Fast Fuzzy Arithmetic Operations
NASA Technical Reports Server (NTRS)
Hampton, Michael; Kosheleva, Olga
1997-01-01
In engineering applications of fuzzy logic, the main goal is not to simulate the way the experts really think, but to come up with a good engineering solution that would (ideally) be better than the expert's control, In such applications, it makes perfect sense to restrict ourselves to simplified approximate expressions for membership functions. If we need to perform arithmetic operations with the resulting fuzzy numbers, then we can use simple and fast algorithms that are known for operations with simple membership functions. In other applications, especially the ones that are related to humanities, simulating experts is one of the main goals. In such applications, we must use membership functions that capture every nuance of the expert's opinion; these functions are therefore complicated, and fuzzy arithmetic operations with the corresponding fuzzy numbers become a computational problem. In this paper, we design a new algorithm for performing such operations. This algorithm is applicable in the case when negative logarithms - log(u(x)) of membership functions u(x) are convex, and reduces computation time from O(n(exp 2))to O(n log(n)) (where n is the number of points x at which we know the membership functions u(x)).
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Jamshid; Mahdizadeh, Kourosh; Afshar, Abbas
2004-08-01
Application of stochastic dynamic programming (SDP) models to reservoir optimization calls for state variables discretization. As an important variable discretization of reservoir storage volume has a pronounced effect on the computational efforts. The error caused by storage volume discretization is examined by considering it as a fuzzy state variable. In this approach, the point-to-point transitions between storage volumes at the beginning and end of each period are replaced by transitions between storage intervals. This is achieved by using fuzzy arithmetic operations with fuzzy numbers. In this approach, instead of aggregating single-valued crisp numbers, the membership functions of fuzzy numbers are combined. Running a simulated model with optimal release policies derived from fuzzy and non-fuzzy SDP models shows that a fuzzy SDP with a coarse discretization scheme performs as well as a classical SDP having much finer discretized space. It is believed that this advantage in the fuzzy SDP model is due to the smooth transitions between storage intervals which benefit from soft boundaries.
An algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equations
NASA Astrophysics Data System (ADS)
Daud, Wan Suhana Wan; Ahmad, Nazihah; Malkawi, Ghassan
2017-11-01
Sylvester matrix equations played a prominent role in various areas including control theory. Considering to any un-certainty problems that can be occurred at any time, the Sylvester matrix equation has to be adapted to the fuzzy environment. Therefore, in this study, an algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equation is constructed. The construction of the algorithm is based on the max-min arithmetic multiplication operation. Besides that, an associated arbitrary matrix equation is modified in obtaining the final solution. Finally, some numerical examples are presented to illustrate the proposed algorithm.
Solving fully fuzzy transportation problem using pentagonal fuzzy numbers
NASA Astrophysics Data System (ADS)
Maheswari, P. Uma; Ganesan, K.
2018-04-01
In this paper, we propose a simple approach for the solution of fuzzy transportation problem under fuzzy environment in which the transportation costs, supplies at sources and demands at destinations are represented by pentagonal fuzzy numbers. The fuzzy transportation problem is solved without converting to its equivalent crisp form using a robust ranking technique and a new fuzzy arithmetic on pentagonal fuzzy numbers. To illustrate the proposed approach a numerical example is provided.
The weakest t-norm based intuitionistic fuzzy fault-tree analysis to evaluate system reliability.
Kumar, Mohit; Yadav, Shiv Prasad
2012-07-01
In this paper, a new approach of intuitionistic fuzzy fault-tree analysis is proposed to evaluate system reliability and to find the most critical system component that affects the system reliability. Here weakest t-norm based intuitionistic fuzzy fault tree analysis is presented to calculate fault interval of system components from integrating expert's knowledge and experience in terms of providing the possibility of failure of bottom events. It applies fault-tree analysis, α-cut of intuitionistic fuzzy set and T(ω) (the weakest t-norm) based arithmetic operations on triangular intuitionistic fuzzy sets to obtain fault interval and reliability interval of the system. This paper also modifies Tanaka et al.'s fuzzy fault-tree definition. In numerical verification, a malfunction of weapon system "automatic gun" is presented as a numerical example. The result of the proposed method is compared with the listing approaches of reliability analysis methods. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Classification of air quality using fuzzy synthetic multiplication.
Abdullah, Lazim; Khalid, Noor Dalina
2012-11-01
Proper identification of environment's air quality based on limited observations is an essential task to meet the goals of environmental management. Various classification methods have been used to estimate the change of air quality status and health. However, discrepancies frequently arise from the lack of clear distinction between each air quality, the uncertainty in the quality criteria employed and the vagueness or fuzziness embedded in the decision-making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies when describing integrated air quality conditions with respect to various pollutants. Therefore, this paper presents two fuzzy multiplication synthetic techniques to establish classification of air quality. The fuzzy multiplication technique empowers the max-min operations in "or" and "and" in executing the fuzzy arithmetic operations. Based on a set of air pollutants data carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matter (PM(10)) collected from a network of 51 stations in Klang Valley, East Malaysia, Sabah, and Sarawak were utilized in this evaluation. The two fuzzy multiplication techniques consistently classified Malaysia's air quality as "good." The findings indicated that the techniques may have successfully harmonized inherent discrepancies and interpret complex conditions. It was demonstrated that fuzzy synthetic multiplication techniques are quite appropriate techniques for air quality management.
Efficient solution of a multi objective fuzzy transportation problem
NASA Astrophysics Data System (ADS)
Vidhya, V.; Ganesan, K.
2018-04-01
In this paper we present a methodology for the solution of multi-objective fuzzy transportation problem when all the cost and time coefficients are trapezoidal fuzzy numbers and the supply and demand are crisp numbers. Using a new fuzzy arithmetic on parametric form of trapezoidal fuzzy numbers and a new ranking method all efficient solutions are obtained. The proposed method is illustrated with an example.
NASA Astrophysics Data System (ADS)
Feizizadeh, Bakhtiar; Blaschke, Thomas; Tiede, Dirk; Moghaddam, Mohammad Hossein Rezaei
2017-09-01
This article presents a method of object-based image analysis (OBIA) for landslide delineation and landslide-related change detection from multi-temporal satellite images. It uses both spatial and spectral information on landslides, through spectral analysis, shape analysis, textural measurements using a gray-level co-occurrence matrix (GLCM), and fuzzy logic membership functionality. Following an initial segmentation step, particular combinations of various information layers were investigated to generate objects. This was achieved by applying multi-resolution segmentation to IRS-1D, SPOT-5, and ALOS satellite imagery in sequential steps of feature selection and object classification, and using slope and flow direction derivatives from a digital elevation model together with topographically-oriented gray level co-occurrence matrices. Fuzzy membership values were calculated for 11 different membership functions using 20 landslide objects from a landslide training data. Six fuzzy operators were used for the final classification and the accuracies of the resulting landslide maps were compared. A Fuzzy Synthetic Evaluation (FSE) approach was adapted for validation of the results and for an accuracy assessment using the landslide inventory database. The FSE approach revealed that the AND operator performed best with an accuracy of 93.87% for 2005 and 94.74% for 2011, closely followed by the MEAN Arithmetic operator, while the OR and AND (*) operators yielded relatively low accuracies. An object-based change detection was then applied to monitor landslide-related changes that occurred in northern Iran between 2005 and 2011. Knowledge rules to detect possible landslide-related changes were developed by evaluating all possible landslide-related objects for both time steps.
Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale
Diao, Yuzhu; Hu, Aqin
2018-01-01
Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation. PMID:29498699
Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale.
Li, Qingsheng; Diao, Yuzhu; Gong, Zaiwu; Hu, Aqin
2018-03-02
Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation.
Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept.
Mazandarani, Mehran; Pariz, Naser
2018-05-01
This paper deals with sub-optimal control of a fuzzy linear dynamical system. The aim is to keep the state variables of the fuzzy linear dynamical system close to zero in an optimal manner. In the fuzzy dynamical system, the fuzzy derivative is considered as the granular derivative; and all the coefficients and initial conditions can be uncertain. The criterion for assessing the optimality is regarded as a granular integral whose integrand is a quadratic function of the state variables and control inputs. Using the relative-distance-measure (RDM) fuzzy interval arithmetic and calculus of variations, the optimal control law is presented as the fuzzy state variables feedback. Since the optimal feedback gains are obtained as fuzzy functions, they need to be defuzzified. This will result in the sub-optimal control law. This paper also sheds light on the restrictions imposed by the approaches which are based on fuzzy standard interval arithmetic (FSIA), and use strongly generalized Hukuhara and generalized Hukuhara differentiability concepts for obtaining the optimal control law. The granular eigenvalues notion is also defined. Using an RLC circuit mathematical model, it is shown that, due to their unnatural behavior in the modeling phenomenon, the FSIA-based approaches may obtain some eigenvalues sets that might be different from the inherent eigenvalues set of the fuzzy dynamical system. This is, however, not the case with the approach proposed in this study. The notions of granular controllability and granular stabilizability of the fuzzy linear dynamical system are also presented in this paper. Moreover, a sub-optimal control for regulating a Boeing 747 in longitudinal direction with uncertain initial conditions and parameters is gained. In addition, an uncertain suspension system of one of the four wheels of a bus is regulated using the sub-optimal control introduced in this paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Komal
2018-05-01
Nowadays power consumption is increasing day-by-day. To fulfill failure free power requirement, planning and implementation of an effective and reliable power management system is essential. Phasor measurement unit(PMU) is one of the key device in wide area measurement and control systems. The reliable performance of PMU assures failure free power supply for any power system. So, the purpose of the present study is to analyse the reliability of a PMU used for controllability and observability of power systems utilizing available uncertain data. In this paper, a generalized fuzzy lambda-tau (GFLT) technique has been proposed for this purpose. In GFLT, system components' uncertain failure and repair rates are fuzzified using fuzzy numbers having different shapes such as triangular, normal, cauchy, sharp gamma and trapezoidal. To select a suitable fuzzy number for quantifying data uncertainty, system experts' opinion have been considered. The GFLT technique applies fault tree, lambda-tau method, fuzzified data using different membership functions, alpha-cut based fuzzy arithmetic operations to compute some important reliability indices. Furthermore, in this study ranking of critical components of the system using RAM-Index and sensitivity analysis have also been performed. The developed technique may be helpful to improve system performance significantly and can be applied to analyse fuzzy reliability of other engineering systems. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
1985-03-15
elicitation - rankings, ratings, and pairwise comparisons, 2) Value Theory: includes an explanation of the AHP and fuzzy set theory, and 3) Group... AHP are better tools for these " fuzzy " applications. These results apply directly to this thesis. The original Battelle survey used direct ratings to...iridepeindent uf three arggretation toctiiIque5: geometric mean input, arithmetic me;n voctor output, and Majority rle,, output. The AHP consi:3tcncy index was
Design of a self-adaptive fuzzy PID controller for piezoelectric ceramics micro-displacement system
NASA Astrophysics Data System (ADS)
Zhang, Shuang; Zhong, Yuning; Xu, Zhongbao
2008-12-01
In order to improve control precision of the piezoelectric ceramics (PZT) micro-displacement system, a self-adaptive fuzzy Proportional Integration Differential (PID) controller is designed based on the traditional digital PID controller combining with fuzzy control. The arithmetic gives a fuzzy control rule table with the fuzzy control rule and fuzzy reasoning, through this table, the PID parameters can be adjusted online in real time control. Furthermore, the automatic selective control is achieved according to the change of the error. The controller combines the good dynamic capability of the fuzzy control and the high stable precision of the PID control, adopts the method of using fuzzy control and PID control in different segments of time. In the initial and middle stage of the transition process of system, that is, when the error is larger than the value, fuzzy control is used to adjust control variable. It makes full use of the fast response of the fuzzy control. And when the error is smaller than the value, the system is about to be in the steady state, PID control is adopted to eliminate static error. The problems of PZT existing in the field of precise positioning are overcome. The results of the experiments prove that the project is correct and practicable.
Scheduling of flow shop problems on 3 machines in fuzzy environment with double transport facility
NASA Astrophysics Data System (ADS)
Sathish, Shakeela; Ganesan, K.
2016-06-01
Flow shop scheduling is a decision making problem in production and manufacturing field which has a significant impact on the performance of an organization. When the machines on which jobs are to be processed are placed at different places, the transportation time plays a significant role in production. Further two different transport agents where 1st takes the job from 1st machine to 2nd machine and then returns back to the first machine and the 2nd takes the job from 2nd machine to 3rd machine and then returns back to the 2nd machine are also considered. We propose a method to minimize the total make span; without converting the fuzzy processing time to classical numbers by using a new type of fuzzy arithmetic and a fuzzy ranking method. A numerical example is provided to explain the proposed method.
Identification procedure for epistemic uncertainties using inverse fuzzy arithmetic
NASA Astrophysics Data System (ADS)
Haag, T.; Herrmann, J.; Hanss, M.
2010-10-01
For the mathematical representation of systems with epistemic uncertainties, arising, for example, from simplifications in the modeling procedure, models with fuzzy-valued parameters prove to be a suitable and promising approach. In practice, however, the determination of these parameters turns out to be a non-trivial problem. The identification procedure to appropriately update these parameters on the basis of a reference output (measurement or output of an advanced model) requires the solution of an inverse problem. Against this background, an inverse method for the computation of the fuzzy-valued parameters of a model with epistemic uncertainties is presented. This method stands out due to the fact that it only uses feedforward simulations of the model, based on the transformation method of fuzzy arithmetic, along with the reference output. An inversion of the system equations is not necessary. The advancement of the method presented in this paper consists of the identification of multiple input parameters based on a single reference output or measurement. An optimization is used to solve the resulting underdetermined problems by minimizing the uncertainty of the identified parameters. Regions where the identification procedure is reliable are determined by the computation of a feasibility criterion which is also based on the output data of the transformation method only. For a frequency response function of a mechanical system, this criterion allows a restriction of the identification process to some special range of frequency where its solution can be guaranteed. Finally, the practicability of the method is demonstrated by covering the measured output of a fluid-filled piping system by the corresponding uncertain FE model in a conservative way.
Wong, Terry Tin-Yau
2017-12-01
The current study examined the unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement. A sample of 124 fourth graders was tested on their arithmetic operation understanding (as reflected by their understanding of arithmetic principles and the knowledge about the application of arithmetic operations) and their precision of rational number magnitude representation. They were also tested on their mathematics achievement and arithmetic computation performance as well as the potential confounding factors. The findings suggested that both arithmetic operation understanding and numerical magnitude representation uniquely predicted children's mathematics achievement. The findings highlight the significance of arithmetic operation understanding in mathematics learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Application of Fuzzy TOPSIS for evaluating machining techniques using sustainability metrics
NASA Astrophysics Data System (ADS)
Digalwar, Abhijeet K.
2018-04-01
Sustainable processes and techniques are getting increased attention over the last few decades due to rising concerns over the environment, improved focus on productivity and stringency in environmental as well as occupational health and safety norms. The present work analyzes the research on sustainable machining techniques and identifies techniques and parameters on which sustainability of a process is evaluated. Based on the analysis these parameters are then adopted as criteria’s to evaluate different sustainable machining techniques such as Cryogenic Machining, Dry Machining, Minimum Quantity Lubrication (MQL) and High Pressure Jet Assisted Machining (HPJAM) using a fuzzy TOPSIS framework. In order to facilitate easy arithmetic, the linguistic variables represented by fuzzy numbers are transformed into crisp numbers based on graded mean representation. Cryogenic machining was found to be the best alternative sustainable technique as per the fuzzy TOPSIS framework adopted. The paper provides a method to deal with multi criteria decision making problems in a complex and linguistic environment.
A Qualitative Simulation Framework in Smalltalk Based on Fuzzy Arithmetic
Richard L. Olson; Daniel L. Schmoldt; David L. Peterson
1996-01-01
For many systems, it is not practical to collect and correlate empirical data necessary to formulate a mathematical model. However, it is often sufficient to predict qualitative dynamics effects (as opposed to system quantities), especially for research purposes. In this effort, an object-oriented application framework (AF) was developed for the qualitative modeling of...
NASA Technical Reports Server (NTRS)
Howard, Ayanna; Bayard, David
2006-01-01
Fuzzy Feature Observation Planner for Small Body Proximity Observations (FuzzObserver) is a developmental computer program, to be used along with other software, for autonomous planning of maneuvers of a spacecraft near an asteroid, comet, or other small astronomical body. Selection of terrain features and estimation of the position of the spacecraft relative to these features is an essential part of such planning. FuzzObserver contributes to the selection and estimation by generating recommendations for spacecraft trajectory adjustments to maintain the spacecraft's ability to observe sufficient terrain features for estimating position. The input to FuzzObserver consists of data from terrain images, including sets of data on features acquired during descent toward, or traversal of, a body of interest. The name of this program reflects its use of fuzzy logic to reason about the terrain features represented by the data and extract corresponding trajectory-adjustment rules. Linguistic fuzzy sets and conditional statements enable fuzzy systems to make decisions based on heuristic rule-based knowledge derived by engineering experts. A major advantage of using fuzzy logic is that it involves simple arithmetic calculations that can be performed rapidly enough to be useful for planning within the short times typically available for spacecraft maneuvers.
Fehr, Thorsten; Code, Chris; Herrmann, Manfred
2007-10-03
The issue of how and where arithmetic operations are represented in the brain has been addressed in numerous studies. Lesion studies suggest that a network of different brain areas are involved in mental calculation. Neuroimaging studies have reported inferior parietal and lateral frontal activations during mental arithmetic using tasks of different complexities and using different operators (addition, subtraction, etc.). Indeed, it has been difficult to compare brain activation across studies because of the variety of different operators and different presentation modalities used. The present experiment examined fMRI-BOLD activity in participants during calculation tasks entailing different arithmetic operations -- addition, subtraction, multiplication and division -- of different complexities. Functional imaging data revealed a common activation pattern comprising right precuneus, left and right middle and superior frontal regions during all arithmetic operations. All other regional activations were operation specific and distributed in prominently frontal, parietal and central regions when contrasting complex and simple calculation tasks. The present results largely confirm former studies suggesting that activation patterns due to mental arithmetic appear to reflect a basic anatomical substrate of working memory, numerical knowledge and processing based on finger counting, and derived from a network originally related to finger movement. We emphasize that in mental arithmetic research different arithmetic operations should always be examined and discussed independently of each other in order to avoid invalid generalizations on arithmetics and involved brain areas.
NASA Astrophysics Data System (ADS)
Su, Zhi-xin; Xia, Guo-ping; Chen, Ming-yuan
2011-11-01
In this paper, we define various induced intuitionistic fuzzy aggregation operators, including induced intuitionistic fuzzy ordered weighted averaging (OWA) operator, induced intuitionistic fuzzy hybrid averaging (I-IFHA) operator, induced interval-valued intuitionistic fuzzy OWA operator, and induced interval-valued intuitionistic fuzzy hybrid averaging (I-IIFHA) operator. We also establish various properties of these operators. And then, an approach based on I-IFHA operator and intuitionistic fuzzy weighted averaging (WA) operator is developed to solve multi-attribute group decision-making (MAGDM) problems. In such problems, attribute weights and the decision makers' (DMs') weights are real numbers and attribute values provided by the DMs are intuitionistic fuzzy numbers (IFNs), and an approach based on I-IIFHA operator and interval-valued intuitionistic fuzzy WA operator is developed to solve MAGDM problems where the attribute values provided by the DMs are interval-valued IFNs. Furthermore, induced intuitionistic fuzzy hybrid geometric operator and induced interval-valued intuitionistic fuzzy hybrid geometric operator are proposed. Finally, a numerical example is presented to illustrate the developed approaches.
Quantity, Revisited: An Object-Oriented Reusable Class
NASA Technical Reports Server (NTRS)
Funston, Monica Gayle; Gerstle, Walter; Panthaki, Malcolm
1998-01-01
"Quantity", a prototype implementation of an object-oriented class, was developed for two reasons: to help engineers and scientists manipulate the many types of quantities encountered during routine analysis, and to create a reusable software component to for large domain-specific applications. From being used as a stand-alone application to being incorporated into an existing computational mechanics toolkit, "Quantity" appears to be a useful and powerful object. "Quantity" has been designed to maintain the full engineering meaning of values with respect to units and coordinate systems. A value is a scalar, vector, tensor, or matrix, each of which is composed of Value Components, each of which may be an integer, floating point number, fuzzy number, etc., and its associated physical unit. Operations such as coordinate transformation and arithmetic operations are handled by member functions of "Quantity". The prototype has successfully tested such characteristics as maintaining a numeric value, an associated unit, and an annotation. In this paper we further explore the design of "Quantity", with particular attention to coordinate systems.
Conceptual Knowledge of Fraction Arithmetic
ERIC Educational Resources Information Center
Siegler, Robert S.; Lortie-Forgues, Hugues
2015-01-01
Understanding an arithmetic operation implies, at minimum, knowing the direction of effects that the operation produces. However, many children and adults, even those who execute arithmetic procedures correctly, may lack this knowledge on some operations and types of numbers. To test this hypothesis, we presented preservice teachers (Study 1),…
NASA Astrophysics Data System (ADS)
Liu, Peide; Qin, Xiyou
2017-11-01
Linguistic intuitionistic fuzzy number (LIFN) is a special intuitionistic fuzzy number which can more easily describe the vagueness existing in the real decision-making. Maclaurin symmetric mean (MSM) operator has the characteristic of considering the interrelationships among any number of input parameters. In this paper, we extended the MSM operator to the LIFNs and some extended MSM operators for LIFNs were proposed, some new decision-making methods were developed. Firstly, we introduced the definition, score function, properties and operational rules of the LIFNs. Then, we proposed some linguistic intuitionistic fuzzy MSM operators, such as linguistic intuitionistic fuzzy Maclaurin symmetric mean operator, weighted linguistic intuitionistic fuzzy Maclaurin symmetric mean (WLIFMSM) operator, linguistic intuitionistic fuzzy dual Maclaurin symmetric mean operator, weighted linguistic intuitionistic fuzzy dual Maclaurin symmetric mean (WLIFDMSM) operator. In the meantime, we studied some important properties of these operators, and developed some methods based on WLIFMSM operator and WLIFDMSM operator for multi-attribute decision-making. Finally, we use an example to demonstrate the effectiveness of the proposed methods.
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
Baby Arithmetic: One Object Plus One Tone
ERIC Educational Resources Information Center
Kobayashi, Tessei; Hiraki, Kazuo; Mugitani, Ryoko; Hasegawa, Toshikazu
2004-01-01
Recent studies using a violation-of-expectation task suggest that preverbal infants are capable of recognizing basic arithmetical operations involving visual objects. There is still debate, however, over whether their performance is based on any expectation of the arithmetical operations, or on a general perceptual tendency to prefer visually…
Environmental impact assessment procedure: A new approach based on fuzzy logic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peche, Roberto, E-mail: roberto.peche@ehu.e; Rodriguez, Esther, E-mail: esther.rodriguez@ehu.e
2009-09-15
The information related to the different environmental impacts produced by the execution of activities and projects is often limited, described by semantic variables and, affected by a high degree of inaccuracy and uncertainty, thereby making fuzzy logic a suitable tool with which to express and treat this information. The present study proposes a new approach based on fuzzy logic to carry out the environmental impact assessment (EIA) of these activities and projects. Firstly, a set of impact properties is stated and two nondimensional parameters - ranging from 0 to 100 -are assigned, (p{sub i}) to assess the value of themore » property and (v{sub i}) to assess its contribution to each environmental impact. Next, the impact properties are described by means of fuzzy numbers p{sub i}{sup -} using generalised confidence intervals. Then, a procedure based on fuzzy arithmetic is developed to define the assessment functions v-bar = f(p-bar) - conventional mathematical functions, which incorporate the knowledge of these impact properties and give the fuzzy values v{sub i}{sup -} corresponding to each p{sub i}{sup -}. Subsequently, the fuzzy value of each environmental impact V-bar is estimated by aggregation of the values v{sub i}{sup -}, in order to obtain the total positive and negative environmental impacts V{sup +-} and V{sup --} and, later - from them - the total environmental impact of the activity or project TV{sup -}. Finally, the defuzzyfication of TV{sup -} leads to a punctual impact estimator TV{sup (1)} - a conventional EI estimation - and its corresponding uncertainty interval estimator left brace(delta{sub l}(TV{sup -}),delta{sub r}(TV{sup -})right brace, which represent the total value of the environmental impact caused by the execution of the considered activity or project.« less
Optical computation using residue arithmetic.
Huang, A; Tsunoda, Y; Goodman, J W; Ishihara, S
1979-01-15
Using residue arithmetic it is possible to perform additions, subtractions, multiplications, and polynomial evaluation without the necessity for carry operations. Calculations can, therefore, be performed in a fully parallel manner. Several different optical methods for performing residue arithmetic operations are described. A possible combination of such methods to form a matrix vector multiplier is considered. The potential advantages of optics in performing these kinds of operations are discussed.
Semantic layers for illustrative volume rendering.
Rautek, Peter; Bruckner, Stefan; Gröller, Eduard
2007-01-01
Direct volume rendering techniques map volumetric attributes (e.g., density, gradient magnitude, etc.) to visual styles. Commonly this mapping is specified by a transfer function. The specification of transfer functions is a complex task and requires expert knowledge about the underlying rendering technique. In the case of multiple volumetric attributes and multiple visual styles the specification of the multi-dimensional transfer function becomes more challenging and non-intuitive. We present a novel methodology for the specification of a mapping from several volumetric attributes to multiple illustrative visual styles. We introduce semantic layers that allow a domain expert to specify the mapping in the natural language of the domain. A semantic layer defines the mapping of volumetric attributes to one visual style. Volumetric attributes and visual styles are represented as fuzzy sets. The mapping is specified by rules that are evaluated with fuzzy logic arithmetics. The user specifies the fuzzy sets and the rules without special knowledge about the underlying rendering technique. Semantic layers allow for a linguistic specification of the mapping from attributes to visual styles replacing the traditional transfer function specification.
Wang, Chunyong; Li, Qingguo; Zhou, Xiaoqiang; Yang, Tian
2014-01-01
We investigate the multiple attribute decision-making (MADM) problems with hesitant triangular fuzzy information. Firstly, definition and some operational laws of hesitant triangular fuzzy elements are introduced. Then, we develop some hesitant triangular fuzzy aggregation operators based on Bonferroni means and discuss their basic properties. Some existing operators can be viewed as their special cases. Next, we apply the proposed operators to deal with multiple attribute decision-making problems under hesitant triangular fuzzy environment. Finally, an illustrative example is given to show the developed method and demonstrate its practicality and effectiveness.
Zhou, Xiaoqiang; Yang, Tian
2014-01-01
We investigate the multiple attribute decision-making (MADM) problems with hesitant triangular fuzzy information. Firstly, definition and some operational laws of hesitant triangular fuzzy elements are introduced. Then, we develop some hesitant triangular fuzzy aggregation operators based on Bonferroni means and discuss their basic properties. Some existing operators can be viewed as their special cases. Next, we apply the proposed operators to deal with multiple attribute decision-making problems under hesitant triangular fuzzy environment. Finally, an illustrative example is given to show the developed method and demonstrate its practicality and effectiveness. PMID:25140338
Multicriteria Decision-Making Approach with Hesitant Interval-Valued Intuitionistic Fuzzy Sets
Peng, Juan-juan; Wang, Jian-qiang; Wang, Jing; Chen, Xiao-hong
2014-01-01
The definition of hesitant interval-valued intuitionistic fuzzy sets (HIVIFSs) is developed based on interval-valued intuitionistic fuzzy sets (IVIFSs) and hesitant fuzzy sets (HFSs). Then, some operations on HIVIFSs are introduced in detail, and their properties are further discussed. In addition, some hesitant interval-valued intuitionistic fuzzy number aggregation operators based on t-conorms and t-norms are proposed, which can be used to aggregate decision-makers' information in multicriteria decision-making (MCDM) problems. Some valuable proposals of these operators are studied. In particular, based on algebraic and Einstein t-conorms and t-norms, some hesitant interval-valued intuitionistic fuzzy algebraic aggregation operators and Einstein aggregation operators can be obtained, respectively. Furthermore, an approach of MCDM problems based on the proposed aggregation operators is given using hesitant interval-valued intuitionistic fuzzy information. Finally, an illustrative example is provided to demonstrate the applicability and effectiveness of the developed approach, and the study is supported by a sensitivity analysis and a comparison analysis. PMID:24983009
Classified one-step high-radix signed-digit arithmetic units
NASA Astrophysics Data System (ADS)
Cherri, Abdallah K.
1998-08-01
High-radix number systems enable higher information storage density, less complexity, fewer system components, and fewer cascaded gates and operations. A simple one-step fully parallel high-radix signed-digit arithmetic is proposed for parallel optical computing based on new joint spatial encodings. This reduces hardware requirements and improves throughput by reducing the space-bandwidth produce needed. The high-radix signed-digit arithmetic operations are based on classifying the neighboring input digit pairs into various groups to reduce the computation rules. A new joint spatial encoding technique is developed to present both the operands and the computation rules. This technique increases the spatial bandwidth product of the spatial light modulators of the system. An optical implementation of the proposed high-radix signed-digit arithmetic operations is also presented. It is shown that our one-step trinary signed-digit and quaternary signed-digit arithmetic units are much simpler and better than all previously reported high-radix signed-digit techniques.
Group Decision Making Based on Heronian Aggregation Operators of Intuitionistic Fuzzy Numbers.
Liu, Peide; Chen, Shyi-Ming
2017-09-01
Archimedean t -conorm and t -norm provide the general operational rules for intuitionistic fuzzy numbers (IFNs). The aggregation operators based on them can generalize most of the existing aggregation operators. At the same time, the Heronian mean (HM) has a significant advantage of considering interrelationships between the attributes. Therefore, it is very necessary to extend the HM based on IFNs and to construct intuitionistic fuzzy HM operators based on the Archimedean t -conorm and t -norm. In this paper, we first discuss intuitionistic fuzzy operational rules based on the Archimedean t -conorm and t -norm. Then, we propose the intuitionistic fuzzy Archimedean Heronian aggregation (IFAHA) operator and the intuitionistic fuzzy weight Archimedean Heronian aggregation (IFWAHA) operator. We also further discuss some properties and some special cases of these new operators. Moreover, we also propose a new multiple attribute group decision making (MAGDM) method based on the proposed IFAHA operator and the proposed IFWAHA operator. Finally, we use an illustrative example to show the MAGDM processes and to illustrate the effectiveness of the developed method.
Peng, Ding-Hong; Wang, Tie-Dan; Gao, Chang-Yuan; Wang, Hua
2014-01-01
Interval-valued hesitant fuzzy set (IVHFS), which is the further generalization of hesitant fuzzy set, can overcome the barrier that the precise membership degrees are sometimes hard to be specified and permit the membership degrees of an element to a set to have a few different interval values. To efficiently and effectively aggregate the interval-valued hesitant fuzzy information, in this paper, we investigate the continuous hesitant fuzzy aggregation operators with the aid of continuous OWA operator; the C-HFOWA operator and C-HFOWG operator are presented and their essential properties are studied in detail. Then, we extend the C-HFOW operators to aggregate multiple interval-valued hesitant fuzzy elements and then develop the weighted C-HFOW (WC-HFOWA and WC-HFOWG) operators, the ordered weighted C-HFOW (OWC-HFOWA and OWC-HFOWG) operators, and the synergetic weighted C-HFOWA (SWC-HFOWA and SWC-HFOWG) operators; some properties are also discussed to support them. Furthermore, a SWC-HFOW operators-based approach for multicriteria decision making problem is developed. Finally, a practical example involving the evaluation of service quality of high-tech enterprises is carried out and some comparative analyses are performed to demonstrate the applicability and effectiveness of the developed approaches.
Wang, Tie-Dan; Gao, Chang-Yuan; Wang, Hua
2014-01-01
Interval-valued hesitant fuzzy set (IVHFS), which is the further generalization of hesitant fuzzy set, can overcome the barrier that the precise membership degrees are sometimes hard to be specified and permit the membership degrees of an element to a set to have a few different interval values. To efficiently and effectively aggregate the interval-valued hesitant fuzzy information, in this paper, we investigate the continuous hesitant fuzzy aggregation operators with the aid of continuous OWA operator; the C-HFOWA operator and C-HFOWG operator are presented and their essential properties are studied in detail. Then, we extend the C-HFOW operators to aggregate multiple interval-valued hesitant fuzzy elements and then develop the weighted C-HFOW (WC-HFOWA and WC-HFOWG) operators, the ordered weighted C-HFOW (OWC-HFOWA and OWC-HFOWG) operators, and the synergetic weighted C-HFOWA (SWC-HFOWA and SWC-HFOWG) operators; some properties are also discussed to support them. Furthermore, a SWC-HFOW operators-based approach for multicriteria decision making problem is developed. Finally, a practical example involving the evaluation of service quality of high-tech enterprises is carried out and some comparative analyses are performed to demonstrate the applicability and effectiveness of the developed approaches. PMID:24987747
Children learn spurious associations in their math textbooks: Examples from fraction arithmetic.
Braithwaite, David W; Siegler, Robert S
2018-04-26
Fraction arithmetic is among the most important and difficult topics children encounter in elementary and middle school mathematics. Braithwaite, Pyke, and Siegler (2017) hypothesized that difficulties learning fraction arithmetic often reflect reliance on associative knowledge-rather than understanding of mathematical concepts and procedures-to guide choices of solution strategies. They further proposed that this associative knowledge reflects distributional characteristics of the fraction arithmetic problems children encounter. To test these hypotheses, we examined textbooks and middle school children in the United States (Experiments 1 and 2) and China (Experiment 3). We asked the children to predict which arithmetic operation would accompany a specified pair of operands, to generate operands to accompany a specified arithmetic operation, and to match operands and operations. In both countries, children's responses indicated that they associated operand pairs having equal denominators with addition and subtraction, and operand pairs having a whole number and a fraction with multiplication and division. The children's associations paralleled the textbook input in both countries, which was consistent with the hypothesis that children learned the associations from the practice problems. Differences in the effects of such associative knowledge on U.S. and Chinese children's fraction arithmetic performance are discussed, as are implications of these differences for educational practice. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Yin, Kedong; Yang, Benshuo; Li, Xuemei
2018-01-24
In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making.
