Sample records for fuv imaging spectrograph

  1. The Ultraviolet Spectrograph on NASA's Juno Mission

    NASA Astrophysics Data System (ADS)

    Gladstone, G. Randall; Persyn, Steven C.; Eterno, John S.; Walther, Brandon C.; Slater, David C.; Davis, Michael W.; Versteeg, Maarten H.; Persson, Kristian B.; Young, Michael K.; Dirks, Gregory J.; Sawka, Anthony O.; Tumlinson, Jessica; Sykes, Henry; Beshears, John; Rhoad, Cherie L.; Cravens, James P.; Winters, Gregory S.; Klar, Robert A.; Lockhart, Walter; Piepgrass, Benjamin M.; Greathouse, Thomas K.; Trantham, Bradley J.; Wilcox, Philip M.; Jackson, Matthew W.; Siegmund, Oswald H. W.; Vallerga, John V.; Raffanti, Rick; Martin, Adrian; Gérard, J.-C.; Grodent, Denis C.; Bonfond, Bertrand; Marquet, Benoit; Denis, François

    2017-11-01

    The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter's far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno's other remote sensing instruments and used to place in situ measurements made by Juno's particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter's magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.

  2. The Spartan-281 Far Ultraviolet Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Heckathorn, Harry M.; Dufour, Reginald J.; Opal, Chet B.; Raymond, John C.

    1988-01-01

    The U.S. Naval Research Laboratory's Far Ultraviolet Imaging Spectrograph (FUVIS), currently under development for flight as a Spartan shuttle payload, is designed to perform spectroscopy of diffuse sources in the FUV with very high sensitivity and moderate spatial and spectral resolution. Diffuse nebulae, the general galactic background radiation, and artificially induced radiation associated with the Space Shuttle vehicle are sources of particular interest. The FUVIS instrument will cover the wavelength range of 970-2000 A with selectable resolutions of 5 and 30 A. It is a slit imaging spectrograph having 3 arcmin spatial resolution along its 2.7 deg long slit.

  3. FAR-ULTRAVIOLET SPECTRAL IMAGES OF THE VELA SUPERNOVA REMNANT: SUPPLEMENTS AND COMPARISONS WITH OTHER WAVELENGTH IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Il-Joong; Seon, Kwang-Il; Han, Wonyong

    We present the improved far-ultraviolet (FUV) emission-line images of the entire Vela supernova remnant (SNR) using newly processed Spectroscopy of Plasma Evolution from Astrophysical Radiation/Far-Ultraviolet Imaging Spectrograph (SPEAR/FIMS) data. The incomplete C III {lambda}977 and O VI {lambda}{lambda}1032, 1038 images presented in the previous study are updated to cover the whole region. The C IV {lambda}{lambda}1548, 1551 image with a higher resolution and new images at Si IV {lambda}{lambda}1394, 1403, O IV] {lambda}1404, He II {lambda}1640.5, and O III] {lambda}{lambda}1661, 1666 are also shown. Comparison of emission-line ratios for two enhanced FUV regions reveals that the FUV emissions of themore » east-enhanced FUV region may be affected by nonradiative shocks of another very young SNR, the Vela Jr. SNR (RX J0852.0-4622, G266.6-1.2). This result is the first FUV detection that is likely associated with the Vela Jr. SNR, supporting previous arguments that the Vela Jr. SNR is close to us. The comparison of the improved FUV images with soft X-ray images shows that an FUV filamentary feature forms the boundary of the northeast-southwest asymmetrical sections of the X-ray shell. The southwest FUV features are characterized as the region where the Vela SNR is interacting with slightly denser ambient medium within the dim X-ray southwest section. From a comparison with the H{alpha} image, we identify a ring-like H{alpha} feature overlapped with an extended hot X-ray feature of similar size and two local peaks of C IV emission. Their morphologies are expected when the H{alpha} ring is in direct contact with the near or far side of the Vela SNR.« less

  4. Calibration Efforts and Unique Capabilities of the HST Space Telescope Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Monroe, TalaWanda R.; Proffitt, Charles R.; Welty, Daniel; Branton, Doug; Carlberg, Joleen K.; debes, John Henry; Lockwood, Sean; Riley, Allyssa; Sohn, Sangmo Tony; Sonnentrucker, Paule G.; Walborn, Nolan R.; Jedrzejewski, Robert I.

    2018-01-01

    The Space Telescope Imaging Spectrograph (STIS) continues to offer the astronomy community the ability to carry out innovative UV and optical spectroscopic and imaging studies, two decades after its deployment on the Hubble Space Telescope (HST). Most notably, STIS provides spectroscopy in the FUV and NUV, including high spectral resolution echelle modes, imaging in the FUV, optical spectroscopy, and coronagraphic capabilities. Additionally, spatial scanning on the CCD with the long-slits is now possible to enable very high S/N spectroscopic observations without saturation while mitigating telluric and fringing concerns in the far red and near-IR. This new mode may especially benefit the diffuse interstellar bands and exoplanet transiting communities. We present recent calibration efforts for the instrument, including work to optimize the calibration of the echelle spectroscopic modes by improving the flux agreement of overlapping spectral orders affected by changes in the grating blaze function since HST Servicing Mission 4. We also discuss considerations to maintain the wavelength precision of the spectroscopic modes, and the current capabilities of CCD spectroscopic spatial trails.

  5. Ultraviolet Views of Enceladus, Tethys, and Dione

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Hendrix, A. R.

    2005-01-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) has collected ultraviolet observations of many of Saturn's icy moons since Cassini's insertion into orbit around Saturn. We will report on results from Enceladus, Tethys and Dione, orbiting in the Saturn system at distances of 3.95, 4.88 and 6.26 Saturn radii, respectively. Icy satellite science objectives of the UVIS include investigations of surface age and evolution, surface composition and chemistry, and tenuous exospheres. We address these objectives by producing albedo maps, and reflection and emission spectra, and observing stellar occultations. UVIS has four channels: EUV: Extreme Ultraviolet (55 nm to 110 nm), FUV: Far Ultraviolet (110 to 190 nm), HSP: High Speed Photometer, and HDAC: Hydrogen-Deuterium Absorption Cell. The EUV and FUV spectrographs image onto a 2-dimensional detector, with 64 spatial rows by 1024 spectral columns. To-date we have focused primarily on the far ultraviolet data acquired with the low resolution slit width (4.8 angstrom spectral resolution). Additional information is included in the original extended abstract.

  6. Cosmic Origins Spectrograph: On-Orbit Performance of Target Acquisitions

    NASA Astrophysics Data System (ADS)

    Penton, Steven V.

    2010-07-01

    COS is a slit-less spectrograph with a very small aperture (R=1.2500). To achieve the desired wavelength accuracies, HST+COS must center the target to within 0.100 of the center of the aperture for the FUV channel, and 0.0400 for NUV. During SMOV and early Cycle 17 we fine-tuned the COS target acquisition (TA) procedures to exceed this accuracy for all three COS TA modes; NUV imaging, NUV spectroscopic, and FUV spectroscopic. In Cycle 17, we also adjusted the COSto- FGS offsets in the SIAF file. This allows us to recommend skipping the time consuming ACQ/SEARCH in cases where the target coordinates are well known. Here we will compare the on-orbit performance of all COS TA modes in terms of centering accuracy, efficiency, and required signal-to-noise (S/N).

  7. The Far Ultra-Violet Imager on the Icon Mission

    NASA Astrophysics Data System (ADS)

    Mende, S. B.; Frey, H. U.; Rider, K.; Chou, C.; Harris, S. E.; Siegmund, O. H. W.; England, S. L.; Wilkins, C.; Craig, W.; Immel, T. J.; Turin, P.; Darling, N.; Loicq, J.; Blain, P.; Syrstad, E.; Thompson, B.; Burt, R.; Champagne, J.; Sevilla, P.; Ellis, S.

    2017-10-01

    ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of O+ ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny-Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design requirements and is ready to be launched on the ICON spacecraft.

  8. Status and Performance Updates for the Cosmic Origins Spectrograph

    NASA Astrophysics Data System (ADS)

    Snyder, Elaine M.; De Rosa, Gisella; Fischer, William J.; Fix, Mees; Fox, Andrew; Indriolo, Nick; James, Bethan; Oliveira, Cristina M.; Penton, Steven V.; Plesha, Rachel; Rafelski, Marc; Roman-Duval, Julia; Sahnow, David J.; Sankrit, Ravi; Taylor, Joanna M.; White, James

    2018-01-01

    The Hubble Space Telescope's Cosmic Origins Spectrograph (COS) moved the spectra on the FUV detector from Lifetime Position 3 (LP3) to a new pristine location, LP4, in October 2017. The spectra were shifted in the cross-dispersion direction by -2.5" (roughly -31 pixels) from LP3, or -5" (roughly -62 pixels) from the original LP1. This move mitigates the adverse effects of gain sag on the spectral quality and accuracy of COS FUV observations. Here, we present updates regarding the calibration of FUV data at LP4, including the flat fields, flux calibrations, and spectral resolution. We also present updates on the time-dependent sensitivities and dark rates of both the NUV and FUV detectors.

  9. Optical design for CETUS: a wide-field 1.5m aperture UV payload being studied for a NASA probe class mission study

    NASA Astrophysics Data System (ADS)

    Woodruff, Robert A.; Hull, Tony; Heap, Sara R.; Danchi, William; Kendrick, Stephen E.; Purves, Lloyd

    2017-09-01

    We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R 40,000 echelle modes and R 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.

  10. Optical design for CETUS: a wide-field 1.5m aperture UV payload being studied for a NASA probe class mission study

    NASA Astrophysics Data System (ADS)

    Woodruff, Robert; Robert Woodruff, Goddard Space Flight Center, Kendrick Optical Consulting

    2018-01-01

    We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R~ 40,000 echelle modes and R~ 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.

  11. Initial observations of Jupiter's aurora from Juno's Ultraviolet Spectrograph (Juno-UVS)

    NASA Astrophysics Data System (ADS)

    Gladstone, R.; Versteeg, M.; Greathouse, T.; Hue, V.; Davis, M. W.; Gerard, J. C. M. C.; Grodent, D. C.; Bonfond, B.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.; Bagenal, F.; Mauk, B.; Kurth, W. S.; McComas, D. J.; Valek, P. W.

    2016-12-01

    Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes important far-ultraviolet (FUV) emissions from the H2 bands and the H Lyman series which are produced in Jupiter's auroras, and also the absorption signatures of aurorally-produced hydrocarbons. The Juno-UVS instrument telescope has a 4x4 cm2 input aperture and uses an off-axis parabolic primary mirror. A flat scan mirror situated near the entrance of the telescope is used to observe at up to ±30° perpendicular to the Juno spin plane. The light is focused onto the spectrograph entrance slit, which has a "dog-bone" shape, with three sections of 2.55°x0.2°, 2.0°x0.025°, and 2.55°x0.2° (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses FUV light onto a curved microchannel plate (MCP) cross delay line (XDL) detector with a solar blind UV-sensitive CsI photocathode. The two mirrors and the grating are coated with MgF2 to improve FUV reflectivity. Tantalum surrounds the spectrograph assembly to shield the detector and its electronics from high-energy electrons. All other electronics are located in Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. Here we present the first near-Jupiter results from the UVS instrument following measurements made during PJ1, Juno's first perijove pass with its instruments powered on and taking data.

  12. Testing the Linearity of the Cosmic Origins Spectrograph FUV Channel Thermal Correction

    NASA Astrophysics Data System (ADS)

    Fix, Mees B.; De Rosa, Gisella; Sahnow, David

    2018-05-01

    The Far Ultraviolet Cross Delay Line (FUV XDL) detector on the Cosmic Origins Spectrograph (COS) is subject to temperature-dependent distortions. The correction performed by the COS calibration pipeline (CalCOS) assumes that these changes are linear across the detector. In this report we evaluate the accuracy of the linear approximations using data obtained on orbit. Our results show that the thermal distortions are consistent with our current linear model.

  13. The climatology of low-latitude ionospheric densities and zonal drifts from IMAGE-FUV.

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; Sagawa, E.; Frey, H. U.; Mende, S. B.; Patel, J.

    2004-12-01

    The IMAGE satellite was the first dedicated to magnetospheric imaging, but has also provided numerous images of the nightside ionosphere with its Far-Ultraviolet (FUV) spectrographic imager. Nightside emissions of O I at 135.6-nm originating away from the aurora are due to recombination of ionospheric O+, and vary in intensity with (O+)2. IMAGE-FUV, operating in a highly elliptical orbit with apogee at middle latitudes and >7 Re altitude, measures this emission globally with 100-km resolution. During each 14.5 hour orbit, IMAGE-FUV is able to monitor nightside ionospheric densities for up to 6-7 hours. Hundreds of low-latitude ionospheric bubbles, their development and drift speed, and a variety of other dynamical variations in brightness and morphology of the equatorial anomalies have been observed during this mission. Furthermore, the average global distribution of low-latitude ionospheric plasma densities can be determined in 3 days. Imaging data collected from February through June of 2002 are used to compile a dataset containing a variety of parameters (e.g., latitude and brightness of peak plasma density, zonal bubble drift speed) which can be drawn from for climatological studies. Recent results indicate that the average ground speed of low-latitude zonal plasma drifts vary with longitude by up to 50%, and that a periodic variation in ionospheric densities with longitude suggests the influence of a lower-thermospheric non-migrating tide with wave number = 4 on ionospheric densities. An excellent correlation between zonal drift speed and the magnetic storm index Dst is also found.

  14. Far-ultraviolet observation of the globular cluster NGC 6397

    NASA Astrophysics Data System (ADS)

    Dieball, A.; Rasekh, A.; Knigge, C.; Shara, M.; Zurek, D.

    2017-07-01

    We present an observational far-ultraviolet (FUV) and near-ultraviolet (NUV) study of the core region of the globular cluster (GC) NGC 6397. The observations were obtained with the Space Telescope Imaging Spectrograph (STIS, FUV) and the Wide Field Camera 3 (NUV) on board the Hubble Space Telescope. Here, we focus on the UV-bright stellar populations such as blue stragglers (BSs), white dwarfs (WDs) and cataclysmic variables (CVs). We present the first FUV - NUV colour-magnitude diagram (CMD) for this cluster. To support our classification of the stellar populations, we compare our FUV - NUV CMD with optical data from the ACS Survey of Galactic Globular Clusters. The FUV - NUV CMD indicates 16 sources located in the WD area, and 10 BSs within the 25 × 25 arcsec2 of the STIS FUV data. 18 Chandra X-ray sources are located within the FUV field of view. 13 of those have an NUV counterpart, of which 9 sources also have an FUV counterpart. Out of those, five sources are previously suggested CVs, and indeed, all five are located in the WD/CV region in our FUV - NUV CMD. Another CV has only an FUV but no NUV counterpart. We also detect an NUV (but no FUV) counterpart to the millisecond pulsar (MSP) located in the core of this cluster. The NUV light curves of the CVs and MSP show flickering behaviour typical of CVs. We found that the BSs and CVs are the most centrally concentrated populations. This might be an effect of mass segregation or it might indicate the preferred birth place of BSs and CVs via dynamical interactions in the dense core region of GCs. Horizontal branch stars are the least centrally concentrated population and absent in the innermost area of the core.

  15. COS2025: Extending the Lifetime of the FUV channel of the Cosmic Origins Spectrograph to 2025

    NASA Astrophysics Data System (ADS)

    Rafelski, Marc; De Rosa, Gisella; Fischer, William J.; Fix, Mees; Fox, Andrew; Indriolo, Nick; James, Bethan; Magness, Camellia; Oliveira, Cristina M.; Penton, Steven V.; Plesha, Rachel; Roman-Duval, Julia; Sahnow, David J.; Sankrit, Ravi; Snyder, Elaine M.; Taylor, Joanna M.; White, James

    2018-01-01

    The Hubble Space Telescope's Cosmic Origins Spectrograph (COS) Far-Ultraviolet (FUV) microchannel plate detector's efficiency at converting incoming photons into detectable events decreases with usage. This depletion of the detector's gain (i.e. gain sag) results in unusable regions of the COS/FUV detector. In order to mitigate this gain sag, a number of strategies have been employed over the past 8 years of operations, ranging from moving to different lifetime positions, to managing the high voltage to extract a smaller amount of charge, to re-distributing the cenwave usage so that Ly-alpha does not produce a gain-sag hole in a given location. We are now at a point where none of the strategies above will, without any other changes, allow us to continue operating the COS/FUV detector to 2025. To address this a new COS2025 policy was developed, with the goal of retaining full science capability of COS/FUV to 2025. We present an overview of the COS2025 policy, which places restrictions on the G130M cenwaves allowed at Lifetime Position 4 (LP4). We also present a tool which allows users to visualize the COS/FUV wavelength ranges to help users prepare their proposals in the light of the restrictions on the G130M cenwaves.

  16. The Hubble Spectroscopic Legacy Archive

    NASA Astrophysics Data System (ADS)

    Peeples, Molly S.; Tumlinson, Jason; Fox, Andrew; Aloisi, Alessandra; Ayres, Thomas R.; Danforth, Charles; Fleming, Scott W.; Jenkins, Edward B.; Jedrzejewski, Robert I.; Keeney, Brian A.; Oliveira, Cristina M.

    2016-01-01

    With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The Hubble Spectroscopic Legacy Archive will provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS). These data will be packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability will make the data easy for users to quickly access, assess the quality of, and download for archival science starting in Cycle 24, with the first generation of these products for the FUV modes of COS available online via MAST in early 2016.

  17. The LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS): instrument definition and design

    NASA Astrophysics Data System (ADS)

    France, Kevin; Fleming, Brian; West, Garrett; McCandliss, Stephan R.; Bolcar, Matthew R.; Harris, Walter; Moustakas, Leonidas; O'Meara, John M.; Pascucci, Ilaria; Rigby, Jane; Schiminovich, David; Tumlinson, Jason

    2017-08-01

    The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four large mission concepts currently undergoing community study for consideration by the 2020 Astronomy and Astrophysics Decadal Survey. LUVOIR is being designed to pursue an ambitious program of exoplanetary discovery and characterization, cosmic origins astrophysics, and planetary science. The LUVOIR study team is investigating two large telescope apertures (9- and 15-meter primary mirror diameters) and a host of science instruments to carry out the primary mission goals. Many of the exoplanet, cosmic origins, and planetary science goals of LUVOIR require high-throughput, imaging spectroscopy at ultraviolet (100 - 400 nm) wavelengths. The LUVOIR Ultraviolet Multi-Object Spectrograph, LUMOS, is being designed to support all of the UV science requirements of LUVOIR, from exoplanet host star characterization to tomography of circumgalactic halos to water plumes on outer solar system satellites. LUMOS offers point source and multi-object spectroscopy across the UV bandpass, with multiple resolution modes to support different science goals. The instrument will provide low (R = 8,000 - 18,000) and medium (R = 30,000 - 65,000) resolution modes across the far-ultraviolet (FUV: 100 - 200 nm) and nearultraviolet (NUV: 200 - 400 nm) windows, and a very low resolution mode (R = 500) for spectroscopic investigations of extremely faint objects in the FUV. Imaging spectroscopy will be accomplished over a 3 × 1.6 arcminute field-of-view by employing holographically-ruled diffraction gratings to control optical aberrations, microshutter arrays (MSA) built on the heritage of the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), advanced optical coatings for high-throughput in the FUV, and next generation large-format photon-counting detectors. The spectroscopic capabilities of LUMOS are augmented by an FUV imaging channel (100 - 200nm, 13 milliarcsecond angular resolution, 2 × 2 arcminute field-of-view) that will employ a complement of narrow- and medium-band filters. The instrument definition, design, and development are being carried out by an instrument study team led by the University of Colorado, Goddard Space Flight Center, and the LUVOIR Science and Technology Definition Team. LUMOS has recently completed a preliminary design in Goddard's Instrument Design Laboratory and is being incorporated into the working LUVOIR mission concept. In this proceeding, we describe the instrument requirements for LUMOS, the instrument design, and technology development recommendations to support the hardware required for LUMOS. We present an overview of LUMOS' observing modes and estimated performance curves for effective area, spectral resolution, and imaging performance. Example "LUMOS 100-hour Highlights" observing programs are presented to demonstrate the potential power of LUVOIR's ultraviolet spectroscopic capabilities.

  18. Far Ultraviolet Imaging from the Image Spacecraft

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Heetderks, H.; Frey, H. U.; Lampton, M.; Geller, S. P.; Stock, J. M.; Abiad, R.; Siegmund, O. H. W.; Tremsin, A. S.; Habraken, S.

    2000-01-01

    Direct imaging of the magnetosphere by the IMAGE spacecraft will be supplemented by observation of the global aurora. The IMAGE satellite instrument complement includes three Far Ultraviolet (FUV) instruments. The Wideband Imaging Camera (WIC) will provide broad band ultraviolet images of the aurora for maximum spatial and temporal resolution by imaging the LBH N2 bands of the aurora. The Spectrographic Imager (SI), a novel form of monochromatic imager, will image the aurora, filtered by wavelength. The proton-induced component of the aurora will be imaged separately by measuring the Doppler-shifted Lyman-a. Finally, the GEO instrument will observe the distribution of the geocoronal emission to obtain the neutral background density source for charge exchange in the magnetosphere. The FUV instrument complement looks radially outward from the rotating IMAGE satellite and, therefore, it spends only a short time observing the aurora and the Earth during each spin. To maximize photon collection efficiency and use efficiently the short time available for exposures the FUV auroral imagers WIC and SI both have wide fields of view and take data continuously as the auroral region proceeds through the field of view. To minimize data volume, the set of multiple images are electronically co-added by suitably shifting each image to compensate for the spacecraft rotation. In order to minimize resolution loss, the images have to be distort ion-corrected in real time. The distortion correction is accomplished using high speed look up tables that are pre-generated by least square fitting to polynomial functions by the on-orbit processor. The instruments were calibrated individually while on stationary platforms, mostly in vacuum chambers. Extensive ground-based testing was performed with visible and near UV simulators mounted on a rotating platform to emulate their performance on a rotating spacecraft.

  19. Evolution of the FUV Surface Properties of 67P/Churyumov-Gerasimenko through its 2015 Perihelion Passage

    NASA Astrophysics Data System (ADS)

    Feaga, Lori M.; Holt, Carrie E.; Steffl, Andrew; A'Hearn, Michael F.; Bertaux, Jean-Loup; Feldman, Paul D.; Noonan, John; Parker, Joel Wm; Schindhelm, Eric; Stern, S. Alan; Weaver, Harold A.

    2016-10-01

    Alice, NASA's lightweight and low-power far-ultraviolet (FUV) imaging spectrograph onboard ESA's comet orbiting spacecraft Rosetta (Stern et al. 2007, Space Sci. Rev. 128, 507), has just completed its characterization of the nucleus and coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (C-G). With a spectral range from 700-2050 Å, Alice was able to monitor the sunlit surface of C-G in order to establish if there was variability in the FUV reflectivity across the nucleus, determine if there were distinct spectral features associated with various morphological regions, and infer compositional makeup of the comet. Using spatially resolved pre-perihelion data, the FUV phase dependence, albedo, and spectral slope were derived for the nucleus (Feaga et al. 2015, A&A 583, A27) and were consistent with a homogeneous layer of dust covering the northern hemisphere. During the increase in activity around perihelion and change of seasons on the comet, the Rosetta suite of instruments has shown evidence of surface changes, mass movement of material, and transient patches of ice. The FUV properties of the nucleus throughout the perihelion passage inside of 3 AU, including observations during a zero phase flyby and its associated opposition surge and a search for exposed water ice on the surface, will be presented here and compared to the early pre-perihelion characteristics.

  20. Current Calibration Efforts and Performance of the HST Space Telescope Imaging Spectrograph: Echelle Flux Calibration, the BAR5 Occulter, and Lamp Lifetimes

    NASA Astrophysics Data System (ADS)

    Monroe, TalaWanda R.; Aloisi, Alessandra; Debes, John H.; Jedrzejewski, Robert I.; Lockwood, Sean A.; Peeples, Molly S.; Proffitt, Charles R.; Riley, Allyssa; Walborn, Nolan R.

    2016-06-01

    The variety of operating modes of the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) continues to allow STIS users to obtain unique, high quality observations and cutting-edge results 19 years after its installation on HST. STIS is currently the only instrument available to the astronomy community that allows high spectral and spatial resolution spectroscopy in the FUV and NUV, including echelle modes. STIS also supports solar-blind imaging in the FUV. In the optical, STIS provides long-slit, first-order spectra that take advantage of HST's superb spatial resolution, as well as several unique unfiltered coronagraphic modes, which continue to benefit the exoplanet and debris-disk communities. The STIS instrument team monitors the instrument’s health and performance over time to characterize the effects of radiation damage and continued use of the detectors and optical elements. Additionally, the STIS team continues to improve the quality of data products for the user community. We present updates on efforts to improve the echelle flux calibration of overlapping spectral orders due to changes in the grating blaze function since HST Servicing Mission 4, and efforts to push the contrast limit and smallest inner working angle attainable with the coronagraphic BAR5 occulter. We also provide updates on the performance of the STIS calibration lamps, including work to maintain the accuracy of the wavelength calibration for all modes.

  1. The Hubble Spectroscopic Legacy Archive

    NASA Astrophysics Data System (ADS)

    Peeples, M.; Tumlinson, J.; Fox, A.; Aloisi, A.; Fleming, S.; Jedrzejewski, R.; Oliveira, C.; Ayres, T.; Danforth, C.; Keeney, B.; Jenkins, E.

    2017-04-01

    With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The goal of the Hubble Spectroscopic Legacy Archive(HSLA) is to provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS)and the Space Telescope Imaging Spectrograph (STIS). These data are packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability makes the data easy for users to quickly access, assess the quality of,and download for archival science. The first generation of these products for the far-ultraviolet (FUV) modes of COS was made available online via the Mikulski Archive for Space Telescopes (MAST) in early 2016 and updated in early 2017; future releases will include COS/NUV and STIS/UV data.

  2. Rocket FUV Observations of the Io Plasma Torus During the Shoemaker-Levy/9 Impacts

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Slater, D.; Cash, W.; Wilkinson, E.; Green, J.; Gladstone, R.

    1995-01-01

    We observed the Io torus from 820-1140 A on universal time (UT) 20.25 July 1994 from a sounding rocket telescope/spectrograph. These observations serve as only the fourth published spectrum of the torus in this wavelength range, and the only far ultraviolet (FUV) data documenting the state of the torus during the Shoemaker Levy 9 Impacts.

  3. Update on the Status of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Hernandez, Svea; Aloisi, A.; Bostroem, K. A.; Cox, C.; Debes, J. H.; DiFelice, A.; Roman-Duval, J.; Hodge, P.; Holland, S.; Lindsay, K.; Lockwood, S. A.; Mason, E.; Oliveira, C. M.; Penton, S. V.; Proffitt, C. R.; Sonnentrucker, P.; Taylor, J. M.; Wheeler, T.

    2013-06-01

    The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.

  4. Long-Slit Spectroscopy of R136 in 30 Doradus

    NASA Astrophysics Data System (ADS)

    Bostroem, K. A.; Crowther, P.; Lennon, D.; Walborn, N. R.

    2013-01-01

    R136 is a young, large starburst cluster in 30 Doradus. Its size and age make R136 an ideal cluster in which to study the massive end of the initial mass function (IMF), including stars up to 300 solar masses. In HST GO programs 12465 and 13052, the 52x0.2 arcsec slit of the Space Telescope Imaging Spectrograph (STIS) is stepped across the inner 4 arcsecs of R136. Seventeen consecutive slit locations in both the far ultra-violet (FUV) and optical provide low and medium resolution long-slit spectroscopy of over 100 stars in the region, many of which have never been resolved. The FUV data are combined into a single spectrum to simulate the observation of a more distant unresolved cluster. We present a comparison of individual spectra with the integrated cluster spectrum to determine the relative flux contributions of the brightest cluster members.

  5. Application of the Molecular Adsorber Coating Technology on the Ionospheric Connection Explorer Program

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Secunda, Mark S.

    2016-01-01

    The Molecular Adsorber Coating (MAC) is a zeolite based highly porous coating technology that was developed by NASA Goddard Space Flight Center (GSFC) to capture outgassed contaminants, such as plastics, adhesives, lubricants, silicones, epoxies, potting compounds, and other similar materials. This paper describes the use of the MAC technology to address molecular contamination concerns on NASAs Ionospheric Connection Explorer (ICON) program led by the University of California (UC) Berkeleys Space Sciences Laboratory. The sprayable paint technology was applied onto plates that were installed within the instrument cavity of ICONs Far Ultraviolet Imaging Spectrograph (FUV). However, due to the instruments particulate sensitivity, the coating surface was vibrationally cleaned through simulated acoustics to reduce the risk of particle fall-out contamination. This paper summarizes the coating application efforts on the FUV adsorber plates, the simulated laboratory acoustic level cleaning test methods, particulation characteristics, and future plans for the MAC technology.

  6. Application of the Molecular Adsorber Coating technology on the Ionospheric Connection Explorer program

    NASA Astrophysics Data System (ADS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Secunda, Mark S.

    2016-09-01

    The Molecular Adsorber Coating (MAC) is a zeolite based highly porous coating technology that was developed by NASA Goddard Space Flight Center (GSFC) to capture outgassed contaminants, such as plastics, adhesives, lubricants, silicones, epoxies, potting compounds, and other similar materials. This paper describes the use of the MAC technology to address molecular contamination concerns on NASA's Ionospheric Connection Explorer (ICON) program led by the University of California (UC) Berkeley's Space Sciences Laboratory. The sprayable paint technology was applied onto plates that were installed within the instrument cavity of ICON's Far Ultraviolet Imaging Spectrograph (FUV). However, due to the instrument's particulate sensitivity, the coating surface was vibrationally cleaned through simulated acoustics to reduce the risk of particle fall-out contamination. This paper summarizes the coating application efforts on the FUV adsorber plates, the simulated laboratory acoustic level cleaning test methods, particulation characteristics, and future plans for the MAC technology.

  7. A comparison of FUV dayglows measured by STSAT-1/FIMS with the AURIC model in a geomagnetic quiet condition

    NASA Astrophysics Data System (ADS)

    Kam, Hosik; Kim, Yong Ha; Hong, Jun-Seok; Lee, Joon-Chan; Choi, Yeon-Ju; Min, Kyung Wook

    2014-09-01

    The Korea scientific microsatellite, STSAT-1 (Science and Technology Satellite-1), was launched in 2003 and observed far ultraviolet (FUV) airglow from the upper atmosphere with a Far-ultraviolet IMaging Spectrograph (FIMS) at an altitude of 690 km. The FIMS consists of a dual-band imaging spectrograph of 900-1150 Å (S-band) and 1340-1715 Å (L-band). Limb scanning observations were performed only at the S-band, resulting in intensity profiles of OI 989 Å, OI 1026 Å, NII 1085 Å and NI 1134 Å emission lines near the horizon. We compare these emission intensities with those computed by using a theoretical model, the AURIC (Atmospheric Ultraviolet Radiance Integrated Code). The intensities of the OI 1026 Å, NII 1085 Å and NI 1134 Å emissions measured by using the FIMS are overall consistent with the values computed by using AURIC under the thermospheric and solar activity conditions on August 6, 1984, which is close to the FIMS's observation condition. We find that the FIMS dayglow intensity profiles match reasonably well with AURIC intensity profiles for the MSIS90 oxygen atom density profiles within factors of 0.5 and 2. However, the FIMS intensities of the OI 989 Å line are about 2 ˜ 4 times stronger than the AURIC intensities, which is expected because AURIC does not properly simulate resonance scattering of airglow and solar photons at 989 Å by atomic oxygen in the thermosphere. We also find that the maximum tangential altitudes of the oxygen bearing dayglows (OI 989 Å, OI 1026 Å) are higher than those of the nitrogen-bearing dayglows (NII 1085 Å, NI 1134 Å), which is confirmed by using AURIC model calculations. This is expected because the oxygen atoms are distributed at higher altitudes in the thermosphere than the nitrogen molecules. Validations of the qualities of both the FIMS instrument and the AURIC model indicate that AURIC should be updated with improved thermospheric models and with measured solar FUV spectra for better agreement with the observations. Once the updated AURIC model is available, one can extract valuable information on the densities and compositions of the thermosphere from limb scanning observations with an FUV instrument such as FIMS.

  8. X ray, extreme and far ultraviolet optical thin films for space applications

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Kim, Jongmin

    1993-01-01

    Far and extreme ultraviolet optical thin film filters find many uses in space astronomy, space astrophysics, and space aeronomy. Spacebased spectrographs are used for studying emission and absorption features of the earth, planets, sun, stars, and the interstellar medium. Most of these spectrographs use transmission or reflection filters. This requirement has prompted a search for selective filtering coatings with high throughput in the FUV and EUV spectral region. Important progress toward the development of thin film filters with improved efficiency and stability has been made in recent years. The goal for this field is the minimization of absorption to get high throughput and enhancement of wavelength selection. The Optical Aeronomy Laboratory (OAL) at the University of Alabama in Huntsville has recently developed the technology to determine optical constants of bulk and film materials for wavelengths extending from x-rays (0.1 nm) to the FUV (200 nm), and several materials have been identified that were used for designs of various optical devices which previously have been restricted to space application in the visible and near infrared. A new design concept called the Pi-multilayer was introduced and applied to the design of optical coatings for wavelengths extending from x-rays to the FUV. Section 3 of this report explains the Pi-multilayer approach and demonstrates its application for the design and fabrication of the FUV coatings. Two layer Pi-stacks have been utilized for the design of reflection filters in the EUV wavelength range from 70 - 100 nm. In order to eliminate losses due to the low reflection of the imaging optics and increase throughput and out-of-band rejection of the EUV instrumentation we introduced a self-filtering camera concept. In the FUV region, MgF2 and LiF crystals are known to be birefringent. Transmission polarizers and quarterwave retarders made of MgF2 or LiF crystals are commercially available but the performances are poor. New techniques for the design of the EUV and FUV polarizers and quarterwave retarders are described in Section 5. X- and gamma-ray detectors rely on a measurement of the electron which is effected when a ray interacts with matter. The design of an x- and gamma-ray telescope to operate in a particular region of the spectrum is, therefore, largely dictated by the mechanism through which the rays interact. Energy selection and the focusing of the incident high energy rays can be achieved with spectrally selective high reflective multilayers. The design and spectral performance of narrowband reflective x-ray Pi-multilayers are presented in section 6.

  9. The Stellar-IRIS Connection: Four Years of FUV Measurements of Alpha Centauri by HST/STIS

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2014-06-01

    Since 2010 January, shortly after the miraculous repair of Hubble's Space Telescope Imaging Spectrograph (STIS) by SM4, the two sun-like stars of Alpha Centauri ("A" [G2V] and "B" [K1V]) have been recorded on a semi-annual basis utilizing STIS's far-ultraviolet (115-170 nm) medium resolution mode (about 8 km/s FWHM resolving power), jointly with an X-ray imaging study of AB by the Chandra Observatory. Both efforts are intended to assess the long-term behavior of high-energy (multimillion K) coronal, and subcoronal, processes on the two relatively low-activity solar-age dwarfs. In fact, the near-solar-twin Alpha Cen A has been mired in a coronal lull since 2005, originally recognized by XMM-Newton, and only recently has begun to climb out of the extended X-ray minimum. Meanwhile, the lower mass, lower luminosity, but coronally more active secondary has displayed a clear 8-year X-ray cycle, extending from the mid-1990's ROSAT era. The current study focuses on properties of the "transition zone" lines ( 100,000 K) of the Alpha Centauri stars, namely the bulk redshifts exhibited by the Si IV, C IV, and N V doublets; the multi-component nature of the hot-line profiles; behavior of the Fe XII 124 nm coronal forbidden line; and variability of the FUV fluxes relative to the higher-energy X-ray time series. These stellar measurements, with their high precision in wavelength and flux, complement the detailed high-spatial and high-temporal resolution spectral mapping of the solar corona and lower atmosphere being carried out by NASA's Interface Region Imaging Spectrograph (IRIS). [This work supported by GO grants 12758, 13060, and 13465 from Space Telescope Science Institute.

  10. HST STIS Images of the H-Lyman Alpha Emission and Disk-Reflected FUV Sunlight from the Upper Atmosphere of Uranus

    NASA Astrophysics Data System (ADS)

    Ballester, G. E.; Ben-Jaffel, L.; Clarke, J. T.; Gladstone, R.; Miller, S.; Trafton, L. M.; Trauger, J. T.

    1998-09-01

    An excess of H-Lyalpha emission from Uranus' sunlit hemisphere was detected by the IUE satellite in 1982, and some excess was confirmed with the Voyager 2 UVS during the 1986 encounter with Uranus. Radiative transfer modeling has shown that the Voyager H-Lyalpha observations did require emission additional to the scattered solar and IPM H-Lyalpha , and thus produced by internal processes in the upper atmosphere, such as aurora or other unidentified mechanisms. Subsequent IUE observations showed very large short- and long-term intensity variations that support an auroral source. However, although Voyager did identify UV auroral emissions by H_2 in the sunlit hemisphere, it did not detect a large H-Lyalpha auroral emission there, making it impossible to provide conclusive evidence that the H-Lyalpha enhancements observed by IUE are due to aurora. Auroral emissions are spatially confined, and resolution of the emission distribution could yield the needed evidence, or could alternatively provide observational clues to other possible causes of dayglow variations in the upper atmosphere. Uranus intrinsically weak H-Lyalpha emission ( ~ 1600 R on average) had not allowed for such an experiment in the past, but the high sensitivity in the FUV of the Space Telescope Imaging Spectrograph (STIS) on HST has now provided first images of Uranus in the FUV. The observations made on 29-30 July 1998 consisted of a FUV MAMA image in the open mode (25MAMA) and a consecutive image filtering out the H-Lyalpha (F25SRF2) to measure and subtract the disk reflected sunlight above 1250 Ang. A quick look at the data shows the H-Lyalpha emission and disk-reflected sunlight, with additional noise from the geocoronal background. We will present the results from these data, taking advantage of the time-tagging information to subtract the geocoronal background, and modeling of the underlying disk background. Four new observations will hopefully be made before October 1998 which will cover the full planet in longitude, and will use a different technique to improve the s/n of the H-Lyalpha detection.

  11. The ultraviolet reflectance of Enceladus: Implications for surface composition

    NASA Astrophysics Data System (ADS)

    Hendrix, Amanda R.; Hansen, Candice J.; Holsclaw, Greg M.

    2010-04-01

    The reflectance of Saturn's moon Enceladus has been measured at far ultraviolet (FUV) wavelengths (115-190 nm) by Cassini's Ultraviolet Imaging Spectrograph (UVIS). At visible and near infrared (VNIR) wavelengths Enceladus' reflectance spectrum is very bright, consistent with a surface composed primarily of H 2O ice. At FUV wavelengths, however, Enceladus is surprisingly dark - darker than would be expected for pure water ice. Previous analyses have focused on the VNIR spectrum, comparing it to pure water ice (Cruikshank, D.P., Owen, T.C., Dalle Ore, C., Geballe, T.R., Roush, T.L., de Bergh, C., Sandford, S.A., Poulet, F., Benedix, G.K., Emery, J.P. [2005] Icarus, 175, 268-283) or pure water ice plus a small amount of NH 3 (Emery, J.P., Burr, D.M., Cruikshank, D.P., Brown, R.H., Dalton, J.B. [2005] Astron. Astrophys., 435, 353-362) or NH 3 hydrate (Verbiscer, A.J., Peterson, D.E., Skrutskie, M.F., Cushing, M., Helfenstein, P., Nelson, M.J., Smith, J.D., Wilson, J.C. [2006] Icarus, 182, 211-223). We compare Enceladus' FUV spectrum to existing laboratory measurements of the reflectance spectra of candidate species, and to spectral models. We find that the low FUV reflectance of Enceladus can be explained by the presence of a small amount of NH 3 and a small amount of a tholin in addition to H 2O ice on the surface. The presence of these three species (H 2O, NH 3, and a tholin) appears to satisfy not only the low FUV reflectance and spectral shape, but also the middle-ultraviolet to visible wavelength brightness and spectral shape. We expect that ammonia in the Enceladus plume is transported across the surface to provide a global coating.

  12. Atomic Oxygen Density Retrievals using FUV Observations by the Imaging Ultraviolet Spectrograph on MAVEN

    NASA Astrophysics Data System (ADS)

    Evans, J. Scott; Stevens, Michael H.; Schneider, Nicholas M.; Stewart, Ian; Deighan, Justin; Jain, Sonal Kumar; Eparvier, Francis; Thiemann, E. M.; Bougher, Stephen W.; Jakosky, Bruce

    2016-10-01

    We present the first direct retrievals of neutral atomic oxygen in Mars's upper atmosphere using daytime FUV periapse limb scan observations from 130 - 200 km tangent altitude. Atmospheric composition is inferred using the Atmospheric Ultraviolet Radiance Integrated Code [Strickland et al., 1999] adapted to the Martian atmosphere [Evans et al., 2015]. For our retrievals we use O I 135.6 nm emission observed by IUVS on MAVEN under daytime conditions (solar zenith angle < 60 degrees) over both northern and southern hemispheres (latitudes between -65 and +35 degrees) from October 2014 to August 2016. We investigate the sensitivity of atomic oxygen density retrievals to variability in solar irradiance, solar longitude, and local time. We compare our retrievals to predictions from the Mars Global Ionosphere-Thermosphere Model [MGITM, Bougher et al., 2015] and the Mars Climate Database [MCD, Forget et al., 1999] and quantify the differences throughout the altitude region of interest. The retrieved densities are used to characterize global transport of atomic oxygen in the Martian thermosphere.

  13. UV Timing and Spectroscopy of the Crab Nebula Pulsar

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Lunqvist, Peter; Sollerman, Jesper; Lindler, Don; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We have used the Hubble Space Telescope and Space Telescope Imaging Spectrograph to obtain Near Ultraviolet (NUV) (1600-3200 Angstroms) and Far Ultraviolet (FUV) (1140-1720 Angstroms) spectra and pulse profiles of the Crab Nebula's pulsar. The pulse period agrees well with the radio predictions. The NUV and FUV pulse profiles are little changed from the visible wavelength profile. Spectra obtained with the Nordic Optical Telescope were combined with the UV spectra for full coverage from 1140-9250Angstoms. Dereddening the spectrum with a standard extinction curve achieves a flat spectrum for E(B-V)=0.52, R=3.1. Lyman alpha absorption indicates a column density of 3.0=/-0.5 x 10(exp 21) cm -2, consistent with the E(B-V) of 0.52. The dereddened spectrum can be fitted by a power law with spectral index alpha=0.11+/-0.04. A broad, blueshifted absorption is seen in CIV (1550Angstroms), reaching a velocity of about 2500 kilometer per second.

  14. THE FLARE-ONA OF EK DRACONIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayres, Thomas R., E-mail: Thomas.Ayres@Colorado.edu

    2015-07-15

    EK Draconis (HD 129333: G1.5 V) is a well-known young (50 Myr) solar analog. In 2012, Hubble Space Telescope returned to EK Dra to follow up a far-ultraviolet (FUV) SNAPshot visit by Cosmic Origins Spectrograph (COS) two years earlier. The brief SNAP pointing had found surprisingly redshifted, impulsively variable subcoronal “hot-line” emission of Si iv 1400 Å (T ∼ 8 × 10{sup 4} K). Serendipitously, the 2012 follow-on program witnessed one of the largest FUV flares ever recorded on a sunlike star, which again displayed strong redshifts (downflows) of 30–40 km s{sup −1}, even after compensating for small systematics inmore » the COS velocity scales, uncovered through a cross-calibration by Space Telescope Imaging Spectrograph (STIS). The (now reduced, but still substantial) ∼10 km s{sup −1} hot-line redshifts outside the flaring interval did not vary with rotational phase, so cannot be caused by “Doppler imaging” (bright surface patches near a receding limb). Density diagnostic O iv] 1400 Å multiplet line ratios of EK Dra suggest n{sub e} ∼ 10{sup 11} cm{sup −3}, an order of magnitude larger than in low-activity solar twin α Centauri A, but typical of densities inferred in large stellar soft X-ray events. The self-similar FUV hot-line profiles between the flare decay and the subsequent more quiet periods, and the unchanging but high densities, reinforce a long-standing idea that the coronae of hyperactive dwarfs are flaring all the time, in a scale-free way; a flare-ona if you will. In this picture, the subsonic hot-line downflows probably are a byproduct of the post-flare cooling process, something like “coronal rain” on the Sun. All in all, the new STIS/COS program documents a complex, energetic, dynamic outer atmosphere of the young sunlike star.« less

  15. Summary of Quantitative Interpretation of Image Far Ultraviolet Auroral Data

    NASA Technical Reports Server (NTRS)

    Frey, H. U.; Immel, T. J.; Mende, S. B.; Gerard, J.-C.; Hubert, B.; Habraken, S.; Span, J.; Gladstone, G. R.; Bisikalo, D. V.; Shematovich, V. I.; hide

    2002-01-01

    Direct imaging of the magnetosphere by instruments on the IMAGE spacecraft is supplemented by simultaneous observations of the global aurora in three far ultraviolet (FUV) wavelength bands. The purpose of the multi-wavelength imaging is to study the global auroral particle and energy input from thc magnetosphere into the atmosphere. This paper describes provides the method for quantitative interpretation of FUV measurements. The Wide-Band Imaging Camera (WIC) provides broad band ultraviolet images of the aurora with maximum spatial and temporal resolution by imaging the nitrogen lines and bands between 140 and 180 nm wavelength. The Spectrographic Imager (SI), a dual wavelength monochromatic instrument, images both Doppler-shifted Lyman alpha emissions produced by precipitating protons, in the SI-12 channel and OI 135.6 nm emissions in the SI-13 channel. From the SI-12 Doppler shifted Lyman alpha images it is possible to obtain the precipitating proton flux provided assumptions are made regarding the mean energy of the protons. Knowledge of the proton (flux and energy) component allows the calculation of the contribution produced by protons in the WIC and SI-13 instruments. Comparison of the corrected WIC and SI-13 signals provides a measure of the electron mean energy, which can then be used to determine the electron energy fluxun-. To accomplish this reliable modeling emission modeling and instrument calibrations are required. In-flight calibration using early-type stars was used to validate the pre-flight laboratory calibrations and determine long-term trends in sensitivity. In general, very reasonable agreement is found between in-situ measurements and remote quantitative determinations.

  16. Cosmic Origins Spectrograph : Target Acquisition Performance and Updated Guidelines

    NASA Astrophysics Data System (ADS)

    Penton, Steven V.; Keyes, C.; Osterman, S.; Sahnow, D.; Soderblom, D.; COS IDT Team; STScI COS Team

    2010-01-01

    The Cosmic Origins Spectrograph (COS) is a slit-less spectrograph with a very small aperture (radius = 1.25"). To achieve the desired wavelength accuracy of <15 km/s, HST+COS must center the target to within 0.1” of the center of the aperture. This is the angle subtended by a typical AAS poster when viewed from over 1400 miles away. During SMOV we have fine-tuned the COS target acquisition (TA) procedures to exceed this accuracy for all three COS TA modes; NUV imaging, NUV spectroscopic, and FUV spectroscopic. We will compare all COS TA modes in terms of centering accuracy, efficiency (elapsed time), and required signal-to-noise for all targets suitable for use with COS. We will also provide updated recommendations for the options of all TA modes (e.g., SCAN-SIZE and NUM-POS of ACQ/PEAKD). We have observed in SMOV that HST is providing an excellent initial 1-σ blind pointing accuracy of ±0.4” in both the along-dispersion and cross-dispersion directions. We will discuss the implications of this, and other lessons learned in SMOV, on Cycle 17 and 18 HST+COS TAs.

  17. Coordinated Ground- and Space-based Multispectral Campaign to Study Equatorial Spread-F Formation

    NASA Astrophysics Data System (ADS)

    Finn, S. C.; Geddes, G.; Aryal, S.; Stephan, A. W.; Budzien, S. A.; Duggirala, P. R.; Chakrabarti, S.; Valladares, C.

    2016-12-01

    We present a concept for a multispectral campaign using coordinated data from state-of-the-art instruments aboard the International Space Station (ISS) and multiple ground-based spectrometers and digisondes deployed at low-latitudes to study the formation and development of Equatorial Spread-F (ESF). This extended observational campaign utilizes ultraviolet, visible, and radio measurements to develop a predictive capability for ESF and to study the coupling of the ionosphere-thermosphere (I-T) system during geomagnetically quiet and disturbed times. The ground-based instruments will be deployed in carefully chosen locations in the American and Indian sectors while the space-based data will provide global coverage spanning all local times and longitudes within ±51° geographic latitudes. The campaign, over an extended period covering a range of geophysical conditions, will provide the extensive data base necessary to address the important science questions. The space-based instrument suite consists of the Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) and the GPS Radio Occultation and Ultraviolet Photometry-Colocated (GROUP-C) instruments, scheduled to launch to the ISS in November 2016. LITES is a compact imaging spectrograph for remote sensing of the upper atmosphere and ionosphere from 60 to 140nm and GROUP-C has a nadir-viewing FUV photometer. The ground-based instruments to be deployed for this campaign are three high-resolution imaging spectrographs capable of continuous round-the-clock airglow observations: Multiwavelength Imaging Spectrograph using Echelle grating (MISE) in India and two High Throughput and Multi-slit Imaging Spectrographs (HiT&MIS) to be deployed in Colombia and Argentina, the Low-Latitude Ionosphere Sensor Network (LISN), and the Global Ionospheric Radio Observatory (GIRO) digisondes network. We present data from the ground-based instruments, initial results from the LITES and GROUP-C instruments on-orbit, and modeling and analysis methods for the campaign. This work was supported by NSF 1315354 and 1145166, and ONR N00014-13-1-0266 grants. LITES and GROUP-C are part of the STP-H5 Payload, integrated and flown under the direction of the DoD Space Test Program.

  18. Improvements to the Hubble Space Telescope COS/FUV Wavelength Calibration at Lifetime Position 4

    NASA Astrophysics Data System (ADS)

    Plesha, Rachel; Ake, Thomas B.; De Rosa, Gisella; Oliveira, Cristina M.; Penton, Steven V.; Snyder, Elaine M.

    2018-06-01

    The Cosmic Origins Spectrograph (COS) was installed on the Hubble Space Telescope in 2009, and the FUV detector is currently operating at the 4th lifetime position (LP4). The COS team at the Space Telescope Science Institute has been improving the wavelength calibration of the FUV channel at each lifetime position. For the LP4 solution we obtained special calibration data as well as new lamp spectra to update the lamp template used at LP4 with the goal of achieving a wavelength calibration accuracy of ± 3 pixels. Additionally, we derived a new solution for the G130M/1222 cenwave which we expect to be more frequently used at this lifetime position due to the COS2025 policy in place on the other G130M settings. Here we present the results and methodology behind the wavelength calibration solutions at LP4.

  19. A Closer Look at the Alpha Persei Coronal Conundrum

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2017-03-01

    A ROSAT survey of the Alpha Per open cluster in 1993 detected its brightest star, the mid-F supergiant α Persei: the X-ray luminosity and spectral hardness were similar to coronally active late-type dwarf members. Later, in 2010, a Hubble Cosmic Origins Spectrograph SNAPshot of α Per found the far-ultraviolet (FUV) coronal-proxy Si IV unexpectedly weak. This, and a suspicious offset of the ROSAT source, suggested that a late-type companion might be responsible for the X-rays. Recently, a multifaceted program tested that premise. Ground-based optical coronography and near-UV imaging with Hubble Space Telescope (HST) Wide-Field Camera 3 searched for any close-in faint candidate coronal objects, but without success. Then, a Chandra pointing found the X-ray source single and coincident with the bright star. Significantly, the Si IV emissions of α Per, in a deeper FUV spectrum collected by the HST Cosmic Origin Spectrograph as part of the joint program, are aligned well with chromospheric atomic oxygen (which must be intrinsic to the luminous star), within the context of cooler late-F and early-G supergiants, including Cepheid variables. This pointed to the X-rays as the fundamental anomaly. The overluminous X-rays still support the case for a hyperactive dwarf secondary, albeit now spatially unresolved. However, an alternative is that α Per represents a novel class of coronal source. Resolving the first possibility now has become more difficult, because the easy solution—a well-separated companion—has been eliminated. Testing the other possibility will require a broader high-energy census of the early-F supergiants.

  20. A Closer Look at the Alpha Persei Coronal Conundrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayres, Thomas R., E-mail: Thomas.Ayres@Colorado.edu

    2017-03-01

    A ROSAT survey of the Alpha Per open cluster in 1993 detected its brightest star, the mid-F supergiant α Persei: the X-ray luminosity and spectral hardness were similar to coronally active late-type dwarf members. Later, in 2010, a Hubble Cosmic Origins Spectrograph SNAPshot of α Per found the far-ultraviolet (FUV) coronal-proxy Si iv unexpectedly weak. This, and a suspicious offset of the ROSAT source, suggested that a late-type companion might be responsible for the X-rays. Recently, a multifaceted program tested that premise. Ground-based optical coronography and near-UV imaging with Hubble Space Telescope ( HST ) Wide-Field Camera 3 searched formore » any close-in faint candidate coronal objects, but without success. Then, a Chandra pointing found the X-ray source single and coincident with the bright star. Significantly, the Si iv emissions of α Per, in a deeper FUV spectrum collected by the HST Cosmic Origin Spectrograph as part of the joint program, are aligned well with chromospheric atomic oxygen (which must be intrinsic to the luminous star), within the context of cooler late-F and early-G supergiants, including Cepheid variables. This pointed to the X-rays as the fundamental anomaly. The overluminous X-rays still support the case for a hyperactive dwarf secondary, albeit now spatially unresolved. However, an alternative is that α Per represents a novel class of coronal source. Resolving the first possibility now has become more difficult, because the easy solution—a well-separated companion—has been eliminated. Testing the other possibility will require a broader high-energy census of the early-F supergiants.« less

  1. The Extreme Ultraviolet Spectrograph Sounding Rocket Payload: Recent Modifications for Planetary Observations in the EUV/FUV

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Stern, S. Alan; Scherrer, John; Cash, Webster; Green, James C.; Wilkinson, Erik

    1995-01-01

    We report on the status of modifications to an existing extreme ultraviolet (EUV) telescope/spectrograph sounding rocket payload for planetary observations in the 800 - 1200 A wavelength band. The instrument is composed of an existing Wolter Type 2 grazing incidence telescope, a newly built 0.4-m normal incidence Rowland Circle spectrograph, and an open-structure resistive-anode microchannel plate detector. The modified payload has successfully completed three NASA sounding rocket flights within 1994-1995. Future flights are anticipated for additional studies of planetary and cometary atmospheres and interstellar absorption. A detailed description of the payload, along with the performance characteristics of the integrated instrument are presented. In addition, some preliminary flight results from the above three missions are also presented.

  2. The re-flight of the Colorado high-resolution Echelle stellar spectrograph (CHESS): improvements, calibrations, and post-flight results

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; France, Kevin; Kruczek, Nicholas; Fleming, Brian; Nell, Nicholas; Kane, Robert; Swanson, Jack; Green, James; Erickson, Nicholas; Wilson, Jacob

    2016-07-01

    In this proceeding, we describe the scientific motivation and technical development of the Colorado High- resolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing supporting the second flight of the payload (CHESS-2). CHESS is a far ultraviolet (FUV) rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium (ISM). CHESS is an objective f/12.4 echelle spectrograph with resolving power > 100,000 over the band pass 1000 - 1600 Å. The spectrograph was designed to employ an R2 echelle grating with "low" line density. We compare the FUV performance of experimental echelle etching processes (lithographically by LightSmyth, Inc. and etching via electron-beam technology by JPL Microdevices Laboratory) with traditional, mechanically-ruled gratings (Bach Research, Inc. and Richardson Gratings). The cross-dispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, "low" line density, powered optic with a toroidal surface curvature. Both gratings were coated with aluminum and lithium fluoride (Al+LiF) at Goddard Space Flight Center (GSFC). Results from final efficiency and reflectivity measurements for the optical components of CHESS-2 are presented. CHESS-2 utilizes a 40mm-diameter cross-strip anode readout microchannel plate (MCP) detector fabricated by Sensor Sciences, Inc., to achieve high spatial resolution with high count rate capabilities (global rates 1 MHz). We present pre-flight laboratory spectra and calibration results. CHESS-2 launched on 21 February 2016 aboard NASA/CU sounding rocket mission 36.297 UG. We observed the intervening ISM material along the sightline to epsilon Per and present initial characterization of the column densities, temperature, and kinematics of atomic and molecular species in the observation.

  3. Ultraviolet Characterization of Comet and Asteroid Surfaces as Observed by the Rosetta Alice Instrument (Invited)

    NASA Astrophysics Data System (ADS)

    Feaga, L. M.; Holt, C. E.; Steffl, A.; Stern, S. A.; Bertaux, J. L.; Parker, J. W.; A'Hearn, M. F.; Feldman, P.; Keeney, B. A.; Knight, M. M.; Noonan, J.; Vervack, R. J., Jr.; Weaver, H. A., Jr.

    2017-12-01

    In 2016, Alice, NASA's lightweight and low-power far-ultraviolet (FUV) imaging spectrograph onboard ESA's comet-orbiting spacecraft Rosetta, completed a 2-year characterization of 67P/Churyumov-Gerasimenko (C-G), a bi-lobed Jupiter family comet with extreme seasons and diverse surface features. In addition to coma studies, Alice monitored the sunlit surface of C-G from 700-2050 Å to establish the FUV bidirectional reflectance properties and albedo of the surface, determine homogeneity, correlate spectral features with morphological regions, and infer the compositional makeup of the comet. The heliocentric distance coverage (3.7 AU from the Sun, through perihelion at 1.24 AU, and back out to 3.8 AU) over a period of 2 years and spatial resolution of the Alice data (e.g., 30 m by 150 m at the comet from a spacecraft distance of 30 km) resulted in the first resolved observations of a cometary nucleus in the FUV throughout much of its orbit. Upon arrival in 2014, initial characteristics and properties of the surface were derived for the northern hemisphere, revealing a dark, homogeneous, and blue-sloped surface in the FUV with an average geometric albedo of 5% at 1475 Å, consistent with a homogeneous layer of dust covering that hemisphere and similar to nucleus properties derived for this and other comets in the visible. Now, with a fully calibrated dataset, properties of the southern and northern hemispheres, before and after perihelion, have been quantified and preliminarily show minimal change in the comet's surface in the FUV through the apparition. Analyses are ongoing and we will highlight any detected variability. En-route to C-G, Alice made history during the flybys of asteroid (2867) Steins and (21) Lutetia obtaining the first global FUV reflectivity measurement and acquiring spatially resolved observations of an asteroid surface, respectively. The asteroid properties will be compared to those derived for C-G to demonstrate commonalities across small bodies in our solar system. Rosetta is an ESA mission with contributions from its member states and NASA. The Alice team acknowledges continuing support from NASA's Jet Propulsion Laboratory through contract 1336850 to the Southwest Research Institute (SwRI). This work was supported by a subcontract from SwRI to the University of Maryland.

  4. General Astrophysics Science Enabled by the HabEx Ultraviolet Spectrograph (UVS)

    NASA Astrophysics Data System (ADS)

    Scowen, Paul; Clarke, John; Gaudi, B. Scott; Kiessling, Alina; Martin, Stefan; Somerville, Rachel; Stern, Daniel; HabEx Science and Technology Definition Team

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of the four large mission concepts being studied by NASA as input to the upcoming 2020 Decadal Survey. The mission implements two world-class General Astrophysics instruments as part of its complement of instrumentation to enable compelling science using the 4m aperture. The Ultraviolet Spectrograph has been designed to address cutting edge far ultraviolet (FUV) science that has not been possible with the Hubble Space Telescope, and to open up a wide range of capabilities that will advance astrophysics as we look into the 2030s. Our poster discusses some of those science drivers and possible applications, which range from Solar System science, to nearby and more distant studies of star formation, to studies of the circumgalactic and intergalactic mediums where the ecology of mass and energy transfer are vital to understanding stellar and galactic evolution. We discuss the performance features of the instrument that include a large 3’x3’ field of view for multi-object spectroscopy, and some 20 grating modes for a variety of spectral resolution and coverage.

  5. Structure and Dynamics of Cool Flare Loops Observed by the Interface Region Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Mikuła, K.; Heinzel, P.; Liu, W.; Berlicki, A.

    2017-08-01

    Flare loops were well observed with the Interface Region Imaging Spectrograph (IRIS) during the gradual phase of two solar flares on 2014 March 29 and 2015 June 22. Cool flare loops are visible in various spectral lines formed at chromospheric and transition-region temperatures and exhibit large downflows which correspond to the standard scenario. The principal aim of this work is to analyze the structure and dynamics of cool flare loops observed in Mg II lines. Synthetic profiles of the Mg II h line are computed using the classical cloud model and assuming a uniform background intensity. In this paper, we study novel IRIS NUV observations of such loops in Mg II h and k lines and also show the behavior of hotter lines detected in the FUV channel. We obtained the spatial evolution of the velocities: near the loop top, the flow velocities are small and they are increasing toward the loop legs. Moreover, from slit-jaw image (SJI) movies, we observe some plasma upflows into the loops, which are also detectable in Mg II spectra. The brightness of the loops systematically decreases with increasing flow velocity, and we ascribe this to the effect of Doppler dimming, which works for Mg II lines. Emission profiles of Mg II were found to be extremely broad, and we explain this through the large unresolved non-thermal motions.

  6. Structure and Dynamics of Cool Flare Loops Observed by the Interface Region Imaging Spectrograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikuła, K.; Berlicki, A.; Heinzel, P.

    Flare loops were well observed with the Interface Region Imaging Spectrograph ( IRIS ) during the gradual phase of two solar flares on 2014 March 29 and 2015 June 22. Cool flare loops are visible in various spectral lines formed at chromospheric and transition-region temperatures and exhibit large downflows which correspond to the standard scenario. The principal aim of this work is to analyze the structure and dynamics of cool flare loops observed in Mg ii lines. Synthetic profiles of the Mg ii h line are computed using the classical cloud model and assuming a uniform background intensity. In thismore » paper, we study novel IRIS NUV observations of such loops in Mg ii h and k lines and also show the behavior of hotter lines detected in the FUV channel. We obtained the spatial evolution of the velocities: near the loop top, the flow velocities are small and they are increasing toward the loop legs. Moreover, from slit-jaw image (SJI) movies, we observe some plasma upflows into the loops, which are also detectable in Mg ii spectra. The brightness of the loops systematically decreases with increasing flow velocity, and we ascribe this to the effect of Doppler dimming, which works for Mg ii lines. Emission profiles of Mg ii were found to be extremely broad, and we explain this through the large unresolved non-thermal motions.« less

  7. FK Comae, King of Spin: the Movie

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas

    2010-09-01

    FK Comae is an ultra-fast rotating, single yellow giant, product of a recent W UMa merger. Extraordinary levels of FUV and X-ray emission rate FK Comae a coronal powerhouse on par with the most extreme of the better known activity heavyweights: short-period RS CVn binaries. As a single star, FK Comae has clear advantages as a laboratory for exploring the outer limits of magnetospheric activity among the coronal cool stars. FK Comae has a long history of attention at optical and X-ray wavelengths, thanks to its generously spotted surface, and proclivity to flare regularly at high energies. FUSE discovered ultra-broad, redshifted profiles of O VI and C III, but unfortunately the singular observation could not be repeated, thanks to the satellite's flaky attitude system. The remarkable FUV spectrum was taken just a few months before STIS failed in 2004, so there was no opportunity to turn the more powerful gaze of Hubble to the task. Now, finally, the amazing sensitivity of Cosmic Origins Spectrograph can be brought to bear: a single orbit can capture an FUV spectrum of FK Comae with S/N at instrumental limits for bright lines, and digging down to faint Fe XXI 1354 {bridge to the coordinated Chandra HETGS pointing we also are proposing}.We will trace how the bright FUV regions relate spatially to the photospheric dark spots, to inform ideas of coronal structure and heating in these advanced objects. We will probe whether a global magnetosphere exists, and whether the field lines are loaded with hot coronal gas {>10 MK}, as well as the cooler 0.3 MK material already suggested by highly broadened FUSE O VI. Further, we will test whether the striking 100 km/s redshifts of the FUV lines, and similar shifts seen in Ne X by Chandra HETGS, are caused by a massive coronal outflow {perhaps implicated in magnetic braking}. Our method is to exploit, on the one hand, emission-line "Doppler imaging," whereby bright surface regions are mapped onto specific locations in the global profile, according to the line-of-sight rotational velocity. On the other hand, we compare features of different opacity and excitation {e.g., Si III 1206 and Si IV 1393} to deduce whether, say, a red asymmetry is caused by blueshifted absorption, or alternatively by infall of the entire feature. Multiple epochs spaced over two rotation periods break the degeneracy between profile distortions caused by disk passage of hot patches {Doppler imaging part}, and those caused by large-scale flows. Contemporaneous spot maps from the ground will provide a fundamental magnetic context for the coordinated FUV and X-ray "movies."

  8. The Spinning Corona of FK Comae

    NASA Astrophysics Data System (ADS)

    Kashyap, Vinay

    2010-09-01

    FK Comae is an ultra-fast rotating, single yellow giant, product of a recent W UMa merger. Extraordinary levels of FUV and X-ray emission rate FK Comae a coronal powerhouse on par with the most extreme of the better known activity heavyweights: short-period RS CVn binaries. As a single star, FK Comae has clear advantages as a laboratory for exploring the outer limits of magnetospheric activity among the coronal cool stars. FK Comae has a long history of attention at optical and X-ray wavelengths, thanks to its generously spotted surface, and proclivity to flare regularly at high energies. FUSE discovered ultra-broad, redshifted profiles of OVI and CIII, but unfortunately the singular observation could not be repeated, thanks to the satellite's flaky attitude system. The remarkable FUV spectrum was taken just a few months before STIS failed in 2004, so there was no opportunity to turn the more powerful gaze of Hubble to the task. Now, finally, the amazing sensitivity of Cosmic Origins Spectrograph can be brought to bear: a single orbit can capture an FUV spectrum of FK Comae with S/N at instrumental limits for bright lines, and digging down to faint FeXXI 1354 {bridge to the coordinated Chandra HETGS pointing we are carrying out}.We will trace how the bright FUV regions relate spatially to the photospheric dark spots, to inform ideas of coronal structure and heating in these advanced objects. We will probe whether a global magnetosphere exists, and whether the field lines are loaded with hot coronal gas {>10 MK}, as well as the cooler 0.3 MK material already suggested by highly broadened FUSE OVI. Further, we will test whether the striking 100 km/s redshifts of the FUV lines, and similar shifts seen in NeX by Chandra HETGS, are caused by persistent coronal flows {outflows, perhaps implicated in magnetic braking; or inflows, like "coronal rain" on the Sun}. Our method is to exploit, on the one hand, emission-line "Doppler imaging," whereby bright surface regions are mapped onto specific locations in the global profile, according to the line-of-sight rotational velocity. On the other hand, we compare features of different opacity and excitation {e.g., SiIII 1206, SiIII 1892, and SiIV 1393} to deduce whether, say, a red asymmetry is caused by blueshifted absorption, or alternatively by infall of the entire feature. Multiple epochs spaced over two rotation periods break the degeneracy between profile distortions caused by disk passage of hot patches {Doppler imaging part}, and those caused by large-scale gas kinematics. Contemporaneous starspot maps from the ground will provide a fundamental magnetic context for the coordinated FUV and X-ray campaigns.

  9. The Production of Titan's Ultraviolet Nitrogen Airglow

    NASA Astrophysics Data System (ADS)

    Stevens, Michael H.; Gustin, J.; Ajello, J. M.; Evans, J. S.; Meier, R. R.; Stewart, A. I. F.; Esposito, L. W.; McClintock, W. E.; Stephan, A. W.

    2010-10-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan's dayside limb on 22 June, 2009, obtaining high quality extreme ultraviolet (EUV) and far ultraviolet (FUV) spectra from a distance of only 60,000 km (23 Titan radii). The observations reveal the same EUV and FUV emissions arising from photoelectron excitation and photofragmentation of molecular nitrogen (N2) on Earth but with the altitude of peak emission much higher on Titan near 1000 km altitude. In the EUV, emission bands from the photoelectron excited N2 Carroll-Yoshino c4'-X system and N I and N II multiplets arising from photofragmentation of N2 dominate, with no detectable c4'(0,0) emission near 958 Å, contrary to many interpretations of the lower resolution Voyager 1 Ultraviolet Spectrometer data. The FUV is dominated by emission bands from the N2 Lyman-Birge-Hopfield a-X system and additional N I multiplets. We also identify several N2 Vegard-Kaplan A-X bands between 1500-1900 Å, two of which are located near 1561 and 1657 Å where C I multiplets were previously identified from a separate UVIS disk observation. We compare these limb emissions to predictions from a terrestrial airglow model adapted to Titan that uses a solar spectrum appropriate for these June, 2009 observations. Volume production rates and limb radiances are calculated, including extinction by methane and allowance for multiple scattering within the readily excited c4'(0,v') system, and compared to UVIS observations. We find that for these airglow data only emissions arising from processes involving N2 are present.

  10. The UV Spectrum of Phobos as measured by MAVEN/IUVS

    NASA Astrophysics Data System (ADS)

    Chaffin, M.; Deighan, J.; Schneider, N. M.; Thiemann, E.; Stewart, I. F.; Jain, S.; Lo, D.; Crismani, M. M. J.; Stiepen, A.; Clarke, J. T.; Mayyasi, M.; Montmessin, F.; Holsclaw, G.; McClintock, B.; Epavier, F.; Jakosky, B. M.

    2017-12-01

    In late 2015, the Mars Atmosphere and Volatile Evolution (MAVEN) mission apoapsis was near the orbit of Phobos and the spacecraft had several close encounters with the moon. Using a specially designed imaging sequence, MAVEN's Imaging Ultraviolet Spectrograph (IUVS) was able to gather the first spectral images of the moon in the mid-ultraviolet. IUVS observed the trailing hemisphere of the moon, producing spectra useful for comparison with the leading hemisphere measurements of the Mariner 9 UV spectrometer and Mars Express SPICAM observations. IUVS shows the trailing side to be bluer than the leading side, potentially revealing differences in the space weathering history of the hemispheres. In addition, there is marginal evidence for an absorption feature longward of 300 nm, potentially produced by organic compounds. Due to short integration times, the FUV spectrum of the moon is limited to some reflectance signal at Lyman alpha, constraining the albedo at this wavelength and placing an upper limit on it elsewhere.

  11. New Geometric-distortion Solution for STIS FUV-MAMA

    NASA Astrophysics Data System (ADS)

    Sohn, S. Tony

    2018-04-01

    We derived a new geometric distortion solution for the STIS FUV-MAMA detector. To do this, positions of stars in 89 FUV-MAMA observations of NGC 6681 were compared to an astrometric standard catalog created using WFC3/UVIS imaging data to derive a fourth-order polynomial solution that transforms raw (x, y) positions to geometrically- corrected (x, y) positions. When compared to astrometric catalog positions, the FUV- MAMA position measurements based on the IDCTAB showed residuals with an RMS of ∼ 30 mas in each coordinate. Using the new IDCTAB, the RMS is reduced to ∼ 4 mas, or 0.16 FUV-MAMA pixels, in each coordinate. The updated IDCTAB is now being used in the HST STIS pipeline to process all STIS FUV-MAMA images.

  12. An Overview of the HST Advanced Camera for Surveys' On-orbit Performance

    NASA Astrophysics Data System (ADS)

    Hartig, G. F.; Ford, H. C.; Illingworth, G. D.; Clampin, M.; Bohlin, R. C.; Cox, C.; Krist, J.; Sparks, W. B.; De Marchi, G.; Martel, A. R.; McCann, W. J.; Meurer, G. R.; Sirianni, M.; Tsvetanov, Z.; Bartko, F.; Lindler, D. J.

    2002-05-01

    The Advanced Camera for Surveys (ACS) was installed in the HST on 7 March 2002 during the fourth servicing mission to the observatory, and is now beginning science operations. The ACS provides HST observers with a considerably more sensitive, higher-resolution camera with wider field and polarimetric, coronagraphic, low-resolution spectrographic and solar-blind FUV capabilities. We review selected results of the early verification and calibration program, comparing the achieved performance with the advertised specifications. Emphasis is placed on the optical characteristics of the camera, including image quality, throughput, geometric distortion and stray-light performance. More detailed analyses of various aspects of the ACS performance are presented in other papers at this meeting. This work was supported by a NASA contract and a NASA grant.

  13. FUV Spectroscopy Of Outflows And Disks Around The Intermediate Mass Pre-main-sequence Stars HD135344B And HD104237

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Herczeg, G.; Brown, J. M.; Walter, F. M.; Ayres, T. R.; DAOof TAU Team

    2011-01-01

    The intermediate-mass, pre-main-sequence (Herbig Ae/Fe) stars HD135344B (F4) and HD104237 (A8 IV-V) are both still surrounded by almost face-on circumstellar disks. The disk around HD135344B is a ``transitional'' disk with a 25 AU radius cleared inner hole but still with some gas and dust very close to the star. We have obtained FUV spectra of these stars using the HST COS and STIS spectrographs that show that both stars have dramatic high-velocity (terminal velocity = 300-400 km/s) outflows and rich fluorescently-excited molecular hydrogen emission, originating primarily from warm gas in their disks. We present these FUV spectra and outline the outflow and disk properties implied by the observed emission and absorption line profiles. The profiles and widths of the molecular hydrogen lines provide strong constraints on the location of the emitting regions. This work is supported by HST grants for GO projects 11828 and 11616, and Chandra grant GO9-0015X to the University of Colorado.

  14. MULTIWAVELENGTH OBSERVATIONS OF A0620-00 IN QUIESCENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froning, Cynthia S.; France, Kevin; Khargharia, Juthika

    2011-12-10

    We present contemporaneous X-ray, ultraviolet, optical, near-infrared, and radio observations of the black hole binary system, A0620-00, acquired in 2010 March. Using the Cosmic Origins Spectrograph on the Hubble Space Telescope, we have obtained the first FUV spectrum of A0620-00 as well as NUV observations with the Space Telescope Imaging Spectrograph. The observed spectrum is flat in the FUV and very faint (with continuum fluxes {approx_equal} 1e - 17 erg cm{sup -2} s{sup -1} A{sup -1}). The UV spectra also show strong, broad (FWHM {approx} 2000 km s{sup -1}) emission lines of Si IV, C IV, He II, Fe II,more » and Mg II. The C IV doublet is anomalously weak compared to the other lines, which is consistent with the low carbon abundance seen in NIR spectra of the source. Comparison of these observations with previous NUV spectra of A0620-00 shows that the UV flux has varied by factors of 2-8 over several years. We compiled the dereddened, broadband spectral energy distribution (SED) of A0620-00 and compared it to previous SEDs as well as theoretical models. The SEDs show that the source varies at all wavelengths for which we have multiple samples. Contrary to previous observations, the optical-UV spectrum does not continue to drop to shorter wavelengths, but instead shows a recovery and an increasingly blue spectrum in the FUV. We created an optical-UV spectrum of A0620-00 with the donor star contribution removed. The non-stellar spectrum peaks at {approx_equal}3000 A. The peak can be fit with a T = 10,000 K blackbody with a small emitting area, probably originating in the hot spot where the accretion stream impacts the outer disk. However, one or more components in addition to the blackbody are needed to fit the FUV upturn and the red optical fluxes in the optical-UV spectrum. By comparing the mass accretion rate determined from the hot spot luminosity to the mean accretion rate inferred from the outburst history, we find that the latter is an order of magnitude smaller than the former, indicating that {approx}90% of the accreted mass must be lost from the system if the predictions of the disk instability model and the estimated interoutburst interval are correct. The mass accretion rate at the hot spot is 10{sup 5} the accretion rate at the black hole inferred from the X-ray luminosity. To reconcile these requires that outflows carry away virtually all of the accreted mass, a very low rate of mass transfer from the outer cold disk into the inner hot region, and/or radiatively inefficient accretion. We compared our broadband SED to two models of A0620-00 in quiescence: the advection-dominated accretion flow model and the maximally jet-dominated model. The comparison suggests that strong outflows may be present in the system, indicated by the discrepancies in accretion rates and the FUV upturn in flux in the SED.« less

  15. Vacuum ultraviolet instrumentation for solar irradiance and thermospheric airglow

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Rottman, Gary J.; Bailey, Scott M.; Solomon, Stanley C.

    1993-01-01

    A NASA sounding rocket experiment was developed to study the solar extreme ultraviolet (EUV) spectral irradiance and its effect on the upper atmosphere. Both the solar flux and the terrestrial molecular nitrogen via the Lyman-Birge-Hopfield bands in the far ultraviolet (FUV) were measured remotely from a sounding rocket on October 27, 1992. The rocket experiment also includes EUV instruments from Boston University (Supriya Chakrabarti), but only the National Center for Atmospheric Research (NCAR)/University of Colorado (CU) four solar instruments and one airglow instrument are discussed here. The primary solar EUV instrument is a 1/4 meter Rowland circle EUV spectrograph which has flown on three rockets since 1988 measuring the solar spectral irradiance from 30 to 110 nm with 0.2 nm resolution. Another solar irradiance instrument is an array of six silicon XUV photodiodes, each having different metallic filters coated directly on the photodiodes. This photodiode system provides a spectral coverage from 0.1 to 80 nm with about 15 nm resolution. The other solar irradiance instrument is a silicon avalanche photodiode coupled with pulse height analyzer electronics. This avalanche photodiode package measures the XUV photon energy providing a solar spectrum from 50 to 12,400 eV (25 to 0.1 nm) with an energy resolution of about 50 eV. The fourth solar instrument is an XUV imager that images the sun at 17.5 nm with a spatial resolution of 20 arc-seconds. The airglow spectrograph measures the terrestrial FUV airglow emissions along the horizon from 125 to 160 nm with 0.2 nm spectral resolution. The photon-counting CODACON detectors are used for three of these instruments and consist of coded arrays of anodes behind microchannel plates. The one-dimensional and two-dimensional CODACON detectors were developed at CU by Dr. George Lawrence. The pre-flight and post-flight photometric calibrations were performed at our calibration laboratory and at the Synchrotron Ultraviolet Radiation Facility (SURF) at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland.

  16. StarCAT: A Catalog of Space Telescope Imaging Spectrograph Ultraviolet Echelle Spectra of Stars

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2010-03-01

    StarCAT is a catalog of high resolution ultraviolet spectra of objects classified as "stars," recorded by Space Telescope Imaging Spectrograph (STIS) during its initial seven years of operations (1997-2004). StarCAT is based on 3184 echelle observations of 545 distinct targets, with a total exposure duration of 5.2 Ms. For many of the objects, broad ultraviolet coverage has been achieved by splicing echellegrams taken in two or more FUV (1150-1700 Å) and/or NUV (1600-3100 Å) settings. In cases of multiple pointings on conspicuously variable sources, spectra were separated into independent epochs. Otherwise, different epochs were combined to enhance the signal-to-noise ratio (S/N). A post-facto correction to the calstis pipeline data sets compensated for subtle wavelength distortions identified in a previous study of the STIS calibration lamps. An internal "fluxing" procedure yielded coherent spectral energy distributions (SEDs) for objects with broadly overlapping wavelength coverage. The best StarCAT material achieves 300 m s-1 internal velocity precision; absolute accuracy at the 1 km s-1 level; photometric accuracy of order 4%; and relative flux precision several times better (limited mainly by knowledge of SEDs of UV standard stars). While StarCAT represents a milestone in the large-scale post-processing of STIS echellegrams, a number of potential improvements in the underlying "final" pipeline are identified.

  17. Updated Status and Performance at the Fourth HST COS FUV Lifetime Position

    NASA Astrophysics Data System (ADS)

    Taylor, Joanna M.; De Rosa, Gisella; Fix, Mees B.; Fox, Andrew; Indriolo, Nick; James, Bethan; Jedrzejewski, Robert I.; Oliveira, Cristina M.; Penton, Steven V.; Plesha, Rachel; Proffitt, Charles R.; Rafelski, Marc; Roman-Duval, Julia; Sahnow, David J.; Snyder, Elaine M.; Sonnentrucker, Paule; White, James

    2017-06-01

    To mitigate the adverse effects of gain sag on the spectral quality and accuracy of Hubble Space Telescope’s Cosmic Origins Spectrograph FUV observations, COS FUV spectra will be moved from Lifetime Position 3 (LP3) to a new pristine location on the detectors at LP4 in July 2017. To achieve maximal spectral resolution while preserving detector area, the spectra will be shifted in the cross-dispersion (XD) direction by -2.5" (about -31 pixels) from LP3 or -5” (about 62 pixels) from the original LP1. At LP4, the wavelength calibration lamp spectrum can overlap with the previously gain-sagged LP2 PSA spectrum location. If lamp lines fall in the gain sag holes from LP2, it can cause line ratios to change and the wavelength calibration to fail. As a result, we have updated the Wavecal Parameters Reference Table and CalCOS to address this issue. Additionally, it was necessary to extend the current geometric correction in order to encompass the entire LP4 location. Here we present 2-D template profiles and 1-D spectral trace centroids derived at LP4 as well as LP4-related updates to the wavelength calibration, and geometric correction.

  18. The Saturn hydrogen plume

    NASA Astrophysics Data System (ADS)

    Shemansky, D. E.; Liu, X.; Melin, H.

