absorption rate (SAR). This paper provides a review of various methods and concepts reported in earlier works. This paper also reviews Poynting vector and power densities along with boundary conditions for antennas and human body. Finally, this paper explores the usage of electromagnetic behaviour for the possible enhancement in power saving methods for electromagnetic behaviour centered-wireless energy harvesting (EMBC-WEH). At the same time, possibilities of PAS for reduction in SAR are discussed.
Overview of Sparse Graph for Multiple Access in Future Mobile Networks
NASA Astrophysics Data System (ADS)
Lei, Jing; Li, Baoguo; Li, Erbao; Gong, Zhenghui
2017-10-01
Multiple access via sparse graph, such as low density signature (LDS) and sparse code multiple access (SCMA), is a promising technique for future wireless communications. This survey presents an overview of the developments in this burgeoning field, including transmitter structures, extrinsic information transform (EXIT) chart analysis and comparisons with existing multiple access techniques. Such technique enables multiple access under overloaded conditions to achieve a satisfactory performance. Message passing algorithm is utilized for multi-user detection in the receiver, and structures of the sparse graph are illustrated in detail. Outlooks and challenges of this technique are also presented.
Ultra Wideband (UWB) communication vulnerability for security applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooley, H. Timothy
2010-07-01
RF toxicity and Information Warfare (IW) are becoming omnipresent posing threats to the protection of nuclear assets, and within theatres of hostility or combat where tactical operation of wireless communication without detection and interception is important and sometimes critical for survival. As a result, a requirement for deployment of many security systems is a highly secure wireless technology manifesting stealth or covert operation suitable for either permanent or tactical deployment where operation without detection or interruption is important The possible use of ultra wideband (UWB) spectrum technology as an alternative physical medium for wireless network communication offers many advantages overmore » conventional narrowband and spread spectrum wireless communication. UWB also known as fast-frequency chirp is nonsinusoidal and sends information directly by transmitting sub-nanosecond pulses without the use of mixing baseband information upon a sinusoidal carrier. Thus UWB sends information using radar-like impulses by spreading its energy thinly over a vast spectrum and can operate at extremely low-power transmission within the noise floor where other forms of RF find it difficult or impossible to operate. As a result UWB offers low probability of detection (LPD), low probability of interception (LPI) as well as anti-jamming (AJ) properties in signal space. This paper analyzes and compares the vulnerability of UWB to narrowband and spread spectrum wireless network communication.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
...] Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional Flexibility To... 101 rules to promote wireless backhaul. We seek comment on certain proposals offered by parties in... America. In addition, we address a petition for rulemaking filed by Fixed Wireless Communications...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
...] Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional Flexibility To... FS licensees to reduce operational costs, increase reliability, and facilitate the use of wireless... for wireless backhaul and other point-to-point and point-to-multipoint communications. We also make...
International standards for optical wireless communications: state-of-the-art and future directions
NASA Astrophysics Data System (ADS)
Marciniak, Marian
2017-10-01
As the number of active OWC installations is growing fast, the standards for compatibility of co-existing neighbouring systems are being developed. The paper addresses the Laser Safety (IEC standards), ITU-T Study Group 15 standards (G.640 Co-location longitudinally compatible interfaces for free space optical systems), ITU-Radiocommunication Sector standards (P.1817-1 Propagation data required for the design of terrestrial free-space optical links), and the IEEE Work in Progress - standardization activity on Visible Light Communications. International standards of FSO communications have been reviewed and discussed. ITU, IEC, and IEEE International standards for Free-Space Optical links have been reviewed. The system reliability and availability as well as security issues will be addressed as well in the talk.
49 CFR 220.9 - Requirements for trains.
Code of Federal Regulations, 2011 CFR
2011-10-01
... locomotive in the consist or other means of working wireless communications. (b) On and after July 1, 2000, the following requirements apply to a railroad that has fewer than 400,000 annual employee work hours... controlling locomotive and with redundant working wireless communications capability in the same manner as...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-01
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-871] Certain Wireless Communications Base.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on January 24, 2013, under section 337 of the Tariff Act of...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-08
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-667; Investigation No. 337-TA-673] In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices; Notice of... Entirety AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that...
76 FR 37049 - Improving Wireless Coverage Through the Use of Signal Boosters
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-24
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 1, 2, 22, 24, 27, 90 and 95 [WT Docket No. 10-4; DA 11-1078] Improving Wireless Coverage Through the Use of Signal Boosters AGENCY: Federal Communications Commission. ACTION: Proposed rule; extension of comment period. SUMMARY: The Federal...
75 FR 55488 - Electronic On-Board Recorders for Hours-of-Service Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-13
... additional alternative for the data transfer between an EOBR and a roadside safety official's portable... [deg]F), although some components of wireless communications systems are specified to operate in a -20... Engineers (IEEE) 802.11 wireless communications requirement. Agency's Assessment and Decision The -40 [deg]C...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-24
... Telecommunications Bureau Seeks To Supplement the Record on the 600 MHz Band Plan AGENCY: Federal Communications... Telecommunications Bureau seeks further comment on how certain band plan approaches can best accommodate market... issued. Federal Communications Commission. Ruth Milkman, Chief. Wireless Telecommunications Bureau. [FR...
Active Cooperation Between Primary Users and Cognitive Radio Users in Heterogeneous Ad-Hoc Networks
2012-04-01
processing to wireless communications and networking, including space-time coding and modulation for MIMO wireless communications, MIMO - OFDM systems, and...multiinput-multioutput ( MIMO ) system that can significantly increase the link capacity and realize a new form of spatial diversity which has been termed
Application of spinal code for performance improvement in free-space optical communications
NASA Astrophysics Data System (ADS)
Saiki, Naoya; Okamoto, Eiji; Takenaka, Hideki; Toyoshima, Morio
2017-09-01
In recent years, the demand for high-capacity communication has grown, and fiber-optic transmission is being used in wired communications to meet this demand. Similarly, free-space optics (FSO), which is an optical wireless communication technology that uses laser light, has attracted much attention and has been considered as a suitable alternative to satisfy this demand in wireless communications. Free-space optical communication uses a hundred THz frequency band and allows for high-speed and radio-regulation free transmission, which may provide a solution for the current shortage of radio frequency bands.
Adaptive Wavelet Coding Applied in a Wireless Control System.
Gama, Felipe O S; Silveira, Luiz F Q; Salazar, Andrés O
2017-12-13
Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.
Design and Implementation of Secure and Reliable Communication using Optical Wireless Communication
NASA Astrophysics Data System (ADS)
Saadi, Muhammad; Bajpai, Ambar; Zhao, Yan; Sangwongngam, Paramin; Wuttisittikulkij, Lunchakorn
2014-11-01
Wireless networking intensify the tractability in the home and office environment to connect the internet without wires but at the cost of risks associated with stealing the data or threat of loading malicious code with the intention of harming the network. In this paper, we proposed a novel method of establishing a secure and reliable communication link using optical wireless communication (OWC). For security, spatial diversity based transmission using two optical transmitters is used and the reliability in the link is achieved by a newly proposed method for the construction of structured parity check matrix for binary Low Density Parity Check (LDPC) codes. Experimental results show that a successful secure and reliable link between the transmitter and the receiver can be achieved by using the proposed novel technique.