Yin, Kedong; Yang, Benshuo
2018-01-01
In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making. PMID:29364849
Representation of natural numbers in quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, Paul
2001-03-01
This paper represents one approach to making explicit some of the assumptions and conditions implied in the widespread representation of numbers by composite quantum systems. Any nonempty set and associated operations is a set of natural numbers or a model of arithmetic if the set and operations satisfy the axioms of number theory or arithmetic. This paper is limited to k-ary representations of length L and to the axioms for arithmetic modulo k{sup L}. A model of the axioms is described based on an abstract L-fold tensor product Hilbert space H{sup arith}. Unitary maps of this space onto a physicalmore » parameter based product space H{sup phy} are then described. Each of these maps makes states in H{sup phy}, and the induced operators, a model of the axioms. Consequences of the existence of many of these maps are discussed along with the dependence of Grover's and Shor's algorithms on these maps. The importance of the main physical requirement, that the basic arithmetic operations are efficiently implementable, is discussed. This condition states that there exist physically realizable Hamiltonians that can implement the basic arithmetic operations and that the space-time and thermodynamic resources required are polynomial in L.« less
Concurrent error detecting codes for arithmetic processors
NASA Technical Reports Server (NTRS)
Lim, R. S.
1979-01-01
A method of concurrent error detection for arithmetic processors is described. Low-cost residue codes with check-length l and checkbase m = 2 to the l power - 1 are described for checking arithmetic operations of addition, subtraction, multiplication, division complement, shift, and rotate. Of the three number representations, the signed-magnitude representation is preferred for residue checking. Two methods of residue generation are described: the standard method of using modulo m adders and the method of using a self-testing residue tree. A simple single-bit parity-check code is described for checking the logical operations of XOR, OR, and AND, and also the arithmetic operations of complement, shift, and rotate. For checking complement, shift, and rotate, the single-bit parity-check code is simpler to implement than the residue codes.
NASA Astrophysics Data System (ADS)
Ibrahim, Wael Refaat Anis
The present research involves the development of several fuzzy expert systems for power quality analysis and diagnosis. Intelligent systems for the prediction of abnormal system operation were also developed. The performance of all intelligent modules developed was either enhanced or completely produced through adaptive fuzzy learning techniques. Neuro-fuzzy learning is the main adaptive technique utilized. The work presents a novel approach to the interpretation of power quality from the perspective of the continuous operation of a single system. The research includes an extensive literature review pertaining to the applications of intelligent systems to power quality analysis. Basic definitions and signature events related to power quality are introduced. In addition, detailed discussions of various artificial intelligence paradigms as well as wavelet theory are included. A fuzzy-based intelligent system capable of identifying normal from abnormal operation for a given system was developed. Adaptive neuro-fuzzy learning was applied to enhance its performance. A group of fuzzy expert systems that could perform full operational diagnosis were also developed successfully. The developed systems were applied to the operational diagnosis of 3-phase induction motors and rectifier bridges. A novel approach for learning power quality waveforms and trends was developed. The technique, which is adaptive neuro fuzzy-based, learned, compressed, and stored the waveform data. The new technique was successfully tested using a wide variety of power quality signature waveforms, and using real site data. The trend-learning technique was incorporated into a fuzzy expert system that was designed to predict abnormal operation of a monitored system. The intelligent system learns and stores, in compressed format, trends leading to abnormal operation. The system then compares incoming data to the retained trends continuously. If the incoming data matches any of the learned trends, an alarm is instigated predicting the advent of system abnormal operation. The incoming data could be compared to previous trends as well as matched to trends developed through computer simulations and stored using fuzzy learning.
The neural correlates of mental arithmetic in adolescents: a longitudinal fNIRS study.
Artemenko, Christina; Soltanlou, Mojtaba; Ehlis, Ann-Christine; Nuerk, Hans-Christoph; Dresler, Thomas
2018-03-10
Arithmetic processing in adults is known to rely on a frontal-parietal network. However, neurocognitive research focusing on the neural and behavioral correlates of arithmetic development has been scarce, even though the acquisition of arithmetic skills is accompanied by changes within the fronto-parietal network of the developing brain. Furthermore, experimental procedures are typically adjusted to constraints of functional magnetic resonance imaging, which may not reflect natural settings in which children and adolescents actually perform arithmetic. Therefore, we investigated the longitudinal neurocognitive development of processes involved in performing the four basic arithmetic operations in 19 adolescents. By using functional near-infrared spectroscopy, we were able to use an ecologically valid task, i.e., a written production paradigm. A common pattern of activation in the bilateral fronto-parietal network for arithmetic processing was found for all basic arithmetic operations. Moreover, evidence was obtained for decreasing activation during subtraction over the course of 1 year in middle and inferior frontal gyri, and increased activation during addition and multiplication in angular and middle temporal gyri. In the self-paced block design, parietal activation in multiplication and left angular and temporal activation in addition were observed to be higher for simple than for complex blocks, reflecting an inverse effect of arithmetic complexity. In general, the findings suggest that the brain network for arithmetic processing is already established in 12-14 year-old adolescents, but still undergoes developmental changes.
Artificial Neural Networks Equivalent to Fuzzy Algebra T-Norm Conjunction Operators
NASA Astrophysics Data System (ADS)
Iliadis, L. S.; Spartalis, S. I.
2007-12-01
This paper describes the construction of three Artificial Neural Networks with fuzzy input and output, imitating the performance of fuzzy algebra conjunction operators. More specifically, it is applied over the results of a previous research effort that used T-Norms in order to produce a characteristic torrential risk index that unified the partial risk indices for the area of Xanthi. Each one of the three networks substitutes a T-Norm and consequently they can be used as equivalent operators. This means that ANN performing Fuzzy Algebra operations can be designed and developed.
NASA Technical Reports Server (NTRS)
Sultan, Labib; Janabi, Talib
1992-01-01
This paper analyses the internal operation of fuzzy logic controllers as referenced to the human cognitive tasks of control and decision making. Two goals are targeted. The first goal focuses on the cognitive interpretation of the mechanisms employed in the current design of fuzzy logic controllers. This analysis helps to create a ground to explore the potential of enhancing the functional intelligence of fuzzy controllers. The second goal is to outline the features of a new class of fuzzy controllers, the Clearness Transformation Fuzzy Logic Controller (CT-FLC), whereby some new concepts are advanced to qualify fuzzy controllers as 'cognitive devices' rather than 'expert system devices'. The operation of the CT-FLC, as a fuzzy pattern processing controller, is explored, simulated, and evaluated.
Some series of intuitionistic fuzzy interactive averaging aggregation operators.
Garg, Harish
2016-01-01
In this paper, some series of new intuitionistic fuzzy averaging aggregation operators has been presented under the intuitionistic fuzzy sets environment. For this, some shortcoming of the existing operators are firstly highlighted and then new operational law, by considering the hesitation degree between the membership functions, has been proposed to overcome these. Based on these new operation laws, some new averaging aggregation operators namely, intuitionistic fuzzy Hamacher interactive weighted averaging, ordered weighted averaging and hybrid weighted averaging operators, labeled as IFHIWA, IFHIOWA and IFHIHWA respectively has been proposed. Furthermore, some desirable properties such as idempotency, boundedness, homogeneity etc. are studied. Finally, a multi-criteria decision making method has been presented based on proposed operators for selecting the best alternative. A comparative concelebration between the proposed operators and the existing operators are investigated in detail.
Evaluation about the performance of E-government based on interval-valued intuitionistic fuzzy set.
Zhang, Shuai; Yu, Dejian; Wang, Yan; Zhang, Wenyu
2014-01-01
The evaluation is an important approach to promote the development of the E-Government. Since the rapid development of E-Government in the world, the E-Government performance evaluation has become a hot issue in the academia. In this paper, we develop a new evaluation method for the development of the E-Government based on the interval-valued intuitionistic fuzzy set which is a powerful technique in expressing the uncertainty of the real situation. First, we extend the geometric Heronian mean (GHM) operator to interval-valued intuitionistic fuzzy environment and proposed the interval-valued intuitionistic fuzzy GHM (IIFGHM) operator. Then, we investigate the relationships between the IIFGHM operator and some existing ones, such as generalized interval-valued intuitionistic fuzzy HM (GIIFHM) and interval-valued intuitionistic fuzzy weighted Bonferoni mean operator. Furthermore, we validate the effectiveness of the proposed method using a real case about the E-Government evaluation in Hangzhou City, China.
Versatile analog pulse height computer performs real-time arithmetic operations
NASA Technical Reports Server (NTRS)
Brenner, R.; Strauss, M. G.
1967-01-01
Multipurpose analog pulse height computer performs real-time arithmetic operations on relatively fast pulses. This computer can be used for identification of charged particles, pulse shape discrimination, division of signals from position sensitive detectors, and other on-line data reduction techniques.
Conceptual Knowledge of Decimal Arithmetic
ERIC Educational Resources Information Center
Lortie-Forgues, Hugues; Siegler, Robert S.
2016-01-01
In two studies (N's = 55 and 54), we examined a basic form of conceptual understanding of rational number arithmetic, the direction of effect of decimal arithmetic operations, at a level of detail useful for informing instruction. Middle school students were presented tasks examining knowledge of the direction of effects (e.g., "True or…
Instabilities caused by floating-point arithmetic quantization.
NASA Technical Reports Server (NTRS)
Phillips, C. L.
1972-01-01
It is shown that an otherwise stable digital control system can be made unstable by signal quantization when the controller operates on floating-point arithmetic. Sufficient conditions of instability are determined, and an example of loss of stability is treated when only one quantizer is operated.
NASA Astrophysics Data System (ADS)
Shah, Mazlina Muzafar; Wahab, Abdul Fatah
2017-08-01
Epilepsy disease occurs because of there is a temporary electrical disturbance in a group of brain cells (nurons). The recording of electrical signals come from the human brain which can be collected from the scalp of the head is called Electroencephalography (EEG). EEG then considered in digital format and in fuzzy form makes it a fuzzy digital space data form. The purpose of research is to identify the area (curve and surface) in fuzzy digital space affected by inside epilepsy seizure in epileptic patient's brain. The main focus for this research is to generalize fuzzy topological digital space, definition and basic operation also the properties by using digital fuzzy set and the operations. By using fuzzy digital space, the theory of digital fuzzy spline can be introduced to replace grid data that has been use previously to get better result. As a result, the flat of EEG can be fuzzy topological digital space and this type of data can be use to interpolate the digital fuzzy spline.
Using fuzzy fractal features of digital images for the material surface analisys
NASA Astrophysics Data System (ADS)
Privezentsev, D. G.; Zhiznyakov, A. L.; Astafiev, A. V.; Pugin, E. V.
2018-01-01
Edge detection is an important task in image processing. There are a lot of approaches in this area: Sobel, Canny operators and others. One of the perspective techniques in image processing is the use of fuzzy logic and fuzzy sets theory. They allow us to increase processing quality by representing information in its fuzzy form. Most of the existing fuzzy image processing methods switch to fuzzy sets on very late stages, so this leads to some useful information loss. In this paper, a novel method of edge detection based on fuzzy image representation and fuzzy pixels is proposed. With this approach, we convert the image to fuzzy form on the first step. Different approaches to this conversion are described. Several membership functions for fuzzy pixel description and requirements for their form and view are given. A novel approach to edge detection based on Sobel operator and fuzzy image representation is proposed. Experimental testing of developed method was performed on remote sensing images.
NASA Astrophysics Data System (ADS)
Gorai, A. K.; Hasni, S. A.; Iqbal, Jawed
2016-11-01
Groundwater is the most important natural resource for drinking water to many people around the world, especially in rural areas where the supply of treated water is not available. Drinking water resources cannot be optimally used and sustained unless the quality of water is properly assessed. To this end, an attempt has been made to develop a suitable methodology for the assessment of drinking water quality on the basis of 11 physico-chemical parameters. The present study aims to select the fuzzy aggregation approach for estimation of the water quality index of a sample to check the suitability for drinking purposes. Based on expert's opinion and author's judgement, 11 water quality (pollutant) variables (Alkalinity, Dissolved Solids (DS), Hardness, pH, Ca, Mg, Fe, Fluoride, As, Sulphate, Nitrates) are selected for the quality assessment. The output results of proposed methodology are compared with the output obtained from widely used deterministic method (weighted arithmetic mean aggregation) for the suitability of the developed methodology.
ASIC For Complex Fixed-Point Arithmetic
NASA Technical Reports Server (NTRS)
Petilli, Stephen G.; Grimm, Michael J.; Olson, Erlend M.
1995-01-01
Application-specific integrated circuit (ASIC) performs 24-bit, fixed-point arithmetic operations on arrays of complex-valued input data. High-performance, wide-band arithmetic logic unit (ALU) designed for use in computing fast Fourier transforms (FFTs) and for performing ditigal filtering functions. Other applications include general computations involved in analysis of spectra and digital signal processing.
ERIC Educational Resources Information Center
McNeil, Nicole M.; Rittle-Johnson, Bethany; Hattikudur, Shanta; Petersen, Lori A.
2010-01-01
This study examined if solving arithmetic problems hinders undergraduates' accuracy on algebra problems. The hypothesis was that solving arithmetic problems would hinder accuracy because it activates an operational view of equations, even in educated adults who have years of experience with algebra. In three experiments, undergraduates (N = 184)…
Applications of fuzzy logic to control and decision making
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
Long range space missions will require high operational efficiency as well as autonomy to enhance the effectivity of performance. Fuzzy logic technology has been shown to be powerful and robust in interpreting imprecise measurements and generating appropriate control decisions for many space operations. Several applications are underway, studying the fuzzy logic approach to solving control and decision making problems. Fuzzy logic algorithms for relative motion and attitude control have been developed and demonstrated for proximity operations. Based on this experience, motion control algorithms that include obstacle avoidance were developed for a Mars Rover prototype for maneuvering during the sample collection process. A concept of an intelligent sensor system that can identify objects and track them continuously and learn from its environment is under development to support traffic management and proximity operations around the Space Station Freedom. For safe and reliable operation of Lunar/Mars based crew quarters, high speed controllers with ability to combine imprecise measurements from several sensors is required. A fuzzy logic approach that uses high speed fuzzy hardware chips is being studied.
Design of supply chain in fuzzy environment
NASA Astrophysics Data System (ADS)
Rao, Kandukuri Narayana; Subbaiah, Kambagowni Venkata; Singh, Ganja Veera Pratap
2013-05-01
Nowadays, customer expectations are increasing and organizations are prone to operate in an uncertain environment. Under this uncertain environment, the ultimate success of the firm depends on its ability to integrate business processes among supply chain partners. Supply chain management emphasizes cross-functional links to improve the competitive strategy of organizations. Now, companies are moving from decoupled decision processes towards more integrated design and control of their components to achieve the strategic fit. In this paper, a new approach is developed to design a multi-echelon, multi-facility, and multi-product supply chain in fuzzy environment. In fuzzy environment, mixed integer programming problem is formulated through fuzzy goal programming in strategic level with supply chain cost and volume flexibility as fuzzy goals. These fuzzy goals are aggregated using minimum operator. In tactical level, continuous review policy for controlling raw material inventories in supplier echelon and controlling finished product inventories in plant as well as distribution center echelon is considered as fuzzy goals. A non-linear programming model is formulated through fuzzy goal programming using minimum operator in the tactical level. The proposed approach is illustrated with a numerical example.
Basic Mathematics Operations--A Math Practice Booklet.
ERIC Educational Resources Information Center
Herr, Nicholas K.
Intended for use in vocational high schools, the workbook is designed to help the student understand and develop skill in performing the four basic arithmetical operations: addition, subtraction, multiplication, and division. Also stressed is the correct reading and writing of numbers. The booklet consists of explanatory text, arithmetic problems,…
Evaluation about the Performance of E-Government Based on Interval-Valued Intuitionistic Fuzzy Set
Zhang, Shuai; Wang, Yan
2014-01-01
The evaluation is an important approach to promote the development of the E-Government. Since the rapid development of E-Government in the world, the E-Government performance evaluation has become a hot issue in the academia. In this paper, we develop a new evaluation method for the development of the E-Government based on the interval-valued intuitionistic fuzzy set which is a powerful technique in expressing the uncertainty of the real situation. First, we extend the geometric Heronian mean (GHM) operator to interval-valued intuitionistic fuzzy environment and proposed the interval-valued intuitionistic fuzzy GHM (IIFGHM) operator. Then, we investigate the relationships between the IIFGHM operator and some existing ones, such as generalized interval-valued intuitionistic fuzzy HM (GIIFHM) and interval-valued intuitionistic fuzzy weighted Bonferoni mean operator. Furthermore, we validate the effectiveness of the proposed method using a real case about the E-Government evaluation in Hangzhou City, China. PMID:24707196
Liu, Peide; Li, Dengfeng
2017-01-01
Muirhead mean (MM) is a well-known aggregation operator which can consider interrelationships among any number of arguments assigned by a variable vector. Besides, it is a universal operator since it can contain other general operators by assigning some special parameter values. However, the MM can only process the crisp numbers. Inspired by the MM' advantages, the aim of this paper is to extend MM to process the intuitionistic fuzzy numbers (IFNs) and then to solve the multi-attribute group decision making (MAGDM) problems. Firstly, we develop some intuitionistic fuzzy Muirhead mean (IFMM) operators by extending MM to intuitionistic fuzzy information. Then, we prove some properties and discuss some special cases with respect to the parameter vector. Moreover, we present two new methods to deal with MAGDM problems with the intuitionistic fuzzy information based on the proposed MM operators. Finally, we verify the validity and reliability of our methods by using an application example, and analyze the advantages of our methods by comparing with other existing methods.
On Some Nonclassical Algebraic Properties of Interval-Valued Fuzzy Soft Sets
2014-01-01
Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation =L. We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets. PMID:25143964
On some nonclassical algebraic properties of interval-valued fuzzy soft sets.
Liu, Xiaoyan; Feng, Feng; Zhang, Hui
2014-01-01
Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation = L . We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets.
Fuzzifying historical peak water levels: case study of the river Rhine at Basel
NASA Astrophysics Data System (ADS)
Salinas, Jose Luis; Kiss, Andrea; Blöschl, Günter
2016-04-01
Hydrological information comes from a variety of sources, which in some cases might be non-precise. In particular, this is an important issue for the available information on water stages during historical floods. An accurate estimation of the water level profile, together with an elevation model of the riverbed and floodplain areas is fundamental for the hydraulic reconstruction of historical flood events, allowing the back calculation of flood peak discharges, velocity and erosion fields, damages, among others. For the greatest floods during the last 1700 years, Wetter et al. (2011) reconstructed the water levels and historical discharges at different locations in the old city centre from a variety of historical sources (stone marks, official documents, paintings, etc). This work presents a model for the inherent unpreciseness of these historical water levels. This is, with the arithmetics of fuzzy numbers, described by their membership functions, in a similar fashion as the probability density function describes the uncertainty of a random variable. Additional to the in-site collected water stages from floodmarks and other documentary evidence (e.g. preserved in narratives and newspaper flood reports) are prone to be modeled in a fuzzy way. This study presents the use of fuzzy logic to transform historical information from different sources, in this case of flood water stages, into membership functions. This values might then introduced in the mathematical framework of Fuzzy Bayesian Inference to perform the statistical analyses with the rules of fuzzy numbers algebra. The results of this flood frequency analysis, as in the traditional non-fuzzy way, link discharges with exceedance probabilities or return periods. The main difference is, that the modeled discharge quantiles are not precise values, but fuzzy numbers instead, represented by their membership functions explicitly including the unpreciseness of the historical information used. Wetter, O., Pfister, C., Weingartner, R., Luterbacher, J., Reist, T., & Trösch, J. (2011) The largest floods in the High Rhine basin since 1268 assessed from documentary and instrumental evidence. Hydrol. Sci. J. 56(5), 733-758.
The functional anatomy of single-digit arithmetic in children with developmental dyslexia.
Evans, Tanya M; Flowers, D Lynn; Napoliello, Eileen M; Olulade, Olumide A; Eden, Guinevere F
2014-11-01
Some arithmetic procedures, such as addition of small numbers, rely on fact retrieval mechanisms supported by left hemisphere perisylvian language areas, while others, such as subtraction, rely on procedural-based mechanisms subserved by bilateral parietal cortices. Previous work suggests that developmental dyslexia, a reading disability, is accompanied by subtle deficits in retrieval-based arithmetic, possibly because of compromised left hemisphere function. To test this prediction, we compared brain activity underlying arithmetic problem solving in children with and without dyslexia during addition and subtraction operations using a factorial design. The main effect of arithmetic operation (addition versus subtraction) for both groups combined revealed activity during addition in the left superior temporal gyrus and activity during subtraction in the bilateral intraparietal sulcus, the right supramarginal gyrus and the anterior cingulate, consistent with prior studies. For the main effect of diagnostic group (dyslexics versus controls), we found less activity in dyslexic children in the left supramarginal gyrus. Finally, the interaction analysis revealed that while the control group showed a strong response in the right supramarginal gyrus for subtraction but not for addition, the dyslexic group engaged this region for both operations. This provides physiological evidence in support of the theory that children with dyslexia, because of disruption to left hemisphere language areas, use a less optimal route for retrieval-based arithmetic, engaging right hemisphere parietal regions typically used by good readers for procedural-based arithmetic. Our results highlight the importance of language processing for mathematical processing and illustrate that children with dyslexia have impairments that extend beyond reading. Copyright © 2014 Elsevier Inc. All rights reserved.
The Functional Anatomy of Single-Digit Arithmetic in Children with Developmental Dyslexia
Evans, Tanya M.; Flowers, D. Lynn; Napoliello, Eileen M.; Olulade, Olumide A.; Eden, Guinevere F.
2014-01-01
Some arithmetic procedures, such as addition of small numbers, rely on fact retrieval mechanisms supported by left hemisphere perisylvian language areas, while others, such as subtraction, rely on procedural-based mechanisms subserved by bilateral parietal cortices. Previous work suggests that developmental dyslexia, a reading disability, is accompanied by subtle deficits in retrieval-based arithmetic, possibly because of compromised left hemisphere function. To test this prediction, we compared brain activity underlying arithmetic problem solving in children with and without dyslexia during addition and subtraction operations using a factorial design. The main effect of arithmetic operation (addition versus subtraction) for both groups combined revealed activity during addition in the left superior temporal gyrus and activity during subtraction in bilateral intraparietal sulcus, right supramarginal gyrus and the anterior cingulate, consistent with prior studies. For the main effect of diagnostic group (dyslexics versus controls), we found less activity in dyslexic children in the left supramarginal gyrus. Finally, the interaction analysis revealed that while the control group showed a strong response in right supramarginal gyrus for subtraction but not for addition, the dyslexic group engaged this region for both operations. This provides physiological evidence in support of the theory that children with dyslexia, because of disruption to left hemisphere language areas, use a less optimal route for retrieval-based arithmetic, engaging right hemisphere parietal regions typically used by good readers for procedural-based arithmetic. Our results highlight the importance of language processing for mathematical processing and illustrate that children with dyslexia have impairments that extend beyond reading. PMID:25067820
How to select combination operators for fuzzy expert systems using CRI
NASA Technical Reports Server (NTRS)
Turksen, I. B.; Tian, Y.
1992-01-01
A method to select combination operators for fuzzy expert systems using the Compositional Rule of Inference (CRI) is proposed. First, fuzzy inference processes based on CRI are classified into three categories in terms of their inference results: the Expansion Type Inference, the Reduction Type Inference, and Other Type Inferences. Further, implication operators under Sup-T composition are classified as the Expansion Type Operator, the Reduction Type Operator, and the Other Type Operators. Finally, the combination of rules or their consequences is investigated for inference processes based on CRI.
Hierarchical fuzzy control of low-energy building systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhen; Dexter, Arthur
2010-04-15
A hierarchical fuzzy supervisory controller is described that is capable of optimizing the operation of a low-energy building, which uses solar energy to heat and cool its interior spaces. The highest level fuzzy rules choose the most appropriate set of lower level rules according to the weather and occupancy information; the second level fuzzy rules determine an optimal energy profile and the overall modes of operation of the heating, ventilating and air-conditioning system (HVAC); the third level fuzzy rules select the mode of operation of specific equipment, and assign schedules to the local controllers so that the optimal energy profilemore » can be achieved in the most efficient way. Computer simulation is used to compare the hierarchical fuzzy control scheme with a supervisory control scheme based on expert rules. The performance is evaluated by comparing the energy consumption and thermal comfort. (author)« less
ERIC Educational Resources Information Center
Purpura, David J.; Lonigan, Christopher J.
2013-01-01
Validating the structure of informal numeracy skills is critical to understanding the developmental trajectories of mathematics skills at early ages; however, little research has been devoted to construct evaluation of the Numbering, Relations, and Arithmetic Operations domains. This study was designed to address this knowledge gap by examining…
FAST TRACK COMMUNICATION: Reversible arithmetic logic unit for quantum arithmetic
NASA Astrophysics Data System (ADS)
Kirkedal Thomsen, Michael; Glück, Robert; Axelsen, Holger Bock
2010-09-01
This communication presents the complete design of a reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The presented ALU is garbage free and uses reversible updates to combine the standard reversible arithmetic and logical operations in one unit. Combined with a suitable control unit, the ALU permits the construction of an r-Turing complete computing device. The garbage-free ALU developed in this communication requires only 6n elementary reversible gates for five basic arithmetic-logical operations on two n-bit operands and does not use ancillae. This remarkable low resource consumption was achieved by generalizing the V-shape design first introduced for quantum ripple-carry adders and nesting multiple V-shapes in a novel integrated design. This communication shows that the realization of an efficient reversible ALU for a programmable computing device is possible and that the V-shape design is a very versatile approach to the design of quantum networks.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Yatskovsky, Victor I.; Ogorodnik, K. V.; Lischenko, Sergey
2002-07-01
The perspective of neural networks equivalental models (EM) base on vector-matrix procedure with basic operations of continuous and neuro-fuzzy logic (equivalence, absolute difference) are shown. Capacity on base EMs exceeded the amount of neurons in 2.5 times. This is larger than others neural networks paradigms. Amount neurons of this neural networks on base EMs may be 10 - 20 thousands. The base operations in EMs are normalized equivalency operations. The family of new operations equivalency and non-equivalency of neuro-fuzzy logic's, which we have elaborated on the based of such generalized operations of fuzzy-logic's as fuzzy negation, t-norm and s-norm are shown. Generalized rules of construction of new functions (operations) equivalency which uses relations of t-norm and s-norm to fuzzy negation are proposed. Among these elements the following should be underlined: (1) the element which fulfills the operation of limited difference; (2) the element which algebraic product (intensifier with controlled coefficient of transmission or multiplier of analog signals); (3) the element which fulfills a sample summarizing (uniting) of signals (including the one during normalizing). Synthesized structures which realize on the basic of these elements the whole spectrum of required operations: t-norm, s-norm and new operations equivalency are shown. These realization on the basic of new multifunctional optoelectronical BISPIN- devices (MOEBD) represent the circuit with constant and pulse optical input signals. They are modeling the operation of limited difference. These circuits realize frequency- dynamic neuron models and neural networks. Experimental results of these MOEBD and equivalency circuits, which fulfill the limited difference operation are discussed. For effective realization of neural networks on the basic of EMs as it is shown in report, picture elements are required as main nodes to implement element operations equivalence ('non-equivalence') of neuro-fuzzy logic's.
Fuzzy restrictions and an application to cooperative games with restricted cooperation
NASA Astrophysics Data System (ADS)
Gallardo, J. M.; Jiménez, N.; Jiménez-Losada, A.
2017-10-01
The concept of restriction, which is an extension of that of interior operator, was introduced to model limited cooperation in cooperative game theory. In this paper, a fuzzy version of restrictions is presented. We show that these new operators, called fuzzy restrictions, can be characterized by the transitivity of the fuzzy dependence relations that they induce. As an application, we introduce cooperative games with fuzzy restriction, which are used to model cooperative situations in which each player in a coalition has a level of cooperation within the coalition. A value for these games is defined and characterized.
Fuzzy logic control for camera tracking system
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant
1992-01-01
A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.
Connaughton, Veronica M; Amiruddin, Azhani; Clunies-Ross, Karen L; French, Noel; Fox, Allison M
2017-05-01
A major model of the cerebral circuits that underpin arithmetic calculation is the triple-code model of numerical processing. This model proposes that the lateralization of mathematical operations is organized across three circuits: a left-hemispheric dominant verbal code; a bilateral magnitude representation of numbers and a bilateral Arabic number code. This study simultaneously measured the blood flow of both middle cerebral arteries using functional transcranial Doppler ultrasonography to assess hemispheric specialization during the performance of both language and arithmetic tasks. The propositions of the triple-code model were assessed in a non-clinical adult group by measuring cerebral blood flow during the performance of multiplication and subtraction problems. Participants were 17 adults aged between 18-27 years. We obtained laterality indices for each type of mathematical operation and compared these in participants with left-hemispheric language dominance. It was hypothesized that blood flow would lateralize to the left hemisphere during the performance of multiplication operations, but would not lateralize during the performance of subtraction operations. Hemispheric blood flow was significantly left lateralized during the multiplication task, but was not lateralized during the subtraction task. Compared to high spatial resolution neuroimaging techniques previously used to measure cerebral lateralization, functional transcranial Doppler ultrasonography is a cost-effective measure that provides a superior temporal representation of arithmetic cognition. These results provide support for the triple-code model of arithmetic processing and offer complementary evidence that multiplication operations are processed differently in the adult brain compared to subtraction operations. Copyright © 2017 Elsevier B.V. All rights reserved.
Design and implementation of the tree-based fuzzy logic controller.
Liu, B D; Huang, C Y
1997-01-01
In this paper, a tree-based approach is proposed to design the fuzzy logic controller. Based on the proposed methodology, the fuzzy logic controller has the following merits: the fuzzy control rule can be extracted automatically from the input-output data of the system and the extraction process can be done in one-pass; owing to the fuzzy tree inference structure, the search spaces of the fuzzy inference process are largely reduced; the operation of the inference process can be simplified as a one-dimensional matrix operation because of the fuzzy tree approach; and the controller has regular and modular properties, so it is easy to be implemented by hardware. Furthermore, the proposed fuzzy tree approach has been applied to design the color reproduction system for verifying the proposed methodology. The color reproduction system is mainly used to obtain a color image through the printer that is identical to the original one. In addition to the software simulation, an FPGA is used to implement the prototype hardware system for real-time application. Experimental results show that the effect of color correction is quite good and that the prototype hardware system can operate correctly under the condition of 30 MHz clock rate.
Fast reversible wavelet image compressor
NASA Astrophysics Data System (ADS)
Kim, HyungJun; Li, Ching-Chung
1996-10-01
We present a unified image compressor with spline biorthogonal wavelets and dyadic rational filter coefficients which gives high computational speed and excellent compression performance. Convolutions with these filters can be preformed by using only arithmetic shifting and addition operations. Wavelet coefficients can be encoded with an arithmetic coder which also uses arithmetic shifting and addition operations. Therefore, from the beginning to the end, the while encoding/decoding process can be done within a short period of time. The proposed method naturally extends form the lossless compression to the lossy but high compression range and can be easily adapted to the progressive reconstruction.
Attentional bias induced by solving simple and complex addition and subtraction problems.
Masson, Nicolas; Pesenti, Mauro
2014-01-01
The processing of numbers has been shown to induce shifts of spatial attention in simple probe detection tasks, with small numbers orienting attention to the left and large numbers to the right side of space. Recently, the investigation of this spatial-numerical association has been extended to mental arithmetic with the hypothesis that solving addition or subtraction problems may induce attentional displacements (to the right and to the left, respectively) along a mental number line onto which the magnitude of the numbers would range from left to right, from small to large numbers. Here we investigated such attentional shifts using a target detection task primed by arithmetic problems in healthy participants. The constituents of the addition and subtraction problems (first operand; operator; second operand) were flashed sequentially in the centre of a screen, then followed by a target on the left or the right side of the screen, which the participants had to detect. This paradigm was employed with arithmetic facts (Experiment 1) and with more complex arithmetic problems (Experiment 2) in order to assess the effects of the operation, the magnitude of the operands, the magnitude of the results, and the presence or absence of a requirement for the participants to carry or borrow numbers. The results showed that arithmetic operations induce some spatial shifts of attention, possibly through a semantic link between the operation and space.
Item Mass and Complexity and the Arithmetic Computation of Students with Learning Disabilities.
ERIC Educational Resources Information Center
Cawley, John F.; Shepard, Teri; Smith, Maureen; Parmar, Rene S.
1997-01-01
The performance of 76 students (ages 10 to 15) with learning disabilities on four tasks of arithmetic computation within each of the four basic operations was examined. Tasks varied in difficulty level and number of strokes needed to complete all items. Intercorrelations between task sets and operations were examined as was the use of…
Moving along the number line: operational momentum in nonsymbolic arithmetic.
McCrink, Koleen; Dehaene, Stanislas; Dehaene-Lambertz, Ghislaine
2007-11-01
Can human adults perform arithmetic operations with large approximate numbers, and what effect, if any, does an internal spatial-numerical representation of numerical magnitude have on their responses? We conducted a psychophysical study in which subjects viewed several hundred short videos of sets of objects being added or subtracted from one another and judged whether the final numerosity was correct or incorrect. Over a wide range of possible outcomes, the subjects' responses peaked at the approximate location of the true numerical outcome and gradually tapered off as a function of the ratio of the true and proposed outcomes (Weber's law). Furthermore, an operational momentum effect was observed, whereby addition problems were overestimated and subtraction problems were underestimated. The results show that approximate arithmetic operates according to precise quantitative rules, perhaps analogous to those characterizing movement on an internal continuum.