    2009-12-01

    Images of the Saturn atmosphere and magnetosphere in H Lyα emission during the Cassini spacecraft pre and post Saturn orbit insertion (SOI) event obtained using the UVIS experiment FUV spectrograph have revealed definitive evidence for the escape of H I atoms from the top of the thermosphere. An image at 0.1×0.1 Saturn equatorial radii ( RS) pixel resolution with an edge-on-view of the rings shows a distinctive structure (plume) with full width at half maximum (FWHM) of 0.56RS at the exobase sub-solar limb at ˜-13.5∘ latitude as part of the distributed outflow of H I from the sunlit hemisphere, with a counterpart on the antisolar side peaking near the equator above the exobase limb. The structure of the image indicates that part of the outflowing population is sub-orbital and re-enters the thermosphere in an approximate 5 h time scale. An evident larger more broadly distributed component fills the magnetosphere to beyond 45RS in the orbital plane in an asymmetric distribution in local time, similar to an image obtained at Voyager 1 post encounter in a different observational geometry. It has been found that H2 singlet ungerade Rydberg EUV/FUV emission spectra collected with the H Lyα into the image mosaic show a distinctive resonance property correlated with the H Lyα plume. The inferred approximate globally averaged energy deposition at the top of the thermosphere from the production of the hot atomic hydrogen accounts for the measured atmospheric temperature. The only known process capable of producing the atoms at the required few eV/atom kinetic energy appears to be the direct electron excitation of non-LTE H2XΣg+1( v:J) into the repulsive H2bΣu+3, although details of the processes need to be examined under the constraints imposed by the observations to determine compatibility with the current knowledge of hydrogen rate processes.

  19. Rosetta/Alice Measurements of Atomic and Molecular Abundances in the Coma of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Vervack, R. J., Jr.; Weaver, H. A., Jr.; Knight, M. M.; Feldman, P.; Stern, A.; Parker, J. W.; Feaga, L. M.; Steffl, A.; Bertaux, J. L.; A'Hearn, M. F.; Keeney, B. A.

    2017-12-01

    During the Rosetta orbital phase from August 2014 through September 2016, the Alice far-ultraviolet (FUV) imaging spectrograph routinely monitored the FUV emission from the coma of 67P/Churyumov-Gerasimenko (67P). These data, spanning 700-2050 Å, provide both spatial and temporal information on the evolution of the coma composition throughout the encounter. Emissions from hydrogen (Lyman beta at 1025 Å), oxygen (1304 Å triplet, 1356 Å), sulfur (1429 Å and 1479 Å multiplets, 1814 Å triplet), and carbon (1561 Å, 1657 Å) were regularly observed, as well as emission from the CO Fourth Positive and Cameron bands. We present a preliminary analysis of these emissions with a focus on the abundances in the coma and a mapping of the temporal and spatial variations. Both short-term (days) and long-term (months) variations will be discussed in the context of rotational and seasonal timeframes. We also present ratios among various species with the goal of identifying the dominant processes at work in the coma as a function of time. Rosetta is an ESA mission with contributions from its member states and NASA. The Alice team acknowledges continuing support from NASA's Jet Propulsion Laboratory through contract 1336850 to the Southwest Research Institute. RJV's work was supported by a subcontract from Southwest Research Institute to the Johns Hopkins University Applied Physics Laboratory.

  20. The Far Ultraviolet (FUV) auroral imager for the Inner Magnetospheric Imager (IMI) mission: Options

    NASA Technical Reports Server (NTRS)

    Wilson, Gordon R.

    1993-01-01

    The change from an intermediate mission (cost ceiling of $300 million) to a solar-terrestrial probe class mission (cost ceiling of $150 million) will require some major changes in the configuration of the IMI mission. One option being considered is to move to a small spin-stabilized spacecraft (with no despun platform) which could be launched with a smaller Taurus or Conestoga class booster. Such a change in spacecraft type would not present any fundamental problems (other than restrictions on mass and power) for the He plus 304 A plasmasphere imager, the high and low energy neutral atom imagers, and the geocoronal imager, but would present a challenge for the FUV auroral imager since the original plan called for this instrument to operate from a despun platform. Since the FUV instrument is part of the core payload it cannot be dropped from the instrument complement without jeopardizing the science goals of the mission. A way must be found to keep this instrument and to allow it to accomplish most, if not all, of its science objectives. One of the subjects discussed are options for building an FUV instrument for a spinning spacecraft. Since a number of spinning spacecraft have carried auroral imagers, a range of techniques exists. In addition, the option of flying the FUV imager on a separate micro-satellite launched with the main IMI spacecraft or with a separate pegasus launch, was considered and is discussed.

  1. Probing 67P/Churyumov-Gerasimenko's Electron Environment Through Ultraviolet Emission by Rosetta Alice Observations

    NASA Astrophysics Data System (ADS)

    Schindhelm, Eric; Noonan, John; Keeney, Brian A.; Broiles, Thomas; Bieler, Andre; A'Hearn, Michael F.; Bertaux, Jean-Loup; Feaga, Lori M.; Feldman, Paul D.; Parker, Joel Wm.; Steffl, Andrew Joseph; Stern, S. Alan; Weaver, Harold A.

    2016-10-01

    The Alice Far-Ultraviolet (FUV) Spectrograph onboard ESA's Rosetta spacecraft has observed the coma of comet 67P/Churyumov-Gerasimenko from far approach in summer 2014 until the end of mission in September 2016. We present an overall perspective of the bright FUV emission lines (HI 1026 Å, OI 1302/1305/1306 Å multiplet, OI] 1356 Å, CO 1510 (1-0) Å, and CI 1657 Å) above the sunward hemisphere, detailing their spatial extent and brightness as a function of time and the heliocentric distance of the comet. We compare our observed gas column densities derived using electron temperatures and densities from the Ion Electron Sensor (IES) with those derived using the Inner Coma Environment Simulator (ICES) models in periods when electron-impact excited emission dominates over solar fluorescence emission. The electron population is characterized with 2 three-dimensional kappa functions, one dense and warm, one rarefied and hot.

  2. Ultraviolet aurorae and dayglow in the upper atmospheres of terrestrial planets

    NASA Astrophysics Data System (ADS)

    Gerard, Jean-Claude; Hubert, Benoit; Gustin, J.; Cox, Cedric

    Since its discovery in 2005 with the SPICAM spectrograph on board Mars Express, the Mars aurora has been further investigated. It is caused by sporadic soft electron precipitation whose signature is clearly observed in the FUV nightglow spectrum. The characteristics of the auroral electrons have been documented with parallel observations. Dayglow UV spectra have been collected with SPICAM over several seasons. The dependence of the intensity and peak altitude of the CO Cameron bands and CO2 + doublet emissions on latitude, local time and solar activity level have been investigated and compared with the results of a FUV Mars dayglow model. Far and Extreme ultraviolet spectra have been collected with the UVIS instrument during the flyby of Venus by Cassini, in a period a high solar activity. Their analysis shows the presence of OI, OII, NI, CI, CO and CO2 + emissions, some of them not previously identified in the Venus spectrum. The intensities will be compared with those observed with the HUT spectrograph during a period of low solar activity. The excitation processes of the observed features will be discussed. Scans of the intensity variation of several EUV bright emissions such as OII 83.4 nm, OI 98.9 nm and NI 120.0 nm multiplets across the sunlit disc will be compared with the calculations of a Venus dayglow model, including multiple scattering of optically thick transitions.

  3. CARMENES. Mining public archives for stellar parameters and spectra of M dwarfs with master thesis students

    NASA Astrophysics Data System (ADS)

    Caballero, J. A.; Montes, D.; Alonso-Floriano, F. J.; Cortés-Contreras, M.; González-Álvarez, E.; Hidalgo, D.; Holgado, G.; Martínez-Rodríguez, H.; Sanz-Forcada, J.; López-Santiago, J.

    2015-05-01

    We are compiling the most comprehensive database of M dwarfs ever built, CARMENCITA, the CARMENES Cool dwarf Information and daTa Archive, which will be the CARMENES 'input catalogue'. In addition to the science preparation with low- and high-resolution spectrographs and lucky imagers, we compile a huge pile of public data on over 2200 M dwarfs, and analyse them, mostly using virtual-observatory tools. Here we describe four specific actions carried out by master students. They mine public archives for additional high-resolution spectroscopy (UVES, FEROS and HARPS), multi-band photometry (FUV-NUV-u-B-g-V-r-R-i-J-H-Ks-W1-W2-W3-W4), X-ray data (ROSAT, XMM-Newton and Chandra), and periods, rotational velocities and Hα pseudo-equivalent widths. As described, there are many interdependences between all these data.

  4. The S201 far-ultraviolet imaging survey - A summary of results and implications for future surveys

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Page, T.

    1984-01-01

    The results from all-sky surveys with the S201 FUV camera/spectrograph from the moon during the Apollo 16 mission are summarized with respect to implications for future UV all-sky surveys. The scans provided imagery of 10 fields, each 20 deg in diameter, in the wavelength ranges 1050-1600 A and 1250-1600 A. Best detection thresholds were obtained with 10 and 30 min exposures at 1400 A. Only 7 percent sky coverage was recorded, and then only down to 11th mag. A Mark II camera may be flown on the Shuttle on the Spartan 3 mission, as may be an all-reflector Schmidt telescope. An additional 20 percent of the sky will be mapped and microchannel intensification will increase the diffuse source sensitivity by two orders of magnitude. Several objects sighted with the S201 will be reviewed with the Mark II.

  5. Are We Correctly Measuring Star-Formation Rates?

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B.; Skillman, Evan D.; Dolphin, Andrew E.; Mitchell, Noah P.

    2017-01-01

    Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction-corrected, integrated ultraviolet (UV) emission from resolved galaxies with color-magnitude diagram (CMD) based star-formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey (STARBIRDS) and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV-SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is ˜53% larger than previous relations. These results have signficant implications for measuring FUV-based SFRs of high-redshift galaxies.

  6. A SNAPshot of the FUV (1320 - 1460 A) Spectrum of Lambda Vel (K4Ib-II)

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.

    2010-01-01

    The FUV spectrum (l330-1460A) of the K4Ib-II supergiant Lambda Vel was observed with the Cosmic Origins Spectrograph (COS) on HST, as part of the Ayres and Redfield Cycle 17 SNAP program "SNAPing Coronal Iron". This spectrum covers a region not previously seen in Lambda Vel at high resolution and reveals a rich emission-line spectrum superposed on a bright continuum, with contributions from a variety of atomic and molecular sources. Evidence of the stellar wind is seen in the P Cygni profiles of selected lines and the results of fluorescence processes are visible throughout the region. The spectrum has remarkable similarities to that of Alpha Boo (K1.5 III), but significant differences as well, including substantial FUV continuum emission, reminiscent of the M2 lab supergiant Alpha Ori, but minus the CO fundamental absorption bands seen in the latter star. However, fluoresced CO emission is present and strong, as in the K-giant stars Alpha Boo and Alpha Tau (K5 III). We present the details of this spectrum, in comparison to stars of similar temperature or luminosity and discuss the implications for the structure of and the radiative processes active in, the outer atmospheres of these stars.

  7. Second COS FUV Lifetime Position: Verification of FUV Bright Object Aperture (BOA) Operations (FCAL4)

    NASA Astrophysics Data System (ADS)

    Debes, John H.

    2013-05-01

    As part of the calibration of the second lifetime position on the Cosmic Origins Spectrograph (COS) far-ultraviolet (FUV) detectors, observations of the external target, G191-B2B, were obtained with the G130M, G160M, and G140L gratings in combi- nation with the Bright Object Aperture. The observations were designed to verify the performance of these spectroscopic modes by reproducing similar observations taken during the SM4 Servicing Mission Observatory Verification (SMOV) of COS. These observations allowed for a detailed determination of the spatial location and profile of the spectra from the three gratings, as well as a determination of the spectral resolution of the G130M grating prior to and after the lifetime move. In general, the negligi- ble differences which exist between the two lifetime positions can be attributed to slight differences in the optical path. In particular, the spectral resolution appears to be slightly improved. The stability of the absolute and relative flux calibration was investigated for G130M as well using STIS echelle data of G191-B2B. We determine that the COS ab- solute flux calibration with the BOA is accurate to 10%, and flux calibrated data are reproducible at the 1-2% level since SMOV.

  8. Second COS FUV Lifetime Position: FUV Target Acquisition Parameter Update {FENA4}

    NASA Astrophysics Data System (ADS)

    Penton, Steven

    2011-10-01

    Verify the ability of the Cycle 20 COS FSW to place an isolated point source at the center of the PSA, using FUV dispersed light target acquisition {TA} from the object and all three FUV gratings at the Second Lifetime Position {SLP}. This program is modeled from the activity summary of FENA4.This program should be executed after the new HV, XD spectral positions, and focus are determined and updated. In addition, the LIFETIME=ALTERNATE TA FSW parameters should be updated prior to execution of this program.NUV imaging TAs have previously been used to determine the correct locations for FUV spectra. We follow the same procedure here.

  9. Ultraviolet imaging of planetary nebulae with GALEX

    NASA Astrophysics Data System (ADS)

    Bianchi, Luciana; Thilker, David

    2018-05-01

    Over four hundred Galactic Planetary Nebulae (PNe) have been imaged by GALEX in two ultraviolet (UV) bands, far-UV (FUV, 1344-1786 Å, λ _{eff}= 1528 Å) and near-NUV (NUV, 1771-2831 Å, λ _{eff} = 2271 Å). We present examples of extended PNe, for which UV spectroscopy is also available, to illustrate the variety in UV morphology and color, which reflects ionization conditions. The depth of the GALEX imaging varies from flux ≈ 0.4/5× 10 ^{-18} ergs cm^{-2} s^{-1} Å^{-1} \\square ^'' -1} (FUV/NUV) for exposures of the order of ˜ 100 seconds, typical of the survey with the largest area coverage, to ˜ 0.3/8.3× 10^{-19} ergs cm^{-2} s^{-1} Å^{-1} \\square ^'' -1} (FUV/NUV) for ˜ 1500 sec exposures, typical of the second largest survey (see Bianchi in Astrophys. Space Sci. 320:11, 2009; Bianchi et al. in Adv. Space Res. 53:900, 2014). GALEX broad-band FUV and NUV fluxes include nebular emission lines and in some cases nebular continuum emission. The sensitivity of the GALEX instrument and the low sky background, especially in FUV, enable detection and mapping of very faint ionization regions and fronts, including outermost wisps and bow shocks. The FUV-NUV color of the central star provides a good indication of its T_{eff}, because the GALEX FUV-NUV color is almost reddening-free for Milky Way type dust (Bianchi et al. in Astrophys. J. Suppl. Ser. 230:24, 2017; Bianchi in Astrophys. Space Sci. 335:51, 2011, Bianchi in Astrophys. Space Sci. 354:103, 2014) and it is more sensitive to hot temperatures than optical colors.

  10. A Multi-Observatory View of the Alpha Persei Coronal Conundrum

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2017-01-01

    A ROSAT pointed survey of the Alpha Per open cluster in the 1990's detected its brightest star, mid-F supergiant α Persei, with an X-ray luminosity and spectral hardness similar to coronally active late-type dwarf members. Later, in 2010, a Hubble Cosmic Origins Spectrograph SNAPshot observation of α Per found far-ultraviolet (FUV) coronal-proxy emissions (specifically Si IV 1393 Å) unexpectedly weak. Together with a slight, but suspicious, offset of the ROSAT source, these anomalies raised the possibility that an unrecognized late-type companion might be responsible for the coronal X-rays. Recently, a multi-observatory program was carried out to test that premise; on the one hand to directly detect the putative companion, but on the other to better characterize the FUV spectrum of α Per in case it also was captured in X-rays. Initially, ground-based optical coronography from the Apache Point 3.5m, and later near-UV imaging with HST Wide Field Camera 3, searched for any close-in faint objects that plausibly could be significant X-ray emitters, but without success. Then, a Chandra pointing showed that the X-ray source is single and coincident with the bright star. In tandem, HST COS collected a much deeper FUV spectrum of α Per than the earlier brief SNAP. In hindsight, F supergiant Canopus (α Car: F0 Ib) also has a high X-ray luminosity and the same type of low Si IV/X-ray index as α Per. Significantly, the FUV Si IV emissions of both α Per and Canopus align well with the chromospheric atomic oxygen emissions (which must be intrinsic to the luminous stars), within the context of cooler late-F and early-G supergiants, including Cepheid variables. This pointed to the X-rays as the fundamental anomaly. Ironically, the over-luminous X-rays still support the case for a hyperactive dwarf secondary, albeit now spatially unresolved. However, an equally viable alternative is that both F supergiants are members of a novel class of X-ray emitters. Resolving the first possibility now has become more difficult, because the easy solution -- a well separated hyperactive companion -- has been eliminated; while testing the second will require a broader high-energy census of the early-F supergiant class.

  11. The Surprising Absence of Absorption in the Far-ultraviolet Spectrum of Mrk 231

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Trippe, M.; Hamann, F.; Rupke, D. S. N.; Tripp, T. M.; Netzer, H.; Lutz, D.; Sembach, K. R.; Krug, H.; Teng, Stacy H.; hide

    2013-01-01

    Mrk 231, the nearest (z = 0.0422) quasar, hosts both a galactic-scale wind and a nuclear-scale iron low-ionization broad absorption line (FeLoBAL) outflow. We recently obtained a far-ultraviolet (FUV) spectrum of this object covering approx. 1150-1470A with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. This spectrum is highly peculiar, highlighted by the presence of faint (< or approx.2% of predictions based on H(alpha)), broad (> or approx.10,000 km/s at the base), and highly blueshifted (centroid at approx. 3500 km/s) Ly(aplpha) emission. The FUV continuum emission is slightly declining at shorter wavelengths (consistent with F(sub lambda) Alpha Lambda(sup 1.7)) and does not show the presence of any obvious photospheric or wind stellar features. Surprisingly, the FUV spectrum also does not show any unambiguous broad absorption features. It thus appears to be dominated by the AGN, rather than hot stars, and virtually unfiltered by the dusty FeLoBAL screen. The observed Ly(alpha) emission is best explained if it is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad emission line region seen through the dusty (Av approx. 7 mag) broad absorption line region. Two possible geometric models are discussed in the context of these new results.

  12. Preparation of the CARMENES Input Catalogue: Mining Public Archives for Stellar Parameters and Spectra of M Dwarfs with Master Thesis Students

    NASA Astrophysics Data System (ADS)

    Montes, D.; Caballero, J. A.; Alonso-Floriano, F. J.; Cortes Contreras, M.; Gonzalez-Alvarez, E.; Hidalgo, D.; Holgado, G.; Llamas, M.; Martinez-Rodriguez, H.; Sanz-Forcada, J.

    2015-01-01

    We help compiling the most comprehensive database of M dwarfs ever built, CARMENCITA, the CARMENES Cool dwarf Information and daTa Archive, which will be the CARMENES `input catalogue'. In addition to the science preparation with low- and high-resolution spectrographs and lucky imagers (see the other contributions in this volume), we compile a huge pile of public data on over 2100 M dwarfs, and analyze them, mostly using virtual-observatory tools. Here we describe four specific actions carried out by master and grade students. They mine public archives for additional high-resolution spectroscopy (UVES, FEROS and HARPS), multi-band photometry (FUV-NUV-u-B-g-V-r-R-i-J-H-Ks-W1-W2-W3-W4), X-ray data (ROSAT, XMM-Newton and Chandra), periods, rotational velocities and Hα pseudo-equivalent widths. As described, there are many interdependences between all these data.

  13. Inferring Nighttime Ionospheric Parameters with the Far Ultraviolet Imager Onboard the Ionospheric Connection Explorer

    NASA Astrophysics Data System (ADS)

    Kamalabadi, Farzad; Qin, Jianqi; Harding, Brian J.; Iliou, Dimitrios; Makela, Jonathan J.; Meier, R. R.; England, Scott L.; Frey, Harald U.; Mende, Stephen B.; Immel, Thomas J.

    2018-06-01

    The Ionospheric Connection Explorer (ICON) Far Ultraviolet (FUV) imager, ICON FUV, will measure altitude profiles of OI 135.6 nm emissions to infer nighttime ionospheric parameters. Accurate estimation of the ionospheric state requires the development of a comprehensive radiative transfer model from first principles to quantify the effects of physical processes on the production and transport of the 135.6 nm photons in the ionosphere including the mutual neutralization contribution as well as the effect of resonant scattering by atomic oxygen and pure absorption by oxygen molecules. This forward model is then used in conjunction with a constrained optimization algorithm to invert the anticipated ICON FUV line-of-sight integrated measurements. In this paper, we describe the connection between ICON FUV measurements and the nighttime ionosphere, along with the approach to inverting the measured emission profiles to derive the associated O+ profiles from 150-450 km in the nighttime ionosphere that directly reflect the electron density in the F-region of the ionosphere.

  14. In Charon's Shadow: Analysis of the UV Solar Occultation from New Horizons

    NASA Astrophysics Data System (ADS)

    Kammer, Joshua A.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico, K. A.; Olkin, C. B.; Gladstone, G. R.; Summers, M. E.; Greathouse, T. K.; Retherford, K. D.; Versteeg, M. H.; Parker, J. W.; Steffl, A. J.; Schindhelm, E.; Strobel, D. F.; Linscott, I. R.; Hinson, D. P.; Tyler, G. L.; Woods, W. W.

    2015-11-01

    Observations of Charon, Pluto's largest moon, have so far yielded no evidence for a substantial atmosphere. However, during the flyby of New Horizons through the Pluto-Charon system, the Alice ultraviolet spectrograph successfully acquired the most sensitive measurements to date during an occultation of the sun as New Horizons passed through Charon's shadow. These observations include wavelength coverage in the extreme- and far-ultraviolet (EUV and FUV) from 52 nm to 187 nm. We will present these results from Alice, and discuss their implications for an atmosphere on Charon.This work was supported by NASA's New Horizons project.

  15. No breakdown of the radiatively driven wind theory in low-metallicity environments

    NASA Astrophysics Data System (ADS)

    Bouret, J.-C.; Lanz, T.; Hillier, D. J.; Martins, F.; Marcolino, W. L. F.; Depagne, E.

    2015-05-01

    We present a spectroscopic analysis of Hubble Space Telescope/Cosmic Origins Spectrograph observations of three massive stars in the low metallicity dwarf galaxies IC 1613 and WLM. These stars, were previously observed with Very Large Telescope (VLT)/X-shooter by Tramper et al., who claimed that their mass-loss rates are higher than expected from theoretical predictions for the underlying metallicity. A comparison of the far ultraviolet (FUV) spectra with those of stars of similar spectral types/luminosity classes in the Galaxy, and the Magellanic Clouds provides a direct, model-independent check of the mass-loss-metallicity relation. Then, a quantitative spectroscopic analysis is carried out using the non-LTE (NLTE) stellar atmosphere code CMFGEN. We derive the photospheric and wind characteristics, benefiting from a much better sensitivity of the FUV lines to wind properties than Hα. Iron and CNO abundances are measured, providing an independent check of the stellar metallicity. The spectroscopic analysis indicates that Z/Z⊙ = 1/5, similar to a Small Magellanic Cloud-type environment, and higher than usually quoted for IC 1613 and WLM. The mass-loss rates are smaller than the empirical ones by Tramper et al., and those predicted by the widely used theoretical recipe by Vink et al. On the other hand, we show that the empirical, FUV-based, mass-loss rates are in good agreement with those derived from mass fluxes computed by Lucy. We do not concur with Tramper et al. that there is a breakdown in the mass-loss-metallicity relation.

  16. New HST/COS FUV Modes G140L/800 and G160M/1533

    NASA Astrophysics Data System (ADS)

    Sankrit, Ravi; De Rosa, Gisella; Fischer, William J.; Fix, Mees B.; Fox, Andrew; Indriolo, Nick; James, Bethan; Magness, Camellia; Oliveira, Cristina M.; Penton, Steven V.; Plesha, Rachel; Rafelski, Marc; Roman-Duval, Julia; Sahnow, David J.; Snyder, Elaine M.; Taylor, Joanna M.; White, James

    2018-06-01

    We present two new observing modes that are being offered for the far-ultraviolet (FUV) channel on the Cosmic Origins Spectrograph (COS), and an initial overview of the science investigations they enable. The FUV channel on COS currently operates in the 900-2150 A wavelength region. It consists of two medium resolution gratings G130M and G160M, and a low resolution grating G140L. The detector consists of two segments (FUVB, shortward and FUVA, longward wavelengths) with a gap between them. Each grating has a number of central wavelength settings (cenwaves) available. The settings place different portions of the spectrum on the detector segments, and the focus at each cenwave is set to optimize spectral resolution in the middle of its wavelength range.The first new mode is G140L/800, which places 800-1950 A on FUVA. The grating rotation and focus for this mode are set to minimize the height of the spectrum on the detector, and thereby the background, in the region below 1100 A. This results in an increased sensitivity at these wavelengths compared to the 1280 cenwave. The second mode, G160M/1533, extends the short-wavelength coverage of the grating by 44 A to overlap with the longest wavelengths covered by the G130M/1222 setting. This allows a broad wavelength range to be covered using just two medium resolution settings without placing the key gain-sag contributor, Ly-alpha, on the detector.

  17. Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update {LENA3}

    NASA Astrophysics Data System (ADS)

    Penton, Steven

    2013-10-01

    Verify the ability of the Cycle 22 COS FSW to place an isolated point source at the center of the PSA, using FUV dispersed light target acquisition (TA) from the object and all three FUV gratings at the Third Lifetime Position (LP3). This program is modeled from the activity summary of LENA3.This program should be executed after the LP3 HV, XD spectral positions, aperture mechanism position, and focus are determined and updated. In addition, initial estimates of the LIFETIME=ALTERNATE TA FSW parameters and subarrays should be updated prior to execution of this program. After Visit 01, the subarrays will be updated. After Visit 2, the FUV WCA-to-PSA offsets will be updateded. Prior to Visit 6, LV56 will be installed will include new values for the LP3 FUV plate scales. VISIT 6 exposures use the default lifetime position (LP3).NUV imaging TAs have previously been used to determine the correct locations for FUV spectra. We follow the same procedure here.Note that the ETC runs here were made using ETC22.2 and are therefore valid for Mach 2014. Some TDS drop will likely have occured before these visits execute, but we have plenty of count to go what we need to do in this program.

  18. Spatial and Temporal Variations of Atomic Species in the Coma of Comet 67P/Churyumov-Gerasimenko as Observed by Rosetta’s ALICE UV Spectrograph during Great Circle Scans

    NASA Astrophysics Data System (ADS)

    Knight, Matthew M.; Weaver, Harold A.; Vervack, Ronald J.; A'Hearn, Michael; Bertaux, Jean-Loup; Feaga, Lori M.; Feldman, Paul D.; Parker, Joel Wm.; Schindhelm, Eric; Steffl, Andrew J.; Stern, S. Alan; Bieler, Andre; Combi, Michael R.; Fougere, Nicolas; Keeney, Brian A.; Medina, Richard; Noonan, John; Pineau, Jon; Versteeg, Maarten H.

    2017-10-01

    The Alice far-ultraviolet (FUV) imaging spectrograph on the Rosetta orbiter obtained spatially resolved spectra of 67P/Churyumov-Gerasimenko (67P) from 700-2050 Å with a spectral resolution of 8-12 Å. Observations of 67P were obtained by Alice continually from arrival at the comet in August 2014 through the end of the mission in September 2016. “Great Circle” observations were performed every few weeks from January 2015 through May 2016 to survey the coma away from the nucleus. These sequences consisted of a series of slews along a celestial great circle passing through the nucleus, e.g., covering off-nadir angles from approximately 0-180°, with pauses for observations by Alice and other instruments. Alice’s line of sight during these scans included signal to the edge of the coma, thus sampling very different parts of the coma than most other instruments.We report here on observations acquired during these Great Circle scans that allow us to investigate the spatial distributions of various emissions, as well as seasonal variations in the coma composition. Bright lines consistently included H Ly-b, the OI triplet near 1304 Å, CI near 1657 Å, and the SI triplet near 1820 Å. Spatial distributions of the OI, CI, and SI brightnesses have been determined and are being fitted with Haser models. The process is more complicated than for traditional remote sensing FUV observations due to Rosetta’s location in the coma and because resonant scattering does not always dominate the excitation. Preliminary modeling yields H2O and CO2 production rates consistent with contemporaneous measurements obtained by other instruments on Rosetta and production rates that generally peak a few weeks after perihelion. A surprising phenomenon is a slight increase in OI brightness at large off-nadir angles for some Great Circles while the other measured emissions continue to decrease. We are investigating possible explanations.Rosetta is an ESA mission with contributions from its member states and NASA. The Alice team acknowledges continuing support from NASA’s Jet Propulsion Laboratory through contract 1336850 to the Southwest Research Institute.

  19. A TWO-RIBBON WHITE-LIGHT FLARE ASSOCIATED WITH A FAILED SOLAR ERUPTION OBSERVED BY ONSET, SDO, AND IRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, X.; Hao, Q.; Ding, M. D.

    Two-ribbon brightenings are one of the most remarkable characteristics of an eruptive solar flare and are often used to predict the occurrence of coronal mass ejections (CMEs). Nevertheless, it was recently called into question whether all two-ribbon flares are eruptive. In this paper, we investigate a two-ribbon-like white-light (WL) flare that is associated with a failed magnetic flux rope (MFR) eruption on 2015 January 13, which has no accompanying CME in the WL coronagraph. Observations by the Optical and Near-infrared Solar Eruption Tracer and the Solar Dynamics Observatory reveal that with the increase of the flare emission and the acceleration ofmore » the unsuccessfully erupting MFR, two isolated kernels appear at the WL 3600 Å passband and quickly develop into two elongated ribbon-like structures. The evolution of the WL continuum enhancement is completely coincident in time with the variation of Fermi hard X-ray 26–50 keV flux. An increase of continuum emission is also clearly visible at the whole FUV and NUV passbands observed by the Interface Region Imaging Spectrograph. Moreover, in one WL kernel, the Si iv, C ii, and Mg ii h/k lines display significant enhancement and non-thermal broadening. However, their Doppler velocity pattern is location-dependent. At the strongly bright pixels, these lines exhibit a blueshift, while at moderately bright ones, the lines are generally redshifted. These results show that the failed MFR eruption is also able to produce a two-ribbon flare and high-energy electrons that heat the lower atmosphere, causing the enhancement of the WL and FUV/NUV continuum emissions and chromospheric evaporation.« less

  20. VizieR Online Data Catalog: LITTLE THINGS dwarf irregular galaxies FUV regions (Hunter+, 2016)

    NASA Astrophysics Data System (ADS)

    Hunter, D. A.; Elmegreen, B. G.; Gehret, E.

    2018-03-01

    The sample of galaxies is taken from LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey, Hunter et al. 2012, J/AJ/144/134). This is a multi-wavelength survey of nearby (<10.3 Mpc) dIrr galaxies and BCDs, which builds on the THINGS project, whose emphasis was on nearby spirals (Walter et al. 2008, J/AJ/136/2563). The galaxies and a few key parameters are listed in Table 1. We used FUV (1516 Å) images obtained by GALEX (Melena et al. 2009, J/AJ/138/1203; Hunter et al. 2010AJ....139..447H, 2011AJ....142..121H; Zhang et al. 2012AJ....143...47Z) to identify knots of emission in the outer disks of each galaxy. In order to better distinguish knots from the wide-spread diffuse emission, we subtracted the stellar continuum from each FUV image using the V-band image. (2 data files).

  1. An Ultraviolet and Near-Infrared View of NGC 4214: A Starbursting Core Embedded in a Low Surface Brightness Disk

    NASA Astrophysics Data System (ADS)

    Fanelli, Michael N.; Waller, William W.; Smith, Denise A.; Freedman, Wendy L.; Madore, Barry; Neff, Susan G.; O'Connell, Robert W.; Roberts, Morton S.; Bohlin, Ralph; Smith, Andrew M.; Stecher, Theodore P.

    1997-05-01

    During the Astro-2 Spacelab mission in 1995 March, the Ultraviolet Imaging Telescope (UIT) obtained far-UV (λ = 1500 Å) imagery of the nearby Sm/Im galaxy NGC 4214. The UIT images have a spatial resolution of ~3" and a limiting surface brightness, μ1500 > 25 mag arcsec-2, permitting detailed investigation of the intensity and spatial distribution of the young, high-mass stellar component. These data provide the first far-UV imagery covering the full spatial extent of NGC 4214. Comparison with a corresponding I-band image reveals the presence of a starbursting core embedded in an extensive low surface brightness disk. In the far-UV (FUV), NGC 4214 is resolved into several components: a luminous, central knot; an inner region (r <~ 2.5 kpc) with ~15 resolved sources embedded in bright, diffuse emission; and a population of fainter knots extending to the edge of the optically defined disk (r ~ 5 kpc). The FUV light, which traces recent massive star formation, is observed to be more centrally concentrated than the I-band light, which traces the global stellar population. The FUV radial light profile is remarkably well represented by an R1/4 law, providing evidence that the centrally concentrated massive star formation in NGC 4214 is the result of an interaction, possibly a tidal encounter, with a dwarf companion(s). The brightest FUV source produces ~8% of the global FUV luminosity. This unresolved source, corresponding to the Wolf-Rayet knot described by Sargent & Filippenko, is located at the center of the FUV light distribution, giving NGC 4214 an active galactic nucleus-like morphology. Another strong source is present in the I band, located 19" west, 10" north of the central starburst knot, with no FUV counterpart. The I-band source may be the previously unrecognized nucleus of NGC 4214 or an evolved star cluster with an age greater than ~200 Myr. The global star formation rate derived from the total FUV flux is consistent with rates derived using data at other wavelengths and lends support to the scenario of roughly constant star formation during the last few hundred million years at a level significantly enhanced relative to the lifetime averaged star formation rate. The hybrid disk/starburst-irregular morphology evident in NGC 4214 emphasizes the danger of classifying galaxies based on their high surface brightness components at any particular wavelength.

  2. First Detection of a Pulsar Bow Shock Nebula in Far-UV: PSR J0437-4715

    NASA Astrophysics Data System (ADS)

    Rangelov, Blagoy; Pavlov, George G.; Kargaltsev, Oleg; Durant, Martin; Bykov, Andrei M.; Krassilchtchikov, Alexandre

    2016-11-01

    Pulsars traveling at supersonic speeds are often accompanied by cometary bow shocks seen in Hα. We report on the first detection of a pulsar bow shock in the far-ultraviolet (FUV). We detected it in FUV images of the nearest millisecond pulsar J0437-4715 obtained with the Hubble Space Telescope. The images reveal a bow-like structure positionally coincident with part of the previously detected Hα bow shock, with an apex at 10″ ahead of the moving pulsar. Its FUV luminosity, L(1250{--}2000 \\mathringA )≈ 5 × {10}28 erg s-1, exceeds the Hα luminosity from the same area by a factor of 10. The FUV emission could be produced by the shocked interstellar medium matter or, less likely, by relativistic pulsar wind electrons confined by strong magnetic field fluctuations in the bow shock. In addition, in the FUV images we found a puzzling extended (≃3″ in size) structure overlapping with the limb of the bow shock. If related to the bow shock, it could be produced by an inhomogeneity in the ambient medium or an instability in the bow shock. We also report on a previously undetected X-ray emission extending for about 5″ ahead of the pulsar, possibly a pulsar wind nebula created by shocked pulsar wind, with a luminosity L(0.5-8 keV) ˜ 3 × 1028 erg s-1. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO 12917 and GO 10568.

  3. Time-Resolved Ultraviolet Spectroscopy of the M-Dwarf GJ 876 Exoplanetary System

    NASA Technical Reports Server (NTRS)

    France, Kevin; Linsky, Jeffrey L.; Tian, Feng; Froning, Cynthia S.; Roberge, Aki

    2012-01-01

    Extrasolar planets orbiting M-stars may represent our best chance to discover habitable worlds in the coming decade. The ultraviolet spectrum incident upon both Earth-like and Jovian planets is critically important for proper modeling of their atmospheric heating and chemistry. In order to provide more realistic inputs for atmospheric models of planets orbiting low-mass stars, we present new near- and far-ultraviolet (NUV and FUV) spectroscopy of the M-dwarf exoplanet host GJ 876 (U4V). Using the COS and STIS spectrographs aboard the Hubble Space Telescope, we have measured the 1150 - 3140 Ang. spectrum of GJ 876. We have reconstructed the stellar H I Ly-alpha emission line profile, and find that the integrated Ly-apha flux is roughly equal to the rest of the integrated flux (1150 - 1210 Ang + 1220 - 3140 Ang) in the entire ultraviolet bandpass (F(Ly-alpha)/F(FUV+NUV) approximately equals 0.7). This ratio is approximately 2500 x greater than the solar value. We describe the ultraviolet line spectrum and report surprisingly strong fluorescent emission from hot H2 (T(H2) > 2000 K). We show the light-curve of a chromospheric + transition region flare observed in several far-UV emission lines, with flare/ quiescent flux ratios :2: 10. The strong FUV radiation field of an M-star (and specifically Ly-alpha) is important for determining the abundance of O2 - and the formation of biomarkers - in the lower atmospheres of Earth-like planets in the habitable zones of low-mass stars.

  4. Simultaneous DMSP, All-Sky Camera, and IMAGE FUV Observations of the Brightening Arc at a Substorm Pseudo-Breakup

    DTIC Science & Technology

    2007-03-01

    arc at a substorm pseudo-breakup Sb. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHORS 5d. PROJECT NUMBER K. Yago ,, K. Shiokawa, K. Yumoto...Distribution Unlimited Simultaneous DMSP, all-sky camera, and IMAGE FUV observations of the brightening arc at a substorm pseudo-breakup K. Yago "•. K. Shiokawa...2003; Mende et al., particles, field-aligned currents, and plasma convection as- 2003: Yago et al., 2005: Shiokawa et al., 2005). These sociated with

  5. In-orbit Calibrations of the Ultraviolet Imaging Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandon, S. N.; Subramaniam, Annapurni; Sankarasubramanian, K.

    The Ultra-Violet Imaging Telescope (UVIT) is one of the payloads in ASTROSAT, the first Indian Space Observatory. The UVIT instrument has two 375 mm telescopes: one for the far-ultraviolet (FUV) channel (1300–1800 Å), and the other for the near-ultraviolet (NUV) channel (2000–3000 Å) and the visible (VIS) channel (3200–5500 Å). UVIT is primarily designed for simultaneous imaging in the two ultraviolet channels with spatial resolution better than 1.″8, along with provisions for slit-less spectroscopy in the NUV and FUV channels. The results of in-orbit calibrations of UVIT are presented in this paper.

  6. Updates on the Performance and Calibration of HST/STIS

    NASA Astrophysics Data System (ADS)

    Lockwood, Sean A.; Monroe, TalaWanda R.; Ogaz, Sara; Branton, Doug; Carlberg, Joleen K.; Debes, John H.; Jedrzejewski, Robert I.; Proffitt, Charles R.; Riley, Allyssa; Sohn, Sangmo Tony; Sonnentrucker, Paule; Walborn, Nolan R.; Welty, Daniel

    2018-06-01

    The Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) has been in orbit for 21 years and continues to produce high quality scientific results using a diverse complement of operating modes. These include spatially resolved spectroscopy in the UV and optical, high spatial resolution echelle spectroscopy in the UV, and solar-blind imaging in the UV. In addition, STIS possesses unique visible-light coronagraphic modes that keep the instrument at the forefront of exoplanet and debris-disk research. As the instrument's characteristics evolve over its lifetime, the instrument team at the Space Telescope Science Institute monitors its performance and works towards improving the quality of its data products. Here we present updates on the status of the STIS CCD and FUV & NUV MAMA detectors, as well as changes to the CalSTIS reduction pipeline. We also discuss progress toward the recalibration of the E140M/1425 echelle mode. The E140M grating blaze function shapes have changed since flux calibration was carried out following SM4, which limits the relative photometric flux accuracy of some spectral orders up to 5-10% at the edges. In Cycle 25 a special calibration program was executed to obtain updated sensitivity curves for the E140M/1425 setting.

  7. Global Auroral Remote Sensing Using GGS UVI Images

    NASA Technical Reports Server (NTRS)

    Germany, G. A.; Parks, G. K.; Brittnacher, M. J.; Spann, J. F., Jr.; Cumnock, J.; Lummerzheim, D.

    1997-01-01

    The GGS POLAR satellite, with an apogee distance of 9 Earth radii, provides an excellent platform for extended viewing of the northern auroral zone. Global FUV auroral images from the Ultraviolet Imager onboard the POLAR satellite can be used as quantitative remote diagnostics of the auroral regions, yielding estimates of incident energy characteristics, compositional changes, and other higher order data products. In particular, images of long and short wavelength Earth Far Ultraviolet (FUV) Lyman-Birge-Hopfield (LBH) emissions can be modeled to obtain functions of energy flux and average energy that are basically insensitive to changes in seasonal and solar activity changes. The determination of maps of incident auroral energy characteristics is demonstrated here and compared with in situ measurements.

  8. The FUV to Near-IR Morphologies of Luminous Infrared Galaxies in the Goals Sample

    NASA Astrophysics Data System (ADS)

    Petty, S. M.; Armus, L.; Charmandaris, V.; Evans, A. S.; Le Floc'h, E.; Bridge, C.; Díaz-Santos, T.; Howell, J. H.; Inami, H.; Psychogyios, A.; Stierwalt, S.; Surace, J. A.

    2014-12-01

    We compare the morphologies of a sample of 20 luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS) in the FUV, B, I, and H bands, using the Gini (G) and M20 parameters to quantitatively estimate the distribution and concentration of flux as a function of wavelength. Hubble Space Telescope (HST) images provide an average spatial resolution of ˜ 80 pc. While our LIRGs can be reliably classified as mergers across the entire range of wavelengths studied here, there is a clear shift toward more negative M20 (more bulge-dominated) and a less significant decrease in G values at longer wavelengths. We find no correlation between the derived FUV G-M20 parameters and the global measures of the IR to FUV flux ratio (IRX). Given the fine resolution in our HST data, this suggests either that the UV morphology and IRX are correlated on very small scales, or that the regions emitting the bulk of the IR emission emit almost no FUV light. We use our multi-wavelength data to simulate how merging LIRGs would appear from z˜ 0.5-3 in deep optical and near-infrared images such as the Hubble Ultra-Deep Field, and use these simulations to measure the G-M20 at these redshifts. Our simulations indicate a noticeable decrease in G, which flattens at z≥slant 2 by as much as 40%, resulting in mis-classifying our LIRGs as disk-like, even in the rest-frame FUV. The higher redshift values of M20 for the GOALS sources do not appear to change more than about 10% from the values at z˜ 0. The change in G-M20 is caused by the surface brightness dimming of extended tidal features and asymmetries, and also the decreased spatial resolution which reduced the number of individual clumps identified. This effect, seen as early as z˜ 0.5, could easily lead to an underestimate of the number of merging galaxies at high-redshift in the rest-frame FUV.

  9. Star Formation in NGC 4631

    NASA Astrophysics Data System (ADS)

    Smith, A. M.; Collins, N. R.; Bohlin, R.; Fanelli, M. N.; Neff, S. G.; O'Connell, R. W.; Roberts, M. S.; Stecher, T. P.; Waller, W. H.

    1997-12-01

    The group of galaxies including NGC 4631 provides an outstanding example of a galaxy interaction accompanied by intensive star formation. FUV imagery, recorded by the Ultraviolet Imaging Telescope (UIT), exhibits very bright far- ultraviolet (FUV) emission corresponding to the H II regions cataloged by Crillon and Monet (1969). This data is, in our experience, extraordinary in that NCG 4631 is observed nearly edge-on and strong attenuation of FUV light could be anticipated. Analysis of the ultraviolet imagery together with ground-based data leads to the following conclusions. The average extinction internal to the bright FUV regions is low [E(B--V) = 0.31], which combined with the optical morphology implies that the FUV bright regions are close to the edge of the galactic disk. The FUV luminosity of that part of the galaxy which can be observed is 8.2 x 10(40) ergs/s and is about a factor 6 less than the FUV luminosities of M101 and M83. FUV colors, M152-U, M152-B and M152-V, when compared to the predicted colors from cluster formation models utilizing a Salpeter IMF imply an internal extinction like that of a non-30Dor LMC extinction curve (Fitzpatrick 1985). Instantaneous burst models indicate an average age of the FUV bright regions of about 6 Myr and a total created stellar mass of 2.8 x 10(7) Msun . If the measured colors are compared to continuous star formation models, star formation beginning about 100 Myr in the past and continuing to the present with a total star formation rate in the FUV bright regions of 0.026 Msun /yr is implied. The total number of OB stars in the H II regions comprising the large ring in the eastern part of the galaxy (Rand's Shell #1, 1993) is inferred to be 20,000. This number can be compared to Rand's estimate of 10,000 to 35,000 supernova-producing OB stars which are required to impart momentum to an expanding shell of hydrogen gas.

  10. Global Far-ultraviolet Properties of the Cygnus Loop

    NASA Astrophysics Data System (ADS)

    Kim, Il-Joong; Seon, Kwang-Il; Lim, Yeo-Myeong; Lee, Dae-Hee; Han, Wonyong; Min, Kyoung-Wook; Edelstein, Jerry

    2014-03-01

    We present the C III λ977, O VI λλ1032, 1038 and N IV] λ1486 emission line maps of the Cygnus Loop, obtained with the newly processed data of the Spectroscopy of Plasma Evolution from Astrophysical Radiation (SPEAR; also known as FIMS) mission. In addition, the Si IV+O IV] line complexes around 1400 Å are resolved into two separate emission lines whose intensity demonstrates a relatively high Si IV region that was predicted in the previous study. The morphological similarity between the O VI and X-ray images, as well as a comparison of the O VI intensity with the value expected from the X-ray results, indicates that large portions of the observed O VI emissions could be produced from X-ray emitting gas. Comparisons of the far-ultraviolet (FUV) images with the optical and H I 21 cm images reveal spatial variations of shock-velocity populations and high FUV extinction in the direction of a previously identified H I cloud. By calculating the FUV line ratios for several subregions of the Cygnus Loop, we investigate the spatial variation of the population of radiative shock velocities as well as the effects of resonance scattering, X-ray emitting gas, and nonradiative shocks. The FUV and X-ray luminosity comparisons between the Cygnus Loop and the Vela supernova remnant suggest that the fraction of shocks in the early evolutionary stages is much larger in the Cygnus Loop.

  11. Laboratory investigations of Titan haze formation: In situ measurement of gas and particle composition

    NASA Astrophysics Data System (ADS)

    Hörst, Sarah M.; Yoon, Y. Heidi; Ugelow, Melissa S.; Parker, Alex H.; Li, Rui; de Gouw, Joost A.; Tolbert, Margaret A.

    2018-02-01

    Prior to the arrival of the Cassini-Huygens spacecraft, aerosol production in Titan's atmosphere was believed to begin in the stratosphere where chemical processes are predominantly initiated by far ultraviolet (FUV) radiation. However, measurements taken by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and Cassini Plasma Spectrometer (CAPS) indicate that haze formation initiates in the thermosphere where there is a greater flux of extreme ultraviolet (EUV) photons and energetic particles available to initiate chemical reactions, including the destruction of N2. The discovery of previously unpredicted nitrogen species in measurements of Titan's atmosphere by the Cassini Ion and Neutral Mass Spectrometer (INMS) indicates that nitrogen participates in the chemistry to a much greater extent than was appreciated before Cassini. The degree of nitrogen incorporation in the haze particles is important for understanding the diversity of molecules that may be present in Titan's atmosphere and on its surface. We have conducted a series of Titan atmosphere simulation experiments using either spark discharge (Tesla coil) or FUV photons (deuterium lamp) to initiate chemistry in CH4/N2 gas mixtures ranging from 0.01% CH4/99.99% N2 to 10% CH4/90% N2. We obtained in situ real-time measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the particle composition as a function of particle size and a proton-transfer ion-trap mass spectrometer (PIT-MS) to measure the composition of gas phase products. These two techniques allow us to investigate the effect of energy source and initial CH4 concentration on the degree of nitrogen incorporation in both the gas and solid phase products. The results presented here confirm that FUV photons produce not only solid phase nitrogen bearing products but also gas phase nitrogen species. We find that in both the gas and solid phase, nitrogen is found in nitriles rather than amines and that both the gas phase and solid phase products are composed primarily of molecules with a low degree of aromaticity. The UV experiments reproduce the absolute abundances measured in Titan's stratosphere for a number of gas phase species including C4H2, C6H6, HCN, CH3CN, HC3N, and C2H5CN.

  12. The gaseous debris disk of the white dwarf SDSS J1228+1040. HST/COS search for far-ultraviolet signatures

    NASA Astrophysics Data System (ADS)

    Hartmann, S.; Nagel, T.; Rauch, T.; Werner, K.

    2016-09-01

    Context. Gaseous and dust debris disks around white dwarfs (WDs) are formed from tidally disrupted planetary bodies. This offers an opportunity to determine the composition of exoplanetary material by measuring element abundances in the accreting WD's atmosphere. A more direct way to do this is through spectral analysis of the disks themselves. Aims: Currently, the number of chemical elements detected through disk emission-lines is smaller than that of species detected through lines in the WD atmospheres. We assess the far-ultraviolet (FUV) spectrum of one well-studied object (SDSS J122859.93+104032.9) to search for disk signatures at wavelengths < 1050 Å, where the broad absorption lines of the Lyman series effectively block the WD photospheric flux. In addition, we investigate the Ca II infrared triplet (IRT) line profiles to constrain disk geometry and composition. Methods: We performed FUV observations (950-1240 Å) with the Hubble Space Telescope/Cosmic Origins Spectrograph and used archival optical spectra. We compared them with non-local thermodynamic equilibrium model spectra. Results: No disk emission-lines were detected in the FUV spectrum, indicating that the disk effective temperature is Teff ≈ 5000 K. The long-time variability of the Ca II IRT was reproduced with a precessing disk model of bulk Earth-like composition, having a surface mass density of 0.3 g cm-2 and an extension from 55 to 90 WD radii. The disk has a spiral shape that precesses with a period of approximately 37 years, confirming previous results. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26666.

  13. Daytime O/N2 Retrieval Algorithm for the Ionospheric Connection Explorer (ICON)

    NASA Astrophysics Data System (ADS)

    Stephan, Andrew W.; Meier, R. R.; England, Scott L.; Mende, Stephen B.; Frey, Harald U.; Immel, Thomas J.

    2018-02-01

    The NASA Ionospheric Connection Explorer Far-Ultraviolet spectrometer, ICON FUV, will measure altitude profiles of the daytime far-ultraviolet (FUV) OI 135.6 nm and N2 Lyman-Birge-Hopfield (LBH) band emissions that are used to determine thermospheric density profiles and state parameters related to thermospheric composition; specifically the thermospheric column O/N2 ratio (symbolized as ΣO/N2). This paper describes the algorithm concept that has been adapted and updated from one previously applied with success to limb data from the Global Ultraviolet Imager (GUVI) on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. We also describe the requirements that are imposed on the ICON FUV to measure ΣO/N2 over any 500-km sample in daytime with a precision of better than 8.7%. We present results from orbit-simulation testing that demonstrates that the ICON FUV and our thermospheric composition retrieval algorithm can meet these requirements and provide the measurements necessary to address ICON science objectives.

  14. The GALEX Catalog of UV Sources in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Thilker, David A.; Bianchi, L.; Simons, R.

    2014-01-01

    The Galaxy Evolution Explorer (GALEX) has performed unprecedented imaging surveys of the Magellanic Clouds (MC) and their surrounding areas including the Magellanic Bridge (MB) in near-UV (NUV, 1771-2831 Å) and far-UV (FUV, 1344-1786 Å) bands at 5″ resolution. Substantially more area was covered in the NUV than FUV, particularly in the bright central regions, because of the GALEX FUV detector failure. The 5σ depth of the NUV imaging varies between 20.8 and 22.7 (ABmag). Such imaging provides the first sensitive view of the entire content of hot stars in the Magellanic System, revealing the presence of young populations even in sites with extremely low star-formation rate surface density like the MB, owing to high sensitivity of the UV data to hot stars and the dark sky at these wavelengths. Crowding limits the quality of source detection and photometry from the standard mission pipeline processing. Therefore, we performed custom PSF-fitting photometry of the GALEX data in the MC survey region (<15° from the LMC, <10° from the SMC). After merging multiple detections of sources in overlapping images, the resulting catalog we have produced contains many million unique NUV point sources. This poster provides a first look at the GALEX MC survey and highlights some of the science investigations that the catalog and imaging dataset will make possible.

  15. Ultrahigh resolution photographic films for X-ray/EUV/FUV astronomy

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Watts, Richard; Tarrio, Charles

    1993-01-01

    The quest for ultrahigh resolution full-disk images of the sun at soft X-ray/EUV/FUV wavelengths has increased the demand for photographic films with broad spectral sensitivity, high spatial resolution, and wide dynamic range. These requirements were made more stringent by the recent development of multilayer telescopes and coronagraphs capable of operating at normal incidence at soft X-ray/EUV wavelengths. Photographic films are the only detectors now available with the information storage capacity and dynamic range such as is required for recording images of the solar disk and corona simultaneously with sub arc second spatial resolution. During the Stanford/MSFC/LLNL Rocket X-Ray Spectroheliograph and Multi-Spectral Solar Telescope Array (MSSTA) programs, we utilized photographic films to obtain high resolution full-disk images of the sun at selected soft X-ray/EUV/FUV wavelengths. In order to calibrate our instrumentation for quantitative analysis of our solar data and to select the best emulsions and processing conditions for the MSSTA reflight, we recently tested several photographic films. These studies were carried out at the NIST SURF II synchrotron and the Stanford Synchrotron Radiation Laboratory. In this paper, we provide the results of those investigations.

  16. COS NUV Target Acquisition Monitor

    NASA Astrophysics Data System (ADS)

    Penton, Steven V.

    2017-08-01

    Visits PA, BA, & BB of this program verify all ACQ/IMAGE mode co-alignments by bootstrapping from PSA+MIRRORA. The assumption, which should be tested at some point, is that the PSA+MIRRORA WCA-to-PSA FSW offsets are still as accurate in defining the center of the PSA relative to the WCA as there were in SMOV. The details of the observations are given is the observing section.Visit PB was an on-hold contingency visit in case, for whatever reason, visit 2A of 14452, did not execute as planned in the fall of 2017. This program was replaced with a better program for aligning the FGGs so we needed to activate this visit to obtain the PSA/MIRRORA to PSA/MIRRORB ACQ/IMAGE alignment. Visit BA of this program takes back-to-back PSA/MIRRORB & BOA/MIRRORA ACQ/Images and images (with flashes) and also takes G230L, G285M as well as FUV LP3 G130M and G140L spectra to test the WCA-to-PSA offsets.Visit BB of this program takes back-to-back BOA/MIRRORA & BOA/MIRRORB ACQ/Images and images (with flashes) and also takes G225M, G185M, and FUV LP3 G160M spectra to test the WCA-to-PSA offsets. Visit BA of this program bootstraps off VIsit PB to co-align the PSA+MIRRORB ACQ/IMAGE mode to the BOA+MIRRORA. Visit BB of this program follows the style of Visit BA and bootstraps from the BOA+MIRRORA mode to the BOA+MIRRORB TA imaging mode. In all visits, lamp+target images are taken before and after the TA imaging mode that is being co-aligned (the second ACQ/IMAGE of the program.)All visits in this program are single orbit visits. This program is very similar to the NUV portion of the C24 version (14857). This program differs from the Cycle 23 version in that Visit PB (the old Visit 03) has been permanently upgraded from contingency to operational status. NOTE: Beginning with Cycle 25. ALL FUV exposures in this program have been moved to a separate monitoring program. This program will sequentially test the XD accuracy of FUV LP4 spectra. As needed, NUV ACQ/IMAGEs will reset the centering between grating tests.

  17. Rocket and laboratory studies in astronomy

    NASA Technical Reports Server (NTRS)

    Feldman, Paul D.

    1994-01-01

    This report covers the period from September 1, 1993 to August 31, 1994. During the reporting period we launched the Faint Object Telescope to measure the absolute flux of a hot white dwarf star in the spectral range below 1200 A. This experiment was not successful due to a failure of an electronics unit in the onboard TV acquisition system. The source of the failure has been identified and corrected and is described in detail below. The payload was recovered in excellent condition and we are planning to refurbish it for flight during the November 1995 Australia campaign. We have continued our laboratory studies of the ultraviolet performance of charge-coupled-detector (CCD) arrays and plan to include a UV-sensitive CCD in a new payload that was assembled during the current period. The objective of the experiment is the ultraviolet imaging of Jupiter and we are scheduled to launch the payload, 36.115UG, in May-June 1995. We have also begun the design of a high-resolution FUV spectrograph for a future flight of the FOT and have just recently received a high line density grating fabricated by Jobin-Yvon, S.A. (France) for evaluation. Work has continued on the analysis of data from previous rocket experiments.

  18. Deriving Atmospheric Properties and Escape Rates from MAVEN's Imaging UV Spectrograph (IUVS)

    NASA Astrophysics Data System (ADS)

    Schneider, Nicholas M.; IUVS Science Team

    2013-10-01

    MAVEN (Mars Volatile and Atmosphere EvolutioN) is a Mars Scout mission being readied for launch in November 2013. The key hardware and management partners are University of Colorado, Goddard Space Flight Center, University of California at Berkeley, Lockheed Martin, and the Jet Propulsion Laboratory. MAVEN carries a powerful suite of fields and particles instruments and a sophisticated remote sensing instrument, the Imaging UltraViolet Spectrograph (IUVS). This presentation begins by describing IUVS' science goals, instrument design, operational approach and data analysis strategy. IUVS supports the top-level MAVEN science goals: measure the present state of the atmosphere, observe its response to varying solar stimuli, and use the information to estimate loss from Mars' atmosphere over time. The instrument operates at low spectral resolution spanning the FUV and MUV ranges in separate channels, and at high resolution around the hydrogen Lyman alpha line to measure the D/H ratio in the upper atmosphere. MAVEN carries the instrument on an Articulated Payload Platform which orients the instrument for optimal observations during four segments of its 4.5 hr elliptical orbit. During periapse passage, IUVS uses a scan mirror to obtain vertical profiles of emissions from the atmosphere and ionosphere. Around apoapse, the instrument builds up low-resolution images of the atmosphere at multiple wavelengths. In between, the instrument measures emissions from oxygen, hydrogen and deuterium in the corona. IUVS also undertakes day-long stellar occultation campaigns at 2 month intervals, to measure the state of the atmosphere at altitudes below the airglow layer and in situ sampling. All data will be pipeline-processed from line brightnesses to column abundances, local densities and global 3-D maps. The focus of the presentation is development of these automatic processing algorithms and the data products they will provide to the Mars community through the PDS Atmospheres Node. The combined results from all instruments on ion and neutral escape will bear on the central question of the history of Mars' atmosphere and climate history. This work has been supported by NASA's MAVEN mission.

  19. Performance of the Far Ultraviolet Spectroscopic Explorer mirror assemblies

    NASA Astrophysics Data System (ADS)

    Ohl, Raymond G.; Barkhouser, Robert H.; Conard, Steven J.; Friedman, Scott D.; Hampton, Jeffrey; Moos, H. Warren; Nikulla, Paul; Oliveira, Cristina M.; Saha, Timo T.

    2000-12-01

    The Far Ultraviolet Spectroscopic Explorer is a NASA astrophysics satellite which produces high-resolution spectra in the far-ultraviolet (90.5 - 118.7 nm bandpass) using a high effective area and low background detectors. The observatory was launched on its three-year mission from Cape Canaveral Air Station on 24 June 1999. The instrument contains four co- aligned, normal incidence, off-axis parabolic mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographically ruled diffraction gratings and delay line microchannel plate detectors. The telescope mirrors have a 352 X 387 mm aperture and 2245 mm focal length and are attached to actuator assemblies, which provide on-orbit, tip, tilt, and focus control. Two mirrors are coated with silicon carbide (SiC) and two are coated with lithium fluoride over aluminum (Al:LiF). We describe mirror assembly in-flight optical and mechanical performance. On-orbit measurements of the far-ultraviolet point spread function associated with each mirror are compared to expectations based on pre-flight laboratory measurements and modeling using the Optical Surface Analysis Code and surface metrology data. On-orbit imaging data indicate that the mirrors meet their instrument-level requirement of 50% and 95% slit transmission for the high- and mid-resolution spectrograph entrance slits, respectively. The degradation of mirror reflectivity during satellite integration and test is also discussed. The FUV reflectivity of the SiC- and Al:LiF-coated mirrors decreased about 6% and 3%, respectively, between coating and launch. Each mirror is equipped with three actuators, which consist of a stepper motor driving a ball screw via a two-stage planetary gear train. We also discuss the mechanical performance of the mirror assemblies, including actuator performance and thermal effects.

  20. Synchronized observations of bright points from the solar photosphere to the corona

    NASA Astrophysics Data System (ADS)

    Tavabi, Ehsan

    2018-05-01

    One of the most important features in the solar atmosphere is the magnetic network and its relationship to the transition region (TR) and coronal brightness. It is important to understand how energy is transported into the corona and how it travels along the magnetic field lines between the deep photosphere and chromosphere through the TR and corona. An excellent proxy for transportation is the Interface Region Imaging Spectrograph (IRIS) raster scans and imaging observations in near-ultraviolet (NUV) and far-ultraviolet (FUV) emission channels, which have high time, spectral and spatial resolutions. In this study, we focus on the quiet Sun as observed with IRIS. The data with a high signal-to-noise ratio in the Si IV, C II and Mg II k lines and with strong emission intensities show a high correlation with TR bright network points. The results of the IRIS intensity maps and dopplergrams are compared with those of the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) instruments onboard the Solar Dynamical Observatory (SDO). The average network intensity profiles show a strong correlation with AIA coronal channels. Furthermore, we applied simultaneous observations of the magnetic network from HMI and found a strong relationship between the network bright points in all levels of the solar atmosphere. These features in the network elements exhibited regions of high Doppler velocity and strong magnetic signatures. Plenty of corona bright points emission, accompanied by the magnetic origins in the photosphere, suggest that magnetic field concentrations in the network rosettes could help to couple the inner and outer solar atmosphere.

  1. The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H{sub 2}O Dissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, Kevin; Roueff, Evelyne; Abgrall, Hervé, E-mail: kevin.france@colorado.edu

    The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we havemore » assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope -Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100–1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST -COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490–1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L (Bump) ≈ 7 × 10{sup 29} erg s{sup −1}. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ {sub o} = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H{sub 2} excited by electron -impact. We show that this Bump makes up between 5%–50% of the total FUV continuum emission in the 1490–1690 Å band and emits roughly 10%–80% of the total fluorescent H{sub 2} luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Ly α photons. We argue that the most likely mechanism is Ly α -driven dissociation of H{sub 2}O in the inner disk, r ≲ 2 au. We demonstrate that non-thermally populated H{sub 2}O fragments can qualitatively account for the observed emission (discrete and continuum) and find that the average Ly α -driven H{sub 2}O dissociation rate is 1.7 × 10{sup 42} water molecules s{sup −1}.« less

  2. Results of the IRIS UV Burst Survey, Part I: Active Regions Tracked Limb to Limb

    NASA Astrophysics Data System (ADS)

    Madsen, C. A.; DeLuca, E.

    2017-12-01

    We present results from the first phase of an effort to thoroughly characterize UV bursts within the Interface Region Imaging Spectrograph (IRIS) data catalogue. The observational signatures of these phenomena include dramatically intensified and broadened NUV/FUV emission line profiles with absorption features from cool metallic ions. These properties suggest that UV bursts originate from plasma at transition region temperatures (≥ 80,000 K) which is deeply embedded in the cool lower chromosphere ( 5,000 K). Rigorously characterizing the energetic and dynamical properties of UV bursts is crucial since they have considerable potential to heat active region chromospheres and could provide critical constraints for models of magnetic reconnection in these regions. The survey first focuses on IRIS observations of active regions tracked from limb to limb. All observations consist of large field-of-view raster scans of 320 or 400 steps each, which allow for widespread detection of many burst profiles at the expense of having limited short-term time evolution information. We detect bursts efficiently by applying a semi-automated single-Gaussian fitting technique to Si IV 1393.8 Å emission profiles that isolates the distinct burst population in a 4-D parameter space. The robust sample of NUV/FUV burst spectra allows for precise constraints of properties critical for modeling reconnection in the chromosphere, including outflow kinetic energy, density estimates from intensity ratios of Si IV 1402.8 Å and O IV 1401.2 Å emission lines, and coincident measures of emission in other wavelengths. We also track burst properties throughout the lifetimes of their host active regions, noting changes in detection rate and preferential location as the active regions evolve. Finally, the tracked active region observations provide a unique opportunity to investigate line-of-sight effects on observed UV burst spectral properties, particularly the strength of Ni II 1393.3 Å absorption, a feature that may be important in identifying the upward conduction of burst thermal energy through the chromosphere.

  3. First Retrieval of Thermospheric Carbon Monoxide From Mars Dayglow Observations

    NASA Astrophysics Data System (ADS)

    Evans, J. Scott; Stevens, Michael H.; Jain, Sonal; Deighan, Justin; Lumpe, Jerry; Schneider, Nicholas M.; Stewart, A. Ian; Crismani, Matteo; Stiepen, Arnaud; Chaffin, Michael S.; Mayyasi-Matta, Majd A.; McClintock, William E.; Holsclaw, Greg; Lefevre, Franck; Lo, Daniel; Clarke, John T.; Montmessin, Franck; Bougher, Stephen W.; Bell, Jared M.; Eparvier, Frank; Thiemann, Ed; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Jakosky, Bruce

    2017-10-01

    As a minor species in the Martian thermosphere, Carbon Monoxide (CO) is a tracer that can be used to constrain changing circulation patterns between the lower thermosphere and upper mesosphere of Mars. By linking CO density distributions to dynamical wind patterns, the structure and variability of the atmosphere will be better understood. Direct measurements of CO can therefore provide insight into the magnitude and pattern of winds and provide a metric for studying the response of the atmosphere to solar forcing. In addition, CO measurements can help solve outstanding photochemical modeling problems in explaining the abundance of CO at Mars. CO is directly observable by electron impact excitation and solar resonance fluorescence emissions in the far-ultraviolet (FUV). The retrieval of CO from solar fluorescence was first proposed over 40 years ago, but has been elusive at Mars due to significant spectral blending. However, by simulating the spectral shape of each contributing emission feature, electron impact excitation and solar fluorescence brightnesses can be extracted from the composite spectrum using a multiple linear regression approach. We use CO Fourth Positive Group (4PG) molecular band emission observed on the limb (130 - 200 km) by the Imaging Ultraviolet Spectrograph (IUVS) on NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft over both northern and southern hemispheres from October 2014 to December 2016. We present the first direct retrieval of CO densities by FUV remote sensing in the upper atmosphere of Mars. Atmospheric composition is inferred using the terrestrial Atmospheric Ultraviolet Radiance Integrated Code adapted to the Martian atmosphere. We investigate the sensitivity of CO density retrievals to variability in solar irradiance, solar longitude, and local time. We compare our results to predictions from the Mars Global Ionosphere-Thermosphere Model as well as in situ measurements by the Neutral Gas and Ion Mass Spectrometer on MAVEN and quantify any differences.

  4. MAVEN/IUVS Apoapse Observations of the Martian FUV Dayglow

    NASA Astrophysics Data System (ADS)

    Correira, J.; Evans, J. S.; Stevens, M. H.; Schneider, N. M.; Stewart, I. F.; Deighan, J.; Jain, S.; Chaffin, M.; Crismani, M. M. J.; McClintock, B.; Holsclaw, G.; Lefèvre, F.; Lo, D.; Stiepen, A.; Clarke, J. T.; Mahaffy, P. R.; Bougher, S. W.; Bell, J. M.; Jakosky, B. M.

    2015-12-01

    We present FUV data (115 - 190 nm) from MAVEN/IUVS apoapse mode observations for the Oct 2014 through Feb 2015 time period. During apoapse mode the highly elliptical orbit of MAVEN allows for up to four apoapse disk images by IUVS per day. Maps of FUV feature intensities and intensity ratios as well as derived CO/CO2 and O/CO2 column density ratios will be shown. Column density ratios are derived from lookup tables created using the Atmospheric Ultraviolet Radiance Integrated Code [Strickland et al., 1999] in conjunction with observed intensity ratios. Column density ratios provide a measure of composition changes in the Martian atmosphere. Due to MAVEN's orbital geometry the observations from this time period focus on the southern hemisphere. The broad view provided by apoapse observations allows for the investigation of spatial and temporal variations (both long term and local time) of the atmospheric composition (via the column density ratios). IUVS FUV intensities and derived column density ratios will also be compared with model results from Mars Global Ionosphere/Thermosphere Model (MGITM) and the Mars Climate Database (MCD).

  5. HST FUV/NUV Photometry of the Putative Binary Companion to the SN 1993J Progenitor

    NASA Astrophysics Data System (ADS)

    Miles, Nathan; Fox, Ori; Azalee Bostroem, K.; Zheng, WeiKang; Graham, Melissa; Van Dyk, Schuyler D.; Filippenko, Alexei V.; Matheson, Thomas; Dwarkadas, Vikram; Fransson, Claes; Smith, Nathan; Brink, Thomas

    2018-06-01

    A previous analysis of HST/COS spectra from 2012 revealed an FUV excess consistent with the presence of the hypothetical B-star companion to the SN 1993J progenitor. The spectrum, however, had low signal-to-noise and was blended with several other nearby stars within the 2.5 arcsec COS aperture. Since that time, the SN has sufficiently faded allowing for more accurate photometry to be performed. Here we present follow-up HST FUV/NUV imaging using the F140LP filter on ACS/SBC and the F218W, F275W, and F336W filters on WFC3/UVIS. This photometry isolates the UV flux from only the putative companion. We will discuss whether this new evidence removes all ambiguity about the nature of the companion once and for all.

  6. Planetary nebulae with UVIT: Far ultra-violet halo around the Bow Tie nebula (NGC 40)

    NASA Astrophysics Data System (ADS)

    Kameswara Rao, N.; Sutaria, F.; Murthy, J.; Krishna, S.; Mohan, R.; Ray, A.

    2018-01-01

    Context. NGC 40 is a planetary nebula with diffuse X-ray emission, suggesting an interaction of the high-speed wind from WC8 central star (CS) with the nebula. It shows strong C IV 1550 Å emission that cannot be explained by thermal processes alone. We present here the first map of this nebula in C IV emission using broad band filters on the Ultra-Violet Imaging Telescope (UVIT). Aim. We aim to map the hot C IV-emitting gas and its correspondence with soft X-ray (0.3-8 keV) emitting regions in order to study the shock interaction between the nebula and the ISM. We also aim to illustrate the potential of UVIT for nebular studies. Methods: We carry out a morphological study of images of the nebula obtained at an angular resolution of about 1.3″ in four UVIT filter bands that include C IV 1550 Å and [C II] 2326 Å lines as well as UV continuum. We also make comparisons with X-ray, optical, and IR images from the literature. Results: The [C II] 2326 Å images show the core of the nebula with two lobes on either side of CS similar to [N II]. The C IV emission in the core shows similar morphology and extent to that of diffuse X-ray emission concentrated in nebular condensations. A surprising UVIT discovery is the presence of a large faint far UV (FUV) halo in an FUV filter with λeff of 1608 Å. The UV halo is not present in any other UV filter. The FUV halo is most likely due to UV fluorescence emission from the Lyman bands of H2 molecules. Unlike the optical and IR halo, the FUV halo trails predominantly towards the south-east side of the nebular core, opposite to the CS's proper motion direction. Conclusions: Morphological similarity of C IV 1550 Å and X-ray emission in the core suggests that it results mostly from the interaction of strong CS wind with the nebula. The FUV halo in NGC 40 highlights the extensive existence of H2 molecules in the regions even beyond the optical and IR halos. Thus UV studies are important to estimate the amount of H2, which is probably the most dominant molecule and significant for mass-loss studies. Based on data obtained with the Ultra-Violet Imaging Telescope (UVIT) on the ASTROSAT satellite.

  7. High-Resolution Large Field-of-View FUV Compact Camera

    NASA Technical Reports Server (NTRS)

    Spann, James F.

    2006-01-01

    The need for a high resolution camera with a large field of view and capable to image dim emissions in the far-ultraviolet is driven by the widely varying intensities of FUV emissions and spatial/temporal scales of phenomena of interest in the Earth% ionosphere. In this paper, the concept of a camera is presented that is designed to achieve these goals in a lightweight package with sufficient visible light rejection to be useful for dayside and nightside emissions. The camera employs the concept of self-filtering to achieve good spectral resolution tuned to specific wavelengths. The large field of view is sufficient to image the Earth's disk at Geosynchronous altitudes and capable of a spatial resolution of >20 km. The optics and filters are emphasized.

  8. Magnetic reconnection during steady magnetospheric convection and other magnetospheric modes

    NASA Astrophysics Data System (ADS)

    Hubert, Benoit; Gérard, Jean-Claude; Milan, Steve E.; Cowley, Stanley W. H.

    2017-03-01

    We use remote sensing of the proton aurora with the IMAGE-FUV SI12 (Imager for Magnetopause to Aurora Global Exploration-Far Ultraviolet-Spectrographic Imaging at 121.8 nm) instrument and radar measurements of the ionospheric convection from the SuperDARN (Super Dual Aurora Radar Network) facility to estimate the open magnetic flux in the Earth's magnetosphere and the reconnection rates at the dayside magnetopause and in the magnetotail during intervals of steady magnetospheric convection (SMC). We find that SMC intervals occur with relatively high open magnetic flux (average ˜ 0.745 GWb, standard deviation ˜ 0.16 GWb), which is often found to be nearly steady, when the magnetic flux opening and closure rates approximately balance around 55 kV on average, with a standard deviation of 21 kV. We find that the residence timescale of open magnetic flux, defined as the ratio between the open magnetospheric flux and the flux closure rate, is roughly 4 h during SMCs. Interestingly, this number is approximately what can be deduced from the discussion of the length of the tail published by Dungey (1965), assuming a solar wind speed of ˜ 450 km s-1. We also infer an enhanced convection velocity in the tail, driving open magnetic flux to the nightside reconnection site. We compare our results with previously published studies in order to identify different magnetospheric modes. These are ordered by increasing open magnetic flux and reconnection rate as quiet conditions, SMCs, substorms (with an important overlap between these last two) and sawtooth intervals.

  9. The ultraviolet view of the Magellanic Clouds from GALEX: A first look at the LMC source catalog

    NASA Astrophysics Data System (ADS)

    Simons, Raymond; Thilker, David; Bianchi, Luciana; Wyder, Ted

    2014-03-01

    The Galaxy Evolution Exporer (GALEX) has performed unprecedented imaging surveys of the Magellanic Clouds (MC) and their surrounding areas including the Magellanic Bridge (MB) in near-UV (NUV, 1771-2831 Å) and far-UV (FUV, 1344-1786 Å) bands at 5″ resolution. Substantially more area was covered in the NUV than FUV, particularly in the bright central regions, because of the GALEX FUV detector failure. The 5σ depth of the NUV imaging varies between 20.8 and 22.7 (ABmag). Such imaging provides the first sensitive view of the entire content of hot stars in the Magellanic System, revealing the presence of young populations even in sites with extremely low star-formation rate surface density like the MB, owing to high sensitivity of the UV data to hot stars and the dark sky at these wavelengths. The density of UV sources is quite high in many areas of the LMC and SMC. Crowding limits the quality of source detection and photometry from the standard mission pipeline processing. We performed custom-photometry of the GALEX data in the MC survey region (<15° from the LMC, <10° from the SMC). After merging multiple detections of sources in overlapping images, the resulting catalog we have produced for the LMC contains nearly six million unique NUV point sources within 15° and is briefly presented herein. This paper provides a first look at the GALEX MC survey and highlights some of the science investigations that the entire catalog and imaging dataset will make possible.

  10. Measurement of precipitation induced FUV emission and Geocoronal Lyman Alpha from the IMI mission

    NASA Technical Reports Server (NTRS)

    Mende, Stephen B.; Fuselier, S. A.; Rairden, R. L.

    1995-01-01

    This final report describes the activities of the Lockheed Martin Palo Alto Research Laboratory in studying the measurement of ion and electron precipitation induced Far Ultra-Violet (FUV) emissions and Geocoronal Lyman Alpha for the NASA Inner Magnetospheric Imager (IMI) mission. this study examined promising techniques that may allow combining several FUV instruments that would separately measure proton aurora, electron aurora, and geocoronal Lyman alpha into a single instrument operated on a spinning spacecraft. The study consisted of two parts. First, the geocoronal Lyman alpha, proton aurora, and electron aurora emissions were modeled to determine instrument requirements. Second, several promising techniques were investigated to determine if they were suitable for use in an IMI-type mission. Among the techniques investigated were the Hydrogen gas cell for eliminating cold geocoronal Lyman alpha emissions, and a coded aperture spectrometer with sufficient resolution to separate Doppler shifted Lyman alpha components.

  11. The Amazing COS FUV (1320 - 1460 A) Spectrum of (lambda) Vel (K4Ib-II)

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    2010-01-01

    The FUV spectrum (1320-1460 A) of the K4 lb-11 supergiant (lambda) Vel was observed with the Cosmic Origins Spectrograph (COS) on HST, as part of the Ayres and Redfield Cycle 17 SNAP program "SNAPing Coronal Iron". This spectrum covers a region not previously recorded in (lambda) Vel at high resolution and, in a mere 20 minutes of exposure, reveals a treasure trove of information. It shows a wide variety of strong emission lines, superposed on a bright continuum, with contributions from both atomic and molecular species. Multiple absorptions, including numerous Ni II and Fe II lines, are visible over this continuum, which is likely generated in the chromosphere of the star. Evidence of the stellar wind is seen in the P Cygni profiles of the CII lines near 1335 A and the results of fluorescence processes are visible throughout the region. The spectrum has remarkable similarities to that of (alpha) Boo (K1.5 III), but significant differences as well, including substantial FUV continuum emission, reminiscent of the M2 Iab supergiant (alpha) Ori, but minus the CO fundamental absorption bands seen in the spectrum of the latter star. However, fluoresced CO emission is present, as in the K-giant stars (alpha) Boo and (alpha) Tau (K5 III). The presence of hot plasma in the atmosphere of the star, indicated by previous GHRS observations of Si III] and C III] lines near 1900 A and FUSE observations of O VI 1032 A, is further confirmed by the detection in this COS spectrum of the Si IV UV 1 lines near 1400 A, though both lines are contaminated by overlying fluorescent H2 emission. We present the details of this spectrum, in comparison with stars of similar temperature or luminosity and discuss the implications for the structure of, and the radiative processes active in, the outer atmospheres of these stars.

  12. The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H2O Dissociation

    NASA Astrophysics Data System (ADS)

    France, Kevin; Roueff, Evelyne; Abgrall, Hervé

    2017-08-01

    The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we have assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope-Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100-1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST-COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490-1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L(Bump) ≈ 7 × 1029 erg s-1. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ o = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H2 excited by electron -impact. We show that this Bump makes up between 5%-50% of the total FUV continuum emission in the 1490-1690 Å band and emits roughly 10%-80% of the total fluorescent H2 luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Lyα photons. We argue that the most likely mechanism is Lyα-driven dissociation of H2O in the inner disk, r ≲ 2 au. We demonstrate that non-thermally populated H2O fragments can qualitatively account for the observed emission (discrete and continuum) and find that the average Lyα-driven H2O dissociation rate is 1.7 × 1042 water molecules s-1. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

  13. JUDE: An Ultraviolet Imaging Telescope pipeline

    NASA Astrophysics Data System (ADS)

    Murthy, J.; Rahna, P. T.; Sutaria, F.; Safonova, M.; Gudennavar, S. B.; Bubbly, S. G.

    2017-07-01

    The Ultraviolet Imaging Telescope (UVIT) was launched as part of the multi-wavelength Indian AstroSat mission on 28 September, 2015 into a low Earth orbit. A 6-month performance verification (PV) phase ended in March 2016, and the instrument is now in the general observing phase. UVIT operates in three channels: visible, near-ultraviolet (NUV) and far-ultraviolet (FUV), each with a choice of broad and narrow band filters, and has NUV and FUV gratings for low-resolution spectroscopy. We have written a software package (JUDE) to convert the Level 1 data from UVIT into scientifically useful photon lists and images. The routines are written in the GNU Data Language (GDL) and are compatible with the IDL software package. We use these programs in our own scientific work, and will continue to update the programs as we gain better understanding of the UVIT instrument and its performance. We have released JUDE under an Apache License.