Systems and methods for performing wireless financial transactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCown, Steven Harvey
2012-07-03
A secure computing module (SCM) is configured for connection with a host device. The SCM includes a processor for performing secure processing operations, a host interface for coupling the processor to the host device, and a memory connected to the processor wherein the processor logically isolates at least some of the memory from access by the host device. The SCM also includes a proximate-field wireless communicator connected to the processor to communicate with another SCM associated with another host device. The SCM generates a secure digital signature for a financial transaction package and communicates the package and the signature tomore » the other SCM using the proximate-field wireless communicator. Financial transactions are performed from person to person using the secure digital signature of each person's SCM and possibly message encryption. The digital signatures and transaction details are communicated to appropriate financial organizations to authenticate the transaction parties and complete the transaction.« less
Transfer Error and Correction Approach in Mobile Network
NASA Astrophysics Data System (ADS)
Xiao-kai, Wu; Yong-jin, Shi; Da-jin, Chen; Bing-he, Ma; Qi-li, Zhou
With the development of information technology and social progress, human demand for information has become increasingly diverse, wherever and whenever people want to be able to easily, quickly and flexibly via voice, data, images and video and other means to communicate. Visual information to the people direct and vivid image, image / video transmission also been widespread attention. Although the third generation mobile communication systems and the emergence and rapid development of IP networks, making video communications is becoming the main business of the wireless communications, however, the actual wireless and IP channel will lead to error generation, such as: wireless channel multi- fading channels generated error and blocking IP packet loss and so on. Due to channel bandwidth limitations, the video communication compression coding of data is often beyond the data, and compress data after the error is very sensitive to error conditions caused a serious decline in image quality.
A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors
Jang, Chi Woong; Byun, Young Tae; Lee, Taikjin; Woo, Deok Ha; Lee, Seok; Jhon, Young Min
2013-01-01
We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC) and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT) sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate. PMID:23783735
Feasibility of Using Distributed Wireless Mesh Networks for Medical Emergency Response
Braunstein, Brian; Trimble, Troy; Mishra, Rajesh; Manoj, B. S.; Rao, Ramesh; Lenert, Leslie
2006-01-01
Achieving reliable, efficient data communications networks at a disaster site is a difficult task. Network paradigms, such as Wireless Mesh Network (WMN) architectures, form one exemplar for providing high-bandwidth, scalable data communication for medical emergency response activity. WMNs are created by self-organized wireless nodes that use multi-hop wireless relaying for data transfer. In this paper, we describe our experience using a mesh network architecture we developed for homeland security and medical emergency applications. We briefly discuss the architecture and present the traffic behavioral observations made by a client-server medical emergency application tested during a large-scale homeland security drill. We present our traffic measurements, describe lessons learned, and offer functional requirements (based on field testing) for practical 802.11 mesh medical emergency response networks. With certain caveats, the results suggest that 802.11 mesh networks are feasible and scalable systems for field communications in disaster settings. PMID:17238308
Mobile collaborative medical display system.
Park, Sanghun; Kim, Wontae; Ihm, Insung
2008-03-01
Because of recent advances in wireless communication technologies, the world of mobile computing is flourishing with a variety of applications. In this study, we present an integrated architecture for a personal digital assistant (PDA)-based mobile medical display system that supports collaborative work between remote users. We aim to develop a system that enables users in different regions to share a working environment for collaborative visualization with the potential for exploring huge medical datasets. Our system consists of three major components: mobile client, gateway, and parallel rendering server. The mobile client serves as a front end and enables users to choose the visualization and control parameters interactively and cooperatively. The gateway handles requests and responses between mobile clients and the rendering server for efficient communication. Through the gateway, it is possible to share working environments between users, allowing them to work together in computer supported cooperative work (CSCW) mode. Finally, the parallel rendering server is responsible for performing heavy visualization tasks. Our experience indicates that some features currently available to our mobile clients for collaborative scientific visualization are limited due to the poor performance of mobile devices and the low bandwidth of wireless connections. However, as mobile devices and wireless network systems are experiencing considerable elevation in their capabilities, we believe that our methodology will be utilized effectively in building quite responsive, useful mobile collaborative medical systems in the very near future.
NASA Astrophysics Data System (ADS)
Frew, E.; Argrow, B. M.; Houston, A. L.; Weiss, C.
2014-12-01
The energy-aware airborne dynamic, data-driven application system (EA-DDDAS) performs persistent sampling in complex atmospheric conditions by exploiting wind energy using the dynamic data-driven application system paradigm. The main challenge for future airborne sampling missions is operation with tight integration of physical and computational resources over wireless communication networks, in complex atmospheric conditions. The physical resources considered here include sensor platforms, particularly mobile Doppler radar and unmanned aircraft, the complex conditions in which they operate, and the region of interest. Autonomous operation requires distributed computational effort connected by layered wireless communication. Onboard decision-making and coordination algorithms can be enhanced by atmospheric models that assimilate input from physics-based models and wind fields derived from multiple sources. These models are generally too complex to be run onboard the aircraft, so they need to be executed in ground vehicles in the field, and connected over broadband or other wireless links back to the field. Finally, the wind field environment drives strong interaction between the computational and physical systems, both as a challenge to autonomous path planning algorithms and as a novel energy source that can be exploited to improve system range and endurance. Implementation details of a complete EA-DDDAS will be provided, along with preliminary flight test results targeting coherent boundary-layer structures.
A secure and easy-to-implement web-based communication framework for caregiving robot teams
NASA Astrophysics Data System (ADS)
Tuna, G.; Daş, R.; Tuna, A.; Örenbaş, H.; Baykara, M.; Gülez, K.
2016-03-01
In recent years, robots have started to become more commonplace in our lives, from factory floors to museums, festivals and shows. They have started to change how we work and play. With an increase in the population of the elderly, they have also been started to be used for caregiving services, and hence many countries have been investing in the robot development. The advancements in robotics and wireless communications has led to the emergence of autonomous caregiving robot teams which cooperate to accomplish a set of tasks assigned by human operators. Although wireless communications and devices are flexible and convenient, they are vulnerable to many risks compared to traditional wired networks. Since robots with wireless communication capability transmit all data types, including sensory, coordination, and control, through radio frequencies, they are open to intruders and attackers unless protected and their openness may lead to many security issues such as data theft, passive listening, and service interruption. In this paper, a secure web-based communication framework is proposed to address potential security threats due to wireless communication in robot-robot and human-robot interaction. The proposed framework is simple and practical, and can be used by caregiving robot teams in the exchange of sensory data as well as coordination and control data.
Power allocation strategies to minimize energy consumption in wireless body area networks.
Kailas, Aravind
2011-01-01
The wide scale deployment of wireless body area networks (WBANs) hinges on designing energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications, a relatively new idea in wireless communications, offers the benefits of multi-antenna systems, thereby improving the link reliability and boosting energy efficiency. In this short paper, the advantages of resorting to cooperative communications for WBANs in terms of minimized energy consumption are investigated. Adopting an energy model that encompasses energy consumptions in the transmitter and receiver circuits, and transmitting energy per bit, it is seen that cooperative transmission can improve energy efficiency of the wireless network. In particular, the problem of optimal power allocation is studied with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Using analysis and simulation-based results, two key points are demonstrated: (i) allocating power to the on-body sensors making use of the posture information can reduce the total energy consumption of the WBAN; and (ii) when the channel condition is good, it is better to recruit less relays for cooperation to enhance energy efficiency.