Tschentscher, Nadja; Hauk, Olaf
2014-05-15
A number of previous studies have interpreted differences in brain activation between arithmetic operation types (e.g. addition and multiplication) as evidence in favor of distinct cortical representations, processes or neural systems. It is still not clear how differences in general task complexity contribute to these neural differences. Here, we used a mental arithmetic paradigm to disentangle brain areas related to general problem solving from those involved in operation type specific processes (addition versus multiplication). We orthogonally varied operation type and complexity. Importantly, complexity was defined not only based on surface criteria (for example number size), but also on the basis of individual participants' strategy ratings, which were validated in a detailed behavioral analysis. We replicated previously reported operation type effects in our analyses based on surface criteria. However, these effects vanished when controlling for individual strategies. Instead, procedural strategies contrasted with memory retrieval reliably activated fronto-parietal and motor regions, while retrieval strategies activated parietal cortices. This challenges views that operation types rely on partially different neural systems, and suggests that previously reported differences between operation types may have emerged due to invalid measures of complexity. We conclude that mental arithmetic is a powerful paradigm to study brain networks of abstract problem solving, as long as individual participants' strategies are taken into account. Copyright © 2014 Elsevier Inc. All rights reserved.
Arithmetic functions in torus and tree networks
Bhanot, Gyan; Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.
2007-12-25
Methods and systems for performing arithmetic functions. In accordance with a first aspect of the invention, methods and apparatus are provided, working in conjunction of software algorithms and hardware implementation of class network routing, to achieve a very significant reduction in the time required for global arithmetic operation on the torus. Therefore, it leads to greater scalability of applications running on large parallel machines. The invention involves three steps in improving the efficiency and accuracy of global operations: (1) Ensuring, when necessary, that all the nodes do the global operation on the data in the same order and so obtain a unique answer, independent of roundoff error; (2) Using the topology of the torus to minimize the number of hops and the bidirectional capabilities of the network to reduce the number of time steps in the data transfer operation to an absolute minimum; and (3) Using class function routing to reduce latency in the data transfer. With the method of this invention, every single element is injected into the network only once and it will be stored and forwarded without any further software overhead. In accordance with a second aspect of the invention, methods and systems are provided to efficiently implement global arithmetic operations on a network that supports the global combining operations. The latency of doing such global operations are greatly reduced by using these methods.
Wu, Jia-ting; Wang, Jian-qiang; Wang, Jing; Zhang, Hong-yu; Chen, Xiao-hong
2014-01-01
Based on linguistic term sets and hesitant fuzzy sets, the concept of hesitant fuzzy linguistic sets was introduced. The focus of this paper is the multicriteria decision-making (MCDM) problems in which the criteria are in different priority levels and the criteria values take the form of hesitant fuzzy linguistic numbers (HFLNs). A new approach to solving these problems is proposed, which is based on the generalized prioritized aggregation operator of HFLNs. Firstly, the new operations and comparison method for HFLNs are provided and some linguistic scale functions are applied. Subsequently, two prioritized aggregation operators and a generalized prioritized aggregation operator of HFLNs are developed and applied to MCDM problems. Finally, an illustrative example is given to illustrate the effectiveness and feasibility of the proposed method, which are then compared to the existing approach.
Fuzzy multiobjective models for optimal operation of a hydropower system
NASA Astrophysics Data System (ADS)
Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.
2013-06-01
Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.
Optimization with Fuzzy Data via Evolutionary Algorithms
NASA Astrophysics Data System (ADS)
Kosiński, Witold
2010-09-01
Order fuzzy numbers (OFN) that make possible to deal with fuzzy inputs quantitatively, exactly in the same way as with real numbers, have been recently defined by the author and his 2 coworkers. The set of OFN forms a normed space and is a partially ordered ring. The case when the numbers are presented in the form of step functions, with finite resolution, simplifies all operations and the representation of defuzzification functionals. A general optimization problem with fuzzy data is formulated. Its fitness function attains fuzzy values. Since the adjoint space to the space of OFN is finite dimensional, a convex combination of all linear defuzzification functionals may be used to introduce a total order and a real-valued fitness function. Genetic operations on individuals representing fuzzy data are defined.
ERIC Educational Resources Information Center
Raveh, Ira; Koichu, Boris; Peled, Irit; Zaslavsky, Orit
2016-01-01
In this article we present an integrative framework of knowledge for teaching the standard algorithms of the four basic arithmetic operations. The framework is based on a mathematical analysis of the algorithms, a connectionist perspective on teaching mathematics and an analogy with previous frameworks of knowledge for teaching arithmetic…
Deduction of reservoir operating rules for application in global hydrological models
NASA Astrophysics Data System (ADS)
Coerver, Hubertus M.; Rutten, Martine M.; van de Giesen, Nick C.
2018-01-01
A big challenge in constructing global hydrological models is the inclusion of anthropogenic impacts on the water cycle, such as caused by dams. Dam operators make decisions based on experience and often uncertain information. In this study information generally available to dam operators, like inflow into the reservoir and storage levels, was used to derive fuzzy rules describing the way a reservoir is operated. Using an artificial neural network capable of mimicking fuzzy logic, called the ANFIS adaptive-network-based fuzzy inference system, fuzzy rules linking inflow and storage with reservoir release were determined for 11 reservoirs in central Asia, the US and Vietnam. By varying the input variables of the neural network, different configurations of fuzzy rules were created and tested. It was found that the release from relatively large reservoirs was significantly dependent on information concerning recent storage levels, while release from smaller reservoirs was more dependent on reservoir inflows. Subsequently, the derived rules were used to simulate reservoir release with an average Nash-Sutcliffe coefficient of 0.81.
NASA Astrophysics Data System (ADS)
Shi, Yu-Fang; Ma, Yi-Yi; Song, Ping-Ping
2018-03-01
System Reliability Theory is a research hotspot of management science and system engineering in recent years, and construction reliability is useful for quantitative evaluation of project management level. According to reliability theory and target system of engineering project management, the defination of construction reliability appears. Based on fuzzy mathematics theory and language operator, value space of construction reliability is divided into seven fuzzy subsets and correspondingly, seven membership function and fuzzy evaluation intervals are got with the operation of language operator, which provides the basis of corresponding method and parameter for the evaluation of construction reliability. This method is proved to be scientific and reasonable for construction condition and an useful attempt for theory and method research of engineering project system reliability.
The consistency of positive fully fuzzy linear system
NASA Astrophysics Data System (ADS)
Malkawi, Ghassan O.; Alfifi, Hassan Y.
2017-11-01
In this paper, the consistency of fuzziness of positive solution of the n × n fully fuzzy linear system (P - FFLS) is studied based on its associated linear system (P - ALS). That can consist of the whole entries of triangular fuzzy numbers in a linear system without fuzzy operations. The nature of solution is differentiated in case of fuzzy solution, non-fuzzy solution and fuzzy non-positive solution. Moreover, the analysis reveals that the P - ALS is applicable to provide the set of infinite number of solutions. Numerical examples are presented to illustrate the proposed analysis.
The Duality Principle in Teaching Arithmetic and Geometric Series
ERIC Educational Resources Information Center
Yeshurun, Shraga
1978-01-01
The author discusses the use of the duality principle in combination with the hierarchy of algebraic operations in helping students to retain and use definitions and rules for arithmetic and geometric sequences and series. (MN)
Fuzzy logic techniques for rendezvous and docking of two geostationary satellites
NASA Technical Reports Server (NTRS)
Ortega, Guillermo
1995-01-01
Large assemblings in space require the ability to manage rendezvous and docking operations. In future these techniques will be required for the gradual build up of big telecommunication platforms in the geostationary orbit. The paper discusses the use of fuzzy logic to model and implement a control system for the docking/berthing of two satellites in geostationary orbit. The system mounted in a chaser vehicle determines the actual state of both satellites and generates torques to execute maneuvers to establish the structural latching. The paper describes the proximity operations to collocate the two satellites in the same orbital window, the fuzzy guidance and navigation of the chaser approaching the target and the final Fuzzy berthing. The fuzzy logic system represents a knowledge based controller that realizes the close loop operations autonomously replacing the conventional control algorithms. The goal is to produce smooth control actions in the proximity of the target and during the docking to avoid disturbance torques in the final assembly orbit. The knowledge of the fuzzy controller consists of a data base of rules and the definitions of the fuzzy sets. The knowledge of an experienced spacecraft controller is captured into a set of rules forming the Rules Data Base.
Reconfigurable pipelined processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saccardi, R.J.
1989-09-19
This patent describes a reconfigurable pipelined processor for processing data. It comprises: a plurality of memory devices for storing bits of data; a plurality of arithmetic units for performing arithmetic functions with the data; cross bar means for connecting the memory devices with the arithmetic units for transferring data therebetween; at least one counter connected with the cross bar means for providing a source of addresses to the memory devices; at least one variable tick delay device connected with each of the memory devices and arithmetic units; and means for providing control bits to the variable tick delay device formore » variably controlling the input and output operations thereof to selectively delay the memory devices and arithmetic units to align the data for processing in a selected sequence.« less
Single-digit arithmetic processing—anatomical evidence from statistical voxel-based lesion analysis
Mihulowicz, Urszula; Willmes, Klaus; Karnath, Hans-Otto; Klein, Elise
2014-01-01
Different specific mechanisms have been suggested for solving single-digit arithmetic operations. However, the neural correlates underlying basic arithmetic (multiplication, addition, subtraction) are still under debate. In the present study, we systematically assessed single-digit arithmetic in a group of acute stroke patients (n = 45) with circumscribed left- or right-hemispheric brain lesions. Lesion sites significantly related to impaired performance were found only in the left-hemisphere damaged (LHD) group. Deficits in multiplication and addition were related to subcortical/white matter brain regions differing from those for subtraction tasks, corroborating the notion of distinct processing pathways for different arithmetic tasks. Additionally, our results further point to the importance of investigating fiber pathways in numerical cognition. PMID:24847238
Error and Uncertainty in the Accuracy Assessment of Land Cover Maps
NASA Astrophysics Data System (ADS)
Sarmento, Pedro Alexandre Reis
Traditionally the accuracy assessment of land cover maps is performed through the comparison of these maps with a reference database, which is intended to represent the "real" land cover, being this comparison reported with the thematic accuracy measures through confusion matrixes. Although, these reference databases are also a representation of reality, containing errors due to the human uncertainty in the assignment of the land cover class that best characterizes a certain area, causing bias in the thematic accuracy measures that are reported to the end users of these maps. The main goal of this dissertation is to develop a methodology that allows the integration of human uncertainty present in reference databases in the accuracy assessment of land cover maps, and analyse the impacts that uncertainty may have in the thematic accuracy measures reported to the end users of land cover maps. The utility of the inclusion of human uncertainty in the accuracy assessment of land cover maps is investigated. Specifically we studied the utility of fuzzy sets theory, more precisely of fuzzy arithmetic, for a better understanding of human uncertainty associated to the elaboration of reference databases, and their impacts in the thematic accuracy measures that are derived from confusion matrixes. For this purpose linguistic values transformed in fuzzy intervals that address the uncertainty in the elaboration of reference databases were used to compute fuzzy confusion matrixes. The proposed methodology is illustrated using a case study in which the accuracy assessment of a land cover map for Continental Portugal derived from Medium Resolution Imaging Spectrometer (MERIS) is made. The obtained results demonstrate that the inclusion of human uncertainty in reference databases provides much more information about the quality of land cover maps, when compared with the traditional approach of accuracy assessment of land cover maps. None
Lightweight fuzzy processes in clinical computing.
Hurdle, J F
1997-09-01
In spite of advances in computing hardware, many hospitals still have a hard time finding extra capacity in their production clinical information system to run artificial intelligence (AI) modules, for example: to support real-time drug-drug or drug-lab interactions; to track infection trends; to monitor compliance with case specific clinical guidelines; or to monitor/ control biomedical devices like an intelligent ventilator. Historically, adding AI functionality was not a major design concern when a typical clinical system is originally specified. AI technology is usually retrofitted 'on top of the old system' or 'run off line' in tandem with the old system to ensure that the routine work load would still get done (with as little impact from the AI side as possible). To compound the burden on system performance, most institutions have witnessed a long and increasing trend for intramural and extramural reporting, (e.g. the collection of data for a quality-control report in microbiology, or a meta-analysis of a suite of coronary artery bypass grafts techniques, etc.) and these place an ever-growing burden on typical the computer system's performance. We discuss a promising approach to adding extra AI processing power to a heavily-used system based on the notion 'lightweight fuzzy processing (LFP)', that is, fuzzy modules designed from the outset to impose a small computational load. A formal model for a useful subclass of fuzzy systems is defined below and is used as a framework for the automated generation of LFPs. By seeking to reduce the arithmetic complexity of the model (a hand-crafted process) and the data complexity of the model (an automated process), we show how LFPs can be generated for three sample datasets of clinical relevance.
Fuzzy scalar and vector median filters based on fuzzy distances.
Chatzis, V; Pitas, I
1999-01-01
In this paper, the fuzzy scalar median (FSM) is proposed, defined by using ordering of fuzzy numbers based on fuzzy minimum and maximum operations defined by using the extension principle. Alternatively, the FSM is defined from the minimization of a fuzzy distance measure, and the equivalence of the two definitions is proven. Then, the fuzzy vector median (FVM) is proposed as an extension of vector median, based on a novel distance definition of fuzzy vectors, which satisfy the property of angle decomposition. By defining properly the fuzziness of a value, the combination of the basic properties of the classical scalar and vector median (VM) filter with other desirable characteristics can be succeeded.
Expert system training and control based on the fuzzy relation matrix
NASA Technical Reports Server (NTRS)
Ren, Jie; Sheridan, T. B.
1991-01-01
Fuzzy knowledge, that for which the terms of reference are not crisp but overlapped, seems to characterize human expertise. This can be shown from the fact that an experienced human operator can control some complex plants better than a computer can. Proposed here is fuzzy theory to build a fuzzy expert relation matrix (FERM) from given rules or/and examples, either in linguistic terms or in numerical values to mimic human processes of perception and decision making. The knowledge base is codified in terms of many implicit fuzzy rules. Fuzzy knowledge thus codified may also be compared with explicit rules specified by a human expert. It can also provide a basis for modeling the human operator and allow comparison of what a human operator says to what he does in practice. Two experiments were performed. In the first, control of liquid in a tank, demonstrates how the FERM knowledge base is elicited and trained. The other shows how to use a FERM, build up from linguistic rules, and to control an inverted pendulum without a dynamic model.
A fuzzy Petri-net-based mode identification algorithm for fault diagnosis of complex systems
NASA Astrophysics Data System (ADS)
Propes, Nicholas C.; Vachtsevanos, George
2003-08-01
Complex dynamical systems such as aircraft, manufacturing systems, chillers, motor vehicles, submarines, etc. exhibit continuous and event-driven dynamics. These systems undergo several discrete operating modes from startup to shutdown. For example, a certain shipboard system may be operating at half load or full load or may be at start-up or shutdown. Of particular interest are extreme or "shock" operating conditions, which tend to severely impact fault diagnosis or the progression of a fault leading to a failure. Fault conditions are strongly dependent on the operating mode. Therefore, it is essential that in any diagnostic/prognostic architecture, the operating mode be identified as accurately as possible so that such functions as feature extraction, diagnostics, prognostics, etc. can be correlated with the predominant operating conditions. This paper introduces a mode identification methodology that incorporates both time- and event-driven information about the process. A fuzzy Petri net is used to represent the possible successive mode transitions and to detect events from processed sensor signals signifying a mode change. The operating mode is initialized and verified by analysis of the time-driven dynamics through a fuzzy logic classifier. An evidence combiner module is used to combine the results from both the fuzzy Petri net and the fuzzy logic classifier to determine the mode. Unlike most event-driven mode identifiers, this architecture will provide automatic mode initialization through the fuzzy logic classifier and robustness through the combining of evidence of the two algorithms. The mode identification methodology is applied to an AC Plant typically found as a component of a shipboard system.
Fuzzy Q-Learning for Generalization of Reinforcement Learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1996-01-01
Fuzzy Q-Learning, introduced earlier by the author, is an extension of Q-Learning into fuzzy environments. GARIC is a methodology for fuzzy reinforcement learning. In this paper, we introduce GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Q-Learning and at the local level, each agent learns and operates based on GARIC. GARIC-Q improves the speed and applicability of Fuzzy Q-Learning through generalization of input space by using fuzzy rules and bridges the gap between Q-Learning and rule based intelligent systems.
IBM system/360 assembly language interval arithmetic software
NASA Technical Reports Server (NTRS)
Phillips, E. J.
1972-01-01
Computer software designed to perform interval arithmetic is described. An interval is defined as the set of all real numbers between two given numbers including or excluding one or both endpoints. Interval arithmetic consists of the various elementary arithmetic operations defined on the set of all intervals, such as interval addition, subtraction, union, etc. One of the main applications of interval arithmetic is in the area of error analysis of computer calculations. For example, it has been used sucessfully to compute bounds on sounding errors in the solution of linear algebraic systems, error bounds in numerical solutions of ordinary differential equations, as well as integral equations and boundary value problems. The described software enables users to implement algorithms of the type described in references efficiently on the IBM 360 system.
Exploring the Feasibility of a DNA Computer: Design of an ALU Using Sticker-Based DNA Model.
Sarkar, Mayukh; Ghosal, Prasun; Mohanty, Saraju P
2017-09-01
Since its inception, DNA computing has advanced to offer an extremely powerful, energy-efficient emerging technology for solving hard computational problems with its inherent massive parallelism and extremely high data density. This would be much more powerful and general purpose when combined with other existing well-known algorithmic solutions that exist for conventional computing architectures using a suitable ALU. Thus, a specifically designed DNA Arithmetic and Logic Unit (ALU) that can address operations suitable for both domains can mitigate the gap between these two. An ALU must be able to perform all possible logic operations, including NOT, OR, AND, XOR, NOR, NAND, and XNOR; compare, shift etc., integer and floating point arithmetic operations (addition, subtraction, multiplication, and division). In this paper, design of an ALU has been proposed using sticker-based DNA model with experimental feasibility analysis. Novelties of this paper may be in manifold. First, the integer arithmetic operations performed here are 2s complement arithmetic, and the floating point operations follow the IEEE 754 floating point format, resembling closely to a conventional ALU. Also, the output of each operation can be reused for any next operation. So any algorithm or program logic that users can think of can be implemented directly on the DNA computer without any modification. Second, once the basic operations of sticker model can be automated, the implementations proposed in this paper become highly suitable to design a fully automated ALU. Third, proposed approaches are easy to implement. Finally, these approaches can work on sufficiently large binary numbers.
Arithmetic Data Cube as a Data Intensive Benchmark
NASA Technical Reports Server (NTRS)
Frumkin, Michael A.; Shabano, Leonid
2003-01-01
Data movement across computational grids and across memory hierarchy of individual grid machines is known to be a limiting factor for application involving large data sets. In this paper we introduce the Data Cube Operator on an Arithmetic Data Set which we call Arithmetic Data Cube (ADC). We propose to use the ADC to benchmark grid capabilities to handle large distributed data sets. The ADC stresses all levels of grid memory by producing 2d views of an Arithmetic Data Set of d-tuples described by a small number of parameters. We control data intensity of the ADC by controlling the sizes of the views through choice of the tuple parameters.
Towards a Fuzzy Expert System on Toxicological Data Quality Assessment.
Yang, Longzhi; Neagu, Daniel; Cronin, Mark T D; Hewitt, Mark; Enoch, Steven J; Madden, Judith C; Przybylak, Katarzyna
2013-01-01
Quality assessment (QA) requires high levels of domain-specific experience and knowledge. QA tasks for toxicological data are usually performed by human experts manually, although a number of quality evaluation schemes have been proposed in the literature. For instance, the most widely utilised Klimisch scheme1 defines four data quality categories in order to tag data instances with respect to their qualities; ToxRTool2 is an extension of the Klimisch approach aiming to increase the transparency and harmonisation of the approach. Note that the processes of QA in many other areas have been automatised by employing expert systems. Briefly, an expert system is a computer program that uses a knowledge base built upon human expertise, and an inference engine that mimics the reasoning processes of human experts to infer new statements from incoming data. In particular, expert systems have been extended to deal with the uncertainty of information by representing uncertain information (such as linguistic terms) as fuzzy sets under the framework of fuzzy set theory and performing inferences upon fuzzy sets according to fuzzy arithmetic. This paper presents an experimental fuzzy expert system for toxicological data QA which is developed on the basis of the Klimisch approach and the ToxRTool in an effort to illustrate the power of expert systems to toxicologists, and to examine if fuzzy expert systems are a viable solution for QA of toxicological data. Such direction still faces great difficulties due to the well-known common challenge of toxicological data QA that "five toxicologists may have six opinions". In the meantime, this challenge may offer an opportunity for expert systems because the construction and refinement of the knowledge base could be a converging process of different opinions which is of significant importance for regulatory policy making under the regulation of REACH, though a consensus may never be reached. Also, in order to facilitate the implementation of Weight of Evidence approaches and in silico modelling proposed by REACH, there is a higher appeal of numerical quality values than nominal (categorical) ones, where the proposed fuzzy expert system could help. Most importantly, the deriving processes of quality values generated in this way are fully transparent, and thus comprehensible, for final users, which is another vital point for policy making specified in REACH. Case studies have been conducted and this report not only shows the promise of the approach, but also demonstrates the difficulties of the approach and thus indicates areas for future development. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reading instead of reasoning? Predictors of arithmetic skills in children with cochlear implants.
Huber, Maria; Kipman, Ulrike; Pletzer, Belinda
2014-07-01
The aim of the present study was to evaluate whether the arithmetic achievement of children with cochlear implants (CI) was lower or comparable to that of their normal hearing peers and to identify predictors of arithmetic achievement in children with CI. In particular we related the arithmetic achievement of children with CI to nonverbal IQ, reading skills and hearing variables. 23 children with CI (onset of hearing loss in the first 24 months, cochlear implantation in the first 60 months of life, atleast 3 years of hearing experience with the first CI) and 23 normal hearing peers matched by age, gender, and social background participated in this case control study. All attended grades two to four in primary schools. To assess their arithmetic achievement, all children completed the "Arithmetic Operations" part of the "Heidelberger Rechentest" (HRT), a German arithmetic test. To assess reading skills and nonverbal intelligence as potential predictors of arithmetic achievement, all children completed the "Salzburger Lesetest" (SLS), a German reading screening, and the Culture Fair Intelligence Test (CFIT), a nonverbal intelligence test. Children with CI did not differ significantly from hearing children in their arithmetic achievement. Correlation and regression analyses revealed that in children with CI, arithmetic achievement was significantly (positively) related to reading skills, but not to nonverbal IQ. Reading skills and nonverbal IQ were not related to each other. In normal hearing children, arithmetic achievement was significantly (positively) related to nonverbal IQ, but not to reading skills. Reading skills and nonverbal IQ were positively correlated. Hearing variables were not related to arithmetic achievement. Children with CI do not show lower performance in non-verbal arithmetic tasks, compared to normal hearing peers. Copyright © 2014. Published by Elsevier Ireland Ltd.
Arithmetic operations in optical computations using a modified trinary number system.
Datta, A K; Basuray, A; Mukhopadhyay, S
1989-05-01
A modified trinary number (MTN) system is proposed in which any binary number can be expressed with the help of trinary digits (1, 0, 1 ). Arithmetic operations can be performed in parallel without the need for carry and borrow steps when binary digits are converted to the MTN system. An optical implementation of the proposed scheme that uses spatial light modulators and color-coded light signals is described.
Family of fuzzy J-K flip-flops based on bounded product, bounded sum and complementation.
Gniewek, L; Kluska, J
1998-01-01
This paper presents a concept of new fuzzy J-K flip-flops based on bounded product, bounded sum and fuzzy complementation operations. Relationships between various types of the J-K flip-flops are given and characteristics of them are graphically shown by computer simulation. Two examples of circuits able to memorize and fuzzy information processing using the proposed fuzzy J-K flip-flops are presented.
Fuzzy approaches to supplier selection problem
NASA Astrophysics Data System (ADS)
Ozkok, Beyza Ahlatcioglu; Kocken, Hale Gonce
2013-09-01
Supplier selection problem is a multi-criteria decision making problem which includes both qualitative and quantitative factors. In the selection process many criteria may conflict with each other, therefore decision-making process becomes complicated. In this study, we handled the supplier selection problem under uncertainty. In this context; we used minimum criterion, arithmetic mean criterion, regret criterion, optimistic criterion, geometric mean and harmonic mean. The membership functions created with the help of the characteristics of used criteria, and we tried to provide consistent supplier selection decisions by using these memberships for evaluating alternative suppliers. During the analysis, no need to use expert opinion is a strong aspect of the methodology used in the decision-making.
Fuzzy logic in autonomous orbital operations
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.
Fuzzy logic in control systems: Fuzzy logic controller. I, II
NASA Technical Reports Server (NTRS)
Lee, Chuen Chien
1990-01-01
Recent advances in the theory and applications of fuzzy-logic controllers (FLCs) are examined in an analytical review. The fundamental principles of fuzzy sets and fuzzy logic are recalled; the basic FLC components (fuzzification and defuzzification interfaces, knowledge base, and decision-making logic) are described; and the advantages of FLCs for incorporating expert knowledge into a control system are indicated. Particular attention is given to fuzzy implication functions, the interpretation of sentence connectives (and, also), compositional operators, and inference mechanisms. Applications discussed include the FLC-guided automobile developed by Sugeno and Nishida (1985), FLC hardware systems, FLCs for subway trains and ship-loading cranes, fuzzy-logic chips, and fuzzy computers.
Value of Seasonal Fuzzy-based Inflow Prediction in the Jucar River Basin
NASA Astrophysics Data System (ADS)
Pulido-Velazquez, M.; Macian-Sorribes, H.
2016-12-01
The development and application of climate services in Integrated Water Resources Management (IWRM) is said to add important benefits in terms of water use efficiency due to an increase ability to foresee future water availability. A method to evaluate the economic impact of these services is presented, based on the use of hydroeconomic modelling techniques (hydroeconomic simulation) to compare the net benefits from water use in the system with and without the inflow forecasting. The Jucar River Basin (Spain) has been used as case study. Operating rules currently applied in the basin were assessed using fuzzy rule-based (FRB) systems via a co-development process involving the system operators. These operating rules use as input variable the hydrological inflows in several sub-basins, which need to be foreseen by the system operators. The inflow forecasting mechanism to preview water availability in the irrigation season (May-September) relied on fuzzy regression in which future inflows were foreseen based on past inflows and rainfall in the basin. This approach was compared with the current use of the two past year inflows for projecting the future inflow. For each irrigation season, the previewed inflows were determined using both methods and their impact on the system operation assessed through a hydroeconomic DSS. Results show that the implementation of the fuzzy inflow forecasting system offers higher economic returns. Another advantage of the fuzzy approach regards to the uncertainty treatment using fuzzy numbers, which allow us to estimate the uncertainty range of the expected benefits. Consequently, we can use the fuzzy approach to estimate the uncertainty associated with both the prediction and the associated benefits.
Comparative study of a learning fuzzy PID controller and a self-tuning controller.
Kazemian, H B
2001-01-01
The self-organising fuzzy controller is an extension of the rule-based fuzzy controller with an additional learning capability. The self-organising fuzzy (SOF) is used as a master controller to readjust conventional PID gains at the actuator level during the system operation, copying the experience of a human operator. The application of the self-organising fuzzy PID (SOF-PID) controller to a 2-link non-linear revolute-joint robot-arm is studied using path tracking trajectories at the setpoint. For the purpose of comparison, the same experiments are repeated by using the self-tuning controller subject to the same data supplied at the setpoint. For the path tracking experiments, the output trajectories of the SOF-PID controller followed the specified path closer and smoother than the self-tuning controller.
Approximation abilities of neuro-fuzzy networks
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2010-01-01
The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.
A natural history of mathematics: George Peacock and the making of English algebra.
Lambert, Kevin
2013-06-01
In a series of papers read to the Cambridge Philosophical Society through the 1820s, the Cambridge mathematician George Peacock laid the foundation for a natural history of arithmetic that would tell a story of human progress from counting to modern arithmetic. The trajectory of that history, Peacock argued, established algebraic analysis as a form of universal reasoning that used empirically warranted operations of mind to think with symbols on paper. The science of counting would suggest arithmetic, arithmetic would suggest arithmetical algebra, and, finally, arithmetical algebra would suggest symbolic algebra. This philosophy of suggestion provided the foundation for Peacock's "principle of equivalent forms," which justified the practice of nineteenth-century English symbolic algebra. Peacock's philosophy of suggestion owed a considerable debt to the early Cambridge Philosophical Society culture of natural history. The aim of this essay is to show how that culture of natural history was constitutively significant to the practice of nineteenth-century English algebra.
Class dependency of fuzzy relational database using relational calculus and conditional probability
NASA Astrophysics Data System (ADS)
Deni Akbar, Mohammad; Mizoguchi, Yoshihiro; Adiwijaya
2018-03-01
In this paper, we propose a design of fuzzy relational database to deal with a conditional probability relation using fuzzy relational calculus. In the previous, there are several researches about equivalence class in fuzzy database using similarity or approximate relation. It is an interesting topic to investigate the fuzzy dependency using equivalence classes. Our goal is to introduce a formulation of a fuzzy relational database model using the relational calculus on the category of fuzzy relations. We also introduce general formulas of the relational calculus for the notion of database operations such as ’projection’, ’selection’, ’injection’ and ’natural join’. Using the fuzzy relational calculus and conditional probabilities, we introduce notions of equivalence class, redundant, and dependency in the theory fuzzy relational database.
Bit-parallel arithmetic in a massively-parallel associative processor
NASA Technical Reports Server (NTRS)
Scherson, Isaac D.; Kramer, David A.; Alleyne, Brian D.
1992-01-01
A simple but powerful new architecture based on a classical associative processor model is presented. Algorithms for performing the four basic arithmetic operations both for integer and floating point operands are described. For m-bit operands, the proposed architecture makes it possible to execute complex operations in O(m) cycles as opposed to O(m exp 2) for bit-serial machines. A word-parallel, bit-parallel, massively-parallel computing system can be constructed using this architecture with VLSI technology. The operation of this system is demonstrated for the fast Fourier transform and matrix multiplication.
Butt, Muhammad Arif; Akram, Muhammad
2016-01-01
We present a new intuitionistic fuzzy rule-based decision-making system based on intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our proposed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time of all available processes in the ready queue, intuitionistically fuzzify the input values, triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calculates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of every process is calculated the ready queue is sorted in decreasing order of dp of every process. The process with maximum dp value is sent to the central processing unit for execution. Finally, we show complete working of our algorithm on two different data sets and give comparisons with some standard non-preemptive process schedulers.
NASA Astrophysics Data System (ADS)
Macian-Sorribes, Hector; Pulido-Velazquez, Manuel
2016-04-01
This contribution presents a methodology for defining optimal seasonal operating rules in multireservoir systems coupling expert criteria and stochastic optimization. Both sources of information are combined using fuzzy logic. The structure of the operating rules is defined based on expert criteria, via a joint expert-technician framework consisting in a series of meetings, workshops and surveys carried out between reservoir managers and modelers. As a result, the decision-making process used by managers can be assessed and expressed using fuzzy logic: fuzzy rule-based systems are employed to represent the operating rules and fuzzy regression procedures are used for forecasting future inflows. Once done that, a stochastic optimization algorithm can be used to define optimal decisions and transform them into fuzzy rules. Finally, the optimal fuzzy rules and the inflow prediction scheme are combined into a Decision Support System for making seasonal forecasts and simulate the effect of different alternatives in response to the initial system state and the foreseen inflows. The approach presented has been applied to the Jucar River Basin (Spain). Reservoir managers explained how the system is operated, taking into account the reservoirs' states at the beginning of the irrigation season and the inflows previewed during that season. According to the information given by them, the Jucar River Basin operating policies were expressed via two fuzzy rule-based (FRB) systems that estimate the amount of water to be allocated to the users and how the reservoir storages should be balanced to guarantee those deliveries. A stochastic optimization model using Stochastic Dual Dynamic Programming (SDDP) was developed to define optimal decisions, which are transformed into optimal operating rules embedding them into the two FRBs previously created. As a benchmark, historical records are used to develop alternative operating rules. A fuzzy linear regression procedure was employed to foresee future inflows depending on present and past hydrological and meteorological variables actually used by the reservoir managers to define likely inflow scenarios. A Decision Support System (DSS) was created coupling the FRB systems and the inflow prediction scheme in order to give the user a set of possible optimal releases in response to the reservoir states at the beginning of the irrigation season and the fuzzy inflow projections made using hydrological and meteorological information. The results show that the optimal DSS created using the FRB operating policies are able to increase the amount of water allocated to the users in 20 to 50 Mm3 per irrigation season with respect to the current policies. Consequently, the mechanism used to define optimal operating rules and transform them into a DSS is able to increase the water deliveries in the Jucar River Basin, combining expert criteria and optimization algorithms in an efficient way. This study has been partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economía y Competitividad) and FEDER funds. It also has received funding from the European Union's Horizon 2020 research and innovation programme under the IMPREX project (grant agreement no: 641.811).
NASA Astrophysics Data System (ADS)
Frič, Roman; Papčo, Martin
2017-12-01
Stressing a categorical approach, we continue our study of fuzzified domains of probability, in which classical random events are replaced by measurable fuzzy random events. In operational probability theory (S. Bugajski) classical random variables are replaced by statistical maps (generalized distribution maps induced by random variables) and in fuzzy probability theory (S. Gudder) the central role is played by observables (maps between probability domains). We show that to each of the two generalized probability theories there corresponds a suitable category and the two resulting categories are dually equivalent. Statistical maps and observables become morphisms. A statistical map can send a degenerated (pure) state to a non-degenerated one —a quantum phenomenon and, dually, an observable can map a crisp random event to a genuine fuzzy random event —a fuzzy phenomenon. The dual equivalence means that the operational probability theory and the fuzzy probability theory coincide and the resulting generalized probability theory has two dual aspects: quantum and fuzzy. We close with some notes on products and coproducts in the dual categories.