  14. FIREBall, CHaS, and the diffuse universe

    NASA Astrophysics Data System (ADS)

    Hamden, Erika Tobiason

    The diffuse universe, consisting of baryons that have not yet collapsed into structures such as stars, galaxies, etc., has not been well studied. While the intergalactic and circumgalactic mediums (IGM & CGM) may contain 30-40% of the baryons in the universe, this low density gas is difficult to observe. Yet it is likely a key driver of the evolution of galaxies and star formation through cosmic time. The IGM provides a reservoir of gas that can be used for star formation, if it is able to accrete onto a galaxy. The CGM bridges the IGM and the galaxy itself, as a region of both inflows from the IGM and outflows from galactic star formation and feedback. The diffuse interstellar medium (ISM) gas and dust in the galaxy itself may also be affected by the CGM of the galaxy. Careful observations of the ISM of our own Galaxy may provide evidence of interaction with the CGM. These three regions of low density, the IGM, CGM, and ISM, are arbitrary divisions of a continuous flow of low density material into and out of galaxies. My thesis focuses on observations of this low density material using existing telescopes as well as on the development of technology and instruments that will increase the sensitivity of future missions. I used data from the Galaxy Evolution Explorer (GALEX) to create an all sky map of the diffuse Galactic far ultraviolet (FUV) background, probing the ISM of our own galaxy and comparing to other Galactic all sky maps. The FUV background is primarily due to dust scattered starlight from bright stars in the Galactic plane, and the changing intensity across the sky can be used to characterize dust scattering asymmetry and albedo. We measure a consistent low level non-scattered isotropic component to the diffuse FUV, which may be due in small part to an extragalactic component. There are also several regions of unusually high FUV intensity given other Galactic quantities. Such regions may be the location of interactions between Galactic super-bubbles and the CGM. Other ways of probing the CGM including direct detection via emission lines. I built a proto-type of the Circumgalactic Halpha Spectrograph (CHalphaS), a wide-field, low-cost, narrow-band integral field unit (IFU) that is designed to observe Halpha emission from the CGM of nearby, low-z galaxies. This proto-type has had two recent science runs, with preliminary data on several nearby galaxies. Additional probes of the CGM are emission lines in the rest ultra-violet. These include OVI, Lyalpha, CIV, SiIII, CIII, CII, FeII, and MgII. Such lines are accessible for low redshift galaxies in the space UV, historically a difficult wavelength range in which to work due in part to low efficiency of the available detectors. I have worked with NASA's Jet Propulsion Laboratory to develop advanced anti-reflection (AR) coatings for use on thinned, delta-doped charge coupled device (CCD) detectors. These detectors have achieved world record quantum efficiency (QE) at UV wavelengths (>50% between 130 nm and 300nm), with the potential for even greater QE with a more complex coating. One of these AR coated detectors will be used on the Faint Intergalactic Redshifted Emission Balloon (FIREBall-2), a balloon-born UV spectrograph designed to observe the CGM at 205 nm via redshifted Lyalpha (at z=0.7), CIV (at z=0.3), and OVI (at z=1.0). FIREBall-2 will launch in the fall of 2015.

  15. FUV Spectral Signatures of Molecules and the Evolution of the Gaseous Coma of Comet 67P/Churyumov–Gerasimenko

    NASA Astrophysics Data System (ADS)

    Feldman, Paul D.; A’Hearn, Michael F.; Bertaux, Jean-Loup; Feaga, Lori M.; Keeney, Brian A.; Knight, Matthew M.; Noonan, John; Parker, Joel Wm.; Schindhelm, Eric; Steffl, Andrew J.; Stern, S. Alan; Vervack, Ronald J.; Weaver, Harold A.

    2018-01-01

    The Alice far-ultraviolet imaging spectrograph onboard Rosetta observed emissions from atomic and molecular species from within the coma of comet 67P/Churyumov–Gerasimenko during the entire escort phase of the mission from 2014 August to 2016 September. The initial observations showed that emissions of atomic hydrogen and oxygen close to the surface were produced by energetic electron impact dissociation of H2O. Following delivery of the lander, Philae, on 2014 November 12, the trajectory of Rosetta shifted to near-terminator orbits that allowed for these emissions to be observed against the shadowed nucleus that, together with the compositional heterogeneity, enabled us to identify unique spectral signatures of dissociative electron impact excitation of H2O, CO2, and O2. CO emissions were found to be due to both electron and photoexcitation processes. Thus, we are able, from far-ultraviolet spectroscopy, to qualitatively study the evolution of the primary molecular constituents of the gaseous coma from start to finish of the escort phase. Our results show asymmetric outgassing of H2O and CO2 about perihelion, H2O dominant before and CO2 dominant after, consistent with the results from both the in situ and other remote sensing instruments on Rosetta.

  16. Filters for the International Solar Terrestrial Physics (ISTP) mission far ultraviolet imager

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Kim, Jongmin; Spann, James F.; Torr, Marsha R.

    1993-01-01

    The far ultraviolet (FUV) imager for the International Solar Terrestrial Physics (ISTP) mission is designed to image four features of the aurora: O I lines at 130.4 nm and 135.6 nm and the N2 Lyman-Birge-Hopfield (LBH) bands between 140 nm - 160 nm (LBH long) and 160 nm - 180 nm (LBH long). In this paper we report the design and fabrication of narrow-band and broadband filters for the ISTP FUV imager. Narrow-band filters designed and fabricated for the O I lines have a bandwidth of less than 5 nm and a peak transmittance of 23.9 percent and 38.3 percent at 130.4 nm and 135.6 nm, respectively. Broadband filters designed and fabricated for LBH bands have the transmittance close to 60 percent. Blocking of out-of-band wavelengths for all filters is better than 5x10(exp -3) percent with the transmittance at 121.6 nm of less than 10(exp -6) percent.

  17. Near-UV Sources in the Hubble Ultra Deep Field: The Catalog

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.; Voyrer, Elysse; de Mello, Duilia F.; Siana, Brian; Quirk, Cori; Teplitz, Harry I.

    2009-01-01

    The catalog from the first high resolution U-band image of the Hubble Ultra Deep Field, taken with Hubble s Wide Field Planetary Camera 2 through the F300W filter, is presented. We detect 96 U-band objects and compare and combine this catalog with a Great Observatories Origins Deep Survey (GOODS) B-selected catalog that provides B, V, i, and z photometry, spectral types, and photometric redshifts. We have also obtained Far-Ultraviolet (FUV, 1614 Angstroms) data with Hubble s Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) and with Galaxy Evolution Explorer (GALEX). We detected 31 sources with ACS/SBC, 28 with GALEX/FUV, and 45 with GALEX/NUV. The methods of observations, image processing, object identification, catalog preparation, and catalog matching are presented.

  18. VizieR Online Data Catalog: Double-peaked narrow lines in AGN. II. z<0.1 (Nevin+, 2016)

    NASA Astrophysics Data System (ADS)

    Nevin, R.; Comerford, J.; Muller-Sanchez, F.; Barrows, R.; Cooper, M.

    2017-02-01

    To determine the nature of 71 Type 2 AGNs with double-peaked [OIII] emission lines in SDSS that are at z<0.1 and further characterize their properties, we observe them using two complementary follow-up methods: optical long-slit spectroscopy and Jansky Very Large Array (VLA) radio observations. We use various spectrographs with similar pixel scales (Lick Kast Spectrograph; Palomar Double Spectrograph; MMT Blue Channel Spectrograph; APO Dual Imaging Spectrograph and Keck DEep Imaging Multi-Object Spectrograph. We use a 1200 lines/mm grating for all spectrographs; see table 1. In future work, we will combine our long-slit observations with the VLA data for the full sample of 71 galaxies (O. Muller-Sanchez+ 2016, in preparation). (4 data files).

  19. Far ultraviolet wide field imaging and photometry - Spartan-202 Mark II Far Ultraviolet Camera

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Heckathorn, Harry M.; Opal, Chet B.; Witt, Adolf N.; Henize, Karl G.

    1988-01-01

    The U.S. Naval Research Laboratory' Mark II Far Ultraviolet Camera, which is expected to be a primary scientific instrument aboard the Spartan-202 Space Shuttle mission, is described. This camera is intended to obtain FUV wide-field imagery of stars and extended celestial objects, including diffuse nebulae and nearby galaxies. The observations will support the HST by providing FUV photometry of calibration objects. The Mark II camera is an electrographic Schmidt camera with an aperture of 15 cm, a focal length of 30.5 cm, and sensitivity in the 1230-1600 A wavelength range.

  20. Charge coupled devices vs. microchannel plates in the extreme and far ultraviolet - A comparison based on the latest laboratory measurements

    NASA Technical Reports Server (NTRS)

    Vallerga, J.; Lampton, M.

    1988-01-01

    While microchannel plates (MCPs) have been established as imaging photon counters in the EUV and FUV for some years, CCDs are associated with low light level sensing at visible and near-IR wavelengths. Attention is presently given to recent proposals for CCDs' use as EUV and FUV detectors with quantum efficiencies sometimes exceeding those of MCPs; quantum resolution, format size, dynamic range, and long-term stability are also used as bases of comparison, for the cases of both space-based astronomical and spectroscopic applications.

  1. THE BURSTY STAR FORMATION HISTORIES OF LOW-MASS GALAXIES AT 0.4 < z < 1 REVEALED BY STAR FORMATION RATES MEASURED FROM H β AND FUV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yicheng; Faber, S. M.; Koo, David C.

    2016-12-10

    We investigate the burstiness of star formation histories (SFHs) of galaxies at 0.4 <  z  < 1 by using the ratio of star formation rates (SFRs) measured from H β and FUV (1500 Å) (H β -to-FUV ratio). Our sample contains 164 galaxies down to stellar mass ( M {sub *}) of 10{sup 8.5} M {sub ⊙} in the CANDELS GOODS-N region, where Team Keck Redshift Survey Keck/DEIMOS spectroscopy and Hubble Space Telescope /WFC3 F275W images from CANDELS and Hubble Deep UV Legacy Survey are available. When the ratio of H β - and FUV-derived SFRs is measured, dust extinction correction ismore » negligible (except for very dusty galaxies) with the Calzetti attenuation curve. The H β -to-FUV ratio of our sample increases with M {sub *} and SFR. The median ratio is ∼0.7 at M {sub *} ∼ 10{sup 8.5} M {sub ⊙} (or SFR ∼ 0.5 M {sub ⊙} yr{sup −1}) and increases to ∼1 at M {sub *} ∼ 10{sup 10} M {sub ⊙} (or SFR ∼ 10 M {sub ⊙} yr{sup −1}). At M {sub *} < 10{sup 9.5} M {sub ⊙}, our median H β -to-FUV ratio is lower than that of local galaxies at the same M {sub *}, implying a redshift evolution. Bursty SFH on a timescale of a few tens of megayears on galactic scales provides a plausible explanation for our results, and the importance of the burstiness increases as M {sub *} decreases. Due to sample selection effects, our H β -to-FUV ratio may be an upper limit of the true value of a complete sample, which strengthens our conclusions. Other models, e.g., non-universal initial mass function or stochastic star formation on star cluster scales, are unable to plausibly explain our results.« less

  2. A spectrographic study of the aurora and the relation to solar wind pressure pulses.

    NASA Astrophysics Data System (ADS)

    Stockton-Chalk, A. B.; Lanchester, B. S.; Ivchenko, N.; Lummerzheim, D.; Throp, K.

    SIF (Spectrographic Imaging Facility) is a Southampton University / University College London collaboration. The platform consists of a High Throughput Imaging Echelle Spectrograph, HiTIES, two photometers and a narrow angle auroral imager. The spectrograph has a mosaic filter; each of the three spectral panels are centred over/near important spectral features: Hbeta (486.1nm), N2+(470.9nm), N2+(465.2nm), thus allowing studies of proton and electron aurorae. The platform has been successfully deployed in Svalbard since November 1999. The purpose of the experiment was to take spectrographic measurements to study the relationship between proton and electron precipitation and to understand the nature of the precipitating spectrum of protons, both in energy and angular distributions. We present a study of the aurora observed in relation to solar wind pressure pulses.

  3. RE-VISIT OF HST FUV OBSERVATIONS OF THE HOT-JUPITER SYSTEM HD 209458: NO Si iii DETECTION AND THE NEED FOR COS TRANSIT OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballester, G. E.; Ben-Jaffel, L., E-mail: gilda@lpl.arizona.edu, E-mail: bjaffel@iap.fr

    2015-05-10

    The discovery of O i atoms and C ii ions in the upper atmosphere of HD 209458b, made with the Hubble Space Telescope Imaging Spectrograph (STIS) using the G140L grating, showed that these heavy species fill an area comparable to the planet’s Roche lobe. The derived ∼10% transit absorption depths require super-thermal processes and/or supersolar abundances. From subsequent Cosmic Origins Spectrograph (COS) observations, C ii absorption was reported with tentative velocity signatures, and absorption by Si iii ions was also claimed in disagreement with a negative STIS G140L detection. Here, we revisit the COS data set showing a severe limitationmore » in the published results from having contrasted the in-transit spectrum against a stellar spectrum averaged from separate observations, at planetary phases 0.27, 0.72, and 0.49. We find variable stellar Si iii and C ii emissions that were significantly depressed not only during transit but also at phase 0.27 compared to phases 0.72 and 0.49. Their respective off-transit 7.5% and 3.1% flux variations are large compared to their reported 8.2 ± 1.4% and 7.8 ± 1.3% transit absorptions. Significant variations also appear in the stellar line shapes, questioning reported velocity signatures. We furthermore present archive STIS G140M transit data consistent with no Si iii absorption, with a negative result of 1.7 ± 18.7 including ∼15% variability. Silicon may still be present at lower ionization states, in parallel with the recent detection of extended magnesium, as Mg i atoms. In this frame, the firm detection of O i and C ii implying solar or supersolar abundances contradicts the recent inference of potential 20–125× subsolar metallicity for HD 209458b.« less

  4. Laboratory Investigations of Titan Haze Formation: Characterization of Gas Phase and Particle Phase Nitrogen

    NASA Astrophysics Data System (ADS)

    Horst, Sarah; Yoon, Heidi; Li, Rui; deGouw, Joost; Tolbert, Margaret

    2014-11-01

    Prior to the arrival of the Cassini-Huygens spacecraft, aerosol production in Titan’s atmosphere was believed to begin in the stratosphere where chemical processes are predominantly initiated by far ultraviolet (FUV) radiation. However, the discovery of very heavy ions, coupled with Cassini Ultraviolet Imaging Spectrograph (UVIS) occultation measurements that show haze absorption up to 1000 km altitude (Liang et al., 2007), indicates that haze formation initiates in the thermosphere. The energy environment of the thermosphere is significantly different from the stratosphere; in particular there is a greater flux of extreme ultraviolet (EUV) photons and energetic particles available to initiate chemical reactions, including the destruction of N2, in the upper atmosphere. The discovery of previously unpredicted nitrogen species in measurements of Titan’s atmosphere by the Cassini Ion and Neutral Mass Spectrometer (INMS) indicates that nitrogen participates in the chemistry to a much greater extent than was appreciated before Cassini (Vuitton et al., 2007). Additionally, measurements obtained by the Aerosol Collector Pyrolyzer (ACP) carried by Huygens to Titan’s surface may indicate that Titan’s aerosols contain significant amounts of nitrogen (Israël et al., 2005, 2006). The degree of nitrogen incorporation in the haze particles is important for understanding the diversity of molecules that may be present in Titan’s atmosphere and on its surface. We have conducted a series of Titan atmosphere simulation experiments using either spark discharge (tesla coil) or FUV photons (deuterium lamp) to initiate chemistry in CH4/N2 gas mixtures ranging from 0.01% CH4/99.99% N2 to 10% CH4/90% N2. We obtained in situ measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the particle composition as a function of particle size and a proton-transfer ion-trap mass spectrometer (PIT-MS) to measure the composition of gas phase products. These two techniques allow us to investigate the effect of energy source and initial CH4 concentration on the degree of nitrogen incorporation in both the gas and solid phase products.

  5. Slit Function Measurement of An Imaging Spectrograph Using Fourier Transform Techniques

    NASA Technical Reports Server (NTRS)

    Park, Hongwoo; Swimyard, Bruce; Jakobsen, Peter; Moseley, Harvey; Greenhouse, Matthew

    2004-01-01

    Knowledge of a spectrograph slit function is necessary to interpret the unresolved lines in an observed spectrum. A theoretical slit function can be calculated from the sizes of the entrance slit, the detector aperture when it functions as an exit slit, the dispersion characteristic of the disperser, and the point spread function of the spectrograph. A measured slit function is preferred to the theoretical one for the correct interpretation of the spectral data. In a scanning spectrometer with a single exit slit, the slit function is easily measured. In a fixed grating/or disperser spectrograph, illuminating the entrance slit with a near monochromatic light from a pre-monochrmator or a tunable laser and varying the wavelength of the incident light can measure the slit function. Even though the latter technique had been used successfully for the slit function measurements, it had been very laborious and it would be prohibitive to an imaging spectrograph or a multi-object spectrograph that has a large field of view. We explore an alternative technique that is manageable for the measurements. In the proposed technique, the imaging spectrograph is used as a detector of a Fourier transform spectrometer. This method can be applied not only to an IR spectrograph but also has a potential to a visible/UV spectrograph including a wedge filter spectrograph. This technique will require a blackbody source of known temperature and a bolometer to characterize the interferometer part of the Fourier Transform spectrometer. This pa?er will describe the alternative slit function measurement technique using a Fourier transform spectrometer.

  6. Ultraviolet Spectroscopy of the Surfaces of the Inner Icy Saturnian Satellites

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Hansen, C. J.

    2008-12-01

    The Cassini mission has provided a unique opportunity to make high-resolution, multi-spectral measurements of Saturn's icy moons, to investigate their surface compositions, processes and evolution. Here we present results from the Ultraviolet Imaing Spectrograph (UVIS). This instrument allows for the first measurements of the icy satellites in the extreme ultraviolet (EUV) to far-ultraviolet (FUV) wavelength range. The icy satellites of the Saturn system exhibit a remarkable amount of variability: Dark, battered Phoebe orbiting at a distant 200 RS, black-and-white Iapetus, the wispy streaks of Dione, cratered Rhea and Mimas, bright Tethys and geologically active Enceladus. Phoebe, Iapetus and Hyperion all orbit largely outside Saturn's magnetosphere, while the inner icy satellites Mimas, Enceladus, Dione Tethys and Rhea all orbit within the magnetosphere. Furthermore, the inner icy satellites all orbit within the E-ring - so the extent of exogenic effects on these icy satellites is wide-ranging. We present an overview of UVIS results from Tethys, Dione, Mimas, Enceladus and Rhea, focusing on surface investigations. We expect that the UV signatures of these icy satellites are strongly influenced not only by their water ice composition, but by external effects and magnetospheric environments. We study the FUV reflectance spectra to learn about the surface composition, map out water ice grain size variations, investigate effects of coating by E-ring grains, examine disk-resolved and hemispheric compositional and brightness variations, and investigate the presence of radiation products. This is new work: FUV spectra of surfaces have not been well-studied in the past. Spectra of the inner icy moons have been used to better develop spectral models, to further understand existing lab data of water ice and to help with understanding instrument performance. Analysis is challenged by a lack of laboratory data in this wavelength region, but intriguing results are being found. We find that the FUV albedo is a critical tie- point to understand the composition of these moons -- important absorptions occur in the NUV-visible region. We present disk-integrated hemispherical reflectance spectra, and show that while Tethys and Dione exhibit strong UV leading-trailing differences, Mimas, Enceladus and Rhea do not. In the UV, Mimas is nearly as bright as Enceladus. Tethys is surprisingly dark in the UV. The visible-wavelength leading-trailing hemisphere albedo differences can be attributed to coating by E-ring grains; in the UV, a process appears to darken the trailing hemisphere of Tethys. We also investigate disk-resolved Enceladus spectra to understand spectral differences between the south polar tiger stripe region and elsewhere on the surface.

  7. New insights on the formation and assembly of M83 from deep near-infrared imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Kate L.; Van Zee, Liese; Dale, Daniel A.

    2014-07-10

    We present results from new near-infrared (NIR) imaging from the Spitzer Space Telescope that trace the low surface brightness features of the outer disk and stellar stream in the nearby spiral galaxy, M83. Previous observations have shown that M83 hosts a faint stellar stream to the northwest and a star-forming disk that extends to ∼3 times the optical radius (R{sub 25}). By combining the NIR imaging with archival far-ultraviolet (FUV) and H I imaging, we study the star formation history of the system. The NIR surface brightness profile has a break at ∼5.'8 (equivalent to 8.1 kpc and 0.9 R{submore » 25}) with a shallower slope beyond this radius, which may result from the recent accretion of gas onto the outer disk and subsequent star formation. Additionally, the ratio of FUV to NIR flux increases with increasing radius in several arms throughout the extended star forming disk, indicating an increase in the ratio of the present to past star formation rate with increasing radius. This sort of inside-out disk formation is consistent with observations of gas infall onto the outer disk of M83. Finally, the flux, size, and shape of the stellar stream are measured and the origin of the stream is explored. The stream has a total NIR flux of 11.6 mJy, which implies a stellar mass of 1 × 10{sup 8} M{sub ☉} in an area subtending ∼80°. No FUV emission is detected in the stream at a level greater than the noise, confirming an intermediate-age or old stellar population in the stream.« less

  8. Plasmaspheric Erosion via Plasmasphere Coupling to Ring Current Plasmas: EUV Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Adrian, M. L.; Gallagher, D. L.; Khazanov, G. V.; Chsang, S. W.; Liemohn, M. W.; Perez, J. D.; Green, J. L.; Sandel, B. R.; Mitchell, D. G.; Mende, S. B.; hide

    2002-01-01

    During a geomagnetic storm on 24 May 2000, the IMAGE Extreme Ultraviolet (EUV) camera observed a plasmaspheric density trough in the evening sector at L-values inside the plasmapause. Forward modeling of this feature has indicated that plasmaspheric densities beyond the outer wall of the trough are well below model expectations. This diminished plasma condition suggests the presence of an erosion process due to the interaction of the plasmasphere with ring current plasmas. We present an overview of EUV, energetic neutral atom (ENA), and Far Ultraviolet (FUV) camera observations associated with the plasmaspheric density trough of 24 May 2000, as well as forward modeling evidence of the lie existence of a plasmaspheric erosion process during this period. FUV proton aurora image analysis, convolution of ENA observations, and ring current modeling are then presented in an effort to associate the observed erosion with coupling between the plasmasphere and ring-current plasmas.

  9. UVIT observations of the star-forming ring in NGC 7252: Evidence of possible AGN feedback suppressing central star formation

    NASA Astrophysics Data System (ADS)

    George, K.; Joseph, P.; Mondal, C.; Devaraj, A.; Subramaniam, A.; Stalin, C. S.; Côté, P.; Ghosh, S. K.; Hutchings, J. B.; Mohan, R.; Postma, J.; Sankarasubramanian, K.; Sreekumar, P.; Tandon, S. N.

    2018-05-01

    Context. Some post-merger galaxies are known to undergo a starburst phase that quickly depletes the gas reservoir and turns it into a red-sequence galaxy, though the details are still unclear. Aims: Here we explore the pattern of recent star formation in the central region of the post-merger galaxy NGC 7252 using high-resolution ultraviolet (UV) images from the UVIT on ASTROSAT. Methods: The UVIT images with 1.2 and 1.4 arcsec resolution in the FUV and NUV are used to construct a FUV-NUV colour map of the central region. Results: The FUV-NUV pixel colour map for this canonical post-merger galaxy reveals a blue circumnuclear ring of diameter 10'' (3.2 kpc) with bluer patches located over the ring. Based on a comparison to single stellar population models, we show that the ring is comprised of stellar populations with ages ≲300 Myr, with embedded star-forming clumps of younger age (≲150Myr). Conclusions: The suppressed star formation in the central region, along with the recent finding of a large amount of ionised gas, leads us to speculate that this ring may be connected to past feedback from a central super-massive black hole that has ionised the hydrogen gas in the central 4'' 1.3 kpc.

  10. Artist Concept of MAVEN Imaging Ultraviolet Spectrograph at Work

    NASA Image and Video Library

    2014-11-07

    This artist concept depicts the Imaging Ultraviolet Spectrograph IUVS on NASA MAVEN spacecraft scanning the upper atmosphere of Mars. IUVS uses limb scans to map the chemical makeup and vertical structure across Mars upper atmosphere.

  11. Instruments at the Lowell Observatory Discovery Channel Telescope (DCT)

    NASA Astrophysics Data System (ADS)

    Jacoby, George H.; Bida, Thomas A.; Fischer, Debra; Horch, Elliott; Kutyrev, Alexander; Mace, Gregory N.; Massey, Philip; Roe, Henry G.; Prato, Lisa A.

    2017-01-01

    The Lowell Observatory Discovery Channel Telescope (DCT) has been in full science operation for 2 years (2015 and 2016). Five instruments have been commissioned during that period, and two additional instruments are planned for 2017. These include:+ Large Monolithic Imager (LMI) - a CCD imager (12.6 arcmin FoV)+ DeVeny - a general purpose optical spectrograph (2 arcmin slit length, 10 grating choices)+ NIHTS - a low resolution (R=160) YJHK spectrograph (1.3 arcmin slit)+ DSSI - a two-channel optical speckle imager (5 arcsec FoV)+ IGRINS - a high resolution (45,000) HK spectrograph, on loan from the University of Texas.In the upcoming year, instruments will be delivered from the University of Maryland (RIMAS - a YJHK imager/spectrograph) and from Yale University (EXPRES - a very high resolution stabilized optical echelle for PRV).Each of these instruments will be described, along with their primary science goals.

  12. HST/COS Far-ultraviolet Spectroscopic Analysis of U Geminorum Following a Wide Outburst

    NASA Astrophysics Data System (ADS)

    Godon, Patrick; Shara, Michael M.; Sion, Edward M.; Zurek, David

    2017-12-01

    We used the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) to obtain a series of four far-ultraviolet (FUV; 915-2148 Å) spectroscopic observations of the prototypical dwarf nova U Geminorum during its cooling following a two-week outburst. Our FUV spectral analysis of the data indicates that the white dwarf (WD) cools from a temperature of ˜41,500 K, 15 days after the peak of the outburst, to ˜36,250 K, 56 days after the peak of the outburst, assuming a massive WD (log(g) = 8.8) and a distance of 100.4 ± 3.7 pc. These results are self-consistent with a ˜1.1 M ⊙ WD with a 5000 ± 200 km radius. The spectra show absorption lines of H I, He II, C II III IV, N III IV, O VI, S IV, Si II III IV, Al III, Ar III, and Fe II, but no emission features. We find suprasolar abundances of nitrogen, confirming the anomalous high N/C ratio. The FUV light curve reveals a ±5% modulation with the orbital phase, showing dips near phases 0.25 and ˜0.75, where the spectra exhibit an increase in the depth of some absorption lines and in particular strong absorption lines from Si II, Al III, and Ar III. The phase dependence we observe is consistent with material overflowing the disk rim at the hot spot, reaching a maximum elevation near phase 0.75, falling back at smaller radii near phase 0.5 where it bounces off the disk surface, and again rising above the disk near phase ˜0.25. There is a large scatter in the absorption lines’ velocities, especially for the silicon lines, while the carbon lines seem to match more closely the orbital velocity of the WD. This indicates that many absorption lines are affected by—or form in—the overflowing stream material veiling the WD, making the analysis of the WD spectra more difficult. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  13. Second generation spectrograph for the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Woodgate, B. E.; Boggess, A.; Gull, T. R.; Heap, S. R.; Krueger, V. L.; Maran, S. P.; Melcher, R. W.; Rebar, F. J.; Vitagliano, H. D.; Green, R. F.; Wolff, S. C.; Hutchings, J. B.; Jenkins, E. B.; Linsky, J. L.; Moos, H. W.; Roesler, F.; Shine, R. A.; Timothy, J. G.; Weistrop, D. E.; Bottema, M.; Meyer, W.

    1986-01-01

    The preliminary design for the Space Telescope Imaging Spectrograph (STIS), which has been selected by NASA for definition study for future flight as a second-generation instrument on the Hubble Space Telescope (HST), is presented. STIS is a two-dimensional spectrograph that will operate from 1050 A to 11,000 A at the limiting HST resolution of 0.05 arcsec FWHM, with spectral resolutions of 100, 1200, 20,000, and 100,000 and a maximum field-of-view of 50 x 50 arcsec. Its basic operating modes include echelle model, long slit mode, slitless spectrograph mode, coronographic spectroscopy, photon time-tagging, and direct imaging. Research objectives are active galactic nuclei, the intergalactic medium, global properties of galaxies, the origin of stellar systems, stelalr spectral variability, and spectrographic mapping of solar system processes.

  14. GOLD's coating and testing facilities for ISSIS-WSO

    NASA Astrophysics Data System (ADS)

    Larruquert, Juan I.; Méndez, José Antonio; Aznárez, José Antonio; Vidal-Dasilva, Manuela; García-Cortés, Sergio; Rodríguez-de Marcos, Luis; Fernández-Perea, Mónica

    2011-09-01

    ISSIS imager has been thought as an open purpose instrument within the World Space Observatory (WSO) international space mission. The highest priorities of ISSIS, an instrument to be developed by Spain, are to guarantee high spatial resolution and high sensitivity down to the far ultraviolet (FUV). The paper displays the capacities of GOLD for multilayer deposition and FUV reflectometry, among other metrologies, for ISSIS optical elements. Deposition of coatings for ISSIS-WSO will be carried out in a new UHV system with a 75-cm diameter deposition chamber. The purpose of the new laboratory is the deposition of coatings satisfying the constraints for FUV space optics. The first target coating to be developed in this new laboratory is Al protected with MgF2, with optimum reflectance down to ˜120 nm. GOLD's existing reflectometer is able to characterize flat pieces both by transmittance and reflectance, and the latter from near-normal to grazing incidence, in the range from 12 to 200 nm. Other metrologies that will be available at GOLD for ISSIS's coatings and filters include optical thickness of filters to assure parfocality, filter wedge, and coating and filter scattering.

  15. THE CURIOUS CASE OF THE ALPHA PERSEI CORONA: A DWARF IN SUPERGIANT'S CLOTHING?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayres, Thomas R., E-mail: Thomas.Ayres@Colorado.edu

    2011-09-10

    Alpha Persei (HD 20902: F5 Iab) is a luminous, nonvariable supergiant located at the blue edge of the Cepheid instability strip. It is one of the brightest coronal X-ray sources in the young open cluster bearing its name, yet warm supergiants as a class generally avoid conspicuous high-energy activity. The Cosmic Origins Spectrograph on the Hubble Space Telescope has recently uncovered additional oddities. The 1290-1430 A far-ultraviolet (FUV) spectrum of {alpha} Per is dominated by photospheric continuum emission, with numerous superposed absorption features, mainly stellar. However, the normal proxies of coronal activity, such as the Si IV 1400 A doubletmore » (T {approx} 8 x 10{sup 4} K), are very weak, as are the chromospheric C II 1335 A multiplet (T {approx} 3 x 10{sup 4} K) and O I 1305 A triplet. In fact, the Si IV features of {alpha} Per are not only narrower than those of later, G-type supergiants of similar L{sub X}/L{sub bol}, but are also fainter (in L{sub SiIV}/L{sub bol}) by two orders of magnitude. Further, a reanalysis of the ROSAT pointing on {alpha} Per finds the X-ray centroid offset from the stellar position by 9'', at a moderate level of significance. The FUV and X-ray discrepancies raise the possibility that the coronal source might be unrelated to the supergiant, perhaps an accidentally close dwarf cluster member; heretofore unrecognized in the optical, lost in the glare of the bright star.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suvorov, Alexey; Cai, Yong Q.

    A concept of an inelastic x-ray scattering (IXS) spectrograph with an imaging analyzer was proposed recently and discussed in a number of publications (see e.g. Ref.1). The imaging analyzer as proposed combines x-ray lenses with highly dispersive crystal optics. It allows conversion of the x-ray energy spectrum into a spatial image with very high energy resolution. However, the presented theoretical analysis of the spectrograph did not take into account details of the scattered radiation source, i.e. sample, and its impact on the spectrograph performance. Using numerical simulations we investigated the influence of the finite sample thickness, the scattering angle andmore » the incident energy detuning on the analyzer image and the ultimate resolution.« less

  17. The Galaxy Color-Magnitude Diagram in the Local Universe from GALEX and SDSS Data

    NASA Astrophysics Data System (ADS)

    Wyder, T. K.; GALEX Science Team

    2005-12-01

    We present the relative density of galaxies in the local universe as a function of their r-band absolute magnitudes and ultraviolet minus r-band colors. The Sloan Digital Sky Survey (SDSS) main galaxy sample selected in the r-band was matched with a sample of galaxies from the Galaxy Evolution Explorer (GALEX) Medium Imaging Survey in both the far-UV (FUV) and near-UV (NUV) bands. Simlar to previous optical studies, the distribution of galaxies in (FUV-r) and (NUV-r) is bimodal with well-defined blue and red sequences. We compare the distribution of galaxies in these colors with both the D4000 index measured from the SDSS spectra as well as the SDSS (u-r) color.

  18. Opto-mechanical design of an image slicer for the GRIS spectrograph at GREGOR

    NASA Astrophysics Data System (ADS)

    Vega Reyes, N.; Esteves, M. A.; Sánchez-Capuchino, J.; Salaun, Y.; López, R. L.; Gracia, F.; Estrada Herrera, P.; Grivel, C.; Vaz Cedillo, J. J.; Collados, M.

    2016-07-01

    An image slicer has been proposed for the Integral Field Spectrograph [1] of the 4-m European Solar Telescope (EST) [2] The image slicer for EST is called MuSICa (Multi-Slit Image slicer based on collimator-Camera) [3] and it is a telecentric system with diffraction limited optical quality offering the possibility to obtain high resolution Integral Field Solar Spectroscopy or Spectro-polarimetry by coupling a polarimeter after the generated slit (or slits). Considering the technical complexity of the proposed Integral Field Unit (IFU), a prototype has been designed for the GRIS spectrograph at GREGOR telescope at Teide Observatory (Tenerife), composed by the optical elements of the image slicer itself, a scanning system (to cover a larger field of view with sequential adjacent measurements) and an appropriate re-imaging system. All these subsystems are placed in a bench, specially designed to facilitate their alignment, integration and verification, and their easy installation in front of the spectrograph. This communication describes the opto-mechanical solution adopted to upgrade GRIS while ensuring repeatability between the observational modes, IFU and long-slit. Results from several tests which have been performed to validate the opto-mechanical prototypes are also presented.

  19. Goodman High Throughput Spectrograph | SOAR

    Science.gov Websites

    SPARTAN Near-IR Camera Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER AVAILABLE SOAR 320-850 nm wavelength range. The paper describing the instrument is Clemens et al. (2004) Applying for IRAF. Publishing results based on Goodman data?: ADS link to 2004 SPIE Goodman Spectrograph paper

  20. Conversion of far ultraviolet to visible radiation: absolute measurements of the conversion efficiency of tetraphenyl butadiene

    NASA Astrophysics Data System (ADS)

    Vest, Robert E.; Coplan, Michael A.; Clark, Charles W.

    Far ultraviolet (FUV) scintillation of noble gases is used in dark matter and neutrino research and in neutron detection. Upon collisional excitation, noble gas atoms recombine into excimer molecules that decay by FUV emission. Direct detection of FUV is difficult. Another approach is to convert it to visible light using a wavelength-shifting medium. One such medium, tetraphenyl butadiene (TPB) can be vapor-deposited on substrates. Thus the quality of thin TPB films can be tightly controlled. We have measured the absolute efficiency of FUV-to-visible conversion by 1 μm-thick TPB films vs. FUV wavelengths between 130 and 300 nm, with 1 nm resolution. The energy efficiency of FUV to visible conversion varies between 1% and 5%. We make comparisons with other recent results. Work performed at the NIST SURF III Synchrotron Ultraviolet Radiation Facility,.

  1. Star-forming Environments throughout the M101 Group

    NASA Astrophysics Data System (ADS)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    2017-12-01

    We present a multiwavelength study of star formation within the nearby M101 Group, including new deep Hα imaging of M101 and its two companions. We perform a statistical analysis of the Hα-to-FUV flux ratios in H II regions located in three different environments: M101's inner disk, M101's outer disk, and M101's lower-mass companion galaxy NGC 5474. We find that, once bulk radial trends in extinction are taken into account, both the median and scatter in F Hα /F FUV in H II regions are invariant across all of these environments. Also, using Starburst99 models, we are able to qualitatively reproduce the distributions of F Hα /F FUV throughout these different environments using a standard Kroupa initial mass function (IMF); hence, we find no need to invoke truncations in the upper-mass end of the IMF to explain the young star-forming regions in the M101 Group even at extremely low surface density. This implies that star formation in low-density environments differs from star formation in high-density environments only by intensity and not by cloud-to-cloud physics.

  2. The interacting winds of Eta Carinae: Observed forbidden line changes and the Forbidden Blue(-Shifted) Crab

    NASA Astrophysics Data System (ADS)

    Gull, Theodore R.; Madura, Thomas; Corcoran, Michael F.; Teodoro, Mairan; Richardson, Noel; Hamaguchi, Kenji; Groh, Jose H.; Hillier, Desmond John; Damineli, Augusto; Weigelt, Gerd

    2015-01-01

    The massive binary, Eta Carinae (EC), produces such massive winds that strong forbidden line emission of singly- and doubly-ionized iron traces wind-wind interactions from the current cycle plus fossil interactions from one, two and three 5.54-year cycles ago.With an eccentricity of >0.9, the >90 solar mass primary (EC-A) and >30 solar mass secondary (EC-B) approach to within 1.5 AU during periastron and recede to nearly 30 AU across apastron. The wind-wind structures move outward driven by the 420 km/s primary wind interacting with the ~3000 km/s secondary wind yielding partially-accelerated compressed primary wind shells that are excited by mid-UV from EC-A and in limited lines of sight, FUV from EC-B.These structures are spectroscopically and spatially resolved by HST's Space Telescope Imaging Spectrograph. At critical binary phases, we have mapped the central 2'x2' region in the light of [Fe III] and [Fe II] with spatial resolution of 0.12' and velocity resolution of 40 km/s.1) The bulk of forbidden emission originates from the large cavity northwest of EC and is due to ionization of massive ejecta from the 1840s and 1890s eruptions. The brightest clumps are the Weigelt Blobs C and D, but there are additionally multiple, fainter emission clumps. Weigelt B appears to have faded.2) Three concentric, red-shifted [FeII] arcs expand at ~470 km/s excited by mid-UV of EC-A.3) The structure of primarily blue-shifted [Fe III] emission resembles a Maryland Blue Crab. The claws appear at the early stages of the high-excitation recovery from the periastron passage, expand at radial velocities exceeding the primary wind terminal velocity, 420 km/s and fade as the binary system approaches periastron with the primary wind enveloping the FUV radiation from EC-B.4) All [Fe III] emission faded by late June 2014 and disappeared by August 2, 2014, the beginning of periastron passage.Comparisons to HST/STIS observations between 1998 to 2004.3 indicate long-term fading of [Fe II]. Likewise, Na D emission has faded. 3D hydro/radiative models suggest a small decrease (< factor of 2) in primary mass loss rate to be the cause.

  3. VizieR Online Data Catalog: M33 GALEX catalogue of UV point sources (Mudd+, 2015)

    NASA Astrophysics Data System (ADS)

    Mudd, D.; Stanek, K. Z.

    2015-11-01

    This catalogue was made using the Ultraviolet Imaging Telescope (UIT), an instrument aboard the Astro-1 Mission. UIT used photographic plates with the B1 and A1 filters roughly corresponding to the FUV and NUV filters of GALEX, having central wavelengths of ~1500 and 2400Å, respectively. It should be noted, however, that the A1 filter is significantly broader than the NUV filter on GALEX, reaching several hundred angstroms to the red end of its GALEX counterpart. The field of view of UIT is also circular but has a smaller radius of 18 arcmin The FWHM of UIT is comparable to that of GALEX, at 4 and 5.2 arcsec in the NUV and FUV filters, respectively. (3 data files).

  4. Accretion as a function of Orbital Phase in Young Close Binaries

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Herczeg, G.; Johns-Krull, C. M.; Mathieu, R. D.; Vodniza, A.; Tofflemire, B. M.

    2014-01-01

    Many planets are known to reside around binaries and the study of young binary systems is crucial to understand their formation. Young ($<10$ Myrs) low-mass binaries are generally surrounded by circumbinary disk with an inner gap. Gas from the disk must cross this gap for accretion to take place and here we present observations of this process as a function of orbital phase. We have obtained time-resolved FUV and NUV spectroscopy (1350 to 3000 A) of DQ Tau and UZ Tau E, using the Cosmic Origins Spectrograph on-board the Hubble Space Telescope. Each target was observed 2 to 4 times per binary orbit, over three or four consecutive orbits. For DQ Tau, we find some evidence that accretion occurs equally into both binary members, while for UZ Tau E this is not the case. H2 emission for DQ Tau most likely originates within the circumbinary gap, while for UZ Tau E no 1000 K gas is detected within the gap, although magnetospheric accretion does take place.

  5. The assembly, calibration, and preliminary results from the Colorado high-resolution Echelle stellar spectrograph (CHESS)

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; France, Kevin; Nell, Nicholas; Kane, Robert; Schultz, Ted; Beasley, Matthew; Green, James; Kulow, Jen; Kersgaard, Eliot; Fleming, Brian

    2014-07-01

    The Colorado High-resolution Echelle Stellar Spectrograph (CHESS) is a far ultraviolet (FUV) rocket-borne experiment designed to study the atomic-to-molecular transitions within translucent interstellar clouds. CHESS is an objective echelle spectrograph operating at f/12.4 and resolving power of 120,000 over a band pass of 100 - 160 nm. The echelle flight grating is the product of a research and development project with LightSmyth Inc. and was coated at Goddard Space Flight Center (GSFC) with Al+LiF. It has an empirically-determined groove density of 71.67 grooves/mm. At the Center for Astrophysics and Space Astronomy (CASA) at the University of Colorado (CU), we measured the efficiencies of the peak and adjacent dispersion orders throughout the 90 - 165 nm band pass to characterize the behavior of the grating for pre-flight calibrations and to assess the scattered-light behavior. The crossdispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, low line density (351 grooves/mm), powered optic with a toroidal surface curvature. The CHESS cross-disperser was also coated at GSFC; Cr+Al+LiF was deposited to enhance far-UV efficiency. Results from final efficiency and reflectivity measurements of both optics are presented. We utilize a cross-strip anode microchannel plate (MCP) detector built by Sensor Sciences to achieve high resolution (25 μm spatial resolution) and data collection rates (~ 106 photons/second) over a large format (40mm round, digitized to 8k x 8k) for the first time in an astronomical sounding rocket flight. The CHESS instrument was successfully launched from White Sands Missile Range on 24 May 2014. We present pre-flight sensitivity, effective area calculations, lab spectra and calibration results, and touch on first results and post-flight calibration plans.

  6. Development of the MAMA Detectors for the Hubble Space Telescope Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn

    1997-01-01

    The development of the Multi-Anode Microchannel Array (MAMA) detector systems started in the early 1970's in order to produce multi-element detector arrays for use in spectrographs for solar studies from the Skylab-B mission. Development of the MAMA detectors for spectrographs on the Hubble Space Telescope (HST) began in the late 1970's, and reached its culmination with the successful installation of the Space Telescope Imaging Spectrograph (STIS) on the second HST servicing mission (STS-82 launched 11 February 1997). Under NASA Contract NAS5-29389 from December 1986 through June 1994 we supported the development of the MAMA detectors for STIS, including complementary sounding rocket and ground-based research programs. This final report describes the results of the MAMA detector development program for STIS.

  7. Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    NASA Astrophysics Data System (ADS)

    Robertson, J. Gordon; Bland-Hawthorn, Joss

    2012-09-01

    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably faster than for most spectrograph collimators, while maintaining diffraction-limited imaging quality. It is possible to obtain excellent performance despite these challenges. We also briefly consider the number of such spectrographs required, which can be reduced by full or partial adaptive optics correction, and/or moving towards longer wavelengths.

  8. An Ultraviolet Spectrograph Concept for Exploring Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Schindhelm, E. R.; Hendrix, A. R.; Fleming, B. T.

    2018-05-01

    UV spectroscopy can probe dust/ice composition of the surface or plumes via uniquely identifying features. We present a technology concept for a future planetary science UV multi-object imaging spectrograph.

  9. High-resolution ultraviolet radiation fields of classical T Tauri stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, Kevin; Schindhelm, Eric; Bergin, Edwin A.

    2014-04-01

    The far-ultraviolet (FUV; 912-1700 Å) radiation field from accreting central stars in classical T Tauri systems influences the disk chemistry during the period of giant planet formation. The FUV field may also play a critical role in determining the evolution of the inner disk (r < 10 AU), from a gas- and dust-rich primordial disk to a transitional system where the optically thick warm dust distribution has been depleted. Previous efforts to measure the true stellar+accretion-generated FUV luminosity (both hot gas emission lines and continua) have been complicated by a combination of low-sensitivity and/or low-spectral resolution and did not includemore » the contribution from the bright Lyα emission line. In this work, we present a high-resolution spectroscopic study of the FUV radiation fields of 16 T Tauri stars whose dust disks display a range of evolutionary states. We include reconstructed Lyα line profiles and remove atomic and molecular disk emission (from H{sub 2} and CO fluorescence) to provide robust measurements of both the FUV continuum and hot gas lines (e.g., Lyα, N V, C IV, He II) for an appreciable sample of T Tauri stars for the first time. We find that the flux of the typical classical T Tauri star FUV radiation field at 1 AU from the central star is ∼10{sup 7} times the average interstellar radiation field. The Lyα emission line contributes an average of 88% of the total FUV flux, with the FUV continuum accounting for an average of 8%. Both the FUV continuum and Lyα flux are strongly correlated with C IV flux, suggesting that accretion processes dominate the production of both of these components. On average, only ∼0.5% of the total FUV flux is emitted between the Lyman limit (912 Å) and the H{sub 2} (0-0) absorption band at 1110 Å. The total and component-level high-resolution radiation fields are made publicly available in machine-readable format.« less

  10. Optical design of MEMS-based infrared multi-object spectrograph concept for the Gemini South Telescope

    NASA Astrophysics Data System (ADS)

    Chen, Shaojie; Sivanandam, Suresh; Moon, Dae-Sik

    2016-08-01

    We discuss the optical design of an infrared multi-object spectrograph (MOS) concept that is designed to take advantage of the multi-conjugate adaptive optics (MCAO) corrected field at the Gemini South telescope. This design employs a unique, cryogenic MEMS-based focal plane mask to select target objects for spectroscopy by utilizing the Micro-Shutter Array (MSA) technology originally developed for the Near Infrared Spectrometer (NIRSpec) of the James Webb Space Telescope (JWST). The optical design is based on all spherical refractive optics, which serves both imaging and spectroscopic modes across the wavelength range of 0.9-2.5 μm. The optical system consists of a reimaging system, MSA, collimator, volume phase holographic (VPH) grisms, and spectrograph camera optics. The VPH grisms, which are VPH gratings sandwiched between two prisms, provide high dispersing efficiencies, and a set of several VPH grisms provide the broad spectral coverage at high throughputs. The imaging mode is implemented by removing the MSA and the dispersing unit out of the beam. We optimize both the imaging and spectrographic modes simultaneously, while paying special attention to the performance of the pupil imaging at the cold stop. Our current design provides a 1' ♢ 1' and a 0.5' ♢ 1' field of views for imaging and spectroscopic modes, respectively, on a 2048 × 2048 pixel HAWAII-2RG detector array. The spectrograph's slit width and spectral resolving power are 0.18'' and 3,000, respectively, and spectra of up to 100 objects can be obtained simultaneously. We present the overall results of simulated performance using optical model we designed.

  11. Slitless Spectroscopy

    NASA Astrophysics Data System (ADS)

    Davila, J. M.; O'Neill, J. F.

    2013-12-01

    Spectrographs provide a unique window into plasma parameters in the solar atmosphere. In fact spectrographs provide the most accurate measurements of plasma parameters such as density, temperature, and flow speed. However, traditionally spectrographic instruments have suffered from the inability to cover large spatial regions of the Sun quickly. To cover an active region sized spatial region, the slit must be rastered over the area of interest with an exposure taken at each pointing location. Because of this long cycle time, the spectra of dynamic events like flares, CME initiations, or transient brightening are obtained only rarely. And even if spectra are obtained they are either taken over an extremely small spatial region, or the spectra are not co-temporal across the raster. Either of these complicates the interpretation of the spectral raster results. Imagers are able to provide high time and spatial resolution images of the full Sun but with limited spectral resolution. The telescopes onboard the Solar Dynamics Observatory (SDO) normally take a full disk solar image every 10 seconds with roughly 1 arcsec spatial resolution. However the spectral resolution of the multilayer imagers on SDO is of order 100 times less than a typical spectrograph. Because of this it is difficult to interpret multilayer imaging data to accurately obtain plasma parameters like temperature and density from these data, and there is no direct measure of plasma flow velocity. SERTS and EIS partially addressed this problem by using a wide slit to produce monochromatic images with limited FOV to limit overlapping. However dispersion within the wide slit image remained a problem which prevented the determination of intensity, Doppler shift, and line width in the wide slit. Kankelborg and Thomas introduced the idea of using multiple images -1, 0, and +1 spectral orders of a single emission line. This scheme provided three independent images to measure the three spectral line parameters in each pixel with the Multi-Order Solar EUV Spectrograph (MOSES) instrument. We suggest a reconstruction approach based on tomographic methods with regularization. Preliminary results show that the typical Doppler shift and line width error introduced by the reconstruction method is of order a few km/s at 300 A. This is on the order of the error obtained in narrow slit spectrographs but with data obtained over a two-dimensional field of view.

  12. Multiplexing 32,000 spectra onto 8 detectors: the HARMONI field splitting, image slicing, and wavelength selecting optics

    NASA Astrophysics Data System (ADS)

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Freeman, David; Kosmalski, Johan

    2012-09-01

    HARMONI, the High Angular Resolution Monolithic Optical & Near-infrared Integral field spectrograph is one of two first-light instruments for the European Extremely Large Telescope. Over a 256x128 pixel field-of-view HARMONI will simultaneously measure approximately 32,000 spectra. Each spectrum is about 4000 spectral pixels long, and covers a selectable part of the 0.47-2.45 μm wavelength range at resolving powers of either R≍4000, 10000, or 20000. All 32,000 spectra are imaged onto eight HAWAII4RG detectors using a multiplexing scheme that divides the input field into four sub-fields, each imaged onto one image slicer that in turn re-arranges a single sub-field into two long exit slits feeding one spectrograph each. In total we require eight spectrographs, each with one HAWAII4RG detector. A system of articulated and exchangeable fold-mirrors and VPH gratings allows one to select different spectral resolving powers and wavelength ranges of interest while keeping a fixed geometry between the spectrograph collimator and camera avoiding the need for an articulated grating and camera. In this paper we describe both the field splitting and image slicing optics as well as the optics that will be used to select both spectral resolving power and wavelength range.

  13. Collimating slicer for optical integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Hénault, François

    2016-07-01

    Integral Field Spectroscopy (IFS) is a technique that gives simultaneously the spectrum of each spatial sampling element of a given field. It is a powerful tool which rearranges the data cube represented by two spatial dimensions defining the field and the spectral decomposition (x, y, λ) in a detector plane. In IFS, the "spatial" unit reorganizes the field, the "spectral" unit is being composed of a classical spectrograph. For the spatial unit, three main techniques - microlens array, microlens array associated with fibres and image slicer - are used in astronomical instrumentations. The development of a Collimating Slicer is to propose a new type of optical integral field spectroscopy which should be more compact. The main idea is to combine the image slicer with the collimator of the spectrograph mixing the "spatial" and "spectral" units. The traditional combination of slicer, pupil and slit elements and spectrograph collimator is replaced by a new one composed of a slicer and spectrograph collimator only. After testing few configurations, this new system looks very promising for low resolution spectrographs. In this paper, the state of art of integral field spectroscopy using image slicers will be described. The new system based onto the development of a Collimating Slicer for optical integral field spectroscopy will be depicted. First system analysis results and future improvements will be discussed.

  14. Relations Between FUV Excess and Coronal Soft X-Ray Emission Among Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Smith, Graeme H.; Hargrave, Mason; Eckholm, Elliot

    2017-11-01

    The far-ultraviolet magnitudes of late-F, G and early-K dwarfs with (B - V) ⩾ 0.50 as measured by the GALEX satellite are shown to correlate with soft X-ray luminosity. This result indicates that line and continuum emission from stellar active regions make significant contributions to the flux in the GALEX FUV band for late-F, G and K dwarfs. By contrast, detection of a correlation between FUV brightness and soft X-ray luminosity among early-F dwarfs requires subtraction of the photospheric component from the FUV flux. The range in (B - V) among F and G dwarfs over which a correlation between uncorrected FUV magnitude and X-ray luminosity is detected coincides with the range in colour over which coronal and chromospheric emission correlates with stellar rotation.

  15. Spectrographic imaging system

    DOEpatents

    Morris, Michael D.; Treado, Patrick J.

    1991-01-01

    An imaging system for providing spectrographically resolved images. The system incorporates a one-dimensional spatial encoding mask which enables an image to be projected onto a two-dimensional image detector after spectral dispersion of the image. The dimension of the image which is lost due to spectral dispersion on the two-dimensional detector is recovered through employing a reverse transform based on presenting a multiplicity of different spatial encoding patterns to the image. The system is especially adapted for detecting Raman scattering of monochromatic light transmitted through or reflected from physical samples. Preferably, spatial encoding is achieved through the use of Hadamard mask which selectively transmits or blocks portions of the image from the sample being evaluated.

  16. VizieR Online Data Catalog: PS1 z>5.6 quasars follow-up (Banados+, 2016)

    NASA Astrophysics Data System (ADS)

    Banados, E.; Venemans, B. P.; Decarli, R.; Farina, E. P.; Mazzucchelli, C.; Walter, F.; Fan, X.; Stern, D.; Schlafly, E.; Chambers, K. C.; Rix, H.-W.; Jiang, L.; McGreer, I.; Simcoe, R.; Wang, F.; Yang, J.; Morganson, E.; De Rosa, G.; Greiner, J.; Balokovic, M.; Burgett, W. S.; Cooper, T.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Jun, H. D.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Miller, D.; Schindler, J.-T.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.; Yang, Q.

    2017-01-01

    The photometric follow-up observations were carried out over different observing runs and different instruments. We obtained optical and near-infrared images with the MPG 2.2m/GROND, New Technology Telescope (NTT)/EFOSC2, NTT/SofI, Calar Alto (CAHA) 3.5m/Omega2000, CAHA 2.2m/CAFOS21, MMT/SWIRC), and du Pont/Retrocam; see Table 1 for details of the observations and filters used. A spectroscopic campaign was carried out using several instruments at different telescopes: EFOSC2 at the NTT telescope in La Silla, the Focal Reducer / Low-Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT), the Folded-Port Infrared Echellette (FIRE) spectrometer and the Low-Dispersion Survey Spectrograph (LDSS3) at the Baade and Clay Telescopes at Las Campanas Observatory, the Low-Resolution Imaging Spectrometer (LRIS) at the Keck I 10m Telescope on Mauna Kea, the Double Spectrograph (DBSP) on the 200 inch (5m) Hale Telescope at Palomar Observatory (P200), the Red-Channel Spectrograph on the 6.5m MMT Telescope, the Cassegrain TWIN Spectrograph at the 3.5m Calar Alto Telescope (CAHA 3.5m), and the Multi-object Double Spectrograph (MODS) and LUCI spectrograph at the Large Binocular Telescope (LBT). The details of the spectroscopic observations of the PS1-discovered quasars are shown in Table 5. (10 data files).

  17. HAZMAT. II. Ultraviolet Variability of Low-mass Stars in the GALEX Archive

    NASA Astrophysics Data System (ADS)

    Miles, Brittany E.; Shkolnik, Evgenya L.

    2017-08-01

    The ultraviolet (UV) light from a host star influences a planet’s atmospheric photochemistry and will affect interpretations of exoplanetary spectra from future missions like the James Webb Space Telescope. These effects will be particularly critical in the study of planetary atmospheres around M dwarfs, including Earth-sized planets in the habitable zone. Given the higher activity levels of M dwarfs compared to Sun-like stars, time-resolved UV data are needed for more accurate input conditions for exoplanet atmospheric modeling. The Galaxy Evolution Explorer (GALEX) provides multi-epoch photometric observations in two UV bands: near-ultraviolet (NUV; 1771-2831 Å) and far-ultraviolet (FUV; 1344-1786 Å). Within 30 pc of Earth, there are 357 and 303 M dwarfs in the NUV and FUV bands, respectively, with multiple GALEX observations. Simultaneous NUV and FUV detections exist for 145 stars in both GALEX bands. Our analyses of these data show that low-mass stars are typically more variable in the FUV than the NUV. Median variability increases with later spectral types in the NUV with no clear trend in the FUV. We find evidence that flares increase the FUV flux density far more than the NUV flux density, leading to variable FUV to NUV flux density ratios in the GALEX bandpasses.The ratio of FUV to NUV flux is important for interpreting the presence of atmospheric molecules in planetary atmospheres such as oxygen and methane as a high FUV to NUV ratio may cause false-positive biosignature detections. This ratio of flux density in the GALEX bands spans three orders of magnitude in our sample, from 0.008 to 4.6, and is 1 to 2 orders of magnitude higher than for G dwarfs like the Sun. These results characterize the UV behavior for the largest set of low-mass stars to date.

  18. HAZMAT. II. Ultraviolet Variability of Low-mass Stars in the GALEX Archive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, Brittany E.; Shkolnik, Evgenya L., E-mail: bmiles@ucsc.edu

    The ultraviolet (UV) light from a host star influences a planet’s atmospheric photochemistry and will affect interpretations of exoplanetary spectra from future missions like the James Webb Space Telescope . These effects will be particularly critical in the study of planetary atmospheres around M dwarfs, including Earth-sized planets in the habitable zone. Given the higher activity levels of M dwarfs compared to Sun-like stars, time-resolved UV data are needed for more accurate input conditions for exoplanet atmospheric modeling. The Galaxy Evolution Explorer ( GALEX ) provides multi-epoch photometric observations in two UV bands: near-ultraviolet (NUV; 1771–2831 Å) and far-ultraviolet (FUV;more » 1344–1786 Å). Within 30 pc of Earth, there are 357 and 303 M dwarfs in the NUV and FUV bands, respectively, with multiple GALEX observations. Simultaneous NUV and FUV detections exist for 145 stars in both GALEX bands. Our analyses of these data show that low-mass stars are typically more variable in the FUV than the NUV. Median variability increases with later spectral types in the NUV with no clear trend in the FUV. We find evidence that flares increase the FUV flux density far more than the NUV flux density, leading to variable FUV to NUV flux density ratios in the GALEX bandpasses.The ratio of FUV to NUV flux is important for interpreting the presence of atmospheric molecules in planetary atmospheres such as oxygen and methane as a high FUV to NUV ratio may cause false-positive biosignature detections. This ratio of flux density in the GALEX bands spans three orders of magnitude in our sample, from 0.008 to 4.6, and is 1 to 2 orders of magnitude higher than for G dwarfs like the Sun. These results characterize the UV behavior for the largest set of low-mass stars to date.« less

  19. VizieR Online Data Catalog: CARMENES radial velocity curves of 7 M-dwarf (Trifonov+, 2018)

    NASA Astrophysics Data System (ADS)

    Trifonov, T.; Kuerster, M.; Zechmeister, M.; Tal-Or, L.; Caballero, J. A.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Reffert, S.; Dreizler, S.; Hatzes, A. P.; Kaminski, A.; Launhardt, R.; Henning, T.; Montes, D.; Bejar, V. J. S.; Mundt, R.; Pavlov, A.; Schmitt, J. H. M. M.; Seifert, W.; Morales, J. C.; Nowak, G.; Jeffers, S. V.; Rodriguez-Lopez, C.; Del Burgo, C.; Anglada-Escude, G.; Lopez-Santiago, J.; Mathar, R. J.; Ammler-von Eiff, M.; Guenther, E. W.; Barrado, D.; Gonzalez Hernandez, J. I.; Mancini, L.; Stuermer, J.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Antona, R.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Bauer, F. F.; Becerril, S.; Benitez, D.; Berdinas, Z. M.; Bergond, G.; Bluemcke, M.; Brinkmoeller, M.; Cano, J.; Cardenas Vazquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colome, J.; Cortes-Contreras, M.; Czesla, S.; Diez-Alonso, E.; Feiz, C.; Fernandez, M.; Ferro, I. M.; Fuhrmeister, B.; Galadi-Enriquez, D.; Garcia-Piquer, A.; Garcia Vargas, M. L.; Gesa, L.; Gomez Galera, V.; Gonzalez-Peinado, R.; Groezinger, U.; Grohnert, S.; Guardia, J.; Guijarro, A.; de Guindos, E.; Gutierrez-Soto, J.; Hagen, H.-J.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Hermelo, I.; Hernandez Arabi, R.; Hernandez Castano, L.; Hernandez Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E.; de Juan, E.; Kim, M.; Klein, R.; Klueter, J.; Klutsch, A.; Lafarga, M.; Lampon, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; Lopez Del Fresno, M.; Lopez-Gonzalez, J.; Lopez-Puertas, M.; Lopez Salas, J. F.; Luque, R.; Magan Madinabeitia, H.; Mall, U.; Mandel, H.; Marfil, E.; Marin Molina, J. A.; Maroto Fernandez, D.; Martin, E. L.; Martin-Ruiz, S.; Marvin, C. J.; Mirabet, E.; Moya, A.; Moreno-Raya, M. E.; Nagel, E.; Naranjo, V.; Nortmann, L.; Ofir, A.; Oreiro, R.; Palle, E.; Panduro, J.; Pascual, J.; Passegger, V. M.; Pedraz, S.; Perez-Calpena, A.; Perez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramon, A.; Rebolo, R.; Redondo, P.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodriguez, E.; Rodriguez Trinidad, A.; Rohlo, R.-R.; Rosich, A.; Sadegi, S.; Sanchez-Blanco, E.; Sanchez Carrasco, M. A.; Sanchez-Lopez, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schaefer, S.; Schiller, J.; Schoefer, P.; Schweitzer, A.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Suarez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.; Veredas, G.; Vico Linares, J. I.; Vilardel, F.; Wagner, K.; Winkler, J.; Woltho, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.

    2017-10-01

    The two CARMENES spectrographs are grism cross-dispersed, white pupil, echelle spectrograph working in quasi-Littrow mode using a two-beam, two-slice image slicer. The visible spectrograph covers the wavelength range from 0.52um to 1.05um with 61 orders, a resolving power of R=94600, and a mean sampling of 2.8 pixels per resolution element. The data presented in this paper were taken during the early phase of operation of the CARMENES visible-light spectrograph. (8 data files).

  20. PISCES: An Integral Field Spectrograph Technology Demonstration for the WFIRST Coronagraph

    NASA Technical Reports Server (NTRS)

    McElwain, Michael W.; Mandell, Avi M.; Gong, Qian; Llop-Sayson, Jorge; Brandt, Timothy; Chambers, Victor J.; Grammer, Bryan; Greeley, Bradford; Hilton, George; Perrin, Marshall D.; hide

    2016-01-01

    We present the design, integration, and test of the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) integral field spectrograph (IFS). The PISCES design meets the science requirements for the Wide-Field Infra Red Survey Telescope (WFIRST) Coronagraph Instrument (CGI). PISCES was integrated and tested in the integral field spectroscopy laboratory at NASA Goddard. In June 2016, PISCES was delivered to the Jet Propulsion Laboratory (JPL) where it was integrated with the Shaped Pupil Coronagraph (SPC) High Contrast Imaging Testbed (HCIT). The SPC/PISCES configuration will demonstrate high contrast integral field spectroscopy as part of the WFIRST CGI technology development program.

  1. PISCES: an integral field spectrograph technology demonstration for the WFIRST coronagraph

    NASA Astrophysics Data System (ADS)

    McElwain, Michael W.; Mandell, Avi M.; Gong, Qian; Llop-Sayson, Jorge; Brandt, Timothy; Chambers, Victor J.; Grammer, Bryan; Greeley, Bradford; Hilton, George; Perrin, Marshall D.; Stapelfeldt, Karl R.; Demers, Richard; Tang, Hong; Cady, Eric

    2016-07-01

    We present the design, integration, and test of the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) integral field spectrograph (IFS). The PISCES design meets the science requirements for the Wide-Field InfraRed Survey Telescope (WFIRST) Coronagraph Instrument (CGI). PISCES was integrated and tested in the integral field spectroscopy laboratory at NASA Goddard. In June 2016, PISCES was delivered to the Jet Propulsion Laboratory (JPL) where it was integrated with the Shaped Pupil Coronagraph (SPC) High Contrast Imaging Testbed (HCIT). The SPC/PISCES configuration will demonstrate high contrast integral field spectroscopy as part of the WFIRST CGI technology development program.

  2. Cassini UVIS Auroral Observations in 2016 and 2017

    NASA Astrophysics Data System (ADS)

    Pryor, Wayne R.; Esposito, Larry W.; Jouchoux, Alain; Radioti, Aikaterini; Grodent, Denis; Gustin, Jacques; Gerard, Jean-Claude; Lamy, Laurent; Badman, Sarah; Dyudina, Ulyana A.; Cassini UVIS Team, Cassini VIMS Team, Cassini ISS Team, HST Saturn Auroral Team

    2017-10-01

    In 2016 and 2017, the Cassini Saturn orbiter executed a final series of high-inclination, low-periapsis orbits ideal for studies of Saturn's polar regions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) obtained an extensive set of auroral images, some at the highest spatial resolution obtained during Cassini's long orbital mission (2004-2017). In some cases, two or three spacecraft slews at right angles to the long slit of the spectrograph were required to cover the entire auroral region to form auroral images. We will present selected images from this set showing narrow arcs of emission, more diffuse auroral emissions, multiple auroral arcs in a single image, discrete spots of emission, small scale vortices, large-scale spiral forms, and parallel linear features that appear to cross in places like twisted wires. Some shorter features are transverse to the main auroral arcs, like barbs on a wire. UVIS observations were in some cases simultaneous with auroral observations from the Cassini Imaging Science Subsystem (ISS) the Cassini Visual and Infrared Mapping Spectrometer (VIMS), and the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) that will also be presented.

  3. Deep Galex Observations of the Coma Cluster: Source Catalog and Galaxy Counts

    NASA Technical Reports Server (NTRS)

    Hammer, D.; Hornschemeier, A. E.; Mobasher, B.; Miller, N.; Smith, R.; Arnouts, S.; Milliard, B.; Jenkins, L.

    2010-01-01

    We present a source catalog from deep 26 ks GALEX observations of the Coma cluster in the far-UV (FUV; 1530 Angstroms) and near-UV (NUV; 2310 Angstroms) wavebands. The observed field is centered 0.9 deg. (1.6 Mpc) south-west of the Coma core, and has full optical photometric coverage by SDSS and spectroscopic coverage to r-21. The catalog consists of 9700 galaxies with GALEX and SDSS photometry, including 242 spectroscopically-confirmed Coma member galaxies that range from giant spirals and elliptical galaxies to dwarf irregular and early-type galaxies. The full multi-wavelength catalog (cluster plus background galaxies) is 80% complete to NUV=23 and FUV=23.5, and has a limiting depth at NUV=24.5 and FUV=25.0 which corresponds to a star formation rate of 10(exp -3) solar mass yr(sup -1) at the distance of Coma. The GALEX images presented here are very deep and include detections of many resolved cluster members superposed on a dense field of unresolved background galaxies. This required a two-fold approach to generating a source catalog: we used a Bayesian deblending algorithm to measure faint and compact sources (using SDSS coordinates as a position prior), and used the GALEX pipeline catalog for bright and/or extended objects. We performed simulations to assess the importance of systematic effects (e.g. object blends, source confusion, Eddington Bias) that influence source detection and photometry when using both methods. The Bayesian deblending method roughly doubles the number of source detections and provides reliable photometry to a few magnitudes deeper than the GALEX pipeline catalog. This method is also free from source confusion over the UV magnitude range studied here: conversely, we estimate that the GALEX pipeline catalogs are confusion limited at NUV approximately 23 and FUV approximately 24. We have measured the total UV galaxy counts using our catalog and report a 50% excess of counts across FUV=22-23.5 and NUV=21.5-23 relative to previous GALEX measurements, which is not attributed to cluster member galaxies. Our galaxy counts are a better match to deeper UV counts measured with HST.

  4. NOAO's next-generation optical spectrograph

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.; Harmer, Charles F.; Blakley, Rick D.; Parks, Rachel J.

    2000-08-01

    The National Optical Astronomy Observatory is developing a new, wide-field, imaging spectrograph for use on its existing 4-meter telescopes. This Next Generation Optical Spectrograph (NGOS) will utilize volume-phase holographic grating technology and will have a mosaiced detector array to image the spectra over a field of view that will be something like 10.5 by 42 arc-minutes on the sky. The overall efficiency of the spectrograph should be quite high allowing it to outperform the current RC spectrograph by factors of 10 to 20 and the Hydra multi-fiber instrument by a facto of fiber to ten per object. The operational range of the instrument will allow observations within the optical and near-IR regions. Spectral resolutions will go from R equals 1000 to at least R equals 5000 with 1.4 arc-second slits. The large size of this instrument, with a beam diameter of 200 mm and an overall length of nearly 3 meters, presents a significant challenge in mounting it at the Cassegrain location of the telescope. Design trades and options that allow it to fit are discussed.

  5. CCM in the FUV

    NASA Astrophysics Data System (ADS)

    Cartledge, S. I. B.; Clayton, G. C.; Gordon, K. D.

    2005-12-01

    Over 90% of Milky Way extinction curves sampled from IR through UV wavelengths (UV coverage by IUE) conform to the CCM family of curves based on R(V), a single parameter linked to grain size. The far-ultraviolet (FUV) portion of this formulation, however, was based only on a few sight lines observed by Copernicus, and it has recently been shown that in certain cases CCM does not predict extinction in the FUV as accurately as it does at longer wavelengths. In this poster paper, we present preliminary results from our examination of the agreement between all publicly-available FUSE FUV spectra of reddened O and B stars and their corresponding extinction curves inferred from longer wavelength fluxes. The eventual goal of our project is to reformulate CCM, particularly in the FUV where we have compiled more than 90 sight lines observed by FUSE. We are also exploring correlations between bulk sight line properties and the form of the reconstituted CCM curves.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thilker, David A.; Bianchi, Luciana; Schiminovich, David

    We have discovered recent star formation in the outermost portion ((1-4) x R {sub 25}) of the nearby lenticular (S0) galaxy NGC 404 using Galaxy Evolution Explorer UV imaging. FUV-bright sources are strongly concentrated within the galaxy's H I ring (formed by a merger event according to del RIo et al.), even though the average gas density is dynamically subcritical. Archival Hubble Space Telescope imaging reveals resolved upper main-sequence stars and conclusively demonstrates that the UV light originates from recent star formation activity. We present FUV, NUV radial surface brightness profiles, and integrated magnitudes for NGC 404. Within the ring,more » the average star formation rate (SFR) surface density ({Sigma}{sub SFR}) is {approx}2.2 x 10{sup -5} M {sub sun} yr{sup -1} kpc{sup -2}. Of the total FUV flux, 70% comes from the H I ring which is forming stars at a rate of 2.5 x 10{sup -3} M {sub sun} yr{sup -1}. The gas consumption timescale, assuming a constant SFR and no gas recycling, is several times the age of the universe. In the context of the UV-optical galaxy color-magnitude diagram, the presence of the star-forming H I ring places NGC 404 in the green valley separating the red and blue sequences. The rejuvenated lenticular galaxy has experienced a merger-induced, disk-building excursion away from the red sequence toward bluer colors, where it may evolve quiescently or (if appropriately triggered) experience a burst capable of placing it on the blue/star-forming sequence for up to {approx}1 Gyr. The green valley galaxy population is heterogeneous, with most systems transitioning from blue to red but others evolving in the opposite sense due to acquisition of fresh gas through various channels.« less

  7. Minor Distortions with Major Consequences: Correcting Distortions in Imaging Spectrographs

    PubMed Central

    Esmonde-White, Francis W. L.; Esmonde-White, Karen A.; Morris, Michael D.

    2010-01-01

    Projective transformation is a mathematical correction (implemented in software) used in the remote imaging field to produce distortion-free images. We present the application of projective transformation to correct minor alignment and astigmatism distortions that are inherent in dispersive spectrographs. Patterned white-light images and neon emission spectra were used to produce registration points for the transformation. Raman transects collected on microscopy and fiber-optic systems were corrected using established methods and compared with the same transects corrected using the projective transformation. Even minor distortions have a significant effect on reproducibility and apparent fluorescence background complexity. Simulated Raman spectra were used to optimize the projective transformation algorithm. We demonstrate that the projective transformation reduced the apparent fluorescent background complexity and improved reproducibility of measured parameters of Raman spectra. Distortion correction using a projective transformation provides a major advantage in reducing the background fluorescence complexity even in instrumentation where slit-image distortions and camera rotation were minimized using manual or mechanical means. We expect these advantages should be readily applicable to other spectroscopic modalities using dispersive imaging spectrographs. PMID:21211158

  8. Advances in far-ultraviolet reflective and transmissive coatings for space applications

    NASA Astrophysics Data System (ADS)

    Rodríguez-de Marcos, Luis; Aznárez, José A.; Méndez, José A.; Larruquert, Juan I.; Vidal-Dasilva, M.; Malvezzi, A. Marco; Giglia, Angelo; Capobianco, Gerardo; Massone, Giuseppe; Fineschi, Silvano; Nannarone, Stefano

    2016-07-01

    Exploitation of far ultraviolet (FUV, 100-200 nm) observations extends to most areas of modern astronomy, from detailed observations of Solar System objects, the interstellar medium, exoplanets, stars and galaxies, to studies of crucial cosmological relevance. Despite several developments in recent decades, yet many observations are not possible due to technical limitations, of which one of the most important is the lack of optical coatings with high throughput. Development and optimization of such efficient FUV coatings have been identified in several roadmap reports as a key goal for future missions. The success of this development will ultimately improve the performance of nowadays feasible optical instruments and will enable new scientific imaging capabilities. GOLD's research is devoted to developing novel coatings with enhanced performance for space optics. Several deposition systems are available for the deposition of multilayer coatings. A deposition system was developed to deposit FUV coatings to satisfy space requirements. It consists of a 75-cm-diameter deposition chamber pumped with a cryo-pump and placed in an ISO-6 clean room. This chamber is available for deposition by evaporation of top-requirement coatings such as Al/ MgF2 mirrors or (Al/MgF2)n multilayer coatings for transmittance filters. A plan to add an Ion-Beam-Sputtering system in this chamber is under way. In this and other chambers at GOLD the following FUV coatings can be prepared: Transmittance filters based on (Al/MgF2)n multilayer coatings. These filters can be designed to have a peak at the FUV spectral line or band of interest and a high peak-to-visible transmittance ratio. Filters can be designed with a peak transmittance at a wavelength as short as 120 nm and with a transmittance in the visible smaller than 10-5. Narrowband reflective coatings peaked close to H Lyman β (102.6 nm) with a reflectance at H Lyman α (121.6 nm) two orders of magnitude below the one at 102.6 nm. Other potential spectral lines at which these coatings could be peaked are the OVI doublet (103.2, 103.8 nm). Narrowband reflective mirrors based on (MgF2/LaF3)n multilayers peaked at a wavelength as short as 120 nm. Target wavelengths include lines of high interest for space observations, such as H Lyman α (121.6 nm), OI (130.4 and 135.6 nm), CIV (154.8, 155.1 nm), among others. Coating-based linear polarizers tuned at H Lyman α (121.6 nm) both based on reflectance or on transmittance. Reflective polarizers present a high efficiency. Transmissive polarizers have a more modest peak performance compared to reflective polarizers; however, they involve spectral filtering properties to reject the long FUV and even more the near UV to the IR, which turn them competitive compared to reflective polarizers. In this communication we present a summary of our research on the above FUV coatings developed at GOLD.

  9. VizieR Online Data Catalog: MACT survey. I. Opt. spectroscopy in Subaru Deep Field (Ly+, 2016)

    NASA Astrophysics Data System (ADS)

    Ly, C.; Malhotra, S.; Malkan, M. A.; Rigby, J. R.; Kashikawa, N.; de Los Reyes, M. A.; Rhoads, J. E.

    2016-10-01

    The primary results of this paper are based on optical spectroscopy conducted with Keck's Deep Imaging Multi-Object Spectrograph (DEIMOS) and MMT's Hectospec. In total, we obtain 3243 optical spectra for 1911 narrowband/intermediate-band excess emitters (roughly 20% of our narrowband/intermediate-band excess samples), and successfully detect emission lines to determine redshift for 1493 galaxies or 78% of the targeted sample. The MMT observations were conducted on 2008 March 13, 2008 April 10-11, 2008 April 14, 2014 February 27-28, 2014 March 25, and 2014 March 28-31, and correspond to the equivalent of three full nights. The Keck observations were conducted on 2004 April 23-24, 2008 May 01-02, 2009 April 25-28, 2014 May 02, and 2015 March 17/19/26. The majority of the observations were obtained in 2014-2015. The 2004 spectroscopic observations have been discussed in Kashikawa et al. (2006, J/ApJ/648/7) and Ly07 (J/ApJ/657/738), and the 2008-2009 data have been discussed in Kashikawa et al. (2011ApJ...734..119K). See section 2.2 for further details. The Subaru Deep Field (SDF) has been imaged with: (1) GALEX in both the FUV and NUV bands; (2) KPNO's Mayall telescope using MOSAIC in U; (3) Subaru telescope with Suprime-Cam in 14 bands (BVRci'z'zbzr), and five narrowband and two intermediate-band filters); (4) KPNO's Mayall telescope using NEWFIRM in H; (5) UKIRT using WFCAM in J and K; and (6) Spitzer in the four IRAC bands (3.6, 4.5, 5.8, and 8.0um). Most of these imaging data have been discussed in Ly et al. (2011ApJ...735...91L), except for the WFCAM J-band data and most of the NEWFIRM H-band data. The more recent NEWFIRM imaging data were acquired on 2012 March 06-07 and 2013 March 27-30. The WFCAM data were obtained on 2005 April 14-15, 2010 March 15-20, and 2010 April 22-23. See section 4.4 for further details. (11 data files).

  10. Near-identical star formation rate densities from Hα and FUV at redshift zero

    NASA Astrophysics Data System (ADS)

    Audcent-Ross, Fiona M.; Meurer, Gerhardt R.; Wong, O. I.; Zheng, Z.; Hanish, D.; Zwaan, M. A.; Bland-Hawthorn, J.; Elagali, A.; Meyer, M.; Putman, M. E.; Ryan-Weber, E. V.; Sweet, S. M.; Thilker, D. A.; Seibert, M.; Allen, R.; Dopita, M. A.; Doyle-Pegg, M. T.; Drinkwater, M.; Ferguson, H. C.; Freeman, K. C.; Heckman, T. M.; Kennicutt, R. C.; Kilborn, V. A.; Kim, J. H.; Knezek, P. M.; Koribalski, B.; Smith, R. C.; Staveley-Smith, L.; Webster, R. L.; Werk, J. K.

    2018-06-01

    For the first time both Hα and far-ultraviolet (FUV) observations from an H I-selected sample are used to determine the dust-corrected star formation rate density (SFRD: \\dot{ρ }) in the local Universe. Applying the two star formation rate indicators on 294 local galaxies we determine log(\\dot{ρ } _{Hα }) = -1.68 ^{+0.13}_{-0.05} [M⊙ yr-1 Mpc-3] and log(\\dot{ρ }_{FUV}) = -1.71 ^{+0.12}_{-0.13} [M⊙ yr-1 Mpc-3]. These values are derived from scaling Hα and FUV observations to the H I mass function. Galaxies were selected to uniformly sample the full H I mass (M_{H I}) range of the H I Parkes All-Sky Survey (M_{H I} ˜ 107 to ˜1010.7 M⊙). The approach leads to relatively larger sampling of dwarf galaxies compared to optically-selected surveys. The low H I mass, low luminosity and low surface brightness galaxy populations have, on average, lower Hα/FUV flux ratios than the remaining galaxy populations, consistent with the earlier results of Meurer. The near-identical Hα- and FUV-derived SFRD values arise with the low Hα/FUV flux ratios of some galaxies being offset by enhanced Hα from the brightest and high mass galaxy populations. Our findings confirm the necessity to fully sample the H I mass range for a complete census of local star formation to include lower stellar mass galaxies which dominate the local Universe.

  11. Adaptive optics at the Subaru telescope: current capabilities and development

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Hayano, Yutaka; Tamura, Motohide; Kudo, Tomoyuki; Oya, Shin; Minowa, Yosuke; Lai, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Kasdin, Jeremy; Groff, Tyler; Hayashi, Masahiko; Arimoto, Nobuo; Takami, Hideki; Bradley, Colin; Sugai, Hajime; Perrin, Guy; Tuthill, Peter; Mazin, Ben

    2014-08-01

    Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope's ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.

  12. The Magellan Telescopes

    NASA Astrophysics Data System (ADS)

    Shectman, Stephen A.; Johns, Matthew

    2003-02-01

    Commissioning of the two 6.5-meter Magellan telescopes is nearing completion at the Las Campanas Observatory in Chile. The Magellan 1 primary mirror was successfully aluminized at Las Campanas in August 2000. Science operations at Magellan 1 began in February 2001. The second Nasmyth focus on Magellan 1 went into operation in September 2001. Science operations on Magellan 2 are scheduled to begin shortly. The ability to deliver high-quality images is maintained at all times by the simultaneous operation of the primary mirror support system, the primary mirror thermal control system, and a real-time active optics system, based on a Shack-Hartmann image analyzer. Residual aberrations in the delivered image (including focus) are typically 0.10-0.15" fwhm, and real images as good as 0.25" fwhm have been obtained at optical wavelengths. The mount points reliably to 2" rms over the entire sky, using a pointing model which is stable from year to year. The tracking error under typical wind conditions is better than 0.03" rms, although some degradation is observed under high wind conditions when the dome is pointed in an unfavorable direction. Instruments used at Magellan 1 during the first year of operation include two spectrographs previously used at other telescopes (B&C, LDSS-2), a mid-infrared imager (MIRAC) and an optical imager (MAGIC, the first Magellan-specific facility instrument). Two facility spectrographs are scheduled to be installed shortly: IMACS, a wide-field spectrograph, and MIKE, a double echelle spectrograph.