Sensing Traffic Density Combining V2V and V2I Wireless Communications
Sanguesa, Julio A.; Barrachina, Javier; Fogue, Manuel; Garrido, Piedad; Martinez, Francisco J.; Cano, Juan-Carlos; Calafate, Carlos T.; Manzoni, Pietro
2015-01-01
Wireless technologies are making the development of new applications and services in vehicular environments possible since they enable mobile communication between vehicles (V2V), as well as communication between vehicles and infrastructure nodes (V2I). Usually, V2V communications are dedicated to the transmission of small messages mainly focused on improving traffic safety. Instead, V2I communications allow users to access the Internet and benefit from higher level applications. The combination of both V2V and V2I, known as V2X communications, can increase the benefits even further, thereby making intelligent transportation systems (ITS) a reality. In this paper, we introduce V2X-d, a novel architecture specially designed to estimate traffic density on the road. In particular, V2X-d exploits the combination of V2V and V2I communications. Our approach is based on the information gathered by sensors (i.e., vehicles and road side units (RSUs)) and the characteristics of the roadmap topology to accurately make an estimation of the instant vehicle density. The combination of both mechanisms improves the accuracy and coverage area of the data gathered, while increasing the robustness and fault tolerance of the overall approach, e.g., using the information offered by V2V communications to provide additional density information in areas where RSUs are scarce or malfunctioning. By using our collaborative sensing scheme, future ITS solutions will be able to establish adequate dissemination protocols or to apply more efficient traffic congestion reduction policies, since they will be aware of the instantaneous density of vehicles. PMID:26694405
76 FR 23713 - Wireless E911 Location Accuracy Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-28
... Location Accuracy Requirements AGENCY: Federal Communications Commission. ACTION: Final rule; announcement... contained in regulations concerning wireless E911 location accuracy requirements. The information collection... standards for wireless Enhanced 911 (E911) Phase II location accuracy and reliability to satisfy these...
Zand, Pouria; Dilo, Arta; Havinga, Paul
2013-06-27
Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead.
Zand, Pouria; Dilo, Arta; Havinga, Paul
2013-01-01
Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead. PMID:23807687
Wireless Cooperative Networks: Self-Configuration and Optimization
2011-09-09
TERMS wireless sensor networks , wireless cooperative networks, resource optimization, ultra-wideband, localization, ranging 16. SECURITY...Communications We consider two prevalent relay protocols for wireless sensor networks : decode-and-forward (DF) and amplify-and-forward (AF). To... sensor networks where each node may have its own sensing data to transmit, since they can maximally conserve energy while helping others as relays
Wireless Instrumentation Use on Launch Vehicles
NASA Technical Reports Server (NTRS)
Sherman, Aaron
2010-01-01
This slide presentation reviews the results of a study on the use of wireless instrumentation and sensors on future launch vehicles. The use of wireless technologies would if feasible would allow for fewer wires, and allow for more flexibility. However, it was generally concluded that wireless solutions are not currently ready to replace wired technologies for launch vehicles. The recommendations of the study were to continue to use wired sensors as the primary choice for vehicle instrumentation, and to continue to assess needs and use wireless instrumentation where appropriate. The future work includes support efforts for wireless technologies, and continue to monitor the development of wireless solutions.
Range Information Systems Management (RISM) Phase 1 Report
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Nelson, Richard A.
2002-01-01
RISM investigated alternative approaches, technologies, and communication network architectures to facilitate building the Spaceports and Ranges of the future. RISM started by document most existing US ranges and their capabilities. In parallel, RISM obtained inputs from the following: 1) NASA and NASA-contractor engineers and managers, and; 2) Aerospace leaders from Government, Academia, and Industry, participating through the Space Based Range Distributed System Working Group (SBRDSWG), many of whom are also; 3) Members of the Advanced Range Technology Working Group (ARTWG) subgroups, and; 4) Members of the Advanced Spaceport Technology Working Group (ASTWG). These diverse inputs helped to envision advanced technologies for implementing future Ranges and Range systems that builds on today s cabled and wireless legacy infrastructures while seamlessly integrating both today s emerging and tomorrow s building-block communication techniques. The fundamental key is to envision a transition to a Space Based Range Distributed Subsystem. The enabling concept is to identify the specific needs of Range users that can be solved through applying emerging communication tech
Somers, Ben; Bertrand, Alexander
2016-12-01
Chronic, 24/7 EEG monitoring requires the use of highly miniaturized EEG modules, which only measure a few EEG channels over a small area. For improved spatial coverage, a wireless EEG sensor network (WESN) can be deployed, consisting of multiple EEG modules, which interact through short-distance wireless communication. In this paper, we aim to remove eye blink artifacts in each EEG channel of a WESN by optimally exploiting the correlation between EEG signals from different modules, under stringent communication bandwidth constraints. We apply a distributed canonical correlation analysis (CCA-)based algorithm, in which each module only transmits an optimal linear combination of its local EEG channels to the other modules. The method is validated on both synthetic and real EEG data sets, with emulated wireless transmissions. While strongly reducing the amount of data that is shared between nodes, we demonstrate that the algorithm achieves the same eye blink artifact removal performance as the equivalent centralized CCA algorithm, which is at least as good as other state-of-the-art multi-channel algorithms that require a transmission of all channels. Due to their potential for extreme miniaturization, WESNs are viewed as an enabling technology for chronic EEG monitoring. However, multi-channel analysis is hampered in WESNs due to the high energy cost for wireless communication. This paper shows that multi-channel eye blink artifact removal is possible with a significantly reduced wireless communication between EEG modules.
NASA Astrophysics Data System (ADS)
Somers, Ben; Bertrand, Alexander
2016-12-01
Objective. Chronic, 24/7 EEG monitoring requires the use of highly miniaturized EEG modules, which only measure a few EEG channels over a small area. For improved spatial coverage, a wireless EEG sensor network (WESN) can be deployed, consisting of multiple EEG modules, which interact through short-distance wireless communication. In this paper, we aim to remove eye blink artifacts in each EEG channel of a WESN by optimally exploiting the correlation between EEG signals from different modules, under stringent communication bandwidth constraints. Approach. We apply a distributed canonical correlation analysis (CCA-)based algorithm, in which each module only transmits an optimal linear combination of its local EEG channels to the other modules. The method is validated on both synthetic and real EEG data sets, with emulated wireless transmissions. Main results. While strongly reducing the amount of data that is shared between nodes, we demonstrate that the algorithm achieves the same eye blink artifact removal performance as the equivalent centralized CCA algorithm, which is at least as good as other state-of-the-art multi-channel algorithms that require a transmission of all channels. Significance. Due to their potential for extreme miniaturization, WESNs are viewed as an enabling technology for chronic EEG monitoring. However, multi-channel analysis is hampered in WESNs due to the high energy cost for wireless communication. This paper shows that multi-channel eye blink artifact removal is possible with a significantly reduced wireless communication between EEG modules.
Development of wireless sensor network for landslide monitoring system
NASA Astrophysics Data System (ADS)
Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S.
2017-05-01
A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km2. Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website.
Wireless Instrumentation System and Power Management Scheme Therefore
NASA Technical Reports Server (NTRS)
Perotti, Jose (Inventor); Lucena, Angel (Inventor); Eckhoff, Anthony (Inventor); Mata, Carlos T. (Inventor); Blalock, Norman N. (Inventor); Medelius, Pedro J. (Inventor)
2007-01-01
A wireless instrumentation system enables a plurality of low power wireless transceivers to transmit measurement data from a plurality of remote station sensors to a central data station accurately and reliably. The system employs a relay based communications scheme where remote stations that cannot communicate directly with the central station due to interference, poor signal strength, etc., are instructed to communicate with other of the remote stations that act as relays to the central station. A unique power management scheme is also employed to minimize power usage at each remote station and thereby maximize battery life. Each of the remote stations prefembly employs a modular design to facilitate easy reconfiguration of the stations as required.