The Performance of Chinese Primary School Students on Realistic Arithmetic Word Problems
ERIC Educational Resources Information Center
Xin, Ziqiang; Lin, Chongde; Zhang, Li; Yan, Rong
2007-01-01
Compared with standard arithmetic word problems demanding only the direct use of number operations and computations, realistic problems are harder to solve because children need to incorporate "real-world" knowledge into their solutions. Using the realistic word problem testing materials developed by Verschaffel, De Corte, and Lasure…
Counting and RAN: Predictors of Arithmetic Calculation and Reading Fluency
ERIC Educational Resources Information Center
Koponen, Tuire; Salmi, Paula; Eklund, Kenneth; Aro, Tuija
2013-01-01
This study examined whether counting and rapid automatized naming (RAN) could operate as significant predictors of both later arithmetic calculation and reading fluency. The authors also took an important step to clarify the cognitive mechanisms underlying these predictive relationships by controlling for the effect of phonological awareness and…
Fuzzy simulation in concurrent engineering
NASA Technical Reports Server (NTRS)
Kraslawski, A.; Nystrom, L.
1992-01-01
Concurrent engineering is becoming a very important practice in manufacturing. A problem in concurrent engineering is the uncertainty associated with the values of the input variables and operating conditions. The problem discussed in this paper concerns the simulation of processes where the raw materials and the operational parameters possess fuzzy characteristics. The processing of fuzzy input information is performed by the vertex method and the commercial simulation packages POLYMATH and GEMS. The examples are presented to illustrate the usefulness of the method in the simulation of chemical engineering processes.
The MasPar MP-1 As a Computer Arithmetic Laboratory
Anuta, Michael A.; Lozier, Daniel W.; Turner, Peter R.
1996-01-01
This paper is a blueprint for the use of a massively parallel SIMD computer architecture for the simulation of various forms of computer arithmetic. The particular system used is a DEC/MasPar MP-1 with 4096 processors in a square array. This architecture has many advantages for such simulations due largely to the simplicity of the individual processors. Arithmetic operations can be spread across the processor array to simulate a hardware chip. Alternatively they may be performed on individual processors to allow simulation of a massively parallel implementation of the arithmetic. Compromises between these extremes permit speed-area tradeoffs to be examined. The paper includes a description of the architecture and its features. It then summarizes some of the arithmetic systems which have been, or are to be, implemented. The implementation of the level-index and symmetric level-index, LI and SLI, systems is described in some detail. An extensive bibliography is included. PMID:27805123
Separating stages of arithmetic verification: An ERP study with a novel paradigm.
Avancini, Chiara; Soltész, Fruzsina; Szűcs, Dénes
2015-08-01
In studies of arithmetic verification, participants typically encounter two operands and they carry out an operation on these (e.g. adding them). Operands are followed by a proposed answer and participants decide whether this answer is correct or incorrect. However, interpretation of results is difficult because multiple parallel, temporally overlapping numerical and non-numerical processes of the human brain may contribute to task execution. In order to overcome this problem here we used a novel paradigm specifically designed to tease apart the overlapping cognitive processes active during arithmetic verification. Specifically, we aimed to separate effects related to detection of arithmetic correctness, detection of the violation of strategic expectations, detection of physical stimulus properties mismatch and numerical magnitude comparison (numerical distance effects). Arithmetic correctness, physical stimulus properties and magnitude information were not task-relevant properties of the stimuli. We distinguished between a series of temporally highly overlapping cognitive processes which in turn elicited overlapping ERP effects with distinct scalp topographies. We suggest that arithmetic verification relies on two major temporal phases which include parallel running processes. Our paradigm offers a new method for investigating specific arithmetic verification processes in detail. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Abihana, Osama A.; Gonzalez, Oscar R.
1993-01-01
The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.
An Ultrasonic Multi-Beam Concentration Meter with a Neuro-Fuzzy Algorithm for Water Treatment Plants
Lee, Ho-Hyun; Jang, Sang-Bok; Shin, Gang-Wook; Hong, Sung-Taek; Lee, Dae-Jong; Chun, Myung Geun
2015-01-01
Ultrasonic concentration meters have widely been used at water purification, sewage treatment and waste water treatment plants to sort and transfer high concentration sludges and to control the amount of chemical dosage. When an unusual substance is contained in the sludge, however, the attenuation of ultrasonic waves could be increased or not be transmitted to the receiver. In this case, the value measured by a concentration meter is higher than the actual density value or vibration. As well, it is difficult to automate the residuals treatment process according to the various problems such as sludge attachment or sensor failure. An ultrasonic multi-beam concentration sensor was considered to solve these problems, but an abnormal concentration value of a specific ultrasonic beam degrades the accuracy of the entire measurement in case of using a conventional arithmetic mean for all measurement values, so this paper proposes a method to improve the accuracy of the sludge concentration determination by choosing reliable sensor values and applying a neuro-fuzzy learning algorithm. The newly developed meter is proven to render useful results from a variety of experiments on a real water treatment plant. PMID:26512666
Lee, Ho-Hyun; Jang, Sang-Bok; Shin, Gang-Wook; Hong, Sung-Taek; Lee, Dae-Jong; Chun, Myung Geun
2015-10-23
Ultrasonic concentration meters have widely been used at water purification, sewage treatment and waste water treatment plants to sort and transfer high concentration sludges and to control the amount of chemical dosage. When an unusual substance is contained in the sludge, however, the attenuation of ultrasonic waves could be increased or not be transmitted to the receiver. In this case, the value measured by a concentration meter is higher than the actual density value or vibration. As well, it is difficult to automate the residuals treatment process according to the various problems such as sludge attachment or sensor failure. An ultrasonic multi-beam concentration sensor was considered to solve these problems, but an abnormal concentration value of a specific ultrasonic beam degrades the accuracy of the entire measurement in case of using a conventional arithmetic mean for all measurement values, so this paper proposes a method to improve the accuracy of the sludge concentration determination by choosing reliable sensor values and applying a neuro-fuzzy learning algorithm. The newly developed meter is proven to render useful results from a variety of experiments on a real water treatment plant.
ERIC Educational Resources Information Center
Bosc, P.; Lietard, L.; Pivert, O.
2003-01-01
Considers flexible querying of relational databases. Highlights include SQL languages and basic aggregate operators; Sugeno's fuzzy integral; evaluation examples; and how and under what conditions other aggregate functions could be applied to fuzzy sets in a flexible query. (Author/LRW)
Generic construction of efficient matrix product operators
NASA Astrophysics Data System (ADS)
Hubig, C.; McCulloch, I. P.; Schollwöck, U.
2017-01-01
Matrix product operators (MPOs) are at the heart of the second-generation density matrix renormalization group (DMRG) algorithm formulated in matrix product state language. We first summarize the widely known facts on MPO arithmetic and representations of single-site operators. Second, we introduce three compression methods (rescaled SVD, deparallelization, and delinearization) for MPOs and show that it is possible to construct efficient representations of arbitrary operators using MPO arithmetic and compression. As examples, we construct powers of a short-ranged spin-chain Hamiltonian, a complicated Hamiltonian of a two-dimensional system and, as proof of principle, the long-range four-body Hamiltonian from quantum chemistry.
Rosenberg-Lee, Miriam; Chang, Ting Ting; Young, Christina B; Wu, Sarah; Menon, Vinod
2011-01-01
Although lesion studies over the past several decades have focused on functional dissociations in posterior parietal cortex (PPC) during arithmetic, no consistent view has emerged of its differential involvement in addition, subtraction, multiplication, and division. To circumvent problems with poor anatomical localization, we examined functional overlap and dissociations in cytoarchitectonically-defined subdivisions of the intraparietal sulcus (IPS), superior parietal lobule (SPL) and angular gyrus (AG), across these four operations. Compared to a number identification control task, all operations except addition, showed a consistent profile of left posterior IPS activation and deactivation in the right posterior AG. Multiplication and subtraction differed significantly in right, but not left, IPS and AG activity, challenging the view that the left AG differentially subserves retrieval during multiplication. Although addition and multiplication both rely on retrieval, multiplication evoked significantly greater activation in right posterior IPS, as well as the prefrontal cortex, lingual and fusiform gyri, demonstrating that addition and multiplication engage different brain processes. Comparison of PPC responses to the two pairs of inverse operations: division vs. multiplication and subtraction vs. addition revealed greater activation of left lateral SPL during division, suggesting that processing inverse relations is operation specific. Our findings demonstrate that individual IPS, SPL and AG subdivisions are differentially modulated by the four arithmetic operations and they point to significant functional heterogeneity and individual differences in activation and deactivation within the PPC. Critically, these effects are related to retrieval, calculation and inversion, the three key cognitive processes that are differentially engaged by arithmetic operations. Our findings point to distributed representation of these processes in the human PPC and also help explain why lesion and previous imaging studies have yielded inconsistent findings. PMID:21616086
Rosenberg-Lee, Miriam; Chang, Ting Ting; Young, Christina B; Wu, Sarah; Menon, Vinod
2011-07-01
Although lesion studies over the past several decades have focused on functional dissociations in posterior parietal cortex (PPC) during arithmetic, no consistent view has emerged of its differential involvement in addition, subtraction, multiplication, and division. To circumvent problems with poor anatomical localization, we examined functional overlap and dissociations in cytoarchitectonically defined subdivisions of the intraparietal sulcus (IPS), superior parietal lobule (SPL) and angular gyrus (AG), across these four operations. Compared to a number identification control task, all operations except addition, showed a consistent profile of left posterior IPS activation and deactivation in the right posterior AG. Multiplication and subtraction differed significantly in right, but not left, IPS and AG activity, challenging the view that the left AG differentially subserves retrieval during multiplication. Although addition and multiplication both rely on retrieval, multiplication evoked significantly greater activation in right posterior IPS, as well as the prefrontal cortex, lingual and fusiform gyri, demonstrating that addition and multiplication engage different brain processes. Comparison of PPC responses to the two pairs of inverse operations: division versus multiplication and subtraction versus addition revealed greater activation of left lateral SPL during division, suggesting that processing inverse relations is operation specific. Our findings demonstrate that individual IPS, SPL and AG subdivisions are differentially modulated by the four arithmetic operations and they point to significant functional heterogeneity and individual differences in activation and deactivation within the PPC. Critically, these effects are related to retrieval, calculation and inversion, the three key cognitive processes that are differentially engaged by arithmetic operations. Our findings point to distribute representation of these processes in the human PPC and also help explain why lesion and previous imaging studies have yielded inconsistent findings. Copyright © 2011 Elsevier Ltd. All rights reserved.
Trinary signed-digit arithmetic using an efficient encoding scheme
NASA Astrophysics Data System (ADS)
Salim, W. Y.; Alam, M. S.; Fyath, R. S.; Ali, S. A.
2000-09-01
The trinary signed-digit (TSD) number system is of interest for ultrafast optoelectronic computing systems since it permits parallel carry-free addition and borrow-free subtraction of two arbitrary length numbers in constant time. In this paper, a simple coding scheme is proposed to encode the decimal number directly into the TSD form. The coding scheme enables one to perform parallel one-step TSD arithmetic operation. The proposed coding scheme uses only a 5-combination coding table instead of the 625-combination table reported recently for recoded TSD arithmetic technique.
One-step trinary signed-digit arithmetic using an efficient encoding scheme
NASA Astrophysics Data System (ADS)
Salim, W. Y.; Fyath, R. S.; Ali, S. A.; Alam, Mohammad S.
2000-11-01
The trinary signed-digit (TSD) number system is of interest for ultra fast optoelectronic computing systems since it permits parallel carry-free addition and borrow-free subtraction of two arbitrary length numbers in constant time. In this paper, a simple coding scheme is proposed to encode the decimal number directly into the TSD form. The coding scheme enables one to perform parallel one-step TSD arithmetic operation. The proposed coding scheme uses only a 5-combination coding table instead of the 625-combination table reported recently for recoded TSD arithmetic technique.
Language and arithmetic--a study using the intracarotid amobarbital procedure.
Delazer, Margarete; Karner, Elfriede; Unterberger, Iris; Walser, Gerald; Waldenberger, Peter; Trinka, Eugen; Benke, Thomas
2005-08-22
The intracarotid amobarbital procedure is used as a standard procedure in presurgical evaluation to assess hemispheric lateralization of language and memory, but has not been applied to investigate numerical processing. Patients with medically intractable epilepsy (n=20) were consecutively recruited during a presurgical evaluation programme. All 14 patients with left-lateralized language showed better arithmetic performance with the left hemisphere (intracarotid amobarbital procedure right), while five out of six patients with bilateral or right-hemispheric language representation showed better performance with the right hemisphere (intracarotid amobarbital procedure left). Furthermore, in patients with left-lateralized language, an interaction between intracarotid amobarbital procedure and type of arithmetic operation was found. The study suggests a close association between language lateralization and hemispheric specialization for arithmetic processing.
Reconfigurable data path processor
NASA Technical Reports Server (NTRS)
Donohoe, Gregory (Inventor)
2005-01-01
A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.
Study on Dynamic Alignment Technology of COIL Resonator
NASA Astrophysics Data System (ADS)
Xiong, M. D.; Zou, X. J.; Guo, J. H.; Jia, S. N.; Zhang2, Z. B.
2006-10-01
The performance of great power chemical oxygen-iodine laser (COIL) beam is decided mostly by resonator mirror maladjustment and environment vibration. To improve the performance of light beam, an auto-alignment device is used in COIL resonator, the device can keep COIL resonator collimating by adjusting the optical components of resonator. So the coupling model of COIL resonator is present. The multivariable self study fuzzy uncoupling arithmetic and six-dimensional micro drive technology are used to design a six-input-three-output uncoupling controller, resulting in the realization of the high precision dynamic alignment. The experiments indicate that the collimating range of this system is 8 mrad, precision is 5 urad and frequency response is 20Hz, which meet the demand of resonator alignment system.
De Visscher, Alice; Noël, Marie-Pascale; De Smedt, Bert
2016-12-01
Arithmetic facts, in particular multiplication tables, are thought to be stored in long-term memory and to be interference prone. At least two representations underpinning these arithmetic facts have been suggested: a physical representation of the digits and a numerical magnitude representation. We hypothesized that both representations are possible sources of interference that could explain individual differences in multiplication fact performance and/or in strategy use. We investigated the specificity of these interferences on arithmetic fact retrieval and explored the relation between interference and performance on the different arithmetic operations and on general mathematics achievement. Participants were 79 fourth-grade children (M age =9.6 years) who completed a products comparison and a multiplication production task with verbal strategy reports. Performances on a speeded calculation test including the four operations and on a general mathematics achievement test were also collected. Only the interference coming from physical representations was a significant predictor of the performance across multiplications. However, both the magnitude and physical representations were unique predictors of individual differences in multiplication. The frequency of the retrieval strategy across multiplication problems and across individuals was determined only by the physical representation, which therefore is suggested as being responsible for memory storage issues. Interestingly, this impact of physical representation was not observed when predicting performance on subtraction or on general mathematical achievement. In contrast, the impact of the numerical magnitude representation was more general in that it was observed across all arithmetic operations and in general mathematics achievement. Copyright © 2016 Elsevier Inc. All rights reserved.
Computer-Assisted Instruction: Stanford's 1965-66 Arithmetic Program.
ERIC Educational Resources Information Center
Suppes, Patrick; And Others
A review of the possibilities and challenges of computer-assisted instruction (CAI), and a brief history of CAI projects at Stanford serve to give the reader the context of the particular program described and analyzed in this book. The 1965-66 arithmetic drill-and-practice program is described, summarizing the curriculum and project operation. An…
Arithmetic Practice Can Be Modified to Promote Understanding of Mathematical Equivalence
ERIC Educational Resources Information Center
McNeil, Nicole M.; Fyfe, Emily R.; Dunwiddie, April E.
2015-01-01
This experiment tested if a modified version of arithmetic practice facilitates understanding of math equivalence. Children within 2nd-grade classrooms (N = 166) were randomly assigned to practice single-digit addition facts using 1 of 2 workbooks. In the control workbook, problems were presented in the traditional "operations = answer"…
The Teachers' Views on Soroban Abacus Training
ERIC Educational Resources Information Center
Altiparmak, Kemal
2016-01-01
Soroban abacus training is called as mental arithmetic training in our country. It is known for mental arithmetic to increase the ability of four mode operations. Besides this, how is the situation for the students which are having Soroban abacus training in the terms of problem solving abilities, creativity, development of concepts, attraction…
Design of sewage treatment system by applying fuzzy adaptive PID controller
NASA Astrophysics Data System (ADS)
Jin, Liang-Ping; Li, Hong-Chan
2013-03-01
In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.
Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic
Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas
2016-01-01
Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced. PMID:27834352
Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic.
Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas
2016-11-11
Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.
Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic
NASA Astrophysics Data System (ADS)
Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas
2016-11-01
Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.
Cognition, emotion, and arithmetic in primary school: A cross-cultural investigation.
Rodic, Maja; Cui, Jiaxin; Malykh, Sergey; Zhou, Xinlin; Gynku, Elena I; Bogdanova, Elena L; Zueva, Dina Y; Y Bogdanova, Olga; Kovas, Yulia
2018-06-01
The study investigated cross-cultural differences in variability and average performance in arithmetic, mathematical reasoning, symbolic and non-symbolic magnitude processing, intelligence, spatial ability, and mathematical anxiety in 890 6- to 9-year-old children from the United Kingdom, Russia, and China. Cross-cultural differences explained 28% of the variance in arithmetic and 17.3% of the variance in mathematical reasoning, with Chinese children outperforming the other two groups. No cross-cultural differences were observed for spatial ability and mathematical anxiety. In all samples, symbolic magnitude processing and mathematical reasoning were independently related to early arithmetic. Other factors, such as non-symbolic magnitude processing, mental rotation, intelligence, and mathematical anxiety, produced differential patterns across the populations. The results are discussed in relation to potential influences of parental practice, school readiness, and linguistic factors on individual differences in early mathematics. Statement of contribution What is already known on this subject? Cross-cultural differences in mathematical ability are present in preschool children. Similar mechanisms of mathematical development operate in preschool children from the United Kingdom, Russia, and China. Tasks that require understanding of numbers are best predictors of arithmetic in preschool children. What does this study add? Cross-cultural differences in mathematical ability become greater with age/years of formal education. Similar mechanisms of mathematical development operate in early primary school children from the United Kingdom, Russia, and China. Symbolic number magnitude and mathematical reasoning are the main predictors of arithmetic in all three populations. © 2018 The Authors British Journal of Developmental Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
NASA Astrophysics Data System (ADS)
Zhang, Nannan; Zhou, Kefa; Du, Xishihui
2017-04-01
Mineral prospectivity mapping (MPM) is a multi-step process that ranks promising target areas for further exploration. Fuzzy logic and fuzzy analytical hierarchy process (AHP) are knowledge-driven MPM approaches. In this study, both approaches were used for data processing, based on which MPM was performed for porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang. The results of the two methods were then compared. The two methods combined expert experience and the Studentized contrast (S(C)) values of the weights-of-evidence approach to calculate the weights of 15 layers, and these layers were then integrated by the gamma operator (γ). Through prediction-area (P-A) plot analysis, the optimal γ for fuzzy logic and fuzzy AHP was determined as 0.95 and 0.93, respectively. The thresholds corresponding to different levels of metallogenic probability were defined via concentration-area (C-A) fractal analysis. The prediction performances of the two methods were compared on this basis. The results showed that in MPM based on fuzzy logic, the area under the receiver operating characteristic (ROC) curve was 0.806 and 81.48% of the known deposits were predicted, whereas in MPM based on fuzzy AHP, the area under the ROC curve was 0.862 and 92.59% of the known deposits were predicted. Therefore, prediction based on fuzzy AHP is more accurate and can provide directions for future prospecting.
Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques.
Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh
2016-12-01
Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications.
Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques
Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh
2016-01-01
Background: Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. Methods: In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. Results: With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Conclusion: Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications. PMID:28077898
Programmable fuzzy associative memory processor
NASA Astrophysics Data System (ADS)
Shao, Lan; Liu, Liren; Li, Guoqiang
1996-02-01
An optical system based on the method of spatial area-coding and multiple image scheme is proposed for fuzzy associative memory processing. Fuzzy maximum operation is accomplished by a ferroelectric liquid crystal PROM instead of a computer-based approach. A relative subsethood is introduced here to be used as a criterion for the recall evaluation.
DOT National Transportation Integrated Search
2000-02-01
A Fuzzy Logic Ramp Metering Algorithm was implemented on 126 ramps in the greater Seattle area. Two multiple-ramp study sites were evaluted by comparing the fuzzy logic controller (FLC) to the other two ramp metering algorithms in operation at those ...
Application of Fuzzy Reasoning for Filtering and Enhancement of Ultrasonic Images
NASA Technical Reports Server (NTRS)
Sacha, J. P.; Cios, K. J.; Roth, D. J.; Berke, L.; Vary, A.
1994-01-01
This paper presents a new type of an adaptive fuzzy operator for detection of isolated abnormalities, and enhancement of raw ultrasonic images. Fuzzy sets used in decision rules are defined for each image based on empirical statistics of the color intensities. Examples of the method are also presented in the paper.
FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY
The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...
Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.
Pan, Indranil; Das, Saptarshi
2016-05-01
This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems
NASA Astrophysics Data System (ADS)
Peng, Juan-juan; Wang, Jian-qiang; Wang, Jing; Zhang, Hong-yu; Chen, Xiao-hong
2016-07-01
As a variation of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete and inconsistent information that exists in the real world. Simplified neutrosophic sets (SNSs) have been proposed for the main purpose of addressing issues with a set of specific numbers. However, there are certain problems regarding the existing operations of SNSs, as well as their aggregation operators and the comparison methods. Therefore, this paper defines the novel operations of simplified neutrosophic numbers (SNNs) and develops a comparison method based on the related research of intuitionistic fuzzy numbers. On the basis of these operations and the comparison method, some SNN aggregation operators are proposed. Additionally, an approach for multi-criteria group decision-making (MCGDM) problems is explored by applying these aggregation operators. Finally, an example to illustrate the applicability of the proposed method is provided and a comparison with some other methods is made.
Interval Neutrosophic Sets and Their Application in Multicriteria Decision Making Problems
Zhang, Hong-yu; Wang, Jian-qiang; Chen, Xiao-hong
2014-01-01
As a generalization of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete, and inconsistent information existing in the real world. And interval neutrosophic sets (INSs) have been proposed exactly to address issues with a set of numbers in the real unit interval, not just a specific number. However, there are fewer reliable operations for INSs, as well as the INS aggregation operators and decision making method. For this purpose, the operations for INSs are defined and a comparison approach is put forward based on the related research of interval valued intuitionistic fuzzy sets (IVIFSs) in this paper. On the basis of the operations and comparison approach, two interval neutrosophic number aggregation operators are developed. Then, a method for multicriteria decision making problems is explored applying the aggregation operators. In addition, an example is provided to illustrate the application of the proposed method. PMID:24695916
Interval neutrosophic sets and their application in multicriteria decision making problems.
Zhang, Hong-yu; Wang, Jian-qiang; Chen, Xiao-hong
2014-01-01
As a generalization of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete, and inconsistent information existing in the real world. And interval neutrosophic sets (INSs) have been proposed exactly to address issues with a set of numbers in the real unit interval, not just a specific number. However, there are fewer reliable operations for INSs, as well as the INS aggregation operators and decision making method. For this purpose, the operations for INSs are defined and a comparison approach is put forward based on the related research of interval valued intuitionistic fuzzy sets (IVIFSs) in this paper. On the basis of the operations and comparison approach, two interval neutrosophic number aggregation operators are developed. Then, a method for multicriteria decision making problems is explored applying the aggregation operators. In addition, an example is provided to illustrate the application of the proposed method.
Learning by strategies and learning by drill--evidence from an fMRI study.
Delazer, M; Ischebeck, A; Domahs, F; Zamarian, L; Koppelstaetter, F; Siedentopf, C M; Kaufmann, L; Benke, T; Felber, S
2005-04-15
The present fMRI study investigates, first, whether learning new arithmetic operations is reflected by changing cerebral activation patterns, and second, whether different learning methods lead to differential modifications of brain activation. In a controlled design, subjects were trained over a week on two new complex arithmetic operations, one operation trained by the application of back-up strategies, i.e., a sequence of arithmetic operations, the other by drill, i.e., by learning the association between the operands and the result. In the following fMRI session, new untrained items, items trained by strategy and items trained by drill, were assessed using an event-related design. Untrained items as compared to trained showed large bilateral parietal activations, with the focus of activation along the right intraparietal sulcus. Further foci of activation were found in both inferior frontal gyri. The reverse contrast, trained vs. untrained, showed a more focused activation pattern with activation in both angular gyri. As suggested by the specific activation patterns, newly acquired expertise was implemented in previously existing networks of arithmetic processing and memory. Comparisons between drill and strategy conditions suggest that successful retrieval was associated with different brain activation patterns reflecting the underlying learning methods. While the drill condition more strongly activated medial parietal regions extending to the left angular gyrus, the strategy condition was associated to the activation of the precuneus which may be accounted for by visual imagery in memory retrieval.
Dynamic Fuzzy Model Development for a Drum-type Boiler-turbine Plant Through GK Clustering
NASA Astrophysics Data System (ADS)
Habbi, Ahcène; Zelmat, Mimoun
2008-10-01
This paper discusses a TS fuzzy model identification method for an industrial drum-type boiler plant using the GK fuzzy clustering approach. The fuzzy model is constructed from a set of input-output data that covers a wide operating range of the physical plant. The reference data is generated using a complex first-principle-based mathematical model that describes the key dynamical properties of the boiler-turbine dynamics. The proposed fuzzy model is derived by means of fuzzy clustering method with particular attention on structure flexibility and model interpretability issues. This may provide a basement of a new way to design model based control and diagnosis mechanisms for the complex nonlinear plant.
Siemann, Julia; Petermann, Franz
2018-01-01
This review reconciles past findings on numerical processing with key assumptions of the most predominant model of arithmetic in the literature, the Triple Code Model (TCM). This is implemented by reporting diverse findings in the literature ranging from behavioral studies on basic arithmetic operations over neuroimaging studies on numerical processing to developmental studies concerned with arithmetic acquisition, with a special focus on developmental dyscalculia (DD). We evaluate whether these studies corroborate the model and discuss possible reasons for contradictory findings. A separate section is dedicated to the transfer of TCM to arithmetic development and to alternative accounts focusing on developmental questions of numerical processing. We conclude with recommendations for future directions of arithmetic research, raising questions that require answers in models of healthy as well as abnormal mathematical development. This review assesses the leading model in the field of arithmetic processing (Triple Code Model) by presenting knowledge from interdisciplinary research. It assesses the observed contradictory findings and integrates the resulting opposing viewpoints. The focus is on the development of arithmetic expertise as well as abnormal mathematical development. The original aspect of this article is that it points to a gap in research on these topics and provides possible solutions for future models. Copyright © 2017 Elsevier Ltd. All rights reserved.
If Gravity is Geometry, is Dark Energy just Arithmetic?
NASA Astrophysics Data System (ADS)
Czachor, Marek
2017-04-01
Arithmetic operations (addition, subtraction, multiplication, division), as well as the calculus they imply, are non-unique. The examples of four-dimensional spaces, R+4 and (- L/2, L/2)4, are considered where different types of arithmetic and calculus coexist simultaneously. In all the examples there exists a non-Diophantine arithmetic that makes the space globally Minkowskian, and thus the laws of physics are formulated in terms of the corresponding calculus. However, when one switches to the `natural' Diophantine arithmetic and calculus, the Minkowskian character of the space is lost and what one effectively obtains is a Lorentzian manifold. I discuss in more detail the problem of electromagnetic fields produced by a pointlike charge. The solution has the standard form when expressed in terms of the non-Diophantine formalism. When the `natural' formalsm is used, the same solution looks as if the fields were created by a charge located in an expanding universe, with nontrivially accelerating expansion. The effect is clearly visible also in solutions of the Friedman equation with vanishing cosmological constant. All of this suggests that phenomena attributed to dark energy may be a manifestation of a miss-match between the arithmetic employed in mathematical modeling, and the one occurring at the level of natural laws. Arithmetic is as physical as geometry.
NASA Technical Reports Server (NTRS)
Cheatham, John B., Jr.; Magee, Kevin N.
1991-01-01
The Rice University Department of Mechanical Engineering and Materials Sciences' Robotics Group designed and built an eight degree of freedom redundant manipulator. Fuzzy logic was proposed as a control scheme for tasks not directly controlled by a human operator. In preliminary work, fuzzy logic control was implemented for a camera tracking system and a six degree of freedom manipulator. Both preliminary systems use real time vision data as input to fuzzy controllers. Related projects include integration of tactile sensing and fuzzy control of a redundant snake-like arm that is under construction.
Rodic, Maja; Zhou, Xinlin; Tikhomirova, Tatiana; Wei, Wei; Malykh, Sergei; Ismatulina, Victoria; Sabirova, Elena; Davidova, Yulia; Tosto, Maria Grazia; Lemelin, Jean-Pascal; Kovas, Yulia
2015-01-01
The present study evaluated 626 5-7-year-old children in the UK, China, Russia, and Kyrgyzstan on a cognitive test battery measuring: (1) general skills; (2) non-symbolic number sense; (3) symbolic number understanding; (4) simple arithmetic - operating with numbers; and (5) familiarity with numbers. Although most inter-population differences were small, 13% of the variance in arithmetic skills could be explained by the sample, replicating the pattern, previously found with older children in PISA. Furthermore, the same cognitive skills were related to early arithmetic in these diverse populations. Only understanding of symbolic number explained variation in mathematical performance in all samples. We discuss the results in terms of potential influences of socio-demographic, linguistic and genetic factors on individual differences in mathematics. © 2014 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Arsic, Sladjana; Eminovic, Fadilj; Stankovic, Ivona
2011-01-01
Calculia is considered to be the ability of performing arithmetic operations, the preconditions for the development of mathematical skills in the complex functioning of psychological functions represented in neuro-anatomical systems, as well in the interaction with the environment. Problems in acquiring arithmetic skills can be described as…
ERIC Educational Resources Information Center
Schoppek, Wolfgang; Tulis, Maria
2010-01-01
The fluency of basic arithmetical operations is a precondition for mathematical problem solving. However, the training of skills plays a minor role in contemporary mathematics instruction. The authors proposed individualization of practice as a means to improve its efficiency, so that the time spent with the training of skills is minimized. As a…
Nonsymbolic, Approximate Arithmetic in Children: Abstract Addition Prior to Instruction
ERIC Educational Resources Information Center
Barth, Hilary; Beckmann, Lacey; Spelke, Elizabeth S.
2008-01-01
Do children draw upon abstract representations of number when they perform approximate arithmetic operations? In this study, kindergarten children viewed animations suggesting addition of a sequence of sounds to an array of dots, and they compared the sum to a second dot array that differed from the sum by 1 of 3 ratios. Children performed this…
ERIC Educational Resources Information Center
Rodic, Maja; Zhou, Xinlin; Tikhomirova, Tatiana; Wei, Wei; Malykh, Sergei; Ismatulina, Victoria; Sabirova, Elena; Davidova, Yulia; Tosto, Maria Grazia; Lemelin, Jean-Pascal; Kovas, Yulia
2015-01-01
The present study evaluated 626 5-7-year-old children in the UK, China, Russia, and Kyrgyzstan on a cognitive test battery measuring: (1) general skills; (2) non-symbolic number sense; (3) symbolic number understanding; (4) simple arithmetic--operating with numbers; and (5) familiarity with numbers. Although most inter-population differences were…
Competing Biases in Mental Arithmetic: When Division Is More and Multiplication Is Less.
Shaki, Samuel; Fischer, Martin H
2017-01-01
Mental arithmetic exhibits various biases. Among those is a tendency to overestimate addition and to underestimate subtraction outcomes. Does such "operational momentum" (OM) also affect multiplication and division? Twenty-six adults produced lines whose lengths corresponded to the correct outcomes of multiplication and division problems shown in symbolic format. We found a reliable tendency to over-estimate division outcomes, i.e., reverse OM. We suggest that anchoring on the first operand (a tendency to use this number as a reference for further quantitative reasoning) contributes to cognitive biases in mental arithmetic.
Fault tolerant computing: A preamble for assuring viability of large computer systems
NASA Technical Reports Server (NTRS)
Lim, R. S.
1977-01-01
The need for fault-tolerant computing is addressed from the viewpoints of (1) why it is needed, (2) how to apply it in the current state of technology, and (3) what it means in the context of the Phoenix computer system and other related systems. To this end, the value of concurrent error detection and correction is described. User protection, program retry, and repair are among the factors considered. The technology of algebraic codes to protect memory systems and arithmetic codes to protect memory systems and arithmetic codes to protect arithmetic operations is discussed.
Modeling Choice Under Uncertainty in Military Systems Analysis
1991-11-01
operators rather than fuzzy operators. This is suggested for further research. 4.3 ANALYTIC HIERARCHICAL PROCESS ( AHP ) In AHP , objectives, functions and...14 4.1 IMPRECISELY SPECIFIED MULTIPLE A’ITRIBUTE UTILITY THEORY... 14 4.2 FUZZY DECISION ANALYSIS...14 4.3 ANALYTIC HIERARCHICAL PROCESS ( AHP ) ................................... 14 4.4 SUBJECTIVE TRANSFER FUNCTION APPROACH
NASA Astrophysics Data System (ADS)
Hayakawa, Hitoshi; Ogawa, Makoto; Shibata, Tadashi
2005-04-01
A very large scale integrated circuit (VLSI) architecture for a multiple-instruction-stream multiple-data-stream (MIMD) associative processor has been proposed. The processor employs an architecture that enables seamless switching from associative operations to arithmetic operations. The MIMD element is convertible to a regular central processing unit (CPU) while maintaining its high performance as an associative processor. Therefore, the MIMD associative processor can perform not only on-chip perception, i.e., searching for the vector most similar to an input vector throughout the on-chip cache memory, but also arithmetic and logic operations similar to those in ordinary CPUs, both simultaneously in parallel processing. Three key technologies have been developed to generate the MIMD element: associative-operation-and-arithmetic-operation switchable calculation units, a versatile register control scheme within the MIMD element for flexible operations, and a short instruction set for minimizing the memory size for program storage. Key circuit blocks were designed and fabricated using 0.18 μm complementary metal-oxide-semiconductor (CMOS) technology. As a result, the full-featured MIMD element is estimated to be 3 mm2, showing the feasibility of an 8-parallel-MIMD-element associative processor in a single chip of 5 mm× 5 mm.