  13. The infrared imaging spectrograph (IRIS) for TMT: overview of innovative science programs

    NASA Astrophysics Data System (ADS)

    Wright, Shelley A.; Larkin, James E.; Moore, Anna M.; Do, Tuan; Simard, Luc; Adamkovics, Maté; Armus, Lee; Barth, Aaron J.; Barton, Elizabeth; Boyce, Hope; Cooke, Jeffrey; Cote, Patrick; Davidge, Timothy; Ellerbroek, Brent; Ghez, Andrea M.; Liu, Michael C.; Lu, Jessica R.; Macintosh, Bruce A.; Mao, Shude; Marois, Christian; Schoeck, Matthias; Suzuki, Ryuji; Tan, Jonathan C.; Treu, Tommaso; Wang, Lianqi; Weiss, Jason

    2014-07-01

    IRIS (InfraRed Imaging Spectrograph) is a first light near-infrared diffraction limited imager and integral field spectrograph being designed for the future Thirty Meter Telescope (TMT). IRIS is optimized to perform astronomical studies across a significant fraction of cosmic time, from our Solar System to distant newly formed galaxies (Barton et al. [1]). We present a selection of the innovative science cases that are unique to IRIS in the era of upcoming space and ground-based telescopes. We focus on integral field spectroscopy of directly imaged exoplanet atmospheres, probing fundamental physics in the Galactic Center, measuring 104 to 1010 M supermassive black hole masses, resolved spectroscopy of young star-forming galaxies (1 < z < 5) and first light galaxies (6 < z < 12), and resolved spectroscopy of strong gravitational lensed sources to measure dark matter substructure. For each of these science cases we use the IRIS simulator (Wright et al. [2], Do et al. [3]) to explore IRIS capabilities. To highlight the unique IRIS capabilities, we also update the point and resolved source sensitivities for the integral field spectrograph (IFS) in all five broadband filters (Z, Y, J, H, K) for the finest spatial scale of 0.004" per spaxel. We briefly discuss future development plans for the data reduction pipeline and quicklook software for the IRIS instrument suite.

  14. [Design and analysis of a novel light visible spectrum imaging spectrograph optical system].

    PubMed

    Shen, Man-de; Li, Fei; Zhou, Li-bing; Li, Cheng; Ren, Huan-huan; Jiang, Qing-xiu

    2015-02-01

    A novel visible spectrum imaging spectrograph optical system was proposed based on the negative dispersion, the arbitrary phase modulation characteristics of diffractive optical element and the aberration correction characteristics of freeform optical element. The double agglutination lens was substituted by a hybrid refractive/diffractive lens based on the negative dispersion of diffractive optical element. Two freeform optical elements were used in order to correct some aberration based on the aberration correction characteristics of freeform optical element. An example and frondose design process were presented. When the design parameters were uniform, compared with the traditional system, the novel visible spectrum imaging spectrograph optical system's weight was reduced by 22.9%, the total length was reduced by 26.6%, the maximal diameter was reduced by 30.6%, and the modulation transfer function (MTF) in 1.0 field-of-view was improved by 0.35 with field-of-view improved maximally. The maximal distortion was reduced by 1.6%, the maximal longitudinal aberration was reduced by 56.4%, and the lateral color aberration was reduced by 59. 3%. From these data, we know that the performance of the novel system was advanced quickly and it could be used to put forward a new idea for modern visible spectrum imaging spectrograph optical system design.

  15. MuSICa: the Multi-Slit Image Slicer for the est Spectrograph

    NASA Astrophysics Data System (ADS)

    Calcines, A.; López, R. L.; Collados, M.

    2013-09-01

    Integral field spectroscopy (IFS) is a technique that allows one to obtain the spectra of all the points of a bidimensional field of view simultaneously. It is being applied to the new generation of the largest night-time telescopes but it is also an innovative technique for solar physics. This paper presents the design of a new image slicer, MuSICa (Multi-Slit Image slicer based on collimator-Camera), for the integral field spectrograph of the 4-m aperture European Solar Telescope (EST). MuSICa is a multi-slit image slicer that decomposes an 80 arcsec2 field of view into slices of 50 μm and reorganizes it into eight slits of 0.05 arcsec width × 200 arcsec length. It is a telecentric system with an optical quality at diffraction limit compatible with the two modes of operation of the spectrograph: spectroscopic and spectro-polarimetric. This paper shows the requirements, technical characteristics and layout of MuSICa, as well as other studied design options.

  16. The infrared imaging spectrograph (IRIS) for TMT: latest science cases and simulations

    NASA Astrophysics Data System (ADS)

    Wright, Shelley A.; Walth, Gregory; Do, Tuan; Marshall, Daniel; Larkin, James E.; Moore, Anna M.; Adamkovics, Mate; Andersen, David; Armus, Lee; Barth, Aaron; Cote, Patrick; Cooke, Jeff; Chisholm, Eric M.; Davidge, Timothy; Dunn, Jennifer S.; Dumas, Christophe; Ellerbroek, Brent L.; Ghez, Andrea M.; Hao, Lei; Hayano, Yutaka; Liu, Michael; Lopez-Rodriguez, Enrique; Lu, Jessica R.; Mao, Shude; Marois, Christian; Pandey, Shashi B.; Phillips, Andrew C.; Schoeck, Matthias; Subramaniam, Annapurni; Subramanian, Smitha; Suzuki, Ryuji; Tan, Jonathan C.; Terai, Tsuyoshi; Treu, Tommaso; Simard, Luc; Weiss, Jason L.; Wincentsen, James; Wong, Michael; Zhang, Kai

    2016-07-01

    The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.

  17. Wavefront control methods for high-contrast integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Groff, Tyler D.; Mejia Prada, Camilo; Cady, Eric; Rizzo, Maxime J.; Mandell, Avi; Gong, Qian; McElwain, Michael; Zimmerman, Neil; Saxena, Prabal; Guyon, Olivier

    2017-09-01

    Direct Imaging of exoplanets using a coronagraph has become a major field of research both on the ground and in space. Key to the science of direct imaging is the spectroscopic capabilities of the instrument, our ability to fit spectra, and understanding the composition of the observed planets. Direct imaging instruments generally use an integral field spectrograph (IFS), which encodes the spectrum into a two-dimensional image on the detector. This results in more efficient detection and characterization of targets, and the spectral information is critical to achieving detection limits below the speckle floor of the imager. The most mature application of these techniques is at more modest contrast ratios on ground-based telescopes, achieving approximately 5-6 orders of magnitude suppression. In space, where we are attempting to detect Earth-analogs, the contrast requirements are more severe and the IFS must be incorporated into the wavefront control loop to reach 1e-10 detection limits required for Earth-like planet detection. We present the objectives and application of IFS imagery for both a speckle control loop and post-processing of images. Results, tested methodologies, and the future work using the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) and the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) at the JPL High Contrast Imaging Testbed are presented.

  18. Explosive Events in the Quiet Sun: Extreme Ultraviolet Imaging Spectroscopy Instrumentation and Observations

    NASA Astrophysics Data System (ADS)

    Rust, Thomas Ludwell

    Explosive event is the name given to slit spectrograph observations of high spectroscopic velocities in solar transition region spectral lines. Explosive events show much variety that cannot yet be explained by a single theory. It is commonly believed that explosive events are powered by magnetic reconnection. The evolution of the line core appears to be an important indicator of which particular reconnection process is at work. The Multi-Order Solar Extreme Ultraviolet Spectrograph (MOSES) is a novel slitless spectrograph designed for imaging spectroscopy of solar extreme ultraviolet (EUV) spectral lines. The spectrograph design forgoes a slit and images instead at three spectral orders of a concave grating. The images are formed simultaneously so the resulting spatial and spectral information is co-temporal over the 20' x 10' instrument field of view. This is an advantage over slit spectrographs which build a field of view one narrow slit at a time. The cost of co-temporal imaging spectroscopy with the MOSES is increased data complexity relative to slit spectrograph data. The MOSES data must undergo tomographic inversion for recovery of line profiles. I use the unique data from the MOSES to study transition region explosive events in the He ii 304 A spectral line. I identify 41 examples of explosive events which include 5 blue shifted jets, 2 red shifted jets, and 10 bi-directional jets. Typical doppler speeds are approximately 100kms-1. I show the early development of one blue jet and one bi-directional jet and find no acceleration phase at the onset of the event. The bi-directional jets are interesting because they are predicted in models of Petschek reconnection in the transition region. I develop an inversion algorithm for the MOSES data and test it on synthetic observations of a bi-directional jet. The inversion is based on a multiplicative algebraic reconstruction technique (MART). The inversion successfully reproduces synthetic line profiles. I then use the inversion to study the time evolution of a bi-directional jet. The inverted line profiles show fast doppler shifted components and no measurable line core emission. The blue and red wings of the jet show increasing spatial separation with time.

  19. Conceptual Design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) for the Subaru Telescope

    NASA Technical Reports Server (NTRS)

    Peters, Mary Anne; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Galvin, Michael; Carr, Michael A.; Lupton, Robert; Gunn, James E.; Knapp, Gillian; Gong, Qian; hide

    2012-01-01

    Recent developments in high-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 140 x 140 spatial elements over a 1.75 arcsecs x 1.75 arcsecs field of view (FOV). CHARIS will operate in the near infrared (lambda = 0.9 - 2.5 micron) and provide a spectral resolution of R = 14, 33, and 65 in three separate observing modes. Taking advantage of the adaptive optics systems and advanced coronagraphs (AO188 and SCExAO) on the Subaru telescope, CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS is in the early design phases and is projected to have first light by the end of 2015. We report here on the current conceptual design of CHARIS and the design challenges.

  20. Instrumentation progress at the Giant Magellan Telescope project

    NASA Astrophysics Data System (ADS)

    Jacoby, George H.; Bernstein, R.; Bouchez, A.; Colless, M.; Crane, Jeff; DePoy, D.; Espeland, B.; Hare, Tyson; Jaffe, D.; Lawrence, J.; Marshall, J.; McGregor, P.; Shectman, Stephen; Sharp, R.; Szentgyorgyi, A.; Uomoto, Alan; Walls, B.

    2016-08-01

    Instrument development for the 24m Giant Magellan Telescope (GMT) is described: current activities, progress, status, and schedule. One instrument team has completed its preliminary design and is currently beginning its final design (GCLEF, an optical 350-950 nm, high-resolution and precision radial velocity echelle spectrograph). A second instrument team is in its conceptual design phase (GMACS, an optical 350-950 nm, medium resolution, 6-10 arcmin field, multi-object spectrograph). A third instrument team is midway through its preliminary design phase (GMTIFS, a near-IR YJHK diffraction-limited imager/integral-field-spectrograph), focused on risk reduction prototyping and design optimization. A fourth instrument team is currently fabricating the 5 silicon immersion gratings needed to begin its preliminary design phase (GMTNIRS, a simultaneous JHKLM high-resolution, AO-fed, echelle spectrograph). And, another instrument team is focusing on technical development and prototyping (MANIFEST, a facility robotic, multifiber feed, with a 20 arcmin field of view). In addition, a medium-field (6 arcmin, 0.06 arcsec/pix) optical imager will support telescope and AO commissioning activities, and will excel at narrow-band imaging. In the spirit of advancing synergies with other groups, the challenges of running an ELT instrument program and opportunities for cross-ELT collaborations are discussed.

  1. Toroidal varied-line space (TVLS) gratings

    NASA Astrophysics Data System (ADS)

    Thomas, Roger J.

    2003-02-01

    It is a particular challenge to develop a stigmatic spectrograph for EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-space rulings (TULS). A number of solar EUV spectrographs have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. These ideas are now combined into a spectrograph concept that considers varied-line space grooves ruled onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of two solar spectrographs based on this concept are described: SUMI, proposed as a sounding rocket experiment, and NEXUS, proposed for the Solar Dynamics Observatory mission.

  2. VizieR Online Data Catalog: UBV light curves of DQ Tau and UZ Tau E (Ardila+, 2015)

    NASA Astrophysics Data System (ADS)

    Ardila, D. R.; Jonhs-Krull, C.; Herczeg, G. J.; Mathieu, R. D.; Quijano-Vodniza, A.

    2016-01-01

    DQ Tau was observed with HST/COS four times per binary orbit, during three consecutive binary orbits, at phases ~0, ~0.2, ~0.5, and ~0.7 (in 2011 Feb, Mar). The original experimental design called for observations of UZ Tau E with the same cadence. However, the NUV observations at phase ~0.7 in the second orbit and both the FUV and NUV observations at phase ~0 in the third orbit failed. They were replaced by observations at phases ~0 and ~0.5 in a fourth binary orbit (in 2011 Feb, Mar, Apr). We obtained contemporaneous ground-based UBV photometry with the 14" telescope from the University of Narino Observatory, optical spectroscopy with the Sandiford Echelle Spectrometer on the 2.1m Otto Struve Telescope at McDonald Observatory, near-infrared spectroscopy with the CSHELL spectrograph on the NASA Infrared Telescope Facility, and near-infrared spectroscopy with GNIRS instrument on Gemini North. In this paper we focus on the U-band photometry only. UBV observations were obtained before and during the HST campaign. See table 3. (1 data file).

  3. Thirty-Meter Telescope: A Technical Study of the InfraRed Multiobject Spectrograph

    NASA Astrophysics Data System (ADS)

    U, Vivian; Dekany, R.; Mobasher, B.

    2013-01-01

    The InfraRed Multiobject Spectrograph (IRMS) is an adaptive optics (AO)-fed, reconfigurable near-infrared multi-object spectrograph and imager on the Thirty Meter Telescope (TMT). Its design is based on the MOSFIRE spectrograph currently operating on the Keck Observatory. As one of the first three first-light instruments on the TMT, IRMS is in a mini-conceptual design phase. Here we motivate the science goals of the instrument and present the anticipated sensitivity estimates based on the combination of MOSFIRE with the AO system NFIRAOS on TMT. An assessment of the IRMS on-instrument wavefront sensor performance and vignetting issue will also be discussed.

  4. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2004-09-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27'x 27') UB/VRI optimized mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6\\arcmin\\ field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4'x 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench beam combiner with visible and near-infrared imagers utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC/NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  5. Cassini UVIS Observations of Saturn during the Grand Finale Orbits

    NASA Astrophysics Data System (ADS)

    Pryor, W. R.; Esposito, L. W.; West, R. A.; Jouchoux, A.; Radioti, A.; Grodent, D. C.; Gerard, J. C. M. C.; Gustin, J.; Lamy, L.; Badman, S. V.

    2017-12-01

    In 2016 and 2017, the Cassini Saturn orbiter executed a final series of high inclination, low-periapsis orbits ideal for studies of Saturn's polar regions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) obtained an extensive set of auroral images, some at the highest spatial resolution obtained during Cassini's long orbital mission (2004-2017). In some cases, two or three spacecraft slews at right angles to the long slit of the spectrograph were required to cover the entire auroral region to form auroral images. We will present selected images from this set showing narrow arcs of emission, more diffuse auroral emissions, multiple auroral arcs in a single image, discrete spots of emission, small scale vortices, large-scale spiral forms, and parallel linear features that appear to cross in places like twisted wires. Some shorter features are transverse to the main auroral arcs, like barbs on a wire. UVIS observations were in some cases simultaneous with auroral observations from the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) that will also be presented. UVIS polar images also contain spectral information suitable for studies of the auroral electron energy distribution. The long wavelength part of the UVIS polar images contains a signal from reflected sunlight containing absorption signatures of acetylene and other Saturn hydrocarbons. The hydrocarbon spatial distribution will also be examined.

  6. COS FUV Target Acquisition Monitor

    NASA Astrophysics Data System (ADS)

    Penton, Steven V.

    2017-08-01

    Starting in Cycle 25, the COS Target Acquisition (TA) monitor has been divided into two pieces, NUV (15389) and FUV (15386). This program is the FUV portion and is designed specifically for FUV LP4. FUV LP4 uses NUM_POS > 1 PEAKXDs for cross-dispersion TA. All previous LPs used NUM_POS=1 PEAKXDs. The NUM_POS=1 PEAKXDs required the routine monitoring of the grating-dependent WCA-to-PSA offsets. The NUM_POS >1 PEAKXDs do not use these flight software (FSW) patchable constants as they use the LTAPKD FSW macro used in ACQ/PEAKD, but re-purposed for use in the cross-dispersion (XD).This program uses the HST standard star WD1657+343. This target was used previously in the COS TA Monitor programs, 13124 (C20), 13526 (C21), 13972 (C22), 14440 (C23) & 14857 (C24). In these programs, this target was used to co-align the PSA/MIRRORB and BOA/MIRRORA ACQ/IMAGE modes. We re-use this target here as it is safe with PSA/MIRRORA and visible almost year-round.Note that when presented to the mission office, the target 206W3 was listed as the target for this program. This target was a backup target in previous TA monitor programs and was the faintest of the 3 targets in the program. Switching to the next brighter target (WD1657+343) allows all the goals of this program to be accomplished in just 2 orbits. Also, as this target has been used for every generation of this program, the FUV monitoring can be bootstrapped to previous programs, if needed. See the observing description for more details.The LTAIMAGE that started the second orbit of Visit 26 had the TDF down and the shutter closed. This caused the ACQ/IMAGE to miscenter the target by about 1.3". Visit 90 was added as a partial repeat from HOPR 89665. This visit is as close to a repeat of the 2nd orbit of Visi t 25 as possible. Due to time lost doing a full acq instead of a RE-ACQ, the following changes were made:1) Changed Visit number to 902) Schedulability set to 90%3) Before date set to Feb-19-2018, but the earlier the better (this is negotiable)4) Increased Buffer Time for Exposures 90.010 and 90.014 to 976s (2/3 * ETC time)5) Increased Buffer Time for Exposes 90.011 and 90.012 to 2000s (976/0.45 = 2168s)6) Changed exposures times for 90.011 and 90.012 from 182 to 180s.Visit 90 had a GS problem (RGA hold failure) and the entire visit had the shutter closed. HSTAR 14932 was filed along with the approved HOPR 89896. Visit 90 was copied to Visit 91 with the following changes:1) Changed Visit number to 912) Before changed from 19-FEB-2018 to 19-MAR-2018Note that there are 4 exposures with "Y" POS_TARGs in Visit 91 to intentionally offset the target in XD by +/- 1.3"; 2 are G140L and 2 are G160M.We request that previously used, known good, Guide Stars be used, if possible.

  7. The Ultraviolet Radiation Environment around M Dwarf Exoplanet Host Stars

    NASA Technical Reports Server (NTRS)

    France, Kevin; Froning, Cynthia S.; Linsky, Jeffrey L.; Roberge, Aki; Stocke, John T.; Tian, Feng; Bushinsky, Rachel; Desert, Jean-Michel; Mauas, Pablo; Mauas, Pablo; hide

    2013-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV-quiet" M dwarfs are observed. The bright stellar Lyman-alpha emission lines are reconstructed, and we find that the Lyman-alpha line fluxes comprise approximately 37%-75% of the total 1150-3100 A flux from most M dwarfs; approximately greater than 10(exp3) times the solar value. We develop an empirical scaling relation between Lyman-alpha and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Lyman-alpha. The intrinsic unreddened flux ratio is F(Lyman-alpha)/F(Mg II) = 10(exp3). The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O2 and O3, is shown to be approximately 0.5-3 for all M dwarfs in our sample, greather than 10(exp3) times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%.500% on 10(exp2)-10(exp3) s timescales. This effect should be taken into account in future UV transiting planet studies, including searches for O3 on Earth-like planets. Finally, we observe relatively bright H2 fluorescent emission from four of the M dwarf exoplanetary systems (GJ 581, GJ 876, GJ 436, and GJ 832). Additional modeling work is needed to differentiate between a stellar photospheric or possible exoplanetary origin for the hot (T(H2) approximately equal to 2000-4000 K) molecular gas observed in these objects.

  8. Exploring the Time Evolution of Cool Metallic Absorption Features in UV Burst Spectra

    NASA Astrophysics Data System (ADS)

    Belmes, K.; Madsen, C. A.; DeLuca, E.

    2017-12-01

    UV bursts are compact brightenings in active regions that appear in UV images. They are identified through three spectroscopic features: (1) broadening and intensification of NUV/FUV emission lines, (2) the presence of optically thin Si IV emission, and (3) the presence of absorption features from cool metallic ions. Properties (2) and (3) imply that bursts exist at transition region temperatures (≥ 80,000 K) but are located in the cooler lower chromosphere ( 5,000 K). Their energetic and dynamical properties remain poorly constrained. Improving our understanding of this phenomena could help us further constrain the energetic and dynamical properties of the chromosphere, as well as give us insight into whether or not UV bursts contribute to chromospheric and/or coronal heating. We analyzed the time evolution of UV bursts using spectral data from the Interface Region Imaging Spectrograph (IRIS). We inspected Si IV 1393.8 Å line profiles for Ni II 1393.3 Å absorption features to look for signs of heating. Weakening of absorption features over time could indicate heating of the cool ions above the burst, implying that thermal energy from the burst could rapidly conduct upward through the chromosphere. To detect the spectral profiles corresponding to bursts, we applied a four-parameter Gaussian fit to every profile in each observation and took cuts in parameter space to isolate the bursts. We then manually reviewed the remaining profiles by looking for a statistically significant appearance of Ni II 1393.3 Å absorption. We quantified these absorption features by normalizing the Si IV 1393.8 Å emission profiles and measuring the maximum fractional extinction in each. Our preliminary results indicate that Ni II 1393.3 Å absorption may undergo a cycle of strengthening and weakening throughout a burst's lifetime. However, further investigation is needed for confirmation. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.

  9. First Light from the 4.3-meter Discovery Channel Telescope At Lowell Observatory

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey C.; Levine, S.

    2013-01-01

    Seven years after groundbreaking on July 12, 2005, the 4.3-meter Discovery Channel Telescope (DCT) is now complete and into commissioning. We obtained first light images in mid 2012 with a 4K x 4K CCD and have recently obtained our first images with the DCT's main camera, the 6K x 6K Large Monolithic Imager (LMI, see adjacent poster by Massey). We held a celebratory gala on July 21, 2012, in Flagstaff. The DCT's delivered image quality is regularly subarcsecond with near-uniform image quality across the FOV from zenith to >2 airmasses, although we have not fully commissioned the active optics system. We attribute this to the outstanding quality of the mirror figures, performed by the University of Arizona's College of Optical Sciences (for M1) and L3 Brashear (for M2). The instrument cube at the RC focus can accommodate four instruments plus the LMI. Designed and built at Lowell Observatory, the cube also contains the DCT's autoguider and wavefront sensor. First light instruments include the 4000 DeVeny spectrograph (the former KPNO White Spectrograph), a low-resolution, high-throughput IR spectrograph, and a higher-resolution IR spectrograph/imager being built by Goddard Space Flight Center in collaboration with the University of Maryland. We are seeking funding for long-slit and fiber-fed echelle spectrographs for higher resolution optical spectroscopy. The DCT can also be configured to host Nasmyth and prime focus instruments. Discovery Communications and its founder John Hendricks contributed $16M to the $53M cost of the telescope, in return for naming rights and first rights to public, educational use of images in their programming. Analysis of data and publication by astronomers in professional journals follows the same procedure as for any other major telescope facility. Discovery's first DCT feature, "Scanning the Skies," aired on September 9, 2012. Future outreach plans include initiating webcasts to classrooms via the Discovery Education networks, reaching 30-40M schoolchildren across the USA. The DCT partner consortium includes Boston University (in perpetuity), the University of Maryland, and the University of Toledo, all of whom have ongoing, long term access to the facility.

  10. UVIT view of ram-pressure stripping in action: Star formation in the stripped gas of the GASP jellyfish galaxy JO201 in Abell 85

    NASA Astrophysics Data System (ADS)

    George, K.; Poggianti, B. M.; Gullieuszik, M.; Fasano, G.; Bellhouse, C.; Postma, J.; Moretti, A.; Jaffé, Y.; Vulcani, B.; Bettoni, D.; Fritz, J.; Côté, P.; Ghosh, S. K.; Hutchings, J. B.; Mohan, R.; Sreekumar, P.; Stalin, C. S.; Subramaniam, A.; Tandon, S. N.

    2018-06-01

    Jellyfish are cluster galaxies that experience strong ram-pressure effects that strip their gas. Their Hα images reveal ionized gas tails up to 100 kpc, which could be hosting ongoing star formation. Here we report the ultraviolet (UV) imaging observation of the jellyfish galaxy JO201 obtained at a spatial resolution ˜ 1.3 kpc. The intense burst of star formation happening in the tentacles is the focus of the present study. JO201 is the "UV-brightest cluster galaxy" in Abell 85 (z ˜ 0.056) with knots and streams of star formation in the ultraviolet. We identify star forming knots both in the stripped gas and in the galaxy disk and compare the UV features with the ones traced by Hα emission. Overall, the two emissions remarkably correlate, both in the main body and along the tentacles. Similarly, also the star formation rates of individual knots derived from the extinction-corrected FUV emission agree with those derived from the Hα emission and range from ˜ 0.01 -to- 2.07 M⊙ yr-1. The integrated star formation rate from FUV flux is ˜ 15 M⊙ yr-1. The unprecedented deep UV imaging study of the jellyfish galaxy JO201 shows clear signs of extraplanar star-formation activity due to a recent/ongoing gas stripping event.

  11. The GALEX/S4G Surface Brightness and Color Profiles Catalog. I. Surface Photometry and Color Gradients of Galaxies

    NASA Astrophysics Data System (ADS)

    Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Muñoz-Mateos, Juan Carlos; Boissier, Samuel; Sheth, Kartik; Zaritsky, Dennis; Peletier, Reynier F.; Knapen, Johan H.; Gallego, Jesús

    2018-02-01

    We present new spatially resolved surface photometry in the far-ultraviolet (FUV) and near-ultraviolet (NUV) from images obtained by the Galaxy Evolution Explorer (GALEX) and IRAC1 (3.6 μm) photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G). We analyze the radial surface brightness profiles μ FUV, μ NUV, and μ [3.6], as well as the radial profiles of (FUV ‑ NUV), (NUV ‑ [3.6]), and (FUV ‑ [3.6]) colors in 1931 nearby galaxies (z < 0.01). The analysis of the 3.6 μm surface brightness profiles also allows us to separate the bulge and disk components in a quasi-automatic way and to compare their light and color distribution with those predicted by the chemo-spectrophotometric models for the evolution of galaxy disks of Boissier & Prantzos. The exponential disk component is best isolated by setting an inner radial cutoff and an upper surface brightness limit in stellar mass surface density. The best-fitting models to the measured scale length and central surface brightness values yield distributions of spin and circular velocity within a factor of two of those obtained via direct kinematic measurements. We find that at a surface brightness fainter than μ [3.6] = 20.89 mag arcsec‑2, or below 3 × 108 M ⊙ kpc‑2 in stellar mass surface density, the average specific star formation rate (sSFR) for star-forming and quiescent galaxies remains relatively flat with radius. However, a large fraction of GALEX Green Valley galaxies show a radial decrease in sSFR. This behavior suggests that an outside-in damping mechanism, possibly related to environmental effects, could be testimony of an early evolution of galaxies from the blue sequence of star-forming galaxies toward the red sequence of quiescent galaxies.

  12. GALEX studies on UV properties of Nearby Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Rhee, J.; Rich, R. M.; Sohn, Y.-J.; Lee, Y.-W.; Gil de Paz, A.; Deharveng, J.-M.; Donas, J.; Boselli, A.; Rey, S.-C.; Yi, S. K.; GALEX Team

    2005-12-01

    We present the results of surface photometry on the far-UV (FUV) and near-UV (NUV) images of 23 nearby elliptical galaxies and spiral bulges taken from the GALEX (Galaxy Evolution Explorer). Surface brightness profiles of most galaxies are consistent with de Vaucouleurs' r1/4 law except for some cases more consistent with exponential profiles. We analyze the radial profiles of UV color, (FUV - NUV), and Mg2 line index to investigate a correlation between the gradients of UV color and metal abundance for early-type galaxies. UV color gradients are calculated by applying least square fitting to UV color profile up to effective radius, while Mg2 line strength gradients are compiled for 12 galaxies from previous works. For the 12 early-type galaxies, we find that UV color profiles have a trend to become bluer inward and there is a weak correlation between the gradients of UV color and Mg2 line strength in the sense that galaxies with larger UV color gradients tend to have stronger metal abundance gradients. We also explore the properties of the GALEX-measured ultraviolet rising flux in 96 nearby elliptical galaxies, as a function Lick Mg2 index and velocity dispersion. We include 36 galaxies in the Virgo cluster from the sample of Boselli et al (2005). We find no correlation between the Mg2 index, and log σ and FUV-r. This confirms the findings of Rich et al (2005) for a sample of GALEX/SDSS quiescent early-type galaxies. This is true both for the integrated light, and for nuclear colors. We find a weak correlation between Mg2 and FUV-NUV. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology.

  13. Modelling the diffuse dust emission around Orion

    NASA Astrophysics Data System (ADS)

    Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti

    2018-06-01

    We have studied the diffuse radiation in the surroundings of M42 using photometric data from the Galaxy Evolution Explorer (GALEX) in the far-ultraviolet (FUV) and infrared observations of the AKARI space telescope. The main source of the FUV diffuse emission is the starlight from the Trapezium stars scattered by dust in front of the nebula. We initially compare the diffuse FUV with the far-infrared (FIR) observations at the same locations. The FUV-IR correlations enable us to determine the type of dust contributing to this emission. We then use an existing model for studying the FUV dust scattering in Orion to check if it can be extended to regions away from the centre in a 10 deg radius. We obtain an albedo, α = 0.7 and scattering phase function asymmetry factor, g = 0.6 as the median values for our dust locations on different sides of the central Orion region. We find a uniform value of optical parameters across our sample of locations with the dust properties varying significantly from those at the centre of the nebula.

  14. Preservation of far-UV aluminum reflectance by means of overcoating with C60 films.

    PubMed

    Méndez, J A; Larruquert, J I; Aznárez, J A

    2000-01-01

    Thin films of C(60) were investigated as protective coatings of Al films to preserve their far-UV (FUV) reflectance by inhibition or retardation of their oxidation. Two methods were used for the overcoating of Al films with approximately one monolayer of C(60): (1) deposition of a multilayer film followed by temperature desorption of all but one monolayer and (2) direct deposition of approximately one-monolayer film. We exposed both types of sample to controlled doses of molecular oxygen and water vapor and measured their FUV reflectance before and after exposure to evaluate the achieved protection on the Al films. The whole process of sample preparation, reflectance measurement, sample heating, and oxidation was made without breaking vacuum. Results show that a C(60) monolayer protected Al from oxidation to some extent, although FUV reflectance of unprotected Al films was never exceeded. FUV optical constants of C(60) films and the FUV reflectance of the C(60) film as deposited and as a function of exposure to O(2) were also measured.

  15. Visible camera cryostat design and performance for the SuMIRe Prime Focus Spectrograph (PFS)

    NASA Astrophysics Data System (ADS)

    Smee, Stephen A.; Gunn, James E.; Golebiowski, Mirek; Hope, Stephen C.; Madec, Fabrice; Gabriel, Jean-Francois; Loomis, Craig; Le fur, Arnaud; Dohlen, Kjetil; Le Mignant, David; Barkhouser, Robert; Carr, Michael; Hart, Murdock; Tamura, Naoyuki; Shimono, Atsushi; Takato, Naruhisa

    2016-08-01

    We describe the design and performance of the SuMIRe Prime Focus Spectrograph (PFS) visible camera cryostats. SuMIRe PFS is a massively multi-plexed ground-based spectrograph consisting of four identical spectrograph modules, each receiving roughly 600 fibers from a 2394 fiber robotic positioner at the prime focus. Each spectrograph module has three channels covering wavelength ranges 380 nm - 640 nm, 640 nm - 955 nm, and 955 nm - 1.26 um, with the dispersed light being imaged in each channel by a f/1.07 vacuum Schmidt camera. The cameras are very large, having a clear aperture of 300 mm at the entrance window, and a mass of 280 kg. In this paper we describe the design of the visible camera cryostats and discuss various aspects of cryostat performance.

  16. X-Ray, UV and Optical Observations of Classical Cepheids: New Insights into Cepheid Evolution, and the Heating and Dynamics of Their Atmospheres

    NASA Astrophysics Data System (ADS)

    Engle, Scott G.; Guinan, Edward F.

    2012-06-01

    To broaden the understanding of classical Cepheid structure, evolution and atmospheres, we have extended our continuing secret lives of Cepheids program by obtaining XMM/Chandra X-ray observations, and Hubble space telescope (HST) / cosmic origins spectrograph (COS) FUV-UV spectra of the bright, nearby Cepheids Polaris, δ Cep and β Dor. Previous studies made with the international ultraviolet explorer (IUE) showed a limited number of UV emission lines in Cepheids. The well-known problem presented by scattered light contamination in IUE spectra for bright stars, along with the excellent sensitivity & resolution combination offered by HST/COS, motivated this study, and the spectra obtained were much more rich and complex than we had ever anticipated. Numerous emission lines, indicating 10^4 K up to ~3 x 10^5 K plasmas, have been observed, showing Cepheids to have complex, dynamic outer atmospheres that also vary with the photospheric pulsation period. The FUV line emissions peak in the phase range φ ∼ 0.8-1.0 and vary by factors as large as 10x. A more complete picture of Cepheid outer atmospheres is accomplished when the HST/COS results are combined with X-ray observations that we have obtained of the same stars with XMM-Newton & Chandra. The Cepheids detected to date have X-ray luminosities of log Lx ~ 28.5-29.1 ergs/sec, and plasma temperatures in the 2-8 x 10^6 K range. Given the phase-timing of the enhanced emissions, the most plausible explanation is the formation of a pulsation-induced shocks that excite (and heat) the atmospheric plasmas surrounding the photosphere. A pulsation-driven α^2 equivalent dynamo mechanism is also a viable and interesting alternative. However, the tight phase-space of enhanced emission (peaking near 0.8-1.0 φ) favor the shock heating mechanism hypothesis.

  17. VizieR Online Data Catalog: Dwarf galaxies surface brightness profiles. II. (Herrmann+, 2016)

    NASA Astrophysics Data System (ADS)

    Herrmann, K. A.; Hunter, D. A.; Elmegreen, B. G.

    2016-07-01

    Our galaxy sample (see Table1) is derived from the survey of nearby (>30Mpc) late-type galaxies conducted by Hunter & Elmegreen 2006 (cat. J/ApJS/162/49). The full survey includes 94 dwarf Irregulars (dIms), 26 Blue Compact Dwarfs (BCDs), and 20 Magellanic-type spirals (Sms). The 141 dwarf sample presented in the first paper of the present series (Paper I; Herrmann et al. 2013, Cat. J/AJ/146/104) contains one fewer Sm galaxy and two additional dIm systems than the original survey. A multi-wavelength data set has been assembled for these galaxies. The data include Hα images (129 galaxies with detections) to trace star formation over the past 10Myr (Hunter & Elmegreen 2004, Cat. J/AJ/128/2170) and satellite UV images (61 galaxies observed) obtained with the Galaxy Evolution Explorer (GALEX) to trace star formation over the past ~200Myr. The GALEX data include images from two passbands with effective wavelengths of 1516Å (FUV) and 2267Å (NUV) and resolutions of 4'' and 5.6'', respectively. Three of the galaxies in our sample with NUV data do not have FUV data. To trace older stars we have UBV images, which are sensitive to stars formed over the past 1Gyr for on-going star formation, and images in at least one band of JHK for 40 galaxies in the sample, which integrates the star formation over the galaxy's lifetime. Note that nine dwarfs are missing UB data and three more are missing U-band data. In addition we made use of 3.6μm images (39 galaxies) obtained with the Infrared Array Camera (IRAC) in the Spitzer archives also to probe old stars. (3 data files).

  18. PISCES High Contrast Integral Field Spectrograph Simulations and Data Reduction Pipeline

    NASA Technical Reports Server (NTRS)

    Llop Sayson, Jorge Domingo; Memarsadeghi, Nargess; McElwain, Michael W.; Gong, Qian; Perrin, Marshall; Brandt, Timothy; Grammer, Bryan; Greeley, Bradford; Hilton, George; Marx, Catherine

    2015-01-01

    The PISCES (Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies) is a lenslet array based integral field spectrograph (IFS) designed to advance the technology readiness of the WFIRST (Wide Field Infrared Survey Telescope)-AFTA (Astrophysics Focused Telescope Assets) high contrast Coronagraph Instrument. We present the end to end optical simulator and plans for the data reduction pipeline (DRP). The optical simulator was created with a combination of the IDL (Interactive Data Language)-based PROPER (optical propagation) library and Zemax (a MatLab script), while the data reduction pipeline is a modified version of the Gemini Planet Imager's (GPI) IDL pipeline. The simulations of the propagation of light through the instrument are based on Fourier transform algorithms. The DRP enables transformation of the PISCES IFS data to calibrated spectral data cubes.

  19. Those Crafty Cepheids: Surprises From Ground-Based Photometry and HST-COS FUV Spectra

    NASA Astrophysics Data System (ADS)

    Engle, Scott G.; Guinan, E. F.; Neilson, H.; Wasatonic, R. P.; Harper, G.

    2013-06-01

    Several years ago the Secret Lives of Cepheids (SLiC) program was initiated to look for unexpected or exotic behaviors from Cepheids. Regular photometric monitoring of Cepheids already possessing robust historical datasets was started to better understand long-term pulsation period changes, but to look for possible amplitude changes as well. At the time, only two “unusual” Cepheids were known to have undergone amplitude changes - Polaris and V473 Lyr. To date, however, the SLiC program has found evidence for amplitude changes in seven other Cepheids, raising the possibility that a "Blazhko effect" could be at work in certain Cepheids, as exists in a subset of RR Lyr stars. As the program expanded, we found that previous International Ultraviolet Exporer (IUE) studies showed certain Cepheids to have UV emissions from warm-to-hot stellar atmospheres. On top of that, the emissions were variable and well-phased to the stellar pulsation period, indicating that the mechanism heating the Cepheid atmosphere was influenced by these pulsations, if not linked to them. With the installation of the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), a modern, high-quality UV spectrograph was now operating that could efficiently obtain high-resolution spectra of the Cepheids. We have been fortunate to observe four Cepheids to date with COS, and the results are well beyond anything IUE had led us to expect. Here we will present the current optical and UV results of the SLiC program, the implications of the results, and the future direction and expansion of the program. We gratefully acknowledge support for this program from HST grants HST-GO-11726.01-A, HST-GO-12302.01-A and HST-GO-13019.01-A, as well as NSF/RUI grant AST-1009903.

  20. Calibration of the Voyager Ultraviolet Spectrometers and the Composition of the Heliosphere Neutrals: Reassessment

    NASA Astrophysics Data System (ADS)

    Ben-Jaffel, Lotfi; Holberg, J. B.

    2016-06-01

    The data harvest from the Voyagers’ (V 1 and V 2) Ultraviolet Spectrometers (UVS) covers encounters with the outer planets, measurements of the heliosphere sky-background, and stellar spectrophotometry. Because their period of operation overlaps with many ultraviolet missions, the calibration of V1 and V2 UVS with other spectrometers is invaluable. Here we revisit the UVS calibration to assess the intriguing sensitivity enhancements of 243% (V1) and 156% (V2) proposed recently. Using the Lyα airglow from Saturn, observed in situ by both Voyagers, and remotely by International Ultraviolet Explorer (IUE), we match the Voyager values to IUE, taking into account the shape of the Saturn Lyα line observed with the Goddard High Resolution Spectrograph on board the Hubble Space Telescope. For all known ranges of the interplanetary hydrogen density, we show that the V1 and V2 UVS sensitivities cannot be enhanced by the amounts thus far proposed. The same diagnostic holds for distinct channels covering the diffuse He I 58.4 nm emission. Our prescription is to keep the original calibration of the Voyager UVS with a maximum uncertainty of 30%, making both instruments some of the most stable EUV/FUV spectrographs in the history of space exploration. In that frame, we reassess the excess Lyα emission detected by Voyager UVS deep in the heliosphere, to show its consistency with a heliospheric but not galactic origin. Our finding confirms results obtained nearly two decades ago—namely, the UVS discovery of the distortion of the heliosphere and the corresponding obliquity of the local interstellar magnetic field (˜ 40^\\circ from upwind) in the solar system neighborhood—without requiring any revision of the Voyager UVS calibration.

  1. Variability in the vacuum-ultraviolet transmittance of magnesium fluoride windows. [for Space Telescope Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Herzig, Howard; Fleetwood, Charles M., Jr.; Toft, Albert R.

    1992-01-01

    Sample window materials tested during the development of a domed magnesium fluoride detector window for the Hubble Space Telescope's Imaging Spectrograph are noted to exhibit wide variability in VUV transmittance; a test program was accordingly instituted to maximize a prototype domed window's transmittance. It is found that VUV transmittance can be maximized if the boule from which the window is fashioned is sufficiently large to allow such a component to be cut from the purest available portion of the boule.

  2. The Structure and Variability of Extended S II 1256Å Emission Near Io

    NASA Astrophysics Data System (ADS)

    Woodward, R. C.; Roesler, F. L.; Oliversen, R. J.; Smyth, W. H.; Moos, H. W.; Bagenal, F.

    2001-05-01

    Since the first Space Telescope Imaging Spectrograph (STIS) observations of Io in 1997 [1], 32 spectrally dispersed STIS images of Io containing the S II 1256Å line have been obtained during eight ``visits'' (observing sequences). Each image is a 2'' x 25'' rectangle containing Io, which includes emission out to 15--40 Io radii from the moon, depending on viewing geometry. After carefully removing contamination from spectrally adjacent lines, the variable dark current in the STIS FUV MAMA, and the contribution of the foreground/background plasma torus, we have examined the S II 1256Å emission away from the surface of Io in each image. We have also compared these data with the overall plasma torus, as seen in [S II] 6731Å groundbased images [2] (which have been acquired throughout this time period, and overlap three of the eight visits in particular). We find that the S II 1256Å emission is quite different from the neutral O and S UV emission observed simultaneously. It falls off more slowly and less symmetrically, and has greater temporal variability; these effects cannot adequately be explained as a simple function of phase, viewing geometry, and System~III magnetic longitude, although a System~III dependence is present. Earlier [3], we reported a large, highly asymmetric brightening in the extended S II 1256Å emission on 14 October 1997, correlated with brightenings in neutral O and S UV lines in the same STIS data and with [O I] 6300Å observed from the ground; this brightening is now seen to be unique in the full dataset, both in brightness and in asymmetry. (This is consistent with the much larger groundbased [O I] 6300Å dataset [4], in which features comparable to the 14 October 1997 brightening are rare.) These and other results, and their implications for the Io-torus interaction, will be discussed. This work was supported in part by NASA grants NAS5-30131 and NAG5-6546, and RTOP 344-32-30. References: [1] Roesler et al., Science 283, 353 (1999). [2] Woodward et al., B.A.A.S. 32, 1059 (2000). [3] Woodward et al., Eos 81, S290 (2000). [4] Oliversen et al., J.G.R., in press.

  3. Optical design of a versatile FIRST high-resolution near-IR spectrograph

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Ge, Jian

    2012-09-01

    We report the update optical design of a versatile FIRST high resolution near IR spectrograph, which is called Florida IR Silicon immersion grating spectromeTer (FIRST). This spectrograph uses cross-dispersed echelle design with white pupils and also takes advantage of the image slicing to increase the spectra resolution, while maintaining the instrument throughput. It is an extremely high dispersion R1.4 (blazed angle of 54.74°) silicon immersion grating with a 49 mm diameter pupil is used as the main disperser at 1.4μm -1.8μm to produce R=72,000 while an R4 echelle with the same pupil diameter produces R=60,000 at 0.8μm -1.35μm. Two cryogenic Volume Phase Holographic (VPH) gratings are used as cross-dispersers to allow simultaneous wavelength coverage of 0.8μm -1.8μm. The butterfly mirrors and dichroic beamsplitters make a compact folding system to record these two wavelength bands with a 2kx2k H2RG array in a single exposure. By inserting a mirror before the grating disperser (the SIG and the echelle), this spectrograph becomes a very efficient integral field 3-D imaging spectrograph with R=2,000-4,000 at 0.8μm-1.8μm by coupling a 10x10 telescope fiber bundle with the spectrograph. Details about the optical design and performance are reported.

  4. Supercontinuum ultra-high resolution line-field OCT; experimental spectrograph comparison and comparison with current clinical OCT systems by the imaging of a human cornea

    NASA Astrophysics Data System (ADS)

    Lawman, Samuel; Romano, Vito; Madden, Peter W.; Mason, Sharon; Williams, Bryan M.; Zheng, Yalin; Shen, Yao-Chun

    2018-03-01

    Ultra high axial resolution (UHR) was demonstrated early in the development of optical coherence tomography (OCT), but has not yet reached clinical practice. We present the combination of supercontinuum light source and line field (LF-) OCT as a technical and economical route to get UHR-OCT into clinic and other OCT application areas. We directly compare images of a human donor cornea taken with low and high resolution current generation clinical OCT systems with UHR-LF-OCT. These images highlight the massive information increase of UHR-OCT. Application to pharmaceutical pellets, and the functionality and imaging performance of different imaging spectrograph choices for LF- OCT are also demonstrated.

  5. The Photoevaporation of a Neutral Structure by an EUV+FUV Radiation Field

    NASA Astrophysics Data System (ADS)

    Lora, Veronica; Vasconcelos, M. J.; Raga, A. C.; Cerqueira, A. H.; Esquivel, A.

    The expansion of an HII region into a surrounding inhomogeneous molecular cloud, leads to the formation of elongated "elephant trunk" structures. The EUV photo-ionising radiation and FUV dissociating radiation from newly born stars photo-evaporate their parental neutral cloud, leading to the formation of dense clumps in the tips of elephant trunks, that could in principle eventually form stars. We study th effects of including a photo-dissociating FUV flux in models of fragmentation of a photo-evaporating, self-gravitating molecular cloud.

  6. Initial Results of a Large-scale Statistical Survey of Small-scale UV Bursts with IRIS and SDO

    NASA Astrophysics Data System (ADS)

    Madsen, C. A.; DeLuca, E.

    2016-12-01

    UV bursts are small-scale ( 1 arcsec or less) brightenings observed in the NUV/FUV passbands of the Interface Region Imaging Spectrograph (IRIS). These peculiar phenomena are found exclusively in active regions and exhibit dramatic and defining spectroscopic characteristics. In particular, they present intense broadening and splitting, often in excess of 70 km s-1, in all bright emission lines observable by IRIS. Furthermore, these broadened lines also display strong absorption from cool metallic ions such as Fe II and Ni II which typically populate the chromosphere. These features suggest that bursts are bidirectional plasma flows at transition region temperatures embedded much farther down in the cool chromosphere. To better characterize these phenomena, we have launched a statistical survey encompassing the entire IRIS data catalogue to date and its accompanying data from the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI). We sample a wide variety of IRIS observations of Si IV lines, ranging from large 400-step rasters for large detection rates to short-cadence sit-and-stare observations to provide in-depth time evolution data of individual bursts. Detection is streamlined by a semi-automated method that isolates characteristic burst spectra based on single-Gaussian fit parameters, greatly reducing search times in the vast IRIS catalogue. Our initial results demonstrate that UV bursts tend to appear when active regions are young and actively emerging, preferring to populate poorly developed inversion lines composed of numerous small mixed-polarity regions. Burst occurrence rates peak at 30-70 per hour in young active regions, decreasing as those regions age. We also find dramatic variations in spectral morphology in spatial scans of bursts with many split into distinct, opposing, resolved regions of blueshifts and redshifts. Finally, we find little evidence for coronal counterparts in AIA 171 Å, but we do find that a significant ratio of bursts coincide with localized bright features in AIA 1700 Å, lending support to the link between bursts and Ellerman bombs. With further involvement in the survey, we hope to constrain the burst/Ellerman bomb coincidence, the time evolution of burst spectral morphologies, and the distribution of their peak kinetic energies.

  7. IRIS Observations of Spicules and Structures Near the Solar Limb

    NASA Astrophysics Data System (ADS)

    Alissandrakis, C. E.; Vial, J.-C.; Koukras, A.; Buchlin, E.; Chane-Yook, M.

    2018-02-01

    We have analyzed Interface Region Imaging Spectrograph (IRIS) spectral and slit-jaw observations of a quiet region near the South Pole. In this article we present an overview of the observations, the corrections, and the absolute calibration of the intensity. We focus on the average profiles of strong (Mg ii h and k, C ii and Si iv), as well as of weak spectral lines in the near ultraviolet (NUV) and the far ultraviolet (FUV), including the Mg ii triplet, thus probing the solar atmosphere from the low chromosphere to the transition region. We give the radial variation of bulk spectral parameters as well as line ratios and turbulent velocities. We present measurements of the formation height in lines and in the NUV continuum from which we find a linear relationship between the position of the limb and the intensity scale height. We also find that low forming lines, such as the Mg ii triplet, show no temporal variations above the limb associated with spicules, suggesting that such lines are formed in a homogeneous atmospheric layer and, possibly, that spicules are formed above the height of 2''. We discuss the spatio-temporal structure of the atmosphere near the limb from images of intensity as a function of position and time. In these images, we identify p-mode oscillations in the cores of lines formed at low heights above the photosphere, slow-moving bright features in O i and fast-moving bright features in C ii. Finally, we compare the Mg ii k and h line profiles, together with intensity values of the Balmer lines from the literature, with computations from the PROM57Mg non-LTE model, developed at the Institut d' Astrophysique Spatiale, and estimated values of the physical parameters. We obtain electron temperatures in the range of {˜} 8000 K at small heights to {˜} 20 000 K at large heights, electron densities from 1.1× 10^{11} to 4× 10^{10} cm^{-3} and a turbulent velocity of {˜} 24 km s^{-1}.

  8. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2006-06-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  9. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2008-07-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' × 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5' × 0.5') imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  10. DMDs for multi-object near-infrared spectrographs in astronomy

    NASA Astrophysics Data System (ADS)

    Smee, Stephen A.; Barkhouser, Robert; Hope, Stephen; Conley, Devin; Gray, Aidan; Hope, Gavin; Robberto, Massimo

    2018-02-01

    The Digital Micromirror Device (DMD), typically used in projection screen technology, has utility in instrumentation for astronomy as a digitally programmable slit in a spectrograph. When placed at an imaging focal plane the device can be used to selectively direct light from astronomical targets into the optical path of a spectrograph, while at the same time directing the remaining light into an imaging camera, which can be used for slit alignment, science imaging, or both. To date the use of DMDs in astronomy has been limited, especially for instruments that operate in the near infrared (1 - 2.5 μm). This limitation is due in part to a host of technical challenges with respect to DMDs that, to date, have not been thoroughly explored. Those challenges include operation at cryogenic temperature, control electronics that facilitate DMD use at these temperatures, window coatings properly coated for the near infrared bandpass, and scattered light. This paper discusses these technical challenges and presents progress towards understanding and mitigating them.

  11. Mauna Kea Spectrographic Explorer (MSE): a conceptual design for multi-object high resolution spectrograph

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhu, Yongtian; Hu, Zhongwen

    2016-08-01

    The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 40,000. MSE will develop two spectrographic facilities to meet the science requirements. These are respectively, the Low/Medium Resolution spectrographs (LMRS) and High Resolution spectrographs (HRS). Multi-object high resolution spectrographs with total of 1,156 fibers is a big challenge, one that has never been attempted for a 10m class telescope. To date, most spectral survey facilities work in single order low/medium resolution mode, and only a few Wide Field Spectrographs (WFS) provide a cross-dispersion high resolution mode with a limited number of orders. Nanjing Institute of Astronomical Optics and Technology (NIAOT) propose a conceptual design with the use of novel image slicer arrays and single order immersed Volume Phase Holographic (VPH) grating for the MSE multi-object high resolution spectrographs. The conceptual scheme contains six identical fiber-link spectrographs, each of which simultaneously covers three restricted bands (λ/30, λ/30, λ/15) in the optical regime, with spectral resolution of 40,000 in Blue/Visible bands (400nm / 490nm) and 20,000 in Red band (650nm). The details of the design is presented in this paper.

  12. VizieR Online Data Catalog: UV and IR properties for galaxies (Mao+, 2014)

    NASA Astrophysics Data System (ADS)

    Mao, Y.-W.; Kong, X.; Lin, L.

    2017-03-01

    Broadband FUV and NUV imaging data were obtained from GALEX observations and downloaded from the Multimission Archive at Space Telescope Science Institute (MAST) Web site (http://galex.stsci.edu/); 8um (dust-only) and 24um images were observed by the Spitzer Space Telescope (Spitzer) and retrieved from the SINGS data distribution service (http://irsa.ipac.caltech.edu/data/SPITZER/SINGS/). Hα narrowband imaging data are also employed in this work. The Hα narrowband image for NGC 3031 was observed by the 60/90 cm Schmidt telescope at Xing-Long station of the National Astronomical Observatories of China with the filter of transmission profile FWHM~120Å. (2 data files).

  13. Laboratory Testing and Performance Verification of the CHARIS Integral Field Spectrograph

    NASA Technical Reports Server (NTRS)

    Groff, Tyler D.; Chilcote, Jeffrey; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Carr, Michael A.; Brandt, Timothy; Knapp, Gillian; Limbach, Mary Anne; Guyon, Olivier; hide

    2016-01-01

    The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) that has been built for the Subaru telescope. CHARIS has two imaging modes; the high-resolution mode is R82, R69, and R82 in J, H, and K bands respectively while the low-resolution discovery mode uses a second low-resolution prism with R19 spanning 1.15-2.37 microns (J+H+K bands). The discovery mode is meant to augment the low inner working angle of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) adaptive optics system, which feeds CHARIS a coronagraphic image. The goal is to detect and characterize brown dwarfs and hot Jovian planets down to contrasts five orders of magnitude dimmer than their parent star at an inner working angle as low as 80 milliarcseconds. CHARIS constrains spectral crosstalk through several key aspects of the optical design. Additionally, the repeatability of alignment of certain optical components is critical to the calibrations required for the data pipeline. Specifically the relative alignment of the lens let array, prism, and detector must be highly stable and repeatable between imaging modes. We report on the measured repeatability and stability of these mechanisms, measurements of spectral crosstalk in the instrument, and the propagation of these errors through the data pipeline. Another key design feature of CHARIS is the prism, which pairs Barium Fluoride with Ohara L-BBH2 high index glass. The dispersion of the prism is significantly more uniform than other glass choices, and the CHARIS prisms represent the first NIR astronomical instrument that uses L-BBH2as the high index material. This material choice was key to the utility of the discovery mode, so significant efforts were put into cryogenic characterization of the material. The final performance of the prism assemblies in their operating environment is described in detail. The spectrograph is going through final alignment, cryogenic cycling, and is being delivered to the Subaru telescope in April 2016. This paper is a report on the laboratory performance of the spectrograph, and its current status in the commissioning process so that observers will better understand the instrument capabilities. We will also discuss the lessons learned during the testing process and their impact on future high-contrast imaging spectrographs for wavefront control.

  14. Molecular line tracers of high-mass star forming regions

    NASA Astrophysics Data System (ADS)

    Nagy, Zsofia; Van der Tak, Floris; Ossenkopf, Volker; Bergin, Edwin; Black, John; Faure, Alexandre; Fuller, Gary; Gerin, Maryvonne; Goicoechea, Javier; Joblin, Christine; Le Bourlot, Jacques; Le Petit, Franck; Makai, Zoltan; Plume, Rene; Roellig, Markus; Spaans, Marco; Tolls, Volker

    2013-07-01

    High-mass stars influence their environment in different ways including feedback via their FUV radiation. The penetration of FUV photons into molecular clouds creates Photon Dominated Regions (PDRs) with different chemical layers where the mainly ionized medium changes into mainly molecular. Different chemical layers in PDRs are traced by different species observable at sub-mm and Far Infrared wavelengths. In this poster we present results from two molecular line surveys. One of them is the James Clerk Maxwell Telescope (JCMT) Spectral Legacy Survey (SLS) toward the luminous (>10^7 L_Sun), massive (~10^6 M_Sun), and distant (11.4 kpc) star-forming region W49A. The SLS images a 2x2 arcminute field toward W49A in the 330-373 GHz frequency range. The detected molecular lines reveal a complex chemistry and the importance of FUV-irradiation in the heating and chemistry of the region. The other line survey presented in the poster is part of the HEXOS (Herschel observations of EXtra-Ordinary Sources, PI: E. Bergin) key program using the Herschel Space Observatory and is toward the nearby (~420 pc) prototypical edge-on Orion Bar PDR and the dense molecular condensation Orion S. Reactive ions, such as CH+, SH+, and CO+, detected as a part of this line survey trace the warm (~500-1000 K) surface region of PDRs. Spectrally resolved HIFI and spectrally unresolved PACS spectra give constraints on the chemistry and excitation of reactive ions in these regions.

  15. Simulating the WFIRST coronagraph integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Rizzo, Maxime J.; Groff, Tyler D.; Zimmermann, Neil T.; Gong, Qian; Mandell, Avi M.; Saxena, Prabal; McElwain, Michael W.; Roberge, Aki; Krist, John; Riggs, A. J. Eldorado; Cady, Eric J.; Mejia Prada, Camilo; Brandt, Timothy; Douglas, Ewan; Cahoy, Kerri

    2017-09-01

    A primary goal of direct imaging techniques is to spectrally characterize the atmospheres of planets around other stars at extremely high contrast levels. To achieve this goal, coronagraphic instruments have favored integral field spectrographs (IFS) as the science cameras to disperse the entire search area at once and obtain spectra at each location, since the planet position is not known a priori. These spectrographs are useful against confusion from speckles and background objects, and can also help in the speckle subtraction and wavefront control stages of the coronagraphic observation. We present a software package, the Coronagraph and Rapid Imaging Spectrograph in Python (crispy) to simulate the IFS of the WFIRST Coronagraph Instrument (CGI). The software propagates input science cubes using spatially and spectrally resolved coronagraphic focal plane cubes, transforms them into IFS detector maps and ultimately reconstructs the spatio-spectral input scene as a 3D datacube. Simulated IFS cubes can be used to test data extraction techniques, refine sensitivity analyses and carry out design trade studies of the flight CGI-IFS instrument. crispy is a publicly available Python package and can be adapted to other IFS designs.

  16. Doppler Imaging with FUSE: The Partially Eclipsing Binary VW Cep

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Brickhouse, Nancy

    2003-01-01

    This report covers the FUSE Guest Observer program. This project involves the study of emission line profiles for the partially eclipsing, rapidly rotating binary system VW Cep. Active regions on the surface of the star(s) produce observable line shifts as the stars move with respect to the observer. By studying the time-dependence of the line profile changes and centroid shifts, one can determine the location of the activity. FUSE spectra were obtained by the P.I. 27 Sept 2002 and data reduction is in progress. Since we are interested in line profile analysis, we are now investigating the wavelength scale calibration in some detail. We have also obtained and are analyzing Chandra data in order to compare the X-ray velocities with the FUV velocities. A complementary project comparing X-ray and Far UltraViolet (FUV) emission for the similar system 44i Boo is also underway. Postdoctoral fellow Ronnie Hoogerwerf has joined the investigation team and will perform the data analysis, once the calibration is optimized.

  17. The Massive Star Content of Circumnuclear Star Clusters in M83

    NASA Astrophysics Data System (ADS)

    Wofford, A.; Chandar, R.; Leitherer, C.

    2011-06-01

    The circumnuclear starburst of M83 (NGC 5236), the nearest such example (4.6 Mpc), constitutes an ideal site for studying the massive star IMF at high metallicity (12+log[O/H]=9.1±0.2, Bresolin & Kennicutt 2002). We analyzed archival HST/STIS FUV imaging and spectroscopy of 13 circumnuclear star clusters in M83. We compared the observed spectra with two types of single stellar population (SSP) models; semi-empirical models, which are based on an empirical library of Galactic O and B stars observed with IUE (Robert et al. 1993), and theoretical models, which are based on a new theoretical UV library of hot massive stars described in Leitherer et al. (2010) and computed with WM-Basic (Pauldrach et al. 2001). The models were generated with Starburst99 (Leitherer & Chen 2009). We derived the reddenings, the ages, and the masses of the clusters from model fits to the FUV spectroscopy, as well as from optical HST/WFC3 photometry.

  18. Inner Magnetosphere Imager (IMI) instrument heritage

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.

    1993-01-01

    This report documents the heritage of instrument concepts under consideration for the Inner Magnetosphere Imager (IMI) mission. The proposed IMI will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences as well as local observations. To obtain simultaneous images of component regions of the inner magnetosphere, measurements will be made of: (1) the ring current and inner plasma sheet using energetic neutral atoms; (2) the plasmasphere using extreme ultraviolet; (3) the electron and proton auroras using far ultraviolet and x rays; and (4) the geocorona using FUV. Instrument concepts that show heritage and traceability to those that will be required to meet the IMI measurement objectives are described.

  19. The Atmosphere of Mars and the MAVEN Mission: Cross-calibrating NGIMS and IUVS

    NASA Astrophysics Data System (ADS)

    AlAwar, Khalid; Lillis, Robert; Fillingim, Matthew

    2016-10-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) has two instruments which are used to determine the neutral gas composition of Mars atmosphere: the Imaging UltraViolet Spectrograph (IUVS) and the Neutral Gas and Ion Mass Spectrometer (NGIMS). A detailed comparison between the two is needed in order to verify the integrity of both datasets.Our approach is divided into two stages. First, we compare neutral densities measured by NGIMS in situ and those derived from remote scans of the nearby planetary limb by IUVS, both taken at periapsis. The data resulting from the comparison show that the data is consistent between the two instruments for periapsis near the subsolar point The second stage is to validate the retrievals from the IUVS FUV scans of the Martian disk made from apoapsis by comparing with the NGIMS in situ density measurements. We first process the NGIMS data to be in the same units as the disk scan, i.e. ratios of CO2/CO and CO2/O in the topside column in which the altitude-integrated number density of CO2 is 1016 , cm-2). Since NGIMS is taken at periapsis and IUVS Disk scans are taken at apoapsis, it is not possible to compare data results from the same or nearby orbits. Ideally, it would be best to compare data at the same seasons, however this is not possible because MAVEN has not yet completed a full martian year. Our approach to overcome this obstacle was to review all times where valid data is available and examine data sets occurring at similar environmental conditions. We will present these results.

  20. A Novel Method for Age Estimation in Solar-Type Stars Through GALEX FUV Magnitudes

    NASA Astrophysics Data System (ADS)

    Ho, Kelly; Subramonian, Arjun; Smith, Graeme; Shouru Shieh

    2018-01-01

    Utilizing an inverse association known to exist between Galaxy Evolution Explorer (GALEX) far ultraviolet (FUV) magnitudes and the chromospheric activity of F, G, and K dwarfs, we explored a method of age estimation in solar-type stars through GALEX FUV magnitudes. Sample solar-type star data were collected from refereed publications and filtered by B-V and absolute visual magnitude to ensure similarities in temperature and luminosity to the Sun. We determined FUV-B and calculated a residual index Q for all the stars, using the temperature-induced upper bound on FUV-B as the fiducial. Plotting current age estimates for the stars against Q, we discovered a strong and significant association between the variables. By applying a log-linear transformation to the data to produce a strong correlation between Q and loge Age, we confirmed the association between Q and age to be exponential. Thus, least-squares regression was used to generate an exponential model relating Q to age in solar-type stars, which can be used by astronomers. The Q-method of stellar age estimation is simple and more efficient than existing spectroscopic methods and has applications to galactic archaeology and stellar chemical composition analysis.

  1. Observations of the Magnetic Cataclysmic Variable VV Puppis with the Far Ultraviolet Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Hoard, D. W.; Szkody, Paula; Ishioka, Ryoko; Ferrario, L.; Gänsicke, B. T.; Schmidt, Gary D.; Kato, Taichi; Uemura, Makoto

    2002-10-01

    We present the first far-ultraviolet (FUV) observations of the magnetic cataclysmic variable VV Puppis, obtained with the Far Ultraviolet Spectroscopic Explorer satellite. In addition, we have obtained simultaneous ground-based optical photometric observations of VV Pup during part of the FUV observation. The shapes of the FUV and optical light curves are consistent with each other and with those of past observations at optical, extreme-ultraviolet, and X-ray wavelengths. Time-resolved FUV spectra during the portion of VV Pup's orbit when the accreting magnetic pole of the white dwarf can be seen show an increasing continuum level as the accretion spot becomes more directly visible. The most prominent features in the spectrum are the O VI λλ1031.9, 1037.6 emission lines. We interpret the shape and velocity shift of these lines in the context of an origin in the accretion funnel near the white dwarf surface. A blackbody function with Tbb>~90,000 K provides an adequate fit to the FUV spectral energy distribution of VV Pup. Based on observations with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by Johns Hopkins University under NASA contract NAS 5-32985.

  2. GMTIFS: The Giant Magellan Telescope integral fields spectrograph and imager

    NASA Astrophysics Data System (ADS)

    Sharp, Rob; Bloxham, G.; Boz, R.; Bundy, D.; Davies, J.; Espeland, B.; Fordham, B.; Hart, J.; Herrald, N.; Nielsen, J.; Vaccarella, A.; Vest, C.; Young, P.; McGregor, P.

    2016-08-01

    GMTIFS is the first-generation adaptive optics integral-field spectrograph for the GMT, having been selected through a competitive review process in 2011. The GMTIFS concept is for a workhorse single-object integral-field spectrograph, operating at intermediate resolution (R 5,000 and 10,000) with a parallel imaging channel. The IFS offers variable spaxel scales to Nyquist sample the diffraction limited GMT PSF from λ 1-2.5 μm as well as a 50 mas scale to provide high sensitivity for low surface brightness objects. The GMTIFS will operate with all AO modes of the GMT (Natural guide star - NGSAO, Laser Tomography - LTAO, and, Ground Layer - GLAO) with an emphasis on achieving high sky coverage for LTAO observations. We summarize the principle science drivers for GMTIFS and the major design concepts that allow these goals to be achieved.

  3. Cycle 24 COS FUV Internal/External Wavelength Scale Monitor

    NASA Astrophysics Data System (ADS)

    Fischer, William J.

    2018-02-01

    We report on the monitoring of the COS FUV wavelength scale zero-points during Cycle 24 in program 14855. Select cenwaves were monitored for all FUV gratings at Lifetime Position 3. The target and cenwaves have remained the same since Cycle 21, with a change only to the target acquisition sequence. All measured offsets are within the error goals, although the G140L cenwaves show offsets at the short-wavelength end of segment A that are approaching the tolerance. This behavior will be closely monitored in subsequent iterations of the program.

  4. The panchromatic Hubble Andromeda Treasury. VI. The reliability of far-ultraviolet flux as a star formation tracer on subkiloparsec scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simones, Jacob E.; Skillman, Evan D.; Weisz, Daniel R.

    We have used optical observations of resolved stars from the Panchromatic Hubble Andromeda Treasury to measure the recent (<500 Myr) star formation histories (SFHs) of 33 far-UV (FUV)-bright regions in M31. The region areas ranged from ∼10{sup 4} to 10{sup 6} pc{sup 2}, which allowed us to test the reliability of FUV flux as a tracer of recent star formation on subkiloparsec scales. The star formation rates (SFRs) derived from the extinction-corrected observed FUV fluxes were, on average, consistent with the 100 Myr mean SFRs of the SFHs to within the 1σ scatter. Overall, the scatter was larger than themore » uncertainties in the SFRs and particularly evident among the smallest regions. The scatter was consistent with an even combination of discrete sampling of the initial mass function and high variability in the SFHs. This result demonstrates the importance of satisfying both the full-IMF and the constant-SFR assumptions for obtaining precise SFR estimates from FUV flux. Assuming a robust FUV extinction correction, we estimate that a factor of 2.5 uncertainty can be expected in FUV-based SFRs for regions smaller than 10{sup 5} pc{sup 2} or a few hundred parsecs. We also examined ages and masses derived from UV flux under the common assumption that the regions are simple stellar populations (SSPs). The SFHs showed that most of the regions are not SSPs, and the age and mass estimates were correspondingly discrepant from the SFHs. For those regions with SSP-like SFHs, we found mean discrepancies of 10 Myr in age and a factor of 3-4 in mass. It was not possible to distinguish the SSP-like regions from the others based on integrated FUV flux.« less

  5. The mechanical design of CHARIS: an exoplanet IFS for the Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Galvin, Michael B.; Carr, Michael A.; Groff, Tyler D.; Kasdin, N. Jeremy; Fagan, Radford; Hayashi, Masahiko; Takato, Naruhisa

    2014-07-01

    Princeton University is designing and building an integral field spectrograph (IFS), the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), for integration with the Subaru Corona Extreme Adaptive Optics (SCExAO) system and the AO188 adaptive optics system on the Subaru Telescope. CHARIS and SCExAO will measure spectra of hot, young Jovian planets in a coronagraphic image across J, H, and K bands down to an 80 milliarcsecond inner working angle. Here we present the current status of the mechanical design of the CHARIS instrument.

  6. Evolved Late-Type Star FUV Spectra: Mass Loss and Fluorescence

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2005-01-01

    This proposal was for a detailed analysis of the far ultraviolet (FUV) photoionizing radiation that provides crucial input physics for mass loss studies, e.g., observations of the flux below 10448, allow us to constrain the Ca II/Ca III balance and make significant progress beyond previous optical studies on stellar mass loss and circumstellar photochemistry. Our targets selection provided good spectral-type coverage required to help unravel the Ca II/Ca III balance as the mass-loss rates increase by over three orders of magnitude from K5 III to M5 III. We also explored the relationship between the FUV radiation field and other UV diagnostics to allow us to empirically estimate the FUV radiation field for the vast majority of stars which are too faint to be observed with FUSE, and to improve upon their uncertain mass-loss rates.

  7. Technical aspects of the Space Telescope Imaging Spectrograph Repair (STIS-R)

    NASA Astrophysics Data System (ADS)

    Rinehart, S. A.; Domber, J.; Faulkner, T.; Gull, T.; Kimble, R.; Klappenberger, M.; Leckrone, D.; Niedner, M.; Proffitt, C.; Smith, H.; Woodgate, B.

    2008-07-01

    In August 2004, the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) ceased operation due to a failure of the 5V mechanism power converter in the Side 2 Low Voltage Power Supply (LVPS2). The failure precluded movement of any STIS mechanism and, because of the earlier (2001) loss of the Side 1 electronics chain, left the instrument shuttered and in safe mode after 7.5 years of science operations. A team was assembled to analyze the fault and to determine if STIS repair (STIS-R) was feasible. The team conclusively pinpointed the Side 2 failure to the 5V mechanism converter, and began studying EVA techniques for opening STIS during Servicing Mission 4 (SM4) to replace the failed LVPS2 board. The restoration of STIS functionality via surgical repair by astronauts has by now reached a mature and final design state, and will, along with a similar repair procedure for the Advanced Camera for Surveys (ACS), represent a first for Hubble servicing. STIS-R will restore full scientific functionality of the spectrograph on Side 2, while Side 1 will remain inoperative. Because of the high degree of complementarity between STIS and the new Cosmic Origins Spectrograph (COS, to be installed during SM4)), successful repair of the older spectrograph is an important scientific objective. In this presentation, we focus on the technical aspects associated with STIS-R.

  8. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2010-07-01

    An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27 × 27) mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed for seeing-limited (FOV: 4 × 4) imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0.5 × 0.5) imaging and long-slit spectroscopy. Strategic instruments under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support. Over the past two years the LBC and the first LUCIFER instrument have been brought into routine scientific operation and MODS1 commissioning is set to begin in the fall of 2010.

  9. SOAR Optical Imager (SOI) | SOAR

    Science.gov Websites

    SPARTAN Near-IR Camera Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER AVAILABLE SOAR ?: ADS link to SOI instrument SPIE paper Last update: C. Briceño, Aug 23, 2017 SOAR Optical Imager

  10. First light of the CHARIS high-contrast integral-field spectrograph

    NASA Astrophysics Data System (ADS)

    Groff, Tyler; Chilcote, Jeffrey; Brandt, Timothy; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Rizzo, Maxime; Knapp, Gillian; Guyon, Olivier; Jovanovic, Nemanja; Lozi, Julien; Currie, Thayne; Takato, Naruhisa; Hayashi, Masahiko

    2017-09-01

    One of the leading direct Imaging techniques, particularly in ground-based imaging, uses a coronagraphic system and integral field spectrograph (IFS). The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an IFS that has been built for the Subaru telescope. CHARIS has been delivered to the observatory and now sits behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. CHARIS has `high' and `low' resolution operating modes. The high-resolution mode is used to characterize targets in J, H, and K bands at R70. The low-resolution prism is meant for discovery and spans J+H+K bands (1.15-2.37 microns) with a spectral resolution of R18. This discovery mode has already proven better than 15-sigma detections of HR8799c,d,e when combining ADI+SDI. Using SDI alone, planets c and d have been detected in a single 24 second image. The CHARIS team is optimizing instrument performance and refining ADI+SDI recombination to maximize our contrast detection limit. In addition to the new observing modes, CHARIS has demonstrated a design with high robustness to spectral crosstalk. CHARIS has completed commissioning and is open for science observations.

  11. The Hubble Space Telescope: UV, Visible, and Near-Infrared Pursuits

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer

    2010-01-01

    The Hubble Space Telescope continues to push the limits on world-class astrophysics. Cameras including the Advanced Camera for Surveys and the new panchromatic Wide Field Camera 3 which was installed nu last year's successful servicing mission S2N4,o{fer imaging from near-infrared through ultraviolet wavelengths. Spectroscopic studies of sources from black holes to exoplanet atmospheres are making great advances through the versatile use of STIS, the Space Telescope Imaging Spectrograph. The new Cosmic Origins Spectrograph, also installed last year, is the most sensitive UV spectrograph to fly io space and is uniquely suited to address particular scientific questions on galaxy halos, the intergalactic medium, and the cosmic web. With these outstanding capabilities on HST come complex needs for laboratory astrophysics support including atomic and line identification data. I will provide an overview of Hubble's current capabilities and the scientific programs and goals that particularly benefit from the studies of laboratory astrophysics.

  12. Research on vacuum utraviolet calibration technology

    NASA Astrophysics Data System (ADS)

    Wang, Jiapeng; Gao, Shumin; Sun, Hongsheng; Chen, Yinghang; Wei, Jianqiang

    2014-11-01

    Importance of extreme ultraviolet (EUV) and far ultraviolet (FUV) calibration is growing fast as vacuum ultraviolet payloads are wildly used in national space plan. A calibration device is established especially for the requirement of EUV and FUV metrology and measurement. Spectral radiation and detector relative spectral response at EUV and FUV wavelengths can be calibrated with accuracy of 26% and 20%, respectively. The setup of the device, theoretical model and value retroactive method are introduced and measurement of detector relative spectral response from 30 nm to 200 nm is presented in this paper. The calibration device plays an important role in national space research.

  13. A Model for Protostellar Cluster Luminosities and the Impact on the CO–H2 Conversion Factor

    NASA Astrophysics Data System (ADS)

    Gaches, Brandt A. L.; Offner, Stella S. R.

    2018-02-01

    We construct a semianalytic model to study the effect of far-ultraviolet (FUV) radiation on gas chemistry from embedded protostars. We use the protostellar luminosity function (PLF) formalism of Offner & McKee to calculate the total, FUV, and ionizing cluster luminosity for various protostellar accretion histories and cluster sizes. We2 compare the model predictions with surveys of Gould Belt star-forming regions and find that the tapered turbulent core model matches best the mean luminosities and the spread in the data. We combine the cluster model with the photodissociation region astrochemistry code, 3D-PDR, to compute the impact of the FUV luminosity from embedded protostars on the CO-to-H2 conversion factor, X CO, as a function of cluster size, gas mass, and star formation efficiency. We find that X CO has a weak dependence on the FUV radiation from embedded sources for large clusters owing to high cloud optical depths. In smaller and more efficient clusters the embedded FUV increases X CO to levels consistent with the average Milky Way values. The internal physical and chemical structures of the cloud are significantly altered, and X CO depends strongly on the protostellar cluster mass for small efficient clouds.

  14. FAR-ULTRAVIOLET OBSERVATION OF THE AQUILA RIFT WITH FIMS/SPEAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S.-J.; Min, K.-W.; Seon, K.-I.

    2012-07-20

    We present the results of far ultraviolet (FUV) observations of the broad region around the Aquila Rift including the Galactic plane. As compared with various wavelength data sets, dust scattering is found to be the major origin of the diffuse FUV continuum in this region. The FUV intensity clearly correlates with the dust extinction level for E(B - V) < 0.2, while this correlation disappears for E(B - V) > 0.2 due to heavy dust extinction combined with the effect of nonuniform interstellar radiation fields. The FUV intensity also correlates well with H{alpha} intensity, implying that at least some fractionmore » of the observed H{alpha} emission could be the dust-scattered light of H{alpha} photons originating elsewhere in the Galaxy. Most of the Aquila Rift region is seen devoid of diffuse FUV continuum due to heavy extinction while strong emission is observed in the surrounding regions. Molecular hydrogen fluorescent emission lines are clearly seen in the spectrum of 'Aquila-Serpens', while 'Aquila-East' does not show any apparent line features. CO emission intensity is also found to be higher in the 'Aquila-Serpens' region than in the 'Aquila-East' region. In this regard, we note that regions of star formation have been found in 'Aquila-Serpens' but not in 'Aquila-East'.« less

  15. Reionization through Trickery: How to Find the True FUV Spectra of z>6 Quasars

    NASA Astrophysics Data System (ADS)

    O'Dowd, Matthew; Schiminovich, D.; Webster, R. L.; Haiman, Z.

    2011-01-01

    Studies of absorption in the vicinity of z > 6 quasars will enable characterization of the final stages of the epoch of reionization, and measurement of the last remnants of the neutral fraction from the cosmic dark ages. Before this can happen, we will need to know the intrinsic shape of the rest-frame FUV spectrum of luminous quasars, and in particular of the Lyman-Alpha emission line. To date, such measurements have only been possible for local, low luminosity quasars and Seyferts whose FUV spectra are not strongly absorbed in the IGM. These AGN are poor models of their high-luminosity cousins, and the BELR physics driving the Ly-alpha line may be very different. I will outline two approaches to measuring the true, unabsorbed FUV spectra of luminous quasars. First, by observing differential microlensing of strongly lensed quasars at z > 3, I will show how we can algebraically reconstruct the true FUV spectrum, and recover the absorption spectrum and measure the proximity effect to boot. Second, by targeting a narrow redshift range at z 1, we can identify a subsample of luminous quasars that have avoided significant absorption, but are nonetheless genuine analogs of our z > 6 quasars. I will show some preliminary GALEX data of these quasars.

  16. GADICON spectrometer for ionosphere far-ultraviolet observation: prototype design, manufacturing, and testing.

    PubMed

    Yu, Lei

    2016-08-20

    The design, manufacturing, and testing of an imaging spectrometer prototype that will address new scientific requirements by the observation of the lower atmosphere's impact on the ionosphere are presented. The two sided lateral limb observation covering 130-180 nm far-ultraviolet (FUV) region allows the instrument to perform particle measurements in the daytime and nighttime. In this paper, we focus upon the working design principle, observation, and calibration.

  17. Development of micro-mirror slicer integral field unit for space-borne solar spectrographs

    NASA Astrophysics Data System (ADS)

    Suematsu, Yoshinori; Saito, Kosuke; Koyama, Masatsugu; Enokida, Yukiya; Okura, Yukinobu; Nakayasu, Tomoyasu; Sukegawa, Takashi

    2017-12-01

    We present an innovative optical design for image slicer integral field unit (IFU) and a manufacturing method that overcomes optical limitations of metallic mirrors. Our IFU consists of a micro-mirror slicer of 45 arrayed, highly narrow, flat metallic mirrors and a pseudo-pupil-mirror array of off-axis conic aspheres forming three pseudo slits of re-arranged slicer images. A prototype IFU demonstrates that the final optical quality is sufficiently high for a visible light spectrograph. Each slicer micro-mirror is 1.58 mm long and 30 μm wide with surface roughness ≤1 nm rms, and edge sharpness ≤ 0.1 μm, etc. This IFU is small size and can be implemented in a multi-slit spectrograph without any moving mechanism and fore optics, in which one slit is real and the others are pseudo slits from the IFU. The IFU mirrors were deposited by a space-qualified, protected silver coating for high reflectivity in visible and near IR wavelength regions. These properties are well suitable for space-borne spectrograph such as the future Japanese solar space mission SOLAR-C. We present the optical design, performance of prototype IFU, and space qualification tests of the silver coating.

  18. Fiber IFU unit for the second generation VLT spectrograph KMOS

    NASA Astrophysics Data System (ADS)

    Tomono, Daigo; Weisz, Harald; Hofmann, Reiner

    2003-03-01

    KMOS is a cryogenic multi-object near-infrared spectrograph for the VLT. It will be equipped with about 20 deployable integral field units (IFUs) which can be positioned anywhere in the 7.2 arcmin diameter field o the VLT Nasmyth focus by a cryogenic robot. We describe IFUs using micro lens arrays and optical fibers to arrange the two-dimensional fields from the IFUs on the spectrograph entrance slit. Each micro-lens array is mounted in a spider arm which also houses the pre-optics with a cold stop. The spider arms are positioned by a cryogenic robot which is built around the image plane. For the IFUs, two solutions are considered: monolithic mirco-lens arrays with fibers attached to the back where the entrance pupil is imaged, and tapered fibers with integrated lenses which are bundled together to form a lens array. The flexibility of optical fibers relaxes boundary conditions for integration of the instrument components. On the other hand, FRD and geometric characteristics of optical fibers leads to higher AΩ accepted by the spectrograph. Conceptual design of the instrument is presented as well as advantages and disadvantages of the fiber IFUs.