Satellite Communications Using Commercial Protocols
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Griner, James H.; Dimond, Robert; Frantz, Brian D.; Kachmar, Brian; Shell, Dan
2000-01-01
NASA Glenn Research Center has been working with industry, academia, and other government agencies in assessing commercial communications protocols for satellite and space-based applications. In addition, NASA Glenn has been developing and advocating new satellite-friendly modifications to existing communications protocol standards. This paper summarizes recent research into the applicability of various commercial standard protocols for use over satellite and space- based communications networks as well as expectations for future protocol development. It serves as a reference point from which the detailed work can be readily accessed. Areas that will be addressed include asynchronous-transfer-mode quality of service; completed and ongoing work of the Internet Engineering Task Force; data-link-layer protocol development for unidirectional link routing; and protocols for aeronautical applications, including mobile Internet protocol routing for wireless/mobile hosts and the aeronautical telecommunications network protocol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, John M.; Jones, Perry T.; Li, Jan-Mou
As visionary as dynamic, or in-motion, wireless charging of electric vehicles appears the concept is well over a century old as this paper will show. This is because the concept of magnetic induction dates back to the pioneering work of physicist Michael Faraday in the early 19th century. Today wireless power transfer (WPT) is being standardized for stationary and quasi-stationary charging of electric vehicles (EV). The Society of Automotive Engineers (SAE) has undertaken the standardization of stationary charging and will make this public during 2016. In addition to this the IEEE-SA (Standards Activities) initiated standards development for EV?s in theirmore » EVWPT working group in 2012. This study introduces the many challenges facing EVWPT in not only high power transfer to a moving vehicle and energy management at a utility scale, but communications in a vehicle to infrastructure (V2I) environment and management of high data rates, ultra-low latency, and dealing with communications loss in dense urban areas. Finally, future concepts such as guideway powering of EV?s are presented to illustrate one technical trajectory EVWPT may take.« less
Review on energy harvesting for structural health monitoring in aeronautical applications
NASA Astrophysics Data System (ADS)
Le, Minh Quyen; Capsal, Jean-Fabien; Lallart, Mickaël; Hebrard, Yoann; Van Der Ham, Andre; Reffe, Nicolas; Geynet, Lionel; Cottinet, Pierre-Jean
2015-11-01
This paper reviews recent developments in energy harvesting technologies for structural health monitoring (SHM) in aeronautical applications. Aeronautical industries show a great deal of interest in obtaining technologies that can be used to monitor the health of machinery and structures. In particular, the need for self-sufficient monitoring of structures has been ever-increasing in recent years. Autonomous SHM systems typically include embedded sensors, and elements for data acquisition, wireless communication, and energy harvesting. Among all of these components, this paper focuses on energy harvesting technologies. Actually, low-power sensors and wireless communication components are used in newer SHM systems, and a number of researchers have recently investigated such techniques to extract energy from the local environment to power these stand-alone systems. The first part of the paper is dedicated to the different energy sources available in aeronautical applications, i.e., for airplanes and helicopters. The second part gives a presentation of the various devices developed for converting ambient energy into electric power. The last part is dedicated to a comparison of the different technologies and the future development of energy harvesting for aeronautical applications.
Son, Byungjik; Jeon, Seunggon
2018-01-01
A disaster preventive structural health monitoring (SHM) system needs to be equipped with the following abilities: First, it should be able to simultaneously measure diverse types of data (e.g., displacement, velocity, acceleration, strain, load, temperature, humidity, etc.) for accurate diagnosis. Second, it also requires standalone power supply to guarantee its immediate response in crisis (e.g., sudden interruption of normal AC power in disaster situations). Furthermore, it should be capable of prompt processing and realtime wireless communication of a huge amount of data. Therefore, this study is aimed at developing a wireless unified-maintenance system (WUMS) that would satisfy all the requirements for a disaster preventive SHM system of civil structures. The WUMS is designed to measure diverse types of structural responses in realtime based on wireless communication, allowing users to selectively use WiFi RF band and finally working in standalone mode by means of the field-programmable gate array (FPGA) technology. To verify its performance, the following tests were performed: (i) A test to see how far communication is possible in open field, (ii) a test on a shaker to see how accurate responses are, (iii) a modal test on a bridge to see how exactly characteristic real-time dynamic responses are of structures. The test results proved that the WUMS was able to secure stable communication far up to nearly 800 m away by acquiring wireless responses in realtime accurately, when compared to the displacement and acceleration responses which were acquired through wired communication. The analysis of dynamic characteristics also showed that the wireless acceleration responses in real-time represented satisfactorily the dynamic properties of structures. Therefore, the WUMS is proved valid as a SHM, and its outstanding performance is also proven. PMID:29747403
Heo, Gwanghee; Son, Byungjik; Kim, Chunggil; Jeon, Seunggon; Jeon, Joonryong
2018-05-09
A disaster preventive structural health monitoring (SHM) system needs to be equipped with the following abilities: First, it should be able to simultaneously measure diverse types of data (e.g., displacement, velocity, acceleration, strain, load, temperature, humidity, etc.) for accurate diagnosis. Second, it also requires standalone power supply to guarantee its immediate response in crisis (e.g., sudden interruption of normal AC power in disaster situations). Furthermore, it should be capable of prompt processing and realtime wireless communication of a huge amount of data. Therefore, this study is aimed at developing a wireless unified-maintenance system (WUMS) that would satisfy all the requirements for a disaster preventive SHM system of civil structures. The WUMS is designed to measure diverse types of structural responses in realtime based on wireless communication, allowing users to selectively use WiFi RF band and finally working in standalone mode by means of the field-programmable gate array (FPGA) technology. To verify its performance, the following tests were performed: (i) A test to see how far communication is possible in open field, (ii) a test on a shaker to see how accurate responses are, (iii) a modal test on a bridge to see how exactly characteristic real-time dynamic responses are of structures. The test results proved that the WUMS was able to secure stable communication far up to nearly 800 m away by acquiring wireless responses in realtime accurately, when compared to the displacement and acceleration responses which were acquired through wired communication. The analysis of dynamic characteristics also showed that the wireless acceleration responses in real-time represented satisfactorily the dynamic properties of structures. Therefore, the WUMS is proved valid as a SHM, and its outstanding performance is also proven.
Compressive sensing based wireless sensor for structural health monitoring
NASA Astrophysics Data System (ADS)
Bao, Yuequan; Zou, Zilong; Li, Hui
2014-03-01
Data loss is a common problem for monitoring systems based on wireless sensors. Reliable communication protocols, which enhance communication reliability by repetitively transmitting unreceived packets, is one approach to tackle the problem of data loss. An alternative approach allows data loss to some extent and seeks to recover the lost data from an algorithmic point of view. Compressive sensing (CS) provides such a data loss recovery technique. This technique can be embedded into smart wireless sensors and effectively increases wireless communication reliability without retransmitting the data. The basic idea of CS-based approach is that, instead of transmitting the raw signal acquired by the sensor, a transformed signal that is generated by projecting the raw signal onto a random matrix, is transmitted. Some data loss may occur during the transmission of this transformed signal. However, according to the theory of CS, the raw signal can be effectively reconstructed from the received incomplete transformed signal given that the raw signal is compressible in some basis and the data loss ratio is low. This CS-based technique is implemented into the Imote2 smart sensor platform using the foundation of Illinois Structural Health Monitoring Project (ISHMP) Service Tool-suite. To overcome the constraints of limited onboard resources of wireless sensor nodes, a method called random demodulator (RD) is employed to provide memory and power efficient construction of the random sampling matrix. Adaptation of RD sampling matrix is made to accommodate data loss in wireless transmission and meet the objectives of the data recovery. The embedded program is tested in a series of sensing and communication experiments. Examples and parametric study are presented to demonstrate the applicability of the embedded program as well as to show the efficacy of CS-based data loss recovery for real wireless SHM systems.
An Ultra Low Cost Wireless Communications Laboratory for Education and Research
ERIC Educational Resources Information Center
Linn, Y.