NASA Astrophysics Data System (ADS)
Liu, Hu-Chen; Liu, Long; Li, Ping
2014-10-01
Failure mode and effects analysis (FMEA) has shown its effectiveness in examining potential failures in products, process, designs or services and has been extensively used for safety and reliability analysis in a wide range of industries. However, its approach to prioritise failure modes through a crisp risk priority number (RPN) has been criticised as having several shortcomings. The aim of this paper is to develop an efficient and comprehensive risk assessment methodology using intuitionistic fuzzy hybrid weighted Euclidean distance (IFHWED) operator to overcome the limitations and improve the effectiveness of the traditional FMEA. The diversified and uncertain assessments given by FMEA team members are treated as linguistic terms expressed in intuitionistic fuzzy numbers (IFNs). Intuitionistic fuzzy weighted averaging (IFWA) operator is used to aggregate the FMEA team members' individual assessments into a group assessment. IFHWED operator is applied thereafter to the prioritisation and selection of failure modes. Particularly, both subjective and objective weights of risk factors are considered during the risk evaluation process. A numerical example for risk assessment is given to illustrate the proposed method finally.
Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering.
Gong, Maoguo; Zhou, Zhiqiang; Ma, Jingjing
2012-04-01
This paper presents an unsupervised distribution-free change detection approach for synthetic aperture radar (SAR) images based on an image fusion strategy and a novel fuzzy clustering algorithm. The image fusion technique is introduced to generate a difference image by using complementary information from a mean-ratio image and a log-ratio image. In order to restrain the background information and enhance the information of changed regions in the fused difference image, wavelet fusion rules based on an average operator and minimum local area energy are chosen to fuse the wavelet coefficients for a low-frequency band and a high-frequency band, respectively. A reformulated fuzzy local-information C-means clustering algorithm is proposed for classifying changed and unchanged regions in the fused difference image. It incorporates the information about spatial context in a novel fuzzy way for the purpose of enhancing the changed information and of reducing the effect of speckle noise. Experiments on real SAR images show that the image fusion strategy integrates the advantages of the log-ratio operator and the mean-ratio operator and gains a better performance. The change detection results obtained by the improved fuzzy clustering algorithm exhibited lower error than its preexistences.
Enhancement of brain tumor MR images based on intuitionistic fuzzy sets
NASA Astrophysics Data System (ADS)
Deng, Wankai; Deng, He; Cheng, Lifang
2015-12-01
Brain tumor is one of the most fatal cancers, especially high-grade gliomas are among the most deadly. However, brain tumor MR images usually have the disadvantages of low resolution and contrast when compared with the optical images. Consequently, we present a novel adaptive intuitionistic fuzzy enhancement scheme by combining a nonlinear fuzzy filtering operation with fusion operators, for the enhancement of brain tumor MR images in this paper. The presented scheme consists of the following six steps: Firstly, the image is divided into several sub-images. Secondly, for each sub-image, object and background areas are separated by a simple threshold. Thirdly, respective intuitionistic fuzzy generators of object and background areas are constructed based on the modified restricted equivalence function. Fourthly, different suitable operations are performed on respective membership functions of object and background areas. Fifthly, the membership plane is inversely transformed into the image plane. Finally, an enhanced image is obtained through fusion operators. The comparison and evaluation of enhancement performance demonstrate that the presented scheme is helpful to determine the abnormal functional areas, guide the operation, judge the prognosis, and plan the radiotherapy by enhancing the fine detail of MR images.
NASA Astrophysics Data System (ADS)
Cruz Jiménez, Miriam Guadalupe; Meyer Baese, Uwe; Jovanovic Dolecek, Gordana
2017-12-01
New theoretical lower bounds for the number of operators needed in fixed-point constant multiplication blocks are presented. The multipliers are constructed with the shift-and-add approach, where every arithmetic operation is pipelined, and with the generalization that n-input pipelined additions/subtractions are allowed, along with pure pipelining registers. These lower bounds, tighter than the state-of-the-art theoretical limits, are particularly useful in early design stages for a quick assessment in the hardware utilization of low-cost constant multiplication blocks implemented in the newest families of field programmable gate array (FPGA) integrated circuits.
NASA Astrophysics Data System (ADS)
Jiang, Wen; Wei, Boya
2018-02-01
The theory of intuitionistic fuzzy sets (IFS) is widely used for dealing with vagueness and the Dempster-Shafer (D-S) evidence theory has a widespread use in multiple criteria decision-making problems under uncertain situation. However, there are many methods to aggregate intuitionistic fuzzy numbers (IFNs), but the aggregation operator to fuse basic probability assignment (BPA) is rare. Power average (P-A) operator, as a powerful operator, is useful and important in information fusion. Motivated by the idea of P-A power, in this paper, a new operator based on the IFS and D-S evidence theory is proposed, which is named as intuitionistic fuzzy evidential power average (IFEPA) aggregation operator. First, an IFN is converted into a BPA, and the uncertainty is measured in D-S evidence theory. Second, the difference between BPAs is measured by Jousselme distance and a satisfying support function is proposed to get the support degree between each other effectively. Then the IFEPA operator is used for aggregating the original IFN and make a more reasonable decision. The proposed method is objective and reasonable because it is completely driven by data once some parameters are required. At the same time, it is novel and interesting. Finally, an application of developed models to the 'One Belt, One road' investment decision-making problems is presented to illustrate the effectiveness and feasibility of the proposed operator.
Liu, Fang; Zhang, Wei-Guo
2014-08-01
Due to the vagueness of real-world environments and the subjective nature of human judgments, it is natural for experts to estimate their judgements by using incomplete interval fuzzy preference relations. In this paper, based on the technique for order preference by similarity to ideal solution method, we present a consensus model for group decision-making (GDM) with incomplete interval fuzzy preference relations. To do this, we first define a new consistency measure for incomplete interval fuzzy preference relations. Second, a goal programming model is proposed to estimate the missing interval preference values and it is guided by the consistency property. Third, an ideal interval fuzzy preference relation is constructed by using the induced ordered weighted averaging operator, where the associated weights of characterizing the operator are based on the defined consistency measure. Fourth, a similarity degree between complete interval fuzzy preference relations and the ideal one is defined. The similarity degree is related to the associated weights, and used to aggregate the experts' preference relations in such a way that more importance is given to ones with the higher similarity degree. Finally, a new algorithm is given to solve the GDM problem with incomplete interval fuzzy preference relations, which is further applied to partnership selection in formation of virtual enterprises.
Navigating a Mobile Robot Across Terrain Using Fuzzy Logic
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Howard, Ayanna; Bon, Bruce
2003-01-01
A strategy for autonomous navigation of a robotic vehicle across hazardous terrain involves the use of a measure of traversability of terrain within a fuzzy-logic conceptual framework. This navigation strategy requires no a priori information about the environment. Fuzzy logic was selected as a basic element of this strategy because it provides a formal methodology for representing and implementing a human driver s heuristic knowledge and operational experience. Within a fuzzy-logic framework, the attributes of human reasoning and decision- making can be formulated by simple IF (antecedent), THEN (consequent) rules coupled with easily understandable and natural linguistic representations. The linguistic values in the rule antecedents convey the imprecision associated with measurements taken by sensors onboard a mobile robot, while the linguistic values in the rule consequents represent the vagueness inherent in the reasoning processes to generate the control actions. The operational strategies of the human expert driver can be transferred, via fuzzy logic, to a robot-navigation strategy in the form of a set of simple conditional statements composed of linguistic variables. These linguistic variables are defined by fuzzy sets in accordance with user-defined membership functions. The main advantages of a fuzzy navigation strategy lie in the ability to extract heuristic rules from human experience and to obviate the need for an analytical model of the robot navigation process.
Adaptive fuzzy system for 3-D vision
NASA Technical Reports Server (NTRS)
Mitra, Sunanda
1993-01-01
An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.
When listening to rain sounds boosts arithmetic ability
De Benedetto, Francesco; Ferrari, Maria Vittoria; Ferrarini, Giorgia
2018-01-01
Studies in the literature have provided conflicting evidence about the effects of background noise or music on concurrent cognitive tasks. Some studies have shown a detrimental effect, while others have shown a beneficial effect of background auditory stimuli. The aim of this study was to investigate the influence of agitating, happy or touching music, as opposed to environmental sounds or silence, on the ability of non-musician subjects to perform arithmetic operations. Fifty university students (25 women and 25 men, 25 introverts and 25 extroverts) volunteered for the study. The participants were administered 180 easy or difficult arithmetic operations (division, multiplication, subtraction and addition) while listening to heavy rain sounds, silence or classical music. Silence was detrimental when participants were faced with difficult arithmetic operations, as it was associated with significantly worse accuracy and slower RTs than music or rain sound conditions. This finding suggests that the benefit of background stimulation was not music-specific but possibly due to an enhanced cerebral alertness level induced by the auditory stimulation. Introverts were always faster than extroverts in solving mathematical problems, except when the latter performed calculations accompanied by the sound of heavy rain, a condition that made them as fast as introverts. While the background auditory stimuli had no effect on the arithmetic ability of either group in the easy condition, it strongly affected extroverts in the difficult condition, with RTs being faster during agitating or joyful music as well as rain sounds, compared to the silent condition. For introverts, agitating music was associated with faster response times than the silent condition. This group difference may be explained on the basis of the notion that introverts have a generally higher arousal level compared to extroverts and would therefore benefit less from the background auditory stimuli. PMID:29466472
When listening to rain sounds boosts arithmetic ability.
Proverbio, Alice Mado; De Benedetto, Francesco; Ferrari, Maria Vittoria; Ferrarini, Giorgia
2018-01-01
Studies in the literature have provided conflicting evidence about the effects of background noise or music on concurrent cognitive tasks. Some studies have shown a detrimental effect, while others have shown a beneficial effect of background auditory stimuli. The aim of this study was to investigate the influence of agitating, happy or touching music, as opposed to environmental sounds or silence, on the ability of non-musician subjects to perform arithmetic operations. Fifty university students (25 women and 25 men, 25 introverts and 25 extroverts) volunteered for the study. The participants were administered 180 easy or difficult arithmetic operations (division, multiplication, subtraction and addition) while listening to heavy rain sounds, silence or classical music. Silence was detrimental when participants were faced with difficult arithmetic operations, as it was associated with significantly worse accuracy and slower RTs than music or rain sound conditions. This finding suggests that the benefit of background stimulation was not music-specific but possibly due to an enhanced cerebral alertness level induced by the auditory stimulation. Introverts were always faster than extroverts in solving mathematical problems, except when the latter performed calculations accompanied by the sound of heavy rain, a condition that made them as fast as introverts. While the background auditory stimuli had no effect on the arithmetic ability of either group in the easy condition, it strongly affected extroverts in the difficult condition, with RTs being faster during agitating or joyful music as well as rain sounds, compared to the silent condition. For introverts, agitating music was associated with faster response times than the silent condition. This group difference may be explained on the basis of the notion that introverts have a generally higher arousal level compared to extroverts and would therefore benefit less from the background auditory stimuli.
The Construction of a Vague Fuzzy Measure Through L1 Parameter Optimization
2012-08-26
Programming v. 1.21, http://cvxr.com/cvx, (2011) 11 [3] E.J. Candes, J. Romberg and T. Tao. Robust Uncertainty Principles: Exact Signal Reconstruction From...Annales de I’institut Fourer, 5 (1954), pp. 131-295 [9] D. Diakoulaki, C. Antunes and A. Martins. MCDA in Energy Planning, Int. Series in Operations...formance and Tests , Fuzzy Sets and Systems, Vol. 65, Issues 2-3 (1994), pp.255-271 [15] M. Grabisch. Fuzzy Integral in Multicriteria Decision Making, Fuzzy
NASA Technical Reports Server (NTRS)
Jones, J. R.; Bodenheimer, R. E.
1976-01-01
A simple programmable Tse processor organization and arithmetic operations necessary for extraction of the desired topological information are described. Hardware additions to this organization are discussed along with trade-offs peculiar to the tse computing concept. An improved organization is presented along with the complementary software for the various arithmetic operations. The performance of the two organizations is compared in terms of speed, power, and cost. Software routines developed to extract the desired information from an image are included.
Fuzzy logic-based flight control system design
NASA Astrophysics Data System (ADS)
Nho, Kyungmoon
The application of fuzzy logic to aircraft motion control is studied in this dissertation. The self-tuning fuzzy techniques are developed by changing input scaling factors to obtain a robust fuzzy controller over a wide range of operating conditions and nonlinearities for a nonlinear aircraft model. It is demonstrated that the properly adjusted input scaling factors can meet the required performance and robustness in a fuzzy controller. For a simple demonstration of the easy design and control capability of a fuzzy controller, a proportional-derivative (PD) fuzzy control system is compared to the conventional controller for a simple dynamical system. This thesis also describes the design principles and stability analysis of fuzzy control systems by considering the key features of a fuzzy control system including the fuzzification, rule-base and defuzzification. The wing-rock motion of slender delta wings, a linear aircraft model and the six degree of freedom nonlinear aircraft dynamics are considered to illustrate several self-tuning methods employing change in input scaling factors. Finally, this dissertation is concluded with numerical simulation of glide-slope capture in windshear demonstrating the robustness of the fuzzy logic based flight control system.
Fuzzy inference game approach to uncertainty in business decisions and market competitions.
Oderanti, Festus Oluseyi
2013-01-01
The increasing challenges and complexity of business environments are making business decisions and operations more difficult for entrepreneurs to predict the outcomes of these processes. Therefore, we developed a decision support scheme that could be used and adapted to various business decision processes. These involve decisions that are made under uncertain situations such as business competition in the market or wage negotiation within a firm. The scheme uses game strategies and fuzzy inference concepts to effectively grasp the variables in these uncertain situations. The games are played between human and fuzzy players. The accuracy of the fuzzy rule base and the game strategies help to mitigate the adverse effects that a business may suffer from these uncertain factors. We also introduced learning which enables the fuzzy player to adapt over time. We tested this scheme in different scenarios and discover that it could be an invaluable tool in the hand of entrepreneurs that are operating under uncertain and competitive business environments.
NASA Astrophysics Data System (ADS)
Saadoud, Djouher; Hassani, Mohamed; Martin Peinado, Francisco José; Guettouche, Mohamed Saïd
2018-06-01
Wind erosion is one of the most serious environmental problems in Algeria that threatens human activities and socio-economic development. The main goal of this study is to apply a fuzzy logic approach to wind erosion sensitivity mapping in the Laghouat region, Algeria. Six causative factors, obtained by applying fuzzy membership functions to each used parameter, are considered: soil, vegetation cover, wind factor, soil dryness, land topography and land cover sensitivity. Different fuzzy operators (AND, OR, SUM, PRODUCT, and GAMMA) are applied to generate wind-erosion hazard map. Success rate curves reveal that the fuzzy gamma (γ) operator, with γ equal to 0.9, gives the best prediction accuracy with an area under curve of 85.2%. The resulting wind-erosion sensitivity map delineates the area into different zones of five relative sensitivity classes: very high, high, moderate, low and very low. The estimated result was verified by field measurements and the high statistically significant value of a chi-square test.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Santín, I; Barbu, M; Pedret, C; Vilanova, R
2018-06-01
The application of control strategies is increasingly used in wastewater treatment plants with the aim of improving effluent quality and reducing operating costs. Due to concerns about the progressive growth of greenhouse gas emissions (GHG), these are also currently being evaluated in wastewater treatment plants. The present article proposes a fuzzy controller for plant-wide control of the biological wastewater treatment process. Its design is based on 14 inputs and 6 outputs in order to reduce GHG emissions, nutrient concentration in the effluent and operational costs. The article explains and shows the effect of each one of the inputs and outputs of the fuzzy controller, as well as the relationship between them. Benchmark Simulation Model no 2 Gas is used for testing the proposed control strategy. The results of simulation results show that the fuzzy controller is able to reduce GHG emissions while improving, at the same time, the common criteria of effluent quality and operational costs. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kiso, Atsushi; Murakami, Hiroki; Seki, Hirokazu
This paper describes a novel obstacle avoidance control scheme of electric powered wheelchairs for realizing the safe driving in various environments. The “electric powered wheelchair” which generates the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people; however, the driving performance must be further improved because the number of driving accidents caused by elderly operator's narrow sight and joystick operation errors is increasing. This paper proposes a novel obstacle avoidance control scheme based on fuzzy algorithm to prevent driving accidents. The proposed control system determines the driving direction by fuzzy algorithm based on the information of the joystick operation and distance to obstacles measured by ultrasonic sensors. Fuzzy rules to determine the driving direction are designed surely to avoid passers-by and walls considering the human's intent and driving environments. Some driving experiments on the practical situations show the effectiveness of the proposed control system.
Waewsak, Chaiwat; Nopharatana, Annop; Chaiprasert, Pawinee
2010-01-01
Based on the developed neural-fuzzy control system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogas production, the neural network with backpropagation algorithm for prediction of the variables pH, alkalinity (Alk) and total volatile acids (TVA) at present day time t was used as input data for the fuzzy logic to calculate the influent feed flow rate that was applied to control and monitor the process response at different operations in the initial, overload influent feeding and the recovery phases. In all three phases, this neural-fuzzy control system showed great potential to control AHR in high stability and performance and quick response. Although in the overloading operation phase II with two fold calculating influent flow rate together with a two fold organic loading rate (OLR), this control system had rapid response and was sensitive to the intended overload. When the influent feeding rate was followed by the calculation of control system in the initial operation phase I and the recovery operation phase III, it was found that the neural-fuzzy control system application was capable of controlling the AHR in a good manner with the pH close to 7, TVA/Alk < 0.4 and COD removal > 80% with biogas and methane yields at 0.45 and 0.30 m3/kg COD removed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, H.; Eki, Y.; Kaji, A.
1993-12-01
An expert system which can support operators of fossil power plants in creating the optimum startup schedule and executing it accurately is described. The optimum turbine speed-up and load-up pattern is obtained through an iterative manner which is based on fuzzy resonating using quantitative calculations as plant dynamics models and qualitative knowledge as schedule optimization rules with fuzziness. The rules represent relationships between stress margins and modification rates of the schedule parameters. Simulations analysis proves that the system provides quick and accurate plant startups.
Desirable floating-point arithmetic and elementary functions for numerical computation
NASA Technical Reports Server (NTRS)
Hull, T. E.
1978-01-01
The topics considered are: (1) the base of the number system, (2) precision control, (3) number representation, (4) arithmetic operations, (5) other basic operations, (6) elementary functions, and (7) exception handling. The possibility of doing without fixed-point arithmetic is also mentioned. The specifications are intended to be entirely at the level of a programming language such as FORTRAN. The emphasis is on convenience and simplicity from the user's point of view. Conforming to such specifications would have obvious beneficial implications for the portability of numerical software, and for proving programs correct, as well as attempting to provide facilities which are most suitable for the user. The specifications are not complete in every detail, but it is intended that they be complete in spirit - some further details, especially syntatic details, would have to be provided, but the proposals are otherwise relatively complete.
NASA Astrophysics Data System (ADS)
Naqvi, Syed Rameez; Akram, Tallha; Iqbal, Saba; Haider, Sajjad Ali; Kamran, Muhammad; Muhammad, Nazeer
2018-02-01
Considering the lack of optimization support for Quantum-dot Cellular Automata, we propose a dynamically reconfigurable logic cell capable of implementing various logic operations by means of artificial neural networks. The cell can be reconfigured to any 2-input combinational logic gate by altering the strength of connections, called weights and biases. We demonstrate how these cells may appositely be organized to perform multi-bit arithmetic and logic operations. The proposed work is important in that it gives a standard implementation of an 8-bit arithmetic and logic unit for quantum-dot cellular automata with minimal area and latency overhead. We also compare the proposed design with a few existing arithmetic and logic units, and show that it is more area efficient than any equivalent available in literature. Furthermore, the design is adaptable to 16, 32, and 64 bit architectures.
ERIC Educational Resources Information Center
Pinel, Philippe; Dehaene, Stanislas
2010-01-01
Language and arithmetic are both lateralized to the left hemisphere in the majority of right-handed adults. Yet, does this similar lateralization reflect a single overall constraint of brain organization, such an overall "dominance" of the left hemisphere for all linguistic and symbolic operations? Is it related to the lateralization of specific…
ERIC Educational Resources Information Center
HANKIN, EDWARD K.; AND OTHERS
THIS TECHNICAL PROGRESS REPORT COVERS THE FIRST THREE MONTHS OF A PROJECT TO DEVELOP COMPUTER ASSISTED PREVOCATIONAL READING AND ARITHMETIC COURSES FOR DISADVANTAGED YOUTHS AND ADULTS. DURING THE FIRST MONTH OF OPERATION, PROJECT PERSONNEL CONCENTRATED ON SUCH ADMINISTRATIVE MATTERS AS TRAINING STAFF AND PREPARING FACILITIES. AN ARITHMETIC PROGRAM…
Code of Federal Regulations, 2010 CFR
2010-07-01
... averages into the appropriate averaging times and units? 60.2943 Section 60.2943 Protection of Environment... SOURCES Operator Training and Qualification Monitoring § 60.2943 How do I convert my 1-hour arithmetic averages into the appropriate averaging times and units? (a) Use Equation 1 in § 60.2975 to calculate...
Code of Federal Regulations, 2012 CFR
2012-07-01
... averages into the appropriate averaging times and units? 60.2943 Section 60.2943 Protection of Environment... SOURCES Operator Training and Qualification Monitoring § 60.2943 How do I convert my 1-hour arithmetic averages into the appropriate averaging times and units? (a) Use Equation 1 in § 60.2975 to calculate...
Code of Federal Regulations, 2011 CFR
2011-07-01
... averages into the appropriate averaging times and units? 60.2943 Section 60.2943 Protection of Environment... SOURCES Operator Training and Qualification Monitoring § 60.2943 How do I convert my 1-hour arithmetic averages into the appropriate averaging times and units? (a) Use Equation 1 in § 60.2975 to calculate...
Brain Activation during Addition and Subtraction Tasks In-Noise and In-Quiet
Abd Hamid, Aini Ismafairus; Yusoff, Ahmad Nazlim; Mukari, Siti Zamratol-Mai Sarah; Mohamad, Mazlyfarina
2011-01-01
Background: In spite of extensive research conducted to study how human brain works, little is known about a special function of the brain that stores and manipulates information—the working memory—and how noise influences this special ability. In this study, Functional magnetic resonance imaging (fMRI) was used to investigate brain responses to arithmetic problems solved in noisy and quiet backgrounds. Methods: Eighteen healthy young males performed simple arithmetic operations of addition and subtraction with in-quiet and in-noise backgrounds. The MATLAB-based Statistical Parametric Mapping (SPM8) was implemented on the fMRI datasets to generate and analyse the activated brain regions. Results: Group results showed that addition and subtraction operations evoked extended activation in the left inferior parietal lobe, left precentral gyrus, left superior parietal lobe, left supramarginal gyrus, and left middle temporal gyrus. This supported the hypothesis that the human brain relatively activates its left hemisphere more compared with the right hemisphere when solving arithmetic problems. The insula, middle cingulate cortex, and middle frontal gyrus, however, showed more extended right hemispheric activation, potentially due to the involvement of attention, executive processes, and working memory. For addition operations, there was extensive left hemispheric activation in the superior temporal gyrus, inferior frontal gyrus, and thalamus. In contrast, subtraction tasks evoked a greater activation of similar brain structures in the right hemisphere. For both addition and subtraction operations, the total number of activated voxels was higher for in-noise than in-quiet conditions. Conclusion: These findings suggest that when arithmetic operations were delivered auditorily, the auditory, attention, and working memory functions were required to accomplish the executive processing of the mathematical calculation. The respective brain activation patterns appear to be modulated by the noisy background condition. PMID:22135581
Fuzzy logic control and optimization system
Lou, Xinsheng [West Hartford, CT
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
A Fuzzy Logic Based Controller for the Automated Alignment of a Laser-beam-smoothing Spatial Filter
NASA Technical Reports Server (NTRS)
Krasowski, M. J.; Dickens, D. E.
1992-01-01
A fuzzy logic based controller for a laser-beam-smoothing spatial filter is described. It is demonstrated that a human operator's alignment actions can easily be described by a system of fuzzy rules of inference. The final configuration uses inexpensive, off-the-shelf hardware and allows for a compact, readily implemented embedded control system.
Using new aggregation operators in rule-based intelligent control
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Chen, Yung-Yaw; Yager, Ronald R.
1990-01-01
A new aggregation operator is applied in the design of an approximate reasoning-based controller. The ordered weighted averaging (OWA) operator has the property of lying between the And function and the Or function used in previous fuzzy set reasoning systems. It is shown here that, by applying OWA operators, more generalized types of control rules, which may include linguistic quantifiers such as Many and Most, can be developed. The new aggregation operators, as tested in a cart-pole balancing control problem, illustrate improved performance when compared with existing fuzzy control aggregation schemes.
Pawlak Algebra and Approximate Structure on Fuzzy Lattice
Zhuang, Ying; Liu, Wenqi; Wu, Chin-Chia; Li, Jinhai
2014-01-01
The aim of this paper is to investigate the general approximation structure, weak approximation operators, and Pawlak algebra in the framework of fuzzy lattice, lattice topology, and auxiliary ordering. First, we prove that the weak approximation operator space forms a complete distributive lattice. Then we study the properties of transitive closure of approximation operators and apply them to rough set theory. We also investigate molecule Pawlak algebra and obtain some related properties. PMID:25152922
Pawlak algebra and approximate structure on fuzzy lattice.
Zhuang, Ying; Liu, Wenqi; Wu, Chin-Chia; Li, Jinhai
2014-01-01
The aim of this paper is to investigate the general approximation structure, weak approximation operators, and Pawlak algebra in the framework of fuzzy lattice, lattice topology, and auxiliary ordering. First, we prove that the weak approximation operator space forms a complete distributive lattice. Then we study the properties of transitive closure of approximation operators and apply them to rough set theory. We also investigate molecule Pawlak algebra and obtain some related properties.
NASA Astrophysics Data System (ADS)
Jin, Chenxia; Li, Fachao; Tsang, Eric C. C.; Bulysheva, Larissa; Kataev, Mikhail Yu
2017-01-01
In many real industrial applications, the integration of raw data with a methodology can support economically sound decision-making. Furthermore, most of these tasks involve complex optimisation problems. Seeking better solutions is critical. As an intelligent search optimisation algorithm, genetic algorithm (GA) is an important technique for complex system optimisation, but it has internal drawbacks such as low computation efficiency and prematurity. Improving the performance of GA is a vital topic in academic and applications research. In this paper, a new real-coded crossover operator, called compound arithmetic crossover operator (CAC), is proposed. CAC is used in conjunction with a uniform mutation operator to define a new genetic algorithm CAC10-GA. This GA is compared with an existing genetic algorithm (AC10-GA) that comprises an arithmetic crossover operator and a uniform mutation operator. To judge the performance of CAC10-GA, two kinds of analysis are performed. First the analysis of the convergence of CAC10-GA is performed by the Markov chain theory; second, a pair-wise comparison is carried out between CAC10-GA and AC10-GA through two test problems available in the global optimisation literature. The overall comparative study shows that the CAC performs quite well and the CAC10-GA defined outperforms the AC10-GA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGoldrick, P.R.; Allison, T.G.
The BASIC2 INTERPRETER was developed to provide a high-level easy-to-use language for performing both control and computational functions in the MCS-80. The package is supplied as two alternative implementations, hardware and software. The ''software'' implementation provides the following capabilities: entry and editing of BASIC programs, device-independent I/O, special functions to allow access from BASIC to any I/O port, formatted printing, special INPUT/OUTPUT-and-proceed statements to allow I/O without interrupting BASIC program execution, full arithmetic expressions, limited string manipulation (10 or fewer characters), shorthand forms for common BASIC keywords, immediate mode BASIC statement execution, and capability of running a BASIC program thatmore » is stored in PROM. The allowed arithmetic operations are addition, subtraction, multiplication, division, and raising a number to a positive integral power. In the second, or ''hardware'', implementation of BASIC2 requiring an Am9511 Arithmetic Processing Unit (APU) interfaced to the 8080 microprocessor, arithmetic operations are performed by the APU. The following additional built-in functions are available in this implementation: square root, sine, cosine, tangent, arcsine, arccosine, arctangent, exponential, logarithm base e, and logarithm base 10. MCS-80,8080-based microcomputers; 8080 Assembly language; Approximately 8K bytes of RAM to store the assembled interpreter, additional user program space, and necessary peripheral devices. The hardware implementation requires an Am9511 Arithmetic Processing Unit and an interface board (reference 2).« less
Incomplete fuzzy data processing systems using artificial neural network
NASA Technical Reports Server (NTRS)
Patyra, Marek J.
1992-01-01
In this paper, the implementation of a fuzzy data processing system using an artificial neural network (ANN) is discussed. The binary representation of fuzzy data is assumed, where the universe of discourse is decartelized into n equal intervals. The value of a membership function is represented by a binary number. It is proposed that incomplete fuzzy data processing be performed in two stages. The first stage performs the 'retrieval' of incomplete fuzzy data, and the second stage performs the desired operation on the retrieval data. The method of incomplete fuzzy data retrieval is proposed based on the linear approximation of missing values of the membership function. The ANN implementation of the proposed system is presented. The system was computationally verified and showed a relatively small total error.
Abou, Seraphin C
2012-03-01
In this paper, a new interpretation of intuitionistic fuzzy sets in the advanced framework of the Dempster-Shafer theory of evidence is extended to monitor safety-critical systems' performance. Not only is the proposed approach more effective, but it also takes into account the fuzzy rules that deal with imperfect knowledge/information and, therefore, is different from the classical Takagi-Sugeno fuzzy system, which assumes that the rule (the knowledge) is perfect. We provide an analytical solution to the practical and important problem of the conceptual probabilistic approach for formal ship safety assessment using the fuzzy set theory that involves uncertainties associated with the reliability input data. Thus, the overall safety of the ship engine is investigated as an object of risk analysis using the fuzzy mapping structure, which considers uncertainty and partial truth in the input-output mapping. The proposed method integrates direct evidence of the frame of discernment and is demonstrated through references to examples where fuzzy set models are informative. These simple applications illustrate how to assess the conflict of sensor information fusion for a sufficient cooling power system of vessels under extreme operation conditions. It was found that propulsion engine safety systems are not only a function of many environmental and operation profiles but are also dynamic and complex. Copyright © 2011 Elsevier Ltd. All rights reserved.
Evaluation of Fuzzy Rulemaking for Expert Systems for Failure Detection
NASA Technical Reports Server (NTRS)
Laritz, F.; Sheridan, T. B.
1984-01-01
Computer aids in expert systems were proposed to diagnose failures in complex systems. It is shown that the fuzzy set theory of Zadeh offers a new perspective for modeling for humans thinking and language use. It is assumed that real expert human operators of aircraft, power plants and other systems do not think of their control tasks or failure diagnosis tasks in terms of control laws in differential equation form, but rather keep in mind a set of rules of thumb in fuzzy form. Fuzzy set experiments are described.
Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y
2014-05-01
This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
W-algebra for solving problems with fuzzy parameters
NASA Astrophysics Data System (ADS)
Shevlyakov, A. O.; Matveev, M. G.
2018-03-01
A method of solving the problems with fuzzy parameters by means of a special algebraic structure is proposed. The structure defines its operations through operations on real numbers, which simplifies its use. It avoids deficiencies limiting applicability of the other known structures. Examples for solution of a quadratic equation, a system of linear equations and a network planning problem are given.
Fault-tolerant arithmetic via time-shared TMR
NASA Astrophysics Data System (ADS)
Swartzlander, Earl E.
1999-11-01
Fault tolerance is increasingly important as society has come to depend on computers for more and more aspects of daily life. The current concern about the Y2K problems indicates just how much we depend on accurate computers. This paper describes work on time- shared TMR, a technique which is used to provide arithmetic operations that produce correct results in spite of circuit faults.
Decomposition of Fuzzy Soft Sets with Finite Value Spaces
Jun, Young Bae
2014-01-01
The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter. PMID:24558342
Decomposition of fuzzy soft sets with finite value spaces.
Feng, Feng; Fujita, Hamido; Jun, Young Bae; Khan, Madad
2014-01-01
The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter.
Robot map building based on fuzzy-extending DSmT
NASA Astrophysics Data System (ADS)
Li, Xinde; Huang, Xinhan; Wu, Zuyu; Peng, Gang; Wang, Min; Xiong, Youlun
2007-11-01
With the extensive application of mobile robots in many different fields, map building in unknown environments has been one of the principal issues in the field of intelligent mobile robot. However, Information acquired in map building presents characteristics of uncertainty, imprecision and even high conflict, especially in the course of building grid map using sonar sensors. In this paper, we extended DSmT with Fuzzy theory by considering the different fuzzy T-norm operators (such as Algebraic Product operator, Bounded Product operator, Einstein Product operator and Default minimum operator), in order to develop a more general and flexible combinational rule for more extensive application. At the same time, we apply fuzzy-extended DSmT to mobile robot map building with the help of new self-localization method based on neighboring field appearance matching( -NFAM), to make the new tool more robust in very complex environment. An experiment is conducted to reconstruct the map with the new tool in indoor environment, in order to compare their performances in map building with four T-norm operators, when Pioneer II mobile robot runs along the same trace. Finally, a conclusion is reached that this study develops a new idea to extend DSmT, also provides a new approach for autonomous navigation of mobile robot, and provides a human-computer interactive interface to manage and manipulate the robot remotely.
NASA Astrophysics Data System (ADS)
Anisimov, D. N.; Dang, Thai Son; Banerjee, Santo; Mai, The Anh
2017-07-01
In this paper, an intelligent system use fuzzy-PD controller based on relation models is developed for a two-wheeled self-balancing robot. Scaling factors of the fuzzy-PD controller are optimized by a Cross-Entropy optimization method. A linear Quadratic Regulator is designed to bring a comparison with the fuzzy-PD controller by control quality parameters. The controllers are ported and run on STM32F4 Discovery Kit based on the real-time operating system. The experimental results indicate that the proposed fuzzy-PD controller runs exactly on embedded system and has desired performance in term of fast response, good balance and stabilize.