  19. A GALEX-BASED SEARCH FOR THE SPARSE YOUNG STELLAR POPULATION IN THE TAURUS-AURIGAE STAR FORMING REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez de Castro, Ana I.; Lopez-Santiago, Javier; López-Martínez, Fatima

    2015-02-01

    In this work, we identify 63 bona fide new candidates to T Tauri stars (TTSs) in the Taurus-Auriga region, using its ultraviolet excess as our baseline. The initial data set was defined from the GALEX all sky survey (AIS). The GALEX satellite obtained images in the near-ultraviolet (NUV) and far-ultraviolet (FUV) bands where TTSs show a prominent excess compared with main-sequence or giants stars. GALEX AIS surveyed the Taurus-Auriga molecular complex, as well as a fraction of the California Nebula and the Perseus complex; bright sources and dark clouds were avoided. The properties of TTSs in the ultraviolet (GALEX), opticalmore » (UCAC4), and infrared (2MASS) have been defined using the TTSs observed with the International Ultraviolet Explorer reference sample. The candidates were identified by means of a mixed ultraviolet-optical-infrared excess set of colors; we found that the FUV-NUV versus J–K color-color diagram is ideally suited for this purpose. From an initial sample of 163,313 bona fide NUV sources, a final list of 63 new candidates to TTSs in the region was produced. The search procedure has been validated by its ability to detect all known TTSs in the area surveyed: 31 TTSs. Also, we show that the weak-lined TTSs are located in a well-defined stripe in the FUV-NUV versus J–K diagram. Moreover, in this work, we provide a list of TTSs photometric standards for future GALEX-based studies of the young stellar population in star forming regions.« less

  20. Cracking the Conundrum of F-supergiant Coronae

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2018-02-01

    Chandra X-ray and HST far-ultraviolet (FUV) observations of three early-F supergiants have shed new light on a previous puzzle involving a prominent member of the class: α Persei (HD 20902: F5 Ib). The warm supergiant is a moderately strong, hard coronal (T∼ {10}7 K) X-ray source, but has 10 times weaker “subcoronal” Si IV 1393 Å (T∼ 8× {10}4 K) emissions than early-G supergiants of similar high-energy properties. The α Per X-ray excess was speculatively ascribed to a close-in hyperactive G-dwarf companion, which could have escaped previous notice, lost in the glare of the bright star. However, a subsequent dedicated multi-wavelength imaging campaign failed to find any evidence for a resolved secondary. The origin of the α Per high-energy dichotomy then devolved to (1) an unresolved companion or (2) intrinsic coronal behavior. Exploring the second possibility, the present program has found that early-F supergiants do appear to belong to a distinct coronal class, characterized by elevated X-ray/FUV ratios, although sharing some similarities with Cepheid variables in their transitory X-ray “high states.” Remarkably, the early-F supergiants now are seen to align with the low-activity end of the X-ray/FUV sequence defined by late-type dwarfs, suggesting that the disjoint behavior relative to the G supergiants might be attributed to thinner outer atmospheres on the F types, as in dwarfs, but in this case perhaps caused by a weakened “ionization valve” effect due to overly warm photospheres.

  1. Multipurpose Hyperspectral Imaging System

    NASA Technical Reports Server (NTRS)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  2. The effects of the WISE/ GALEX photometry for the SED-fitting with M31 star clusters and candidates

    NASA Astrophysics Data System (ADS)

    Fan, Zhou; Wang, Song

    2017-10-01

    Spectral energy distribution (SED) fitting of stellar population synthesis models is an important and popular way to constrain the physical parameters—e.g., the ages, metallicities, masses for stellar population analysis. The previous works suggest that both blue-bands and red-bands photometry works for the SED-fitting. Either blue-domained or red-domained SED-fitting usually lead to the unreliable or biased results. Meanwhile, it seems that extending the wavelength coverage could be helpful. Since the Galaxy Evolution Explorer ( GALEX) and Wide-field Infrared Survey Explorer (WISE) provide the FUV/NUV and mid-infrared W1/W2 band data, we extend the SED-fitting to a wider wavelength coverage. In our work, we analyzed the effect of adding the FUV/NUV and W1/W2 band to the optical and near-infrared UBVRIJHK bands for the fitting with the (Bruzual and Charlot in Mon. Not. R. Astron. Soc. 344, 1000, 2003) (BC03) models and galev models. It is found that the FUV/NUV bands data affect the fitting results of both ages and metallicities much more significantly than that of the WISE W1/W2 band with the BC03 models. While for the galev models, the effect of the WISE W1/W2 band for the metallicity fitting seems comparable to that of GALEX FUV/NUV bands, but for age the effect of the W1/W2 band seems less crucial than that of the FUV/NUV bands. Thus we conclude that the GALEX FUV/NUV bands are more crucial for the SED-fitting of ages and metallicities, than the other bands, and the high-quality UV data (with high photometry precision) are required.

  3. Autonomous spectrographic system to analyse the main elements of fireballs and meteors

    NASA Astrophysics Data System (ADS)

    Espartero, Francisco Ángel; Martínez, Germán; Frías, Marta; Montes Moya, Francisco Simón; Castro-Tirado, Alberto Javier

    2018-01-01

    We present a meteor observation system based on imaging CCD cameras, wide-field optics and a diffraction grating. This system is composed of two independent spectrographs with different configurations, which allows us to capture images of fireballs and meteors with several fields of view and sensitivities. The complete set forms a small autonomous observatory, comprised of a sealed box with a sliding roof, weather station and computers for data storing and reduction. Since 2014, several meteors have been studied using this facility, such as the Alcalá la Real fireball recorded on 30 September 2016.

  4. Enhanced Fluoride Over-Coated Al Mirrors for FUV Astronomy

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; DelHoyo, Javier; Rice, Steve; Threat, Felix

    2014-01-01

    Astronomical observations in the Far Ultraviolet (FUV) spectral region are some of the more challenging due to the very distant and faint objects that are typically searched for in cosmic origin studies such as origin of large scale structure, the formation, evolution, and age of galaxies and the origin of stellar and planetary systems. These challenges are driving the need to improve the performance of optical coatings over a wide spectral range that would increase reflectance in mirrors and reduced absorption in dielectric filters used in optical telescope for FUV observations. This paper will present recent advances in reflectance performance for Al+MgF2 mirrors optimized for Lyman-alpha wavelength by performing the deposition of the MgF2 overcoat at elevated substrate temperatures. We will also present optical characterization of little studied rare-earth fluorides such as GdF3 and LuF3 that exhibit low-absorption over a wide wavelength range and could therefore be used as high refractive index alternatives for dielectric coatings at FUV wavelengths.

  5. The Volatility of Far-Ultraviolet Radiation from Low-Mass Stars and Planetary Implications

    NASA Astrophysics Data System (ADS)

    Loyd, R. O. Parke

    A low-mass star emits only 0.001-0.01% of its electromagnetic energy in the ultraviolet (100 - 1700 A), yet the implications for planets are profound. Radiation at the short-wavelength end of this range, the extreme ultraviolet (100 - 912 A), powers planetary atmospheric escape that can be observed through transit spectroscopy in the far ultraviolet (FUV; 912 - 1700 A). In addition, FUV light that penetrates further into a planet's atmosphere photolyzes molecules, driving nonthermal chemistry capable of producing O2 and O3 abiotically. I present results from extensive Hubble Space Telescope (HST) observations of the FUV emission from low-mass stars, focusing on its variability in time. Using all available archival data, I determined an astrophysical noise floor on detectable absorption in the C II, Si III, and Si IV FUV lines due to a transiting evaporating planet. I analyzed such a transit of the evaporating hot-Neptune GJ 436b, finding no detectable absorption in C II or Si III despite a large (>50%) transit in Lyalpha, but placing upper limits that agree with a photochemical-hydrodynamical model of the planetary outflow. These observations of GJ 436 were part of the MUSCLES Treasury Survey, a much larger dataset covering 7 M and 4 K dwarf stars. A time series analysis of all of these data constrained FUV flares on the surveyed M dwarfs, which I augmented with archival data on well-studied flare stars. The analysis confirmed that M dwarf flares are ubiquitous. In relative units, the FUV flares of the "inactive" MUSCLES M dwarfs are equally as energetic and frequent as those of the M dwarf flare stars. Both flare 3 orders of magnitude more frequently than the sun. Indeed, flares possibly (if not probably) dominate the energy budget of FUV emission from M dwarf stars. Highly energetic flares occurring roughly yearly could annihilate most of the ozone from an Earth-like atmosphere. However, the effect is short-lived, unless additional reactions not accounted for or particle events play a dominant role.

  6. The optical design of the G-CLEF Spectrograph: the first light instrument for the GMT

    NASA Astrophysics Data System (ADS)

    Ben-Ami, Sagi; Epps, Harland; Evans, Ian; Mueller, Mark; Podgorski, William; Szentgyorgyi, Andrew

    2016-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF), the first major light instrument for the GMT, is a fiber-fed, high-resolution echelle spectrograph. In the following paper, we present the optical design of G-CLEF. We emphasize the unique solutions derived for the spectrograph fiber-feed: the Mangin mirror that corrects the cylindrical field curvature, the implementation of VPH grisms as cross dispersers, and our novel solution for a multi-colored exposure meter. We describe the spectrograph blue and red cameras comprised of 7 and 8 elements respectively, with one aspheric surface in each camera, and present the expected echellogram imaged on the instrument focal planes. Finally, we present ghost analysis and mitigation strategy that takes into account both single reflection and double reflection back scattering from various elements in the optical train.

  7. PRISM Spectrograph Optical Design

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1995-01-01

    The objective of this contract is to explore optical design concepts for the PRISM spectrograph and produce a preliminary optical design. An exciting optical configuration has been developed which will allow both wavelength bands to be imaged onto the same detector array. At present the optical design is only partially complete because PRISM will require a fairly elaborate optical system to meet its specification for throughput (area*solid angle). The most complex part of the design, the spectrograph camera, is complete, providing proof of principle that a feasible design is attainable. This camera requires 3 aspheric mirrors to fit inside the 20x60 cm cross-section package. A complete design with reduced throughput (1/9th) has been prepared. The design documents the optical configuration concept. A suitable dispersing prism material, CdTe, has been identified for the prism spectrograph, after a comparison of many materials.

  8. High resolution spectrograph. [for LST

    NASA Technical Reports Server (NTRS)

    Peacock, K.

    1975-01-01

    The high resolution spectrograph (HRS) is designed to be used with the Large Space Telescope (LST) for the study of spectra of point and extended targets in the spectral range 110 to 410 nm. It has spectral resolutions of 1,000; 30,000; and 100,000 and has a field of view as large as 10 arc sec. The spectral range and resolution are selectable using interchangeable optical components and an echelle spectrograph is used to display a cross dispersed spectrum on the photocathode of either of 2 SEC orthicon image tubes. Provisions are included for wavelength calibration, target identification and acquisition and thermal control. The system considerations of the instrument are described.

  9. Time-Dependent Photodissociation Regions

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Natta, Antonella

    1995-01-01

    We present theoretical models of the time-dependent thermal and chemical structure of molecular gas suddenly exposed to far-ultraviolet (FUV) (6 eV less than hv less than 13.6 eV) radiation fields and the consequent time- dependent infrared emission of the gas. We focus on the response of molecular hydrogen for cloud densities ranging from n = 10(exp 3) to 10(exp 6)/cu cm and FUV fluxes G(sub 0) = 10(exp 3)-10(exp 6) times the local FUV interstellar flux. For G(sub 0)/n greater than 10(exp -2) cu cm, the emergent H(sub 2) vibrational line intensities are initially larger than the final equilibrium values. The H(sub 2) lines are excited by FUV fluorescence and by collisional excitation in warm gas. Most of the H(sub 2) intensity is generated at a characteristic hydrogen column density of N approximately 10(exp 21)/sq cm, which corresponds to an FUV optical depth of unity caused by dust opacity. The time dependence of the H(sub 2) intensities arises because the initial abundances of H(sub 2) at these depths is much higher than the equilibrium values, so that H(sub 2) initially competes more effectively with dust in absorbing FUV photons. Considerable column densities of warm (T approximately 1000) K H(sub 2) gas can be produced by the FUV pumping of H(sub 2) vibrational levels followed by collisional de-excitation, which transfers the energy to heat. In dense (n greater than or approximately 10(exp 5)/cu cm) gas exposed to high (G(sub 0) greater than or approximately 10(exp 4)) fluxes, this warm gas produces a 2-1 S(1)/1-0 S(l) H(sub 2) line ratio of approximately 0.1, which mimics the ratio found in shocked gas. In lower density regions, the FUV pumping produces a pure-fluorescent ratio of approximately 0.5. We also present calculations of the time dependence of the atomic hydrogen column densities and of the intensities of 0 I 6300 A, S II 6730 A, Fe II 1.64 microns, and rotational OH and H20 emission. Potential applications include star-forming regions, clouds near active galactic nuclei, and planetary nebulae. We apply our models to five planetary nebulae and conclude that only BD +30deg3639 shows evidence of enhanced H(sub 2) emission due to (high) nonequilibrium H(sub 2) abundances.

  10. Young stellar objects & photoevaporating protoplanetary disks in the Orion's sibling NGC 1977.

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Fang, M.; Clarke, C. J.; Facchini, S.; Pascucci, I.; Apai, D.; Bally, J.

    We present young stellar population in NGC 1977, Orion Nebula's sibling, and the discovery of new photoevaporating protoplanetary disks (proplyds) around a B star, 42 Ori. NGC 1977 (age≲2 Myr) is located at ˜30arcmin north of the Orion Nebula at a distance of ˜400 pc, but it lacks high mass O stars unlike in Orion Nebula Cluster (ONC). Nevertheless, we have identified seven proplyds in vicinity of its most massive star, 42 Ori (B1V). The proplyds show cometary Halpha emission in HST images, with clear ionization front and tails evaporating away from 42 Ori. These are the first proplyds to be found around a B star, while previously known proplyds were found near O stars. The FUV radiation impinging on these proplyds is 10-30 times weaker than that on the proplyds in ONC. We find that observed proplyd sizes are consistent with a model for photoevaporation in weak FUV radiation field. We briefly discuss one of the interesting YSOs found in this lesser-known star forming region in Orion, NGC 1977.

  11. TRACING REJUVENATION EVENTS IN NEARBY S0 GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, Antonietta; Bianchi, Luciana; Thilker, David A.

    2011-08-01

    With the aim of characterizing rejuvenation processes in early-type galaxies, we analyzed five barred S0 galaxies showing a prominent outer ring in ultraviolet (UV) imaging. We analyzed Galaxy Evolution Explorer far-UV (FUV) and near-UV (NUV), and optical data using stellar population models and estimated the age and the stellar mass of the entire galaxies and the UV-bright ring structures. Outer rings consist of young ({approx}<200 Myr old) stellar populations, accounting for up to 70% of the FUV flux but containing only a few percent of the total stellar mass. Integrated photometry of the whole galaxies places four of these objectsmore » on the green valley, indicating a globally evolving nature. We suggest such galaxy evolution is likely driven by bar-induced instabilities, i.e., inner secular evolution, that conveys gas to the nucleus and the outer rings. At the same time, H I observations of NGC 1533 and NGC 2962 suggest external gas re-fueling can play a role in the rejuvenation processes of such galaxies.« less

  12. S4EI (Spectral Sampling with Slicer for Stellar and Extragalactical Instrumentation), a new-generation of 3D spectro-imager dedicated to night astronomy

    NASA Astrophysics Data System (ADS)

    Sayède, Frédéric; Puech, Mathieu; Mein, Pierre; Bonifacio, Piercarlo; Malherbe, Jean-Marie; Galicher, Raphaël.; Amans, Jean-Philippe; Fasola, Gilles

    2014-07-01

    Multichannel Subtractive Double Pass (MSDP) spectrographs have been widely used in solar spectroscopy because of their ability to provide an excellent compromise between field of view and spatial and spectral resolutions. Compared with other types of spectrographs, MSDP can deliver simultaneous monochromatic images at higher spatial and spectral resolutions without any time-scanning requirement (as with Fabry-Perot spectrographs), and with limited loss of flux. These performances are obtained thanks to a double pass through the dispersive element. Recent advances with VPH (Volume phase holographic) Grisms as well as with image slicers now make MSDP potentially sensitive to much smaller fluxes. We present S4EI (Spectral Sampling with Slicer for Stellar and Extragalactical Instrumentation), which is a new concept for extending MSDP to night-time astronomy. It is based on new generation reflecting plane image slicers working with large apertures specific to night-time telescopes. The resulting design could be potentially very attractive and innovative for different domains of astronomy, e.g., the simultaneous spatial mapping of accurately flux-calibrated emission lines between OH sky lines in extragalactic astronomy or the simultaneous imaging of stars, exoplanets and interstellar medium. We present different possible MSDP/S4EI configurations for these science cases and expected performances on telescopes such as the VLT.

  13. UVSTAR: An imaging spectrograph with telescope for the Shuttle Hitchhiker-M platform

    NASA Technical Reports Server (NTRS)

    Stalio, Roberto; Sandel, Bill R.; Broadfoot, A. Lyle

    1993-01-01

    UVSTAR is an EUV spectral imager intended as a facility instrument devoted to solar system and astronomy studies. It covers the wavelength range of 500 to 1250 A, with sufficient spectral resolution to separate emission lines and to form spectrally resolved images of extended plasma sources. Targets include the Io plasma torus at Jupiter, hot stars, planetary nebulae and bright galaxies. UVSTAR consists of a pair of telescopes and concave grating spectrographs that cover the overlapping spectral ranges of 500-900 and 850-1250 A. The telescopes use two 30 cm diameter off-axis paraboloids having focal length of 1.5 m. An image of the target is formed at the entrance slits of the two concave grating spectrographs. The gratings provide dispersion and re-image the slits at the detectors, intensified CCD's. The readout format of the detectors can be chosen by computer, and three slit widths are selectable to adapt the instrument to specific tasks. UVSTAR has internal gimbals which allow rotation of plus or minus 3 deg about each of two axes. Dedicated finding and tracking telescopes will acquire and track the target after rough pointing is achieved by orienting the Orbiter. Responsibilities for implementation and utilization of UVSTAR are shared by groups in Italy and the U.S. UVSTAR is scheduled for flight in early 1995, timed for an opportunity to observe the Jovian system.

  14. The Interface Region Imaging Spectrograph (IRIS) Small Explorer

    NASA Astrophysics Data System (ADS)

    de Pontieu, B.; Title, A. M.; Schryver, C. J.; Lemen, J. R.; Golub, L.; Kankelborg, C. C.; Carlsson, M.

    2009-12-01

    The Interface Region Imaging Spectrograph (IRIS) was recently selected as a small explorer mission by NASA. The primary goal of IRIS is to understand how the solar atmosphere is energized. The IRIS investigation combines advanced numerical modeling with a high resolution 20 cm UV imaging spectrograph that will obtain spectra covering temperatures from 4,500 to 10 MK in three wavelength ranges (1332-1358 Angstrom, 1390-1406 Angstrom and 2785-2835 Angstrom) and simultaneous images covering temperatures from 4,500 K to 65,000 K. IRIS will obtain UV spectra and images with high resolution in space (1/3 arcsec) and time (1s) focused on the chromosphere and transition region of the Sun, a complex dynamic interface region between the photosphere and corona. In this region, all but a few percent of the non-radiative energy leaving the Sun is converted into heat and radiation. IRIS fills a crucial gap in our ability to advance Sun-Earth connection studies by tracing the flow of energy and plasma through this foundation of the corona and heliosphere. The IRIS investigation is led by PI Alan Title (LMSAL) with major participation by the Harvard Smithsonian Astrophysical Observatory, Montana State University, NASA Ames Research Center, Stanford University and the University of Oslo (Norway). IRIS is scheduled for launch in late 2012, and will have a nominal two year mission lifetime.

  15. VizieR Online Data Catalog: PTF 12dam & iPTF 13dcc follow-up (Vreeswijk+, 2017)

    NASA Astrophysics Data System (ADS)

    Vreeswijk, P. M.; Leloudas, G.; Gal-Yam, A.; De Cia, A.; Perley, D. A.; Quimby, R. M.; Waldman, R.; Sullivan, M.; Yan, L.; Ofek, E. O.; Fremling, C.; Taddia, F.; Sollerman, J.; Valenti, S.; Arcavi, I.; Howell, D. A.; Filippenko, A. V.; Cenko, S. B.; Yaron, O.; Kasliwal, M. M.; Cao, Y.; Ben-Ami, S.; Horesh, A.; Rubin, A.; Lunnan, R.; Nugent, P. E.; Laher, R.; Rebbapragada, U. D.; Wozniak, P.; Kulkarni, S. R.

    2017-08-01

    Spectroscopic follow-up observations of PTF 12dam were performed with the Kast Spectrograph at the Lick 3m Shane telescope, and the Low Resolution Imaging Spectrograph (LRIS) at the Keck-I 10m telescope (on Mauna Kea, Hawaii) on 2012 May 20, 21, and 22. The full spectroscopic sequence of PTF 12dam will be presented by R. M. Quimby et al. (2016, in preparation). PTF 12dam was imaged with the Palomar Oschin 48 inch (P48) (i)PTF survey telescope in the Mould R filter, the Palomar 60 inch (P60) and CCD camera in Johnson B and Sloan Digital Sky Survey (SDSS) gri, the Las Cumbres Observatory Global Telescope Network (LCOGT) in SDSS r, and LRIS mounted on the 10m Keck-I telescope in Rs. iPTF 13dcc has not had any exposure in the literature yet. It was flagged as a transient source on 2013 August 29. Spectroscopic follow-up observations spanning 2013 Nov 26 to 2014 Jan 16 were performed with the Double Spectrograph (DBSP) at the Palomar 200 inch (P200), LRIS at Keck-I, and the Inamori-Magellan Areal Camera & Spectrograph (IMACS) at the Magellan Baade telescope, showing iPTF 13dcc to be an SLSN at z=0.4305. iPTF 13dcc was imaged with the P48 Oschin (i)PTF survey telescope in the Mould R filter, the P60 in SDSS gri, the 4.3m Discovery Channel Telescope (DCT, at Lowell Observatory, Arizona) with the Large Monolithic Imager (LMI) in SDSS ri, and finally with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Wide-Field Camera using filter F625W (under program GO-13858; P.I. A. De Cia). (3 data files).

  16. Hollow-cathode lamps as optical frequency standards: the influence of optical imaging on the line-strength ratios

    NASA Astrophysics Data System (ADS)

    Huke, Philipp; Tal-Or, Lev; Sarmiento, Luis Fernando; Reiners, Ansgar

    2016-07-01

    Hollow cathode discharge lamps (HCLs) have been successfully used in recent years as calibration sources of optical astronomical spectrographs. The numerous narrow metal lines have stable wavelengths, which makes them well suited for m/s calibration accuracy of high-resolution spectrographs, while the buffer-gas lines are less stable and less useful. Accordingly, an important property is the metal-to-gas line-strength ratio (Rmetal/gas). Processes inside the lamp cause the light to be emitted from different regions between the cathode and the anode leaing to the emission of different beams with different values of Rmetal/gas. We used commercially- available HCLs to measure and characterize these beams with respect to their spatial distribution, their angle of propagation relative to the optical axis, and their values of Rmetal/gas. We conclude that a good imaging of an HCL into a fiber-fed spectrograph would consist of an aperture close to its front window in order to filter out the parts of the beam with low Rmetal/gas, and of a lens to collimate the important central beam. We show that Rmetal/gas can be further improved with only minor adjustments of the imaging parameters, and that the imaging scheme that yields the highest Rmetal/gas does not necessarily provide the highest flux.

  17. Photoevaporation of Clumps in Photodissociation Regions

    NASA Technical Reports Server (NTRS)

    Gorti, Uma; Hollenbach, David; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    We present the results of an investigation of the effects of Far Ultraviolet (FUV) radiation (6.0eV < hv < 13.6eV) from hot early type OB stars on clumps in star-forming molecular clouds. Clumps in FUV-illuminated regions (or photodissociation regions or PDRs) undergo external heating and photodissociation as they are exposed to the FUV field, resulting in a loss of cold, molecular lump mass as it is converted to warm atomic gas. The heating, if rapid, creates strong photoevaporative mass flows off the clump surfaces, and drives shocks into the clumps, compressing them to high densities. The clumps lose mass on relatively short timescales. The evolution of an individual clump is found to be sensitive to three dimensionless parameters: Nc0, the ratio of the initial column density of the clump to the column N(0) approx. 10(exp 21) cm(exp -2) of a warm FUV-heated surface region; upsilon, the ratio of the sound speed in the heated surface to that in the cold clump material: and t(FUV)t(c), the ratio of the "turn-on time" t(FUV) of the heating flux on a clump to its initial sound crossing-time t(c). The evolution also depends on whether a confining interclump medium exists, or whether the interclump region has negligible pressure, as is the case for turbulence-generated clumps. In this paper, we use spherical 1-D numerical hydrodynamic models as well as approximate analytical models to study the dependence of clump photoevaporation on the physical parameters of the clump, and to derive the dynamical evolution, mass loss rates and photoevaporative timescales of a clump for a variety of astrophysical situations. Turbulent clumps evolve so that their column densities are equal to a critical value determined by the local FUV field, and typically have short photo evaporation timescales, approx. 10(exp 4-5) years for a 1 M(solar mass) clump in a typical star-forming region (Nc0 = 10, upsilon = 10). Clumps with insufficient magnetic pressure support, and in strong FUV fields may be driven to collapse by the compressional effect of converging shock waves. We also estimate the rocket effect on photoevaporating clumps and find that it is significant only for the smallest clumps, with sizes much less than the extent of the PDR itself. Clumps that are confined by all interclump medium may either get completely photoevaporated, or may preserve a shielded core with a warm, dissociated, protective shell that, absorbs the incident FUV flux. We compare our results with observations of some well studied PDRs: the Orion Bar, M17SW NGC 2023 and the Rosette Nebula. The data are consistent with both interpretations of clump origin. turbulence and pressure confinement, with a slight indication for favouring the turbulent model for clumps over pressure-confined

  18. Optical design and optical properties of a VUV spectrographic imager for ICON mission

    NASA Astrophysics Data System (ADS)

    Loicq, Jerome; Kintziger, Christian; Mazzoli, Alexandra; Miller, Tim; Chou, Cathy; Frey, Harald U.; Immel, Thomas J.; Mende, Stephen B.

    2016-07-01

    In the frame of the ICON (Ionospheric Connection Explorer) mission of NASA led by UC Berkeley, CSL and SSL Berkeley have designed in cooperation a new Far UV spectro-imager. The instrument is based on a Czerny-Turner spectrograph coupled with two back imagers. The whole field of view covers [+/- 12° vertical, +/- 9° horizontal]. The instrument is surmounted by a rotating mirror to adjust the horizontal field of view pointing by +/- 30°. To meet the scientific imaging and spectral requirements the instrument has been optimized. The optimization philosophy and related analysis are presented in the present paper. PSF, distortion map and spectral properties are described. A tolerance study and alignment cases were performed to prove the instrument can be built and aligned. Finally straylight and out of band properties are discussed.

  19. PyEmir: Data Reduction Pipeline for EMIR, the GTC Near-IR Multi-Object Spectrograph

    NASA Astrophysics Data System (ADS)

    Pascual, S.; Gallego, J.; Cardiel, N.; Eliche-Moral, M. C.

    2010-12-01

    EMIR is the near-infrared wide-field camera and multi-slit spectrograph being built for Gran Telescopio Canarias. We present here the work being done on its data processing pipeline. PyEmir is based on Python and it will process automatically data taken in both imaging and spectroscopy mode. PyEmir is begin developed by the UCM Group of Extragalactic Astrophysics and Astronomical Instrumentation.

  20. High-Speed Laser Imaging, Emission and Temperature Measurements of Explosions

    DTIC Science & Technology

    2006-09-01

    of these optical fibers illuminated the entrance slit of a dedicated Ocean Optics model HR-2000 spectrograph. The seven spectrographs were modified...Hewlett-Packard). The spectral response of the system was calibrated using an ARC Model XS432 Xenon lamp. Time resolution is approximately 12...F FOROHAR 101 STRAUSS AVE INDIAN HEAD MD 20640-5035 1 NAVAL SURFACE WARFARE CTR CODE 920J R GUIRGUIS 101 STRAUSS AVE INDIAN

  1. Solar Imaging UV/EUV Spectrometers Using TVLS Gratings

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.

    2003-01-01

    It is a particular challenge to develop a stigmatic spectrograph for UV, EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both reimaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar extreme ultraviolet (EUV) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets Solar Extreme ultraviolet Research Telescope and Spectrograph (SERTS) and Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS). More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.

  2. First-generation instrumentation for the Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Bida, Thomas A.; Dunham, Edward W.; Massey, Philip; Roe, Henry G.

    2014-07-01

    The 4.3m Discovery Channel Telescope (DCT) has been conducting part-time science operations since January 2013. The f/6.1, 0.5° field-of-view at the RC focus is accessible through the Cassegrain instrument cube assembly, which can support 5 co-mounted instruments with rapid feed selection via deployable fold mirrors. Lowell Observatory has developed the Large Monolithic Imager (LMI), a 12.3' FOV 6K x 6K single CCD camera with a dual filter wheel, and installed at the straight-through, field-corrected RC focal station, which has served as the primary early science DCT instrument. Two low-resolution facility spectrographs are currently under development with first light for each anticipated by early 2015: the upgraded DeVeny Spectrograph, to be utilized for single object optical spectroscopy, and the unique Near-Infrared High-Throughput Spectrograph (NIHTS), optimized for single-shot JHK spectroscopy of faint solar system objects. These spectrographs will be mounted at folded RC ports, and the NIHTS installation will feature simultaneous optical imaging with LMI through use of a dichroic fold mirror. We report on the design, construction, commissioning, and progress of these 3 instruments in detail. We also discuss plans for installation of additional facility instrumentation on the DCT.

  3. The opto-mechanical design of HARMONI: a first light integral field spectrograph for the E-ELT

    NASA Astrophysics Data System (ADS)

    Thatte, Niranjan A.; Tecza, Mathias; Freeman, David; Gallie, Angus M.; Montgomery, David; Clarke, Fraser; Fragoso-Lopez, Ana Belén.; Fuentes, Javier; Gago, Fernando; Garcia, Adolfo; Gracia, Felix; Kosmalski, Johan; Lynn, James; Sosa, Dario; Arribas, Santiago; Bacon, Roland; Davies, Roger L.; Fusco, Thierry; Lunney, David; Mediavilla, Evencio; Remillieux, Alban; Schnetler, Hermine

    2012-09-01

    HARMONI is a visible and near-IR integral field spectrograph, providing the E-ELT's spectroscopic capability at first light. It obtains simultaneous spectra of 32000 spaxels, at a range of resolving powers from R~4000 to R~20000, covering the wavelength range from 0.47 to 2.45 μm. The 256 × 128 spaxel field of view has four different plate scales, with the coarsest scale (40 mas) providing a 5″ × 10″ FoV, while the finest scale is a factor of 10 finer (4mas). We describe the opto-mechanical design of HARMONI, prior to the start of preliminary design, including the main subsystems - namely the image de-rotator, the scale-changing optics, the splitting and slicing optics, and the spectrographs. We also present the secondary guiding system, the pupil imaging optics, the field and pupil stops, the natural guide star wavefront sensor, and the calibration unit.

  4. The PALM-3000 high-order adaptive optics system for Palomar Observatory

    NASA Astrophysics Data System (ADS)

    Bouchez, Antonin H.; Dekany, Richard G.; Angione, John R.; Baranec, Christoph; Britton, Matthew C.; Bui, Khanh; Burruss, Rick S.; Cromer, John L.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; McKenna, Daniel L.; Moore, Anna M.; Roberts, Jennifer E.; Trinh, Thang Q.; Troy, Mitchell; Truong, Tuan N.; Velur, Viswa

    2008-07-01

    Deployed as a multi-user shared facility on the 5.1 meter Hale Telescope at Palomar Observatory, the PALM-3000 highorder upgrade to the successful Palomar Adaptive Optics System will deliver extreme AO correction in the near-infrared, and diffraction-limited images down to visible wavelengths, using both natural and sodium laser guide stars. Wavefront control will be provided by two deformable mirrors, a 3368 active actuator woofer and 349 active actuator tweeter, controlled at up to 3 kHz using an innovative wavefront processor based on a cluster of 17 graphics processing units. A Shack-Hartmann wavefront sensor with selectable pupil sampling will provide high-order wavefront sensing, while an infrared tip/tilt sensor and visible truth wavefront sensor will provide low-order LGS control. Four back-end instruments are planned at first light: the PHARO near-infrared camera/spectrograph, the SWIFT visible light integral field spectrograph, Project 1640, a near-infrared coronagraphic integral field spectrograph, and 888Cam, a high-resolution visible light imager.

  5. VizieR Online Data Catalog: Palomar Transient Factory SNe IIn photometry (Ofek+, 2014)

    NASA Astrophysics Data System (ADS)

    Ofek, E. O.; Arcavi, I.; Tal, D.; Sullivan, M.; Gal-Yam, A.; Kulkarni, S. R.; Nugent, P. E.; Ben-Ami, S.; Bersier, D.; Cao, Y.; Cenko, S. B.; De Cia, A.; Filippenko, A. V.; Fransson, C.; Kasliwal, M. M.; Laher, R.; Surace, J.; Quimby, R.; Yaron, O.

    2017-07-01

    The Palomar Transient Factory (PTF; Law et al. 2009PASP..121.1395L; Rau et al. 2009PASP..121.1334R) and its extension the intermediate PTF (iPTF) found over 2200 spectroscopically confirmed SNe. We selected 19 SNe IIn for which PTF/iPTF has good coverage of the light-curve rise and peak; they are listed in Table 1. Optical spectra were obtained with a variety of telescopes and instruments, including the Double Spectrograph (Oke & Gunn 1982PASP...94..586O) at the Palomar 5 m Hale telescope, the Kast spectrograph (Miller & Stone 1993, Lick Observatory Technical Report 66 (Santa Cruz, CA: Lick Observatory)) at the Lick 3 m Shane telescope, the Low Resolution Imaging Spectrometer (Oke et al. 1995PASP..107..375O) on the Keck-1 10 m telescope, and the Deep Extragalactic Imaging Multi-Object Spectrograph (Faber et al. 2003SPIE.4841.1657F) on the Keck-2 10 m telescope. (2 data files).

  6. Calibration of EFOSC2 Broadband Linear Imaging Polarimetry

    NASA Astrophysics Data System (ADS)

    Wiersema, K.; Higgins, A. B.; Covino, S.; Starling, R. L. C.

    2018-03-01

    The European Southern Observatory Faint Object Spectrograph and Camera v2 is one of the workhorse instruments on ESO's New Technology Telescope, and is one of the most popular instruments at La Silla observatory. It is mounted at a Nasmyth focus, and therefore exhibits strong, wavelength and pointing-direction-dependent instrumental polarisation. In this document, we describe our efforts to calibrate the broadband imaging polarimetry mode, and provide a calibration for broadband B, V, and R filters to a level that satisfies most use cases (i.e. polarimetric calibration uncertainty 0.1%). We make our calibration codes public. This calibration effort can be used to enhance the yield of future polarimetric programmes with the European Southern Observatory Faint Object Spectrograph and Camera v2, by allowing good calibration with a greatly reduced number of standard star observations. Similarly, our calibration model can be combined with archival calibration observations to post-process data taken in past years, to form the European Southern Observatory Faint Object Spectrograph and Camera v2 legacy archive with substantial scientific potential.

  7. New GALEX UV Data Products At MAST For Stellar Astrophysics

    NASA Astrophysics Data System (ADS)

    Shiao, Bernie; Fleming, S. W.; Million, C.; Seibert, M.; Bianchi, L.; Thompson, R.; Tseng, S.; Adler, W. J.; Hubbard, M.; Levay, K.; Madore, B. F.; Martin, C. D.; Nieto-Santisteban, M. A.; Sahai, R.; Schiminovich, D.; White, R. L.; Wyder, T. K.

    2014-01-01

    The Galaxy Evolution Explorer (GALEX) mission ended in June 2013 after ten years in orbit. Its FUV and NUV microchannel plate detectors were used to conduct a variety of direct imaging and spectroscopic astronomical surveys with various depths and sky coverage, recording individual photon events with a time resolution of five thousandths of a second. Although the mission has ended, MAST is continuing to provide new data products as the mission transitions to a legacy archive. One product is the GCAT (Seibert et al., in prep), a catalog of GALEX sources across the entire GR6 data release that removes duplicate objects found in the GALEX MCAT. The GCAT defines "primary" NUV and FUV fluxes within the AIS and MIS surveys 40 million and 22 million sources, respectively), accounting for tile overlaps, and with visual inspection of every tile to flag artifacts and conduct other quality control checks. Another catalog of unique sources is that of Bianchi et al. (2013). Similar to the GCAT, their catalog produces a list of distinct GALEX sources in both the FUV and NUV from the AIS and MIS surveys, and includes data from GR7 (through the end of 2012). They have also cross-matched their sources with SDSS DR9, GSC-II, PanSTARRS, and 2MASS. We review access options for these catalogs, including updated matches between the GCAT and SDSS / Kepler available at MAST. In addition to these unique GALEX source catalogs, MAST will provide a database and software package that archives each of the ~1.5 trillion photon events detected over the lifetime of the mission. For the first time, users will be able to create calibrated lightcurves, intensity maps, and animated movies from any set of photons selected across any tile, and with specified aperture sizes, coordinates, and time steps. Users can access the data using either a python-based command-line software package, through a web interface at MAST, or (eventually) through CasJobs using direct SQL queries. We present some example GALEX lightcurves and images using this new data product to highlight just some of the possibilities available for users to mine the GALEX photon database, particularly with variable sources.

  8. The Ultraviolet Sky: final catalogs of unique UV sources from GALEX, and characterization of the UV-emitting sources across the sky, and of the Milky Way extinction

    NASA Astrophysics Data System (ADS)

    Bianchi, Luciana; Conti, A.; Shiao, B.; Keller, G. R.; Thilker, D. A.

    2014-01-01

    The legacy of the Galaxy Evolution Explorer (GALEX), which imaged the sky at Ultraviolet (UV) wavelengths for about 9 years, is its unprecedented database with more than 200 million source measurements in far-UV (FUV) and near-UV (NUV), as well as wide-field imaging of extended objects. GALEX's data, the first substantial sky surveys at UV wavelengths, offer an unprecedented view of the sky and a unique opportunity for an unbiased characterization of several classes of astrophysical objects, such as hot stars, QSOs at red-shift about 1, UV-peculiar QSOs, star-forming galaxies, among others. Bianchi et al. (2013, J. Adv. Space Res. (2013), DOI: http://dx.doi.org/10.1016/j.asr.2013.07.045) have constructed final catalogs of UV sources, with homogeneous quality, eliminating duplicate measurements of the same source ('unique' source catalogs), and excluding rim artifacts and bad photometry. The catalogs are constructed improving on the recipe of Bianchi et al. 2011 (MNRAS, 411, 2770, which presented the earlier version of these catalogs) and include all data for the major surveys, AIS and MIS. Considering the fields where both FUV and NUV detectors were exposed, the catalogs contain about 71 and 16.6 million unique sources respectively. We show several maps illustrating the content of UV sources across the sky, globally, and separately for bright/faint, hot, stellar/extragalactic objects. We matched the UV-source catalogs with optical-IR data from the SDSS, GSC2, 2MASS surveys. We are also in the process of matching the catalogs with preliminary PanSTARRS1 (PS1) 3pi survey photometry which already provides twice the sky coverage of SDSS, at slightly fainter magnitude limits. The sources' SED from FUV to optical wavelengths enables classification, derivation of the object physical parameters, and ultimately also a map of the Milky Way extinction. The catalogs will be available on MAST, Vizier (where the previous version already is), and in reduced form (for agile downloading), with related tools, from the author web site " http://dolomiti.pha.jhu.edu/uvsky "

  9. Prospects for the design of an ultraviolet imaging Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Lemaire, Philippe

    2017-11-01

    Recent results from solar observations in the far and extremeultraviolet (FUV/EUV) obtained from SOHO (SOlar and Heliospheric Observatory) and TRACE (Transition Region Camera) show the extreme variability of the solar atmosphere. Within the limited resolution of the instruments (1-2 arcseconds) horizontal and vertical velocities up-to 100 to 400 km s-1 have been measured. With an horizontal velocity of 100 km s-1 an one arsecond structure crosses the one arcsecond slit width of a classical slit spectrometer in less than 10 seconds. In the future, with higher angular resolution (e.g. 0.1 arcsecond), the capability to study small structures will be greatly reduced by a classical slit spectrometer. To be able to characterize the small scale solar atmospheric structures formed in the 104 K to 106 K temperature range (which emit in the 30 to 180 nm wavelength range) a spectrometer without slit (or with wide slit) is required. At the same time to obtain an accurate measurement of the doppler velocity an high spectral resolution is needed. The two requirements, high spectral resolution and large slit, are difficult to be simultaneously fulfilled with a classical slit spectrometer within the limited volume of a space instrumentation. Also, we propose to use an Imaging Fourier Transform Spectrometer (IFTS) to provide simultaneously a bidimensionnal field and an accurate determination of line profiles and positions. The development of Fourier Transform Spectrometers (FTS), although popular in the infrared, has been very limited in the UV/FUV by the lack of very high quality beam splitter. Since 10 years, the use of diffraction gratings as beam splitters has been suggested and few intruments have been built ([Chak 94]; [Clea 92]; [File 00]). These instruments illustrate some applications in the new wavelength domain opened by using a beam splitter grating, but do not yet provide the full capabilities of an FTS. In this paper we present several optical schemes which can provide the full capabilities of a complete IFTS in the FUV/EUV spectral range.

  10. Sounding Rocket Instrument Development at UAHuntsville/NASA MSFC

    NASA Technical Reports Server (NTRS)

    Kobayashi, Ken; Cirtain, Jonathan; Winebarger, Amy; Savage, Sabrina; Golub, Leon; Korreck, Kelly; Kuzin, Sergei; Walsh, Robert; DeForest, Craig; DePontieu, Bart; hide

    2013-01-01

    We present an overview of solar sounding rocket instruments developed jointly by NASA Marshall Space Flight Center and the University of Alabama in Huntsville. The High Resolution Coronal Imager (Hi-C) is an EUV (19.3 nm) imaging telescope which was flown successfully in July 2012. The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is a Lyman Alpha (121.6 nm) spectropolarimeter developed jointly with the National Astronomical Observatory of Japan and scheduled for launch in 2015. The Marshall Grazing Incidence X-ray Spectrograph is a soft X-ray (0.5-1.2 keV) stigmatic spectrograph designed to achieve 5 arcsecond spatial resolution along the slit.

  11. Experimental Study of an Advanced Concept of Moderate-resolution Holographic Spectrographs

    NASA Astrophysics Data System (ADS)

    Muslimov, Eduard; Valyavin, Gennady; Fabrika, Sergei; Musaev, Faig; Galazutdinov, Gazinur; Pavlycheva, Nadezhda; Emelianov, Eduard

    2018-07-01

    We present the results of an experimental study of an advanced moderate-resolution spectrograph based on a cascade of narrow-band holographic gratings. The main goal of the project is to achieve a moderately high spectral resolution with R up to 5000 simultaneously in the 4300–6800 Å visible spectral range on a single standard CCD, together with an increased throughput. The experimental study consisted of (1) resolution and image quality tests performed using the solar spectrum, and (2) a total throughput test performed for a number of wavelengths using a calibrated lab monochromator. The measured spectral resolving power reaches values over R > 4000 while the experimental throughput is as high as 55%, which agrees well with the modeling results. Comparing the obtained characteristics of the spectrograph under consideration with the best existing spectrographs, we conclude that the used concept can be considered as a very competitive and cheap alternative to the existing spectrographs of the given class. We propose several astrophysical applications for the instrument and discuss the prospect of creating its full-scale version.

  12. Conceptual design for an AIUC multi-purpose spectrograph camera using DMD technology

    NASA Astrophysics Data System (ADS)

    Rukdee, S.; Bauer, F.; Drass, H.; Vanzi, L.; Jordan, A.; Barrientos, F.

    2017-02-01

    Current and upcoming massive astronomical surveys are expected to discover a torrent of objects, which need groundbased follow-up observations to characterize their nature. For transient objects in particular, rapid early and efficient spectroscopic identification is needed. In particular, a small-field Integral Field Unit (IFU) would mitigate traditional slit losses and acquisition time. To this end, we present the design of a Digital Micromirror Device (DMD) multi-purpose spectrograph camera capable of running in several modes: traditional longslit, small-field patrol IFU, multi-object and full-field IFU mode via Hadamard spectra reconstruction. AIUC Optical multi-purpose CAMera (AIUCOCAM) is a low-resolution spectrograph camera of R 1,600 covering the spectral range of 0.45-0.85 μm. We employ a VPH grating as a disperser, which is removable to allow an imaging mode. This spectrograph is envisioned for use on a 1-2 m class telescope in Chile to take advantage of good site conditions. We present design decisions and challenges for a costeffective robotized spectrograph. The resulting instrument is remarkably versatile, capable of addressing a wide range of scientific topics.

  13. An overview of instrumentation for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark

    2012-09-01

    An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' x 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multiobject spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23-m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning on the LBT and utilizing the installed adaptive secondary mirrors in both single- sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. The delivery of both LUCI2 and MODS2 is anticipated before the end of 2012. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  14. SFR bulge-to-disk ratios from the CALIFA IFS nearby galaxies survey

    NASA Astrophysics Data System (ADS)

    Catalán-Torrecilla, Cristina; Gil de Paz, Armando; Castillo-Morales, Africa; Iglesias Páramo, Jorge; Sanchez, Sebastian

    2015-08-01

    Our ultimate aim is to study the evolution of the Star Formation Rate (SFR) by components (nuclei, bulges, disks) as a key constraint for the models of galaxy formation and evolution. In order to provide a local benchmark, we start from the analysis of a sample of nearby galaxies from the CALIFA Integral Field Spectroscopy (IFS) survey. Prior to this study, we have verified that the extinction-corrected Halpha luminosity provided by CALIFA IFS data recovers the total SFR by means of comparing measurements from this estimator with single-band (22μm, TIR and FUV) and hybrid tracers (FUV+22μm, FUV+TIR, Halpha+22μm, Halpha+TIR) for our sample of 272 CALIFA galaxies (Catalán-Torrecilla et al. 2015). We focus here on the study of the SFR bulge-to-disk ratio in nearby galaxies, something achievable in large numbers thanks to the good spatial resolution of our optical stellar-absorption and extinction corrected IFS-based Halpha maps. The results of the photometric decomposition of SDSS images of our sample is used as a prior is this analysis. The CALIFA objects analyzed range from galaxies that have all the SFR concentrated in the nuclear part to cases in which the SFR is spread over the disk and include both barred and unbarred galaxies. In summary, we are able to explore the distribution of the SFR in scales of 0.3-1.6 kpc for a rather large and well-characterized galaxy sample in the Local Universe.This and similar studies at higher redshifts will be key to understand how and at what rate galaxies assemble their stellar masses, either through mergers and/or secular processes.

  15. Development of compact integral field unit for spaceborne solar spectro-polarimeter

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Koyama, M.; Sukegawa, T.; Enokida, Y.; Saito, K.; Okura, Y.; Nakayasu, T.; Ozaki, S.; Tsuneta, S.

    2017-11-01

    A 1.5-m class aperture Solar Ultra-violet Visible and IR telescope (SUVIT) and its instruments for the Japanese next space solar mission SOLAR-C [1] are under study to obtain critical physical parameters in the lower solar atmosphere. For the precise magnetic field measurements covering field-of-view of 3 arcmin x3 acmin, a full stokes polarimetry at three magnetic sensitive lines in wavelength range of 525 nm to 1083 nm with a four-slit spectrograph of two dinesional image scanning mechanism is proposed: one is a true slit and the other three are pseudo-slits from integral field unit (IFU). To suit this configuration, besides a fiber bundle IFU, a compact mirror slicer IFU is designed and being developed. Integral field spectroscopy (IFS), which is realized with IFU, is a two dimensional spectroscopy, providing spectra simultaneously for each spatial direction of an extended two-dimensional field. The scientific advantages of the IFS for studies of localized and transient solar surface phenomena are obvious. There are in general three methods [2][3] to realize the IFS depending on image slicing devices such as a micro-lenslet array, an optical fiber bundle and a narrow rectangular image slicer array. So far, there exist many applications of the IFS for ground-based astronomical observations [4]. Regarding solar instrumentations, the IFS of micro-lenslet array was done by Suematsu et al. [5], the IFS of densely packed rectangular fiber bundle with thin clads was realized [6] and being developed for 4-m aperture solar telescope DKIST by Lin [7] and being considered for space solar telescope SOLAR-C by Katsukawa et al. [8], and the IFS with mirror slicer array was presented by Ren et al. [9] and under study for up-coming large-aperture solar telescope in Europe by Calcines et al. [10] From the view point of a high efficiency spectroscopy, a wide wavelength coverage, a precision spectropolarimetry and space application, the image slicer consisting of all reflective optics is the best option among the three. However, the image slicers are presently limited either by their risk in the case of classical glass polishing techniques (see Vivès et al. [11] for recent development) or by their optical performances when constituted by metallic mirrors. For space instruments, small sized units are much advantageous and demands that width of each slicer mirror is as narrow as an optimal slit width (< 100 micron) of spectrograph which is usually hard to manufacture with glass polishing techniques. On the other hand, Canon is developing a novel technique for such as high performance gratings which can be applicable for manufacturing high optical performance metallic mirrors of small dimensions. For the space-borne spectrograph of SUVIT to be aboard SOLAR-C, we designed the IFS made of a micro image slicer of 45 arrayed 30-micron-thick metal mirrors and a pseudo-pupil metal mirror array re-formatting three pseudo-slits; the design is feasible for optical configuration sharing a spectrograph with a conventional real slit. According to the optical deign, Canon manufactured a prototype IFU for evaluation, demonstrating high performances of micro image slicer and pupil mirrors; enough small micro roughness for visible light spectrographs, sharp edges for efficient image slices, surface figure for high image quality, etc. In the following, we describe the optical design of IFU feasible for space-borne spectrograph, manufacturing method to attain high optical performance of metal mirrors developed by Canon, and resulted performance of prototype IFU in detail.

  16. New Thermal Infrared Hyperspectral Imagers

    DTIC Science & Technology

    2009-10-01

    involve imaging systems based on both MCT and microbolometer detector . All the systems base on push-broom imaging spectrograph with transmission grating...application requirements. The studies involve imaging systems based on both MCT and microbolometer detector . All the systems base on push-broom...remote sensing imager utilizes MCT detector combined with BMC-technique (background monitoring on-chip), background suppression and temperature

  17. Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST/AFTA

    NASA Technical Reports Server (NTRS)

    Gong, Qian; McElwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Hilton, George; Perrin, Marshall; Sayson, Llop; Domingo, Jorge; hide

    2015-01-01

    Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a prototype lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey TelescopeAstrophysics Focused Telescope Assets (WFIRSTAFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC). We will present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the compatibility to upgrade from the current 1k x 1k detector array to 4k x 4k detector array. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.

  18. VizieR Online Data Catalog: Texas-Oxford NVSS (TONS) radio galaxies (Brand+, 2005)

    NASA Astrophysics Data System (ADS)

    Brand, K.; Rawlings, S.; Hill, G. J.; Tufts, J. R.

    2005-10-01

    Optical spectra were obtained during the period 2000 October-2003 May on the 2.6-m Nordic Optical Telescope (NOT) using the Andalucia faint object spectrograph, the 4.2-m William Herschel telescope (WHT) using ISIS, the 2.7-m Smith reflector at McDonald with the Imaging Grism Instrument (IGI), and the Hobby-Eberly Telescope (HET) using the Marcario low-resolution spectrograph (LRS). (3 data files).

  19. The CHARIS High-Contrast Integral-Field Spectrograph

    NASA Technical Reports Server (NTRS)

    Groff, Tyler D.; Chilcote, Jeffrey; Brandt, Timothy; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Rizzo, Maxime; Knapp, Gillian; Guyon, Olivier; Jovanovic, Nemanja; hide

    2017-01-01

    One of the leading direct Imaging techniques, particularly in ground-based imaging, uses a coronagraphic system and integral field spectrograph (IFS). The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an IFS that has been built for the Subaru telescope. CHARIS has been delivered to the observatory and now sits behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. CHARIS has 'high' and 'low' resolution operating modes. The "high-resolution" mode is used to characterize targets in J, H, and K bands at R70. The "low-resolution" prism is meant for discovery and spans J+H+K bands (1.15-2.37 microns) with a spectral resolution of R18. This discovery mode has already proven better than 15-sigma detections of HR8799c,d,e when combining ADI+SDI. Using SDI alone, planets c and d have been detected in a single 24 second image. The CHARIS team is optimizing instrument performance and refining ADI+SDI recombination to maximize our contrast detection limit. In addition to the new observing modes, CHARIS has demonstrated a design with high robustness to spectral crosstalk. CHARIS is in the final stages of commissioning, with the instrument open for science observations beginning February 2017. Here we review the science case, design, on-sky performance, engineering observations of exoplanet and disk targets, and specific lessons learned for extremely high contrast imagers. Key design aspects that will be demonstrated are crosstalk optimization, wavefront correction using the IFS image, lenslet tolerancing, the required spectral resolution to fit exoplanet atmospheres, and the utility of the spectrum in achieving higher contrast detection limits.

  20. CHARIS Construction Status, Design, and Future Science

    NASA Astrophysics Data System (ADS)

    Groff, Tyler Dean; Kasdin, N. Jeremy; Peters, Mary Anne; Galvin, Michael; Knapp, Gillian R.; Brandt, Timothy; Loomis, Craig; Carr, Michael; Mede, Kyle; Jarosik, Norman; McElwain, Michael W.; Guyon, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Hayashi, Masahiko

    2015-01-01

    Princeton University is funded by the National Astronomical Observatory of Japan to build an integral field spectrograph (IFS) dubbed the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS). CHARIS is part of the ongoing exoplanet science effort at the Subaru Telescope, and will serve as the science imager for the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) and AO188 systems. The principal science goals are disk imaging and high contrast spectra of brown dwarfs and hot Jovian planets across J, H, and K bands. SCExAO is a coronagraphic and wavefront control system that will be capable of extreme adaptive optics and quasi-static speckle suppression. Speckle suppression is meant to reduce the residual speckle to a level that makes it possible to detect planets at very low inner working angles (~80 mas). Even so, CHARIS must mitigate spectral contamination from the residual speckle halo due to crosstalk between the closely packed spectra of the image. CHARIS mitigates crosstalk via an array of field stops behind the lenslet array and carefully toleranced relay optics. This reduces uncertainty in the measured spectrum of the exoplanets by increasing robustness of the spectrograph to nearby bright speckles. Mitigating crosstalk in hardware both improves science and reduces computational overhead. Combined with a detailed wavefront budget this improves the utility of CHARIS in the speckle control loop. Another defining feature of CHARIS is its disperser design. In addition to imaging in individual J, H, and K bands, CHARIS has a fourth mode that images across all three simultaneously. This required an improvement in the linearity of dispersion from 1.15 to 2.38 microns. To do so the CHARIS project has chosen a new high-index dispersing material and characterized its properties at cryogenic temperatures. We present the build status of the spectrograph, including status and viability of operating an H2RG detector directly using a SAM card via gigabit Ethernet over Linux. In addition to the stated and as-built specifications of the instrument hardware, we discuss the future of science impacts of CHARIS at the Subaru telescope.

  1. MCT-based SWIR hyperspectral imaging system for evaluation of biological samples

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral imaging has been shown to be a powerful tool for nondestructive evaluation of biological samples. We recently developed a new line-scan-based shortwave infrared (SWIR) hyperspectral imaging system. Critical sensing components of the system include a SWIR spectrograph, an MCT (HgCdTe) a...

  2. Red to far-red multispectral fluorescence image fusion for detection of fecal contamination on apples

    USDA-ARS?s Scientific Manuscript database

    This research developed a multispectral algorithm derived from hyperspectral line-scan fluorescence imaging under violet/blue LED excitation for detection of fecal contamination on Golden Delicious apples. Using a hyperspectral line-scan imaging system consisting of an EMCCD camera, spectrograph, an...

  3. Biological sample evaluation using a line-scan based SWIR hyperspectral imaging system

    USDA-ARS?s Scientific Manuscript database

    A new line-scan hyperspectral imaging system was developed to enable short wavelength infrared (SWIR) imagery for biological sample evaluation. Critical sensing components include a SWIR imaging spectrograph and an HgCdTe (MCT) focal plane array detector. To date, agricultural applications of infra...

  4. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy

    NASA Astrophysics Data System (ADS)

    Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene

    2018-06-01

    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.

  5. Microchannel plate life testing for UV spectroscopy instruments

    NASA Astrophysics Data System (ADS)

    Darling, N. T.; Siegmund, O. H. W.; Curtis, T.; McPhate, J.; Tedesco, J.; Courtade, S.; Holsclaw, G.; Hoskins, A.; Al Dhafri, S.

    2017-08-01

    The Emirates Mars Mission (EMM) UV Spectrograph (EMUS) is a far ultraviolet (102 nm to 170 nm) imaging spectrograph for characterization of the Martian exosphere and thermosphere. Imaging is accomplished by a photon counting open-face microchannel plate (MCP) detector using a cross delay line (XDL) readout. An MCP gain stabilization ("scrub") followed by lifetime spectral line burn-in simulation has been completed on a bare MCP detector at SSL. Gain and sensitivity stability of better than 7% has been demonstrated for total dose of 2.5 × 1012 photons cm-2 (2 C · cm-2 ) at 5.5 kHz mm-2 counting rates, validating the efficacy of an initial low gain full-field scrub.

  6. The "Horns" of FK Comae and the Complex Structure of its Outer Atmosphere

    NASA Astrophysics Data System (ADS)

    Saar, Steven H.; Ayres, T. R.; Kashyap, V.

    2014-01-01

    As part of a large multiwavelength campaign (COCOA-PUFS*) to explore magnetic activity in the unusual, single, rapidly rotating giant FK Comae, we have taken a time series of moderate resolution FUV spectra of the star with the COS spectrograph on HST. We find that the star has unusual, time-variable emission profiles in the chromosphere and transition region which show horn-like features. We use simple spatially inhomogeneous models to explain the variable line shapes. Modeling the lower chromospheric Cl I 1351 Å line, we find evidence for a very extended, spatial inhomogeneous outer atmosphere, likely composed of many huge "sling-shot" prominences of cooler material with embedded in a rotationally distended corona. We compare these results with hotter hotter transition region lines (Si IV) and optical spectra of the chromospheric He I D3 line. We also employ the model Cl I profiles, and data-derived empirical models, to fit the complex spectral region around the coronal Fe XXI 1354.1 Å line. We place limits on the flux of this line, and show these limits are consistent with expectations from the observed X-ray spectrum. *Campaign for Observation of the Corona and Outer Atmosphere of the Fast-rotating Star, FK Comae This work was supported by HST grant GO-12376.01-A.

  7. The First Detection of [O IV] from an Ultraluminous X-ray Source with Spitzer. II. Evidence for High Luminosity in Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.

    2009-01-01

    This is the second of two papers examining Spitzer Infrared Spectrograph (IRS) observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here we perform detailed photoionization modeling of they infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 micron emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line of sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 1040 erg per second would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shacks likely contribute very little, if at all, to the high excitation line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on they predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] hi some starburst systems containing black hole binaries.

  8. LRO-LAMP failsafe door-open performance: improving FUV measurements of dayside lunar hydration

    NASA Astrophysics Data System (ADS)

    Davis, Michael W.; Greathouse, Thomas K.; Kaufmann, David E.; Retherford, Kurt D.; Versteeg, Maarten H.

    2017-08-01

    The Lunar Reconnaissance Orbiter's (LRO) Lyman Alpha Mapping Project (LAMP) is a lightweight (6.1 kg), lowpower (4.5 W), ultraviolet spectrograph based on the Alice instruments aboard the European Space Agency's Rosetta spacecraft and NASA's New Horizons spacecraft. Its primary job is to identify and localize exposed water frost in permanently shadowed regions (PSRs) near the Moon's poles, and to characterize landforms and albedos in PSRs. LRO launched on June 18, 2009 and reached lunar orbit four days later. LAMP operated with its failsafe door closed for its first seven years in flight. The failsafe door was opened in October 2016 to increase light throughput during dayside operations at the expense of no longer having the capacity to take further dark observations and slightly more operational complexity to avoid saturating the instrument. This one-time irreversible operation was approved after extensive review, and was conducted flawlessly. The increased throughput allows measurement of dayside hydration in one orbit, instead of averaging multiple orbits together to reach enough signal-to-noise. The new measurement mode allows greater time resolution of dayside water migration for improved investigations into the source and loss processes on the lunar surface. LAMP performance and optical characteristics after the failsafe door opening are described herein, including the new effective area, wavelength solution, and resolution.

  9. The First Detection of [O IV] from an Ultraluminous X-ray Source with Spitzer. 2; Evidence for High Luminosity in Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.

    2009-01-01

    This is the second of two papers examining Spitzer Infrared Spectrograph (IRS) observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here we perform detailed photoionization modeling of the infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 micron emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line of sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 10(exp 40) erg/s would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shocks likely contribute very little, if at all, to the high-excitation line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on the predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] in some starburst systems containing black hole binaries.

  10. A Hot Companion to a Blue Straggler in NGC 188 as Revealed by the Ultra-Violet Imaging Telescope (UVIT) on ASTROSAT

    NASA Astrophysics Data System (ADS)

    Subramaniam, Annapurni; Sindhu, N.; Tandon, S. N.; Kameswara Rao, N.; Postma, J.; Côté, Patrick; Hutchings, J. B.; Ghosh, S. K.; George, K.; Girish, V.; Mohan, R.; Murthy, J.; Sankarasubramanian, K.; Stalin, C. S.; Sutaria, F.; Mondal, C.; Sahu, S.

    2016-12-01

    We present early results from the Ultra-Violet Imaging Telescope (UVIT) on board the ASTROSAT observatory. We report the discovery of a hot companion associated with one of the blue straggler stars (BSSs) in the old open cluster, NGC 188. Using fluxes measured in four filters in UVIT’s far-UV (FUV) channel, and two filters in the near-UV (NUV) channel, we have constructed the spectral energy distribution (SED) of the star WOCS-5885, after combining with flux measurements from GALEX, Ultraviolet Imaging Telescope, Ultraviolet Optical Telescope, SPITZER, WISE, and several ground-based facilities. The resulting SED spans a wavelength range of 0.15 μm to 7.8 μm. This object is found to be one of the brightest FUV sources in the cluster. An analysis of the SED reveals the presence of two components. The cooler component is found to have a temperature of 6000 ± 150 K, confirming that it is a BSS. Assuming it to be a main-sequence star, we estimate its mass to be ˜1.1-1.2 M ⊙. The hotter component, with an estimated temperature of 17,000 ± 500 K, has a radius of ˜ 0.6 R ⊙ and L ˜30 L ⊙. Bigger and more luminous than a white dwarf, yet cooler than a sub-dwarf, we speculate that it is a post-AGB/HB star that has recently transferred its mass to the BSS, which is known to be a rapid rotator. This binary system, which is the first BSS with a post-AGB/HB companion identified in an open cluster, is an ideal laboratory to study the process of BSS formation via mass transfer.

  11. Status of the JWST Science Instrument Payload

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matt

    2016-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) system consists of five sensors (4 science): Mid-Infrared Instrument (MIRI), Near Infrared Imager and Slitless Spectrograph (NIRISS), Fine Guidance Sensor (FGS), Near InfraRed Camera (NIRCam), Near InfraRed Spectrograph (NIRSpec); and nine instrument support systems: Optical metering structure system, Electrical Harness System; Harness Radiator System, ISIM Electronics Compartment, ISIM Remote Services Unit, Cryogenic Thermal Control System, Command and Data Handling System, Flight Software System, Operations Scripts System.

  12. Integrating TV/digital data spectrograph system

    NASA Technical Reports Server (NTRS)

    Duncan, B. J.; Fay, T. D.; Miller, E. R.; Wamsteker, W.; Brown, R. M.; Neely, P. L.

    1975-01-01

    A 25-mm vidicon camera was previously modified to allow operation in an integration mode for low-light-level astronomical work. The camera was then mated to a low-dispersion spectrograph for obtaining spectral information in the 400 to 750 nm range. A high speed digital video image system was utilized to digitize the analog video signal, place the information directly into computer-type memory, and record data on digital magnetic tape for permanent storage and subsequent analysis.

  13. VizieR Online Data Catalog: VI photometry and spectroscopy in h+{chi} Per (Currie+, 2010)

    NASA Astrophysics Data System (ADS)

    Currie, T.; Hernandez, J.; Irwin, J.; Kenyon, S. J.; Tokarz, S.; Balog, Z.; Bragg, A.; Berlind, P.; Calkins, M.

    2010-04-01

    Optical VI photometry of h and {chi} Persei were taken with the Mosaic Imager at the 4m Mayall telescope at the Kitt Peak National Observatory on 2006 October 13-16 and 27-30. We acquired low-resolution optical spectroscopy of Two Micron All Sky Survey (2MASS)-detected stars within 1deg2 of the cluster centers. For faint stars, we used the multiobject, fiber-fed spectrograph Hectospec on the 6.5m MMT. Brighter stars were observed with the fiber-fed spectrograph Hydra on the 3.5m WIYN telescope at Kitt Peak National Observatory and single-slit FAST spectrograph on the 1.5m Tillinghast telescope at the Fred Lawrence Whipple Observatory. (4 data files).

  14. VizieR Online Data Catalog: MUSCLES Treasury Survey. IV. M dwarf UV fluxes (Youngblood+, 2017)

    NASA Astrophysics Data System (ADS)

    Youngblood, A.; France, K.; Loyd, R. O. P.; Brown, A.; Mason, J. P.; Schneider, P. C.; Tilley, M. A.; Berta-Thompson, Z. K.; Buccino, A.; Froning, C. S.; Hawley, S. L.; Linsky, J.; Mauas, P. J. D.; Redfield, S.; Kowalski, A.; Miguel, Y.; Newton, E. R.; Rugheimer, S.; Segura, A.; Roberge, A.; Vieytes, M.

    2018-02-01

    We selected stars with HST UV spectra and ground-based optical spectra either obtained directly by us or available in the VLT/XSHOOTER or Keck/HIRES public archives. Several targets have spectroscopic data obtained with the Dual Imaging Spectrograph (DIS) on the ARC 3.5m telescope at Apache Point Observatory (APO), R~2500, or the REOSC echelle spectrograph on the 2.15m telescope at Complejo Astronomico El Leoncito (CASLEO), R~12000, within a day or two of the HST observations. We also gathered spectra of GJ1132, GJ1214, and Proxima Cen on the nights of 2016 March 7-9 using the MIKE echelle spectrograph on the Magellan Clay telescope. (2 data files).

  15. Catalogue of UV sources in the Galaxy

    NASA Astrophysics Data System (ADS)

    Beitia-Antero, L.; Gómez de Castro, A. I.

    2017-03-01

    The Galaxy Evolution Explorer (GALEX) ultraviolet (UV) database contains the largest photometric catalogue in the ultraviolet range; as a result GALEX photometric bands, Near UV band (NUV) and the Far UV band (FUV), have become standards. Nevertheless, the GALEX catalogue does not include bright UV sources due to the high sensitivity of its detectors, neither sources in the Galactic plane. In order to extend the GALEX database for future UV missions, we have obtained synthetic FUV and NUV photometry using the database of UV spectra generated by the International Ultraviolet Explorer (IUE). This database contains 63,755 spectra in the low dispersion mode (λ / δ λ ˜ 300) obtained during its 18-year lifetime. For stellar sources in the IUE database, we have selected spectra with high Signal-To-NoiseRatio (SNR) and computed FUV and NUV magnitudes using the GALEX transmission curves along with the conversion equations between flux and magnitudes provided by the mission. Besides, we have performed variability tests to determine whether the sources were variable (during the IUE observations). As a result, we have generated two different catalogues: one for non-variable stars and another one for variable sources. The former contains FUV and NUV magnitudes, while the latter gives the basic information and the FUV magnitude for each observation. The consistency of the magnitudes has been tested using White Dwarfs contained in both GALEX and IUE samples. The catalogues are available through the Centre des Donées Stellaires. The sources are distributed throughout the whole sky, with a special coverage of the Galactic plane.

  16. Ultraviolet imaging detectors for the GOLD mission

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; McPhate, J.; Curtis, T.; Jelinsky, S.; Vallerga, J. V.; Hull, J.; Tedesco, J.

    2016-07-01

    The GOLD mission is a NASA Explorer class ultraviolet Earth observing spectroscopy instrument that will be flown on a telecommunications satellite in geostationary orbit in 2018. Microchannel plate detectors operating in the 132 nm to 162 nm FUV bandpass with 2D imaging cross delay line readouts and electronics have been built for each of the two spectrometer channels for GOLD. The detectors are "open face" with CsI photocathodes, providing 30% efficiency at 130.4 nm and 15% efficiency at 160.8 nm. These detectors with their position encoding electronics provide 600 x 500 FWHM resolution elements and are photon counting, with event handling rates of > 200 KHz. The operational details of the detectors and their performance are discussed.

  17. Enhanced Exoplanet Biosignature from an Interferometer Addition to Low Resolution Spectrographs

    NASA Astrophysics Data System (ADS)

    Erskine, D. J.; Muirhead, P. S.; Vanderburg, A. M.; Szentgyorgyi, A.

    2017-12-01

    The absorption spectral signature of many atmospheric molecules consists of a group of 40 or so lines that are approximately periodic due to the physics of molecular vibration. This is fortuitous for detecting atmospheric features in an exoEarth, since it has a similar periodic nature as an interferometer's transmission, which is sinusoidal. The period (in wavenumbers) of the interferometer is selectable, being inversely proportional to the delay (in cm). We show that the addition of a small interferometer of 0.6 cm delay to an existing dispersive spectrograph can greatly enhance the detection of molecular features, by several orders of magnitude for initially low resolution spectrographs. We simulate the Gemini Planet Imager measuring a telluric spectrum having native resolution of 40 and 70 in the 1.65 micron and 2 micron bands. These low resolutions are insufficient to resolve the fine features of the molecular feature group. However, the addition of a 0.6 cm delay outside the spectrograph and in series with it increases the local amplitude of the signal to a level similar to a R=4400 (at 1.65 micron) or R=3900 (at 2 micron) classical spectrograph. Prepared by LLNL under Contract DE-AC52-07NA27344.

  18. Designing the optimal semi-warm NIR spectrograph for SALT via detailed thermal analysis

    NASA Astrophysics Data System (ADS)

    Wolf, Marsha J.; Sheinis, Andrew I.; Mulligan, Mark P.; Wong, Jeffrey P.; Rogers, Allen

    2008-07-01

    The near infrared (NIR) upgrade to the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT), RSS/NIR, extends the spectral coverage of all modes of the optical spectrograph. The RSS/NIR is a low to medium resolution spectrograph with broadband, spectropolarimetric, and Fabry-Perot imaging capabilities. The optical and NIR arms can be used simultaneously to extend spectral coverage from 3200 Å to approximately 1.6 μm. Both arms utilize high efficiency volume phase holographic gratings via articulating gratings and cameras. The NIR camera incorporates a HAWAII-2RG detector with an Epps optical design consisting of 6 spherical elements and providing subpixel rms image sizes of 7.5 +/- 1.0 μm over all wavelengths and field angles. The NIR spectrograph is semi-warm, sharing a common slit plane and partial collimator with the optical arm. A pre-dewar, cooled to below ambient temperature, houses the final NIR collimator optic, the grating/Fabry-Perot etalon, the polarizing beam splitter, and the first three camera optics. The last three camera elements, blocking filters, and detector are housed in a cryogenically cooled dewar. The semi-warm design concept has long been proposed as an economical way to extend optical instruments into the NIR, however, success has been very limited. A major portion of our design effort entails a detailed thermal analysis using non-sequential ray tracing to interactively guide the mechanical design and determine a truly realizable long wavelength cutoff over which astronomical observations will be sky-limited. In this paper we describe our thermal analysis, design concepts for the staged cooling scheme, and results to be incorporated into the overall mechanical design and baffling.

  19. Far-ultraviolet Spectroscopy of Recent Comets with the Cosmic Origins Spectrograph on the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Feldman, Paul D.; Weaver, Harold A.; A’Hearn, Michael F.; Combi, Michael R.; Dello Russo, Neil

    2018-05-01

    Since its launch in 1990, the Hubble Space Telescope (HST) has served as a platform with unique capabilities for remote observations of comets in the far-ultraviolet region of the spectrum. Successive generations of imagers and spectrographs have seen large advances in sensitivity and spectral resolution enabling observations of the diverse properties of a representative number of comets during the past 25 years. To date, four comets have been observed in the far-ultraviolet by the Cosmic Origins Spectrograph (COS), the last spectrograph to be installed in HST, in 2009: 103P/Hartley 2, C/2009 P1 (Garradd), C/2012 S1 (ISON), and C/2014 Q2 (Lovejoy). COS has unprecedented sensitivity, but limited spatial information in its 2.″5 diameter circular aperture, and our objective was to determine the CO production rates from measurements of the CO Fourth Positive system in the spectral range of 1400–1700 Å. In the two brightest comets, 19 bands of this system were clearly identified. The water production rates were derived from nearly concurrent observations of the OH (0,0) band at 3085 Å by the Space Telescope Imaging Spectrograph. The derived CO/{{{H}}}2{{O}} production rate ratio ranged from ∼0.3% for Hartley 2 to ∼22% for Garradd. In addition, strong partially resolved emission features due to multiplets of S I, centered at 1429 Å and 1479 Å, and of C I at 1561 Å and 1657 Å, were observed in all four comets. Weak emission from several lines of the {{{H}}}2 Lyman band system, excited by solar Lyα and Lyβ pumped fluorescence, were detected in comet Lovejoy.

  20. Development of a slicer integral field unit for the existing optical imaging spectrograph FOCAS

    NASA Astrophysics Data System (ADS)

    Ozaki, Shinobu; Tanaka, Yoko; Hattori, Takashi; Mitsui, Kenji; Fukusima, Mitsuhiro; Okada, Norio; Obuchi, Yoshiyuki; Miyazaki, Satoshi; Yamashita, Takuya

    2012-09-01

    We are developing an integral field unit (IFU) with an image slicer for the existing optical imaging spectrograph, Faint Object Camera And Spectrograph (FOCAS), on the Subaru Telescope. Basic optical design has already finished. The slice width is 0.4 arcsec, slice number is 24, and field of view is 13.5x 9.6 arcsec. Sky spectra separated by about 3 arcmin from an object field can be simultaneously obtained, which allows us precise background subtraction. The IFU will be installed as a mask plate and set by the mask exchanger mechanism of FOCAS. Slice mirrors, pupil mirrors and slit mirrors are all made of glass, and their mirror surfaces are fabricated by polishing. Multilayer dielectric reflective coating with high reflectivity (< 98%) is made on each mirror surface. Slicer IFU consists of many mirrors which need to be arraigned with high accuracy. For such alignment, we will make alignment jigs and mirror holders made with high accuracy. Some pupil mirrors need off-axis ellipsoidal surfaces to reduce aberration. We are conducting some prototyping works including slice mirrors, an off-axis ellipsoidal surface, alignment jigs and a mirror support. In this paper, we will introduce our project and show those prototyping works.

  1. Blind Spectroscopic Galaxy Surveys Using an Ultra-Wide-Band Imaging Spectrograph on AtLAST and LST

    NASA Astrophysics Data System (ADS)

    Kohno, Kotaro

    2018-01-01

    A novel approach to elucidation of cosmic star formation history is a blind search for CO and [CII] emissions using a ultra-wide-band imaging spectrograph on the future large submm telescopes like AtLAST and LST. In particular, searching for [CII] emitters in the appropriate frequency range allows us to sample those sources very efficiently for a redshift range of 3.5 to 9 (190 to 420 GHz), reaching the star-formation in the EoR. Further, spectroscopic analysis of CO in the lower frequency bands will constrain the evolution of CO luminosity functions across cosmic time. We conducted a feasibility study of ``CO/[CII] tomography'' based on a mock galaxy catalog containing 1.4 million objects drawn from the S(3) -SAX (Obreschkow et al. 2009). We find that a blind spectroscopic survey using a 50-m telescope equipped with a 100-pixel imaging spectrograph, which covers 70-370 GHz simultaneously, will be promising indeed. A survey of 2 deg(2) in 1,000 hr (on-source) will uncover > 10^5 line-emitting galaxies in total, including 10^3 [CII] emitters in the EoR (Tamura et al., in prep.). Wider surveys (10 deg^2 or wider) will also be discussed for RSD science cases.

  2. KOSMOS and COSMOS: new facility instruments for the NOAO 4-meter telescopes

    NASA Astrophysics Data System (ADS)

    Martini, Paul; Elias, J.; Points, S.; Sprayberry, D.; Derwent, Mark A.; Gonzalez, Raymond; Mason, J. A.; O'Brien, T. P.; Pappalardo, D. P.; Pogge, Richard W.; Stoll, R.; Zhelem, R.; Daly, Phil; Fitzpatrick, M.; George, J. R.; Hunten, M.; Marshall, R.; Poczulp, Gary; Rath, S.; Seaman, R.; Trueblood, M.; Zelaya, K.

    2014-07-01

    We describe the design, construction and measured performance of the Kitt Peak Ohio State Multi-Object Spectrograph (KOSMOS) for the 4-m Mayall telescope and the Cerro Tololo Ohio State Multi-Object Spectrograph (COSMOS) for the 4-m Blanco telescope. These nearly identical imaging spectrographs are modified versions of the OSMOS instrument; they provide a pair of new, high-efficiency instruments to the NOAO user community. KOSMOS and COSMOS may be used for imaging, long-slit, and multi-slit spectroscopy over a 100 square arcminute field of view with a pixel scale of 0.29 arcseconds. Each contains two VPH grisms that provide R~2500 with a one arcsecond slit and their wavelengths of peak diffraction efficiency are approximately 510nm and 750nm. Both may also be used with either a thin, blue-optimized CCD from e2v or a thick, fully depleted, red-optimized CCD from LBNL. These instruments were developed in response to the ReSTAR process. KOSMOS was commissioned in 2013B and COSMOS was commissioned in 2014A.

  3. VizieR Online Data Catalog: R-band light curves of type II supernovae (Rubin+, 2016)

    NASA Astrophysics Data System (ADS)

    Rubin, A.; Gal-Yam, A.; De Cia, A.; Horesh, A.; Khazov, D.; Ofek, E. O.; Kulkarni, S. R.; Arcavi, I.; Manulis, I.; Yaron, O.; Vreeswijk, P.; Kasliwal, M. M.; Ben-Ami, S.; Perley, D. A.; Cao, Y.; Cenko, S. B.; Rebbapragada, U. D.; Wozniak, P. R.; Filippenko, A. V.; Clubb, K. I.; Nugent, P. E.; Pan, Y.-C.; Badenes, C.; Howell, D. A.; Valenti, S.; Sand, D.; Sollerman, J.; Johansson, J.; Leonard, D. C.; Horst, J. C.; Armen, S. F.; Fedrow, J. M.; Quimby, R. M.; Mazzali, P.; Pian, E.; Sternberg, A.; Matheson, T.; Sullivan, M.; Maguire, K.; Lazarevic, S.

    2016-05-01

    Our sample consists of 57 SNe from the PTF (Law et al. 2009PASP..121.1395L; Rau et al. 2009PASP..121.1334R) and the intermediate Palomar Transient Factory (iPTF; Kulkarni 2013ATel.4807....1K) surveys. Data were routinely collected by the Palomar 48-inch survey telescope in the Mould R-band. Follow-up observations were conducted mainly with the robotic 60-inch telescope using an SDSS r-band filter, with additional telescopes providing supplementary photometry and spectroscopy (see Gal-Yam et al. 2011, J/ApJ/736/159). The full list of SNe, their coordinates, and classification spectra are presented in Table 1. Most of the spectra were obtained with the Double Spectrograph on the 5m Hale telescope at Palomar Observatory, the Kast spectrograph on the Shane 3m telescope at Lick Observatory, the Low Resolution Imaging Spectrometer (LRIS) on the Keck I 10m telescope, and the DEep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II 10m telescope. (2 data files).

  4. Center Finding Algorithm on slit mask point source for IGRINS (Immersion GRating INfrared Spectrograph)

    NASA Astrophysics Data System (ADS)

    Lee, Hye-In; Pak, Soojong; Lee, Jae-Joon; Mace, Gregory N.; Jaffe, Daniel Thomas

    2017-06-01

    We developed an observation control software for the IGRINS (Immersion Grating Infrared Spectrograph) silt-viewing camera module, which points the astronomical target onto the spectroscopy slit and sends tracking feedbacks to the telescope control system (TCS). The point spread function (PSF) image is not following symmetric Gaussian profile. In addition, bright targets are easily saturated and shown as a donut shape. It is not trivial to define and find the center of the asymmetric PSF especially when most of the stellar PSF falls inside the slit. We made a center balancing algorithm (CBA) which derives the expected center position along the slit-width axis by referencing the stray flux ratios of both upper and lower sides of the slit. We compared accuracies of the CBA and those of a two-dimensional Gaussian fitting (2DGA) through simulations in order to evaluate the center finding algorithms. These methods were then verified with observational data. In this poster, we present the results of our tests and suggest a new algorithm for centering targets in the slit image of a spectrograph.

  5. New developments in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Fitzgerald, Michael P.; Johnson, James; Larkin, James E.; Lewis, Hilton A.; Martin, Christopher; Matthews, Keith Y.; Prochaska, J. X.; Wizinowich, Peter

    2014-07-01

    The W. M. Keck Observatory continues to develop new capabilities in support of our science driven strategic plan which emphasizes leadership in key areas of observational astronomy. This leadership is a key component of the scientific productivity of our observing community and depends on our ability to develop new instrumentation, upgrades to existing instrumentation, and upgrades to supporting infrastructure at the observatory. In this paper we describe the as measured performance of projects completed in 2014 and the expected performance of projects currently in the development or construction phases. Projects reaching completion in 2014 include a near-IR tip/tilt sensor for the Keck I adaptive optics system, a new center launch system for the Keck II laser guide star facility, and NIRES, a near-IR Echelle spectrograph for the Keck II telescope. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, a deployable tertiary mirror for the Keck I telescope, upgrades to the spectrograph detector and the imager of the OSIRIS instrument, and an upgrade to the telescope control systems on both Keck telescopes.