2012-01-01
This paper presents an ultra-low-cost wireless communications laboratory that is based on a commercial off-the-shelf field programmable gate array (FPGA) development board that is both inexpensive and available worldwide. The total cost of the laboratory is under USD $200, but it includes complete transmission, channel emulation, reception…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... Communications Networks, Including Switches, Routers, Gateways, Bridges, Wireless Access Points, Cable Modems, IP... networks, including switches, routers, gateways, bridges, wireless access points, cable modems, IP phones... points, cable modems, IP phones, and products containing same that infringe one or more of claims 1, 5, 9...
USDA-ARS?s Scientific Manuscript database
A contact closure system has been constructed and implemented that utilizes two contact closure sender boards that communicate wirelessly to four contact closure receiver boards to distribute start signals from two or three liquid chromatographs to fourteen instruments, pumps, detectors, or other co...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 101 [WT Docket No. 10-153; RM-11602; DA 11-1674] Facilitating the use of Microwave for Wireless Backhaul and Other Uses and Providing Additional Flexibility To Broadcast Auxiliary Service and Operational Fixed Microwave Licensees AGENCY: Federal Communications...
ERIC Educational Resources Information Center
Juliano, Benjoe A.; Sheel, Stephen J.
In this paper, potential applications of wireless data communications and mobile satellite technology are described which aim at improving education. The motivation behind this work is that the technology now exists for providing today's teachers and students with not only better access to educational facilities, but also instantaneous…
Streetlight Control System Based on Wireless Communication over DALI Protocol
Bellido-Outeiriño, Francisco José; Quiles-Latorre, Francisco Javier; Moreno-Moreno, Carlos Diego; Flores-Arias, José María; Moreno-García, Isabel; Ortiz-López, Manuel
2016-01-01
Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed. PMID:27128923
47 CFR 1.903 - Authorization required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless Radio Services... the Wireless Radio Services must be used and operated only in accordance with the rules applicable to... operate mobile or fixed stations in the Wireless Radio Services, except for certain stations in the Rural...
47 CFR 1.945 - License grants.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless Radio Services... be conducted by the Commission or by the Chief of the Wireless Telecommunications Bureau, or, in the..., such burdens shall be as determined by the Commission or the Chief of the Wireless Telecommunications...
Sinkhole Avoidance Routing in Wireless Sensor Networks
2011-05-09
sensor network consists of individual sensor nodes that work cooperatively to collect and communicate environmental data. In a surveillance role, a WSN...Wireless sensor networks, or WSNs, are an emerging commercial technology that may have practical applications on the modern battlefield. A wireless
Robust optical wireless links over turbulent media using diversity solutions
NASA Astrophysics Data System (ADS)
Moradi, Hassan
Free-space optic (FSO) technology, i.e., optical wireless communication (OWC), is widely recognized as superior to radio frequency (RF) in many aspects. Visible and invisible optical wireless links solve first/last mile connectivity problems and provide secure, jam-free communication. FSO is license-free and delivers high-speed data rates in the order of Gigabits. Its advantages have fostered significant research efforts aimed at utilizing optical wireless communication, e.g. visible light communication (VLC), for high-speed, secure, indoor communication under the IEEE 802.15.7 standard. However, conventional optical wireless links demand precise optical alignment and suffer from atmospheric turbulence. When compared with RF, they suffer a low degree of reliability and lack robustness. Pointing errors cause optical transceiver misalignment, adversely affecting system reliability. Furthermore, atmospheric turbulence causes irradiance fluctuations and beam broadening of transmitted light. Innovative solutions to overcome limitations on the exploitation of high-speed optical wireless links are greatly needed. Spatial diversity is known to improve RF wireless communication systems. Similar diversity approaches can be adapted for FSO systems to improve its reliability and robustness; however, careful diversity design is needed since FSO apertures typically remain unbalanced as a result of FSO system sensitivity to misalignment. Conventional diversity combining schemes require persistent aperture monitoring and repetitive switching, thus increasing FSO implementation complexities. Furthermore, current RF diversity combining schemes may not be optimized to address the issue of unbalanced FSO receiving apertures. This dissertation investigates two efficient diversity combining schemes for multi-receiving FSO systems: switched diversity combining and generalized selection combining. Both can be exploited to reduce complexity and improve combining efficiency. Unlike maximum ratio combing, equal gain combining, and selective combining, switched diversity simplifies receiver design by avoiding unnecessary switching among receiving apertures. The most significant advantage of generalized combining is its ability to exclude apertures with low quality that could potentially affect the resultant output signal performance. This dissertation also investigates mobile FSO by considering a multi-receiving system in which all receiving FSO apertures are circularly placed on a platform. System mobility and performance are analyzed. Performance results confirm improvements when using angular diversity and generalized selection combining. The precis of this dissertation establishes the foundation of reliable FSO communications using efficient diversity-based solutions. Performance parameters are analyzed mathematically, and then evaluated using computer simulations. A testbed prototype is developed to facilitate the evaluation of optical wireless links via lab experiments.
Tabletop Molecular Communication: Text Messages through Chemical Signals
Farsad, Nariman; Guo, Weisi; Eckford, Andrew W.
2013-01-01
In this work, we describe the first modular, and programmable platform capable of transmitting a text message using chemical signalling – a method also known as molecular communication. This form of communication is attractive for applications where conventional wireless systems perform poorly, from nanotechnology to urban health monitoring. Using examples, we demonstrate the use of our platform as a testbed for molecular communication, and illustrate the features of these communication systems using experiments. By providing a simple and inexpensive means of performing experiments, our system fills an important gap in the molecular communication literature, where much current work is done in simulation with simplified system models. A key finding in this paper is that these systems are often nonlinear in practice, whereas current simulations and analysis often assume that the system is linear. However, as we show in this work, despite the nonlinearity, reliable communication is still possible. Furthermore, this work motivates future studies on more realistic modelling, analysis, and design of theoretical models and algorithms for these systems. PMID:24367571
High speed optical wireless data transmission system for particle sensors in high energy physics
NASA Astrophysics Data System (ADS)
Ali, W.; Corsini, R.; Ciaramella, E.; Dell'Orso, R.; Messineo, A.; Palla, F.
2015-08-01
High speed optical fiber or copper wire communication systems are frequently deployed for readout data links used in particle physics detectors. Future detector upgrades will need more bandwidth for data transfer, but routing requirements for new cables or optical fiber will be challenging due to space limitations. Optical wireless communication (OWC) can provide high bandwidth connectivity with an advantage of reduced material budget and complexity of cable installation and management. In a collaborative effort, Scuola Superiore Sant'Anna and INFN Pisa are pursuing the development of a free-space optical link that could be installed in a future particle physics detector or upgrade. We describe initial studies of an OWC link using the inner tracker of the Compact Muon Solenoid (CMS) detector as a reference architecture. The results of two experiments are described: the first to verify that the laser source transmission wavelength of 1550 nm will not introduce fake signals in silicon strip sensors while the second was to study the source beam diameter and its tolerance to misalignment. For data rates of 2.5 Gb/s and 10 Gb/s over a 10 cm working distance it was observed that a tolerance limit of ±0.25 mm to ±0.8 mm can be obtained for misaligned systems with source beam diameters of 0.38 mm to 3.5 mm, respectively.
Emerging CAE technologies and their role in Future Ambient Intelligence Environments
NASA Astrophysics Data System (ADS)
Noor, Ahmed K.