Two modular neuro-fuzzy system for mobile robot navigation
NASA Astrophysics Data System (ADS)
Bobyr, M. V.; Titov, V. S.; Kulabukhov, S. A.; Syryamkin, V. I.
2018-05-01
The article considers the fuzzy model for navigation of a mobile robot operating in two modes. In the first mode the mobile robot moves along a line. In the second mode, the mobile robot looks for an target in unknown space. Structural and schematic circuit of four-wheels mobile robot are presented in the article. The article describes the movement of a mobile robot based on two modular neuro-fuzzy system. The algorithm of neuro-fuzzy inference used in two modular control system for movement of a mobile robot is given in the article. The experimental model of the mobile robot and the simulation of the neuro-fuzzy algorithm used for its control are presented in the article.
NASA Astrophysics Data System (ADS)
Lei, Meizhen; Wang, Liqiang
2018-01-01
The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.
NASA Astrophysics Data System (ADS)
Maiti, Anup Kumar; Nath Roy, Jitendra; Mukhopadhyay, Sourangshu
2007-08-01
In the field of optical computing and parallel information processing, several number systems have been used for different arithmetic and algebraic operations. Therefore an efficient conversion scheme from one number system to another is very important. Modified trinary number (MTN) has already taken a significant role towards carry and borrow free arithmetic operations. In this communication, we propose a tree-net architecture based all optical conversion scheme from binary number to its MTN form. Optical switch using nonlinear material (NLM) plays an important role.
NASA Astrophysics Data System (ADS)
Liu, Bingsheng; Fu, Meiqing; Zhang, Shuibo; Xue, Bin; Zhou, Qi; Zhang, Shiruo
2018-01-01
The Choquet integral (IL) operator is an effective approach for handling interdependence among decision attributes in complex decision-making problems. However, the fuzzy measures of attributes and attribute sets required by IL are difficult to achieve directly, which limits the application of IL. This paper proposes a new method for determining fuzzy measures of attributes by extending Marichal's concept of entropy for fuzzy measure. To well represent the assessment information, interval-valued 2-tuple linguistic context is utilised to represent information. Then, we propose a Choquet integral operator in an interval-valued 2-tuple linguistic environment, which can effectively handle the correlation between attributes. In addition, we apply these methods to solve multi-attribute group decision-making problems. The feasibility and validity of the proposed operator is demonstrated by comparisons with other models in illustrative example part.
Perceiving fingers in single-digit arithmetic problems.
Berteletti, Ilaria; Booth, James R
2015-01-01
In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense.
Perceiving fingers in single-digit arithmetic problems
Berteletti, Ilaria; Booth, James R.
2015-01-01
In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense. PMID:25852582
Fuzzy robust credibility-constrained programming for environmental management and planning.
Zhang, Yimei; Hang, Guohe
2010-06-01
In this study, a fuzzy robust credibility-constrained programming (FRCCP) is developed and applied to the planning for waste management systems. It incorporates the concepts of credibility-based chance-constrained programming and robust programming within an optimization framework. The developed method can reflect uncertainties presented as possibility-density by fuzzy-membership functions. Fuzzy credibility constraints are transformed to the crisp equivalents with different credibility levels, and ordinary fuzzy inclusion constraints are determined by their robust deterministic constraints by setting a-cut levels. The FRCCP method can provide different system costs under different credibility levels (lambda). From the results of sensitivity analyses, the operation cost of the landfill is a critical parameter. For the management, any factors that would induce cost fluctuation during landfilling operation would deserve serious observation and analysis. By FRCCP, useful solutions can be obtained to provide decision-making support for long-term planning of solid waste management systems. It could be further enhanced through incorporating methods of inexact analysis into its framework. It can also be applied to other environmental management problems.
NASA Astrophysics Data System (ADS)
Holmukhe, R. M.; Dhumale, Mrs. Sunita; Chaudhari, Mr. P. S.; Kulkarni, Mr. P. P.
2010-10-01
Load forecasting is very essential to the operation of Electricity companies. It enhances the energy efficient and reliable operation of power system. Forecasting of load demand data forms an important component in planning generation schedules in a power system. The purpose of this paper is to identify issues and better method for load foecasting. In this paper we focus on fuzzy logic system based short term load forecasting. It serves as overview of the state of the art in the intelligent techniques employed for load forecasting in power system planning and reliability. Literature review has been conducted and fuzzy logic method has been summarized to highlight advantages and disadvantages of this technique. The proposed technique for implementing fuzzy logic based forecasting is by Identification of the specific day and by using maximum and minimum temperature for that day and finally listing the maximum temperature and peak load for that day. The results show that Load forecasting where there are considerable changes in temperature parameter is better dealt with Fuzzy Logic system method as compared to other short term forecasting techniques.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Narimani, Mohammand; Lam, H K; Dilmaghani, R; Wolfe, Charles
2011-06-01
Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S-procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.
NASA Technical Reports Server (NTRS)
Salazar, George A. (Inventor)
1993-01-01
This invention relates to a reconfigurable fuzzy cell comprising a digital control programmable gain operation amplifier, an analog-to-digital converter, an electrically erasable PROM, and 8-bit counter and comparator, and supporting logic configured to achieve in real-time fuzzy systems high throughput, grade-of-membership or membership-value conversion of multi-input sensor data. The invention provides a flexible multiplexing-capable configuration, implemented entirely in hardware, for effectuating S-, Z-, and PI-membership functions or combinations thereof, based upon fuzzy logic level-set theory. A membership value table storing 'knowledge data' for each of S-, Z-, and PI-functions is contained within a nonvolatile memory for storing bits of membership and parametric information in a plurality of address spaces. Based upon parametric and control signals, analog sensor data is digitized and converted into grade-of-membership data. In situ learn and recognition modes of operation are also provided.
Zhao, Ximei; Ren, Chengyi; Liu, Hao; Li, Haogyi
2014-12-01
Robotic catheter minimally invasive operation requires that the driver control system has the advantages of quick response, strong anti-jamming and real-time tracking of target trajectory. Since the catheter parameters of itself and movement environment and other factors continuously change, when the driver is controlled using traditional proportional-integral-derivative (PID), the controller gain becomes fixed once the PID parameters are set. It can not change with the change of the parameters of the object and environmental disturbance so that its change affects the position tracking accuracy, and may bring a large overshoot endangering patients' vessel. Therefore, this paper adopts fuzzy PID control method to adjust PID gain parameters in the tracking process in order to improve the system anti-interference ability, dynamic performance and tracking accuracy. The simulation results showed that the fuzzy PID control method had a fast tracking performance and a strong robustness. Compared with those of traditional PID control, the feasibility and practicability of fuzzy PID control are verified in a robotic catheter minimally invasive operation.
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1992-01-01
The reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we also use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use two terms interchangeable to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS). This report is the deliverable D3 in our project activity and provides the test results of the fuzzy learning translational controller. This report is organized in six sections. Based on our experience and analysis with the attitude controller, we have modified the basic configuration of the reinforcement learning algorithm in ARIC as described in section 2. The shuttle translational controller and its implementation in fuzzy learning architecture is described in section 3. Two test cases that we have performed are described in section 4. Our results and conclusions are discussed in section 5, and section 6 provides future plans and summary for the project.
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators
Bai, Xiangzhi
2015-01-01
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion. PMID:26184229
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators.
Bai, Xiangzhi
2015-07-15
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion.
Anticipatory Neurofuzzy Control
NASA Technical Reports Server (NTRS)
Mccullough, Claire L.
1994-01-01
Technique of feedback control, called "anticipatory neurofuzzy control," developed for use in controlling flexible structures and other dynamic systems for which mathematical models of dynamics poorly known or unknown. Superior ability to act during operation to compensate for, and adapt to, errors in mathematical model of dynamics, changes in dynamics, and noise. Also offers advantage of reduced computing time. Hybrid of two older fuzzy-logic control techniques: standard fuzzy control and predictive fuzzy control.
NASA Technical Reports Server (NTRS)
Habiby, Sarry F.; Collins, Stuart A., Jr.
1987-01-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. A Hughes liquid crystal light valve, the residue arithmetic representation, and a holographic optical memory are used to construct position coded optical look-up tables. All operations are performed in effectively one light valve response time with a potential for a high information density.
Habiby, S F; Collins, S A
1987-11-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. A Hughes liquid crystal light valve, the residue arithmetic representation, and a holographic optical memory are used to construct position coded optical look-up tables. All operations are performed in effectively one light valve response time with a potential for a high information density.
Tschentscher, Nadja; Hauk, Olaf
2015-01-01
Mental arithmetic is a powerful paradigm to study problem solving using neuroimaging methods. However, the evaluation of task complexity varies significantly across neuroimaging studies. Most studies have parameterized task complexity by objective features such as the number size. Only a few studies used subjective rating procedures. In fMRI, we provided evidence that strategy self-reports control better for task complexity across arithmetic conditions than objective features (Tschentscher and Hauk, 2014). Here, we analyzed the relative predictive value of self-reported strategies and objective features for performance in addition and multiplication tasks, by using a paradigm designed for neuroimaging research. We found a superiority of strategy ratings as predictor of performance above objective features. In a Principal Component Analysis on reaction times, the first component explained over 90 percent of variance and factor loadings reflected percentages of self-reported strategies well. In multiple regression analyses on reaction times, self-reported strategies performed equally well or better than objective features, depending on the operation type. A Receiver Operating Characteristic (ROC) analysis confirmed this result. Reaction times classified task complexity better when defined by individual ratings. This suggests that participants' strategy ratings are reliable predictors of arithmetic complexity and should be taken into account in neuroimaging research.
Tschentscher, Nadja; Hauk, Olaf
2015-01-01
Mental arithmetic is a powerful paradigm to study problem solving using neuroimaging methods. However, the evaluation of task complexity varies significantly across neuroimaging studies. Most studies have parameterized task complexity by objective features such as the number size. Only a few studies used subjective rating procedures. In fMRI, we provided evidence that strategy self-reports control better for task complexity across arithmetic conditions than objective features (Tschentscher and Hauk, 2014). Here, we analyzed the relative predictive value of self-reported strategies and objective features for performance in addition and multiplication tasks, by using a paradigm designed for neuroimaging research. We found a superiority of strategy ratings as predictor of performance above objective features. In a Principal Component Analysis on reaction times, the first component explained over 90 percent of variance and factor loadings reflected percentages of self-reported strategies well. In multiple regression analyses on reaction times, self-reported strategies performed equally well or better than objective features, depending on the operation type. A Receiver Operating Characteristic (ROC) analysis confirmed this result. Reaction times classified task complexity better when defined by individual ratings. This suggests that participants’ strategy ratings are reliable predictors of arithmetic complexity and should be taken into account in neuroimaging research. PMID:26321997
Virtual reality simulation of fuzzy-logic control during underwater dynamic positioning
NASA Astrophysics Data System (ADS)
Thekkedan, Midhin Das; Chin, Cheng Siong; Woo, Wai Lok
2015-03-01
In this paper, graphical-user-interface (GUI) software for simulation and fuzzy-logic control of a remotely operated vehicle (ROV) using MATLAB™ GUI Designing Environment is proposed. The proposed ROV's GUI platform allows the controller such as fuzzy-logic control systems design to be compared with other controllers such as proportional-integral-derivative (PID) and sliding-mode controller (SMC) systematically and interactively. External disturbance such as sea current can be added to improve the modelling in actual underwater environment. The simulated results showed the position responses of the fuzzy-logic control exhibit reasonable performance under the sea current disturbance.
NASA Technical Reports Server (NTRS)
Yen, John; Wang, Haojin; Daugherity, Walter C.
1992-01-01
Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.
Fuzzy risk analysis of a modern γ-ray industrial irradiator.
Castiglia, F; Giardina, M
2011-06-01
Fuzzy fault tree analyses were used to investigate accident scenarios that involve radiological exposure to operators working in industrial γ-ray irradiation facilities. The HEART method, a first generation human reliability analysis method, was used to evaluate the probability of adverse human error in these analyses. This technique was modified on the basis of fuzzy set theory to more directly take into account the uncertainties in the error-promoting factors on which the methodology is based. Moreover, with regard to some identified accident scenarios, fuzzy radiological exposure risk, expressed in terms of potential annual death, was evaluated. The calculated fuzzy risks for the examined plant were determined to be well below the reference risk suggested by International Commission on Radiological Protection.
Morgan, Julia E; Lee, Steve S; Loo, Sandra K; Yuhan, Joshua W; Baker, Bruce L
2018-05-01
Although individual differences in fluid reasoning reliably mediate predictions of attention-deficit/hyperactivity disorder (ADHD) symptoms from birth weight in youth with typical cognitive development (TD), it is unknown if this indirect effect operates similarly in the development of ADHD symptoms secondary to intellectual disability (ID). Thus, we evaluated mediation by fluid reasoning in a longitudinal sample of 163 youth (45% female) with (n = 52) or without (n = 111) ID who were followed prospectively from age 5 to age 13. At age 9, youth completed the Arithmetic subtest of the Wechsler Intelligence Scale for Children, a measure of fluid reasoning. At ages 9 and 13, mothers and teachers separately rated youth ADHD symptoms and mothers completed a diagnostic interview. Mediation was tested via path analysis with bootstrapped confidence intervals, and moderated mediation estimated whether indirect effects differed between ID and TD youth or based on youth IQ. Controlling for demographic factors and age 9 ADHD symptoms, age 9 Arithmetic mediated birth weight and multi-method/informant age 13 ADHD symptoms, such that birth weight positively predicted Arithmetic, which negatively predicted ADHD symptoms. Neither ID status nor IQ moderated the observed indirect effect through Arithmetic, suggesting that it was similar for ID and TD youth as well as across the range of youth IQs. These findings support previous evidence that fluid reasoning, as measured by Arithmetic, may causally mediate birth weight and ADHD symptoms, and suggest that this pathway operates similarly with respect to the development of ADHD symptoms in youth with ID.
Towards constructing multi-bit binary adder based on Belousov-Zhabotinsky reaction
NASA Astrophysics Data System (ADS)
Zhang, Guo-Mao; Wong, Ieong; Chou, Meng-Ta; Zhao, Xin
2012-04-01
It has been proposed that the spatial excitable media can perform a wide range of computational operations, from image processing, to path planning, to logical and arithmetic computations. The realizations in the field of chemical logical and arithmetic computations are mainly concerned with single simple logical functions in experiments. In this study, based on Belousov-Zhabotinsky reaction, we performed simulations toward the realization of a more complex operation, the binary adder. Combining with some of the existing functional structures that have been verified experimentally, we designed a planar geometrical binary adder chemical device. Through numerical simulations, we first demonstrated that the device can implement the function of a single-bit full binary adder. Then we show that the binary adder units can be further extended in plane, and coupled together to realize a two-bit, or even multi-bit binary adder. The realization of chemical adders can guide the constructions of other sophisticated arithmetic functions, ultimately leading to the implementation of chemical computer and other intelligent systems.
Design issues for a reinforcement-based self-learning fuzzy controller
NASA Technical Reports Server (NTRS)
Yen, John; Wang, Haojin; Dauherity, Walter
1993-01-01
Fuzzy logic controllers have some often cited advantages over conventional techniques such as PID control: easy implementation, its accommodation to natural language, the ability to cover wider range of operating conditions and others. One major obstacle that hinders its broader application is the lack of a systematic way to develop and modify its rules and as result the creation and modification of fuzzy rules often depends on try-error or pure experimentation. One of the proposed approaches to address this issue is self-learning fuzzy logic controllers (SFLC) that use reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of self-learning fuzzy controller is highly contingent on the design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for the application to chemical process are discussed and its performance is compared with that of PID and self-tuning fuzzy logic controller.
NASA Technical Reports Server (NTRS)
Kopasakis, George
1997-01-01
Performance Seeking Control (PSC) attempts to find and control the process at the operating condition that will generate maximum performance. In this paper a nonlinear multivariable PSC methodology will be developed, utilizing the Fuzzy Model Reference Learning Control (FMRLC) and the method of Steepest Descent or Gradient (SDG). This PSC control methodology employs the SDG method to find the operating condition that will generate maximum performance. This operating condition is in turn passed to the FMRLC controller as a set point for the control of the process. The conventional SDG algorithm is modified in this paper in order for convergence to occur monotonically. For the FMRLC control, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for effective tuning of the FMRLC controller.
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
On Negations and Algebras in Fuzzy Set Theory
1986-03-19
Esteva Departament de Matematiques i Estadistica ~ Universitat Politecnica de Catalunya Diagonal 649 08028 Barcelona !Spain) ABSTRACT Dual... Estadistica Universitat Politecnica de Catalunya Diagonal 649 08028 Barcelona (Spain) In Zadeh’s definition of Fuzzy Sets [1] the operations are defined
Dogdu, Gamze; Yalcuk, Arda; Postalcioglu, Seda
2017-02-01
There are more than a hundred textile industries in Turkey that discharge large quantities of dye-rich wastewater, resulting in water pollution. Such effluents must be treated to meet discharge limits imposed by the Water Framework Directive in Turkey. Industrial treatment facilities must be required to monitor operations, keep them cost-effective, prevent operational faults, discharge-limit infringements, and water pollution. This paper proposes the treatment of actual textile wastewater by vertical flow constructed wetland (VFCW) systems operation and monitoring effluent wastewater quality using fuzzy logic with a graphical user interface. The treatment performance of VFCW is investigated in terms of chemical oxygen demand and ammonium nitrogen (NH4-N) content, color, and pH parameters during a 75-day period of operation. A computer program was developed with a fuzzy logic system (a decision- making tool) to graphically present (via a status analysis chart) the quality of treated textile effluent in relation to the Turkish Water Pollution Control Regulation. Fuzzy logic is used in the evaluation of data obtained from the VFCW systems and for notification of critical states exceeding the discharge limits. This creates a warning chart that reports any errors encountered in a reactor during the collection of any sample to the concerned party.
Fuzzy observer-based control for maximum power-point tracking of a photovoltaic system
NASA Astrophysics Data System (ADS)
Allouche, M.; Dahech, K.; Chaabane, M.; Mehdi, D.
2018-04-01
This paper presents a novel fuzzy control design method for maximum power-point tracking (MPPT) via a Takagi and Sugeno (TS) fuzzy model-based approach. A knowledge-dynamic model of the PV system is first developed leading to a TS representation by a simple convex polytopic transformation. Then, based on this exact fuzzy representation, a H∞ observer-based fuzzy controller is proposed to achieve MPPT even when we consider varying climatic conditions. A specified TS reference model is designed to generate the optimum trajectory which must be tracked to ensure maximum power operation. The controller and observer gains are obtained in a one-step procedure by solving a set of linear matrix inequalities (LMIs). The proposed method has been compared with some classical MPPT techniques taking into account convergence speed and tracking accuracy. Finally, various simulation and experimental tests have been carried out to illustrate the effectiveness of the proposed TS fuzzy MPPT strategy.
Improvements to Earthquake Location with a Fuzzy Logic Approach
NASA Astrophysics Data System (ADS)
Gökalp, Hüseyin
2018-01-01
In this study, improvements to the earthquake location method were investigated using a fuzzy logic approach proposed by Lin and Sanford (Bull Seismol Soc Am 91:82-93, 2001). The method has certain advantages compared to the inverse methods in terms of eliminating the uncertainties of arrival times and reading errors. In this study, adopting this approach, epicentral locations were determined based on the results of a fuzzy logic space concerning the uncertainties in the velocity models. To map the uncertainties in arrival times into the fuzzy logic space, a trapezoidal membership function was constructed by directly using the travel time difference between the two stations for the P- and S-arrival times instead of the P- and S-wave models to eliminate the need for obtaining information concerning the velocity structure of the study area. The results showed that this method worked most effectively when earthquakes occurred away from a network or when the arrival time data contained phase reading errors. In this study, to resolve the problems related to determining the epicentral locations of the events, a forward modeling method like the grid search technique was used by applying different logical operations (i.e., intersection, union, and their combination) with a fuzzy logic approach. The locations of the events were depended on results of fuzzy logic outputs in fuzzy logic space by searching in a gridded region. The process of location determination with the defuzzification of only the grid points with the membership value of 1 obtained by normalizing all the maximum fuzzy output values of the highest values resulted in more reliable epicentral locations for the earthquakes than the other approaches. In addition, throughout the process, the center-of-gravity method was used as a defuzzification operation.
Students’ Relational Thinking of Impulsive and Reflective in Solving Mathematical Problem
NASA Astrophysics Data System (ADS)
Satriawan, M. A.; Budiarto, M. T.; Siswono, T. Y. E.
2018-01-01
This is a descriptive research which qualitatively investigates students’ relational thinking of impulsive and reflective cognitive style in solving mathematical problem. The method used in this research are test and interview. The data analyzed by reducing, presenting and concluding the data. The results of research show that the students’ reflective cognitive style can possibly help to find out important elements in understanding a problem. Reading more than one is useful to identify what is being questioned and write the information which is known, building relation in every element and connecting information with arithmetic operation, connecting between what is being questioned with known information, making equation model to find out the value by using substitution, and building a connection on re-checking, re-reading, and re-counting. The impulsive students’ cognitive style supports important elements in understanding problems, building a connection in every element, connecting information with arithmetic operation, building a relation about a problem comprehensively by connecting between what is being questioned with known information, finding out the unknown value by using arithmetic operation without making any equation model. The result of re-checking problem solving, impulsive student was only reading at glance without re-counting the result of problem solving.
Language-specific memory for everyday arithmetic facts in Chinese-English bilinguals.
Chen, Yalin; Yanke, Jill; Campbell, Jamie I D
2016-04-01
The role of language in memory for arithmetic facts remains controversial. Here, we examined transfer of memory training for evidence that bilinguals may acquire language-specific memory stores for everyday arithmetic facts. Chinese-English bilingual adults (n = 32) were trained on different subsets of simple addition and multiplication problems. Each operation was trained in one language or the other. The subsequent test phase included all problems with addition and multiplication alternating across trials in two blocks, one in each language. Averaging over training language, the response time (RT) gains for trained problems relative to untrained problems were greater in the trained language than in the untrained language. Subsequent analysis showed that English training produced larger RT gains for trained problems relative to untrained problems in English at test relative to the untrained Chinese language. In contrast, there was no evidence with Chinese training that problem-specific RT gains differed between Chinese and the untrained English language. We propose that training in Chinese promoted a translation strategy for English arithmetic (particularly multiplication) that produced strong cross-language generalization of practice, whereas training in English strengthened relatively weak, English-language arithmetic memories and produced little generalization to Chinese (i.e., English training did not induce an English translation strategy for Chinese language trials). The results support the existence of language-specific strengthening of memory for everyday arithmetic facts.
Benavides-Varela, S; Piva, D; Burgio, F; Passarini, L; Rolma, G; Meneghello, F; Semenza, C
2017-03-01
Arithmetical deficits in right-hemisphere damaged patients have been traditionally considered secondary to visuo-spatial impairments, although the exact relationship between the two deficits has rarely been assessed. The present study implemented a voxelwise lesion analysis among 30 right-hemisphere damaged patients and a controlled, matched-sample, cross-sectional analysis with 35 cognitively normal controls regressing three composite cognitive measures on standardized numerical measures. The results showed that patients and controls significantly differ in Number comprehension, Transcoding, and Written operations, particularly subtractions and multiplications. The percentage of patients performing below the cutoffs ranged between 27% and 47% across these tasks. Spatial errors were associated with extensive lesions in fronto-temporo-parietal regions -which frequently lead to neglect- whereas pure arithmetical errors appeared related to more confined lesions in the right angular gyrus and its proximity. Stepwise regression models consistently revealed that spatial errors were primarily predicted by composite measures of visuo-spatial attention/neglect and representational abilities. Conversely, specific errors of arithmetic nature linked to representational abilities only. Crucially, the proportion of arithmetical errors (ranging from 65% to 100% across tasks) was higher than that of spatial ones. These findings thus suggest that unilateral right hemisphere lesions can directly affect core numerical/arithmetical processes, and that right-hemisphere acalculia is not only ascribable to visuo-spatial deficits as traditionally thought. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller
ERIC Educational Resources Information Center
Mamdani, E. H.; Assilian, S.
1975-01-01
This paper describes an experiment on the "linguistic" synthesis of a controller for a model industrial plant (a steam engine). Fuzzy logic is used to convert heuristic control rules stated by a human operator into an automatic control strategy. (Author)
Fuzzy Control/Space Station automation
NASA Technical Reports Server (NTRS)
Gersh, Mark
1990-01-01
Viewgraphs on fuzzy control/space station automation are presented. Topics covered include: Space Station Freedom (SSF); SSF evolution; factors pointing to automation & robotics (A&R); astronaut office inputs concerning A&R; flight system automation and ground operations applications; transition definition program; and advanced automation software tools.
NASA Astrophysics Data System (ADS)
Chang, Ya-Ting; Chang, Li-Chiu; Chang, Fi-John
2005-04-01
To bridge the gap between academic research and actual operation, we propose an intelligent control system for reservoir operation. The methodology includes two major processes, the knowledge acquired and implemented, and the inference system. In this study, a genetic algorithm (GA) and a fuzzy rule base (FRB) are used to extract knowledge based on the historical inflow data with a design objective function and on the operating rule curves respectively. The adaptive network-based fuzzy inference system (ANFIS) is then used to implement the knowledge, to create the fuzzy inference system, and then to estimate the optimal reservoir operation. To investigate its applicability and practicability, the Shihmen reservoir, Taiwan, is used as a case study. For the purpose of comparison, a simulation of the currently used M-5 operating rule curve is also performed. The results demonstrate that (1) the GA is an efficient way to search the optimal input-output patterns, (2) the FRB can extract the knowledge from the operating rule curves, and (3) the ANFIS models built on different types of knowledge can produce much better performance than the traditional M-5 curves in real-time reservoir operation. Moreover, we show that the model can be more intelligent for reservoir operation if more information (or knowledge) is involved.
Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W.
2016-01-01
Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty’s 1–9 scale, this paper proposes a cross-ratio-based bipolar 0.1–0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness. PMID:27618082
Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W
2016-09-09
Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty's 1-9 scale, this paper proposes a cross-ratio-based bipolar 0.1-0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness.
A Fuzzy Approach of the Competition on the Air Transport Market
NASA Technical Reports Server (NTRS)
Charfeddine, Souhir; DeColigny, Marc; Camino, Felix Mora; Cosenza, Carlos Alberto Nunes
2003-01-01
The aim of this communication is to study with a new scope the conditions of the equilibrium in an air transport market where two competitive airlines are operating. Each airline is supposed to adopt a strategy maximizing its profit while its estimation of the demand has a fuzzy nature. This leads each company to optimize a program of its proposed services (frequency of the flights and ticket prices) characterized by some fuzzy parameters. The case of monopoly is being taken as a benchmark. Classical convex optimization can be used to solve this decision problem. This approach provides the airline with a new decision tool where uncertainty can be taken into account explicitly. The confrontation of the strategies of the companies, in the ease of duopoly, leads to the definition of a fuzzy equilibrium. This concept of fuzzy equilibrium is more general and can be applied to several other domains. The formulation of the optimization problem and the methodological consideration adopted for its resolution are presented in their general theoretical aspect. In the case of air transportation, where the conditions of management of operations are critical, this approach should offer to the manager elements needed to the consolidation of its decisions depending on the circumstances (ordinary, exceptional events,..) and to be prepared to face all possibilities. Keywords: air transportation, competition equilibrium, convex optimization , fuzzy modeling,
Fuzzy efficiency optimization of AC induction motors
NASA Technical Reports Server (NTRS)
Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff
1993-01-01
This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.
Maranhão, Geraldo Neves De A; Brito, Alaan Ubaiara; Leal, Anderson Marques; Fonseca, Jéssica Kelly Silva; Macêdo, Wilson Negrão
2015-09-22
In the present paper, a fuzzy controller applied to a Variable-Speed Drive (VSD) for use in Photovoltaic Pumping Systems (PVPS) is proposed. The fuzzy logic system (FLS) used is embedded in a microcontroller and corresponds to a proportional-derivative controller. A Light-Dependent Resistor (LDR) is used to measure, approximately, the irradiance incident on the PV array. Experimental tests are executed using an Arduino board. The experimental results show that the fuzzy controller is capable of operating the system continuously throughout the day and controlling the direct current (DC) voltage level in the VSD with a good performance.
Adaptive Fuzzy Systems in Computational Intelligence
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1996-01-01
In recent years, the interest in computational intelligence techniques, which currently includes neural networks, fuzzy systems, and evolutionary programming, has grown significantly and a number of their applications have been developed in the government and industry. In future, an essential element in these systems will be fuzzy systems that can learn from experience by using neural network in refining their performances. The GARIC architecture, introduced earlier, is an example of a fuzzy reinforcement learning system which has been applied in several control domains such as cart-pole balancing, simulation of to Space Shuttle orbital operations, and tether control. A number of examples from GARIC's applications in these domains will be demonstrated.
Empirical study of fuzzy compatibility measures and aggregation operators
NASA Astrophysics Data System (ADS)
Cross, Valerie V.; Sudkamp, Thomas A.
1992-02-01
Two fundamental requirements for the generation of support using incomplete and imprecise information are the ability to measure the compatibility of discriminatory information with domain knowledge and the ability to fuse information obtained from disparate sources. A generic architecture utilizing the generalized fuzzy relational database model has been developed to empirically investigate the support generation capabilities of various compatibility measures and aggregation operators. This paper examines the effectiveness of combinations of compatibility measures from the set-theoretic, geometric distance, and logic- based classes paired with t-norm and generalized mean families of aggregation operators.
Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan
2013-12-01
An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.
NASA Astrophysics Data System (ADS)
Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu
This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.
Decision Making Based on Fuzzy Aggregation Operators for Medical Diagnosis from Dental X-ray images.
Ngan, Tran Thi; Tuan, Tran Manh; Son, Le Hoang; Minh, Nguyen Hai; Dey, Nilanjan
2016-12-01
Medical diagnosis is considered as an important step in dentistry treatment which assists clinicians to give their decision about diseases of a patient. It has been affirmed that the accuracy of medical diagnosis, which is much influenced by the clinicians' experience and knowledge, plays an important role to effective treatment therapies. In this paper, we propose a novel decision making method based on fuzzy aggregation operators for medical diagnosis from dental X-Ray images. It firstly divides a dental X-Ray image into some segments and identified equivalent diseases by a classification method called Affinity Propagation Clustering (APC+). Lastly, the most potential disease is found using fuzzy aggregation operators. The experimental validation on real dental datasets of Hanoi Medical University Hospital, Vietnam showed the superiority of the proposed method against the relevant ones in terms of accuracy.
NASA Technical Reports Server (NTRS)
Kopasakis, George
1997-01-01
Performance Seeking Control attempts to find the operating condition that will generate optimal performance and control the plant at that operating condition. In this paper a nonlinear multivariable Adaptive Performance Seeking Control (APSC) methodology will be developed and it will be demonstrated on a nonlinear system. The APSC is comprised of the Positive Gradient Control (PGC) and the Fuzzy Model Reference Learning Control (FMRLC). The PGC computes the positive gradients of the desired performance function with respect to the control inputs in order to drive the plant set points to the operating point that will produce optimal performance. The PGC approach will be derived in this paper. The feedback control of the plant is performed by the FMRLC. For the FMRLC, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for the effective tuning of the FMRLC controller.
Zhang, Jian-Hua; Xia, Jia-Jun; Garibaldi, Jonathan M; Groumpos, Petros P; Wang, Ru-Bin
2017-06-01
In human-machine (HM) hybrid control systems, human operator and machine cooperate to achieve the control objectives. To enhance the overall HM system performance, the discrete manual control task-load by the operator must be dynamically allocated in accordance with continuous-time fluctuation of psychophysiological functional status of the operator, so-called operator functional state (OFS). The behavior of the HM system is hybrid in nature due to the co-existence of discrete task-load (control) variable and continuous operator performance (system output) variable. Petri net is an effective tool for modeling discrete event systems, but for hybrid system involving discrete dynamics, generally Petri net model has to be extended. Instead of using different tools to represent continuous and discrete components of a hybrid system, this paper proposed a method of fuzzy inference Petri nets (FIPN) to represent the HM hybrid system comprising a Mamdani-type fuzzy model of OFS and a logical switching controller in a unified framework, in which the task-load level is dynamically reallocated between the operator and machine based on the model-predicted OFS. Furthermore, this paper used a multi-model approach to predict the operator performance based on three electroencephalographic (EEG) input variables (features) via the Wang-Mendel (WM) fuzzy modeling method. The membership function parameters of fuzzy OFS model for each experimental participant were optimized using artificial bee colony (ABC) evolutionary algorithm. Three performance indices, RMSE, MRE, and EPR, were computed to evaluate the overall modeling accuracy. Experiment data from six participants are analyzed. The results show that the proposed method (FIPN with adaptive task allocation) yields lower breakdown rate (from 14.8% to 3.27%) and higher human performance (from 90.30% to 91.99%). The simulation results of the FIPN-based adaptive HM (AHM) system on six experimental participants demonstrate that the FIPN framework provides an effective way to model and regulate/optimize the OFS in HM hybrid systems composed of continuous-time OFS model and discrete-event switching controller. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Dongcheol; Rhee, Sehun
2002-01-01
CO(2) welding is a complex process. Weld quality is dependent on arc stability and minimizing the effects of disturbances or changes in the operating condition commonly occurring during the welding process. In order to minimize these effects, a controller can be used. In this study, a fuzzy controller was used in order to stabilize the arc during CO(2) welding. The input variable of the controller was the Mita index. This index estimates quantitatively the arc stability that is influenced by many welding process parameters. Because the welding process is complex, a mathematical model of the Mita index was difficult to derive. Therefore, the parameter settings of the fuzzy controller were determined by performing actual control experiments without using a mathematical model of the controlled process. The solution, the Taguchi method was used to determine the optimal control parameter settings of the fuzzy controller to make the control performance robust and insensitive to the changes in the operating conditions.
NASA Technical Reports Server (NTRS)
Brown, Robert B.