  6. FUV Reflectance of Recently Prepared Al Protected with AlF3: COR Program Technology Development

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel

    2016-01-01

    Astronomical observations in the Far Ultraviolet (FUV) spectral region are some of the more challenging due to the very distant and faint objects that are typically searched for in cosmic origin studies such as origin of large scale structure, the formation, evolution, and age of galaxies and the origin of stellar and planetary systems. These challenges are driving the need to improve the performance of optical coatings over a wide spectral range that would increase reflectance in mirrors and reduced absorption in dielectric filters used in optical telescope for FUV observations. This paper will present recent advances in reflectance performance for Al+AlF3 mirrors optimized for Lyman-alpha wavelength by performing the deposition of the AlF3 overcoat at elevated substrate temperatures.

  7. An All-reflective Integral Field Spectrograph for Far Ultraviolet Astrophysics

    NASA Astrophysics Data System (ADS)

    Kendrick, Stephen; Ebbets, D.; Hardesty, C.; Sembach, K.; Beasley, M.; Woodgate, B.

    2010-01-01

    This paper overviews the supporting optical technologies for an ultraviolet integral field spectrograph (IFS) that will be used for future space astrophysics missions. The new technology is an all-reflective image slicer that directs light to an array of imaging diffraction gratings. Previous UV instruments recorded the spectra of point sources or spatially resolved elements along a long slit. Our IFS has only one reflection more than the Cosmic Origins Spectrograph for Hubble Space Telescope, which is the most sensitive UV spectrograph yet built, but is limited to point sources. An efficient UV IFS enables simultaneous spectroscopy of many spatially resolved elements within a contiguous two dimensional field of view in diagnostically important ultraviolet lines. The output is thus a data cube having one spectral and two spatial coordinates. This is the astrophysical analog to hyperspectral imaging in Earth sciences. The scientific benefits of such an instrument were developed during Vision Missions, Origins Probes, and Astrophysics Strategic Mission Concept Studies between 2004 and 2009. Implementation can be scaled for a small payload such as a sounding rocket or Explorer-class mission, leading to a flight experiment within the next few years. Of particular interest would be the application of this technology for an instrument on a version of the Advanced Technology Large-Aperture Space Telescope (ATLAST) which will have an 8+-m aperture. We will focus on the spectral region near Lyman alpha, but the all-reflective approach is applicable to other spectral regions when matched with wavelength appropriate gratings and detectors. Our project is a collaboration between Ball Aerospace & Technologies Corp., the University of Colorado, NASA Goddard Space Flight Center and the Space Telescope Science Institute, all of which have extensive experience with the science and instrumentation for UV astrophysics.

  8. Optical design of the SuMIRe/PFS spectrograph

    NASA Astrophysics Data System (ADS)

    Pascal, Sandrine; Vives, Sébastien; Barkhouser, Robert; Gunn, James E.

    2014-07-01

    The SuMIRe Prime Focus Spectrograph (PFS), developed for the 8-m class SUBARU telescope, will consist of four identical spectrographs, each receiving 600 fibers from a 2394 fiber robotic positioner at the telescope prime focus. Each spectrograph includes three spectral channels to cover the wavelength range [0.38-1.26] um with a resolving power ranging between 2000 and 4000. A medium resolution mode is also implemented to reach a resolving power of 5000 at 0.8 um. Each spectrograph is made of 4 optical units: the entrance unit which produces three corrected collimated beams and three camera units (one per spectral channel: "blue, "red", and "NIR"). The beam is split by using two large dichroics; and in each arm, the light is dispersed by large VPH gratings (about 280x280mm). The proposed optical design was optimized to achieve the requested image quality while simplifying the manufacturing of the whole optical system. The camera design consists in an innovative Schmidt camera observing a large field-of-view (10 degrees) with a very fast beam (F/1.09). To achieve such a performance, the classical spherical mirror is replaced by a catadioptric mirror (i.e meniscus lens with a reflective surface on the rear side of the glass, like a Mangin mirror). This article focuses on the optical architecture of the PFS spectrograph and the perfornance achieved. We will first described the global optical design of the spectrograph. Then, we will focus on the Mangin-Schmidt camera design. The analysis of the optical performance and the results obtained are presented in the last section.

  9. The IFS for WFIRST CGI: Science Requirements to Design

    NASA Astrophysics Data System (ADS)

    Groff, Tyler; Gong, Qian; Mandell, Avi M.; Zimmerman, Neil; Rizzo, Maxime; McElwain, Michael; harvey, david; Saxena, Prabal; cady, eric; mejia prada, camilo

    2018-01-01

    Direct Imaging of exoplanets using a coronagraph has become a major field of research both on the ground and in space. Key to the science of direct imaging is the spectroscopic capabilities of the instrument, our ability to extract spectra, and measure the abundance of molecular species such as Methane. To take these spectra, the WFIRST coronagraph instrument (CGI) uses an integral field spectrograph (IFS), which encodes the spectrum into a two-dimensional image on the detector. This results in more efficient detection and characterization of targets, and the spectral information is critical to achieving detection limits below the speckle floor of the imager. The CGI IFS operates in three 18% bands spanning 600nm to 970nm at a nominal spectral resolution of R50. We present the current science and engineering requirements for the IFS design, the instrument design, anticipated performance, and how the calibration is integrated into the focal plane wavefront control algorithms. We also highlight the role of the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) at the JPL High Contrast Imaging Testbed to demonstrate performance and validate calibration methodologies for the flight instrument.

  10. An overview and the current status of instrumentation at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark; Edwards, Michelle L.; Kuhn, Olga; Thompson, David; Veillet, Christian

    2014-07-01

    An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (24' × 24') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectrometer (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front-bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 x 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23 m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near- infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning and performing science observations on the LBT utilizing the installed adaptive secondary mirrors in both single-sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Installation and testing of the bench spectrograph will begin in July 2014. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. Both LUCI2 and MODS2 passed their laboratory acceptance milestones in the summer of 2013 and have been installed on the LBT. LUCI2 is currently being commissioned and the data analysis is well underway. Diffraction-limited commissioning of its adaptive optics modes will begin in the 2014B semester. MODS2 commissioning began in May 2014 and will completed in the 2014B semester as well. Binocular testing and commissioning of both the LUCI and MODS pairs will begin in 2014B with the goal that this capability could be offered sometime in 2015. The availability of all these instruments mounted simultaneously on the LBT permits unique science, flexible scheduling, and improved operational support.

  11. LRO-LAMP Observations of Illumination Conditions in the Lunar South Pole

    NASA Astrophysics Data System (ADS)

    Mandt, K.; Greathouse, T. K.; Retherford, K. D.; Mazarico, E.; Gladstone, R.; Liu, Y.; Hendrix, A.; Hurley, D.; Lemelin, M.; Patterson, G. W.; Bowman-Cisneros, E.

    2016-12-01

    The south pole of the Moon is an area of great interest for space exploration and scientific research, because many low-lying regions are permanently shaded while adjacent topographic highs experience near constant sunlight. The lack of direct sunlight in permanently shaded regions (PSRs) provides cold enough conditions for them to potentially trap and retain large quantities of volatiles in their soils, while the locations that receive extended periods of sunlight could provide a reliable source of solar energy and relatively stable temperature conditions. Illumination conditions at the lunar south pole vary diurnally and seasonally, but on different timescales than days and seasons on the Earth. The most important advancements in understanding illumination conditions at the poles are provided by topographic mapping and illumination modeling. These efforts have provided estimates of the extent of PSRs and the percent of time that sunlit peaks are illuminated. They also help to constrain the thermal balance of the PSRs based on other sources of illumination. However, comparing model results with spacecraft observations can help to validate the models and provides ground truth for planning future exploration efforts. We have developed a new method for observing illumination conditions at the south pole using data taken by the LRO Lyman Alpha Mapping Project (LAMP), a far ultraviolet (FUV) imaging spectrograph. LAMP produces maps of the albedo of the upper 25-100 nm of lunar regolith using measurements of the brightness of reflected light relative to known light sources in daytime and nighttime conditions. Nighttime observations have been used previously to determine the abundance of surface frost within the PSRs and the surface porosity of regolith within the PSRs. The maps that have been used for these studies excluded scattered sunlight by restricting observations to nighttime conditions when the solar zenith angle is greater than 91°. However, by producing maps of the PSRs using data that was excluded from these previous studies we are able to observe scattering of far-UV sunlight at night within the PSRs.

  12. Progress with the Prime Focus Spectrograph for the Subaru Telescope: a massively multiplexed optical and near-infrared fiber spectrograph

    NASA Astrophysics Data System (ADS)

    Sugai, Hajime; Tamura, Naoyuki; Karoji, Hiroshi; Shimono, Atsushi; Takato, Naruhisa; Kimura, Masahiko; Ohyama, Youichi; Ueda, Akitoshi; Aghazarian, Hrand; de Arruda, Marcio V.; Barkhouser, Robert H.; Bennett, Charles L.; Bickerton, Steve; Bozier, Alexandre; Braun, David F.; Bui, Khanh; Capocasale, Christopher M.; Carr, Michael A.; Castilho, Bruno; Chang, Yin-Chang; Chen, Hsin-Yo; Chou, Richard C. Y.; Dawson, Olivia R.; Dekany, Richard G.; Ek, Eric M.; Ellis, Richard S.; English, Robin J.; Ferrand, Didier; Ferreira, Décio; Fisher, Charles D.; Golebiowski, Mirek; Gunn, James E.; Hart, Murdock; Heckman, Timothy M.; Ho, Paul T. P.; Hope, Stephen; Hovland, Larry E.; Hsu, Shu-Fu; Hu, Yen-Sang; Huang, Pin Jie; Jaquet, Marc; Karr, Jennifer E.; Kempenaar, Jason G.; King, Matthew E.; Le Fèvre, Olivier; Le Mignant, David; Ling, Hung-Hsu; Loomis, Craig; Lupton, Robert H.; Madec, Fabrice; Mao, Peter; Marrara, Lucas S.; Ménard, Brice; Morantz, Chaz; Murayama, Hitoshi; Murray, Graham J.; de Oliveira, Antonio Cesar; de Oliveira, Claudia M.; de Oliveira, Ligia S.; Orndorff, Joe D.; de Paiva Vilaça, Rodrigo; Partos, Eamon J.; Pascal, Sandrine; Pegot-Ogier, Thomas; Reiley, Daniel J.; Riddle, Reed; Santos, Leandro; dos Santos, Jesulino B.; Schwochert, Mark A.; Seiffert, Michael D.; Smee, Stephen A.; Smith, Roger M.; Steinkraus, Ronald E.; Sodré, Laerte; Spergel, David N.; Surace, Christian; Tresse, Laurence; Vidal, Clément; Vives, Sebastien; Wang, Shiang-Yu; Wen, Chih-Yi; Wu, Amy C.; Wyse, Rosie; Yan, Chi-Hung

    2014-07-01

    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multi-fiber spectrograph with 2394 science fibers, which are distributed in 1.3 degree diameter field of view at Subaru 8.2-meter telescope. The simultaneous wide wavelength coverage from 0.38 μm to 1.26 μm, with the resolving power of 3000, strengthens its ability to target three main survey programs: cosmology, Galactic archaeology, and galaxy/AGN evolution. A medium resolution mode with resolving power of 5000 for 0.71 μm to 0.89 μm also will be available by simply exchanging dispersers. PFS takes the role for the spectroscopic part of the Subaru Measurement of Images and Redshifts (SuMIRe) project, while Hyper Suprime-Cam (HSC) works on the imaging part. HSC's excellent image qualities have proven the high quality of the Wide Field Corrector (WFC), which PFS shares with HSC. The PFS collaboration has succeeded in the project Preliminary Design Review and is now in a phase of subsystem Critical Design Reviews and construction. To transform the telescope plus WFC focal ratio, a 3-mm thick broad-band coated microlens is glued to each fiber tip. The microlenses are molded glass, providing uniform lens dimensions and a variety of refractive-index selection. After successful production of mechanical and optical samples, mass production is now complete. Following careful investigations including Focal Ratio Degradation (FRD) measurements, a higher transmission fiber is selected for the longest part of cable system, while one with a better FRD performance is selected for the fiber-positioner and fiber-slit components, given the more frequent fiber movements and tightly curved structure. Each Fiber positioner consists of two stages of piezo-electric rotary motors. Its engineering model has been produced and tested. After evaluating the statistics of positioning accuracies, collision avoidance software, and interferences (if any) within/between electronics boards, mass production will commence. Fiber positioning will be performed iteratively by taking an image of artificially back-illuminated fibers with the Metrology camera located in the Cassegrain container. The camera is carefully designed so that fiber position measurements are unaffected by small amounts of high special-frequency inaccuracies in WFC lens surface shapes. Target light carried through the fiber system reaches one of four identical fast-Schmidt spectrograph modules, each with three arms. All optical glass blanks are now being polished. Prototype VPH gratings have been optically tested. CCD production is complete, with standard fully-depleted CCDs for red arms and more-challenging thinner fully-depleted CCDs with blue-optimized coating for blue arms. The active damping system against cooler vibration has been proven to work as predicted, and spectrographs have been designed to avoid small possible residual resonances.

  13. THE EFFECTS OF EPISODIC STAR FORMATION ON THE FUV-NUV COLORS OF STAR FORMING REGIONS IN OUTER DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Kate L.; Van Zee, Liese; Dowell, Jayce D., E-mail: barneskl@astro.indiana.edu, E-mail: vanzee@astro.indiana.edu, E-mail: jdowell@unm.edu

    2013-09-20

    We run stellar population synthesis models to examine the effects of a recently episodic star formation history (SFH) on UV and Hα colors of star forming regions. Specifically, the SFHs we use are an episodic sampling of an exponentially declining star formation rate (SFR; τ model) and are intended to simulate the SFHs in the outer disks of spiral galaxies. To enable comparison between our models and observational studies of star forming regions in outer disks, we include in our models sensitivity limits that are based on recent deep UV and Hα observations in the literature. We find significant dispersionmore » in the FUV-NUV colors of simulated star forming regions with frequencies of star formation episodes of 1 × 10{sup –8} to 4 × 10{sup –9} yr{sup –1}. The dispersion in UV colors is similar to that found in the outer disk of nearby spiral galaxies. As expected, we also find large variations in L{sub H{sub α}}/L{sub FUV}. We interpret our models within the context of inside-out disk growth, and find that a radially increasing τ and decreasing metallicity with an increasing radius will only produce modest FUV-NUV color gradients, which are significantly smaller than what is found for some nearby spiral galaxies. However, including moderate extinction gradients with our models can better match the observations with steeper UV color gradients. We estimate that the SFR at which the number of stars emitting FUV light becomes stochastic is ∼2 × 10{sup –6} M{sub ☉} yr{sup –1}, which is substantially lower than the SFR of many star forming regions in outer disks. Therefore, we conclude that stochasticity in the upper end of the initial mass function is not likely to be the dominant cause of dispersion in the FUV-NUV colors of star forming regions in outer disks. Finally, we note that if outer disks have had an episodic SFH similar to that used in this study, this should be taken into account when estimating gas depletion timescales and modeling chemical evolution of spiral galaxies.« less

  14. VizieR Online Data Catalog: Wolf-Rayet population in NGC 5068 (Bibby+, 2012)

    NASA Astrophysics Data System (ADS)

    Bibby, J. L.; Crowther, P. A.

    2012-10-01

    NGC 5068 has been imaged with the ESO VLT and Focal Reduced Low-dispersion Spectrograph #1 (FORS1) covering a field of view of 6.8x6.8arcmin2 with a plate scale of 0.25arcsec/pixel. Both broad- and narrow-band imaging were obtained on 2008 April 7 under program ID 081.B-0289 (P.I. Crowther). In addition, the Gemini Multi-Object Spectrograph (GMOS) on the Gemini-South telescope was used to obtain follow-up spectroscopy in 2009 March-April under program ID GS-2009A-Q-20 (P.I. Crowther). The R150 grating was placed at a central wavelength of 510 and 530nm with a dispersion of ~3.5Å/pix. (2 data files).

  15. On-instrument wavefront sensor design for the TMT infrared imaging spectrograph (IRIS) update

    NASA Astrophysics Data System (ADS)

    Dunn, Jennifer; Reshetov, Vladimir; Atwood, Jenny; Pazder, John; Wooff, Bob; Loop, David; Saddlemyer, Leslie; Moore, Anna M.; Larkin, James E.

    2014-08-01

    The first light instrument on the Thirty Meter Telescope (TMT) project will be the InfraRed Imaging Spectrograph (IRIS). IRIS will be mounted on a bottom port of the facility AO instrument NFIRAOS. IRIS will report guiding information to the NFIRAOS through the On-Instrument Wavefront Sensor (OIWFS) that is part of IRIS. This will be in a self-contained compartment of IRIS and will provide three deployable wavefront sensor probe arms. This entire unit will be rotated to provide field de-rotation. Currently in our preliminary design stage our efforts have included: prototyping of the probe arm to determine the accuracy of this critical component, handling cart design and reviewing different types of glass for the atmospheric dispersion.

  16. Using Spectroscopic Profiles to Study the Morphology of Comets

    NASA Astrophysics Data System (ADS)

    Harris, Ien; Pierce, Donna M.; Cochran, Anita L.

    2016-10-01

    We have used the integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory to obtain spectroscopic images of the comae of several comets. The images were obtained for various radical species (C2, C3. CH, CN, NH2). Radial and azimuthal average profiles of the radical species were created to enhance any observed cometary coma morphological features. We compare the observed coma features across the observed species and over the different observation periods in order to constrain possible rotational states of the observed comets. We will present results for several comets, including 2009P1 (Garradd). This work was funded by NASA's Planetary Atmospheres program (Award No. NNX14AH186).

  17. Investigating an SPI and Measuring Baseline FUV Variability in the GJ 436 Hot-Neptune System

    NASA Astrophysics Data System (ADS)

    Loyd, R. O.

    2017-08-01

    Closely-orbiting, massive planets can measurably affect the activity of their host star through tides, magnetic disturbances, or even mass transfer. Observations of these star planet interactions (SPIs) provide a window into stellar and planetary physics that may eventually lead to constraints on planetary magnetic fields. Recently, the MUSCLES Treasury Survey of 11 exoplanet host stars revealed correlations providing the first-ever evidence of SPIs in M dwarf systems. This evidence additionally suggests that N V 1238,1242 Angstrom emission best traces SPIs, a feature that merits further investigation. To this end, we propose an experiment using the M dwarf + hot Neptune system GJ 436 that will also benefit upcoming transit observations. GJ 436 is ideal for an SPI experiment because (1) escaped gas from its known rapidly evaporating hot Neptune could be funneled onto the star and (2) it displays a tentative SPI signal in existing, incomplete N V observations. The proposed experiment will complete these N V observations to constrain a model of modulation in N V flux resulting from a stellar hot spot induced by the planet. The results will provide evidence for or against hot spot SPIs producing the correlations observed in the MUSCLES Survey. Furthemore, the acquired data will establish a broader FUV baseline to constrain day-timescale variability and facular emission in FUV lines, needed for the interpretation of upcoming transit observations of GJ 436b. For this reason, we waive our proprietary rights to the data. Establishing GJ 436's baseline FUV variability and testing the hot spot hypothesis are only possible through the FUV capabilities of HST.

  18. The Local Universe as Seen in the Far-Infrared and Far-Ultraviolet: A Global Point of View of the Local Recent Star Formation

    NASA Astrophysics Data System (ADS)

    Buat, V.; Takeuchi, T. T.; Iglesias-Páramo, J.; Xu, C. K.; Burgarella, D.; Boselli, A.; Barlow, T.; Bianchi, L.; Donas, J.; Forster, K.; Friedman, P. G.; Heckman, T. M.; Lee, Y.-W.; Madore, B. F.; Martin, D. C.; Milliard, B.; Morissey, P.; Neff, S.; Rich, M.; Schiminovich, D.; Seibert, M.; Small, T.; Szalay, A. S.; Welsh, B.; Wyder, T.; Yi, S. K.

    2007-12-01

    We select far-infrared (FIR: 60 μm) and far-ultraviolet (FUV: 530 Å) samples of nearby galaxies in order to discuss the biases encountered by monochromatic surveys (FIR or FUV). Very different volumes are sampled by each selection, and much care is taken to apply volume corrections to all the analyses. The distributions of the bolometric luminosity of young stars are compared for both samples: they are found to be consistent with each other for galaxies of intermediate luminosities, but some differences are found for high (>5×1010 Lsolar) luminosities. The shallowness of the IRAS survey prevents us from securing a comparison at low luminosities (<2×109 Lsolar). The ratio of the total infrared (TIR) luminosity to the FUV luminosity is found to increase with the bolometric luminosity in a similar way for both samples up to 5×1010 Lsolar. Brighter galaxies are found to have a different behavior according to their selection: the LTIR/LFUV ratio of the FUV-selected galaxies brighter than 5×1010 Lsolar reaches a plateau, whereas LTIR/LFUV continues to increase with the luminosity of bright galaxies selected in FIR. The volume-averaged specific star formation rate (SFR per unit galaxy stellar mass, SSFR) is found to decrease toward massive galaxies within each selection. The mean values of the SSFR are found to be larger than those measured for optical and NIR-selected samples over the whole mass range for the FIR selection, and for masses larger than 1010 Msolar for the FUV selection. Luminous and massive galaxies selected in FIR appear as active as galaxies with similar characteristics detected at z~0.7.

  19. EXPRES: a next generation RV spectrograph in the search for earth-like worlds

    NASA Astrophysics Data System (ADS)

    Jurgenson, C.; Fischer, D.; McCracken, T.; Sawyer, D.; Szymkowiak, A.; Davis, A.; Muller, G.; Santoro, F.

    2016-08-01

    The EXtreme PREcision Spectrograph (EXPRES) is an optical fiber fed echelle instrument being designed and built at the Yale Exoplanet Laboratory to be installed on the 4.3-meter Discovery Channel Telescope operated by Lowell Observatory. The primary science driver for EXPRES is to detect Earth-like worlds around Sun-like stars. With this in mind, we are designing the spectrograph to have an instrumental precision of 15 cm/s so that the on-sky measurement precision (that includes modeling for RV noise from the star) can reach to better than 30 cm/s. This goal places challenging requirements on every aspect of the instrument development, including optomechanical design, environmental control, image stabilization, wavelength calibration, and data analysis. In this paper we describe our error budget, and instrument optomechanical design.

  20. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft E.; Johnson, James; Lewis, Hilton A.; Martin, Christopher; McLean, Ian S.; Wizinowich, Peter

    2012-09-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in terms of their role in the strategic plan, the key science areas they address, and their performance as measured or predicted. Projects reaching completion in 2012 include MOSFIRE, a near IR multi-object spectrograph, a laser guide star adaptive optics facility on the Keck I telescope, and an upgrade to the guide camera for the HIRES instrument on Keck I. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager (KCWI), an upgrade to the telescope control systems on both Keck telescopes, a near-IR tip/tilt sensor for the Keck I adaptive optics system, and a new grating for the OSIRIS integral field spectrograph.

  1. Space telescope scientific instruments

    NASA Technical Reports Server (NTRS)

    Leckrone, D. S.

    1979-01-01

    The paper describes the Space Telescope (ST) observatory, the design concepts of the five scientific instruments which will conduct the initial observatory observations, and summarizes their astronomical capabilities. The instruments are the wide-field and planetary camera (WFPC) which will receive the highest quality images, the faint-object camera (FOC) which will penetrate to the faintest limiting magnitudes and achieve the finest angular resolution possible, and the faint-object spectrograph (FOS), which will perform photon noise-limited spectroscopy and spectropolarimetry on objects substantially fainter than those accessible to ground-based spectrographs. In addition, the high resolution spectrograph (HRS) will provide higher spectral resolution with greater photometric accuracy than previously possible in ultraviolet astronomical spectroscopy, and the high-speed photometer will achieve precise time-resolved photometric observations of rapidly varying astronomical sources on short time scales.

  2. Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST/AFTA

    NASA Technical Reports Server (NTRS)

    Gong, Qian; Mcelwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Stapelfeldt, Karl; Hilton, George; Sayson, Jorge Llop; Perrin, Marshall; hide

    2015-01-01

    Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey Telescope/Astrophysics Focused Telescope Assets (WFIRST/AFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) cofigurations. We discuss why the lenslet array based IFS is selected for PISCES. We present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the specific function of our pinhole mask on the back surface of the lenslet array to further suppress star light introduced speckles. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.

  3. Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST-AFTA

    NASA Technical Reports Server (NTRS)

    Gong, Qian; Mcelwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Stapelfeldt, Karl; Hilton, George; Sayson, Jorge Llop; Perrin, Marshall; hide

    2015-01-01

    Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey Telescope/Astrophysics Focused Telescope Assets (WFIRST-AFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory (JPL) and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) configurations. We discuss why the lenslet array based IFS was selected for PISCES. We present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the specific function of our pinhole mask on the back surface of the lenslet array to reduce the diffraction from the edge of the lenslets. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Hannah; Chae, Jongchul; Song, Donguk

    We report three-minute oscillations in the solar chromosphere driven by a strong downflow event in a sunspot. We used the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope and the Interface Region Imaging Spectrograph (IRIS). The strong downflow event is identified in the chromospheric and transition region lines above the sunspot umbra. After the event, oscillations occur at the same region. The amplitude of the Doppler velocity oscillations is 2 km s{sup −1} and gradually decreases with time. In addition, the period of the oscillations gradually increases from 2.7 to 3.3 minutes. In the IRIS 1330 Åmore » slit-jaw images, we identify a transient brightening near the footpoint of the downflow detected in the H α +0.5 Å image. The characteristics of the downflowing material are consistent with those of sunspot plumes. Based on our findings, we suggest that the gravitationally stratified atmosphere came to oscillate with a three-minute period in response to the impulsive downflow event as was theoretically investigated by Chae and Goode.« less

  5. MuSICa image slicer prototype at 1.5-m GREGOR solar telescope

    NASA Astrophysics Data System (ADS)

    Calcines, A.; López, R. L.; Collados, M.; Vega Reyes, N.

    2014-07-01

    Integral Field Spectroscopy is an innovative technique that is being implemented in the state-of-the-art instruments of the largest night-time telescopes, however, it is still a novelty for solar instrumentation. A new concept of image slicer, called MuSICa (Multi-Slit Image slicer based on collimator-Camera), has been designed for the integral field spectrograph of the 4-m European Solar Telescope. This communication presents an image slicer prototype of MuSICa for GRIS, the spectrograph of the 1.5-m GREGOR solar telescope located at the Observatory of El Teide. MuSICa at GRIS reorganizes a 2-D field of view of 24.5 arcsec into a slit of 0.367 arcsec width by 66.76 arcsec length distributed horizontally. It will operate together with the TIP-II polarimeter to offer high resolution integral field spectropolarimetry. It will also have a bidimensional field of view scanning system to cover a field of view up to 1 by 1 arcmin.

  6. The Optical Design of CHARIS: An Exoplanet IFS for the Subaru Telescope

    NASA Technical Reports Server (NTRS)

    Peters-Limbach, Mary; Groff, Tyler; Kasdin, N. Jeremy; Driscoll, Dave; Galvin, Michael; Foster, Allen; Carr, Michael; LeClerc, Dave; Fagan, Rad; McElwain, Michael; hide

    2013-01-01

    High-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the optical design for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 138×138 spatial elements over a 2.07 arcsec × 2.07 arcsec field of view (FOV). CHARIS will operate in the near infrared (lambda = 1.15 - 2.5 micrometers) and will feature two spectral resolution modes of R is approximately 18 (low-res mode) and R is approximately 73 (high-res mode). Taking advantage of the Subaru telescope adaptive optics systems and coronagraphs (AO188 and SCExAO), CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS will undergo CDR in October 2013 and is projected to have first light by the end of 2015. We report here on the current optical design of CHARIS and its unique innovations.

  7. The Magneto-optical Filter, Working Principles and Recent Progress

    NASA Technical Reports Server (NTRS)

    Cacciani, A.; Rhodes, E. J., Jr.

    1984-01-01

    The Magneto-Optical Filter is described which allows simultaneous magnetic and velocity measurements (in both imaging and non-imaging modes) without the need for a spectrograph. In this way the stability and alignment problems of the spectrograph are completely overcome. Its major advantages are: wavelength absolute reference and stability, high signal to noise ratio and independence of the transmission profile from the incidence angle of the solar beam. It is an imaging instrument allowing high wave number analysis in the solar oscillation spectrum and a continuous monitoring of the image position through the chromospheric facular structures. The apparatus in use at Mt. Wilson is assembled in a modular form. The most important part of it is a glass cell containing the sodium vapor. The filter is easy to use but the cell is not easy to construct in an optimal way. The technology is in progress both to use Na and K together and to prevent the windows from becoming coated during a long-term operation.

  8. Studying the inner regions of young stars and their disks with aperture masking interferometry

    NASA Astrophysics Data System (ADS)

    Greenbaum, Alexandra; Sivaramakrishnan, Anand; GPI Instrument Team; NIRISS Instrument Team

    2017-01-01

    High resolution aperture masking interferometry complements coronagraphic imagers to provide a unique perspective on star and planet formation at more moderate contrast. By targeting young stars, especially those with disks, we aim to understand complex protoplanetary environments. Ground-based non-redundant masking (NRM) paired with spectrographs and polarimeters probes both thermally emitting young companions, possibly embedded in the disk or gap and scattered light in protoplanetary disks. And soon the community will have access to the most stable NRM conditions yet, with the Near Infrared Imager and Slitless Spectrograph (NIRISS) Aperture Masking Interferometry (AMI) mode on the James Webb Space Telescope. I will present my thesis work commissioning the Gemini Planet Imager’s NRM, highlighting results through both its spectroscopy and polarimetry modes, which set the stage for future space-based imaging. I will also give an overview of NIRISS-AMI capabilities and performance predictions for imaging young low-mass companions and disks, and how it will complement other instruments on JWST.

  9. The AAO fiber instrument data simulator

    NASA Astrophysics Data System (ADS)

    Goodwin, Michael; Farrell, Tony; Smedley, Scott; Heald, Ron; Heijmans, Jeroen; De Silva, Gayandhi; Carollo, Daniela

    2012-09-01

    The fiber instrument data simulator is an in-house software tool that simulates detector images of fiber-fed spectrographs developed by the Australian Astronomical Observatory (AAO). In addition to helping validate the instrument designs, the resulting simulated images are used to develop the required data reduction software. Example applications that have benefited from the tool usage are the HERMES and SAMI instrumental projects for the Anglo-Australian Telescope (AAT). Given the sophistication of these projects an end-to-end data simulator that accurately models the predicted detector images is required. The data simulator encompasses all aspects of the transmission and optical aberrations of the light path: from the science object, through the atmosphere, telescope, fibers, spectrograph and finally the camera detectors. The simulator runs under a Linux environment that uses pre-calculated information derived from ZEMAX models and processed data from MATLAB. In this paper, we discuss the aspects of the model, software, example simulations and verification.

  10. Cassini UVIS Observations of Titan Ultraviolet Airglow Spectra with Laboratory Modeling from Electron- and Proton-Excited N2 Emission Studies

    NASA Astrophysics Data System (ADS)

    Ajello, J. M.; West, R. A.; Malone, C. P.; Gustin, J.; Esposito, L. W.; McClintock, W. E.; Holsclaw, G. M.; Stevens, M. H.

    2011-12-01

    Joseph M. Ajello, Robert A. West, Rao S. Mangina Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Charles P. Malone Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 & Department of Physics, California State University, Fullerton, CA 92834 Michael H. Stevens Space Science Division, Naval Research Laboratory, Washington, DC 20375 Jacques Gustin Laboratoire de Physique Atmosphérique et Planétaire, Université de Liège, Liège, Belgium A. Ian F. Stewart, Larry W. Esposito, William E. McClintock, Gregory M. Holsclaw Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 E. Todd Bradley Department of Physics, University of Central Florida, Orlando, FL 32816 The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including three eclipse observations from 2009 through 2010. The 77 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions (lifetimes less than ~100 μs), including the Lyman-Birge-Hopfield (LBH) band system, arising from photoelectron induced fluorescence and solar photo-fragmentation of molecular nitrogen (N2). The altitude of peak UV emission on the limb of Titan during daylight occurred inside the thermosphere/ionosphere (near 1000 km altitude). However, at night on the limb, the same emission features, but much weaker in intensity, arise in the lower atmosphere below 1000 km (lower thermosphere, mesosphere, haze layer) extending downwards to near the surface at ~300 km, possibly resulting from proton- and/or heavier ion-induced emissions as well as secondary-electron-induced emissions. The eclipse observations are unique. UV emissions were observed during only one of the three eclipse events, and no Vegard-Kaplan (VK) or LBH emissions were seen. Through regression analysis using laboratory spectra, we have analyzed the intensity and identified each spectral feature from the limb or disk emission spectrum. The strongest dipole-allowed transitions of N2 occur in the EUV. The electronic transitions proceed from the X 1Σg+ ground-state to about seven closely spaced (~12-15 eV) Rydberg-valence (RV) states, which are the source of the molecular emissions in the EUV observed by spacecraft and have recently been studied in our laboratory at medium-to-high spectral resolution (delta-λ = 0.1 Å FWHM). Three of these RV states (b 1Πu, b' 1Σu+, and c4' 1Σu+) are highly-perturbed, weakly-to-strongly predissociated, and have significant emission cross sections, which will be summarized in this paper. We will also discuss our recently published proton and electron impact emission cross sections for the LBH (a 1Πg - X 1Σg+) band system of N2, and their significance to the modeling of the day and night FUV spectra of the atmospheres of Earth and Titan.

  11. COS LP4 FUV Target Acquisition Enabling and Verification

    NASA Astrophysics Data System (ADS)

    Penton, Steven V.

    2016-10-01

    This LP4 program is designed to verify the ability of the LV0058/LV0059 COS FSW to place an isolated point source at the center of the PSA, using FUV dispersed light target acquisition (TA) for COS (LP4-TA-COS). Tests will be performed for all 3 FUV TA modes (ACQ/SEARCH, ACQ/PEAKD, and ACQ/PEAKXD). It is sufficient to test ACQ/SEARCH and ACQ/PEAKD with only one grating, but all three FUV gratings need to be tested for the new (as of LV0054) ACQ/PEAKXD with NUM_POS>1 (also known internally, and in the spt files, as OPMODE=ACQ/PEAKD(XD) at the Fourth Lifetime Position (LP4). This program is modeled after the LP2 and LP3 versions of this program; 12797 and 13636.This program has specific visits to test each portion of the FUV spectroscopic TA process. Visits 01-05 will use the target AV18, while Visit 06 will observe (WD1657+343). Both targets are visible year round. For the LP4 enabling, several improvements to APT, the ground system, and the flight software (FSW) have greatly simplified the enabling process. There are now no non-standard exposures, or special commanding, in this program.Specifically; 1) We now use the LIFETIME-POS = LP4 functionality in APT & FSW to specify the LP. The old procedure of using LIFETIME-POS ="ALTERNATE" has been removed. FUV LPs are now called out by number (e.g., LP4). 2) We will be using the new NUM_POS > 1 PEAKXD algorithm at LP4 due to large geometric distortions (GD) at the "Y" detector positions of LP4. FUVA is particularly affected by GD rendering the old PEAKXD algorithm unable to center a target to the required XD accuracy at LP4. 3) Numerous FSW Patchable constants that were essential for PEAKXD operations at previous LPs are no longer required. These are the WCA-to-PSA offsets and XD plate-scales. Like PEAKD, the NUM_POS > 1 PEAKXD requires no patchable constant updates. At previous LPs, numerous updates to the patchable constants were required, this is not necessary for LP4 TA enabling.Prior to the submission of this program, all LP4 SIAF, aperture mechanism positions, TA subarrays, and grating foci have been appropriately installed (SMS2017.058). Visits 01-05 will test these parameters and a further update will be initiated, if required. The FSW at the beginning of this program is the patch updated LV0058. Between Visits 02 and 03 of thisprogram, LV0059 will be installed. This was instaled on May 8, 2017. Visits 03-06 will be executed using LV0059.Visit 01 tests ACQ/SEARCH and Visit 02 tests ACQ/PEAKD using the G130M grating. Visit 01 uses the C1291 cenwave as this produces the widest in XD (tallest) spectrum of any cenwave for which TA is allowed that fully covers both detector segments. Visit 02 uses the C1327 cenwave as this is the most different of the TA enabled G130M cenwaves. Visit 03-05 test ACQ/PEAKXD in its new NUM_POS > 1 form for each of the FUV gratings. This extension of the ACQ/PEAKD algorithm in the cross-dispersion direction (XD) has been available in the FSW since LV0054 and was put in place to handle the much larger geometric distortions found in the LP4 detector regions. Visit 03 tests ACQ/PEAKXD with the widest in XD (tallest) G130M cenwave, C1291. Visit 04 tests ACQ/PEAKXD with G160M/1600 and Visit 05 uses G140L/1280.Finally, Visit 06 tests all of the TA modes together, in combination, on a separate target (WD1657+343). This visit should be the first FUV Spectroscopic TA executed at LP4.The specific details of the testing of each visit are given in the Observing Description section and in the visit level comments.Visit 01 of this program (the ACQ/SEARCH test) will provide an initial test of the TA subarrays and SIAF entries. If needed, the subarrays and/or the SIAF entries will be adjusted before the execution of Visit 02. For this reason, Visit 02 is configured to execute 4-5 weeks after Visit 01.Visit 02 of this program (14907), the ACQ/PEAKD test, will verify and further test any updates that result from the Visit 01 analysis. In particular, this visit will test the TA subarrays during large along-dispersion AD offsets and provide the G130M AD plate scales.Visits 03-05 (the ACQ/PEAKXD tests) will further test the TA subarrays with large XD offsets and provide XD plate scales and WCA-to-PSA offsets for each FUV grating. (APT25.2.2)Visits 01 and 02 will occur before APT25.2 will be released ( June 2017) and will therefore not test the entire LP4 system end-to-end. APT25.2 exposes the new ACQ/PEAKXD to GOs and contains defaults suitable for LP4 FUV TAs. Visits 03-05 can execute as early as 4-5 weeks after Visit 02. However, we must test APT25.2, its associated TRANS, ground system commanding, and LV0059 using its new NUM_POS and STEP_SIZE in this program. We prefer to test this with all 3 FUV gratings and therefore require that Visits 03-05 should execute using the full APT25.2.2 configuration.Prior to Visit 06, LV0059 and APT25.2 must have been installed and the official switch to LP4 operations must have occurred. We request that Visit 06 be the first FUV Spectroscopic TA executed at LP4 and no other FUV spectroscopic TAs should occur for at least two weeks after the move to LP4 to ensure that LP4 spectroscopic TAs are working properly end-to-end from APT-to-archive.NUV imaging TAs are used to determine the correct (and initial) desired locations for LP4 FUV spectra.Note that the ETC runs here were made using ETC 25.1.1 and are therefore valid for Summer 2017. Some TDS drop may have occurred before these visits execute, but we have plenty of counts to do what we need to do in this program.Each visit intentionally moves the target in the AD or XD, using POS-TARGs, and with targets that are offset in RA and DEC. The RA/DEC target offsets are required for testing the accuracy of the TA, while the POS-TARGs are useful for determining the plate scales and validating the TA subarrays. In order for the targets to be offset correctly in AD and/or XD, the RA and DEC target offsets are tied to a Visit-specific orientation. These orientation requirements produce visits which are only valid for an 10-day window. Should a visit get delayed, new target RA and DEC offsets and orients must be re-calculated and the program re-submitted. Visit specific offsets and orientations are discussed in the visit level comments.

  12. COSIE: The Coronal Spectrographic Imager in the EUV

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina; Golub, Leon; Deluca, Ed

    2017-01-01

    COSIE is a solar-observing instrument (currently proposed for mounting onto the ISS) which obtains wide field images of the corona and full Sun spectral images with high sensitivity and rapid cadence. The primary purpose of the instrument is to constrain the global field topology and to track coronal mass ejections from the disk through the inner heliosphere.

  13. Implications of the SPEAR FUV Maps on Our Understanding of the ISM

    NASA Astrophysics Data System (ADS)

    Korpela, Eric J.; Sirk, Martin; Edelstein, Jerry; Seon, Kwangil; Min, Kyoung-Wook; Han, Wonyong

    2009-08-01

    The distribution of a low-density transition temperature (104.5-105.5 K) gas in the interstellar medium conveys the character and evolution of diffuse matter in the Galaxy. This difficult to observe component of the ISM emits mainly in the far-ultraviolet (FUV) (912-1800 A˚) band. We describe spectral maps of FUV emission lines from the highly ionized species CIV and OVI likely to be the dominant cooling mechanisms of transition temperature gas in the ISM. The maps were obtained using an orbital spectrometer, SPEAR, that was launched in 2003 and has observed the FUV sky with a spectral resolution of ~550 and an angular resolution of 10'. We compare distribution of flux in these maps with three basic models of the distribution of transition temperature gas. We find that the median distribution of CIV and OVI emission is consistent with the spatial distribution and line ratios expected from a McKee-Ostriker (MO) type model of evaporative interfaces. However, the intensities are a factor of three higher than would be expected at the MO preferred parameters. Some high intensity regions are clearly associated with supernova remnants and superbubble structures. Others may indicate regions where gas is cooling through the transition temperature.

  14. A Cross-Dispersed Medium-Resolution Spectrograph for Appalachian State Univeristy's 32-inch Telescope

    NASA Astrophysics Data System (ADS)

    Kluttz, K. A.; Gray, R. O.

    2003-12-01

    We have designed and constructed an economical medium-resolution spectrograph to be used on the 32-inch telescope of Appalachian State University's Dark Sky Observatory (DSO). The primary function of this instrument will be to study shell and emission-line stars. However, we will also use this instrument for chemical abundance studies and radial velocities. The basic design is that of an Ebert spectrograph with a single 6-inch mirror acting as both the collimator and camera. The primary dispersion is accomplished by a reflection grating, and order separation is accomplished by a grism. The spectrograph has been designed so that three wavelength regions are simultaneously imaged on the CCD camera. When the Hα line is centered in the third order, Hβ and lines of Fe II multiplet 42 -- often enhanced in shell and emission-line stars -- appear in the fourth order and the fifth order contains both the Ca II K & H lines. To facilitate abundance measurements, a telluric-free region near 6400Å is available in the third order by tilting the main diffraction grating. Preliminary tests have shown that the resolution of the new spectrograph is 0.42Å in the third order (R ≈ 15,000). This relatively high resolution will allow studies to be conducted at DSO which have not previously been possible with the instrumentation currently in use. Several optical components for this spectrograph were purchased with grants from the Fund for Astrophysical Research and the University Research Council.

  15. Invasive species change detection using artificial neural networks and CASI hyperspectral imagery

    USDA-ARS?s Scientific Manuscript database

    For monitoring and controlling the extent and intensity of an invasive species, a direct multi-date image classification method was applied in invasive species (saltcedar) change detection in the study area of Lovelock, Nevada. With multi-date Compact Airborne Spectrographic Imager (CASI) hyperspec...

  16. SOLARNET & LAIME: Imaging & Spectroscopy in the Far Ultraviolet

    NASA Astrophysics Data System (ADS)

    Damé, Luc; Koutchmy, Serge

    SOLARNET is a medium size high resolution solar physics mission proposed to CNES and ESA for a new start in 2007 and a possible launch in 2012 (CNES) or later (ESA Cosmic Vision framework: 2015-2016). Partnerships with India and China are under discussion, and several European contributions are considered. At the center of the SOLARNET mission is a 3-telescope interferometer of 1 meter baseline capable to provide 40 times the best ever spatial resolution achieved in Space with previous, current or even planned solar missions: 20 mas - 20 km on the Sun in the FUV. The interferometer is associated to an on-axis Subtractive Double Monochromator coupled to an Imaging Fourier Transform Spectrometer capable of high spectral (0.01 nm) and high temporal resolutions (50 ms) on a field of view of 40 arcsec and covering the FUV and UV spectral domains (from 117.5 to 400 nm). This will allow to access process scales of magnetic reconnection, dissipation, emerging flux and much more, from the chromosphere to the low corona with emphasis on the transition zone where the magnetic confinement is expected to be maximum. A whole new chapter of the physics of solar magnetic field structuring, evolution and mapping from the photosphere to the high atmosphere will be opened. The interferometer is completed by instruments providing larger field of view and higher temperature (EUV-XUV coronal imaging & spectroscopy) to define the context and extension of the solar phenomena. The 3-telescope interferometer design results of an extensive laboratory demonstration program of interferometric imaging of extended objects. We will review the scientific program of SOLARNET, describe the interferometer concept and design, present the results of the breadboard and give a short overview of the mission aspects. In a different category, LAIME, the Lyman Alpha Imaging-Monitor Experiment, is a remarkably simple (no mechanisms) and compact full Sun imager to be flown with TESIS on the CORONAS-PHOTON mission in 2008. It could be the only chromospheric imager to be flown in the next years, supporting Solar-B, STEREO, SDO and the Belgian LYRA Lyman Alpha flux monitor. We will give a short description of this unique 60 mm aperture imaging telescope, dedicated to the investigation of the UV sources of solar variability and of the chromospheric and coronal disruptive events (Moreton waves, prominences, CMEs, etc.).

  17. COS/FUV Special Recovery

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2011-10-01

    This proposal consists of the steps necessary for turning on and ramping up {in magnitude} the COS FUV high voltage and returning the FUV detector to science operations in a conservative manner after a HV anomalous or burst event {similar to what has been seen on FUSE} shutdown. HSTAR 13305 provides details and timeline of the present shutdown. The complete step-by-step procedure is detailed in the Observing Description, but in summary, the following is done: Groups of sequences with one dayâ??s activities with the QE grid off and one dayâ??s activities with the QE grid on alternate to progressively higher voltages with the QE off group leading by one sequence. The initial HV turn on {Day 1} occurs with the QE grid off; the initial transition from FUV Operate to HVLow is broken into two parts with a 1- hour wait between turning the HV on and ramping to HVLow {SAA}. The next Day 1 visit is 1 hour later, where the HV is turned off by returning the FUV Operate state. After another1-hour wait, the QE grid is turned on, the HV is turned on and the voltage is not ramped. After another 1-hour wait, the HV is turned off returning to FUV Operate. The Day 1 ends with the NSSC-1 COS flag 3 is set to prevent any FUV HV commanding. This is followed by 10 cycles {2 * 5 cycles - one set of cycles with the grid off and one set with the grid on} of HV ramp-ups and returns to FUV Operate {HV off} alternating between grid off and on with the QE off group leading by one HV setting. The HV Commanded Counts for each group of cycles are: 154/151, 160/157, 166/163, 172/169, HVNom {178/175}. {The formula to convert Command Counts to HV is: Volts = {Command Counts * -15.69V} -2500V.}The QE off and QE on cycles are similar except for the QE commanding. One typical QE off cycle is shown below:V14 QE off - Ramp to 166/163After V10 by 2D for analysis. Flag 3 must be cleared to execute. 1. QE off - Turn HV on 2. Ramp to HVLow {100/100} 3. Ramp HV to 166/163 4. DCE RAM dump 5. Dark exposure 6. Wave exposureV15 Return to OperateAfter V14 by 1hr 1. Dark exposure 2. Wave exposure 3. Return to HVLow {100/100} 4. Return to Operate {HV off} 5. DCE RAM Dump 6. Set flag 3In some later cycles with the QE grid on, ground system QasiStates are used to auto-schedule the Operate to HVNom transition. Visits 21 and 25 are going to HVNom {178/175} with the QE grid off and on, respectively. There will be a gap of 2days between grid-off cycles and 2 days between grid-on cycles, offset by 1 day. {See the proposal description for exact timing.}All HV ramp-up will be done at the nominal value of 3 seconds per HV "step" rather than 10 seconds per HV "step" used in SMOV. The concern during SMOV was that gas exposure during launch would allow gas to adsorb on the MCP pore surfaces, and that slower ramping would help to remove this excess gas. This concern no longer exists. The cycle voltage values {for Segments A and B} must be patched in FSW in each cycle prior to the HV ramp commanding. Memory monitors will be set on the patched memory locations. Immediately after obtaining the commanded voltage for that cycle and after return to FUV Operate {HV-off} commanding, the DCE memory will be dumped. After HV ramp-up commanding starting with HVLow and prior to returning to HV off, short DARK exposures {300 secs.} with Stim Rate = 2000 will be obtained and after HV ramp-up commanding starting with levels above HVLow and prior to returning to HV off, short WAVE exposures {60 secs.} will be obtained. After all visits that end with Return to Operate {HV off}, NSSC-1 COS event flag 3 will be set to inhibit any FUV commanding, a.k.a. a â??dead manâ??sâ?? switch. If the flag remains set, subsequent FUV commanding will be skipped. Thus, Operations Requests must be in place to clear the flag prior to those subsequent visits. Real-time monitoring of the telemetry will be used to guide the decisions whether or not to clear the flag. This is also required after the final visit.Throughout the proposal, different â??after byâ?? times, sequence containers, and new alignments are used to optimize flow, schedulability, telemetry and science data analyses, and the clearing of flag 3. The proposal is designed such that the visits and exposures MUST be executed in order.Additionally, all visits are compliant with CARD 3.4.12.8 - COS FUV Mandatory Dwell Time at HVLow {1 hour dwell at HVLow before ramping to a more negative voltage} and CARD 3.4.12.9 â?? COS FUV High Voltage QE Grid Operation {HV must be less negative or equal to the HVLow to switch grid on or off}.

  18. EUNIS-07: First Look

    NASA Technical Reports Server (NTRS)

    Rabin, Douglas M.; Thomas, Roger J.; Brosius, Jeffrey W.

    2008-01-01

    The Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket instrument is a two-channel imaging spectrograph that observes the solar corona with high spectral resolution and a rapid cadence made possible by unprecedented sensitivity. EUNIS flew for the first time on 2006 April 12 (EUNIS-06), returning over 140 science exposures at a cadence of 2.1 s; each exposure comprises six 1K x 1K active pixel sensor (APS) images, three for each wavelength channel (170-205 $\\AA$ and 300-370 $\\AA$). Analysis of EUNIS-06 data has so far shed new light on the nature of coronal bright points, cool transients, and coronal loop arcades and has enabled calibration updates for TRACE and SOHO's CDS and EIT. EUNIS flew successfully again on 2007 November 6 (EUNIS-07). Because the APS's were operated in video rather than snapshot mode, a faster cadence of 1.3 s was possible (97% duty cycle), resulting in 276 science exposures. We present an overview of the EUNIS-07 spectra and describe the coordinated observing program executed by the Hinode Extreme ultraviolet Imaging Spectrograph (EIS) that will, in conjunction with the absolute radiometric calibration of EUNIS-07, result in the first on-orbit radiometric calibration of EIS. EUNIS data are freely available to the solar physics community. EUNIS is supported by the NASA Heliophysics Division through its Low Cost Access to Space Program in Solar and Heliospheric Physics.

  19. VizieR Online Data Catalog: PTF obs. of a precursor to SNHunt 275 2015 May event (Ofek+, 2016)

    NASA Astrophysics Data System (ADS)

    Ofek, E. O.; Cenko, S. B.; Shaviv, N. J.; Duggan, G.; Strotjohann, N.-L.; Rubin, A.; Kulkarni, S. R.; Gal-Yam, A.; Sullivan, M.; Cao, Y.; Nugent, P. E.; Kasliwal, M. M.; Sollerman, J.; Fransson, C.; Filippenko, A. V.; Perley, D. A.; Yaron, O.; Laher, R.

    2016-08-01

    The Palomar Transient Factory (PTF and iPTF; Law et al. 2009PASP..121.1395L; Rau et al. 2009PASP..121.1334R), using the 48inch Oschin Schmidt telescope, observed the field of SNHunt 275 starting in 2009 March. On 2013 December 12, PTF detected a new source at the location of the event, and the transient was named PTF 13efv (see Figure 1). Three images obtained between 2014 January 23 and April 25 were used as a reference. The PTF R-band photometry is listed in Table1. Most of the optical spectra were obtained with the Low Resolution Imaging Spectrometer (LRIS) on the Keck I 10m telescope, although a few spectra were also taken with the DEep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II 10m telescope, the Kast spectrograph on the Shane 3m telescope at Lick Observatory, and the Gemini-North Multiobject Spectrograph (GMOS) on the 8m Gemini-N telescope. The first spectrum was obtained during the 2013 December outburst. We used the Swift/UVOT observations of SNHunt 275, since 2008, to construct the bolometric light curve of the transient. The log of Swift-XRT observations, along with the source and background X-ray counts in the individual observations, is given in Table 5. (3 data files).

  20. Do Lyman-alpha photons escape from star-forming galaxies through dust-holes?

    NASA Astrophysics Data System (ADS)

    Wofford, Aida

    2012-10-01

    The hydrogen Lyman-alpha line is arguably the most important signature of galaxies undergoing their first violent burst of star formation. Although Lya photons are easily destroyed by dust, candidate Lya emitters have been detected at z>5. Thus the line can potentially be used to probe galaxy formation and evolution, as long as the astrophysical processes that regulate the escape of Lya photons from star-forming galaxies are well understood.We request 15 orbits for imaging in Lya and the FUV continuum with ACS/SBC, and in the H-beta/H-alpha ratio {proxy for dust extinction} with WFC3/UVIS, a sample of isolated non-AGN face-on spirals for which our team previously obtained and analyzed COS FUV spectroscopy of the central regions. Each target shows a different Lya profile, i.e., pure absorption, P-Cygni like, and multiple-emission. From the COS data, we already know the starburst phase and H I gas velocity. The images would greatly increase the impact of our spectroscopic study by enabling us to 1} conclusively determine if Lya photons escape through dust-holes, 2} assess the relative importance of dust extinction, ISM kinematics, and starburst phase in regulating the Lya escape, 3} clarify what we can really learn from the Lya equivalent width, and 4} provide constraints on the dust extinction to Lya 3D radiative transfer models. Ultimately this program will inform our understanding of the Lya escape at high redshift by providing spatially resolved views of the local conditions within star-forming galaxies that favor escape.

  1. Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells

    NASA Astrophysics Data System (ADS)

    Chadha, S.; Nelson, W. H.; Sperry, J. F.

    1993-11-01

    The construction of a practical UV micro-Raman spectrograph capable of selective excitation of bacterial cells and other microscopic samples has been described. A reflective objective is used to focus cw laser light on a sample and at the same time collect the scattered light at 180°. With the aid of a quartz lens the image produced is focused on the slits of a spectrograph equipped with a single 2400 grooves/mm grating optimized for 250 nm. Spectra were detected by means of a blue-intensified diode array detector. Resonance Raman spectra of Bacillus subtilis and Flavobacterium capsulatum excited by the 257.2 nm output of a cw laser were recorded in the 900-1800 cm-1 region. Bacterial cells were immobilized on a quartz plate by means of polylysine and were counted visually. Cooling was required to retard sample degradation. Sample sizes ranged from 1 to 50 cells with excitation times varying from 15 to 180 s. Excellent spectra have been obtained from 20 cells in 15 s using a spectrograph having only 3% throughput.

  2. SPRAT: Spectrograph for the Rapid Acquisition of Transients

    NASA Astrophysics Data System (ADS)

    Piascik, A. S.; Steele, Iain A.; Bates, Stuart D.; Mottram, Christopher J.; Smith, R. J.; Barnsley, R. M.; Bolton, B.

    2014-07-01

    We describe the development of a low cost, low resolution (R ~ 350), high throughput, long slit spectrograph covering visible (4000-8000) wavelengths. The spectrograph has been developed for fully robotic operation with the Liverpool Telescope (La Palma). The primary aim is to provide rapid spectral classification of faint (V ˜ 20) transient objects detected by projects such as Gaia, iPTF (intermediate Palomar Transient Factory), LOFAR, and a variety of high energy satellites. The design employs a volume phase holographic (VPH) transmission grating as the dispersive element combined with a prism pair (grism) in a linear optical path. One of two peak spectral sensitivities are selectable by rotating the grism. The VPH and prism combination and entrance slit are deployable, and when removed from the beam allow the collimator/camera pair to re-image the target field onto the detector. This mode of operation provides automatic acquisition of the target onto the slit prior to spectrographic observation through World Coordinate System fitting. The selection and characterisation of optical components to maximise photon throughput is described together with performance predictions.

  3. Multi-object medium resolution optical spectroscopy at the E-ELT

    NASA Astrophysics Data System (ADS)

    Spanò, Paolo; Bonifacio, Piercarlo

    2008-07-01

    We present the design of a compact medium resolution spectrograph (R~15,000-20,000), intended to operate on a 42m telescope in seeing-limited mode. Our design takes full advantage of some new technology optical components, like volume phase holographic (VPH) gratings. At variance with the choice of complex large echelle spectrographs, which have been the standard on 8m class telescopes, we selected an efficient VPH spectrograph with a limited beam diameter, in order to keep overall dimensions and costs low, using proven available technologies. To obtain such a resolution, we need to moderately slice the telescope image plane onto the spectrograph entrance slit (5-6 slices). Then, standard telescope AO-mode (GLAO, Ground Layer Adaptive Optics) can be used over a large field of view (~10 arcmin), without loosing efficiency. Multiplex capabilities can greatly increase the observing efficiency. A robotic pick-up mirror system can be implemented, within conventional environmental conditions (temperature, pressure, gravity, size), demanding only standard mechanical and optical tolerances. A modular approach allows us scaling multiplex capabilities on overall costs and available space.

  4. MuSICa at GRIS: a prototype image slicer for EST at GREGOR

    NASA Astrophysics Data System (ADS)

    Calcines, A.; Collados, M.; López, R. L.

    2013-05-01

    This communication presents a prototype image slicer for the 4-m European Solar Telescope (EST) designed for the spectrograph of the 1.5-m GREGOR solar telescope (GRIS). The design of this integral field unit has been called MuSICa (Multi-Slit Image slicer based on collimator-Camera). It is a telecentric system developed specifically for the integral field, high resolution spectrograph of EST and presents multi-slit capability, reorganizing a bidimensional field of view of 80 arcsec^{2} into 8 slits, each one of them with 200 arcsec length × 0.05 arcsec width. It minimizes the number of optical components needed to fulfil this multi-slit capability, three arrays of mirrors: slicer, collimator and camera mirror arrays (the first one flat and the other two spherical). The symmetry of the layout makes it possible to overlap the pupil images associated to each part of the sliced entrance field of view. A mask with only one circular aperture is placed at the pupil position. This symmetric characteristic offers some advantages: facilitates the manufacturing process, the alignment and reduces the costs. In addition, it is compatible with two modes of operation: spectroscopic and spectro-polarimetric, offering a great versatility. The optical quality of the system is diffraction-limited. The prototype will improve the performances of GRIS at GREGOR and is part of the feasibility study of the integral field unit for the spectrographs of EST. Although MuSICa has been designed as a solar image slicer, its concept can also be applied to night-time astronomical instruments (Collados et al. 2010, Proc. SPIE, Vol. 7733, 77330H; Collados et al. 2012, AN, 333, 901; Calcines et al. 2010, Proc. SPIE, Vol. 7735, 77351X)

  5. Spectroscopic observations of comets

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Development of a spectrograph using a microchannel plate intensifier for observing faint comets is described. The spectrograph is capable of obtaining useful spectra of objects as faint as M(2) = 18. The increased guiding efficiency achieved by the optical coupling of the ISIT vidicon of the 154 cm telescope has resulted in a better signal to noise ratio. The ability to take a direct image of the comet aids in the interpretation of the spatial profile of the emissions. Spectra of comets Schwassmann-Wachmann 1, Bradfield, Encke, Tuttle, and Stephen-Oterma are discussed.

  6. ZTF Bright Transient Survey classifications

    NASA Astrophysics Data System (ADS)

    Graham, M. L.; Bellm, E.; Bektesevic, D.; Eadie, G.; Huppenkothen, D.; Davenport, J. R. A.; Fremling, C.; Sharma, Y.; Kulkarni, S. R.; Walters, R.; Blagorodnova, N.; Neill, J.; Miller, A. A.; Taddia, F.; Lunnan, R.; Taggart, K.; Perley, D. A.; Goobar, A.

    2018-06-01

    The Zwicky Transient Facility (ZTF; ATel #11266) Bright Transient Survey (BTS; ATel #11688) reports classifications of the following targets. Spectra have been obtained with the Dual Imaging Spectrograph (range 340-1000nm, spectral resolution R 1000) mounted on the 3.5m telescope at Apache Point Observatory, the Spectral Energy Distribution Machine (SEDM) (range 350-950nm, spectral resolution R 100) mounted on the Palomar 60-inch (P60) telescope (Blagorodnova et. al. 2018, PASP, 130, 5003), or the Andalucia Faint Object Spectrograph and Camera (ALFOSC) on the 2.5m Nordic Optical Telescope (NOT).

  7. Using an integral-field unit spectrograph to study radical species in cometary coma

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Pierce, Donna M.; Vaughan, Charles M.; Cochran, Anita

    2015-01-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CN, NH2). Various coma enhancements were used to identify and characterize coma morphological features. The azimuthal average profiles and the Haser model were used to determine production rates and possible parent molecules. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys. This work was funded by the National Science Foundation Graduate K-12 (GK-12) STEM Fellows program (Award No. DGE-0947419), NASA's Planetary Atmospheres program (Award No. NNX14AH18G), and the Fund for Astrophysical Research, Inc.

  8. Using an integral-field unit spectrograph to study radical species in cometary coma

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Pierce, Donna; Cochran, Anita; Vaughan, Charles

    2014-11-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CN, NH2). Various coma enhancements were used to identify and characterize coma morphological features. The azimuthal average profiles and the Haser model were used to determine production rates and possible parent molecules. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys. This work was funded by the National Science Foundation Graduate K-12 (GK-12) STEM Fellows program (Award No. DGE-0947419), NASA’s Planetary Atmospheres program (Award No. NNX14AH18G), and the Fund for Astrophysical Research, Inc.

  9. The Wide Integral Field Infrared Spectrograph (WIFIS): optomechanical design and development

    NASA Astrophysics Data System (ADS)

    Meyer, R. Elliot; Moon, Dae-Sik; Sivanandam, Suresh; Ma, Ke; Henderson, Chuck; Blank, Basil; Chou, Chueh-Yi; Jarvis, Miranda; Eikenberry, Stephen S.

    2016-08-01

    We present the optomechanical design and development of the Wide Integral Field Infrared Spectrograph (WIFIS). WIFIS will provide an unrivalled integral field size of 20"×50" for a near-infrared (0.9-1.7 μm) integral-field spectrograph at the 2.3-meter Steward Bok telescope. Its main optomechanical system consists of two assemblies: a room-temperature bench housing the majority of the optical components and a cryostat for a field-flattening lens, thermal blocking filter, and detector. Two additional optical subsystems will provide calibration functionality, telescope guiding, and off-axis optical imaging. WIFIS will be a highly competitive instrument for seeing-limited astronomical investigations of the dynamics and chemistry of extended objects in the near-infrared wavebands. WIFIS is expected to be commissioned during the end of 2016 with scientific operations beginning in 2017.

  10. Ionospheric Observations During a Geomagnetic Storm from LITES on the ISS

    NASA Astrophysics Data System (ADS)

    Finn, S. C.; Stephan, A. W.; Cook, T.; Budzien, S. A.; Chakrabarti, S.; Erickson, P. J.; Geddes, G.

    2017-12-01

    The Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES) is an extreme-ultraviolet imaging spectrograph that launched in February 2017 and was installed on the International Space Station (ISS). LITES is limb-viewing ( 150 - 350 km tangent altitude) and measures airglow emissions from 60 - 140 nm with 0.2° angular and 1 nm spectral resolutions. We present early LITES results of observations during a G2 geomagnetic storm in April 2017. In addition to LITES data, we will show complementary ground-based incoherent scatter radar (ISR) observations from Millstone Hill during this storm. The combination of LITES EUV space-based observations with the ground-based radio data is an example of the capability of campaign-style measurements of the ionosphere-thermosphere system using multiwavelength ground- and space-based instruments.

  11. Spectroscopic Profiles of Comets Garradd and McNaught

    NASA Astrophysics Data System (ADS)

    Harris, Ien; Pierce, Donna M.; Cochran, Anita L.

    2017-10-01

    We have used the integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory to obtain spectroscopic images of the comae of several comets. The images were obtained for various radical species (C2, C3, CN, NH2). Radial and azimuthal average profiles of the radical species were created to enhance any observed cometary coma morphological features. We compare the observed coma features across the observed species and over the different observation periods in order to constrain possible rotational states of the observed comets, as well as determine possible source differences in the coma between the observed radical species. We will present results for several comets, including C/2009 P1 (Garradd) and 260P (McNaught).

  12. Planetary instrument definition and development program: 'Miniature Monochromatic Imager'

    NASA Technical Reports Server (NTRS)

    Broadfoot, A. L.

    1991-01-01

    The miniature monochromatic imager (MMI) development work became the basis for the preparation of several instruments which were built and flown on the shuttle STS-39 as well as being used in ground based experiments. The following subject areas are covered: (1) applications of the ICCD to airglow and auroral measurements and (2) a panchromatic spectrograph with supporting monochromatic imagers.

  13. Using local correlation tracking to recover solar spectral information from a slitless spectrograph

    NASA Astrophysics Data System (ADS)

    Courrier, Hans T.; Kankelborg, Charles C.

    2018-01-01

    The Multi-Order Solar EUV Spectrograph (MOSES) is a sounding rocket instrument that utilizes a concave spherical diffraction grating to form simultaneous images in the diffraction orders m=0, +1, and -1. MOSES is designed to capture high-resolution cotemporal spectral and spatial information of solar features over a large two-dimensional field of view. Our goal is to estimate the Doppler shift as a function of position for every MOSES exposure. Since the instrument is designed to operate without an entrance slit, this requires disentangling overlapping spectral and spatial information in the m=±1 images. Dispersion in these images leads to a field-dependent displacement that is proportional to Doppler shift. We identify these Doppler shift-induced displacements for the single bright emission line in the instrument passband by comparing images from each spectral order. We demonstrate the use of local correlation tracking as a means to quantify these differences between a pair of cotemporal image orders. The resulting vector displacement field is interpreted as a measurement of the Doppler shift. Since three image orders are available, we generate three Doppler maps from each exposure. These may be compared to produce an error estimate.

  14. The Solar Chromosphere/Corona Interface. I; FUV-EUV Observations and Modeling of Unresolved Coronal Funnels

    NASA Technical Reports Server (NTRS)

    Martinez-Galarce, D. S.; Walker, A. B. C.; Barbee, T. W., II; Hoover, R. B.

    2003-01-01

    A coronal funnel model, developed by Rabin (199l), was tested against a calibrated spectroheliogram recorded in 171 - 175 Angstrom bandpass. This image was recorded on board a sounding rocket experiment flown on 1994 November 3, called the Multi-Spectral Solar Telescope Array, II (MSSTA II), MSSTA, a joint project of Stanford University, the NASA Marshall Space Flight Center and the Lawrence Livermore National Laboratory, is an observing platform composed of a set of normal-incidence, multilayer-coated optics designed to obtain narrow bandpass, high resolution images (1 - 3 arc sec) at selected FUV, EUV and soft X-ray wavelengths (44 Angstroms - 1550 Angstroms). Using full-disk images centered at 1550 Angstroms (C IV) and 173 Angstroms (FE IX/X), the funnel model, which is based on coronal back-heating, was tested against the data incorporating observed constraints on global coverage and measured flux. Found, was a class of funnel models that could account for the quiescent, globally diffuse and unresolved emission seen in the 171 - 175 Angstrom bandpass, where the funnels are assumed to be rooted in the C IV supergranular network. These models, when incorporated with the Chianti spectral code, suggest that this emission is mostly of upper transition region origin and primarily composed of FE IX plasma. The funnels are found to have constrictions, Gamma approx. 6 - 20, which is in good agreement with the observations. Further, the fitted models simultaneously satisfy global areal constraints seen in both images; namely, that a global network of funnels must cover approx. 70 - 95 % of the total solar surface area seen in the 171 - 175 Angstrom image, and = 45 % of the disk area seen in the 1550 Angstrom bandpass. These findings support the configuration of the EUV magnetic network as suggested by Reeves et af. (1974) and put forth in more detail by Gabriel (1976). Furthermore, the models are in good agreement with differential emission measure estimates made of the transition region by Raymond & Doyle (1981) for temperatures, 250,000 K = T = 650,000 K, based on full-disk observations made on board by SkyLab.

  15. VizieR Online Data Catalog: GALEX/S4G surface brightness profiles. I. (Bouquin+, 2018)

    NASA Astrophysics Data System (ADS)

    Bouquin, A. Y. K.; Gil de, Paz A.; Munoz-Mateos, J. C.; Boissier, S.; Sheth, K.; Zaritsky, D.; Peletier, R. F.; Knapen, J. H.; Gallego, J.

    2018-03-01

    The Spitzer Survey of Stellar Structure in Galaxies (S4

  16. Changes to the Spectral Extraction Algorithm at the Third COS FUV Lifetime Position

    NASA Astrophysics Data System (ADS)

    Taylor, Joanna M.; Azalee Bostroem, K.; Debes, John H.; Ely, Justin; Hernandez, Svea; Hodge, Philip E.; Jedrzejewski, Robert I.; Lindsay, Kevin; Lockwood, Sean A.; Massa, Derck; Oliveira, Cristina M.; Penton, Steven V.; Proffitt, Charles R.; Roman-Duval, Julia; Sahnow, David J.; Sana, Hugues; Sonnentrucker, Paule

    2015-01-01

    Due to the effects of gain sag on flux on the COS FUV microchannel plate detector, the COS FUV spectra will be moved in February 2015 to a pristine location on the detector, from Lifetime Position 2 (LP2) to LP3. The spectra will be shifted in the cross-dispersion (XD) direction by -2.5", about -31 pixels, from the original LP1. In contrast, LP2 was shifted by +3.5", about 41 pixels, from LP1. By reducing the LP3-LP1 separation compared to the LP2-LP1 separation, we achieve maximal spectral resolution at LP3 while preserving more detector area for future lifetime positions. In the current version of the COS boxcar extraction algorithm, flux is summed within a box of fixed height that is larger than the PSF. Bad pixels located anywhere within the extraction box cause the entire column to be discarded. At the new LP3 position the current extraction box will overlap with LP1 regions of low gain (pixels which have lost >5% of their sensitivity). As a result, large portions of spectra will be discarded, even though these flagged pixels will be located in the wings of the profiles and contain a negligible fraction of the total source flux. To avoid unnecessarily discarding columns affected by such pixels, an algorithm is needed that can judge whether the effects of gain-sagged pixels on the extracted flux are significant. The "two-zone" solution adopted for pipeline use was tailored specifically for the COS FUV data characteristics: First, using a library of 1-D spectral centroid ("trace") locations, residual geometric distortions in the XD direction are removed. Next, 2-D template profiles are aligned with the observed spectral image. Encircled energy contours are calculated and an inner zone that contains 80% of the flux is defined, as well as an outer zone that contains 99% of the flux. With this approach, only pixels flagged as bad in the inner 80% zone will cause columns to be discarded while flagged pixels in the outer zones do not affect extraction. Finally, all good columns are summed in the XD direction to obtain a 1-D extracted spectrum. We present examples of the trace and profile libraries that are used in the two-zone extraction and compare the performance of the two-zone and boxcar algorithms.

  17. Development and Flight-testing of Astronomical Instrumentation for Future NASA Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    France, Kevin

    We propose a four year suborbital research program to continue the University of Colorado's efforts in the development and flight testing of instrument designs and critical path technologies for ultraviolet spectroscopy in support of future NASA Explorer, Probe-, and Flagship-class missions. This proposal builds on our existing program of high-resolution spectroscopy for the 100 - 160 nm bandpass with the development of a new high-efficiency imaging spectrograph operating in the same band. The ultimate goal of the University of Colorado ultraviolet rocket program is to develop the technical capabilities to enable a future, highly multiplexed ultraviolet spectrograph (with both high-resolution and imaging spectroscopy modes), e.g., an analog to the successful HST-STIS instrument, with an order-of-magnitude higher efficiency. We do this in the framework of a university led program where undergraduate, graduate, and postdoctoral training is paramount and cutting edge science investigations support our baseline technology development program. In the proposed effort, we will optimize our high-resolution (R > 100,000) echelle spectrograph payload (CHESS) with the first science flight of a new, large-format CCD array provided by our collaborators at JPL and Arizona State University. We will launch CHESS to study our local interstellar environment with spectral resolving power and bandpass that cannot be achieved with any suite of current or planned space missions. In parallel with the proposed science flights of CHESS, we will design, calibrate, and launch a new high-throughput imaging spectrograph (SISTINE); the first sub-arcsecond imaging, medium spectral resolution (R = 10,000), spectrograph ever flown with spectral coverage over the entire 100 - 160 nm bandpass. SISTINE incorporates several novel optical technologies that were highlighted as major hardware drivers for NASA's next large ultraviolet/optical/near-IR observatory by the 2014 Cosmic Origins Technology Report, including advanced mirror coatings with high broadband reflectivity (including > 20% efficiency gains below 115 nm), the first demonstration and flight test of these coatings on a shaped 0.5-meter telescope, and large-format, high-QE photon counting detectors. SISTINE will be launched to study the energetic radiation environment in the habitable zones around nearby low-mass exoplanet host stars, systems that are the top priority in NASA's search for the signatures of biological activity in the coming decade. SISTINE addresses the highest science priority in the 2010 Astronomy and Astrophysics Decadal Survey and is a crucial step towards meeting NASA's technology needs for future space observatories.

  18. Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer)

    NASA Astrophysics Data System (ADS)

    Park, Chan; Jaffe, Daniel T.; Yuk, In-Soo; Chun, Moo-Young; Pak, Soojong; Kim, Kang-Min; Pavel, Michael; Lee, Hanshin; Oh, Heeyoung; Jeong, Ueejeong; Sim, Chae Kyung; Lee, Hye-In; Nguyen Le, Huynh Anh; Strubhar, Joseph; Gully-Santiago, Michael; Oh, Jae Sok; Cha, Sang-Mok; Moon, Bongkon; Park, Kwijong; Brooks, Cynthia; Ko, Kyeongyeon; Han, Jeong-Yeol; Nah, Jakyoung; Hill, Peter C.; Lee, Sungho; Barnes, Stuart; Yu, Young Sam; Kaplan, Kyle; Mace, Gregory; Kim, Hwihyun; Lee, Jae-Joon; Hwang, Narae; Park, Byeong-Gon

    2014-07-01

    The Immersion Grating Infrared Spectrometer (IGRINS) is a compact high-resolution near-infrared cross-dispersed spectrograph whose primary disperser is a silicon immersion grating. IGRINS covers the entire portion of the wavelength range between 1.45 and 2.45μm that is accessible from the ground and does so in a single exposure with a resolving power of 40,000. Individual volume phase holographic (VPH) gratings serve as cross-dispersing elements for separate spectrograph arms covering the H and K bands. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is 1ʺ x 15ʺ and the plate scale is 0.27ʺ pixel. The spectrograph employs two 2048 x 2048 pixel Teledyne Scientific and Imaging HAWAII-2RG detectors with SIDECAR ASIC cryogenic controllers. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be only 25mm, which permits a moderately sized (0.96m x 0.6m x 0.38m) rectangular cryostat to contain the entire spectrograph. The fabrication and assembly of the optical and mechanical components were completed in 2013. We describe the major design characteristics of the instrument including the system requirements and the technical strategy to meet them. We also present early performance test results obtained from the commissioning runs at the McDonald Observatory.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leppäniemi, J., E-mail: jaakko.leppaniemi@vtt.fi; Ojanperä, K.; Kololuoma, T.

    We propose a combined far ultraviolet (FUV) and thermal annealing method of metal-nitrate-based precursor solutions that allows efficient conversion of the precursor to metal-oxide semiconductor (indium zinc oxide, IZO, and indium oxide, In{sub 2}O{sub 3}) both at low-temperature and in short processing time. The combined annealing method enables a reduction of more than 100 °C in annealing temperature when compared to thermally annealed reference thin-film transistor (TFT) devices of similar performance. Amorphous IZO films annealed at 250 °C with FUV for 5 min yield enhancement-mode TFTs with saturation mobility of ∼1 cm{sup 2}/(V·s). Amorphous In{sub 2}O{sub 3} films annealed for 15 min with FUV atmore » temperatures of 180 °C and 200 °C yield TFTs with low-hysteresis and saturation mobility of 3.2 cm{sup 2}/(V·s) and 7.5 cm{sup 2}/(V·s), respectively. The precursor condensation process is clarified with x-ray photoelectron spectroscopy measurements. Introducing the FUV irradiation at 160 nm expedites the condensation process via in situ hydroxyl radical generation that results in the rapid formation of a continuous metal-oxygen-metal structure in the film. The results of this paper are relevant in order to upscale printed electronics fabrication to production-scale roll-to-roll environments.« less

  20. The Chandra M10l Megasecond: Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2009-01-01

    Because MIOl is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in MlOl. The bulk of the X-ray emission is correlated with the star formation traced by the FUV emission. The global FUV/Xray correlation is non-linear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production ill star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (approximates less than 3%), unresolved X-ray point sources (approximates less than 4%), and individual supernova remnants (approximates 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.

  1. CHISL: the combined high-resolution and imaging spectrograph for the LUVOIR surveyor

    NASA Astrophysics Data System (ADS)

    France, Kevin; Fleming, Brian; Hoadley, Keri

    2016-10-01

    NASA is currently carrying out science and technical studies to identify its next astronomy flagship mission, slated to begin development in the 2020s. It has become clear that a Large Ultraviolet/Optical/IR (LUVOIR) surveyor mission (d≈12 m, Δλ≈1000 Å, 2 μm spectroscopic bandpass) can carry out the largest number of NASA's exoplanet and astrophysics science goals over the coming decades. The science grasp of an LUVOIR surveyor is broad, ranging from the direct detection of potential biomarkers on rocky planets to the flow of matter into and out of galaxies and the history of star-formation across cosmic time. There are technical challenges for several aspects of the LUVOIR surveyor concept, including component level technology readiness maturation and science instrument concepts for a broadly capable ultraviolet spectrograph. We present the scientific motivation for, and a preliminary design of, a multiplexed ultraviolet spectrograph to support both the exoplanet and astrophysics goals of the LUVOIR surveyor mission concept, the combined high-resolution and imaging spectrograph for the LUVOIR surveyor (CHISL). CHISL includes a high-resolution (R≈120,000 1000 to 1700 Å) point-source spectroscopy channel and a medium-resolution (R≥14,000 from 1000 to 2000 Å in a single observation and R˜24,000 to 35,000 in multiple grating settings) imaging spectroscopy channel. CHISL addresses topics ranging from characterizing the composition and structure of planet-forming disks to the feedback of matter between galaxies and the intergalactic medium. We present the CHISL concept, a small sample of representative science cases, and the primary technological hurdles. Technical challenges include high-efficiency ultraviolet coatings and high-quantum efficiency, large-format, photon counting detectors. We are actively engaged in laboratory and flight characterization efforts for all of these enabling technologies as components on sounding rocket payloads under development at the University of Colorado. We describe two payloads that are designed to be pathfinder instruments for the high-resolution (CHESS) and imaging spectroscopy (SISTINE) arms of CHISL. We are carrying out this instrument design, characterization, and flight-testing today to support the new start of an LUVOIR surveyor mission in the next decade.

  2. CHISL: the combined high-resolution and imaging spectrograph for the LUVOIR surveyor

    NASA Astrophysics Data System (ADS)

    France, Kevin; Fleming, Brian; Hoadley, Keri

    2016-07-01

    NASA is currently carrying out science and technical studies to identify its next astronomy flagship mission, slated to begin development in the 2020s. It has become clear that a Large Ultraviolet/Optical/IR (LUVOIR) Surveyor mission (dprimary ≍ 12 m, Δλ ≍ 1000 Å - 2 μm spectroscopic bandpass) can carry out the largest number of NASA's exoplanet and astrophysics science goals over the coming decades. The science grasp of a LUVOIR Surveyor is broad, ranging from the direct detection of potential biomarkers on rocky planets to the flow of matter into and out of galaxies and the history of star-formation across cosmic time. There are technical challenges for several aspects of the LUVOIR Surveyor concept, including component level technology readiness maturation and science instrument concepts for a broadly capable ultraviolet spectrograph. We present the scientific motivation for, and a preliminary design of, a multiplexed ultraviolet spectrograph to support both the exoplanet and astrophysics goals of the LUVOIR Surveyor mission concept, the Combined High-resolution and Imaging Spectrograph for the LUVOIR Surveyor (CHISL). CHISL includes a highresolution (R ≍ 120,000; 1000 - 1700Å) point-source spectroscopy channel and a medium resolution (R >= 14,000 from 1000 - 2000 Å in a single observation and R 24,000 - 35,000 in multiple grating settings) imaging spectroscopy channel. CHISL addresses topics ranging from characterizing the composition and structure of planet-forming disks to the feedback of matter between galaxies and the intergalactic medium. We present the CHISL concept, a small sample of representative science cases, and the primary technological hurdles. Technical challenges include high-efficiency ultraviolet coatings and high-quantum efficiency, large-format, photon counting detectors. We are actively engaged in laboratory and flight characterization efforts for all of these enabling technologies as components on sounding rocket payloads under development at the University of Colorado. We describe two payloads that are designed to be pathfinder instruments for the high-resolution (CHESS) and imaging spectroscopy (SISTINE) arms of CHISL. We are carrying out this instrument design, characterization, and flight-testing today to support the new start of a LUVOIR Surveyor mission in the next decade.