2011-03-01
Dramatic improvements are on the horizon in Computer Aided Engineering (CAE) and various simulation technologies. The improvements are due, in part, to the developments in a number of leading-edge technologies and their synergistic combinations/convergence. The technologies include ubiquitous, cloud, and petascale computing; ultra high-bandwidth networks, pervasive wireless communication; knowledge based engineering; networked immersive virtual environments and virtual worlds; novel human-computer interfaces; and powerful game engines and facilities. This paper describes the frontiers and emerging simulation technologies, and their role in the future virtual product creation and learning/training environments. The environments will be ambient intelligence environments, incorporating a synergistic combination of novel agent-supported visual simulations (with cognitive learning and understanding abilities); immersive 3D virtual world facilities; development chain management systems and facilities (incorporating a synergistic combination of intelligent engineering and management tools); nontraditional methods; intelligent, multimodal and human-like interfaces; and mobile wireless devices. The Virtual product creation environment will significantly enhance the productivity and will stimulate creativity and innovation in future global virtual collaborative enterprises. The facilities in the learning/training environment will provide timely, engaging, personalized/collaborative and tailored visual learning.
Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Kim, Hyungmin; Youn, Inchan
2017-12-21
Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.
Smart Grid Communications System Blueprint
NASA Astrophysics Data System (ADS)
Clark, Adrian; Pavlovski, Chris
2010-10-01
Telecommunications operators are well versed in deploying 2G and 3G wireless networks. These networks presently support the mobile business user and/or retail consumer wishing to place conventional voice calls and data connections. The electrical power industry has recently commenced transformation of its distribution networks by deploying smart monitoring and control devices throughout their networks. This evolution of the network into a `smart grid' has also motivated the need to deploy wireless technologies that bridge the communication gap between the smart devices and information technology systems. The requirements of these networks differ from traditional wireless networks that communications operators have deployed, which have thus far forced energy companies to consider deploying their own wireless networks. We present our experience in deploying wireless networks to support the smart grid and highlight the key properties of these networks. These characteristics include application awareness, support for large numbers of simultaneous cell connections, high service coverage and prioritized routing of data. We also outline our target blueprint architecture that may be useful to the industry in building wireless and fixed networks to support the smart grid. By observing our experiences, telecommunications operators and equipment manufacturers will be able to augment their current networks and products in a way that accommodates the needs of the emerging industry of smart grids and intelligent electrical networks.
Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Youn, Inchan
2017-01-01
Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time. PMID:29267230
Terahertz wireless communication based on InP-related devices (Conference Presentation)
NASA Astrophysics Data System (ADS)
Lee, Eui Su; Kim, Hyun-Soo; Park, Jeong-Woo; Park, Dong Woo; Park, Kyung Hyun
2017-02-01
Recently, a wide interest has been gathered in using terahertz (THz) waves as the carrier waves for the next generation of broadband wireless communications. Upon this objective, the photonics technologies are very attractive for their usefulness in signal generations, modulations and detections with enhanced bandwidth and data rates, and the readiness in combining to the existing fiber-optic or wireless networks. In this paper, as a preliminary step toward the THz wireless communications, a THz wireless interconnection system with a broadband antenna-integrated uni-traveling-carrier photodiode (UTC-PD) and a Shottky-barrier diode (SBD) module will be presented. In our system, optical beating signals are generated and digitally modulated by the optical intensity modulator driven by a pulse pattern generator (PPG). As the receiver a SBD and an IF filter followed by a low-noise preamplifier and a limiting amplifier was used. With a 6-mA photocurrent of the UTC-PD which corresponds to the transmitter output power of about 30 μW at 280 GHz, an error-free (BER<10-9) transmission has been achieved at 2.5 Gbit/s which is limited by a limiting amplifier. With this system, a 1.485-Gbit/s video signal with a high-definition serial digital interface format was successfully transmitted over a wireless link.
Effects of wireless packet loss in industrial process control systems.
Liu, Yongkang; Candell, Richard; Moayeri, Nader
2017-05-01
Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100% reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100% reliable communications. The sensitivity of the controller to the burstiness of packet loss is also characterized in different process stages. The performance results indicate that wireless links with redundant bandwidth reservation can meet the requirements of the TE process model under normal operational conditions. When disturbances are introduced in the TE plant model, wireless packet loss during transitions between process stages need further protection in severely impaired links. Techniques such as retransmission scheduling, multipath routing and enhanced physical layer design are discussed and the latest industrial wireless protocols are compared. Published by Elsevier Ltd.
Effects of Wireless Packet Loss in Industrial Process Control Systems
Liu, Yongkang; Candell, Richard; Moayeri, Nader
2017-01-01
Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100 % reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100 % reliable communications. The sensitivity of the controller to the burstiness of packet loss is also characterized in different process stages. The performance results indicate that wireless links with redundant bandwidth reservation can meet the requirements of the TE process model under normal operational conditions. When disturbances are introduced in the TE plant model, wireless packet loss during transitions between process stages need further protection in severely impaired links. Techniques such as retransmission scheduling, multipath routing and enhanced physical layer design are discussed and the latest industrial wireless protocols are compared. PMID:28190566
NASA Astrophysics Data System (ADS)
Wang, Yiguang; Huang, Xingxing; Shi, Jianyang; Wang, Yuan-quan; Chi, Nan
2016-05-01
Visible light communication (VLC) has no doubt become a promising candidate for future wireless communications due to the increasing trends in the usage of light-emitting diodes (LEDs). In addition to indoor high-speed wireless access and positioning applications, VLC usage in outdoor scenarios, such as vehicle networks and intelligent transportation systems, are also attracting significant interest. However, the complex outdoor environment and ambient noise are the key challenges for long-range high-speed VLC outdoor applications. To improve system performance and transmission distance, we propose to use receiver diversity technology in an outdoor VLC system. Maximal ratio combining-based receiver diversity technology is utilized in two receivers to achieve the maximal signal-to-noise ratio. A 400-Mb/s VLC transmission using a phosphor-based white LED and a 1-Gb/s wavelength division multiplexing VLC transmission using a red-green-blue LED are both successfully achieved over a 100-m outdoor distance with the bit error rate below the 7% forward error correction limit of 3.8×10-3. To the best of our knowledge, this is the highest data rate at 100-m outdoor VLC transmission ever achieved. The experimental results clearly prove the benefit and feasibility of receiver diversity technology for long-range high-speed outdoor VLC systems.
2015-09-30
Wireless Networks (WUWNet’14), Rome, Italy, Nov. 12 14, 2014. J. Preisig, “ Underwater Acoustic Communications: Enabling the Next Generation at the...on Wireless Communication. M. Pajovic, J. Preisig, “Performance Analytics and Optimal Design of Multichannel Equalizers for Underwater Acoustic Communications”, to appear in IEEE Journal of Oceanic Engineering. 6 ...Exploiting Structured Dependencies in the Design of Adaptive Algorithms for Underwater Communication Award #3
Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios
NASA Technical Reports Server (NTRS)
Nguyens, T. X.; Koppen, S. V.; Smith, L. J.; Williams, R. A.; Salud, M. T.
2005-01-01
Emissions in aircraft communication and navigation bands are measured for the latest generation of wireless phones. The two wireless technologies considered, GSM/GPRS and CDMA2000, are the latest available to general consumers in the U.S. A base-station simulator is used to control the phones. The measurements are conducted using reverberation chambers, and the results are compared against FCC and aircraft installed equipment emission limits. The results are also compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft.
Environmental implications of wireless technologies: news delivery and business meetings.
Toffel, Michael W; Horvath, Arpad
2004-06-01
Wireless information technologies are providing new ways to communicate, and are one of several information and communication technologies touted as an opportunity to reduce society's overall environmental impacts. However, rigorous system-wide environmental impact comparisons of these technologies to the traditional applications they may replace have only recently been initiated, and the results have been mixed. In this paper, the environmental effects of two applications of wireless technologies are compared to those of conventional technologies for which they can substitute. First, reading newspaper content on a personal digital assistant (PDA) is compared to the traditional way of reading a newspaper. Second, wireless teleconferencing is compared to business travel. The results show that for both comparisons wireless technologies create lower environmental impacts. Compared to reading a newspaper, receiving the news on a PDA wirelessly results in the release of 32-140 times less CO2, several orders of magnitude less NOx and SOx, and the use of 26-67 times less water. Wireless teleconferencing results in 1-3 orders of magnitude lower CO2, NOx, and SO2 emissions than business travel.