1994-01-01
A software pilot model for Space Shuttle proximity operations is developed, utilizing fuzzy logic. The model is designed to emulate a human pilot during the terminal phase of a Space Shuttle approach to the Space Station. The model uses the same sensory information available to a human pilot and is based upon existing piloting rules and techniques determined from analysis of human pilot performance. Such a model is needed to generate numerous rendezvous simulations to various Space Station assembly stages for analysis of current NASA procedures and plume impingement loads on the Space Station. The advantages of a fuzzy logic pilot model are demonstrated by comparing its performance with NASA's man-in-the-loop simulations and with a similar model based upon traditional Boolean logic. The fuzzy model is shown to respond well from a number of initial conditions, with results typical of an average human. In addition, the ability to model different individual piloting techniques and new piloting rules is demonstrated.
Complex fuzzy soft expert sets
NASA Astrophysics Data System (ADS)
Selvachandran, Ganeshsree; Hafeed, Nisren A.; Salleh, Abdul Razak
2017-04-01
Complex fuzzy sets and its accompanying theory although at its infancy, has proven to be superior to classical type-1 fuzzy sets, due its ability in representing time-periodic problem parameters and capturing the seasonality of the fuzziness that exists in the elements of a set. These are important characteristics that are pervasive in most real world problems. However, there are two major problems that are inherent in complex fuzzy sets: it lacks a sufficient parameterization tool and it does not have a mechanism to validate the values assigned to the membership functions of the elements in a set. To overcome these problems, we propose the notion of complex fuzzy soft expert sets which is a hybrid model of complex fuzzy sets and soft expert sets. This model incorporates the advantages of complex fuzzy sets and soft sets, besides having the added advantage of allowing the users to know the opinion of all the experts in a single model without the need for any additional cumbersome operations. As such, this model effectively improves the accuracy of representation of problem parameters that are periodic in nature, besides having a higher level of computational efficiency compared to similar models in literature.
NASA Astrophysics Data System (ADS)
Macian-Sorribes, Hector; Pulido-Velazquez, Manuel
2013-04-01
Water resources systems are operated, mostly, using a set of pre-defined rules not regarding, usually, to an optimal allocation in terms of water use or economic benefits, but to historical and institutional reasons. These operating policies are reproduced, commonly, as hedging rules, pack rules or zone-based operations, and simulation models can be used to test their performance under a wide range of hydrological and/or socio-economic hypothesis. Despite the high degree of acceptation and testing that these models have achieved, the actual operation of water resources systems hardly follows all the time the pre-defined rules with the consequent uncertainty on the system performance. Real-world reservoir operation is very complex, affected by input uncertainty (imprecision in forecast inflow, seepage and evaporation losses, etc.), filtered by the reservoir operator's experience and natural risk-aversion, while considering the different physical and legal/institutional constraints in order to meet the different demands and system requirements. The aim of this work is to expose a fuzzy logic approach to derive and assess the historical operation of a system. This framework uses a fuzzy rule-based system to reproduce pre-defined rules and also to match as close as possible the actual decisions made by managers. After built up, the fuzzy rule-based system can be integrated in a water resources management model, making possible to assess the system performance at the basin scale. The case study of the Mijares basin (eastern Spain) is used to illustrate the method. A reservoir operating curve regulates the two main reservoir releases (operated in a conjunctive way) with the purpose of guaranteeing a high realiability of supply to the traditional irrigation districts with higher priority (more senior demands that funded the reservoir construction). A fuzzy rule-based system has been created to reproduce the operating curve's performance, defining the system state (total water stored in the reservoirs) and the month of the year as inputs; and the demand deliveries as outputs. The developed simulation management model integrates the fuzzy-ruled system of the operation of the two main reservoirs of the basin with the corresponding mass balance equations, the physical or boundary conditions and the water allocation rules among the competing demands. Historical information on inflow time series is used as inputs to the model simulation, being trained and validated using historical information on reservoir storage level and flow in several streams of the Mijares river. This methodology provides a more flexible and close to real policies approach. The model is easy to develop and to understand due to its rule-based structure, which mimics the human way of thinking. This can improve cooperation and negotiation between managers, decision-makers and stakeholders. The approach can be also applied to analyze the historical operation of the reservoir (what we have called a reservoir operation "audit").
Optical systolic array processor using residue arithmetic
NASA Technical Reports Server (NTRS)
Jackson, J.; Casasent, D.
1983-01-01
The use of residue arithmetic to increase the accuracy and reduce the dynamic range requirements of optical matrix-vector processors is evaluated. It is determined that matrix-vector operations and iterative algorithms can be performed totally in residue notation. A new parallel residue quantizer circuit is developed which significantly improves the performance of the systolic array feedback processor. Results are presented of a computer simulation of this system used to solve a set of three simultaneous equations.
Kucian, Karin; Zuber, Isabelle; Kohn, Juliane; Poltz, Nadine; Wyschkon, Anne; Esser, Günter; von Aster, Michael
2018-01-01
Many children show negative emotions related to mathematics and some even develop mathematics anxiety. The present study focused on the relation between negative emotions and arithmetical performance in children with and without developmental dyscalculia (DD) using an affective priming task. Previous findings suggested that arithmetic performance is influenced if an affective prime precedes the presentation of an arithmetic problem. In children with DD specifically, responses to arithmetic operations are supposed to be facilitated by both negative and mathematics-related primes (= negative math priming effect ).We investigated mathematical performance, math anxiety, and the domain-general abilities of 172 primary school children (76 with DD and 96 controls). All participants also underwent an affective priming task which consisted of the decision whether a simple arithmetic operation (addition or subtraction) that was preceded by a prime (positive/negative/neutral or mathematics-related) was true or false. Our findings did not reveal a negative math priming effect in children with DD. Furthermore, when considering accuracy levels, gender, or math anxiety, the negative math priming effect could not be replicated. However, children with DD showed more math anxiety when explicitly assessed by a specific math anxiety interview and showed lower mathematical performance compared to controls. Moreover, math anxiety was equally present in boys and girls, even in the earliest stages of schooling, and interfered negatively with performance. In conclusion, mathematics is often associated with negative emotions that can be manifested in specific math anxiety, particularly in children with DD. Importantly, present findings suggest that in the assessed age group, it is more reliable to judge math anxiety and investigate its effects on mathematical performance explicitly by adequate questionnaires than by an affective math priming task.
Kucian, Karin; Zuber, Isabelle; Kohn, Juliane; Poltz, Nadine; Wyschkon, Anne; Esser, Günter; von Aster, Michael
2018-01-01
Many children show negative emotions related to mathematics and some even develop mathematics anxiety. The present study focused on the relation between negative emotions and arithmetical performance in children with and without developmental dyscalculia (DD) using an affective priming task. Previous findings suggested that arithmetic performance is influenced if an affective prime precedes the presentation of an arithmetic problem. In children with DD specifically, responses to arithmetic operations are supposed to be facilitated by both negative and mathematics-related primes (=negative math priming effect).We investigated mathematical performance, math anxiety, and the domain-general abilities of 172 primary school children (76 with DD and 96 controls). All participants also underwent an affective priming task which consisted of the decision whether a simple arithmetic operation (addition or subtraction) that was preceded by a prime (positive/negative/neutral or mathematics-related) was true or false. Our findings did not reveal a negative math priming effect in children with DD. Furthermore, when considering accuracy levels, gender, or math anxiety, the negative math priming effect could not be replicated. However, children with DD showed more math anxiety when explicitly assessed by a specific math anxiety interview and showed lower mathematical performance compared to controls. Moreover, math anxiety was equally present in boys and girls, even in the earliest stages of schooling, and interfered negatively with performance. In conclusion, mathematics is often associated with negative emotions that can be manifested in specific math anxiety, particularly in children with DD. Importantly, present findings suggest that in the assessed age group, it is more reliable to judge math anxiety and investigate its effects on mathematical performance explicitly by adequate questionnaires than by an affective math priming task. PMID:29755376
Operational momentum in large-number addition and subtraction by 9-month-olds.
McCrink, Koleen; Wynn, Karen
2009-08-01
Recent studies on nonsymbolic arithmetic have illustrated that under conditions that prevent exact calculation, adults display a systematic tendency to overestimate the answers to addition problems and underestimate the answers to subtraction problems. It has been suggested that this operational momentum results from exposure to a culture-specific practice of representing numbers spatially; alternatively, the mind may represent numbers in spatial terms from early in development. In the current study, we asked whether operational momentum is present during infancy, prior to exposure to culture-specific representations of numbers. Infants (9-month-olds) were shown videos of events involving the addition or subtraction of objects with three different types of outcomes: numerically correct, too large, and too small. Infants looked significantly longer only at those incorrect outcomes that violated the momentum of the arithmetic operation (i.e., at too-large outcomes in subtraction events and too-small outcomes in addition events). The presence of operational momentum during infancy indicates developmental continuity in the underlying mechanisms used when operating over numerical representations.
Datta, Asit K; Munshi, Soumika
2002-03-10
Based on the negabinary number representation, parallel one-step arithmetic operations (that is, addition and subtraction), logical operations, and matrix-vector multiplication on data have been optically implemented, by use of a two-dimensional spatial-encoding technique. For addition and subtraction, one of the operands in decimal form is converted into the unsigned negabinary form, whereas the other decimal number is represented in the signed negabinary form. The result of operation is obtained in the mixed negabinary form and is converted back into decimal. Matrix-vector multiplication for unsigned negabinary numbers is achieved through the convolution technique. Both of the operands for logical operation are converted to their signed negabinary forms. All operations are implemented by use of a unique optical architecture. The use of a single liquid-crystal-display panel to spatially encode the input data, operational kernels, and decoding masks have simplified the architecture as well as reduced the cost and complexity.
Mansouri, Mohammad; Teshnehlab, Mohammad; Aliyari Shoorehdeli, Mahdi
2015-05-01
In this paper, a novel adaptive hierarchical fuzzy control system based on the variable structure control is developed for a class of SISO canonical nonlinear systems in the presence of bounded disturbances. It is assumed that nonlinear functions of the systems be completely unknown. Switching surfaces are incorporated into the hierarchical fuzzy control scheme to ensure the system stability. A fuzzy soft switching system decides the operation area of the hierarchical fuzzy control and variable structure control systems. All the nonlinearly appeared parameters of conclusion parts of fuzzy blocks located in different layers of the hierarchical fuzzy control system are adjusted through adaptation laws deduced from the defined Lyapunov function. The proposed hierarchical fuzzy control system reduces the number of rules and consequently the number of tunable parameters with respect to the ordinary fuzzy control system. Global boundedness of the overall adaptive system and the desired precision are achieved using the proposed adaptive control system. In this study, an adaptive hierarchical fuzzy system is used for two objectives; it can be as a function approximator or a control system based on an intelligent-classic approach. Three theorems are proven to investigate the stability of the nonlinear dynamic systems. The important point about the proposed theorems is that they can be applied not only to hierarchical fuzzy controllers with different structures of hierarchical fuzzy controller, but also to ordinary fuzzy controllers. Therefore, the proposed algorithm is more general. To show the effectiveness of the proposed method four systems (two mechanical, one mathematical and one chaotic) are considered in simulations. Simulation results demonstrate the validity, efficiency and feasibility of the proposed approach to control of nonlinear dynamic systems. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Najafi, Ali; Karimpour, Mohammad Hassan; Ghaderi, Majid
2014-12-01
Using fuzzy analytical hierarchy process (AHP) technique, we propose a method for mineral prospectivity mapping (MPM) which is commonly used for exploration of mineral deposits. The fuzzy AHP is a popular technique which has been applied for multi-criteria decision-making (MCDM) problems. In this paper we used fuzzy AHP and geospatial information system (GIS) to generate prospectivity model for Iron Oxide Copper-Gold (IOCG) mineralization on the basis of its conceptual model and geo-evidence layers derived from geological, geochemical, and geophysical data in Taherabad area, eastern Iran. The FuzzyAHP was used to determine the weights belonging to each criterion. Three geoscientists knowledge on exploration of IOCG-type mineralization have been applied to assign weights to evidence layers in fuzzy AHP MPM approach. After assigning normalized weights to all evidential layers, fuzzy operator was applied to integrate weighted evidence layers. Finally for evaluating the ability of the applied approach to delineate reliable target areas, locations of known mineral deposits in the study area were used. The results demonstrate the acceptable outcomes for IOCG exploration.
Hierarchical semi-numeric method for pairwise fuzzy group decision making.
Marimin, M; Umano, M; Hatono, I; Tamura, H
2002-01-01
Gradual improvements to a single-level semi-numeric method, i.e., linguistic labels preference representation by fuzzy sets computation for pairwise fuzzy group decision making are summarized. The method is extended to solve multiple criteria hierarchical structure pairwise fuzzy group decision-making problems. The problems are hierarchically structured into focus, criteria, and alternatives. Decision makers express their evaluations of criteria and alternatives based on each criterion by using linguistic labels. The labels are converted into and processed in triangular fuzzy numbers (TFNs). Evaluations of criteria yield relative criteria weights. Evaluations of the alternatives, based on each criterion, yield a degree of preference for each alternative or a degree of satisfaction for each preference value. By using a neat ordered weighted average (OWA) or a fuzzy weighted average operator, solutions obtained based on each criterion are aggregated into final solutions. The hierarchical semi-numeric method is suitable for solving a larger and more complex pairwise fuzzy group decision-making problem. The proposed method has been verified and applied to solve some real cases and is compared to Saaty's (1996) analytic hierarchy process (AHP) method.
How to control if even experts are not sure: Robust fuzzy control
NASA Technical Reports Server (NTRS)
Nguyen, Hung T.; Kreinovich, Vladik YA.; Lea, Robert; Tolbert, Dana
1992-01-01
In real life, the degrees of certainty that correspond to one of the same expert can differ drastically, and fuzzy control algorithms translate these different degrees of uncertainty into different control strategies. In such situations, it is reasonable to choose a fuzzy control methodology that is the least vulnerable to this kind of uncertainty. It is shown that this 'robustness' demand leads to min and max for &- and V-operations, to 1-x for negation, and to centroid as a defuzzification procedure.
Efficient Boundary Extraction of BSP Solids Based on Clipping Operations.
Wang, Charlie C L; Manocha, Dinesh
2013-01-01
We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells that correspond to a spatial convex partition and computes the boundary by traversing the connected cells. We use point-based representations along with finite-precision arithmetic to improve the efficiency and generate the B-rep approximation of a BSP solid. The core of our polygonization method is a novel clipping algorithm that uses a set of logical operations to make it resistant to degeneracies resulting from limited precision of floating-point arithmetic. The overall BSP to B-rep conversion algorithm can accurately generate boundaries with sharp and small features, and is faster than prior methods. At the end of this paper, we use this algorithm for a few geometric processing applications including Boolean operations, model repair, and mesh reconstruction.
Regression to fuzziness method for estimation of remaining useful life in power plant components
NASA Astrophysics Data System (ADS)
Alamaniotis, Miltiadis; Grelle, Austin; Tsoukalas, Lefteri H.
2014-10-01
Mitigation of severe accidents in power plants requires the reliable operation of all systems and the on-time replacement of mechanical components. Therefore, the continuous surveillance of power systems is a crucial concern for the overall safety, cost control, and on-time maintenance of a power plant. In this paper a methodology called regression to fuzziness is presented that estimates the remaining useful life (RUL) of power plant components. The RUL is defined as the difference between the time that a measurement was taken and the estimated failure time of that component. The methodology aims to compensate for a potential lack of historical data by modeling an expert's operational experience and expertise applied to the system. It initially identifies critical degradation parameters and their associated value range. Once completed, the operator's experience is modeled through fuzzy sets which span the entire parameter range. This model is then synergistically used with linear regression and a component's failure point to estimate the RUL. The proposed methodology is tested on estimating the RUL of a turbine (the basic electrical generating component of a power plant) in three different cases. Results demonstrate the benefits of the methodology for components for which operational data is not readily available and emphasize the significance of the selection of fuzzy sets and the effect of knowledge representation on the predicted output. To verify the effectiveness of the methodology, it was benchmarked against the data-based simple linear regression model used for predictions which was shown to perform equal or worse than the presented methodology. Furthermore, methodology comparison highlighted the improvement in estimation offered by the adoption of appropriate of fuzzy sets for parameter representation.
FUZZY-LOGIC-BASED CONTROLLERS FOR EFFICIENCY OPTIMIZATION OF INVERTER-FED INDUCTION MOTOR DRIVES
This paper describes a fuzzy-logic-based energy optimizing controller to improve the efficiency of induction motor/drives operating at various load (torque) and speed conditions. Improvement of induction motor efficiency is important not only from the considerations of energy sav...
A sparse matrix algorithm on the Boolean vector machine
NASA Technical Reports Server (NTRS)
Wagner, Robert A.; Patrick, Merrell L.
1988-01-01
VLSI technology is being used to implement a prototype Boolean Vector Machine (BVM), which is a large network of very small processors with equally small memories that operate in SIMD mode; these use bit-serial arithmetic, and communicate via cube-connected cycles network. The BVM's bit-serial arithmetic and the small memories of individual processors are noted to compromise the system's effectiveness in large numerical problem applications. Attention is presently given to the implementation of a basic matrix-vector iteration algorithm for space matrices of the BVM, in order to generate over 1 billion useful floating-point operations/sec for this iteration algorithm. The algorithm is expressed in a novel language designated 'BVM'.
Calculating with light using a chip-scale all-optical abacus.
Feldmann, J; Stegmaier, M; Gruhler, N; Ríos, C; Bhaskaran, H; Wright, C D; Pernice, W H P
2017-11-02
Machines that simultaneously process and store multistate data at one and the same location can provide a new class of fast, powerful and efficient general-purpose computers. We demonstrate the central element of an all-optical calculator, a photonic abacus, which provides multistate compute-and-store operation by integrating functional phase-change materials with nanophotonic chips. With picosecond optical pulses we perform the fundamental arithmetic operations of addition, subtraction, multiplication, and division, including a carryover into multiple cells. This basic processing unit is embedded into a scalable phase-change photonic network and addressed optically through a two-pulse random access scheme. Our framework provides first steps towards light-based non-von Neumann arithmetic.
Model Checking with Edge-Valued Decision Diagrams
NASA Technical Reports Server (NTRS)
Roux, Pierre; Siminiceanu, Radu I.
2010-01-01
We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library. We provide efficient algorithms for manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi- Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools. Compared to the CUDD package, our tool is several orders of magnitude faster
Evaluating supplier quality performance using fuzzy analytical hierarchy process
NASA Astrophysics Data System (ADS)
Ahmad, Nazihah; Kasim, Maznah Mat; Rajoo, Shanmugam Sundram Kalimuthu
2014-12-01
Evaluating supplier quality performance is vital in ensuring continuous supply chain improvement, reducing the operational costs and risks towards meeting customer's expectation. This paper aims to illustrate an application of Fuzzy Analytical Hierarchy Process to prioritize the evaluation criteria in a context of automotive manufacturing in Malaysia. Five main criteria were identified which were quality, cost, delivery, customer serviceand technology support. These criteria had been arranged into hierarchical structure and evaluated by an expert. The relative importance of each criteria was determined by using linguistic variables which were represented as triangular fuzzy numbers. The Center of Gravity defuzzification method was used to convert the fuzzy evaluations into their corresponding crisps values. Such fuzzy evaluation can be used as a systematic tool to overcome the uncertainty evaluation of suppliers' performance which usually associated with human being subjective judgments.
Fuzzy logic applications to expert systems and control
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
A considerable amount of work on the development of fuzzy logic algorithms and application to space related control problems has been done at the Johnson Space Center (JSC) over the past few years. Particularly, guidance control systems for space vehicles during proximity operations, learning systems utilizing neural networks, control of data processing during rendezvous navigation, collision avoidance algorithms, camera tracking controllers, and tether controllers have been developed utilizing fuzzy logic technology. Several other areas in which fuzzy sets and related concepts are being considered at JSC are diagnostic systems, control of robot arms, pattern recognition, and image processing. It has become evident, based on the commercial applications of fuzzy technology in Japan and China during the last few years, that this technology should be exploited by the government as well as private industry for energy savings.
Maranhão, Geraldo Neves De A.; Brito, Alaan Ubaiara; Leal, Anderson Marques; Fonseca, Jéssica Kelly Silva; Macêdo, Wilson Negrão
2015-01-01
In the present paper, a fuzzy controller applied to a Variable-Speed Drive (VSD) for use in Photovoltaic Pumping Systems (PVPS) is proposed. The fuzzy logic system (FLS) used is embedded in a microcontroller and corresponds to a proportional-derivative controller. A Light-Dependent Resistor (LDR) is used to measure, approximately, the irradiance incident on the PV array. Experimental tests are executed using an Arduino board. The experimental results show that the fuzzy controller is capable of operating the system continuously throughout the day and controlling the direct current (DC) voltage level in the VSD with a good performance. PMID:26402688
An architecture for designing fuzzy logic controllers using neural networks
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1991-01-01
Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.
A fuzzy set approach for reliability calculation of valve controlling electric actuators
NASA Astrophysics Data System (ADS)
Karmachev, D. P.; Yefremov, A. A.; Luneva, E. E.
2017-02-01
The oil and gas equipment and electric actuators in particular frequently perform in various operational modes and under dynamic environmental conditions. These factors affect equipment reliability measures in a vague, uncertain way. To eliminate the ambiguity, reliability model parameters could be defined as fuzzy numbers. We suggest a technique that allows constructing fundamental fuzzy-valued performance reliability measures based on an analysis of electric actuators failure data in accordance with the amount of work, completed before the failure, instead of failure time. Also, this paper provides a computation example of fuzzy-valued reliability and hazard rate functions, assuming Kumaraswamy complementary Weibull geometric distribution as a lifetime (reliability) model for electric actuators.
NASA Technical Reports Server (NTRS)
Habiby, Sarry F.
1987-01-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. The objective is to demonstrate the operation of an optical processor designed to minimize computation time in performing a practical computing application. This is done by using the large array of processing elements in a Hughes liquid crystal light valve, and relying on the residue arithmetic representation, a holographic optical memory, and position coded optical look-up tables. In the design, all operations are performed in effectively one light valve response time regardless of matrix size. The features of the design allowing fast computation include the residue arithmetic representation, the mapping approach to computation, and the holographic memory. In addition, other features of the work include a practical light valve configuration for efficient polarization control, a model for recording multiple exposures in silver halides with equal reconstruction efficiency, and using light from an optical fiber for a reference beam source in constructing the hologram. The design can be extended to implement larger matrix arrays without increasing computation time.
Model-Checking with Edge-Valued Decision Diagrams
NASA Technical Reports Server (NTRS)
Roux, Pierre; Siminiceanu, Radu I.
2010-01-01
We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library along with state-of-the-art algorithms for building the transition relation and the state space of discrete state systems. We provide efficient algorithms for manipulating EVMDDs and give upper bounds of the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi-Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools: EVMDDs for encoding arithmetic expressions, identity-reduced MDDs for representing the transition relation, and the saturation algorithm for reachability analysis. We compare our new symbolic model checking EVMDD library with the widely used CUDD package and show that, in many cases, our tool is several orders of magnitude faster than CUDD.
Specific arithmetic calculation deficits in children with Turner syndrome.
Rovet, J; Szekely, C; Hockenberry, M N
1994-12-01
Study 1 compared arithmetic processing skills on the WRAT-R in 45 girls with Turner syndrome (TS) and 92 age-matched female controls. Results revealed significant underachievement by subjects with TS, which reflected their poorer performance on problems requiring the retrieval of addition and multiplication facts and procedural knowledge for addition and division operations. TS subjects did not differ qualitatively from controls in type of procedural error committed. Study 2, which compared the performance of 10 subjects with TS and 31 controls on the Keymath Diagnostic Arithmetic Test, showed that the TS group had less adequate knowledge of arithmetic, subtraction, and multiplication procedures but did not differ from controls on Fact items. Error analyses revealed that TS subjects were more likely to confuse component steps or fail to separate intermediate steps or to complete problems. TS subjects relied to a greater degree on verbal than visual-spatial abilities in arithmetic processing while their visual-spatial abilities were associated with retrieval of simple multidigit addition facts and knowledge of subtraction, multiplication, and division procedures. Differences between the TS and control groups increased with age for Keymath, but not WRAT-R, procedures. Discrepant findings are related to the different task constraints (timed vs. untimed, single vs. alternate versions, size of item pool) and the use of different strategies (counting vs. fact retrieval). It is concluded that arithmetic difficulties in females with TS are due to less adequate procedural skills, combined with poorer fact retrieval in timed testing situations, rather than to inadequate visual-spatial abilities.
The currency and tempo of extinction.
Regan, H M; Lupia, R; Drinnan, A N; Burgman, M A
2001-01-01
This study examines estimates of extinction rates for the current purported biotic crisis and from the fossil record. Studies that compare current and geological extinctions sometimes use metrics that confound different sources of error and reflect different features of extinction processes. The per taxon extinction rate is a standard measure in paleontology that avoids some of the pitfalls of alternative approaches. Extinction rates reported in the conservation literature are rarely accompanied by measures of uncertainty, despite many elements of the calculations being subject to considerable error. We quantify some of the most important sources of uncertainty and carry them through the arithmetic of extinction rate calculations using fuzzy numbers. The results emphasize that estimates of current and future rates rely heavily on assumptions about the tempo of extinction and on extrapolations among taxa. Available data are unlikely to be useful in measuring magnitudes or trends in current extinction rates.
ERIC Educational Resources Information Center
Gauthier, N.
2006-01-01
This note describes a method for evaluating the sums of the m -th powers of n consecutive terms of a general arithmetic sequence: { S[subscript m] = 0, 1, 2,...}. The method is based on the use of a differential operator that is repeatedly applied to a generating function. A known linear recurrence is then obtained and the m-th sum, S[subscript…
Emergency response nurse scheduling with medical support robot by multi-agent and fuzzy technique.
Kono, Shinya; Kitamura, Akira
2015-08-01
In this paper, a new co-operative re-scheduling method corresponding the medical support tasks that the time of occurrence can not be predicted is described, assuming robot can co-operate medical activities with the nurse. Here, Multi-Agent-System (MAS) is used for the co-operative re-scheduling, in which Fuzzy-Contract-Net (FCN) is applied to the robots task assignment for the emergency tasks. As the simulation results, it is confirmed that the re-scheduling results by the proposed method can keep the patients satisfaction and decrease the work load of the nurse.
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik YA.; Quintana, Chris; Lea, Robert
1991-01-01
Fuzzy control has been successfully applied in industrial systems. However, there is some caution in using it. The reason is that it is based on quite reasonable ideas, but each of these ideas can be implemented in several different ways, and depending on which of the implementations chosen different results are achieved. Some implementations lead to a high quality control, some of them not. And since there are no theoretical methods for choosing the implementation, the basic way to choose it now is experimental. But if one chooses a method that is good for several examples, there is no guarantee that it will work fine in all of them. Hence the caution. A theoretical basis for choosing the fuzzy control procedures is provided. In order to choose a procedure that transforms a fuzzy knowledge into a control, one needs, first, to choose a membership function for each of the fuzzy terms that the experts use, second, to choose operations of uncertainty values that corresponds to 'and' and 'or', and third, when a membership function for control is obtained, one must defuzzy it, that is, somehow generate a value of the control u that will be actually used. A general approach that will help to make all these choices is described: namely, it is proved that under reasonable assumptions membership functions should be linear or fractionally linear, defuzzification must be described by a centroid rule and describe all possible 'and' and 'or' operations. Thus, a theoretical explanation of the existing semi-heuristic choices is given and the basis for the further research on optimal fuzzy control is formulated.
NASA Technical Reports Server (NTRS)
Richardson, Albert O.
1997-01-01
This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.
Task planning with uncertainty for robotic systems. Thesis
NASA Technical Reports Server (NTRS)
Cao, Tiehua
1993-01-01
In a practical robotic system, it is important to represent and plan sequences of operations and to be able to choose an efficient sequence from them for a specific task. During the generation and execution of task plans, different kinds of uncertainty may occur and erroneous states need to be handled to ensure the efficiency and reliability of the system. An approach to task representation, planning, and error recovery for robotic systems is demonstrated. Our approach to task planning is based on an AND/OR net representation, which is then mapped to a Petri net representation of all feasible geometric states and associated feasibility criteria for net transitions. Task decomposition of robotic assembly plans based on this representation is performed on the Petri net for robotic assembly tasks, and the inheritance of properties of liveness, safeness, and reversibility at all levels of decomposition are explored. This approach provides a framework for robust execution of tasks through the properties of traceability and viability. Uncertainty in robotic systems are modeled by local fuzzy variables, fuzzy marking variables, and global fuzzy variables which are incorporated in fuzzy Petri nets. Analysis of properties and reasoning about uncertainty are investigated using fuzzy reasoning structures built into the net. Two applications of fuzzy Petri nets, robot task sequence planning and sensor-based error recovery, are explored. In the first application, the search space for feasible and complete task sequences with correct precedence relationships is reduced via the use of global fuzzy variables in reasoning about subgoals. In the second application, sensory verification operations are modeled by mutually exclusive transitions to reason about local and global fuzzy variables on-line and automatically select a retry or an alternative error recovery sequence when errors occur. Task sequencing and task execution with error recovery capability for one and multiple soft components in robotic systems are investigated.
NASA Astrophysics Data System (ADS)
Meng, Fanyong
2018-02-01
Triangular fuzzy reciprocal preference relations (TFRPRs) are powerful tools to denoting decision-makers' fuzzy judgments, which permit the decision-makers to apply triangular fuzzy ratio rather than real numbers to express their judgements. Consistency analysis is one of the most crucial issues in preference relations that can guarantee the reasonable ranking order. However, all previous consistency concepts cannot well address this type of preference relations. Based on the operational laws on triangular fuzzy numbers, this paper introduces an additive consistency concept for TFRPRs by using quasi TFRPRs, which can be seen as a natural extension of the crisp case. Using this consistency concept, models to judging the additive consistency of TFRPRs and to estimating missing values in complete TFRPRs are constructed. Then, an algorithm to decision-making with TFRPRs is developed. Finally, two numerical examples are offered to illustrate the application of the proposed procedure, and comparison analysis is performed.
Fuzzy Neural Classifiers for Multi-Wavelength Interdigital Sensors
NASA Astrophysics Data System (ADS)
Xenides, D.; Vlachos, D. S.; Simos, T. E.
2007-12-01
The use of multi-wavelength interdigital sensors for non-destructive testing is based on the capability of the measuring system to classify the measured impendence according to some physical properties of the material under test. By varying the measuring frequency and the wavelength of the sensor (and thus the penetration depth of the electric field inside the material under test) we can produce images that correspond to various configurations of dielectric materials under different geometries. The implementation of a fuzzy neural network witch inputs these images for both quantitative and qualitative sensing is demonstrated. The architecture of the system is presented with some references to the general theory of fuzzy sets and fuzzy calculus. Experimental results are presented in the case of a set of 8 well characterized dielectric layers. Finally the effect of network parameters to the functionality of the system is discussed, especially in the case of functions evaluating the fuzzy AND and OR operations.
Fuzzy linear model for production optimization of mining systems with multiple entities
NASA Astrophysics Data System (ADS)
Vujic, Slobodan; Benovic, Tomo; Miljanovic, Igor; Hudej, Marjan; Milutinovic, Aleksandar; Pavlovic, Petar
2011-12-01
Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research methods in mining engineering. After the introductory review of properties and limitations of applying LP, short reviews of the general settings of deterministic and fuzzy LP models are presented. With the purpose of comparative analysis, the application of both LP models is presented using the example of the Bauxite Basin Niksic with five mines. After the assessment, LP is an efficient mathematical modeling tool in production planning and solving many other single-criteria optimization problems of mining engineering. After the comparison of advantages and deficiencies of both deterministic and fuzzy LP models, the conclusion presents benefits of the fuzzy LP model but is also stating that seeking the optimal plan of production means to accomplish the overall analysis that will encompass the LP model approaches.
Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.
Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S
2016-06-01
A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.
Modified Levenberg-Marquardt Method for RÖSSLER Chaotic System Fuzzy Modeling Training
NASA Astrophysics Data System (ADS)
Wang, Yu-Hui; Wu, Qing-Xian; Jiang, Chang-Sheng; Xue, Ya-Li; Fang, Wei
Generally, fuzzy approximation models require some human knowledge and experience. Operator's experience is involved in the mathematics of fuzzy theory as a collection of heuristic rules. The main goal of this paper is to present a new method for identifying unknown nonlinear dynamics such as Rössler system without any human knowledge. Instead of heuristic rules, the presented method uses the input-output data pairs to identify the Rössler chaotic system. The training algorithm is a modified Levenberg-Marquardt (L-M) method, which can adjust the parameters of each linear polynomial and fuzzy membership functions on line, and do not rely on experts' experience excessively. Finally, it is applied to training Rössler chaotic system fuzzy identification. Comparing this method with the standard L-M method, the convergence speed is accelerated. The simulation results demonstrate the effectiveness of the proposed method.
Learning and tuning fuzzy logic controllers through reinforcements.
Berenji, H R; Khedkar, P
1992-01-01
A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Hybrid neural network and fuzzy logic approaches for rendezvous and capture in space
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Castellano, Timothy
1991-01-01
The nonlinear behavior of many practical systems and unavailability of quantitative data regarding the input-output relations makes the analytical modeling of these systems very difficult. On the other hand, approximate reasoning-based controllers which do not require analytical models have demonstrated a number of successful applications such as the subway system in the city of Sendai. These applications have mainly concentrated on emulating the performance of a skilled human operator in the form of linguistic rules. However, the process of learning and tuning the control rules to achieve the desired performance remains a difficult task. Fuzzy Logic Control is based on fuzzy set theory. A fuzzy set is an extension of a crisp set. Crisp sets only allow full membership or no membership at all, whereas fuzzy sets allow partial membership. In other words, an element may partially belong to a set.
NASA Astrophysics Data System (ADS)
Malczewski, Jacek
2006-12-01
The objective of this paper is to incorporate the concept of fuzzy (linguistic) quantifiers into the GIS-based land suitability analysis via ordered weighted averaging (OWA). OWA is a multicriteria evaluation procedure (or combination operator). The nature of the OWA procedure depends on some parameters, which can be specified by means of fuzzy (linguistic) quantifiers. By changing the parameters, OWA can generate a wide range of decision strategies or scenarios. The quantifier-guided OWA procedure is illustrated using land-use suitability analysis in a region of Mexico.