  3. Calibration of the Multi-Spectral Solar Telescope Array multilayer mirrors and XUV filters

    NASA Technical Reports Server (NTRS)

    Allen, Maxwell J.; Willis, Thomas D.; Kankelborg, Charles C.; O'Neal, Ray H.; Martinez-Galarce, Dennis S.; Deforest, Craig E.; Jackson, Lisa; Lindblom, Joakim; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.

    1993-01-01

    The Multi-Spectral Solar Telescope Array (MSSTA), a rocket-borne solar observatory, was successfully flown in May, 1991, obtaining solar images in eight XUV and FUV bands with 12 compact multilayer telescopes. Extensive measurements have recently been carried out on the multilayer telescopes and thin film filters at the Stanford Synchrotron Radiation Laboratory. These measurements are the first high spectral resolution calibrations of the MSSTA instruments. Previous measurements and/or calculations of telescope throughputs have been confirmed with greater accuracy. Results are presented on Mo/Si multilayer bandpass changes with time and experimental potassium bromide and tellurium filters.

  4. The First Detection of [O IV] from an Ultraluminous X-ray Source with Spitzer: Evidence of High Unbeamed Luminosity in Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.

    2008-01-01

    We present the first Spitzer Infrared Spectrograph (IRS) observations of the [O IV] 25.89 micron emission line detected from the ultraluminous X-ray source (ULX) in Holmberg II. This line is a well established signature of high excitation, usually associated with AGN. Its detection suggests that the ULX has a strong impact on the surrounding gas. A Spitzer high resolution spectral map shows that the [O IV] is coincident with the X-ray position of the Holmberg II ULX. We find that the luminosity and the morphology of the line emission is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is radiation bounded both in the line of sight direction and to the west, and probably matter bounded to the east. Evidence for a massive black hole (BH) in this ULX is mounting. Detailed photoionization models favor an intermediate mass black hole of at least 85 Solar Mass as the ionization source for the [OIV] emission. We find that the spectral type of the companion star strongly affects the expected strength of the [O IV] emission. This finding could explain the origin of [O IV] in some starburst galaxies containing black hole binaries.

  5. Near InfraRed Imaging Spectrograph (NIRIS) for ground-based mesospheric OH(6-2) and O2(0-1) intensity and temperature measurements

    NASA Astrophysics Data System (ADS)

    Singh, Ravindra P.; Pallamraju, Duggirala

    2017-08-01

    This paper describes the development of a new Near InfraRed Imaging Spectrograph (NIRIS) which is capable of simultaneous measurements of OH(6-2) Meinel and O2(0-1) atmospheric band nightglow emission intensities. In this spectrographic technique, rotational line ratios are obtained to derive temperatures corresponding to the emission altitudes of 87 and 94 km. NIRIS has been commissioned for continuous operation from optical aeronomy observatory, Gurushikhar, Mount Abu (24.6°N, 72.8°E) since January 2013. NIRIS uses a diffraction grating of 1200 lines mm^{-1} and 1024× 1024 pixels thermoelectrically cooled CCD camera and has a large field-of-view (FOV) of 80° along the slit orientation. The data analysis methodology adopted for the derivation of mesospheric temperatures is also described in detail. The observed NIRIS temperatures show good correspondence with satellite (SABER) derived temperatures and exhibit both tidal and gravity waves (GW) like features. From the time taken for phase propagation in the emission intensities between these two altitudes, vertical phase speed of gravity waves, cz, is calculated and along with the coherent GW time period `τ ', the vertical wavelength, λ z, is obtained. Using large FOV observations from NIRIS, the meridional wavelengths, λ y, are also calculated. We have used one year of data to study the possible cause(s) for the occurrences of mesospheric temperature inversions (MTIs). From the statistics obtained for 234 nights, it appears that in situ chemical heating is mainly responsible for the observed MTIs than the vertical propagation of the waves. Thus, this paper describes a novel near infrared imaging spectrograph, its working principle, data analysis method for deriving OH and O2 emission intensities and the corresponding rotational temperatures at these altitudes, derivation of gravity wave parameters (τ , cz, λ z, and λ y), and results on the statistical study of MTIs that exist in the earth's mesospheric altitudes.

  6. Coronagraphic Imaging with HST and STIS

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Proffitt, C.; Malumuth, E.; Woodgate, B. E.; Gull, T. R.; Bowers, C. W.; Heap, S. R.; Kimble, R. A.; Lindler, D.; Plait, P.

    2002-01-01

    Revealing faint circumstellar nebulosity and faint stellar or substellar companions to bright stars typically requires use of techniques for rejecting the direct, scattered, and diffracted light of the star. One such technique is Lyot coronagraphy. We summarize the performance of the white-light coronagraphic capability of the Space Telescope Imaging spectrograph, on board the Hubble Space Telescope.

  7. Optical Imagers | CTIO

    Science.gov Websites

    DECam SAM 0.9-m CCD Goodman SOI Optical Spectrographs CHIRON COSMOS Goodman Filters Telescopes Blanco 4 magnitudes, astrometric, and spectral properties Filters Filter Overview Filter list (all filters up to and including 4x4-inch, sorted by wavelength) Filters - 3 & 4 inch (for SOAR, Schmidt, 0.9-m imaging

  8. SPARTAN Near-IR Camera | SOAR

    Science.gov Websites

    SPARTAN Near-IR Camera SPARTAN Cookbook Ohio State Infrared Imager/Spectrograph (OSIRIS) - NO LONGER Instrumentation at SOAR»SPARTAN Near-IR Camera SPARTAN Near-IR Camera System Overview The Spartan Infrared Camera is a high spatial resolution near-IR imager. Spartan has a focal plane conisisting of four "

  9. VizieR Online Data Catalog: Coordinates and photometry of stars in Haffner 16 (Davidge, 2017)

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2017-11-01

    The images and spectra that are the basis of this study were recorded with Gemini Multi-Object Spectrograph (GMOS) on Gemini South as part of program GS-2014A-Q-84 (PI: Davidge). GMOS is the facility visible-light imager and spectrograph. The detector was (the CCDs that make up the GMOS detector have since been replaced) a mosaic of three 2048*4068 EEV CCDs. Each 13.5μm square pixel subtended 0.073arcsec on the sky. The three CCDs covered an area that is larger than that illuminated by the sky so that spectra could be dispersed outside of the sky field. The images and spectra were both recorded with 2*2 pixel binning. The g' (FWHM=0.55) and i' (FWHM=0.45) images of Haffner 16 were recorded on the night of 2013 December 31. The GMOS spectra were recorded during five nights in 2014 March (Mar 19, Mar 27, and Mar 30) and April (Apr 2, and Apr 3). The spectra were dispersed with the R400 grating (λblaze=7640Å, 400lines/mm). (1 data file).

  10. Probing the Building Blocks of Galactic Disks: An Analysis of Ultraviolet Clumps

    NASA Astrophysics Data System (ADS)

    Soto, Emmaris

    The universe is filled with a diversity of galaxies; however, despite these diversities we are able to group galaxies into morphological categories, such as Hubble types, that may indicate different paths of evolution. In order to understand the evolution of galaxies, such as our own Milk Way, it is necessary to study the underlying star formation over cosmic time. At high redshift (z>2) star-forming galaxies reveal asymmetric and clumpy morphologies. However, the evolutionary process which takes clumpy galaxies from z>2 to the smooth axially symmetric Hubble-type galaxies in place at z˜0.5 is still unknown. Therefore, it is vital to make a connection between the morphologies of galaxies at the peak epoch of cosmic star formation at z˜2 with the galaxies observed in the local universe to better understand the mechanisms that led to their evolution. To address this and chronicle the progression of galaxy evolution, deep high resolution multi-wavelength data is used to study galaxies across cosmic time. This dissertation provides a detailed study of clumpy star-forming galaxies at intermediate redshifts, 0.5 ≤ z ≤ 1.5, focusing on sub-galactic regions of star formation which provide a mechanism to explain the evolution of clumpy galaxies to the spiral galaxies we observe today. We developed a clump-finding algorithm to select a sample of clumpy galaxies from the Ultraviolet Ultra Deep Field (UVUDF). The UVUDF was the first deep image (˜28 AB mag) ever taken with the Hubble Space Telescope (HST) showing the rest-frame far-ultraviolet (FUV, 1500A) at intermediate-z. The rest-frame FUV probes the young star-forming regions which are often seen in clumpy galaxies at high redshift. We identified 209 clumpy galaxies (hereafter host galaxies) from 1,404 candidates at intermediate redshifts. We used the HST Wide Field Camera 3 (WFC3) and the Advanced Camera for Surveys (ACS) broadband images from the UVUDF with observed near-ultraviolet, optical, and near-infrared photometry to determine their stellar properties via spectral energy distribution (SED) fitting. We estimated properties such as the mass, age, star formation rate (SFR), and metallicity of host galaxies. The deep high resolution WFC3 rest-frame FUV data allowed us to detect and measure the sizes of 403 clumps. The results provided evidence to support clump migration as a mechanism for galaxy evolution. We show that clumps make an average contribution of 19% to the total rest-frame FUV flux of their host galaxy. Additionally, individual clumps contribute a median of 5% to the host galaxy SFR and an average of ˜4% to the host galaxy mass, with total clump contributions to the host galaxy stellar mass ranging widely from less than 1% up to 93%. We showed that clumps in the outskirts of galaxies are typically younger, with higher star formation rates than clumps in the inner regions. The results are consistent with clump migration theories in which clumps form through violent gravitational instabilities in gas-rich turbulent disks, eventually migrate toward the center of the galaxies, and coalesce into the bulge.

  11. The albedo and scattering phase function of interstellar dust and the diffuse background at far-ultraviolet wavelengths.

    PubMed

    Hurwitz, M; Bowyer, S; Martin, C

    1991-05-01

    We have determined the scattering parameters of dust in the interstellar medium at far-ultraviolet (FUV) wavelengths (1415-1835 angstroms). Our results are based on spectra of the diffuse background taken with the Berkeley UVX spectrometer. The unique design of this instrument makes possible for the first time accurate determination of the background both at high Galactic latitude, where the signal is intrinsically faint, and at low Galactic latitude, where direct starlight has heretofore compromised measurements of the diffuse emission. Because the data are spectroscopic, the continuum can be distinguished from the atomic and molecular transition features which also contribute to the background. We find the continuum intensity to be well correlated with the Galactic neutral hydrogen column density until saturation at about 1200 photons cm-2 s-1 sr-1 angstrom-1 is reached where tau FUV approximately 1. Our measurement of the intensity where tau FUV > or = 1 is crucial to the determination of the scattering properties of the grains. We interpret the data with a detailed radiative transfer model and conclude that the FUV albedo of the grains is low (<25%) and that the grains scatter fairly isotropically. We evaluate models of dust composition and grain-size distribution and compare their predictions with these new results. We present evidence that, as the Galactic neutral hydrogen column density approaches zero, the FUV continuum background arises primarily from scattering by dust, which implies that dust may be present in virtually all view directions. A non-dust-scattering continuum component has also been identified, with an intensity (external to the foreground Galactic dust) of about 115 photons cm-2 s-1 angstrom-1. With about half this intensity accounted for by two-photon emission from Galactic ionized gas, we identify roughly 50 photons cm-2 s-1 sr-1 angstrom-1 as a true extragalactic component.

  12. Far-ultraviolet absorbance detection of sugars and peptides by high-performance liquid chromatography.

    PubMed

    Uchiho, Yuichi; Goto, Yusuke; Kamahori, Masao; Aota, Toshimichi; Morisaki, Atsuki; Hosen, Yusuke; Koda, Kimiyoshi

    2015-12-11

    A far-ultraviolet (FUV)-absorbance detector with a transmission flow cell was developed and applied to detect absorbance of sugars and peptides by HPLC. The main inherent limitation of FUV-absorbance detection is the strong absorptions of solvents and atmospheric oxygen in the optical system as well as dissolved oxygen in the solvent. High absorptivity of the solvent and oxygen decreases transmission-light intensity in the flow cell and hinders the absorbance measurement. To solve the above drawbacks, the transmission-light intensity in the flow cell was increased by introducing a new optical system and a nitrogen-purging unit to remove the atmospheric oxygen. The optical system has a photodiode for detecting the reference light at a position of the minus-first-order diffracted light. In addition, acetonitrile and water were selected as usable solvents because of their low absorptivity in the FUV region. As a result of these implementations, the detectable wavelength of the FUV-absorbance detector (with a flow cell having an effective optical path length of 0.5mm) can be extended down to 175nm. Three sugars (glucose, fructose, and sucrose) were successfully detected with the FUV-absorbance detector. These detection results reveal that the absorption peak of sugar in liquid phase lies at around 178nm. The detection limit (S/N=3) in absorbance with a 0.5-mm flow cell at 180nm was 21μAU, which corresponds to 33, 60 and 60μM (198, 360, and 360pmol) for fructose, glucose, and sucrose, respectively. Also, the peptide Met-enkephalin could be detected with a high sensitivity at 190nm. The estimated detection limit (S/N=3) for Met-enkephalin is 29nM (0.29pmol), which is eight times lower than that at 220nm. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A sample of [C II] clouds tracing dense clouds in weak FUV fields observed by Herschel

    NASA Astrophysics Data System (ADS)

    Pineda, J. L.; Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Li, D.; Yorke, H. W.

    2010-10-01

    The [C ii] fine-structure line at 158 μm is an excellent tracer of the warm diffuse gas in the ISM and the interfaces between molecular clouds and their surrounding atomic and ionized envelopes. Here we present the initial results from Galactic observations of terahertz C+ (GOT C+), a Herschel key project devoted to studying the [C ii] emission in the Galactic plane using the HIFI instrument. We used the [C ii] emission, together with observations of CO, as a probe to understand the effects of newly formed stars on their interstellar environment and characterize the physical and chemical state of the star-forming gas. We collected data along 16 lines-of-sight passing near star-forming regions in the inner Galaxy near longitudes 330° and 20°. We identified fifty-eight [C ii] components that are associated with high-column density molecular clouds as traced by 13CO emission. We combined [C ii], 12CO, and 13CO observations to derive the physical conditions of the [C ii]-emitting regions in our sample of high-column density clouds based on comparing results from a grid of photon dominated region (PDR) models. From this unbiased sample, our results suggest that most of the [C ii] emission originates in clouds with H2 volume densities between 103.5 and 105.5 cm-3 and weak FUV strength (χ0 = 1-10). We find two regions where our analysis suggest high densities >105 cm-3 and strong FUV fields (χ0 = 104-106), likely associated with massive star formation. We suggest that [C ii] emission in conjunction with CO isotopes is a good tool for differentiating regions of massive star formation (high densities/strong FUV fields) and regions that are distant from massive stars (lower densities/weaker FUV fields) along the line-of-sight. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  14. Two Solar Tornadoes Observed with the Interface Region Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Yang, Zihao; Tian, Hui; Peter, Hardi; Su, Yang; Samanta, Tanmoy; Zhang, Jingwen; Chen, Yajie

    2018-01-01

    The barbs or legs of some prominences show an apparent motion of rotation, which are often termed solar tornadoes. It is under debate whether the apparent motion is a real rotating motion, or caused by oscillations or counter-streaming flows. We present analysis results from spectroscopic observations of two tornadoes by the Interface Region Imaging Spectrograph. Each tornado was observed for more than 2.5 hr. Doppler velocities are derived through a single Gaussian fit to the Mg II k 2796 Å and Si IV 1393 Å line profiles. We find coherent and stable redshifts and blueshifts adjacent to each other across the tornado axes, which appears to favor the interpretation of these tornadoes as rotating cool plasmas with temperatures of 104 K–105 K. This interpretation is further supported by simultaneous observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, which reveal periodic motions of dark structures in the tornadoes. Our results demonstrate that spectroscopic observations can provide key information to disentangle different physical processes in solar prominences.

  15. Rocket studies of solar corona and transition region. [X-Ray spectrometer/spectrograph telescope

    NASA Technical Reports Server (NTRS)

    Acton, L. W.; Bruner, E. C., Jr.; Brown, W. A.; Nobles, R. A.

    1979-01-01

    The XSST (X-Ray Spectrometer/Spectrograph Telescope) rocket payload launched by a Nike Boosted Black Brant was designed to provide high spectral resolution coronal soft X-ray line information on a spectrographic plate, as well as time resolved photo-electric records of pre-selected lines and spectral regions. This spectral data is obtained from a 1 x 10 arc second solar region defined by the paraboloidal telescope of the XSST. The transition region camera provided full disc images in selected spectral intervals originating in lower temperature zones than the emitting regions accessible to the XSST. A H-alpha camera system allowed referencing the measurements to the chromospheric temperatures and altitudes. Payload flight and recovery information is provided along with X-ray photoelectric and UV flight data, transition camera results and a summary of the anomalies encountered. Instrument mechanical stability and spectrometer pointing direction are also examined.

  16. IRMS: Infrared Multi-Slit Spectrograph for TMT

    NASA Astrophysics Data System (ADS)

    U, Vivian; Mobasher, B.

    2014-07-01

    As one of the first-light instruments on the TMT, the IRMS is a near-infrared multi-slit spectrograph and imager designed to sample near the diffraction limit with the help of adaptive optics. Fed by the Narrow-Field Infrared Adaptive Optics Systems (NFIRAOS) on the TMT, the IRMS will provide near-infrared imaging and multi-object spectroscopy at Y, J, H, and K bands (0.9-2.5 microns) with moderate spectral resolution. With a field of view of ~2 arcmin on a side, it has a multiplex capability of up to 46 slits using a slit mask system on a cryogenic configurable slit unit. Here we present a preliminary version of the exposure time calculator for sensitivity comparison with Keck/MOSFIRE. Selected science cases are highlighted to demonstrate the need for IRMS in this upcoming thirty-meter class telescope era.

  17. Fabrication of MgF2 and LiF windows for the Hubble Space Telescope Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Gormley, Daphne; Bottema, Murk; Darnell, Barbara; Fowler, Walter; Medenica, Walter

    1988-01-01

    Two prototype test windows (MgF2 and LiF) to be used on the 75-mm UV MAMA detector tubes for the Hubble Space Telescope Imaging Spectrograph are described. The spatial and optical constraints of this instrument dictate that the thickness of the window materials be no greater than 2-3 mm to achieve a minimum 50-percent transmission at hydrogen Lyman alpha (121.6 nm), and that the window must be domed to minimize optical aberrations and provide structural strength. The detector window has an input diameter of about 100 mm with a radius-of-curvature of 70 mm. The manufacturing processes involved in the fabrication of these windows is discussed, as well as test programs (optical and structural) to be performed at Goddard Space Flight Center.

  18. Performance, results, and prospects of the visible spectrograph VEGA on CHARA

    NASA Astrophysics Data System (ADS)

    Mourard, Denis; Challouf, Mounir; Ligi, Roxanne; Bério, Philippe; Clausse, Jean-Michel; Gerakis, Jérôme; Bourges, Laurent; Nardetto, Nicolas; Perraut, Karine; Tallon-Bosc, Isabelle; McAlister, H.; ten Brummelaar, T.; Ridgway, S.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2012-07-01

    In this paper, we review the current performance of the VEGA/CHARA visible spectrograph and make a review of the most recent astrophysical results. The science programs take benefit of the exceptional angular resolution, the unique spectral resolution and one of the main features of CHARA: Infrared and Visible parallel operation. We also discuss recent developments concerning the tools for the preparation of observations and important features of the data reduction software. A short discussion of the future developments will complete the presentation, directed towards new detectors and possible new beam combination scheme for improved sensitivity and imaging capabilities.

  19. WUVS simulator: detectability of spectral lines with the WSO-UV spectrographs

    NASA Astrophysics Data System (ADS)

    Marcos-Arenal, Pablo; de Castro, Ana I. Gómez; Abarca, Belén Perea; Sachkov, Mikhail

    2017-04-01

    The World Space Observatory Ultraviolet telescope is equipped with high dispersion (55,000) spectrographs working in the 1150 to 3100 Å spectral range. To evaluate the impact of the design on the scientific objectives of the mission, a simulation software tool has been developed. This simulator builds on the development made for the PLATO space mission and it is designed to generate synthetic time-series of images by including models of all important noise sources. We describe its design and performance. Moreover, its application to the detectability of important spectral features for star formation and exoplanetary research is addressed.

  20. The radio continuum-star formation rate relation in WSRT sings galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heesen, Volker; Brinks, Elias; Leroy, Adam K.

    2014-05-01

    We present a study of the spatially resolved radio continuum-star formation rate (RC-SFR) relation using state-of-the-art star formation tracers in a sample of 17 THINGS galaxies. We use SFR surface density (Σ{sub SFR}) maps created by a linear combination of GALEX far-UV (FUV) and Spitzer 24 μm maps. We use RC maps at λλ22 and 18 cm from the WSRT SINGS survey and Hα emission maps to correct for thermal RC emission. We compare azimuthally averaged radial profiles of the RC and FUV/mid-IR (MIR) based Σ{sub SFR} maps and study pixel-by-pixel correlations at fixed linear scales of 1.2 and 0.7more » kpc. The ratio of the integrated SFRs from the RC emission to that of the FUV/MIR-based SF tracers is R{sub int}=0.78±0.38, consistent with the relation by Condon. We find a tight correlation between the radial profiles of the radio and FUV/MIR-based Σ{sub SFR} for the entire extent of the disk. The ratio R of the azimuthally averaged radio to FUV/MIR-based Σ{sub SFR} agrees with the integrated ratio and has only quasi-random fluctuations with galactocentric radius that are relatively small (25%). Pixel-by-pixel plots show a tight correlation in log-log diagrams of radio to FUV/MIR-based Σ{sub SFR}, with a typical standard deviation of a factor of two. Averaged over our sample we find (Σ{sub SFR}){sub RC}∝(Σ{sub SFR}){sub hyb}{sup 0.63±0.25}, implying that data points with high Σ{sub SFR} are relatively radio dim, whereas the reverse is true for low Σ{sub SFR}. We interpret this as a result of spectral aging of cosmic-ray electrons (CREs), which are diffusing away from the star formation sites where they are injected into the interstellar medium. This is supported by our finding that the radio spectral index is a second parameter in pixel-by-pixel plots: those data points dominated by young CREs are relatively radio dim, while those dominated by old CREs are slightly more RC bright than what would be expected from a linear extrapolation. We studied the ratio R of radio to FUV/MIR-based integrated SFR as a function of global galaxy parameters and found no clear correlation. This suggests that we can use RC emission as a universal star formation tracer for galaxies with a similar degree of accuracy as other tracers, if we restrict ourselves to global or azimuthally averaged measurements. We can reconcile our finding of an almost linear RC-SFR relation and sub-linear resolved (on 1 kpc scale) RC-Σ{sub SFR} relation by proposing a non-linear magnetic field-SFR relation, B∝SFR{sub hyb}{sup 0.30±0.02}, which holds both globally and locally.« less

  1. The end-to-end simulator for the E-ELT HIRES high resolution spectrograph

    NASA Astrophysics Data System (ADS)

    Genoni, M.; Landoni, M.; Riva, M.; Pariani, G.; Mason, E.; Di Marcantonio, P.; Disseau, K.; Di Varano, I.; Gonzalez, O.; Huke, P.; Korhonen, H.; Li Causi, Gianluca

    2017-06-01

    We present the design, architecture and results of the End-to-End simulator model of the high resolution spectrograph HIRES for the European Extremely Large Telescope (E-ELT). This system can be used as a tool to characterize the spectrograph both by engineers and scientists. The model allows to simulate the behavior of photons starting from the scientific object (modeled bearing in mind the main science drivers) to the detector, considering also calibration light sources, and allowing to perform evaluation of the different parameters of the spectrograph design. In this paper, we will detail the architecture of the simulator and the computational model which are strongly characterized by modularity and flexibility that will be crucial in the next generation astronomical observation projects like E-ELT due to of the high complexity and long-time design and development. Finally, we present synthetic images obtained with the current version of the End-to-End simulator based on the E-ELT HIRES requirements (especially high radial velocity accuracy). Once ingested in the Data reduction Software (DRS), they will allow to verify that the instrument design can achieve the radial velocity accuracy needed by the HIRES science cases.

  2. Can we use adaptive optics for UHR spectroscopy with PEPSI at the LBT?

    NASA Astrophysics Data System (ADS)

    Sacco, Germano G.; Pallavicini, Roberto; Spano, Paolo; Andersen, Michael; Woche, Manfred F.; Strassmeier, Klaus G.

    2004-10-01

    We investigate the potential of using adaptive optics (AO) in the V, R, and I bands to reach ultra-high resolution (UHR, R >= 200,000) in echelle spectrographs at 8-10m telescopes. In particular, we investigate the possibility of implementing an UHR mode for the fiber-fed spectrograph PEPSI (Potsdam Echelle Polarimetric and Spectrographic Instrument) being developed for the Large Binocular Telescope (LBT). By simulating the performances of the advanced AO system that will be available at first light at the LBT, and by using first-order estimates of the spectrograph performances, we calculate the total efficiency and signal to noise ratio (SNR) of PEPSI in the AO mode for stars of different magnitudes, different fiber core sizes, and different fractions of incident light diverted to the wavefront sensor. We conclude that AO can provide a significant advantage, of up to a factor ~2 in the V, R and I bands, for stars brighter than mR ~ 12 - 13. However, if these stars are observed at UHR in non-AO mode, slit losses caused by the need to use a very narrow slit can be compensated more effectively by the use of image slicers.

  3. Recent Progress on 2012 SAT for UVOIR Coatings

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Del Hoyo, Javier G.; Rice, Stephen H.

    2014-01-01

    Astronomical observations in the Far Ultraviolet (FUV) spectral region are some of the more challenging due to the very distant and faint objects that are typically searched for in cosmic origin studies such as origin of large scale structure, the formation, evolution, and age of galaxies and the origin of stellar and planetary systems. These challenges are driving the need to improve the performance of optical coatings over a wide spectral range that would increase reflectance in mirrors and reduced absorption in dielectric filters used in optical telescope for FUV observations. This paper will present recent advances in reflectance performance for Al+MgF2 mirrors optimized for Lyman-alpha wavelength by performing the deposition of the MgF2 overcoat at elevated substrate temperatures. We will also present optical characterization of little studied rare-earth fluorides such as GdF3 and LuF3 that exhibit low-absorption over a wide wavelength range and could therefore be used as high refractive index alternatives fordielectric coatings at FUV wavelengths.

  4. Exploratory Phase for Optimizing Lifetime Position 4 of the COS/FUV Detector

    NASA Astrophysics Data System (ADS)

    Roman-Duval, Julia; Indriolo, Nick; De Rosa, Gisella; Fox, Andrew; Oliveira, Cristina; Penton, Steve; Sahnow, David; Sonnentrucker, Paule; White, James

    2018-05-01

    The COS/FUV detector uses a microchannel plate, whose response (gain) decreases with usage, a process called gain-sag. To mitigate these gain-sag effects, COS/FUV science spectra are periodically moved to pristine locations of the detector, i.e. different lifetime positions (LP). Preparations for the move from LP3 to LP4 started with an exploratory phase between May and October 2016, while the LP4 move occurred on October 2, 2017. This ISR describes the LP4 exploratory phase, during which the feasibility of placing LP4 at -2.5'' below LP3 (-5'' below LP1) was examined, the effects of the LP4 move on the science quality and calibration accuracy of spectra were investigated, and the final location of LP4 (- 2.5'' below LP3) was determined. We describe in detail the strategy adopted for the LP4 exploratory phase to ensure that all potential issues were identified and resolved well in advance of the LP4 move.

  5. Efficient conversion of 3He(n,tp) and 10B(n, α7Li) reaction energies into far-ultraviolet radiation by noble gas excimers

    NASA Astrophysics Data System (ADS)

    Hughes, Patrick P.; Coplan, Michael A.; Thompson, Alan K.; Vest, Robert E.; Clark, Charles W.

    2011-03-01

    Previous work showed that the 3He(n , tp) reaction in a cell of 3He at atmospheric pressure generated tens of far-ultraviolet (FUV) photons per reacted neutron. Here we report amplification of that signal by factors of 1000 when noble gases are added to the cell. Calibrated filter-detector measurements show that this large signal is due to noble-gas excimer emissions, and that the nuclear reaction energy is converted to FUV radiation with efficiencies of up to 30 % . Our results have been placed on an absolute scale through calibrations at the NIST SURF III Synchrotron and Center for Neutron Research. We have also seen large neutron-induced FUV signals when the 3He gas in our system is replaced with a 10B film target; an experiment on substituting 3He with BF3 is underway. Our results suggest possibilities for high-efficiency, non-3He neutron detectors as an alternative to existing proportional counters.

  6. Far-Ultraviolet Number Counts of Field Galaxies

    NASA Technical Reports Server (NTRS)

    Voyer, Elysse N.; Gardner, Jonathan P.; Teplitz, Harry I.; Siana, Brian D.; deMello, Duilia F.

    2010-01-01

    The Number counts of far-ultraviolet (FUV) galaxies as a function of magnitude provide a direct statistical measure of the density and evolution of star-forming galaxies. We report on the results of measurements of the rest-frame FUV number counts computed from data of several fields including the Hubble Ultra Deep Field, the Hubble Deep Field North, and the GOODS-North and -South fields. These data were obtained from the Hubble Space Telescope Solar Blind Channel of the Advance Camera for Surveys. The number counts cover an AB magnitude range from 20-29 magnitudes, covering a total area of 15.9 arcmin'. We show that the number counts are lower than those in previous studies using smaller areas. The differences in the counts are likely the result of cosmic variance; our new data cover more area and more lines of sight than the previous studies. The slope of our number counts connects well with local FUV counts and they show good agreement with recent semi-analytical models based on dark matter "merger trees".

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramaniam, Annapurni; Sindhu, N.; Tandon, S. N.

    We present early results from the Ultra-Violet Imaging Telescope (UVIT) on board the ASTROSAT observatory. We report the discovery of a hot companion associated with one of the blue straggler stars (BSSs) in the old open cluster, NGC 188. Using fluxes measured in four filters in UVIT’s far-UV (FUV) channel, and two filters in the near-UV (NUV) channel, we have constructed the spectral energy distribution (SED) of the star WOCS-5885, after combining with flux measurements from GALEX , Ultraviolet Imaging Telescope, Ultraviolet Optical Telescope, SPITZER , WISE , and several ground-based facilities. The resulting SED spans a wavelength range ofmore » 0.15 μ m to 7.8 μ m. This object is found to be one of the brightest FUV sources in the cluster. An analysis of the SED reveals the presence of two components. The cooler component is found to have a temperature of 6000 ± 150 K, confirming that it is a BSS. Assuming it to be a main-sequence star, we estimate its mass to be ∼1.1–1.2 M {sub ⊙}. The hotter component, with an estimated temperature of 17,000 ± 500 K, has a radius of ∼ 0.6 R {sub ⊙} and L ∼30 L {sub ⊙}. Bigger and more luminous than a white dwarf, yet cooler than a sub-dwarf, we speculate that it is a post-AGB/HB star that has recently transferred its mass to the BSS, which is known to be a rapid rotator. This binary system, which is the first BSS with a post-AGB/HB companion identified in an open cluster, is an ideal laboratory to study the process of BSS formation via mass transfer.« less

  8. Ohio State Infrared Imager/Spectrograph (OSIRIS) | SOAR

    Science.gov Websites

    opperate at wavelengths from 0.9 to 2.4 microns. Internal optics allow for two plate scales and a variety of spectroscopic resolutions. Internal mechanisms control the selected filter, focal plane mask

  9. SOFIA Science Instruments: Commissioning, Upgrades and Future Opportunities

    NASA Technical Reports Server (NTRS)

    Smith, Erin C.

    2014-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter telescope housed in the aft section of a Boeing 747sp aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 µm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1 micron imager built by Lowell Observatory; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 micron wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-210 micron IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross- Echelle Spectrograph), a 5-28 micron high-resolution spectrometer being completed by UC Davis and NASA Ames. A second generation instrument, HAWC+ (Highresolution Airborne Wideband Camera), is a 50-240 micron imager being upgraded at JPL to add polarimetry and new detectors developed at GSFC. SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details instrument capabilities and status as well as plans for future instrumentation, including the call for proposals for 3rd generation SOFIA science instruments.

  10. Calibration, characterization, and first results with the Ocean PHILLS hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Davis, Curtiss O.; Kappus, Mary E.; Bowles, Jeffrey H.; Fisher, John; Antoniades, John A.; Carney, Megan

    1999-10-01

    The Ocean Portable Hyperspectral Imager for Low-Light spectroscopy (Ocean PHILLS), is a new hyperspectral imager specifically designed for imaging the coastal ocean. It uses a thinned, backside illuminated CCD for high sensitivity, and an all-reflective spectrograph with a convex grating in an Offner configuration to produce a distortion free image. Here we describe the instrument design and present the results of laboratory calibration and characterization and example results from a two week field experiment imaging the coastal waters off Lee Stocking, Island, Bahamas.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Myron A.; Shiao, Bernard; Bianchi, Luciana, E-mail: myronmeister@gmail.com, E-mail: shiao@stsci.edu, E-mail: bianchi@pha.jhu.edu

    We report on intriguing photometric properties of Galactic stars observed in the Galaxy Evolution Explorer (GALEX) satellite's far-UV (FUV) and near-UV (NUV) bandpasses, as well as from the ground-based Sloan Digital Sky Survey (SDSS) and the Kepler Input Catalog. The first property is that the (FUV – NUV) color distribution of stars in the Kepler field consists of two well-separated peaks. A second and more perplexing property is that for stars with spectral types G or later the mean (FUV – NUV) color becomes much bluer, contrary to expectation. Investigating this tendency further, we found in two samples of mid-Fmore » through K type stars that 17%-22% of them exhibit FUV excesses relative to their NUV fluxes and spectral types. A correction for FUV incompleteness of the FUV magnitude-limited star sample brings this ratio to 14%-18%. Nearly the same fractions are also discovered among members of the Kepler Eclipsing Binary Catalog and in the published list of Kepler Objects of Interest. These UV-excess ('UVe') colors are confirmed by the negative UV continuum slopes in GALEX spectra of members of the population. The SDSS spectra of some UVe stars exhibit metallic line weakening, especially in the blue. This suggests an enhanced contribution of UV flux relative to photospheric flux of a solar-type single star. We consider the possibility that the UV excesses originate from various types of hot stars, including white dwarf DA and sdB stars, binaries, and strong chromosphere stars that are young or in active binaries. The space density of compact stars is too low to explain the observed frequency of the UVe stars. Our model atmosphere-derived simulations of colors for binaries with main-sequence pairs with a hot secondary demonstrate that the color loci conflict with the observed sequence. As a preferred alternative we are left with the active chromospheres explanation, whether in active close binaries or young single stars, despite the expected paucity of young, chromospherically active stars in the field. We also address a third perplexing color property, namely, the presence of a prominent island of 'UV red' stars surrounded by 'UV blue' stars in the diagnostic (NUV–g), (g – i) color diagram. We find that the subpopulation composing this island is mainly horizontal branch stars. These objects do not exhibit UV excesses and therefore have UV colors typical for their spectral types. This subpopulation appears 'red' in the UV only because the stars' colors are not pulled to the blue by the inclusion of UVe stars.« less

  12. The SLICE, CHESS, and SISTINE Ultraviolet Spectrographs: Rocket-Borne Instrumentation Supporting Future Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    France, Kevin; Hoadley, Keri; Fleming, Brian T.; Kane, Robert; Nell, Nicholas; Beasley, Matthew; Green, James C.

    2016-03-01

    NASA’s suborbital program provides an opportunity to conduct unique science experiments above Earth’s atmosphere and is a pipeline for the technology and personnel essential to future space astrophysics, heliophysics, and atmospheric science missions. In this paper, we describe three astronomy payloads developed (or in development) by the Ultraviolet Rocket Group at the University of Colorado. These far-ultraviolet (UV) (100-160nm) spectrographic instruments are used to study a range of scientific topics, from gas in the interstellar medium (accessing diagnostics of material spanning five orders of magnitude in temperature in a single observation) to the energetic radiation environment of nearby exoplanetary systems. The three instruments, Suborbital Local Interstellar Cloud Experiment (SLICE), Colorado High-resolution Echelle Stellar Spectrograph (CHESS), and Suborbital Imaging Spectrograph for Transition region Irradiance from Nearby Exoplanet host stars (SISTINE) form a progression of instrument designs and component-level technology maturation. SLICE is a pathfinder instrument for the development of new data handling, storage, and telemetry techniques. CHESS and SISTINE are testbeds for technology and instrument design enabling high-resolution (R>105) point source spectroscopy and high throughput imaging spectroscopy, respectively, in support of future Explorer, Probe, and Flagship-class missions. The CHESS and SISTINE payloads support the development and flight testing of large-format photon-counting detectors and advanced optical coatings: NASA’s top two technology priorities for enabling a future flagship observatory (e.g. the LUVOIR Surveyor concept) that offers factors of ˜50-100 gain in UV spectroscopy capability over the Hubble Space Telescope. We present the design, component level laboratory characterization, and flight results for these instruments.

  13. The 1997 HST Calibration Workshop with a New Generation of Instruments

    NASA Technical Reports Server (NTRS)

    Casertano, S. (Editor); Jedrzejewski, R. (Editor); Keyes, T. (Editor); Stevens, M. (Editor)

    1997-01-01

    The Second Servicing mission in early 1997 has brought major changes to the Hubble Space Telescope (HST). Two of the original instruments, Faint Object Spectrograph (FOS) and Goddard High Resolution Spectrograph (GHRS), were taken out, and replaced by completely new instruments, the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera Multi-Object Spectrograph (NICMOS). Two new types of detectors were installed, and for the first time, HST gained infrared capabilities. A new Fine Guidance Sensor (FGS) was installed, with an alignment mechanism that could improve substantially both guiding and astrometric capabilities. With all these changes come new challenges. The characterization of the new instruments has required a major effort, both by their respective Investigation Definition Teams and at the Space Telescope Science Institute. All necessary final calibrations for the retired spectrographs needed to be carried out, and their properties definitively characterized. At the same time, work has continued to improve our understanding of the instruments that have remained on board. The results of these activities were discussed in the 1997 HST (Hubble Space Telescope) Calibration Workshop. The main focus of the Workshop was to provide users with the tools and the understanding they need to use HST's instruments and archival data to the best of their possibilities. This book contains the written record of the Workshop. As such, it should provide a valuable tool to all interested in using existing HST data or in proposing for new observations.

  14. CFCCD Manual | CTIO

    Science.gov Websites

    DECam SAM 0.9-m CCD Goodman SOI Optical Spectrographs CHIRON COSMOS Goodman Filters Telescopes Blanco 4 4.4.4 Gain 4.5: CCD scales at various foci APPENDIX I: Filters for CCD Imaging II: Gain and Readout

  15. Spectroscopic studies of the molecular parentage of radical species in cometary comae

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Pierce, Donna; Cochran, Anita

    2015-11-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CH, CN, NH2). By constructing azimuthal average profiles from the full-coma spectroscopic images we can test Haser model parameters with our observations. The Haser model was used to determine production rates and possible parent lifetimes that would be consistent with the model. By iterating through a large range of possible parents lifetimes, we can see what range of values in which the Haser model is consistent with observations. Also, this type of analysis gives us perspective on how sensitive the model's fit quality is to changes in parent lifetimes. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys.

  16. A mask quality control tool for the OSIRIS multi-object spectrograph

    NASA Astrophysics Data System (ADS)

    López-Ruiz, J. C.; Vaz Cedillo, Jacinto Javier; Ederoclite, Alessandro; Bongiovanni, Ángel; González Escalera, Víctor

    2012-09-01

    OSIRIS multi object spectrograph uses a set of user-customised-masks, which are manufactured on-demand. The manufacturing process consists of drilling the specified slits on the mask with the required accuracy. Ensuring that slits are on the right place when observing is of vital importance. We present a tool for checking the quality of the process of manufacturing the masks which is based on analyzing the instrument images obtained with the manufactured masks on place. The tool extracts the slit information from these images, relates specifications with the extracted slit information, and finally communicates to the operator if the manufactured mask fulfills the expectations of the mask designer. The proposed tool has been built using scripting languages and using standard libraries such as opencv, pyraf and scipy. The software architecture, advantages and limits of this tool in the lifecycle of a multiobject acquisition are presented.

  17. MAMA detector systems - A status report

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn; Morgan, Jeffrey S.; Slater, David C.; Kasle, David B.; Bybee, Richard L.

    1989-01-01

    Third-generation, 224 x 960 and 360 x 1024-pixel multianode microchannel (MAMA) detectors are under development for satellite-borne FUV and EUV observations, using pixel dimensions of 25 x 25 microns. An account is presently given of the configurations, modes of operation, and recent performance data of these systems. At UV and visible wavelengths, these MAMAs employ a semitransparent, proximity-focused photocathode structure. At FUV and EUV wavelengths below about 1500 A, opaque alkali-halide photocathodes deposited directly on the front surface of the MCP furnish the best detective quantum efficiencies.

  18. Commissioning the Robert Stobie Spectrograph on the 11-meter Southern African Large Telescope (SALT)

    NASA Astrophysics Data System (ADS)

    Hooper, Eric Jon; Nordsieck, K.; Williams, T.; Buckley, D.; SALT Operations Group; UW-Madison RSS Commissioning Group

    2012-01-01

    The Southern African Large Telescope (SALT) is an 11-meter optical and near-infrared telescope located in South Africa. It is operated by an international consortium led by South Africa and consisting of partners in the U.S., Europe, India, and New Zealand. After some initial telescope image quality problems were fixed, one of the main workhorse instruments called the Robert Stobie Spectrograph began checkout and commissioning in April, 2011. All of the instrument modes have been shown to be operational, and some of them are now in routine use. Shared-risk science observations began in September, 2011, alongside ongoing commissioning of the more unusual modes of this very versatile and complex instrument. The RSS provides numerous capabilities in a compact prime-focus design with an 8 arcminute field of view: • Long-slit spectroscopy. Six gratings provide resolving powers ranging from 800 to 11,000 and wavelength coverage from the blue atmospheric cutoff (320 nm) to around 1000 nm. • Multi-object spectroscopy using laser-cut slit masks. • High speed spectroscopy. By restricting the field of view in a slot mode, spectra can be read out as rapidly as 10 Hz. • Fixed band imaging. In addition to providing help with target acquisition, the RSS imaging mode is a powerful narrow-band imaging system, with a suite of narrow-band filters nearly continuously covering the wavelength range 430 - 900 nm. • Fabry-Perot imaging. The system can operate with either one or two etalons, providing a range in spectral resolving power from 250 to 10,000 over 430- 900 nm. • Polarimetry. All of the modes listed above also support polarimetric modes (linear and circular). Two next-generation instruments are under construction: a high-resolution fiber-fed spectrograph with resolving power reaching 65,000; and a near-infrared sibling of RSS, which will extend the spectral coverage to 1.7 microns.

  19. [Optimum design of imaging spectrometer based on toroidal uniform-line-spaced (TULS) spectrometer].

    PubMed

    Xue, Qing-Sheng; Wang, Shu-Rong

    2013-05-01

    Based on the geometrical aberration theory, a optimum-design method for designing an imaging spectrometer based on toroidal uniform grating spectrometer is proposed. To obtain the best optical parameters, twice optimization is carried out using genetic algorithm(GA) and optical design software ZEMAX A far-ultraviolet(FUV) imaging spectrometer is designed using this method. The working waveband is 110-180 nm, the slit size is 50 microm x 5 mm, and the numerical aperture is 0.1. Using ZEMAX software, the design result is analyzed and evaluated. The results indicate that the MTF for different wavelengths is higher than 0.7 at Nyquist frequency 10 lp x mm(-1), and the RMS spot radius is less than 14 microm. The good imaging quality is achieved over the whole working waveband, the design requirements of spatial resolution 0.5 mrad and spectral resolution 0.6 nm are satisfied. It is certificated that the optimum-design method proposed in this paper is feasible. This method can be applied in other waveband, and is an instruction method for designing grating-dispersion imaging spectrometers.

  20. VizieR Online Data Catalog: IRX-β relation of HII regions in NGC628 (Ye+, 2016)

    NASA Astrophysics Data System (ADS)

    Ye, C.; Zou, H.; Lin, L.; Lian, J.; Hu, N.; Kong, X.

    2016-10-01

    NGC 628 has been observed by the PPAK IFS Nearby Galaxies Survey (PINGS) performed by the 3.5m telescope of the Calar Alto Observatory. The IFU provides a sampling of 2.7", an optical wavelength range of 3700-7000Å with a spectral resolution of ~8Å. The final data set comprises 11094 individual spectra, and the typical spatial resolution is about 3.5"-4". The slice image at the Hα wavelength is used to determine HII regions. FUV and near-UV (NUV) images of NGC 628 were taken by the Galaxy Evolution Explorer (GALEX), which are centered at wavelengths of 1516 and 2267Å. IR images were taken by Spitzer IRAC (3.6um, 8.0um) and MIPS (24um). The spatial resolutions of UV and IR images are 4.3", 5.3", 1.9", 2.8", and 6.4", respectively. We obtain these images from the data release website of Local Volume Legacy (LVL) survey DR5 (Dale+, 2009, J/ApJ/703/517; http://irsa.ipac.caltech.edu/data/SPITZER/LVL/). (2 data files).

  1. THE COMPLEX NORTH TRANSITION REGION OF CENTAURUS A: A GALACTIC WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neff, Susan G.; Eilek, Jean A.; Owen, Frazer N., E-mail: susan.g.neff@nasa.gov

    2015-04-01

    We present deep GALEX images of NGC 5128, the parent galaxy of Centaurus A. We detect a striking “weather ribbon” of far-UV (FUV) and Hα emission which extends more than 35 kpc northeast of the galaxy. This ribbon is associated with a knotty ridge of radio/X-ray emission and is an extension of the previously known string of optical emission-line filaments. Many phenomena in the region are too short-lived to have survived transit out from the inner galaxy; something must be driving them locally. We also detect FUV emission from the galaxy’s central dust lane. Combining this with previous radio andmore » far-IR measurements, we infer an active starburst in the central galaxy which is currently forming stars at ∼2 M{sub ☉} yr{sup −1}, and has been doing so for 50–100 Myr. If the wind from this starburst is enhanced by energy and mass driven out from the active galactic nucleus, the powerful augmented wind can be the driver needed for the northern weather system. We argue that both the diverse weather system, and the enhanced radio emission in the same region, result from the wind’s encounter with cool gas left by one of the recent merger/encounter events in the history of NGC 5128.« less

  2. Advanced Environmentally Resistant Lithium Fluoride Mirror Coatings for the Next Generation of Broadband Space Observatories

    NASA Technical Reports Server (NTRS)

    Fleming, Brian; Quijada, Manuel A.; Hennessy, John; Egan, Arika; Del Hoyo, Javier G.

    2017-01-01

    Recent advances in the physical vapor deposition (PVD) of protective fluoride films have raised the far-ultraviolet (FUV: 912-1600 A) reflectivity of aluminum-based mirrors closer to the theoretical limit. The greatest gains, at more than 20%, have come for lithium fluoride-protected aluminum, which has the shortest wavelength cutoff of any conventional overcoat. Despite the success of the NASA FUSE mission, the use of lithium fluoride (LiF)-based optics is rare, as LiF is hygroscopic and requires handling procedures that can drive risk. With NASA now studying two large mission concepts for astronomy, Large UV-Optical-IR Surveyor (LUVOIR) and the Habitable Exoplanet Imaging Mission (HabEx), which mandate throughput down to 1000 , the development of LiF-based coatings becomes crucial. This paper discusses steps that are being taken to qualify these new enhanced LiF-protected aluminum (eLiF) mirror coatings for flight. In addition to quantifying the hygroscopic degradation, we have developed a new method of protecting eLiF with an ultrathin (10-20 A) capping layer of a nonhygroscopic material to increase durability. We report on the performance of eLiF-based optics and assess the steps that need to be taken to qualify such coatings for LUVOIR, HabEx, and other FUV-sensitive space missions.

  3. Physical Properties of Sub-galactic Clumps at 0.5 ≤ Z ≤ 1.5 in the UVUDF

    NASA Astrophysics Data System (ADS)

    Soto, Emmaris; de Mello, Duilia F.; Rafelski, Marc; Gardner, Jonathan P.; Teplitz, Harry I.; Koekemoer, Anton M.; Ravindranath, Swara; Grogin, Norman A.; Scarlata, Claudia; Kurczynski, Peter; Gawiser, Eric

    2017-03-01

    We present an investigation of clumpy galaxies in the Hubble Ultra Deep Field at 0.5≤slant z≤slant 1.5 in the rest-frame far-ultraviolet (FUV) using Hubble Space Telescope Wide Field Camera 3 broadband imaging in F225W, F275W, and F336W. An analysis of 1404 galaxies yields 209 galaxies that host 403 kpc scale clumps. These host galaxies appear to be typical star-forming galaxies, with an average of 2 clumps per galaxy and reaching a maximum of 8 clumps. We measure the photometry of the clumps and determine the mass, age, and star formation rates (SFR) using the spectral energy distribution fitting code FAST. We find that clumps make an average contribution of 19% to the total rest-frame FUV flux of their host galaxy. Individually, clumps contribute a median of 5% to the host galaxy SFR and an average of ˜4% to the host galaxy mass, with total clump contributions to the host galaxy stellar mass ranging widely from lower than 1% up to 93%. Clumps in the outskirts of galaxies are typically younger, with higher SFRs, than clumps in the inner regions. The results are consistent with clump migration theories in which clumps form through violent gravitational instabilities in gas-rich turbulent disks, eventually migrate toward the center of the galaxies, and coalesce into the bulge.

  4. The Massive Stellar Population in the Diffuse Ionized Gas of M33

    NASA Technical Reports Server (NTRS)

    Hoopes, Charles G.; Walterbos, Rene A. M.

    1995-01-01

    We compare Far-UV, H alpha, and optical broadband images of the nearby spiral galaxy M33, to investigate the massive stars associated with the diffuse ionized gas. The H-alpha/FUV ratio is higher in HII regions than in the DIG, possibly indicating that an older population ionizes the DIG. The broad-band colors support this conclusion. The HII region population is consistent with a young burst, while the DIG colors resemble an older population with constant star formation. Our results indicate that there may be enough massive field stars to ionize the DIG, without the need for photon leakage from HII regions.

  5. NRA: First Multiwavelength, Multiple Layer Doppler Imaging of an Active Binary

    NASA Technical Reports Server (NTRS)

    Dempsey, Robert C.

    1998-01-01

    In this final report, grantee reports on data obtained from 26 orbits of continuous observing time with the Hubble Space Telescope's Goddard High Resolution Spectrograph in order to produce a comprehensive 2-D image of the RSCVn V824 Ara at MgII, CIV and for the first time ever, the coronal diagnostic line of FeXXI 1356A.

  6. DMD-based programmable wide field spectrograph for Earth observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2015-03-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return could be optimized in future missions using MOEMS devices. In Earth Observation, we propose an innovative reconfigurable instrument, a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array (MMA). For a linear 1D field of view (FOV), the principle is to use a MMA to select the wavelengths by acting on intensity. This component is placed in the focal plane of a first grating. On the MMA surface, the spatial dimension is along one side of the device and for each spatial point, its spectrum is displayed along the perpendicular direction: each spatial and spectral feature of the 1D FOV is then fully adjustable dynamically and/or programmable. A second stage with an identical grating recomposes the beam after wavelengths selection, leading to an output tailored 1D image. A mock-up has been designed, fabricated and tested. The micromirror array is the largest DMD in 2048 x 1080 mirrors format, with a pitch of 13.68μm. A synthetic linear FOV is generated and typical images have been recorded o at the output focal plane of the instrument. By tailoring the DMD, we could modify successfully each pixel of the input image: for example, it is possible to remove bright objects or, for each spatial pixel, modify the spectral signature. The very promising results obtained on the mock-up of the programmable wide-field spectrograph reveal the efficiency of this new instrument concept for Earth Observation.

  7. STS-82 Discovery payloads being integrated in VPF

    NASA Image and Video Library

    1997-01-30

    KENNEDY SPACE CENTER, FLORIDA STS-82 PREPARATIONS VIEW --- Payload processing workers in the Kennedy Space Center (KSC) Vertical Processing Facility (VPF) prepare to integrate the Space Telescope Imaging Spectrograph (STIS), suspended at center, into the Orbiter Replacement Unit (ORU) Carrier and Scientific Instrument Protective Enclosure (SIPE). STIS will replace the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope (HST). Four of the seven STS-82 crew members will perform a series of spacewalks to replace two scientific instruments with two new instruments, including STIS, and perform other tasks during the second HST servicing mission. HST was deployed nearly seven years ago and was initially serviced in 1993.

  8. Realistic Simulations of Coronagraphic Observations with WFIRST

    NASA Astrophysics Data System (ADS)

    Rizzo, Maxime; Zimmerman, Neil; Roberge, Aki; Lincowski, Andrew; Arney, Giada; Stark, Chris; Jansen, Tiffany; Turnbull, Margaret; WFIRST Science Investigation Team (Turnbull)

    2018-01-01

    We present a framework to simulate observing scenarios with the WFIRST Coronagraphic Instrument (CGI). The Coronagraph and Rapid Imaging Spectrograph in Python (crispy) is an open-source package that can be used to create CGI data products for analysis and development of post-processing routines. The software convolves time-varying coronagraphic PSFs with realistic astrophysical scenes which contain a planetary architecture, a consistent dust structure, and a background field composed of stars and galaxies. The focal plane can be read out by a WFIRST electron-multiplying CCD model directly, or passed through a WFIRST integral field spectrograph model first. Several elementary post-processing routines are provided as part of the package.

  9. Spectroscopy and CCD-photography of extended red emission in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Witt, A. N.; Schild, R. E.

    1986-01-01

    Recent spectrographic studies of extended red emission (ERE) seen in the 0.6 to 0.9 micron spectral region in many reflection nebulae have shown fluorescence by amorphous hydrogenated carbon to be the most probable cause of the ERE. Spectrographic observations were performed on the nebulae NGC 2023 and NGC 7023, using the intensified Reticon scanner (IRS) of Kitt Peak National Observatory on the N0-2 0.9 mm telescope. Charge coupled device (CCD) images of NGC2023 and NGC 7023 were obtained with the CfA CCD detector on the 0.6 mm telescope of the Whipple Observatory. Results are discussed.

  10. Current and Future Capabilities of the 74-inch Telescope of Kottamia Astronomical Observatory in Egypt

    NASA Astrophysics Data System (ADS)

    Azzam, Y. A.; Ali, G. B.; Ismail, H. A.; Haroon, A.; Selim, I.

    In this paper, we are going to introduce the Kottamia Astronomical Observatory, KAO, to the astronomical community. The current status of the telescope together with the available instrumentations is described. An upgrade stage including a new optical system and a computer controlling of both the telescope and dome are achieved. The specifications of a set of CCD cameras for direct imaging and spectroscopy are given. A grating spectrograph is recently gifted to KAO from Okayama Astrophysical Observatory, OAO, of the National Astronomical Observatories in Japan. This spectrograph is successfully tested and installed at the F/18 Cassegrain focus of the KAO 74" telescope.

  11. Advances in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; Armandroff, Taft; Lewis, Hilton; Martin, Chris; McLean, Ian S.; Rockosi, Constance; Wizinowich, Peter

    2010-07-01

    In this paper we describe both recently completed instrumentation projects and our current development efforts in the context of the Observatory's science driven strategic plan which seeks to address key questions in observational astronomy for extra-galactic, Galactic, and planetary science with both seeing limited capabilities and high angular resolution adaptive optics capabilities. This paper will review recently completed projects as well as new instruments in development including MOSFIRE, a near IR multi-object spectrograph nearing completion, a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, and the Keck Next Generation Adaptive Optics facility and its first light science instrument DAVINCI.

  12. The opto-mechanical design of the GMT-Consortium Large Earth Finder (G-CLEF)

    NASA Astrophysics Data System (ADS)

    Mueller, Mark; Szentgyorgyi, Andrew; Baldwin, Daniel; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, J.; Chun, Moo-Yung; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Glenday, Alex; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andreas; Kim, Jihun; Kim, Kang-Min; Mendes de Oliveira, Claudia; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Oh, Jae Sok; Onyuksel, Cem; Ordway, Mark; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam

    2016-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is a fiber-fed, optical echelle spectrograph selected as the first light instrument for the Giant Magellan Telescope (GMT) now under construction at the Las Campanas Observatory in Chile. G-CLEF has been designed to be a general-purpose echelle spectrograph with precision radial velocity (PRV) capability for exoplanet detection. The radial velocity (RV) precision goal of G-CLEF is 10 cm/sec, necessary for detection of Earth-sized exoplanets. This goal imposes challenging stability requirements on the optical mounts and the overall spectrograph support structures especially when considering the instrument's operational environment. The accuracy of G-CLEF's PRV measurements will be influenced by minute changes in temperature and ambient air pressure as well as vibrations and micro gravity-vector variations caused by normal telescope slewing. For these reasons we have chosen to enclose G-CLEF's spectrograph in a well-insulated, vibration isolated vacuum chamber in a gravity invariant location on GMT's azimuth platform. Additional design constraints posed by the GMT telescope include: a limited space envelope, a thermal emission ceiling, and a maximum weight allowance. Other factors, such as manufacturability, serviceability, available technology and budget are also significant design drivers. All of the above considerations must be managed while ensuring performance requirements are achieved. In this paper, we discuss the design of G-CLEF's optical mounts and support structures including the choice of a low coefficient of thermal expansion (CTE) carbon-fiber optical bench to minimize the system's sensitivity to thermal soaks and gradients. We discuss design choices made to the vacuum chamber geared towards minimize the influence of daily ambient pressure variations on image motion during observation. We discuss the design of G-CLEF's insulated enclosure and thermal control systems which will maintain the spectrograph at milli-Kelvin level stability while simultaneously limiting thermal emissions into the telescope dome. Also discussed are micro gravity-vector variations caused by normal telescope slewing, their uncorrected influence on image motion, and how they are dealt with in the design. Finally, we discuss G-CLEF's front-end assembly and fiber-feed system as well as other interface challenges presented by the telescope, enclosure and neighboring instrumentation.

  13. The GALEX Ultraviolet Virgo Cluster Survey (GUViCS). VII. Brightest cluster galaxy UV upturn and the FUV-NUV color up to redshift 0.35

    NASA Astrophysics Data System (ADS)

    Boissier, S.; Cucciati, O.; Boselli, A.; Mei, S.; Ferrarese, L.

    2018-03-01

    Context. At low redshift, early-type galaxies often exhibit a rising flux with decreasing wavelength in the 1000-2500 Å range, called "UV upturn". The origin of this phenomenon is debated, and its evolution with redshift is poorly constrained. The observed GALEX FUV-NUV color can be used to probe the UV upturn approximately to redshift 0.5. Aim. We provide constraints on the existence of the UV upturn up to redshift 0.4 in the brightest cluster galaxies (BCG) located behind the Virgo cluster, using data from the GUViCS survey. Methods: We estimate the GALEX far-UV (FUV) and near-UV (NUV) observed magnitudes for BCGs from the maxBCG catalog in the GUViCS fields. We increase the number of nonlocal galaxies identified as BCGs with GALEX photometry from a few tens of galaxies to 166 (64 when restricting this sample to relatively small error bars). We also estimate a central color within a 20 arcsec aperture. By using the r-band luminosity from the maxBCG catalog, we can separate blue FUV-NUV due to recent star formation and candidate upturn cases. We use Lick indices to verify their similarity to redshift 0 upturn cases. Results: We clearly detect a population of blue FUV-NUV BCGs in the redshift range 0.10-0.35, vastly improving the existing constraints at these epochs by increasing the number of galaxies studied, and by exploring a redshift range with no previous data (beyond 0.2), spanning one more Gyr in the past. These galaxies bring new constraints that can help distinguish between assumptions concerning the stellar populations causing the UV upturn phenomenon. The existence of a large number of UV upturns around redshift 0.25 favors the existence of a binary channel among the sources proposed in the literature. Tables 2-5 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A42

  14. The Effects of FUV Radiation on C-Shocks: Implications for Water and Other O-bearing Species

    NASA Astrophysics Data System (ADS)

    Kaufman, Michael; Melick, Gary; Tolls, Volker

    2015-08-01

    Protostellar outflows have long been known to drive endothermic reactions that produce high abundances of oxygen-bearing species. Models of shocks in well-shielded gas made the strong prediction that essentially all of the pre-shock oxygen gets driven into water, so that the post-shock water abundances are order 10-4. Herschel observations, however, including those from the key program “Water in Star Forming Regions with Herschel (WISH)” show that for most sources, the shocked gas water abundances of are far lower, 10-7 - 10-5.This pattern of lower-than-predicted water abundance has led us to consider that our C-shock model (Kaufman & Neufeld 1996) is incomplete. In particular, we did not previously take into account that many outflow sources have higher than average far-ultraviolet radiation fields within their outflow cavities. Strong FUV radiation has important effects on the structure of C-shocks: the ionization fraction is larger than in well-shielded gas, decreasing the coupling length between neutrals and ions, and leading to higher temperatures and a lower breakdown speeds; the pre-shock gas composition, including the presence of ice mantles and the dominant charge carriers, is strongly affected; and abundant species such as water are diminished by photodissociation in the cooled down stream gas.In addition to the normal parameters of density, shock velocity, and magnetic field strength, we now include the external FUV field strength and the extinction between the FUV source and the shock. We use the results of a detailed PDR model to compute pre-shock chemical conditions, including the ionization fraction, the increase of which decreases the maximum velocities of C- shocks. FUV also keeps oxygen in the gas phase, making more available for H2O formarion ; however, photodissociation beyond the temperature peak keeps the average H2O abundance down. We present comparisons of our model results with the inferred water abundances and with observations of H2O, CO, O and OH lines from the Herschel archive.

  15. HiRISE/NEOCE: an ESA M5 formation flying proposed mission combining high resolution and coronagraphy for ultimate observations of the chromosphere, corona and interface

    NASA Astrophysics Data System (ADS)

    Damé, Luc; Von Fay-Siebenburgen Erdélyi, Robert

    2016-07-01

    The global understanding of the solar environment through the magnetic field emergence and dissipation, and its influence on Earth, is at the centre of the four major thematics addressed by HiRISE/NEOCE (High Resolution Imaging and Spectroscopy Explorer/New Externally Occulted Coronagraph Experiment). They are interlinked and also complementary: the internal structure of the Sun determines the surface activity and dynamics that trigger magnetic field structuring which evolution, variation and dissipation will, in turn, explain the coronal heating onset and the major energy releases that feed the influence of the Sun on Earth. The 4 major themes of HiRISE/NEOCE are: - fine structure of the chromosphere-corona interface by 2D spectroscopy in FUV at very high resolution; - coronal heating roots in inner corona by ultimate externally-occulted coronagraphy; - resolved and global helioseismology thanks to continuity and stability of observing at L1 Lagrange point; - solar variability and space climate with a global comprehensive view of UV variability as well. Recent missions have shown the definite role of waves and of the magnetic field deep in the inner corona, at the chromosphere-corona interface, where dramatic changes occur. The dynamics of the chromosphere and corona is controlled by the emerging magnetic field, guided by the coronal magnetic field. Accordingly, the direct measurement of the chromospheric and coronal magnetic fields is of prime importance. This is implemented in HiRISE/NEOCE, to be proposed for ESA M5 ideally placed at the L1 Lagrangian point, providing FUV imaging and spectro-imaging, EUV and XUV imaging and spectroscopy, and ultimate coronagraphy by a remote external occulter (two satellites in formation flying 375 m apart minimizing scattered light) allowing to characterize temperature, densities and velocities up to the solar upper chromosphere, transition zone and inner corona with, in particular, 2D very high resolution multi-spectral imaging-spectroscopy and direct coronal magnetic field measurement: a unique set of tools to understand the structuration and onset of coronal heating. We give a detailed account of the major scientific objectives, and present the ESA M5 proposed mission profile and model payload (in particular of the SuperASPIICS package of visible, NIR and UV, Lyman-Alpha and OVI, coronagraphs).

  16. The Density-wave Theory and Spiral Structures by Looking at Spiral Arms through a Multi-wavelength StudyHamed Pour-Imani1,2, Daniel Kennefick1,2, Julia Kennefick1,2, Mohamed Shameer Abdeen1,2, Eric Monson1,2, Douglas W. Shields1,2, B. L. Davis31Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA2Arkansas Center for Space & Planetary Sciences, Univ. of Arkans

    NASA Astrophysics Data System (ADS)

    Pour-Imani, Hamed; Kennefick, Daniel; Kennefick, Julia; Shameer Abdeen, Mohammad; Monson, Erick; Shields, Douglas William; Davis, Benjamin L.

    2018-01-01

    The density-wave theory of spiral structure, though first proposed as long ago as the mid-1960s by C.C. Lin and F. Shu, continues to be challenged by rival theories, such as the manifold theory. One test between these theories which has been proposed is that the pitch angle of spiral arms for galaxies should vary with the wavelength of the image in the density-wave theory, but not in the manifold theory. The reason is that stars are born in the density wave but move out of it as they age. In this study, we combined large sample size with a wide range of wavelengths to investigate this issue. For each galaxy, we used wavelength FUV151nm, U-band, H-alpha, optical wavelength B-band and infrared 3.6 and 8.0μm. We measured the pitch angle with the 2DFFT and Spirality codes (Davis et al. 2012; Shields et al. 2015). We find that the B-band and 3.6μm images have smaller pitch angles than the infrared 8.0μm image in all cases, in agreement with the prediction of the density-wave theory. We also find that the pitch angle at FUV and H-alpha are close to the measurements made at 8.0μm. The Far-ultraviolet wavelength at 151nm shows very young, very bright UV stars still in the star-forming region (they are so bright as to be visible there and so short-lived that they never move out of it). We find that for both sets of measurements (2dFFT and Spirality) the 8.0μm, H-alpha and ultraviolet images agree in their pitch angle measurements, suggesting that they are, in fact, sensitive to the same region. By contrast, the 3.6μm and B-band images are uniformly tighter in pitch angle measurements than these wavelengths, suggesting that the density-wave picture is correct.

  17. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics.

    PubMed

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; Shvyd'ko, Yuri

    2016-12-01

    We report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-μm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ≃8 keV X-rays. All of the components of the bending mechanism (about 10 parts) are manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.

  18. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics

    DOE PAGES

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; ...

    2016-12-29

    Here, we report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-µm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ' 8 keV X-rays. All of the components of the bending mechanism (about 10 parts) aremore » manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons, and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.« less

  19. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz

    Here, we report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-µm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ' 8 keV X-rays. All of the components of the bending mechanism (about 10 parts) aremore » manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons, and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.« less

  20. Gemini Near Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy MRK 573: In Situ Acceleration of Ionized and Molecular Gas Off Fueling Flows

    NASA Technical Reports Server (NTRS)

    Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.; hide

    2016-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in approximately 700 x 2100 pc(exp 2) circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  1. The comparative effect of FUV, EUV and X-ray disc photoevaporation on gas giant separations

    NASA Astrophysics Data System (ADS)

    Jennings, Jeff; Ercolano, Barbara; Rosotti, Giovanni P.

    2018-04-01

    Gas giants' early (≲ 5 Myr) orbital evolution occurs in a disc losing mass in part to photoevaporation driven by high energy irradiance from the host star. This process may ultimately overcome viscous accretion to disperse the disc and halt migrating giants by starving their orbits of gas, imprinting on giant planet separations in evolved systems. Inversion of this distribution could then give insight into whether stellar FUV, EUV or X-ray flux dominates photoevaporation, constraining planet formation and disc evolution models. We use a 1D hydrodynamic code in population syntheses for gas giants undergoing Type II migration in a viscously evolving disc subject to either a primarily FUV, EUV or X-ray flux from a pre-solar T Tauri star. The photoevaporative mass loss profile's unique peak location and width in each energetic regime produces characteristic features in the distribution of giant separations: a severe dearth of ≲ 2 MJ planets interior to 5 AU in the FUV scenario, a sharp concentration of ≲ 3 MJ planets between ≈1.5 - 2 AU in the EUV case, and a relative abundance of ≈2 - 3.5 MJ giants interior to 0.5 AU in the X-ray model. These features do not resemble the observational sample of gas giants with mass constraints, though our results do show some weaker qualitative similarities. We thus assess how the differing photoevaporative profiles interact with migrating giants and address the effects of large model uncertainties as a step to better connect disc models with trends in the exoplanet population.

  2. The comparative effect of FUV, EUV and X-ray disc photoevaporation on gas giant separations

    NASA Astrophysics Data System (ADS)

    Jennings, Jeff; Ercolano, Barbara; Rosotti, Giovanni P.

    2018-07-01

    Gas giants' early (≲5 Myr) orbital evolution occurs in a disc losing mass in part to photoevaporation driven by high energy irradiance from the host star. This process may ultimately overcome viscous accretion to disperse the disc and halt migrating giants by starving their orbits of gas, imprinting on giant planet separations in evolved systems. Inversion of this distribution could then give insight into whether the stellar FUV, EUV or X-ray flux dominates photoevaporation, constraining planet formation and disc evolution models. We use a 1D hydrodynamic code in population syntheses for gas giants undergoing Type II migration in a viscously evolving disc subject to either a primarily FUV, EUV or X-ray flux from a pre-solar T Tauri star. The photoevaporative mass loss profile's unique peak location and width in each energetic regime produces characteristic features in the distribution of giant separations: a severe dearth of ≲2 MJ planets interior to 5 au in the FUV scenario, a sharp concentration of ≲3 MJ planets between ≈1.5-2 au in the EUV case and a relative abundance of ≈2-3.5 MJ giants interior to 0.5 au in the X-ray model. These features do not resemble the observational sample of gas giants with mass constraints, although our results do show some weaker qualitative similarities. We thus assess how the differing photoevaporative profiles interact with migrating giants and address the effects of large model uncertainties as a step to better connect disc models with trends in the exoplanet population.

  3. FAR-ULTRAVIOLET OBSERVATIONS OF THE SPICA NEBULA AND THE INTERACTION ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yeon-Ju; Min, Kyoung-Wook; Lim, Tae-Ho

    2013-09-01

    We report the analysis results of far-ultraviolet (FUV) observations, made for a broad region around {alpha} Vir (Spica) including the interaction zone of Loop I and the Local Bubble. The whole region was optically thin and a general correlation was seen between the FUV continuum intensity and the dust extinction, except in the neighborhood of the bright central star, indicating the dust scattering nature of the FUV continuum. We performed Monte Carlo radiative transfer simulations to obtain the optical parameters related to the dust scattering as well as to the geometrical structure of the region. The albedo and asymmetry factormore » were found to be 0.38 {+-} 0.06 and 0.46 {+-} 0.06, respectively, in good agreement with the Milky Way dust grain models. The distance to and the thickness of the interaction zone were estimated to be 70{sup +4}{sub -8} pc and 40{sup +8}{sub -10} pc, respectively. The diffuse FUV continuum in the northern region above Spica was mostly the result of scattering of the starlight from Spica, while that in the southern region was mainly due to the background stars. The C IV {lambda}{lambda}1548, 1551 emission was found throughout the whole region, in contrast to the Si II* {lambda}1532 emission which was bright only within the H II region. This indicates that the C IV line arises mostly at the shell boundaries of the bubbles, with a larger portion likely from the Loop I than from the Local Bubble side, whereas the Si II* line is from the photoionized Spica Nebula.« less

  4. The Wavelength Dependence of the Lunar Phase Curve as Seen by the LRO LAMP

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Retherford, K. D.; Greathouse, T. K.; Hendrix, A. R.; Mandt, K.; Gladstone, R.; Cahill, J. T.; Egan, A.; Kaufmann, D. E.; Grava, C.; Pryor, W. R.

    2016-12-01

    The Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) provides global coverage of both nightside and dayside of the Moon in the far ultraviolet (FUV) wavelengths. The nightside observations use roughly uniform diffuse illumination sources from interplanetary medium Lyman-α sky glow and UV-bright stars so that traditional photometric corrections do not apply. In contrast, the dayside observations use sunlight as its illumination source where bidirectional reflectance is measured. The bidirectional reflectance is dependent on the incident, emission, and phase angles as well as the soil properties. Thus the comparisons of dayside mapping and nightside mapping techniques offer a method for cross-comparing the photometric correction factors because the observations are made under different lighting and viewing conditions. Specifically, the nightside data well constrain the single-scattering coefficient. We'll discuss the wavelength dependence of the lunar phase curve as seen by the LAMP instrument in dayside data. Our preliminary results indicate that the reflectance in the FUV wavelengths decreases with the increasing phase angles from 0° to 90°, similar to the phase curve in the UV-visible wavelengths as studied by Hapke et al. (2012) using LRO wide angle camera (WAC) data, among other visible-wavelength lunar studies. Particularly, we'll report how coherent backscattering and shadow hiding contribute to the opposition surge, given the fact that the albedo at FUV wavelengths is extremely low and thus multiple scattering is significantly less important. Finally, we'll report the derived Hapke parameters at FUV wavelengths for our study areas.

  5. FUV Emission from AGB Stars: Modeling Accretion Activity Associated with a Binary Companion

    NASA Technical Reports Server (NTRS)

    Stevens, Alyx Catherine; Sahai, Raghvendra

    2012-01-01

    It is widely believed that the late stages of evolution for Asymptotic Giant Branch (AGB) stars are influenced by the presence of binary companions. Unfortunately, there is a lack of direct observational evidence of binarity. However, more recently, strong indirect evidence comes from the discovery of UV emission in a subsample of these objects (fuvAGB stars). AGB stars are comparatively cool objects (< or =3000 K), thus their fluxes falls off drastically for wavelengths 3000 Angstroms and shorter. Therefore, ultraviolet observations offer an important, new technique for detecting the binary companions and/or associated accretion activity. We develop new models of UV emission from fuvAGB stars constrained by GALEX photometry and spectroscopy of these objects. We compare the GALEX UV grism spectra of the AGB M7 star EY Hya to predictions using the spectral synthesis code Cloudy, specifically investigating the ultraviolet wavelength range (1344-2831 Angstroms). We investigate models composed of contributions from a photoionized "hot spot" due to accretion activity around the companion, and "chromospheric" emission from collisionally ionized plasma, to fit the UV observations.

  6. The ultraviolet radiation environment in the habitable zones around low-mass exoplanet host stars

    NASA Astrophysics Data System (ADS)

    France, Kevin; Linsky, Jeffrey L.; Loyd, R. O. Parke

    2014-11-01

    The EUV (200-911 Å), FUV (912-1750 Å), and NUV (1750-3200 Å) spectral energy distribution of exoplanet host stars has a profound influence on the atmospheres of Earth-like planets in the habitable zone. The stellar EUV radiation drives atmospheric heating, while the FUV (in particular, Ly α) and NUV radiation fields regulate the atmospheric chemistry: the dissociation of H2O and CO2, the production of O2 and O3, and may determine the ultimate habitability of these worlds. Despite the importance of this information for atmospheric modeling of exoplanetary systems, the EUV/FUV/NUV radiation fields of cool (K and M dwarf) exoplanet host stars are almost completely unconstrained by observation or theory. We present observational results from a Hubble Space Telescope survey of M dwarf exoplanet host stars, highlighting the importance of realistic UV radiation fields for the formation of potential biomarker molecules, O2 and O3. We conclude by describing preliminary results on the characterization of the UV time variability of these sources.

  7. Probing the infrared counterparts of diffuse far-ultraviolet sources in the Galaxy

    NASA Astrophysics Data System (ADS)

    Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti; Pathak, Amit

    2017-12-01

    Recent availability of high quality infrared (IR) data for diffuse regions in the Galaxy and external galaxies have added to our understanding of interstellar dust. A comparison of ultraviolet (UV) and IR observations may be used to estimate absorption, scattering and thermal emission from interstellar dust. In this paper, we report IR and UV observations for selective diffuse sources in the Galaxy. Using archival mid-infrared (MIR) and far-infrared (FIR) observations from Spitzer Space Telescope, we look for counterparts of diffuse far-ultraviolet (FUV) sources observed by the Voyager, Far Ultraviolet Spectroscopic Explorer (FUSE) and Galaxy Evolution Explorer (GALEX) telescopes in the Galaxy. IR emission features at 8 μm are generally attributed to Polycyclic Aromatic Hydrocarbon (PAH) molecules, while emission at 24 μm are attributed to Very Small Grains (VSGs). The data presented here is unique and our study tries to establish a relation between various dust populations. By studying the FUV-IR correlations separately at low and high latitude locations, we have identified the grain component responsible for the diffuse FUV emission.

  8. The Loopy Ultraviolet Line Profiles of RU Lupi: Accretion, Outflows, and Fluorescence

    NASA Astrophysics Data System (ADS)

    Herczeg, Gregory J.; Walter, Frederick M.; Linsky, Jeffrey L.; Gahm, Gösta F.; Ardila, David R.; Brown, Alexander; Johns-Krull, Christopher M.; Simon, Michal; Valenti, Jeff A.

    2005-06-01

    We present far-ultraviolet (FUV) spectra of the classical T Tauri star RU Lup covering the 912-1710 Å spectral range, as observed by the Hubble Space Telescope STIS and the Far Ultraviolet Spectroscopic Explorer satellite. We use these spectra, which are rich in emission and absorption lines, to probe both the accreting and outflowing gas. Absorption in the Lyα profile constrains the extinction to AV~0.07 mag, which we confirm with other diagnostics. We estimate a mass accretion rate of (5+/-2)×10-8 Msolar yr-1 using the optical-NUV accretion continuum. The accreting gas is also detected in bright, broad lines of C IV, Si IV, and N V, which all show complex structures across the line profile. Many other emission lines, including those of H2 and Fe II, are pumped by Lyα. RU Lup's spectrum varies significantly in the FUV; our STIS observations occurred when RU Lup was brighter than several other observations in the FUV, possibly because of a high mass accretion rate.

  9. Planning JWST NIRSpec MSA spectroscopy using NIRCam pre-images

    NASA Astrophysics Data System (ADS)

    Beck, Tracy L.; Ubeda, Leonardo; Kassin, Susan A.; Gilbert, Karoline; Karakla, Diane M.; Reid, I. N.; Blair, William P.; Keyes, Charles D.; Soderblom, D. R.; Peña-Guerrero, Maria A.

    2016-07-01

    The Near-Infrared Spectrograph (NIRSpec) is the work-horse spectrograph at 1-5microns for the James Webb Space Telescope (JWST). A showcase observing mode of NIRSpec is the multi-object spectroscopy with the Micro-Shutter Arrays (MSAs), which consist of a quarter million tiny configurable shutters that are 0. ''20×0. ''46 in size. The NIRSpec MSA shutters can be opened in adjacent rows to create flexible and positionable spectroscopy slits on prime science targets of interest. Because of the very small shutter width, the NIRSpec MSA spectral data quality will benefit significantly from accurate astrometric knowledge of the positions of planned science sources. Images acquired with the Hubble Space Telescope (HST) have the optimal relative astrometric accuracy for planning NIRSpec observations of 5-10 milli-arcseconds (mas). However, some science fields of interest might have no HST images, galactic fields can have moderate proper motions at the 5mas level or greater, and extragalactic images with HST may have inadequate source information at NIRSpec wavelengths beyond 2 microns. Thus, optimal NIRSpec spectroscopy planning may require pre-imaging observations with the Near-Infrared Camera (NIRCam) on JWST to accurately establish source positions for alignment with the NIRSpec MSAs. We describe operational philosophies and programmatic considerations for acquiring JWST NIRCam pre-image observations for NIRSpec MSA spectroscopic planning within the same JWST observing Cycle.

  10. Narrow-band EUV Multilayer Coating for the MOSES Sounding Rocket

    NASA Technical Reports Server (NTRS)

    Owens, Scott M.; Gum, Jeffery S.; Tarrio, Charles; Dvorak, Joseph; Kjornrattanawanich, Benjawan; Keski-Kuha, Ritva; Thomas, Roger J.; Kankelborg, Charles C.

    2005-01-01

    The Multi-order Solar EUV Spectrograph (MOSES) is a slitless spectrograph designed to study solar He II emission at 303.8 Angstroms, to be launched on a sounding rocket payload. One difference between MOSES and other slitless spectrographs is that the images are recorded simultaneously at three spectral orders, m = -1,0, +l. Another is the addition of a narrow-band multilayer coating on both the grating and the fold flat, which will reject out-of-band lines that normally contaminate the image of a slitless instrument. The primary metrics f a the mating were high peak reflectivity and suppression of Fe XV and XVI emission lines at 284 Angstroms and 335 Angstroms, respectively. We chose B4C/Mg2Si for our material combination since it provides better values for all three metrics together than the other leading candidates Si/Ir, Si/B4C or Si/SiC. Measurements of witness flats at NIST indicate the peak reflectivity at 303.6 is 38.5% for a 15 bilayer stack, while the suppression at 284 Angstroms, is 4.5x and at 335 Angstroms is 18.3x for each of two reflections in the instrument. We present the results of coating the MOSES flight gratings and fold flat, including the spectral response of the fold flat and grating as measured at NIST's SURF III and Brookhaven's X24C beamline.