A seamless ubiquitous emergency medical service for crisis situations.
Lin, Bor-Shing
2016-04-01
In crisis situations, a seamless ubiquitous communication is necessary to provide emergency medical service to save people's lives. An excellent prehospital emergency medicine provides immediate medical care to increase the survival rate of patients. On their way to the hospital, ambulance personnel must transmit real-time and uninterrupted patient information to the hospital to apprise the physician of the situation and provide options to the ambulance personnel. In emergency and crisis situations, many communication channels can be unserviceable because of damage to equipment or loss of power. Thus, data transmission over wireless communication to achieve uninterrupted network services is a major obstacle. This study proposes a mobile middleware for cognitive radio (CR) for improving the wireless communication link. CRs can sense their operating environment and optimize the spectrum usage so that the mobile middleware can integrate the existing wireless communication systems with a seamless communication service in heterogeneous network environments. Eventually, the proposed seamless mobile communication middleware was ported into an embedded system, which is compatible with the actual network environment without the need for changing the original system architecture. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Efficient SCT Protocol for Post Disaster Communication
NASA Astrophysics Data System (ADS)
Ramesh, T. K.; Giriraja, C. V.
2017-08-01
Natural and catastrophic disasters can cause damage to the communication system, the damage may be complete or it may be partial. In such areas communication and exchange of information plays a very important role and become difficult to happen in such situations. So, the rescue systems should be installed in those areas for the rescue operations and to take important decisions about how to make a connection from there to the outside world. Wireless communication network architecture should be setup in disaster areas for the communication to happen and to gather information. Wireless ad-hoc network architecture is proposed in this paper with access nodes. These access nodes acts as hotspot for certain area in which they are set up such that the Wi-Fi capable devices get connected to them for communication to happen. If the mobile battery is drained in such situations wireless charging using microwave is shown in this paper. Performance analysis of the communication transport layer protocols is shown and Efficient SCTP (ESTP) algorithm is developed which shows better results in terms of cumulative packet loss.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-24
... Part V Federal Communications Commission 47 CFR Parts 1, 74, and 101 Use of Microwave for Wireless... Docket Nos. 10-153; 09-106; 07-121; FCC 10-146] Use of Microwave for Wireless Backhaul; Provision for... commences a proceeding to remove regulatory barriers to the use of spectrum for wireless backhaul and other...
47 CFR 1.937 - Repetitious or conflicting applications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... or denied any license application in the Wireless Radio Services, or revoked any such license, the... Commission dismissing with prejudice or denying any application in the Wireless Radio Services, or if the... Section 1.937 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless...
47 CFR 1.937 - Repetitious or conflicting applications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... or denied any license application in the Wireless Radio Services, or revoked any such license, the... Commission dismissing with prejudice or denying any application in the Wireless Radio Services, or if the... Section 1.937 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless...
47 CFR 27.4 - Terms and definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS... interoperable wireless broadband network operating on the 758-763 MHz and 788-793 MHz bands and the 763-768 MHz and 793-798 MHz bands in accordance with the Commission's rules. Advanced wireless service (AWS). A...
Design and Implementation of Secure Area Expansion Scheme for Public Wireless LAN Services
NASA Astrophysics Data System (ADS)
Watanabe, Ryu; Tanaka, Toshiaki
Recently, wireless LAN (WLAN) technology has become a major wireless communication method. The communication bandwidth is increasing and speeds have attained rates exceeding 100 Mbps. Therefore, WLAN technology is regarded as one of the promising communication methods for future networks. In addition, public WLAN connection services can be used in many locations. However, the number of the access points (AP) is insufficient for seamless communication and it cannot be said that users can use the service ubiquitously. An ad-hoc network style connection can be used to expand the coverage area of a public WLAN service. By relaying the user messages among the user nodes, a node can obtain an Internet connection via an AP, even though the node is located outside the AP's direct wireless connection area. Such a coverage area extending technology has many advantages thanks to the feature that no additional infrastructure is required. Therefore, there is a strong demand for this technology as it allows the cost-effective construction of future networks. When a secure ad-hoc routing protocol is used for message exchange in the WLAN service, the message routes are protected from malicious behavior such as route forging and can be maintained appropriately. To do this, however, a new node that wants to join the WLAN service has to obtain information such as the public key certificate and IP address in order to start secure ad-hoc routing. In other words, an initial setup is required for every network node to join the WLAN service properly. Ordinarily, such information should be assigned from the AP. However, new nodes cannot always contact an AP directly. Therefore, there are problems about information delivery in the initial setup of a network node. These problems originate in the multi hop connection based on the ad-hoc routing protocols. In order to realize an expanded area WLAN service, in this paper, the authors propose a secure public key certificate and address provision scheme during the initial setup phase on mobile nodes for the service. The proposed scheme also considers the protection of user privacy. Accordingly, none of the user nodes has to reveal their unique and persistent information to other nodes. Instead of using such information, temporary values are sent by an AP to mobile nodes and used for secure ad-hoc routing operations. Therefore, our proposed scheme prevents tracking by malicious parties by avoiding the use of unique information. Moreover, a test bed was also implemented based on the proposal and an evaluation was carried out in order to confirm performance. In addition, the authors describe a countermeasure against denial of service (DoS) attacks based on the approach to privacy protection described in our proposal.
Optical wireless applications: a solution to ease the wireless airwaves spectrum crunch
NASA Astrophysics Data System (ADS)
Kavehrad, M.
2013-01-01
Demands by the communications industry for greater and greater bandwidth push the capability of conventional wireless technology. Part of the Radio Spectrum that is suitable for mobility is very limited. Higher frequency waves above 30 GHz tend to travel only a few miles or less and generally do not penetrate solid materials very well. This offers a sustainable solution for the current Spectrum Crunch in the lower microwave bands. One mission of this paper is to demonstrate practical and usable networks that can select a self-limiting link distance, allowing spectrum reuse. The motivation for operators of such bands to actually choose to self-limit is that by doing so, they improve the signal-tonoise against competing users at a lower cost than trying to overcome interference. These characteristics of wave propagation are not necessarily disadvantageous as they enable more densely packed communications links. Thus, high frequencies can provide very efficient spectrum utilization through "selective spectrum reuse", and naturally increase the security of transmissions. Optical systems and networks offer a far greater bandwidth. This means new devices and systems have to be developed. Semiconductor Light Emitting Diode (LED) is considered to be the future primary lighting source for buildings, automobiles and aircrafts. LED provides higher energy efficiency compared to incandescent and fluorescent light sources and it will play a major role in the global reduction of carbon dioxide emissions, as a consequence of the significant energy savings. Lasers are also under investigation for similar applications. These core devices have the potential to revolutionize how we use light, including not only for illumination, but as well; for communications, sensing, navigation, positioning, surveillance, and imaging.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-07
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 20 [PS Docket No. 07-114; WC Docket No. 05-196; FCC 10-177; DA 10-2267] Wireless E911 Location Accuracy Requirements; E911 Requirements for IP-Enabled Service Providers AGENCY: Federal Communications Commission. ACTION: Proposed rule; extension of comment...
Optical Wireless Communications
NASA Astrophysics Data System (ADS)
Arnon, Shlomi; Britz, David M.; Boucouvalas, Anthony C.; Kavehrad, Mohsen
2005-01-01
| Guest Editors:
DOE Office of Scientific and Technical Information (OSTI.GOV) Zvi H. Meiksin Two industrial prototype units for through-the-earth wireless communication were constructed and tested. Preparation for a temporary installation in NIOSH's Lake Lynn mine for the through-the-earth and the in-mine system were completed. Progress was made in the programming of the in-mine system to provide data communication. Work has begun to implement a wireless interface between equipment controllers and our in-mine system. MIT CSAIL and Lincoln Laboratory Task Force Report 2016-08-01 projects have been very diverse, spanning several areas of CSAIL concentration, including robotics, big data analytics , wireless communications...spanning several areas of CSAIL concentration, including robotics, big data analytics , wireless communications, computing architectures and...to machine learning systems and algorithms, such as recommender systems, and “Big Data ” analytics . Advanced computing architectures broadly refer to Teaching the Fundamentals of Cell Phones and Wireless Communications ERIC Educational Resources Information Center Davids, Mark; Forrest, Rick; Pata, Don 2010-01-01 Wireless communications are ubiquitous. Students and teachers use iPhones[R], BlackBerrys[R], and other smart phones at home and at work. More than 275 million Americans had cell phones in June of 2009 and expanded access to broadband is predicted this year. Despite the plethora of users, most students and teachers do not understand "how they… Federal Register 2010, 2011, 2012, 2013, 2014 2012-11-26 ... of display screens, wireless headsets, and simultaneous transmission capabilities in handsets. The... Communications Commission. ACTION: Proposed rule. SUMMARY: In this document, the Wireless Telecommunications... relating to hearing aid compatibility of wireless handsets. The Bureau seeks updated comment on whether, in... 75 FR 54546 - Amendment of the Commission's Rules Governing Hearing Aid-Compatible Mobile Handsets Federal Register 2010, 2011, 2012, 2013, 2014 2010-09-08 ... revisions to the Commission's wireless hearing aid compatibility rules. The Commission initiates this proceeding to ensure that consumers with hearing loss are able to access wireless communications services.... FOR FURTHER INFORMATION CONTACT: John Borkowski, Wireless Telecommunications Bureau, (202) 418-0626, e... [Development of Bluetooth wireless sensors]. Moor, C; Schwaibold, M; Roth, H; Schöchlin, J; Bolz, A 2002-01-01 Wireless communication could help to overcome current obstacles in medical devices and could enable medical services to offer completely new scenarios in health care. The Bluetooth technology which is the upcoming global market leader in wireless communication turned out to be perfectly suited not only for consumer market products but also in the medical environment [1]. It offers a low power, low cost connection in the medium range of 1-100 m with a bandwidth of currently 723.2 kbaud. This paper describes the development of a wireless ECG device and a Pulse Oximeter. Equipped with a Bluetooth port, the measurement devices are enabled to transmit data between the sensor and a Bluetooth-monitor. Therefore, CSR's Bluetooth protocol embedded two-processor and embedded single-processor architecture has been used. Ensuring the security and availability of a hospital wireless LAN system. Hanada, Eisuke; Kudou, Takato; Tsumoto, Shusaku 2013-01-01 Wireless technologies as part of the data communication infrastructure of modern hospitals are being rapidly introduced. Even though there are concerns about problems associated with wireless communication security, the demand is remarkably large. Herein we discuss security countermeasures that must be taken and issues concerning availability that must be considered to ensure safe hospital/business use of wireless LAN systems, referring to the procedures introduced at a university hospital. Security countermeasures differ according to their purpose, such as preventing illegal use or ensuring availability, both of which are discussed. The main focus of the availability discussion is on signal reach, electromagnetic noise elimination, and maintaining power supply to the network apparatus. It is our hope that this information will assist others in their efforts to ensure safe implementation of wireless LAN systems, especially in hospitals where they have the potential to greatly improve information sharing and patient safety. Hybrid networking sensing system for structural health monitoring of a concrete cable-stayed bridge NASA Astrophysics Data System (ADS) Torbol, Marco; Kim, Sehwan; Chien, Ting-Chou; Shinozuka, Masanobu 2013-04-01 The purpose of this study is the remote structural health monitoring to identify the torsional natural frequencies and mode shapes of a concrete cable-stayed bridge using a hybrid networking sensing system. The system consists of one data aggregation unit, which is daisy-chained to one or more sensing nodes. A wireless interface is used between the data aggregation units, whereas a wired interface is used between a data aggregation unit and the sensing nodes. Each sensing node is equipped with high-precision MEMS accelerometers with adjustable sampling frequency from 0.2 Hz to 1.2 kHz. The entire system was installed inside the reinforced concrete box-girder deck of Hwamyung Bridge, which is a cable stayed bridge in Busan, South Korea, to protect the system from the harsh environmental conditions. This deployment makes wireless communication a challenge due to the signal losses and the high levels of attenuation. To address these issues, the concept of hybrid networking system is introduced with the efficient local power distribution technique. The theoretical communication range of Wi-Fi is 100m. However, inside the concrete girder, the peer to peer wireless communication cannot exceed about 20m. The distance is further reduced by the line of sight between the antennas. However, the wired daisy-chained connection between sensing nodes is useful because the data aggregation unit can be placed in the optimal location for transmission. To overcome the limitation of the wireless communication range, we adopt a high-gain antenna that extends the wireless communication distance to 50m. Additional help is given by the multi-hopping data communication protocol. The 4G modem, which allows remote access to the system, is the only component exposed to the external environment. Power-rate-distortion analysis for wireless video communication under energy constraint NASA Astrophysics Data System (ADS) He, Zhihai; Liang, Yongfang; Ahmad, Ishfaq 2004-01-01 In video coding and streaming over wireless communication network, the power-demanding video encoding operates on the mobile devices with limited energy supply. To analyze, control, and optimize the rate-distortion (R-D) behavior of the wireless video communication system under the energy constraint, we need to develop a power-rate-distortion (P-R-D) analysis framework, which extends the traditional R-D analysis by including another dimension, the power consumption. Specifically, in this paper, we analyze the encoding mechanism of typical video encoding systems and develop a parametric video encoding architecture which is fully scalable in computational complexity. Using dynamic voltage scaling (DVS), a hardware technology recently developed in CMOS circuits design, the complexity scalability can be translated into the power consumption scalability of the video encoder. We investigate the rate-distortion behaviors of the complexity control parameters and establish an analytic framework to explore the P-R-D behavior of the video encoding system. Both theoretically and experimentally, we show that, using this P-R-D model, the encoding system is able to automatically adjust its complexity control parameters to match the available energy supply of the mobile device while maximizing the picture quality. The P-R-D model provides a theoretical guideline for system design and performance optimization in wireless video communication under energy constraint, especially over the wireless video sensor network. Wireless Communications in Reverberant Environments 2015-01-01 Secure Wireless Agent Testbed (SWAT), the Protocol Engineering Advanced Networking (PROTEAN) Research Group, the Data Fusion Laboratory (DFL), and the...constraints of their application. 81 Bibliography [1] V. Gungor and G. Hancke, “Industrial wireless sensor networks : Challenges, design principles, and...Bhattacharya, “Path loss estimation for a wireless sensor network for application in ship,” Int. J. of Comput. Sci. and Mobile Computing, vol. 2, no. 6, pp A wireless sensor enabled by wireless power. Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey 2012-11-22 Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. A Wireless Sensor Enabled by Wireless Power Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey 2012-01-01 Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370 Performance analysis of cooperative virtual MIMO systems for wireless sensor networks. Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan 2013-05-28 Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs. Performance Analysis of Cooperative Virtual MIMO Systems for Wireless Sensor Networks Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan 2013-01-01 Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs. PMID:23760087
|