  11. Measurements of Lyman-Alpha Escape From HST Far-UV Spectral SNAP Survey of 33 Starforming Galaxies: Initial Results

    NASA Astrophysics Data System (ADS)

    Redwine, Keith

    2018-01-01

    This thesis will describe and analyze far-UV spectra from nearby starforming galaxies to investigate how line features like the hydrogen Lyman-alpha (Lyα) line at 1216 Å are related to the local properties of the host galaxy. It has been suggested that Lyα can be used as a proxy for the escape of Lyman continuum (LyC) radiation, the escape of of which from bright regions of galaxies is of particular interest. Most notably, the reionization epoch of neutral atomic hydrogen in the universe over a redshift range from z∼6 to z∼12, was highly dependent on the flux of ionizing LyC photons in the interstellar and intergalactic media. Expanding our understanding of the dynamics of the Lyα escape fraction (fLyα) from the local environment of its emission could be key to determining a total LyC escape fraction (fLyC) across all morphologies of galaxies. The wide range of Lyα emitters and absorbors (occasionally both) of this Cycle 22 SNAP survey observed by the Cosmic Origins Spectrograph (COS) onboard Hubble Space Telescope (HST) provides a unique look at far-UV spectra in candidate LyC emitters. Lyα profiles are easily observable in short exposures, and line features discernable in the low-resolution G140L mode can inform and guide future observations by COS or other FUV spectroscopy.

  12. Prime Focus Spectrograph for the Subaru telescope: massively multiplexed optical and near-infrared fiber spectrograph

    NASA Astrophysics Data System (ADS)

    Sugai, Hajime; Tamura, Naoyuki; Karoji, Hiroshi; Shimono, Atsushi; Takato, Naruhisa; Kimura, Masahiko; Ohyama, Youichi; Ueda, Akitoshi; Aghazarian, Hrand; de Arruda, Marcio Vital; Barkhouser, Robert H.; Bennett, Charles L.; Bickerton, Steve; Bozier, Alexandre; Braun, David F.; Bui, Khanh; Capocasale, Christopher M.; Carr, Michael A.; Castilho, Bruno; Chang, Yin-Chang; Chen, Hsin-Yo; Chou, Richard C. Y.; Dawson, Olivia R.; Dekany, Richard G.; Ek, Eric M.; Ellis, Richard S.; English, Robin J.; Ferrand, Didier; Ferreira, Décio; Fisher, Charles D.; Golebiowski, Mirek; Gunn, James E.; Hart, Murdock; Heckman, Timothy M.; Ho, Paul T. P.; Hope, Stephen; Hovland, Larry E.; Hsu, Shu-Fu; Hu, Yen-Shan; Huang, Pin Jie; Jaquet, Marc; Karr, Jennifer E.; Kempenaar, Jason G.; King, Matthew E.; le Fèvre, Olivier; Mignant, David Le; Ling, Hung-Hsu; Loomis, Craig; Lupton, Robert H.; Madec, Fabrice; Mao, Peter; Souza Marrara, Lucas; Ménard, Brice; Morantz, Chaz; Murayama, Hitoshi; Murray, Graham J.; Cesar de Oliveira, Antonio; Mendes de Oliveira, Claudia; Souza de Oliveira, Ligia; Orndorff, Joe D.; de Paiva Vilaça, Rodrigo; Partos, Eamon J.; Pascal, Sandrine; Pegot-Ogier, Thomas; Reiley, Daniel J.; Riddle, Reed; Santos, Leandro; dos Santos, Jesulino Bispo; Schwochert, Mark A.; Seiffert, Michael D.; Smee, Stephen A.; Smith, Roger M.; Steinkraus, Ronald E.; Sodré, Laerte; Spergel, David N.; Surace, Christian; Tresse, Laurence; Vidal, Clément; Vives, Sebastien; Wang, Shiang-Yu; Wen, Chih-Yi; Wu, Amy C.; Wyse, Rosie; Yan, Chi-Hung

    2015-07-01

    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multifiber spectrograph with 2394 science fibers distributed across a 1.3-deg diameter field of view at the Subaru 8.2-m telescope. The wide wavelength coverage from 0.38 μm to 1.26 μm, with a resolving power of 3000, simultaneously strengthens its ability to target three main survey programs: cosmology, galactic archaeology and galaxy/AGN evolution. A medium resolution mode with a resolving power of 5000 for 0.71 μm to 0.89 μm will also be available by simply exchanging dispersers. We highlight some of the technological aspects of the design. To transform the telescope focal ratio, a broad-band coated microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of the cable system, optimizing overall throughput; a fiber with low focal ratio degradation is selected for the fiber-positioner and fiber-slit components, minimizing the effects of fiber movements and fiber bending. Fiber positioning will be performed by a positioner consisting of two stages of piezo-electric rotary motors. The positions of these motors are measured by taking an image of artificially back-illuminated fibers with the metrology camera located in the Cassegrain container; the fibers are placed in the proper location by iteratively measuring and then adjusting the positions of the motors. Target light reaches one of the four identical fast-Schmidt spectrograph modules, each with three arms. The PFS project has passed several project-wide design reviews and is now in the construction phase.

  13. The DMSP Space Weather Sensors Data Archive Listing (1982-2013) and File Formats Descriptions

    DTIC Science & Technology

    2014-08-01

    environment sensors including the auroral particle spectrometer (SSJ), the fluxgate magnetometer (SSM), the topside thermal plasma monitor (SSIES... Fluxgate Magnetometer (SSM) for the Defense Meteorological Satellite Program (DMSP) Block 5D-2, Flight 7, Instrument Papers, AFGL-TR-84-0225; ADA155229...Flux) SSM The fluxgate magnetometer . (Special Sensor, Magnetometer ) SSULI The ultraviolet limb imager SSUSI The ultraviolet spectrographic imager

  14. An image-tube camera for cometary spectrography

    NASA Astrophysics Data System (ADS)

    Mamadov, O.

    The paper discusses the mounting of an image tube camera. The cathode is of antimony, sodium, potassium, and cesium. The parts used for mounting are of acrylic plastic and a fabric-based laminate. A mounting design that does not include cooling is presented. The aperture ratio of the camera is 1:27. Also discussed is the way that the camera is joined to the spectrograph.

  15. Chromospheric and Coronal Structure of Polar Plumes. 1; Magnetic Structure and Radiative Energy Balance

    NASA Technical Reports Server (NTRS)

    Allen, Maxwell J.; Oluseyi, Hakeem M.; Walker, Arthur B. C.; Hoover, Richard B.; Barbee, Troy W., Jr.

    1997-01-01

    The Multi-Spectral Solar Telescope Array (MSSTA), a rocket-borne solar observatory, was successfully launched from White Sands Missile Range, New Mexico, on May 13, 1991 at 19:05 UT. The telescope systems onboard the MSSTA obtained several full disk solar images in narrow bandpasses centered around strong soft X-ray, EUV, and FUV emission lines. Each telescope was designed to be sensitive to the coronal plasmas at a particular temperature, for seven temperatures ranging from 20,000 K to 4,000,000 K. We report here on the images obtained during the initial flight of the MSSTA, and on the chromospheric and coronal structure of polar plumes observed over both poles of the Sun. We have also co-aligned the MSSTA images with Kitt Peak magnetograms taken on the same day. We are able to positively identify the magnetic structures underlying the polar plumes we analyze as unipolar. We discuss the plume observations and present a radiative energy balance model derived from them.

  16. Design and fabrication of far ultraviolet filters based on π-multilayer technology in high-k materials

    PubMed Central

    Wang, Xiao-Dong; Chen, Bo; Wang, Hai-Feng; He, Fei; Zheng, Xin; He, Ling-Ping; Chen, Bin; Liu, Shi-Jie; Cui, Zhong-Xu; Yang, Xiao-Hu; Li, Yun-Peng

    2015-01-01

    Application of π-multilayer technology is extended to high extinction coefficient materials, which is introduced into metal-dielectric filter design. Metal materials often have high extinction coefficients in far ultraviolet (FUV) region, so optical thickness of metal materials should be smaller than that of the dielectric material. A broadband FUV filter of 9-layer non-periodic Al/MgF2 multilayer was successfully designed and fabricated and it shows high reflectance in 140–180 nm, suppressed reflectance in 120–137 nm and 181–220 nm. PMID:25687255

  17. Astro-1 ultraviolet imaging of the 30 Doradus and SN 1987A fields with the Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Cheng, Kwang-Ping; Michalitsianos, Andrew G.; Hintzen, Paul; Bohlin, Ralph C.; O'Connell, Robert W.; Cornett, Robert H.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1992-01-01

    A preliminary analysis of Ultraviolet Imaging Telescope (UIT) images in the 30 Doradus region is reported. Photometry was obtained for the 30 Doradus cluster and its UV-bright core, R136, in various UIT bandpasses. It is found that about 14 percent of the total FUV light and about 16 percent of the total near-UV light of the 3-arcmin diameter 30 Doradus cluster originates from the region within 5 arcsec of R136. The UV magnitudes and colors of R136 and other known O and Wolf-Rayet WN stars in the same field were measured. The UIT data, combined with published observations at longer wavelengths, indicate that R136a1, the brightest component of R136, is not a supermassive stars. A qualitative comparison between the UIT images, Einstein X-ray data, IRAS HiRes images, and ground-based CCD images in forbidden O III 5007 A, H-alpha, B, R, U, and Stromgren u is performed. The extended diffuse UV feature detected in the UIT images is correlated with the IR structure seen in the IRAS 60-micron HiRes image, which suggests the existence of large amounts of widely distributed dust in this region.

  18. Astro-1 ultraviolet imaging of the 30 Doradus and SN 1987A fields with the Ultraviolet Imaging Telescope

    NASA Astrophysics Data System (ADS)

    Cheng, Kwang-Ping; Michalitsianos, Andrew G.; Hintzen, Paul; Bohlin, Ralph C.; O'Connell, Robert W.; Cornett, Robert H.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1992-08-01

    A preliminary analysis of Ultraviolet Imaging Telescope (UIT) images in the 30 Doradus region is reported. Photometry was obtained for the 30 Doradus cluster and its UV-bright core, R136, in various UIT bandpasses. It is found that about 14 percent of the total FUV light and about 16 percent of the total near-UV light of the 3-arcmin diameter 30 Doradus cluster originates from the region within 5 arcsec of R136. The UV magnitudes and colors of R136 and other known O and Wolf-Rayet WN stars in the same field were measured. The UIT data, combined with published observations at longer wavelengths, indicate that R136a1, the brightest component of R136, is not a supermassive stars. A qualitative comparison between the UIT images, Einstein X-ray data, IRAS HiRes images, and ground-based CCD images in forbidden O III 5007 A, H-alpha, B, R, U, and Stromgren u is performed. The extended diffuse UV feature detected in the UIT images is correlated with the IR structure seen in the IRAS 60-micron HiRes image, which suggests the existence of large amounts of widely distributed dust in this region.

  19. Machine vision system for online inspection of freshly slaughtered chickens

    USDA-ARS?s Scientific Manuscript database

    A machine vision system was developed and evaluated for the automation of online inspection to differentiate freshly slaughtered wholesome chickens from systemically diseased chickens. The system consisted of an electron-multiplying charge-coupled-device camera used with an imaging spectrograph and ...

  20. DYNAMICS OF ON-DISK PLUMES AS OBSERVED WITH THE INTERFACE REGION IMAGING SPECTROGRAPH, THE ATMOSPHERIC IMAGING ASSEMBLY, AND THE HELIOSEISMIC AND MAGNETIC IMAGER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pant, Vaibhav; Mazumder, Rakesh; Banerjee, Dipankar

    2015-07-01

    We examine the role of small-scale transients in the formation and evolution of solar coronal plumes. We study the dynamics of plume footpoints seen in the vicinity of a coronal hole using the Atmospheric Imaging Assembly (AIA) images, the Helioseismic and Magnetic Imager magnetogram on board the Solar Dynamics Observatory and spectroscopic data from the Interface Region Imaging Spectrograph (IRIS). Quasi-periodic brightenings are observed in the base of the plumes and are associated with magnetic flux changes. With the high spectral and spatial resolution of IRIS, we identify the sources of these oscillations and try to understand what role themore » transients at the footpoints can play in sustaining the coronal plumes. IRIS “sit-and-stare” observations provide a unique opportunity to study the evolution of footpoints of the plumes. We notice enhanced line width and intensity, and large deviation from the average Doppler shift in the line profiles at specific instances, which indicate the presence of flows at the footpoints of plumes. We propose that outflows (jet-like features) as a result of small-scale reconnections affect the line profiles. These jet-like features may also be responsible for the generation of propagating disturbances (PDs) within the plumes, which are observed to be propagating to larger distances as recorded from multiple AIA channels. These PDs can be explained in terms of slow magnetoacoustic waves.« less

  1. INDIRECT EVIDENCE FOR ESCAPING IONIZING PHOTONS IN LOCAL LYMAN BREAK GALAXY ANALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandroff, Rachael M.; Heckman, Timothy M.; Borthakur, Sanchayeeta

    2015-09-10

    A population of early star-forming galaxies is the leading candidate for the re-ionization of the universe. It is still unclear, however, what conditions and physical processes would enable a significant fraction of the ionizing (Lyman continuum) photons to escape from these gas-rich galaxies. In this paper we present the results of the analysis of Hubble Space Telescope Cosmic Origins Spectrograph far-UV (FUV) spectroscopy plus ancillary multi-waveband data of a sample of 22 low-redshift galaxies that are good analogs to typical star-forming galaxies at high redshift. We measure three parameters that provide indirect evidence of the escape of ionizing radiation (leakiness):more » (1) the residual intensity in the cores of saturated interstellar low-ionization absorption lines, which indicates incomplete covering by that gas in the galaxy; (2) the relative amount of blueshifted Lyα line emission, which can indicate the existence of holes in the neutral hydrogen on the front-side of the galaxy outflow, and (3) the relative weakness of the [S ii] optical emission lines that trace matter-bounded H ii regions. We show that our residual intensity measures are only negligibly affected by infilling from resonance emission lines. We find all three diagnostics agree well with one another. We use these diagnostics to rank-order our sample in terms of likely leakiness, noting that a direct measure of escaping Lyman continuum has recently been made for one of the leakiest members of our sample. We then examine the correlations between our ranking and other proposed diagnostics of leakiness. We find a good correlation with the equivalent width of the Lyα emission line, but no significant correlations with either the flux ratio of the [O iii]/[O ii] emission lines or the ratio of star-formation rates derived from the (dust-corrected) FUV and Hα luminosities. Turning to galaxy properties, we find the strongest correlations with leakiness are with the compactness of the star-forming region (Star formation rate/area) and the speed of the galactic outflow. This suggests that extreme feedback—a high intensity of ionizing radiation and strong pressure from both radiation and a hot galactic wind—combines to create significant holes in the neutral gas. These results not only shed new light on the physical mechanisms that can allow ionizing radiation to escape from intensely star-forming galaxies, they also provide indirect observational indicators that can be used at high redshift where direct measurements of escaping Lyman continuum radiation are impossible.« less

  2. Thermal hyperspectral chemical imaging

    NASA Astrophysics Data System (ADS)

    Holma, Hannu; Hyvärinen, Timo; Mattila, Antti-Jussi; Kormano, Ilkka

    2012-06-01

    Several chemical compounds have their strongest spectral signatures in the thermal region. This paper presents three push-broom thermal hyperspectral imagers. The first operates in MWIR (2.8-5 μm) with 35 nm spectral resolution. It consists of uncooled imaging spectrograph and cryogenically cooled InSb camera, with spatial resolution of 320/640 pixels and image rate to 400 Hz. The second imager covers LWIR in 7.6-12 μm with 32 spectral bands. It employs an uncooled microbolometer array and spectrograph. These imagers have been designed for chemical mapping in reflection mode in industry and laboratory. An efficient line-illumination source has been developed, and it makes possible thermal hyperspectral imaging in reflection with much higher signal and SNR than is obtained from room temperature emission. Application demonstrations including sorting of dark plastics and mineralogical mapping of drill cores are presented. The third imager utilizes a cryo-cooled MCT array with precisely temperature stabilized optics. The optics is not cooled, but instrument radiation is suppressed by special filtering and corrected by BMC (Background-Monitoring-on-Chip) method. The approach provides excellent sensitivity in an instrument which is portable and compact enough for installation in UAVs. The imager has been verified in 7.6 to 12.3 μm to provide NESR of 18 mW/(m2 sr μm) at 10 μm for 300 K target with 100 spectral bands and 384 spatial samples. It results in SNR of higher than 500. The performance makes possible various applications from gas detection to mineral exploration and vegetation surveys. Results from outdoor and airborne experiments are shown.

  3. Development of television tubes for the large space telescope

    NASA Technical Reports Server (NTRS)

    Lowrance, J. L.; Zucchino, P.

    1971-01-01

    Princeton Observatory has been working for several years under NASA sponsorship to develop television type sensors to use in place of photographic film for space astronomy. The performance of an SEC-vidicon with a 25 mm x 25 mm active area, MgF2 window, and bi-alkali photocathode is discussed. Results from ground based use on the Coude spectrograph of the 200-inch Hale telescope are included. The intended use of this tube in an echelle spectrograph sounding rocket payload and on Stratoscope 2 for direct high resolution imagery is also discussed. The paper also discusses the large space telescope image sensor requirements and the development of a larger television tube for this mission.

  4. VizieR Online Data Catalog: IMF in 3 low-redshift strong lenses from SNELLS (Newman+, 2017)

    NASA Astrophysics Data System (ADS)

    Newman, A. B.; Smith, R. J.; Conroy, C.; Villaume, A.; van Dokkum, P.

    2018-04-01

    The SINFONI Nearby Elliptical Lens Locator Survey (SNELLS) lenses (Smith+ 2015MNRAS.449.3441S) were observed using the IMACS spectrograph at the 6.5m Magellan Baade telescope during 2015 April 9-10 and 2015 September 25. Spectroscopic observations cover the wavelength range 3565-9415Å continuously with a uniform resolution of 2.8Å. Total exposure times ranged from 60 minutes to 100 minutes per grating. See section 2.1. All SNELLS lenses were also observed using FIRE, a near-infrared echellete spectrograph at the Magellan Baade telescope, during the nights of 2015 April 8, May 3, and September 25. The FIRE spectra cover 0.82-2.51um, but in this paper we use only the region around the Wing-Ford band of FeH near 9916Å for SNL-0 and SNL-1. On-target exposure times for SNL-0 and SNL-1 were 32 minutes and 54 minutes, respectively. The 1" wide slit provided a resolution of R~4000. See section 2.2. We acquired optical and near-infrared spectra for all the SNELLS lenses with X-shooter at the 8.2m UT2 of the ESO Very Large Telescope (VLT). See section 2.3. We obtained r-band images of SNL-1 and SNL-2 using the LDSS-3 imaging spectrograph at the Magellan 2 telescope. Photometric calibration was tied to the SDSS DR9. For SNL-0, we used Hubble Heritage observations taken with the Advanced Camera for Surveys and the F625W filter (Proposal 10710). When constructing our dynamical model of SNL-2, we also use an R-band image obtained in excellent seeing with FORS2 at the VLT. See section 2.4. (2 data files).

  5. The future of space imaging. Report of a community-based study of an advanced camera for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Brown, Robert A. (Editor)

    1993-01-01

    The scientific and technical basis for an Advanced Camera (AC) for the Hubble Space Telescope (HST) is discussed. In March 1992, the NASA Program Scientist for HST invited the Space Telescope Science Institute to conduct a community-based study of an AC, which would be installed on a scheduled HST servicing mission in 1999. The study had three phases: a broad community survey of views on candidate science program and required performance of the AC, an analysis of technical issues relating to its implementation, and a panel of experts to formulate conclusions and prioritize recommendations. From the assessment of the imaging tasks astronomers have proposed for or desired from HST, we believe the most valuable 1999 instrument would be a camera with both near ultraviolet/optical (NUVO) and far ultraviolet (FUV) sensitivity, and with both wide field and high resolution options.

  6. No difference in learning retention in manikin-based simulation based on role

    PubMed Central

    Giuliano, Dominic; DC, Marion McGregor

    2016-01-01

    Objective: We evaluated learning retention in interns exposed to simulation. It was hypothesized that learning would degrade after 6 months and there would be a difference in retention between interns who played a critical role versus those who did not. Methods: A total of 23 groups of 5 to 9 interns underwent a cardiac scenario twice during 1 simulation experience and again 6 months later. We captured 69 recordings (23 before debrief at baseline [PrDV], 23 after debrief at baseline [PoDV], and 23 at 6-month follow-up [FUV]). Students were assigned different roles, including the critical role of “doctor” in a blinded, haphazard fashion. At 6-month follow-up, 12 interns who played the role of doctor initially were assigned that role again, while 11 interns who played noncritical roles initially were newly assigned to doctor. All videos of intern performance were scored independently and in a blinded fashion, by 3 judges using a 15-item check list. Results: Repeated-measures analysis of variance for interns completing all 3 time points indicated a significant difference between time points (F2,22 = 112, p = .00). Contrasts showed a statistically significant difference between PrDV and PoDV (p = .00), and PrDV and FUV (p = .00), but no difference between PoDV and FUV (p = .98). This was consistent with results including all data points. Checklist scores were more than double for PoDV recordings (16) and FUV (15), compared to PrDV recordings (6.6). Follow-up scores comparing old to new doctors showed no statistically significant difference (15.4 vs 15.2 respectively, t21 = 0.26, p = .80, d = .11). Conclusions: Learning retention was maintained regardless of role. PMID:26367345

  7. The Ultraviolet Spectrograph (UVS) on Juno

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Persyn, S.; Eterno, J.; Slater, D. C.; Davis, M. W.; Versteeg, M. H.; Persson, K. B.; Siegmund, O. H.; Marquet, B.; Gerard, J.; Grodent, D. C.

    2008-12-01

    Juno, a NASA New Frontiers mission, plans for launch in August 2011, a 5-year cruise (including a flyby of Earth in October 2013 for a gravity boost), and 14 months around Jupiter after arriving in August 2016. The spinning (2 RPM), solar-powered Juno will study Jupiter from a highly elliptical orbit, in which the spacecraft (for about 6 hours once every 11 days) dives down over the north pole, skims the outermost atmosphere, and rises back up over the south pole. This orbit allows Juno avoid most of the intense particle radiation surrounding the planet and provides an excellent platform for investigating Jupiter's polar magnetosphere. Part of the exploration of Jupiter's polar magnetosphere will involve remote sensing of the far-ultraviolet H and H2 auroral emissions, plus gases such as methane and acetylene which add their absorption signature to the H2 emissions. This hydrocarbon absorption can be used to estimate the energy of the precipitating electrons; since more energetic electrons penetrate deeper into the atmosphere and the UV emissions they produce will show more absorption. Juno will carry an Ultraviolet Spectrograph (UVS) to make spectral images of Jupiter's aurora. UVS is a UV imaging spectrograph sensitive to both extreme and far ultraviolet emissions in the 70-205~nm range that will characterize the morphology and spectral nature of Jupiter's auroral emissions. Juno UVS consists of two separate sections: a dedicated telescope/spectrograph assembly and a vault electronics box. The telescope/spectrograph assembly contains a telescope which feeds a 0.15-m Rowland circle spectrograph. The telescope has an input aperture 40×40~mm2 and uses an off-axis parabolic primary mirror. A flat scan mirror situated at the front end of the telescope (used to target specific auroral features at up to ±30° perpendicular to the Juno spin plane) directs incoming light to the primary. The light is then focused onto the spectrograph entrance slit, which has a 'dog- bone' shape 6° long, in three 2° sections of 0.2°, 0.05°, and 0.2° width (projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses the UV bandpass onto a curved microchannel plate (MCP) cross delay line (XDL) detector with a solar blind UV- sensitive CsI photocathode, which makes up the instrument's focal plane. Tantalum shielding surrounds the detector assembly to protect the detector and the adjacent detector electronics from high-energy electrons. The main electronics box is located in the Juno vault. Inside are two redundant high-voltage power supplies (HVPS), two redundant low-voltage power supplies, the command and data handling (C&DH) electronics, heater/actuator activation electronics, scan mirror electronics, and event processing electronics. An overview of the UVS design and scientific performance will be presented.

  8. Detection of Spatially Unresolved (Nominally Sub-Pixel) Submerged and Surface Targets Using Hyperspectral Data

    DTIC Science & Technology

    2012-09-01

    Feasibility (MT Modeling ) a. Continuum of mixture distributions interpolated b. Mixture infeasibilities calculated for each pixel c. Valid detections...Visible/Infrared Imaging Spectrometer BRDF Bidirectional Reflectance Distribution Function CASI Compact Airborne Spectrographic Imager CCD...filtering (MTMF), and was designed by Healey and Slater (1999) to use “a physical model to generate the set of sensor spectra for a target that will be

  9. Fast Imaging Solar Spectrograph System in New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Park, Y.-D.; Kim, Y. H.; Chae, J.; Goode, P. R.; Cho, K. S.; Park, H. M.; Nah, J. K.; Jang, B. H.

    2010-12-01

    In 2004, Big Bear Solar Observatory in California, USA launched a project for construction of the world's largest aperture solar telescope (D = 1.6m) called New Solar Telescope(NST). University of Hawaii (UH) and Korea Astronomy and Space Science Institute(KASI) partly collaborate on the project. NST is a designed off-axis parabolic Gregorian reflector with very high spatial resolution(0.07 arcsec at 5000A) and is equipped with several scientific instruments such as Visible Imaging Magnetograph (VIM), InfraRed Imaging Magnetograph IRIM), and so on. Since these scientific instruments are focused on studies of the solar photosphere, we need a post-focus instrument for the NST to study the fine structures and dynamic patterns of the solar chromosphere and low Transition Region (TR) layer, including filaments/prominences, spicules, jets, micro flares, etc. For this reason, we developed and installed a fast imaging solar spectrograph(FISS) system on the NST withadvantages of achieving compact design with high spectral resolution and small aberration as well as recording many solar spectral lines in a single and/or dual band mode. FISS was installed in May, 2010 and now we carry out a test observation. In this talk, we introduce the FISS system and the results of the test observation after FISS installation.

  10. Near- infrared imager and slitless spectrograph (NIRISS): a new instrument on James Webb Space Telescope (JWST)

    NASA Astrophysics Data System (ADS)

    Maszkiewicz, Michael

    2017-11-01

    The James Webb Space Telescope (JWST) is a 6.5 m diameter deployable telescope that will orbit the L2 Earth-Sun point beginning in 2018. NASA is leading the development of the JWST mission with their partners, the European Space Agency and the Canadian Space Agency. The Canadian contribution to the mission is the Fine Guidance Sensor (FGS). Originally, the FGS incorporated a flexible narrow spectral band science imaging capability in the form of the Tunable Filter Imaging Module -TFI, based on a scanning Fabry-Perot etalon. In the course of building and testing of the TFI flight model, numerous technical issues arose with unforeseeable length of required mitigation effort. In addition to that, emerging new science priorities caused that in summer of 2011 a decision was taken to replace TFI with a new instrument called Near Infrared Imager and Slitless Spectrograph (NIRISS). NIRISS preserves most of the TFI opto-mechanical design: focusing mirror, collimator and camera TMA telescopes, dual filter and pupil wheel and detectors but, instead of a tunable etalon, uses set of filters and grisms for wavelength selection and dispersion. The FGS-Guider and NIRISS have completed their instrument-level cryogenic testing and were delivered to NASA Goddard in late July 2012 for incorporation into the Integrated Science Instrument Module (ISIM).

  11. Optical and Infrared Spectral Features of Nova Canis Majoris 2018

    NASA Astrophysics Data System (ADS)

    Rudy, Richard; Mauerhan, Jon; Crawford, Kirk; Russell, Ray; Wiktorowicz, Sloane

    2018-04-01

    Optical and IR spectra from 0.47-2.5 microns (resolution: 5-30 angstroms) of Nova Canis Majoris (CBET 4499), were obtained 2018 April 21.14 (UT) with the Aerospace Corporation's 1.0 m telescope using its Visible and Infrared Imaging Spectrograph (VNIRIS).

  12. Modeling the Scattering Polarization of the Hydrogen Ly-alpha Line Observed by CLASP in a Filament Channel

    NASA Technical Reports Server (NTRS)

    Stepan, J.; Trujillo Bueno, J.; Gunar, S.; del Pino Aleman, T.; Heinzel, P.; Kano, R.; Ishikawa, R.; Narukage, M.; Bando, T.; Winebarger, Amy; hide

    2016-01-01

    The 400 arcsec spectrograph slit of CLASP crossed predominantly quiet regions of the solar chromosphere, from the limb towards the solar disk center. Interestingly, in the CLASP slit-jaw images and in the SDO images of the He I line at 304 A, we can identify a filament channel (FC) extending over more than 60 arcsec crossing the spectrograph slit. In order to interpret the peculiar spatial variation of the Q/1 and U/1 signals observed by CLASP in the hydrogen Ly-alpha line (1216 A) and in the Si Ill line (1206 A) in such a filament channel, it is necessary to perform multi-dimensional radiative transfer modeling. In this contribution, we show the first results of the two-dimensional calculations we are carrying out in given filament models, with the aim of determining the filament thermal and magnetic structure by comparing the theoretical and the observed polarization signals.

  13. Imaging spectroscopy of Mars in the thermal infrared: seasonal variations of H2O2 and mapping of the D/H ratio

    NASA Astrophysics Data System (ADS)

    Encrenaz, Therese; DeWitt, Curtis; Richter, Matthew; Greathouse, Thomas; Fouchet, Thierry; Lefevre, Franck; Montmessin, Franck; Forget, Francois; Bezard, Bruno; Atreya, Sushil

    2017-04-01

    Since 2002, we have been monitoring the spatial distribution and the seasonal variations of H2O2 on Mars, using high-resolution imaging spectroscopy with the Texas Echelon Cross Echelle Spectrograph (TEXES) at the Infrared Telescope Facility (IRTF) at Maunakea Observatory (Hawaii). These observations have shown that a better agreement with global climate models is obtained when heterogeneous chemistry is introduced in the photochemical model (Encrenaz et al. 2015, AA 578, A127). In addition, in April 2014, we have obtained a map of D/H on Mars using the Echelon Cross Echelle Spectrograph (EXES) aboard the stratospheric Observatory for Infrared Astronomy (SOFIA; Encrenaz et al. 2015, AA 586, A62). In 2016, new observations have been obtained on H2O2 with TEXES and on D/H with EXES, allowing us to better analyze the seasonal variations of these parameters. These data will be presented and compared with previous measurements.

  14. Observations of Leonid Meteors Using a Mid-Wave Infrared Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Rossano, G. S.; Russell, R. W.; Lynch, D. K.; Tessensohn, T. K.; Warren, D.; Jenniskens, P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    We report broadband 3-5.5 micrometer detections of two Leonid meteors observed during the 1998 Leonid Multi-Instrument Aircraft Campaign. Each meteor was detected at only one position along their trajectory just prior to the point of maximum light emission. We describe the particular aspects of the Aerospace Corp. Mid-wave Infra-Red Imaging Spectrograph (MIRIS) developed for the observation of short duration transient events that impact its ability to detect Leonid meteors. This instrument had its first deployment during the 1998 Leonid MAC. We infer from our observations that the mid-infrared light curves of two Leonid meteors differed from the visible light curve. At the points of detection, the infrared emission in the MIRIS passband was 25 +/- 4 times that at optical wavelengths for both meteors. In addition, we find an upper limit of 800 K for the solid body temperature of the brighter meteor we observed, at the point in the trajectory where we made our mid-wave infrared detection.

  15. VizieR Online Data Catalog: Optical reverberation mapping campaign of 5 AGNs (Fausnaugh+, 2017)

    NASA Astrophysics Data System (ADS)

    Fausnaugh, M. M.; Grier, C. J.; Bentz, M. C.; Denney, K. D.; De Rosa, G.; Peterson, B. M.; Kochanek, C. S.; Pogge, R. W.; Adams, S. M.; Barth, A. J.; Beatty, T. G.; Bhattacharjee, A.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brown, J. E.; Brown, J. S.; Brotherton, M. S.; Coker, C. T.; Crawford, S. M.; Croxall, K. V.; Eftekharzadeh, S.; Eracleous, M.; Joner, M. D.; Henderson, C. B.; Holoien, T. W.-S.; Horne, K.; Hutchison, T.; Kaspi, S.; Kim, S.; King, A. L.; Li, M.; Lochhaas, C.; Ma, Z.; Macinnis, F.; Manne-Nicholas, E. R.; Mason, M.; Montuori, C.; Mosquera, A.; Mudd, D.; Musso, R.; Nazarov, S. V.; Nguyen, M. L.; Okhmat, D. N.; Onken, C. A.; Ou-Yang, B.; Pancoast, A.; Pei, L.; Penny, M. T.; Poleski, R.; Rafter, S.; Romero-Colmenero, E.; Runnoe, J.; Sand, D. J.; Schimoia, J. S.; Sergeev, S. G.; Shappee, B. J.; Simonian, G. V.; Somers, G.; Spencer, M.; Starkey, D. A.; Stevens, D. J.; Tayar, J.; Treu, T.; Valenti, S.; van Saders, J.; Villanueva, S., Jr.; Villforth, C.; Weiss, Y.; Winkler, H.; Zhu, W.

    2017-11-01

    We obtained spectra on an approximately daily cadence between 2014 January 04 and July 06 UTC using the Boller and Chivens CCD Spectrograph on the 1.3m McGraw-Hill telescope at the MDM Observatory. We also obtained six epochs of observations with the 2.3m telescope at Wyoming Infrared Observatory (WIRO) and the WIRO Long Slit Spectrograph. Our spectroscopic observations are supplemented with broadband imaging observations. Contributing telescopes were the 0.7m at the Crimean Astrophysical Observatory (CrAO), the 0.5m Centurian 18 at Wise Observatory (WC18), and the 0.9m at West Mountain Observatory (WMO). In addition, we obtained ugriz imaging with the LCO 1m network, which consists of nine identical 1m telescopes at four observatories spread around the globe. These data were originally acquired as part of LCO's AGN Key project (Valenti+ 2015ApJ...813L..36V). (11 data files).

  16. The HORUS Observatory - A Next Generation 2.4m UV-Optical Mission To Study Planetary, Stellar And Galactic Formation

    NASA Astrophysics Data System (ADS)

    Scowen, Paul A.; SDT, HORUS

    2013-01-01

    The High-ORbit Ultraviolet-visible Satellite (HORUS) is a 2.4-meter class UV-optical space telescope that will conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and their planetary systems, to investigate and understand the range of environments, feedback mechanisms, and other factors that most affect the outcome of the star and planet formation process. To do so, HORUS will provide 100 times greater imaging efficiency and more than 10 times greater UV spectroscopic sensitivity than has existed on the Hubble Space Telescope (HST). The HORUS mission will contribute vital information on how solar systems form and whether habitable planets should be common or rare. It also will investigate the structure, evolution, and destiny of galaxies and universe. This program relies on focused capabilities unique to space that no other planned NASA mission will provide: near-UV/visible (200-1075nm) wide-field, diffraction-limited imaging; and high-sensitivity, high-resolution UV (100-170nm) spectroscopy. The core HORUS design will provide wide field of view imagery and high efficiency point source FUV spectroscopy using a novel combination of spectral selection and field sharing. The HORUS Optical Telescope Assembly (OTA) design is based on modern light weight mirror technology with a faster primary mirror to shorten the overall package and thereby reduce mass. The OTA uses a three-mirror anastigmat configuration to provide excellent imagery over a large FOV - and is exactly aligned to use one of the recently released f/1.2 NRO OTAs as part of its design. The UV/optical Imaging Cameras use two 21k x 21k Focal Plane Arrays (FPAs). The FUV spectrometer uses cross strip anode based MCPs. This poster presents results from a 2010 design update requested by the NRC Decadal Survey, and reflects updated costs and technology to the original 2004 study. It is now one of the most mature 2.4m UVOIR observatory designs in NASA’s portfolio.

  17. Theoretical and experimental studies relevant to interpretation of auroral emissions

    NASA Technical Reports Server (NTRS)

    Keffer, Charles E.

    1994-01-01

    This report describes the accomplishments of a program designed to develop the tools necessary to interpret auroral emissions measured from a space-based platform. The research was divided into two major areas. The first area was a laboratory study designed to improve our understanding of the space vehicle external environment and how it will affect the space-based measurement of auroral emissions. Facilities have been setup and measurements taken to simulate the gas phase environment around a space vehicle; the radiation environment encountered by an orbiting vehicle that passes through the Earth's radiation belts; and the thermal environment of a vehicle in Earth orbit. The second major area of study was a modeling program to develop the capability of using auroral images at various wavelengths to infer the total energy influx and characteristic energy of the incident auroral particles. An ab initio auroral calculation has been added to the extant ionospheric/thermospheric global modeling capabilities within our group. Once the addition of the code was complete, the combined model was used to compare the relative intensities and behavior of various emission sources (dayglow, aurora, etc.). Attached papers included are: 'Laboratory Facility for Simulation of Vehicle-Environment Interactions'; 'Workshop on the Induced Environment of Space Station Freedom'; 'Radiation Damage Effects in Far Ultraviolet Filters and Substrates'; 'Radiation Damage Effects in Far Ultraviolet Filters, Thin Films, and Substrates'; 'Use of FUV Auroral Emissions as Diagnostic Indicators'; and 'Determination of Ionospheric Conductivities from FUV Auroral Emissions'.

  18. Spectrographs for astrophotonics.

    PubMed

    Blind, N; Le Coarer, E; Kern, P; Gousset, S

    2017-10-30

    The next generation of extremely large telescopes (ELT), with diameters up to 39 meters, is planned to begin operation in the next decade and promises new challenges in the development of instruments since the instrument size increases in proportion to the telescope diameter D, and the cost as D 2 or faster. The growing field of astrophotonics (the use of photonic technologies in astronomy) could solve this problem by allowing mass production of fully integrated and robust instruments combining various optical functions, with the potential to reduce the size, complexity and cost of instruments. Astrophotonics allows for a broad range of new optical functions, with applications ranging from sky background filtering, high spatial and spectral resolution imaging and spectroscopy. In this paper, we want to provide astronomers with valuable keys to understand how photonics solutions can be implemented (or not) according to the foreseen applications. The paper introduces first key concepts linked to the characteristics of photonics technologies, placed in the framework of astronomy and spectroscopy. We then describe a series of merit criteria that help us determine the potential of a given micro-spectrograph technology for astronomy applications, and then take an inventory of the recent developments in integrated micro-spectrographs with potential for astronomy. We finally compare their performance, to finally draw a map of typical science requirements and pin the identified integrated technologies on it. We finally emphasize the necessary developments that must support micro-spectrograph in the coming years.

  19. The infrared imaging spectrograph (IRIS) for TMT: volume phase holographic grating performance testing and discussion

    NASA Astrophysics Data System (ADS)

    Chen, Shaojie; Meyer, Elliot; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Maire, Jerome; Mieda, Etsuko; Simard, Luc

    2014-07-01

    Maximizing the grating efficiency is a key goal for the first light instrument IRIS (Infrared Imaging Spectrograph) currently being designed to sample the diffraction limit of the TMT (Thirty Meter Telescope). Volume Phase Holographic (VPH) gratings have been shown to offer extremely high efficiencies that approach 100% for high line frequencies (i.e., 600 to 6000l/mm), which has been applicable for astronomical optical spectrographs. However, VPH gratings have been less exploited in the near-infrared, particularly for gratings that have lower line frequencies. Given their potential to offer high throughputs and low scattered light, VPH gratings are being explored for IRIS as a potential dispersing element in the spectrograph. Our team has procured near-infrared gratings from two separate vendors. We have two gratings with the specifications needed for IRIS current design: 1.51-1.82μm (H-band) to produce a spectral resolution of 4000 and 1.19-1.37μm (J-band) to produce a spectral resolution of 8000. The center wavelengths for each grating are 1.629μm and 1.27μm, and the groove densities are 177l/mm and 440l/mm for H-band R=4000 and J-band R=8000, respectively. We directly measure the efficiencies in the lab and find that the peak efficiencies of these two types of gratings are quite good with a peak efficiency of ~88% at the Bragg angle in both TM and TE modes at H-band, and 90.23% in TM mode, 79.91% in TE mode at J-band for the best vendor. We determine the drop in efficiency off the Bragg angle, with a 20-23% decrease in efficiency at H-band when 2.5° deviation from the Bragg angle, and 25%-28% decrease at J-band when 5° deviation from the Bragg angle.

  20. A fast new cadioptric design for fiber-fed spectrographs

    NASA Astrophysics Data System (ADS)

    Saunders, Will

    2012-09-01

    The next generation of massively multiplexed multi-object spectrographs (DESpec, SUMIRE, BigBOSS, 4MOST, HECTOR) demand fast, efficient and affordable spectrographs, with higher resolutions (R = 3000-5000) than current designs. Beam-size is a (relatively) free parameter in the design, but the properties of VPH gratings are such that, for fixed resolution and wavelength coverage, the effect on beam-size on overall VPH efficiency is very small. For alltransmissive cameras, this suggests modest beam-sizes (say 80-150mm) to minimize costs; while for cadioptric (Schmidt-type) cameras, much larger beam-sizes (say 250mm+) are preferred to improve image quality and to minimize obstruction losses. Schmidt designs have benefits in terms of image quality, camera speed and scattered light performance, and recent advances such as MRF technology mean that the required aspherics are no longer a prohibitive cost or risk. The main objections to traditional Schmidt designs are the inaccessibility of the detector package, and the loss in throughput caused by it being in the beam. With expected count rates and current read-noise technology, the gain in camera speed allowed by Schmidt optics largely compensates for the additional obstruction losses. However, future advances in readout technology may erase most of this compensation. A new Schmidt/Maksutov-derived design is presented, which differs from previous designs in having the detector package outside the camera, and adjacent to the spectrograph pupil. The telescope pupil already contains a hole at its center, because of the obstruction from the telescope top-end. With a 250mm beam, it is possible to largely hide a 6cm × 6cm detector package and its dewar within this hole. This means that the design achieves a very high efficiency, competitive with transmissive designs. The optics are excellent, as least as good as classic Schmidt designs, allowing F/1.25 or even faster cameras. The principal hardware has been costed at $300K per arm, making the design affordable.

  1. Aluminum Mirror Coatings for UVOIR Telescope Optics Including the Far UV

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatha; Hennessy, John; Raouf, Nasrat; Nikzad, Shouleh; Ayala, Michael; Shaklan, Stuart; Scowen, Paul; Del Hoyo, Javier; Quijada, Manuel

    2015-01-01

    NASA Cosmic Origins (COR) Program identified the development of high reflectivity mirror coatings for large astronomical telescopes particularly for the far ultra violet (FUV) part of the spectrum as a key technology requiring significant materials research and process development. In this paper we describe the challenges and accomplishments in producing stable high reflectance aluminum mirror coatings with conventional evaporation and advanced Atomic Layer Deposition (ALD) techniques. We present the current status of process development with reflectance of approx. 55 to 80% in the FUV achieved with little or no degradation over a year. Keywords: Large telescope optics, Aluminum mirror, far UV astrophysics, ALD, coating technology development.

  2. Improved Lyman Ultraviolet Astronomy Capabilities through Enhanced Coatings

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; del Hoyo, Javier; Boris, David; Walton, Scott

    2017-01-01

    This paper will describe efforts at developing broadband mirror coatings with high performance that will extend from infrared wavelengths down to the Far-Ultraviolet (FUV) spectral region. These mirror coatings would be realized by passivating the surface of freshly made aluminum coatings with XeF2 gas in order to form a thin AlF$_3$ overcoat that will protect the aluminum from oxidation and, hence, realize the high-reflectance of this material down to its intrinsic cut-off wavelength of 90 nm. Improved reflective coatings for optics, particularly in the FUV region (90-120 nm), could yield dramatically more sensitive instruments and permit more instrument design freedom.

  3. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    NASA Astrophysics Data System (ADS)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  4. Far-Ultraviolet Spectroscopy of Three Long-Period Novalike Variables

    NASA Astrophysics Data System (ADS)

    Bisol, Alexandra C.; Godon, Patrick; Sion, Edward M.

    2012-02-01

    We have selected three novalike variables at the long-period extreme of novalike orbital periods: V363 Aur, RZ Gru, and AC Cnc, all with IUE archival far-ultraviolet spectra. All are UX UMa-type novalike variables and all have Porb > 7 hr. V363 Aur is a bona fide SW Sex star, and AC Cnc is a probable one, while RZ Gru has not proven to be a member of the SW Sex subclass. We have carried out the first synthetic spectral analysis of far-ultraviolet spectra of the three systems using state-of-the-art models of both accretion disks and white dwarf photospheres. We find that the FUV spectral energy distribution of both V363 Aur and RZ Gru are in agreement with optically thick steady-state accretion disk models in which the luminous disk accounts for 100% of the FUV light. We present accretion rates and model-derived distances for V363 Aur and RZ Gru. For AC Cnc, we find that a hot accreting white dwarf accounts for ˜60% of the FUV light, with an accretion disk providing the rest. We compare our accretion rates and model-derived distances with estimates in the literature.

  5. The development and characterization of advanced broadband mirror coatings for the far-UV

    NASA Astrophysics Data System (ADS)

    Egan, Arika; Fleming, Brian T.; Wiley, James; Quijada, Manuel; Del Hoyo, Javier; Hennessy, John; Hicks, Brian; France, Kevin; Kruczek, Nicholas; Erickson, Nicholas

    2017-08-01

    We present a progress report on the development of new broadband mirror coatings that demonstrate > 80% reflectivities from 1020-5000Å. Four different coating recipes are presented as candidates for future far-ultraviolet (FUV) sensitive broadband observatories. Three samples were first coated with aluminum (Al) and lithium fluoride (LiF) at the NASA Goddard Space Flight Center (GSFC) using a new high-temperature physical vapor deposition (PVD) process. Two of these samples then had an ultrathin (10-20 Å) protective coat of either magnesium fluoride (MgF2) or aluminum fluoride (AlF3) applied using atomic later deposition (ALD) at the NASA Jet Propulsion Laboratory (JPL). A fourth sample was coated with Al and a similar high temperature PVD coating of AlF3. Polarized reflectivities into the FUV for each sample were obtained through collaboration with the Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology. We present a procedure for using these reflectivities as a baseline for calculating the optical constants of each coating recipe. Given these results, we describe plans for improving our measurement methodology and techniques to develop and characterize these coating recipes for future FUV missions.

  6. Solar Imaging UV/EUV Spectrometers Using TVLS Gratings

    NASA Astrophysics Data System (ADS)

    Thomas, R. J.

    2003-05-01

    It is a particular challenge to develop a stigmatic spectrograph for UV/EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar EUV spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.

  7. Longitudinal Ionospheric Variability Observed by LITES on the ISS

    NASA Astrophysics Data System (ADS)

    Stephan, A. W.; Finn, S. C.; Cook, T.; Geddes, G.; Chakrabarti, S.; Budzien, S. A.

    2017-12-01

    The Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES) is an imaging spectrograph designed to measure altitude profiles (150-350 km) of extreme- and far-ultraviolet airglow emissions that originate from photochemical processes in the ionosphere and thermosphere. During the daytime, LITES observes the bright O+ 83.4 nm emission from which the ionospheric profile can be inferred. At night, recombination emissions at 91.1 and 135.6 nm provide a direct measure of the electron content along the line of sight. LITES was launched and installed on the International Space Station (ISS) in late February 2017 where it has been operating along with the highly complementary GPS Radio Occultation and Ultraviolet Photometry - Colocated (GROUP-C) experiment. We will present some of the first observations from LITES in April 2017 that show longitudinal patterns in ionospheric density and the daily variability in those patterns. LITES vertical imaging from a vantage point near 410 km enables a particularly unique perspective on the altitude of the ionospheric peak density at night that can complement and inform other ground- and space-based measurements, and track the longitude-altitude variability that is reflective of changes in equatorial electrodynamics.

  8. The Hubble Deep UV Legacy Survey (HDUV)

    NASA Astrophysics Data System (ADS)

    Montes, Mireia; Oesch, Pascal

    2015-08-01

    Deep HST imaging has shown that the overall star formation density and UV light density at z>3 is dominated by faint, blue galaxies. Remarkably, very little is known about the equivalent galaxy population at lower redshifts. Understanding how these galaxies evolve across the epoch of peak cosmic star-formation is key to a complete picture of galaxy evolution. Here, we present a new HST WFC3/UVIS program, the Hubble Deep UV (HDUV) legacy survey. The HDUV is a 132 orbit program to obtain deep imaging in two filters (F275W and F336W) over the two CANDELS Deep fields. We will cover ~100 arcmin2 sampling the rest-frame far-UV at z>~0.5, this will provide a unique legacy dataset with exquisite HST multi-wavelength imaging as well as ancillary HST grism NIR spectroscopy for a detailed study of faint, star-forming galaxies at z~0.5-2. The HDUV will enable a wealth of research by the community, which includes tracing the evolution of the FUV luminosity function over the peak of the star formation rate density from z~3 down to z~0.5, measuring the physical properties of sub-L* galaxies, and characterizing resolved stellar populations to decipher the build-up of the Hubble sequence from sub-galactic clumps. This poster provides an overview of the HDUV survey and presents the reduced data products and catalogs which will be released to the community, reaching down to 27.5-28.0 mag at 5 sigma. By directly sampling the rest-frame far-UV at z>~0.5, this will provide a unique legacy dataset with exquisite HST multi-wavelength imaging as well as ancillary HST grism NIR spectroscopy for a detailed study of faint, star-forming galaxies at z~0.5-2. The HDUV will enable a wealth of research by the community, which includes tracing the evolution of the FUV luminosity function over the peak of the star formation rate density from z~3 down to z~0.5, measuring the physical properties of sub-L* galaxies, and characterizing resolved stellar populations to decipher the build-up of the Hubble sequence from sub-galactic clumps. This poster provides an overview of the HDUV survey and presents reduced data products and catalogs which will be released to the community.

  9. Optical Technologies for UV Remote Sensing Instruments

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, R. A. M.; Osantowski, J. F.; Leviton, D. B.; Saha, T. T.; Content, D. A.; Boucarut, R. A.; Gum, J. S.; Wright, G. A.; Fleetwood, C. M.; Madison, T. J.

    1993-01-01

    Over the last decade significant advances in technology have made possible development of instruments with substantially improved efficiency in the UV spectral region. In the area of optical coatings and materials, the importance of recent developments in chemical vapor deposited (CVD) silicon carbide (SiC) mirrors, SiC films, and multilayer coatings in the context of ultraviolet instrumentation design are discussed. For example, the development of chemically vapor deposited (CVD) silicon carbide (SiC) mirrors, with high ultraviolet (UV) reflectance and low scatter surfaces, provides the opportunity to extend higher spectral/spatial resolution capability into the 50-nm region. Optical coatings for normal incidence diffraction gratings are particularly important for the evolution of efficient extreme ultraviolet (EUV) spectrographs. SiC films are important for optimizing the spectrograph performance in the 90 nm spectral region. The performance evaluation of the flight optical components for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument, a spectroscopic instrument to fly aboard the Solar and Heliospheric Observatory (SOHO) mission, designed to study dynamic processes, temperatures, and densities in the plasma of the upper atmosphere of the Sun in the wavelength range from 50 nm to 160 nm, is discussed. The optical components were evaluated for imaging and scatter in the UV. The performance evaluation of SOHO/CDS (Coronal Diagnostic Spectrometer) flight gratings tested for spectral resolution and scatter in the DGEF is reviewed and preliminary results on resolution and scatter testing of Space Telescope Imaging Spectrograph (STIS) technology development diffraction gratings are presented.

  10. The new classic data acquisition system for NPOI

    NASA Astrophysics Data System (ADS)

    Sun, B.; Jorgensen, A. M.; Landavazo, M.; Hutter, D. J.; van Belle, G. T.; Mozurkewich, David; Armstrong, J. T.; Schmitt, H. R.; Baines, E. K.; Restaino, S. R.

    2014-07-01

    The New Classic data acquisition system is an important portion of a new project of stellar surface imaging with the NPOI, funded by the National Science Foundation, and enables the data acquisition necessary for the project. The NPOI can simultaneously deliver beams from 6 telescopes to the beam combining facility, and in the Classic beam combiner these are combined 4 at a time on 3 separate spectrographs with all 15 possible baselines observed. The Classic data acquisition system is limited to 16 of 32 wavelength channels on two spectrographs and limited to 30 s integrations followed by a pause to ush data. Classic also has some limitations in its fringe-tracking capability. These factors, and the fact that Classic incorporates 1990s technology which cannot be easily replaced are motivation for upgrading the data acquisition system. The New Classic data acquisition system is based around modern electronics, including a high-end Stratix FPGA, a 200 MB/s Direct Memory Access card, and a fast modern Linux computer. These allow for continuous recording of all 96 channels across three spectrographs, increasing the total amount of data recorded by a an estimated order of magnitude. The additional computing power on the data acquisition system also allows for the implementation of more sophisticated fringe-tracking algorithms which are needed for the Stellar Surface Imaging project. In this paper we describe the New Classic system design and implementation, describe the background and motivation for the system as well as show some initial results from using it.

  11. The UV Survey Mission Concept, CETUS

    NASA Astrophysics Data System (ADS)

    Heap, Sara; and the CETUS Team

    2018-01-01

    In March 2017, NASA selected CETUS for study of a Probe-class mission concept. W. Danchi is the CETUS PI, and S. Heap is the Science PI. CETUS is primarily a UV survey telescope to complement survey telescopes of the 2020’s including E-ROSITA, Subaru Hyper Suprime Cam and Prime-Focus Spectrograph, WFIRST, and the Square Kilometer Array. CETUS comprises a 1.5-m wide-field telescope and three science instruments: a wide-field (1045” on a side) far-UV and near-UV camera; a similarly wide-field near-UV multi-object spectrograph utilizing a next-generation micro-shutter array; and a single-object spectrograph with options of spectral region (far-UV or near-UV) and spectral resolving power (2,000 or 40,000). The survey instruments will operate simultaneously thereby producing wide-field images in the near-UV and far-UV and a spectrogram containing near-UV spectra of up to 100 sources free of spectral overlap and astronomical background. ln concert with other survey telescopes, CETUS will focus on understanding galaxy evolution at cosmic noon (z~1-2).

  12. GEMINI NEAR INFRARED FIELD SPECTROGRAPH OBSERVATIONS OF THE SEYFERT 2 GALAXY MRK 573: IN SITU ACCELERATION OF IONIZED AND MOLECULAR GAS OFF FUELING FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Travis C.; Straughn, A. N.; Machuca, C.

    2017-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ∼700 × 2100 pc{sup 2} circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out tomore » several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.« less

  13. Development of a slicer integral field unit for the existing optical spectrograph FOCAS: progress

    NASA Astrophysics Data System (ADS)

    Ozaki, Shinobu; Tanaka, Yoko; Hattori, Takashi; Mitsui, Kenji; Fukushima, Mitsuhiro; Okada, Norio; Obuchi, Yoshiyuki; Tsuzuki, Toshihiro; Miyazaki, Satoshi; Yamashita, Takuya

    2014-07-01

    We are developing an integral field unit (IFU) with an image slicer for the existing optical spectrograph, Faint Object Camera And Spectrograph (FOCAS), on the Subaru Telescope. The slice width is 0.43 arcsec, the slice number is 23, and the field of view is 13.5 × 9.89 arcsec2. Sky spectrum separated by about 5.7 arcmin from an object field can be simultaneously obtained, which allows us precise background subtraction. Slice mirrors, pupil mirrors and slit mirrors are all glass, and their mirror surfaces are fabricated by polishing. Our IFU is about 200 mm × 300 mm × 80 mm in size and 1 kg in weight. It is installed into a mask storage in FOCAS along with one or two mask plates, and inserted into the optical path by using the existing mask exchange mechanism. This concept allow us flexible operation such as Targets of Opportunity observations. High reflectivity of multilayer dielectric coatings offers high throughput (>80%) of the IFU. In this paper, we will report a final optical layout, its performances, and results of prototyping works.

  14. Conditional-sampling spectrograph detection system for fluorescence measurements of individual airborne biological particles

    NASA Astrophysics Data System (ADS)

    Nachman, Paul; Pinnick, R. G.; Hill, Steven C.; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1996-03-01

    We report the design and operation of a prototype conditional-sampling spectrograph detection system that can record the fluorescence spectra of individual, micrometer-sized aerosols as they traverse an intense 488-nm intracavity laser beam. The instrument's image-intensified CCD detector is gated by elastic scattering or by undispersed fluorescence from particles that enter the spectrograph's field of view. It records spectra only from particles with preselected scattering-fluorescence levels (a fiber-optic-photomultiplier subsystem provides the gating signal). This conditional-sampling procedure reduces data-handling rates and increases the signal-to-noise ratio by restricting the system's exposures to brief periods when aerosols traverse the beam. We demonstrate these advantages by reliably capturing spectra from individual fluorescent microspheres dispersed in an airstream. The conditional-sampling procedure also permits some discrimination among different types of particles, so that spectra may be recorded from the few interesting particles present in a cloud of background aerosol. We demonstrate such discrimination by measuring spectra from selected fluorescent microspheres in a mixture of two types of microspheres, and from bacterial spores in a mixture of spores and nonfluorescent kaolin particles.

  15. Spacecraft Optical Contamination Environment

    DTIC Science & Technology

    1989-04-01

    is imaging mode with filer slider; mniddle is Fabry-Perot configuration; bottom Is imaging spectrometer 14 4.0 FLIGHT OPERATIONS PLANNING A flight... planning meeting was held at Johnson Space Center on the 22nd of March,1989. This meeting was attended by Drs. C. Pike and Edmond Murad from AFGL and Dr...3 exposures for each thruster firing planned during this period of Orbiter darkness. View Angle: Spectrograph slit to be aligned with centerline of

  16. Hyperspectral data analysis for estimation of foliar biochemical content along the Oregon transect

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Peterson, David L.

    1991-01-01

    The NASA Oregon Transect Ecosystem Research (OTTER) project completed a data acquisition phase. Data were acquired with several airborne imaging spectrometers. Included were the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) aboard the ER-2, the Advanced Solidstate Array Spectrometer (ASAS) aboard the C-130, and the Fluorescence Line Imager (FLI) and Compact Airborne Spectrographic Imager (CASI), both aboard light aircraft. In addition, Spectron visible and near-infrared data were acquired in transects across study areas from a low-altitude ultralight craft. Sunphotometer data were taken approximately coincident with each overflight for atmospheric correction of the aircraft data.

  17. Optical fiber systems for the BigBOSS instrument

    NASA Astrophysics Data System (ADS)

    Edelstein, Jerry; Poppett, Claire; Sirk, Martin; Besuner, Robert; Lafever, Robin; Allington-Smith, Jeremy R.; Murray, Graham J.

    2012-09-01

    We describe the fiber optics systems for use in BigBOSS, a proposed massively parallel multi-object spectrograph for the Kitt Peak Mayall 4-m telescope that will measure baryon acoustic oscillations to explore dark energy. BigBOSS will include 5,000 optical fibers each precisely actuator-positioned to collect an astronomical target’s flux at the telescope prime-focus. The fibers are to be routed 40m through the telescope facility to feed ten visible-band imaging spectrographs. We report on our fiber component development and performance measurement program. Results include the numerical modeling of focal ratio degradation (FRD), observations of actual fibers’ collimated and converging beam FRD, and observations of FRD from different types of fiber terminations, mechanical connectors, and fusion-splice connections.

  18. The James Webb Space Telescope: Contamination Control and Materials

    NASA Technical Reports Server (NTRS)

    Stewart, Elaine M.; Wooldridge, Eve M.

    2017-01-01

    The James Webb Space Telescope (JWST), expected to launch in 2018 or early 2019, will be the premier observatory for astronomers worldwide. It is optimized for infrared wavelengths and observation from up to 1 million miles from Earth. JWST includes an Integrated Science Instrument Module (ISIM) containing the four main instruments used to observe deep space: Near-Infrared Camera (NIRCam), Near-Infrared Spectrograph (NIRSpec), Mid-Infrared Instrument (MIRI), and Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph (FGS/NIRISS). JWST is extremely sensitive to contamination directly resulting in degradation in performance of the telescope. Contamination control has been an essential focus of this mission since the beginning of this observatory. A particular challenge has been contamination challenges in vacuum chamber operations.

  19. KSC-2012-5328

    NASA Image and Video Library

    2012-09-13

    VANDENBERG AFB, Calif. – Technicians perform a fit check on an Orbital Sciences Pegasus rocket as the launcher is processed for the Interface Region Imaging Spectrograph mission known as IRIS. The technicians are attaching the portion of the Pegasus that joins the wing to the fuselage, a piece called a fillet. Photo credit: VAFB/Randy Beaudoin

  20. KSC-2012-5326

    NASA Image and Video Library

    2012-09-13

    VANDENBERG AFB, Calif. – Technicians perform a fit check on an Orbital Sciences Pegasus rocket as the launcher is processed for the Interface Region Imaging Spectrograph mission known as IRIS. The technicians are attaching the portion of the Pegasus that joins the wing to the fuselage, a piece called a fillet. Photo credit: VAFB/Randy Beaudoin

  1. KSC-2012-5327

    NASA Image and Video Library

    2012-09-13

    VANDENBERG AFB, Calif. – Technicians perform a fit check on an Orbital Sciences Pegasus rocket as the launcher is processed for the Interface Region Imaging Spectrograph mission known as IRIS. The technicians are attaching the portion of the Pegasus that joins the wing to the fuselage, a piece called a fillet. Photo credit: VAFB/Randy Beaudoin

  2. KSC-2012-5325

    NASA Image and Video Library

    2012-09-13

    VANDENBERG AFB, Calif. – Technicians perform a fit check on an Orbital Sciences Pegasus rocket as the launcher is processed for the Interface Region Imaging Spectrograph mission known as IRIS. The technicians are attaching the portion of the Pegasus that joins the wing to the fuselage, a piece called a fillet. Photo credit: VAFB/Randy Beaudoin

  3. Summary of the STIS Cycle 19 Calibration Program

    NASA Astrophysics Data System (ADS)

    Roman-Duval, Julia; Ely, Justin; Aloisi, Alessandra; Oliveira, Cristina; Proffitt, Charles; Hernandez, Svea; Mason, Elena; Sonnetrucker, Paule; Wolfe, Michael; Long, Chris; DiFelice, Audrey; Bostroem, Azalee K.; Holland, Stephen; Lockwood, Sean; Cox, Colin; Wheeler, Thomas

    2014-11-01

    We summarize the Cycle 19 calibration program for the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope, covering the time period November 2011 through October 2012. We give an overview of the whole program, and status summaries for each of the individual proposals comprising the program.

  4. Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: a case study of saltcedar in Nevada, USA.

    USDA-ARS?s Scientific Manuscript database

    A change detection experiment for an invasive species, saltcedar, near Lovelock, Nevada, was conducted with multi-date Compact Airborne Spectrographic Imager (CASI) hyperspectral datasets. Classification and NDVI differencing change detection methods were tested, In the classification strategy, a p...

  5. Integration, commissioning, and performance of the UK FMOS spectrograph

    NASA Astrophysics Data System (ADS)

    Dalton, Gavin B.; Lewis, Ian J.; Tosh, Ian A. J.; Blackburn, Colin; Bonfield, David G.; Brooks, Charles B.; Holmes, Alan R.; Lee, Hanshin; Froud, Tim R.; Akiyama, Masayuki; Tamura, Naoyuki; Takato, Naruhisa

    2008-07-01

    The UK FMOS spectrograph forms part of Subaru's FMOS multi-object infrared spectroscopy facility. The spectrograph was shipped to Hilo in component form in August of 2007. We describe the integration sequence for the spectrograph, the results of cooldown tests using a new chiller unit fitted to the spectrograph at the telescope, and alignment tests of the spectrograph, gratings and OH-suppression masks. We present the first-light observations for the spectrograph from May 2008.

  6. The infrared imaging spectrograph (IRIS) for TMT: reflective ruled diffraction grating performance testing and discussion

    NASA Astrophysics Data System (ADS)

    Meyer, Elliot; Chen, Shaojie; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Simard, Luc; Marie, Jerome; Mieda, Etsuko; Gordon, Jacob

    2014-07-01

    We present the efficiency of near-infrared reflective ruled diffraction gratings designed for the InfraRed Imaging Spectrograph (IRIS). IRIS is a first light, integral field spectrograph and imager for the Thirty Meter Telescope (TMT) and narrow field infrared adaptive optics system (NFIRAOS). IRIS will operate across the near-infrared encompassing the ZYJHK bands (~0.84 - 2.4μm) with multiple spectral resolutions. We present our experimental setup and analysis of the efficiency of selected reflective diffraction gratings. These measurements are used as a comparison sample against selected candidate Volume Phase Holographic (VPH) gratings (see Chen et al., this conference). We investigate the efficiencies of five ruled gratings designed for IRIS from two separate vendors. Three of the gratings accept a bandpass of 1.19-1.37μm (J band) with ideal spectral resolutions of R=4000 and R=8000, groove densities of 249 and 516 lines/mm, and blaze angles of 9.86° and 20.54° respectively. The other two gratings accept a bandpass of 1.51-1.82μm (H Band) with an ideal spectral resolution of R=4000, groove density of 141 lines/mm, and blaze angle of 9.86°. The fraction of flux in each diffraction mode was compared to both a pure reflection mirror as well as the sum of the flux measured in all observable modes. We measure the efficiencies off blaze angle for all gratings and the efficiencies between the polarization transverse magnetic (TM) and transverse electric (TE) states. The peak reflective efficiencies are 98.90 +/- 3.36% (TM) and 84.99 +/- 2.74% (TM) for the H-band R=4000 and J-band R=4000 respectively. The peak reflective efficiency for the J-band R=8000 grating is 78.78 +/- 2.54% (TE). We find that these ruled gratings do not exhibit a wide dependency on incident angle within +/-3°. Our best-manufactured gratings were found to exhibit a dependency on the polarization state of the incident beam with a ~10-20% deviation, consistent with the theoretical efficiency predictions. This work will significantly contribute to the selection of the final grating type and vendor for the IRIS optical system, and are also pertinent to current and future near-infrared astronomical spectrographs.

  7. Coronagraph for astronomical imaging and spectrophotometry

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Smith, Bradford A.

    1987-01-01

    A coronagraph designed to minimize scattered light in astronomical observations caused by the structure of the primary mirror, secondary mirror, and secondary support structure of a Cassegrainian telescope is described. Direct (1:1) and reducing (2.7:1) imaging of astronomical fields are possible. High-quality images are produced. The coronagraph can be used with either a two-dimensional charge-coupled device or photographic film camera. The addition of transmission dispersing optics converts the coronagraph into a low-resolution spectrograph. The instrument is modular and portable for transport to different observatories.

  8. Image Registration for Stability Testing of MEMS

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; LeMoigne, Jacqueline; Blake, Peter N.; Morey, Peter A.; Landsman, Wayne B.; Chambers, Victor J.; Moseley, Samuel H.

    2011-01-01

    Image registration, or alignment of two or more images covering the same scenes or objects, is of great interest in many disciplines such as remote sensing, medical imaging. astronomy, and computer vision. In this paper, we introduce a new application of image registration algorithms. We demonstrate how through a wavelet based image registration algorithm, engineers can evaluate stability of Micro-Electro-Mechanical Systems (MEMS). In particular, we applied image registration algorithms to assess alignment stability of the MicroShutters Subsystem (MSS) of the Near Infrared Spectrograph (NIRSpec) instrument of the James Webb Space Telescope (JWST). This work introduces a new methodology for evaluating stability of MEMS devices to engineers as well as a new application of image registration algorithms to computer scientists.

  9. Comparation between different tracers of SFR in the CALIFA sample

    NASA Astrophysics Data System (ADS)

    Catalán-Torrecilla, C.; Armando Gil de Paz, A.; África Castillo-Morales, A.; Jorge Iglesias-Páramo, J.; Almudena Alonso-Herrero, A.; Califa Team

    2013-05-01

    The Calar Alto Legacy Integral Field Area survey (CALIFA survey) has been designed to be the first survey to provide Integral Field Spectroscopy (IFS) data for a statistical sample of all galaxy types (˜ 600 galaxies) in the Local Universe (0.005

  10. Improved Mirror Coatings for Use in the Lyman Ultraviolet to Enhance Astronomical Instrument Capabilities

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Del Hoyo, Javier; Boris, David R.; Walton, Scott

    2017-01-01

    This paper will describe efforts at developing broadband mirror coatings with high performance that will extend from infrared wavelengths down to the Far-Ultraviolet (FUV) spectral region. These mirror coatings would be realized by passivating the surface of freshly made aluminum coatings with XeF2 gas in order to form a thin AlF3 overcoat that will protect the aluminum from oxidation and, hence, realize the high-reflectance of this material down to its intrinsic cut-off wavelength of 90 nm. Improved reflective coatings for optics, particularly in the FUV region (90-120 nm), could yield dramatically more sensitive instruments and permit more instrument design freedom.

  11. Improved mirror coatings for use in the Lyman Ultraviolet to enhance astronomical instrument capabilities

    NASA Astrophysics Data System (ADS)

    Quijada, Manuel A.; del Hoyo, Javier; Boris, David R.; Walton, Scott G.

    2017-09-01

    This paper will describe efforts at developing broadband mirror coatings with high performance that will extend from infrared wavelengths down to the Far-Ultraviolet (FUV) spectral region. These mirror coatings would be realized by passivating the surface of freshly made aluminum coatings with fluorine ions in order to form a thin AlF3 overcoat that will protect the aluminum from oxidation and, hence, realize the high-reflectance of this material down to its intrinsic cut-off wavelength of 90 nm. Improved reflective coatings for optics, particularly in the FUV region (90-120 nm), could yield dramatically more sensitive instruments and permit more instrument design freedom.

  12. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light.

    PubMed

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-15

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤200nm) region of titanium dioxide (TiO 2 ) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO 2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO 2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO 2 under visible light, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. VizieR Online Data Catalog: The UV-bright Quasar Survey (UVQS) DR1 (Monroe+, 2016)

    NASA Astrophysics Data System (ADS)

    Monroe, T. R.; Prochaska, J. X.; Tejos, N.; Worseck, G.; Hennawi, J. F.; Schmidt, T.; Tumlinson, J.; Shen, Y.

    2016-09-01

    We have performed an all-sky survey for z~1, FUV-bright quasars selected from GALEX and WISE photometry. We generated a list of 1450 primary candidates (Table1). In several of the observing runs, conditions were unexpectedly favorable and we exhausted the primary candidates at certain right ascension ranges. To fill the remaining observing time, we generated a secondary candidate list. This secondary set of candidates is provided in Table2. We proceeded to obtain discovery-quality longslit spectra (i.e., low-dispersion, large wavelength coverage, modest signal-to-noise ratio (S/N) of our UV-bright Quasar Survey (UVQS) candidates in one calendar year. Our principal facilities were: (i) the dual Kast spectrometer on the 3m Shane telescope at the Lick Observatory; (ii) the Boller & Chivens (BCS) spectrometer on the Irenee du Pont 100'' telescope at the Las Campanas Observatory; and (iii) the Calar Alto Faint Object Spectrograph on the CAHA 2.2m telescope at the Calar Alto Observatory (CAHA). We acquired an additional ~20 spectra on larger aperture telescopes (Keck/ESI, MMT/MBC, Magellan/MagE) during twilight or under poor observing conditions. Typical exposure times were limited to <~200s, with adjustments for fainter sources or sub-optimal observing conditions. Table3 provides a list of the observed candidates. There are 93 sources with a good quality spectrum for which we cannot recover a secure redshift. The majority of these have been previously cataloged as blazars (or BL Lac objects). Table6 lists the sample of these unknowns. (6 data files).

  14. A FAST FLARE AND DIRECT REDSHIFT CONSTRAINT IN FAR-ULTRAVIOLET SPECTRA OF THE BLAZAR S5 0716+714

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danforth, Charles W.; Nalewajko, Krzysztof; France, Kevin

    The BL Lacertae object S5 0716+714 is one of the most studied blazars on the sky due to its active variability and brightness in many bands, including very-high-energy gamma rays. We present here two serendipitous results from recent far-ultraviolet spectroscopic observations by the Cosmic Origins Spectrograph onboard the Hubble Space Telescope (HST). First, during the course of our 7.3 hr HST observations, the blazar increased in flux rapidly by {approx}40% (-0.45 mag hr{sup -1}) followed by a slower decline (+0.36 mag hr{sup -1}) to previous FUV flux levels. We model this flare using asymmetric flare templates and constrain the physicalmore » size and energetics of the emitting region. Furthermore, the spectral index of the object softens considerably during the course of the flare from {alpha}{sub {nu}} Almost-Equal-To -1.0 to {alpha}{sub {nu}} Almost-Equal-To -1.4. Second, we constrain the source redshift directly using the {approx}30 intervening absorption systems. A system at z = 0.2315 is detected in Ly{alpha}, Ly{beta}, O VI, and N V and defines the lower bound on the source redshift. No absorbers are seen in the remaining spectral coverage (0.2315 < z {sub Ly{alpha}} {approx}< 0.47) and we set a statistical upper bound of z < 0.322 (95% confidence) on the blazar. This is the first direct redshift limit for this object and is consistent with literature estimates of z = 0.31 {+-} 0.08 based on the detection of a host galaxy.« less

  15. Implementation and performance of the metrology system for the multi-object optical and near-infrared spectrograph MOONS

    NASA Astrophysics Data System (ADS)

    Drass, Holger; Vanzi, Leonardo; Torres-Torriti, Miguel; Dünner, Rolando; Shen, Tzu-Chiang; Belmar, Francisco; Dauvin, Lousie; Staig, Tomás.; Antognini, Jonathan; Flores, Mauricio; Luco, Yerko; Béchet, Clémentine; Boettger, David; Beard, Steven; Montgomery, David; Watson, Stephen; Cabral, Alexandre; Hayati, Mahmoud; Abreu, Manuel; Rees, Phil; Cirasuolo, Michele; Taylor, William; Fairley, Alasdair

    2016-08-01

    The Multi-Object Optical and Near-infrared Spectrograph (MOONS) will cover the Very Large Telescope's (VLT) field of view with 1000 fibres. The fibres will be mounted on fibre positioning units (FPU) implemented as two-DOF robot arms to ensure a homogeneous coverage of the 500 square arcmin field of view. To accurately and fast determine the position of the 1000 fibres a metrology system has been designed. This paper presents the hardware and software design and performance of the metrology system. The metrology system is based on the analysis of images taken by a circular array of 12 cameras located close to the VLTs derotator ring around the Nasmyth focus. The system includes 24 individually adjustable lamps. The fibre positions are measured through dedicated metrology targets mounted on top of the FPUs and fiducial markers connected to the FPU support plate which are imaged at the same time. A flexible pipeline based on VLT standards is used to process the images. The position accuracy was determined to 5 μm in the central region of the images. Including the outer regions the overall positioning accuracy is 25 μm. The MOONS metrology system is fully set up with a working prototype. The results in parts of the images are already excellent. By using upcoming hardware and improving the calibration it is expected to fulfil the accuracy requirement over the complete field of view for all metrology cameras.

  16. Automatic parquet block sorting using real-time spectral classification

    NASA Astrophysics Data System (ADS)

    Astrom, Anders; Astrand, Erik; Johansson, Magnus

    1999-03-01

    This paper presents a real-time spectral classification system based on the PGP spectrograph and a smart image sensor. The PGP is a spectrograph which extracts the spectral information from a scene and projects the information on an image sensor, which is a method often referred to as Imaging Spectroscopy. The classification is based on linear models and categorizes a number of pixels along a line. Previous systems adopting this method have used standard sensors, which often resulted in poor performance. The new system, however, is based on a patented near-sensor classification method, which exploits analogue features on the smart image sensor. The method reduces the enormous amount of data to be processed at an early stage, thus making true real-time spectral classification possible. The system has been evaluated on hardwood parquet boards showing very good results. The color defects considered in the experiments were blue stain, white sapwood, yellow decay and red decay. In addition to these four defect classes, a reference class was used to indicate correct surface color. The system calculates a statistical measure for each parquet block, giving the pixel defect percentage. The patented method makes it possible to run at very high speeds with a high spectral discrimination ability. Using a powerful illuminator, the system can run with a line frequency exceeding 2000 line/s. This opens up the possibility to maintain high production speed and still measure with good resolution.

  17. 4MOST optical system: presentation and design details

    NASA Astrophysics Data System (ADS)

    Azaïs, Nicolas; Frey, Steffen; Bellido, Olga; Winkler, Roland

    2017-09-01

    The 4-meter Multi-Object Spectroscopic Telescope (4MOST) is a wide-field, high-multiplex spectroscopic survey facility under development for the Visible and Infrared Survey Telescope for Astronomy (VISTA) 4 meter telescope of the European Southern Observatory (ESO) at Cerro Paranal. The objective of 4MOST is to enable the simultaneous spectroscopy of a significant number of targets within a 2.5° diameter field of view, to allow high-efficiency all-sky spectroscopic surveys. A wide field corrector (WFC) is needed to couple targets across the 2.5° field diameter with the exit pupil concentric with the spherical focal surface where 2400 fibres are configured by a fibre positioner (AESOP). For optimal fibre optic coupling and active optics wavefront sensing the WFC will correct optical aberrations of the primary (M1) and secondary (M2) VISTA optics across the full field of view and provide a well-defined and stable focal surface to which the acquisition/guiding sensors, wavefront sensors, and fibre positioner are interfaced. It will also compensate for the effects of atmospheric dispersion, allowing good chromatic coupling of stellar images with the fibre apertures over a wide range of telescope zenith angles (ZD). The fibres feed three spectrographs; two thirds of the fibres will feed two low resolution spectrographs and the remaining 812 fibres will feed a high-resolution spectrograph. The three spectrographs are fixed-configuration with three channels each. We present the 4MOST optical system together with optical simulation of subsystems.

  18. VizieR Online Data Catalog: The AllWISE motion survey (AllWISE2) (Kirkpatrick+, 2016)

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. D.; Kellogg, K.; Schneider, A. C.; Fajardo-Acosta, S.; Cushing, M. C.; Greco, J.; Mace, G. N.; Gelino, C. R.; Wright, E. L.; Eisenhardt, P. R. M.; Stern, D.; Faherty, J. K.; Sheppard, S. S.; Lansbury, G. B.; Logsdon, S. E.; Martin, E. C.; McLean, I. S.; Schurr, S. D.; Cutri, R. M.; Conrow, T.

    2016-07-01

    Observations for the spectroscopic follow-up of interesting AllWISE sources are listed in Table 4. Optical follow-up was conducted with the Palomar/Double Spectrograph on the Hale 5m telescope on Palomar Mountain, California, as our primary optical spectrograph in the northern hemisphere. It was used during the UT nights of 2014 January 26, February 23/24, April 22, June 25/26, July 21, September 27, October 24, and November 15 as well as 2015 June 08, September 07, and December 10. The Boller & Chivens Spectrograph (BCSpec) on the 2.5m Irenee duPont telescope at Las Campanas Observatory, Chile, served as our primary optical spectrograph in the southern hemisphere and was used on the UT nights of 2014 April 30, May 01-04, and November 16-20. Spectra of 10 objects were obtained on the UT nights of 2014 July 03-04 and 2015 December 07-10 at the European Southern Observatory (ESO) 3.58m New Technology Telescope (NTT) at La Silla, Chile. Spectra of seven objects were obtained on the UT nights of 2014 June 26, 2015 August 13, and 2015 December 05 with the Low Resolution Imaging Spectrometer (LRIS) at the 10m W. M. Keck Observatory on Mauna Kea, Hawaii. SpeX on the NASA 3m Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, served as our primary near-infrared spectrograph in the northern hemisphere. The UT dates of observation were 2014 November 11 and 2015 January 27, May 08-09, June 27, July 03-05, and July 20. The Folded-port Infrared Echellette (FIRE) at the 6.5m Walter Baade Telescope at Las Campanas Observatory, Chile, served as our primary near-infrared spectrograph in the southern hemisphere. The UT dates of observation were 2014 August 07-09, 2015 February 08, and 2015 May 31. Several sources were also observed with the Near-Infrared Spectrometer (NIRSPEC) at the 10m W. M. Keck Observatory on Mauna Kea, Hawaii. The observation dates were UT 2014 April 12 and December 03, and 2015 July 03 and July 11. (9 data files).

  19. SOFIA science instruments: commissioning, upgrades and future opportunities

    NASA Astrophysics Data System (ADS)

    Smith, Erin C.; Miles, John W.; Helton, L. Andrew; Sankrit, Ravi; Andersson, B. G.; Becklin, Eric E.; De Buizer, James M.; Dowell, C. D.; Dunham, Edward W.; Güsten, Rolf; Harper, Doyal A.; Herter, Terry L.; Keller, Luke D.; Klein, Randolf; Krabbe, Alfred; Logsdon, Sarah; Marcum, Pamela M.; McLean, Ian S.; Reach, William T.; Richter, Matthew J.; Roellig, Thomas L.; Sandell, Göran; Savage, Maureen L.; Temi, Pasquale; Vacca, William D.; Vaillancourt, John E.; Van Cleve, Jeffrey E.; Young, Erick T.

    2014-07-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter effective aperture telescope housed in the aft section of a Boeing 747SP aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 μm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1μm imager built by Lowell Observatory; GREAT (German Receiver for Astronomy at Terahertz Frequencies), a multichannel heterodyne spectrometer from 60-240 μm, developed by a consortium led by the Max Planck Institute for Radio Astronomy; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 μm wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-200 μm IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross-Echelle Spectrograph), a 5-28 μm highresolution spectrometer designed at the University of Texas and being completed by UC Davis and NASA Ames Research Center. HAWC+ (High-resolution Airborne Wideband Camera) is a 50-240 μm imager that was originally developed at the University of Chicago as a first-generation instrument (HAWC), and is being upgraded at JPL to add polarimetry and new detectors developed at Goddard Space Flight Center (GSFC). SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details the current instrument capabilities and status, as well as the plans for future instrumentation.

  20. Dark Energy Camera (DECam) | CTIO

    Science.gov Websites

    DECam SAM 0.9-m CCD Goodman SOI Optical Spectrographs CHIRON COSMOS Goodman Filters Telescopes Blanco 4 affecting mainly short exposures taken with bluer filters in dark conditions. 2015 Dec. A new filter, N964 the SDSS filters, has been successfully installed. Images are still being evaluated, but looks good

Top