NASA Astrophysics Data System (ADS)
Alam Khan, Najeeb; Razzaq, Oyoon Abdul
2016-03-01
In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.
DOT National Transportation Integrated Search
2000-02-01
This training manual describes the fuzzy logic ramp metering algorithm in detail, as implemented system-wide in the greater Seattle area. The method of defining the inputs to the controller and optimizing the performance of the algorithm is explained...
Systematic methods for the design of a class of fuzzy logic controllers
NASA Astrophysics Data System (ADS)
Yasin, Saad Yaser
2002-09-01
Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental data, and a conversion algorithm, to develop a fuzzy-based control algorithm. Results were similar to those obtained by recently published conventional control based studies. The influence of the fuzzy inference operators and parameters on performance and stability of the fuzzy logic controller was studied Results indicated that, the selections of certain parameters or combinations of parameters, affect greatly the performance and stability of the fuzzy controller. Diagnostic guidelines used to tune or change certain factors or parameters to improve controller performance were developed based on knowledge gained from conventional control methods and knowledge gained from the experimental and the simulation results of this study.
Fuzzy set approach to quality function deployment: An investigation
NASA Technical Reports Server (NTRS)
Masud, Abu S. M.
1992-01-01
The final report of the 1992 NASA/ASEE Summer Faculty Fellowship at the Space Exploration Initiative Office (SEIO) in Langley Research Center is presented. Quality Function Deployment (QFD) is a process, focused on facilitating the integration of the customer's voice in the design and development of a product or service. Various input, in the form of judgements and evaluations, are required during the QFD analyses. All the input variables in these analyses are treated as numeric variables. The purpose of the research was to investigate how QFD analyses can be performed when some or all of the input variables are treated as linguistic variables with values expressed as fuzzy numbers. The reason for this consideration is that human judgement, perception, and cognition are often ambiguous and are better represented as fuzzy numbers. Two approaches for using fuzzy sets in QFD have been proposed. In both cases, all the input variables are considered as linguistic variables with values indicated as linguistic expressions. These expressions are then converted to fuzzy numbers. The difference between the two approaches is due to how the QFD computations are performed with these fuzzy numbers. In Approach 1, the fuzzy numbers are first converted to their equivalent crisp scores and then the QFD computations are performed using these crisp scores. As a result, the output of this approach are crisp numbers, similar to those in traditional QFD. In Approach 2, all the QFD computations are performed with the fuzzy numbers and the output are fuzzy numbers also. Both the approaches have been explained with the help of illustrative examples of QFD application. Approach 2 has also been applied in a QFD application exercise in SEIO, involving a 'mini moon rover' design. The mini moon rover is a proposed tele-operated vehicle that will traverse and perform various tasks, including autonomous operations, on the moon surface. The output of the moon rover application exercise is a ranking of the rover functions so that a subset of these functions can be targeted for design improvement. The illustrative examples and the mini rover application exercise confirm that the proposed approaches for using fuzzy sets in QFD are viable. However, further research is needed to study the various issues involved and to verify/validate the methods proposed.
Takagi-Sugeno-Kang fuzzy models of the rainfall-runoff transformation
NASA Astrophysics Data System (ADS)
Jacquin, A. P.; Shamseldin, A. Y.
2009-04-01
Fuzzy inference systems, or fuzzy models, are non-linear models that describe the relation between the inputs and the output of a real system using a set of fuzzy IF-THEN rules. This study deals with the application of Takagi-Sugeno-Kang type fuzzy models to the development of rainfall-runoff models operating on a daily basis, using a system based approach. The models proposed are classified in two types, each intended to account for different kinds of dominant non-linear effects in the rainfall-runoff relationship. Fuzzy models type 1 are intended to incorporate the effect of changes in the prevailing soil moisture content, while fuzzy models type 2 address the phenomenon of seasonality. Each model type consists of five fuzzy models of increasing complexity; the most complex fuzzy model of each model type includes all the model components found in the remaining fuzzy models of the respective type. The models developed are applied to data of six catchments from different geographical locations and sizes. Model performance is evaluated in terms of two measures of goodness of fit, namely the Nash-Sutcliffe criterion and the index of volumetric fit. The results of the fuzzy models are compared with those of the Simple Linear Model, the Linear Perturbation Model and the Nearest Neighbour Linear Perturbation Model, which use similar input information. Overall, the results of this study indicate that Takagi-Sugeno-Kang fuzzy models are a suitable alternative for modelling the rainfall-runoff relationship. However, it is also observed that increasing the complexity of the model structure does not necessarily produce an improvement in the performance of the fuzzy models. The relative importance of the different model components in determining the model performance is evaluated through sensitivity analysis of the model parameters in the accompanying study presented in this meeting. Acknowledgements: We would like to express our gratitude to Prof. Kieran M. O'Connor from the National University of Ireland, Galway, for providing the data used in this study.
Zhang, Jian-Hua; Peng, Xiao-Di; Liu, Hua; Raisch, Jörg; Wang, Ru-Bin
2013-12-01
The human operator's ability to perform their tasks can fluctuate over time. Because the cognitive demands of the task can also vary it is possible that the capabilities of the operator are not sufficient to satisfy the job demands. This can lead to serious errors when the operator is overwhelmed by the task demands. Psychophysiological measures, such as heart rate and brain activity, can be used to monitor operator cognitive workload. In this paper, the most influential psychophysiological measures are extracted to characterize Operator Functional State (OFS) in automated tasks under a complex form of human-automation interaction. The fuzzy c-mean (FCM) algorithm is used and tested for its OFS classification performance. The results obtained have shown the feasibility and effectiveness of the FCM algorithm as well as the utility of the selected input features for OFS classification. Besides being able to cope with nonlinearity and fuzzy uncertainty in the psychophysiological data it can provide information about the relative importance of the input features as well as the confidence estimate of the classification results. The OFS pattern classification method developed can be incorporated into an adaptive aiding system in order to enhance the overall performance of a large class of safety-critical human-machine cooperative systems.
Fuzzy logic electric vehicle regenerative antiskid braking and traction control system
Cikanek, S.R.
1994-10-25
An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.
Fuzzy logic electric vehicle regenerative antiskid braking and traction control system
Cikanek, Susan R.
1994-01-01
An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.
Fuzzy based attitude controller for flexible spacecraft with on/off thrusters
NASA Astrophysics Data System (ADS)
Knapp, Roger G.; Adams, Neil J.
A fuzzy-based attitude controller is designed for attitude control of a generic spacecraft with on/off thrusters. The controller is comprised of packages of rules dedicated to addressing different objectives (e.g., disturbance rejection, low fuel consumption, avoiding the excitation of flexible appendages, etc.). These rule packages can be inserted or removed depending on the requirements of the particular spacecraft and are parameterized based on vehicle parameters such as inertia or operational parameters such as the maneuvering rate. Individual rule packages can be 'weighted' relative to each other to emphasize the importance of one objective relative to another. Finally, the fuzzy controller and rule packages are demonstrated using the high-fidelity Space Shuttle Interactive On-Orbit Simulator (IOS) while performing typical on-orbit operations and are subsequently compared with the existing shuttle flight control system performance.
Fuzzy based attitude controller for flexible spacecraft with on/off thrusters
NASA Astrophysics Data System (ADS)
Knapp, Roger Glenn
1993-05-01
A fuzzy-based attitude controller is designed for attitude control of a generic spacecraft with on/off thrusters. The controller is comprised of packages of rules dedicated to addressing different objectives (e.g., disturbance rejection, low fuel consumption, avoiding the excitation of flexible appendages, etc.). These rule packages can be inserted or removed depending on the requirements of the particular spacecraft and are parameterized based on vehicle parameters such as inertia or operational parameters such as the maneuvering rate. Individual rule packages can be 'weighted' relative to each other to emphasize the importance of one objective relative to another. Finally, the fuzzy controller and rule packages are demonstrated using the high-fidelity Space Shuttle Interactive On-Orbit Simulator (IOS) while performing typical on-orbit operations and are subsequently compared with the existing shuttle flight control system performance.
Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata
NASA Astrophysics Data System (ADS)
Heikalabad, Saeed Rasouli; Gadim, Mahya Rahimpour
2018-06-01
The quantum-dot cellular automata (QCA) can be replaced to overcome the limitation of CMOS technology. An arithmetic logic unit (ALU) is a basic structure of any computer devices. In this paper, design of improved single-bit arithmetic logic unit in quantum dot cellular automata is presented. The proposed structure for ALU has AND, OR, XOR and ADD operations. A unique 2:1 multiplexer, an ultra-efficient two-input XOR and a low complexity full adder are used in the proposed structure. Also, an extended design of this structure is provided for two-bit ALU in this paper. The proposed structure of ALU is simulated by QCADesigner and simulation result is evaluated. Evaluation results show that the proposed design has best performance in terms of area, complexity and delay compared to the previous designs.
Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata
NASA Astrophysics Data System (ADS)
Heikalabad, Saeed Rasouli; Gadim, Mahya Rahimpour
2018-03-01
The quantum-dot cellular automata (QCA) can be replaced to overcome the limitation of CMOS technology. An arithmetic logic unit (ALU) is a basic structure of any computer devices. In this paper, design of improved single-bit arithmetic logic unit in quantum dot cellular automata is presented. The proposed structure for ALU has AND, OR, XOR and ADD operations. A unique 2:1 multiplexer, an ultra-efficient two-input XOR and a low complexity full adder are used in the proposed structure. Also, an extended design of this structure is provided for two-bit ALU in this paper. The proposed structure of ALU is simulated by QCADesigner and simulation result is evaluated. Evaluation results show that the proposed design has best performance in terms of area, complexity and delay compared to the previous designs.
NASA Astrophysics Data System (ADS)
Minatour, Yasser; Bonakdari, Hossein; Zarghami, Mahdi; Bakhshi, Maryam Ali
2015-09-01
The purpose of this study was to develop a group fuzzy multi-criteria decision-making method to be applied in rating problems associated with water resources management. Thus, here Chen's group fuzzy TOPSIS method extended by a difference technique to handle uncertainties of applying a group decision making. Then, the extended group fuzzy TOPSIS method combined with a consistency check. In the presented method, initially linguistic judgments are being surveyed via a consistency checking process, and afterward these judgments are being used in the extended Chen's fuzzy TOPSIS method. Here, each expert's opinion is turned to accurate mathematical numbers and, then, to apply uncertainties, the opinions of group are turned to fuzzy numbers using three mathematical operators. The proposed method is applied to select the optimal strategy for the rural water supply of Nohoor village in north-eastern Iran, as a case study and illustrated example. Sensitivity analyses test over results and comparing results with project reality showed that proposed method offered good results for water resources projects.
Shen, Zhongjie; He, Zhengjia; Chen, Xuefeng; Sun, Chuang; Liu, Zhiwen
2012-01-01
Performance degradation assessment based on condition monitoring plays an important role in ensuring reliable operation of equipment, reducing production downtime and saving maintenance costs, yet performance degradation has strong fuzziness, and the dynamic information is random and fuzzy, making it a challenge how to assess the fuzzy bearing performance degradation. This study proposes a monotonic degradation assessment index of rolling bearings using fuzzy support vector data description (FSVDD) and running time. FSVDD constructs the fuzzy-monitoring coefficient ε̄ which is sensitive to the initial defect and stably increases as faults develop. Moreover, the parameter ε̄ describes the accelerating relationships between the damage development and running time. However, the index ε̄ with an oscillating trend disagrees with the irreversible damage development. The running time is introduced to form a monotonic index, namely damage severity index (DSI). DSI inherits all advantages of ε̄ and overcomes its disadvantage. A run-to-failure test is carried out to validate the performance of the proposed method. The results show that DSI reflects the growth of the damages with running time perfectly. PMID:23112591
Shen, Zhongjie; He, Zhengjia; Chen, Xuefeng; Sun, Chuang; Liu, Zhiwen
2012-01-01
Performance degradation assessment based on condition monitoring plays an important role in ensuring reliable operation of equipment, reducing production downtime and saving maintenance costs, yet performance degradation has strong fuzziness, and the dynamic information is random and fuzzy, making it a challenge how to assess the fuzzy bearing performance degradation. This study proposes a monotonic degradation assessment index of rolling bearings using fuzzy support vector data description (FSVDD) and running time. FSVDD constructs the fuzzy-monitoring coefficient ε⁻ which is sensitive to the initial defect and stably increases as faults develop. Moreover, the parameter ε⁻ describes the accelerating relationships between the damage development and running time. However, the index ε⁻ with an oscillating trend disagrees with the irreversible damage development. The running time is introduced to form a monotonic index, namely damage severity index (DSI). DSI inherits all advantages of ε⁻ and overcomes its disadvantage. A run-to-failure test is carried out to validate the performance of the proposed method. The results show that DSI reflects the growth of the damages with running time perfectly.
Towards autonomous fuzzy control
NASA Technical Reports Server (NTRS)
Shenoi, Sujeet; Ramer, Arthur
1993-01-01
The efficient implementation of on-line adaptation in real time is an important research problem in fuzzy control. The goal is to develop autonomous self-organizing controllers employing system-independent control meta-knowledge which enables them to adjust their control policies depending on the systems they control and the environments in which they operate. An autonomous fuzzy controller would continuously observe system behavior while implementing its control actions and would use the outcomes of these actions to refine its control policy. It could be designed to lie dormant when its control actions give rise to adequate performance characteristics but could rapidly and autonomously initiate real-time adaptation whenever its performance degrades. Such an autonomous fuzzy controller would have immense practical value. It could accommodate individual variations in system characteristics and also compensate for degradations in system characteristics caused by wear and tear. It could also potentially deal with black-box systems and control scenarios. On-going research in autonomous fuzzy control is reported. The ultimate research objective is to develop robust and relatively inexpensive autonomous fuzzy control hardware suitable for use in real time environments.
Telerobotic control of a mobile coordinated robotic server. M.S. Thesis Annual Technical Report
NASA Technical Reports Server (NTRS)
Lee, Gordon
1993-01-01
The annual report on telerobotic control of a mobile coordinated robotic server is presented. The goal of this effort is to develop advanced control methods for flexible space manipulator systems. As such, an adaptive fuzzy logic controller was developed in which model structure as well as parameter constraints are not required for compensation. The work builds upon previous work on fuzzy logic controllers. Fuzzy logic controllers have been growing in importance in the field of automatic feedback control. Hardware controllers using fuzzy logic have become available as an alternative to the traditional PID controllers. Software has also been introduced to aid in the development of fuzzy logic rule-bases. The advantages of using fuzzy logic controllers include the ability to merge the experience and intuition of expert operators into the rule-base and that a model of the system is not required to construct the controller. A drawback of the classical fuzzy logic controller, however, is the many parameters needed to be turned off-line prior to application in the closed-loop. In this report, an adaptive fuzzy logic controller is developed requiring no system model or model structure. The rule-base is defined to approximate a state-feedback controller while a second fuzzy logic algorithm varies, on-line, parameters of the defining controller. Results indicate the approach is viable for on-line adaptive control of systems when the model is too complex or uncertain for application of other more classical control techniques.
Vectors a Fortran 90 module for 3-dimensional vector and dyadic arithmetic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brock, B.C.
1998-02-01
A major advance contained in the new Fortran 90 language standard is the ability to define new data types and the operators associated with them. Writing computer code to implement computations with real and complex three-dimensional vectors and dyadics is greatly simplified if the equations can be implemented directly, without the need to code the vector arithmetic explicitly. The Fortran 90 module described here defines new data types for real and complex 3-dimensional vectors and dyadics, along with the common operations needed to work with these objects. Routines to allow convenient initialization and output of the new types are alsomore » included. In keeping with the philosophy of data abstraction, the details of the implementation of the data types are maintained private, and the functions and operators are made generic to simplify the combining of real, complex, single- and double-precision vectors and dyadics.« less
Pre-Algebra Groups. Concepts & Applications.
ERIC Educational Resources Information Center
Montgomery County Public Schools, Rockville, MD.
Discussion material and exercises related to pre-algebra groups are provided in this five chapter manual. Chapter 1 (mappings) focuses on restricted domains, order of operations (parentheses and exponents), rules of assignment, and computer extensions. Chapter 2 considers finite number systems, including binary operations, clock arithmetic,…
ERIC Educational Resources Information Center
Chang, Liang-Te; And Others
A study was conducted to develop the electronic technical competencies of duty and task analysis by using a revised DACUM (Developing a Curriculum) method, a questionnaire survey, and a fuzzy synthesis operation. The revised DACUM process relied on inviting electronics trade professionals to analyze electronic technology for entry-level…
An Island Grouping Genetic Algorithm for Fuzzy Partitioning Problems
Salcedo-Sanz, S.; Del Ser, J.; Geem, Z. W.
2014-01-01
This paper presents a novel fuzzy clustering technique based on grouping genetic algorithms (GGAs), which are a class of evolutionary algorithms especially modified to tackle grouping problems. Our approach hinges on a GGA devised for fuzzy clustering by means of a novel encoding of individuals (containing elements and clusters sections), a new fitness function (a superior modification of the Davies Bouldin index), specially tailored crossover and mutation operators, and the use of a scheme based on a local search and a parallelization process, inspired from an island-based model of evolution. The overall performance of our approach has been assessed over a number of synthetic and real fuzzy clustering problems with different objective functions and distance measures, from which it is concluded that the proposed approach shows excellent performance in all cases. PMID:24977235
The 3-D image recognition based on fuzzy neural network technology
NASA Technical Reports Server (NTRS)
Hirota, Kaoru; Yamauchi, Kenichi; Murakami, Jun; Tanaka, Kei
1993-01-01
Three dimensional stereoscopic image recognition system based on fuzzy-neural network technology was developed. The system consists of three parts; preprocessing part, feature extraction part, and matching part. Two CCD color camera image are fed to the preprocessing part, where several operations including RGB-HSV transformation are done. A multi-layer perception is used for the line detection in the feature extraction part. Then fuzzy matching technique is introduced in the matching part. The system is realized on SUN spark station and special image input hardware system. An experimental result on bottle images is also presented.
Brain tumor segmentation in MRI by using the fuzzy connectedness method
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Udupa, Jayaram K.; Hackney, David; Moonis, Gul
2001-07-01
The aim of this paper is the precise and accurate quantification of brain tumor via MRI. This is very useful in evaluating disease progression, response to therapy, and the need for changes in treatment plans. We use multiple MRI protocols including FLAIR, T1, and T1 with Gd enhancement to gather information about different aspects of the tumor and its vicinity- edema, active regions, and scar left over due to surgical intervention. We have adapted the fuzzy connectedness framework to segment tumor and to measure its volume. The method requires only limited user interaction in routine clinical MRI. The first step in the process is to apply an intensity normalization method to the images so that the same body region has the same tissue meaning independent of the scanner and patient. Subsequently, a fuzzy connectedness algorithm is utilized to segment the different aspects of the tumor. The system has been tested, for its precision, accuracy, and efficiency, utilizing 40 patient studies. The percent coefficient of variation (% CV) in volume due to operator subjectivity in specifying seeds for fuzzy connectedness segmentation is less than 1%. The mean operator and computer time taken per study is 3 minutes. The package is designed to run under operator supervision. Delineation has been found to agree with the operators' visual inspection most of the time except in some cases when the tumor is close to the boundary of the brain. In the latter case, the scalp is included in the delineation and an operator has to exclude this manually. The methodology is rapid, robust, consistent, yielding highly reproducible measurements, and is likely to become part of the routine evaluation of brain tumor patients in our health system.
Zhang, Fan; Zhang, Xinhong
2011-01-01
Most of classification, quality evaluation or grading of the flue-cured tobacco leaves are manually operated, which relies on the judgmental experience of experts, and inevitably limited by personal, physical and environmental factors. The classification and the quality evaluation are therefore subjective and experientially based. In this paper, an automatic classification method of tobacco leaves based on the digital image processing and the fuzzy sets theory is presented. A grading system based on image processing techniques was developed for automatically inspecting and grading flue-cured tobacco leaves. This system uses machine vision for the extraction and analysis of color, size, shape and surface texture. Fuzzy comprehensive evaluation provides a high level of confidence in decision making based on the fuzzy logic. The neural network is used to estimate and forecast the membership function of the features of tobacco leaves in the fuzzy sets. The experimental results of the two-level fuzzy comprehensive evaluation (FCE) show that the accuracy rate of classification is about 94% for the trained tobacco leaves, and the accuracy rate of the non-trained tobacco leaves is about 72%. We believe that the fuzzy comprehensive evaluation is a viable way for the automatic classification and quality evaluation of the tobacco leaves. PMID:22163744
Will it Blend? Visualization and Accuracy Evaluation of High-Resolution Fuzzy Vegetation Maps
NASA Astrophysics Data System (ADS)
Zlinszky, A.; Kania, A.
2016-06-01
Instead of assigning every map pixel to a single class, fuzzy classification includes information on the class assigned to each pixel but also the certainty of this class and the alternative possible classes based on fuzzy set theory. The advantages of fuzzy classification for vegetation mapping are well recognized, but the accuracy and uncertainty of fuzzy maps cannot be directly quantified with indices developed for hard-boundary categorizations. The rich information in such a map is impossible to convey with a single map product or accuracy figure. Here we introduce a suite of evaluation indices and visualization products for fuzzy maps generated with ensemble classifiers. We also propose a way of evaluating classwise prediction certainty with "dominance profiles" visualizing the number of pixels in bins according to the probability of the dominant class, also showing the probability of all the other classes. Together, these data products allow a quantitative understanding of the rich information in a fuzzy raster map both for individual classes and in terms of variability in space, and also establish the connection between spatially explicit class certainty and traditional accuracy metrics. These map products are directly comparable to widely used hard boundary evaluation procedures, support active learning-based iterative classification and can be applied for operational use.
Mathematics for Commercial Foods.
ERIC Educational Resources Information Center
Wersan, Norman
A review of basic mathematics operations is presented with problems and examples applied to activities in the food service industry. The text is divided into eight units: measurement, fractions, arithmetic operations, money and decimals, percentage, ratio and proportion, wages and taxes, and business records. Each unit contains a series of lessons…
Integration of Genetic Algorithms and Fuzzy Logic for Urban Growth Modeling
NASA Astrophysics Data System (ADS)
Foroutan, E.; Delavar, M. R.; Araabi, B. N.
2012-07-01
Urban growth phenomenon as a spatio-temporal continuous process is subject to spatial uncertainty. This inherent uncertainty cannot be fully addressed by the conventional methods based on the Boolean algebra. Fuzzy logic can be employed to overcome this limitation. Fuzzy logic preserves the continuity of dynamic urban growth spatially by choosing fuzzy membership functions, fuzzy rules and the fuzzification-defuzzification process. Fuzzy membership functions and fuzzy rule sets as the heart of fuzzy logic are rather subjective and dependent on the expert. However, due to lack of a definite method for determining the membership function parameters, certain optimization is needed to tune the parameters and improve the performance of the model. This paper integrates genetic algorithms and fuzzy logic as a genetic fuzzy system (GFS) for modeling dynamic urban growth. The proposed approach is applied for modeling urban growth in Tehran Metropolitan Area in Iran. Historical land use/cover data of Tehran Metropolitan Area extracted from the 1988 and 1999 Landsat ETM+ images are employed in order to simulate the urban growth. The extracted land use classes of the year 1988 include urban areas, street, vegetation areas, slope and elevation used as urban growth physical driving forces. Relative Operating Characteristic (ROC) curve as an fitness function has been used to evaluate the performance of the GFS algorithm. The optimum membership function parameter is applied for generating a suitability map for the urban growth. Comparing the suitability map and real land use map of 1999 gives the threshold value for the best suitability map which can simulate the land use map of 1999. The simulation outcomes in terms of kappa of 89.13% and overall map accuracy of 95.58% demonstrated the efficiency and reliability of the proposed model.
Activation of Operational Thinking during Arithmetic Practice Hinders Learning and Transfer
ERIC Educational Resources Information Center
Chesney, Dana L.; McNeil, Nicole M.
2014-01-01
Many children in the U.S. initially come to understand the equal sign operationally, as a symbol meaning "add up the numbers" rather than relationally, as an indication that the two sides of an equation share a common value. According to a change-resistance account (McNeil & Alibali, 2005b), children's operational ways of thinking…
Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.
Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour
2015-09-01
The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. Copyright © 2015. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Knapp, Roger Glenn
1993-01-01
A fuzzy-based attitude controller is designed for attitude control of a generic spacecraft with on/off thrusters. The controller is comprised of packages of rules dedicated to addressing different objectives (e.g., disturbance rejection, low fuel consumption, avoiding the excitation of flexible appendages, etc.). These rule packages can be inserted or removed depending on the requirements of the particular spacecraft and are parameterized based on vehicle parameters such as inertia or operational parameters such as the maneuvering rate. Individual rule packages can be 'weighted' relative to each other to emphasize the importance of one objective relative to another. Finally, the fuzzy controller and rule packages are demonstrated using the high-fidelity Space Shuttle Interactive On-Orbit Simulator (IOS) while performing typical on-orbit operations and are subsequently compared with the existing shuttle flight control system performance.
Foundational numerical capacities and the origins of dyscalculia.
Butterworth, Brian
2010-12-01
One important cause of very low attainment in arithmetic (dyscalculia) seems to be a core deficit in an inherited foundational capacity for numbers. According to one set of hypotheses, arithmetic ability is built on an inherited system responsible for representing approximate numerosity. One account holds that this is supported by a system for representing exactly a small number (less than or equal to four4) of individual objects. In these approaches, the core deficit in dyscalculia lies in either of these systems. An alternative proposal holds that the deficit lies in an inherited system for sets of objects and operations on them (numerosity coding) on which arithmetic is built. I argue that a deficit in numerosity coding, not in the approximate number system or the small number system, is responsible for dyscalculia. Nevertheless, critical tests should involve both longitudinal studies and intervention, and these have yet to be carried out. Copyright © 2010 Elsevier Ltd. All rights reserved.
Relationship between the Wide Range Achievement Test 3 and the Wechsler Individual Achievement Test.
Smith, T D; Smith, B L
1998-12-01
The present study examined the relationship between the Wide Range Achievement Test 3 and the Wechsler Individual Achievement Test for a sample of children with learning disabilities in two rural school districts. Data were collected for 87 school children who had been classified as learning disabled and placed in special education resource services. Pearson product-moment correlations between scores on the two measures were significant and moderate to high; however, mean scores were not significantly different on Reading, Spelling, and Arithmetic subtests of the Wide Range Achievement Test 3 compared to those for the basic Reading, Spelling, and Mathematics Reasoning subtests of the Wechsler Individual Achievement Test. Although there were significant mean differences between scores on Reading and Reading Comprehension and on Arithmetic and Numerical Operations, magnitudes were small. It appears that the two tests provide similar results when screening for reading, spelling, and arithmetic.
Rauscher, Larissa; Kohn, Juliane; Käser, Tanja; Mayer, Verena; Kucian, Karin; McCaskey, Ursina; Esser, Günter; von Aster, Michael
2016-01-01
Calcularis is a computer-based training program which focuses on basic numerical skills, spatial representation of numbers and arithmetic operations. The program includes a user model allowing flexible adaptation to the child's individual knowledge and learning profile. The study design to evaluate the training comprises three conditions (Calcularis group, waiting control group, spelling training group). One hundred and thirty-eight children from second to fifth grade participated in the study. Training duration comprised a minimum of 24 training sessions of 20 min within a time period of 6-8 weeks. Compared to the group without training (waiting control group) and the group with an alternative training (spelling training group), the children of the Calcularis group demonstrated a higher benefit in subtraction and number line estimation with medium to large effect sizes. Therefore, Calcularis can be used effectively to support children in arithmetic performance and spatial number representation.
A trainable decisions-in decision-out (DEI-DEO) fusion system
NASA Astrophysics Data System (ADS)
Dasarathy, Belur V.
1998-03-01
Most of the decision fusion systems proposed hitherto in the literature for multiple data source (sensor) environments operate on the basis of pre-defined fusion logic, be they crisp (deterministic), probabilistic, or fuzzy in nature, with no specific learning phase. The fusion systems that are trainable, i.e., ones that have a learning phase, mostly operate in the features-in-decision-out mode, which essentially reduces the fusion process functionally to a pattern classification task in the joint feature space. In this study, a trainable decisions-in-decision-out fusion system is described which estimates a fuzzy membership distribution spread across the different decision choices based on the performance of the different decision processors (sensors) corresponding to each training sample (object) which is associated with a specific ground truth (true decision). Based on a multi-decision space histogram analysis of the performance of the different processors over the entire training data set, a look-up table associating each cell of the histogram with a specific true decision is generated which forms the basis for the operational phase. In the operational phase, for each set of decision inputs, a pointer to the look-up table learnt previously is generated from which a fused decision is derived. This methodology, although primarily designed for fusing crisp decisions from the multiple decision sources, can be adapted for fusion of fuzzy decisions as well if such are the inputs from these sources. Examples, which illustrate the benefits and limitations of the crisp and fuzzy versions of the trainable fusion systems, are also included.
Fuzzy set methods for object recognition in space applications
NASA Technical Reports Server (NTRS)
Keller, James M.
1991-01-01
Progress on the following tasks is reported: (1) fuzzy set-based decision making methodologies; (2) feature calculation; (3) clustering for curve and surface fitting; and (4) acquisition of images. The general structure for networks based on fuzzy set connectives which are being used for information fusion and decision making in space applications is described. The structure and training techniques for such networks consisting of generalized means and gamma-operators are described. The use of other hybrid operators in multicriteria decision making is currently being examined. Numerous classical features on image regions such as gray level statistics, edge and curve primitives, texture measures from cooccurrance matrix, and size and shape parameters were implemented. Several fractal geometric features which may have a considerable impact on characterizing cluttered background, such as clouds, dense star patterns, or some planetary surfaces, were used. A new approach to a fuzzy C-shell algorithm is addressed. NASA personnel are in the process of acquiring suitable simulation data and hopefully videotaped actual shuttle imagery. Photographs have been digitized to use in the algorithms. Also, a model of the shuttle was assembled and a mechanism to orient this model in 3-D to digitize for experiments on pose estimation is being constructed.
Interval-valued intuitionistic fuzzy matrix games based on Archimedean t-conorm and t-norm
NASA Astrophysics Data System (ADS)
Xia, Meimei
2018-04-01
Fuzzy game theory has been applied in many decision-making problems. The matrix game with interval-valued intuitionistic fuzzy numbers (IVIFNs) is investigated based on Archimedean t-conorm and t-norm. The existing matrix games with IVIFNs are all based on Algebraic t-conorm and t-norm, which are special cases of Archimedean t-conorm and t-norm. In this paper, the intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm are employed to aggregate the payoffs of players. To derive the solution of the matrix game with IVIFNs, several mathematical programming models are developed based on Archimedean t-conorm and t-norm. The proposed models can be transformed into a pair of primal-dual linear programming models, based on which, the solution of the matrix game with IVIFNs is obtained. It is proved that the theorems being valid in the exiting matrix game with IVIFNs are still true when the general aggregation operator is used in the proposed matrix game with IVIFNs. The proposed method is an extension of the existing ones and can provide more choices for players. An example is given to illustrate the validity and the applicability of the proposed method.
Perendeci, Altinay; Arslan, Sever; Tanyolaç, Abdurrahman; Celebi, Serdar S
2009-10-01
A conceptual neural fuzzy model based on adaptive-network based fuzzy inference system, ANFIS, was proposed using available input on-line and off-line operational variables for a sugar factory anaerobic wastewater treatment plant operating under unsteady state to estimate the effluent chemical oxygen demand, COD. The predictive power of the developed model was improved as a new approach by adding the phase vector and the recent values of COD up to 5-10 days, longer than overall retention time of wastewater in the system. History of last 10 days for COD effluent with two-valued phase vector in the input variable matrix including all parameters had more predictive power. History of 7 days with two-valued phase vector in the matrix comprised of only on-line variables yielded fairly well estimations. The developed ANFIS model with phase vector and history extension has been able to adequately represent the behavior of the treatment system.
A componential model of human interaction with graphs: 1. Linear regression modeling
NASA Technical Reports Server (NTRS)
Gillan, Douglas J.; Lewis, Robert
1994-01-01
Task analyses served as the basis for developing the Mixed Arithmetic-Perceptual (MA-P) model, which proposes (1) that people interacting with common graphs to answer common questions apply a set of component processes-searching for indicators, encoding the value of indicators, performing arithmetic operations on the values, making spatial comparisons among indicators, and repsonding; and (2) that the type of graph and user's task determine the combination and order of the components applied (i.e., the processing steps). Two experiments investigated the prediction that response time will be linearly related to the number of processing steps according to the MA-P model. Subjects used line graphs, scatter plots, and stacked bar graphs to answer comparison questions and questions requiring arithmetic calculations. A one-parameter version of the model (with equal weights for all components) and a two-parameter version (with different weights for arithmetic and nonarithmetic processes) accounted for 76%-85% of individual subjects' variance in response time and 61%-68% of the variance taken across all subjects. The discussion addresses possible modifications in the MA-P model, alternative models, and design implications from the MA-P model.
40 CFR 60.273 - Emission monitoring.
Code of Federal Regulations, 2011 CFR
2011-07-01
... when the furnace is operating in the melting and refining period. All visible emissions observations... refining period. Shop opacity shall be determined as the arithmetic average of 24 or more consecutive 15... conditions that cause an alarm if the owner or operator identifies the condition that could lead to an alarm...
40 CFR 60.273 - Emission monitoring.
Code of Federal Regulations, 2010 CFR
2010-07-01
... when the furnace is operating in the melting and refining period. All visible emissions observations... refining period. Shop opacity shall be determined as the arithmetic average of 24 or more consecutive 15... conditions that cause an alarm if the owner or operator identifies the condition that could lead to an alarm...
Natural Number Bias in Operations with Missing Numbers
ERIC Educational Resources Information Center
Christou, Konstantinos P.
2015-01-01
This study investigates the hypothesis that there is a natural number bias that influences how students understand the effects of arithmetical operations involving both Arabic numerals and numbers that are represented by symbols for missing numbers. It also investigates whether this bias correlates with other aspects of students' understanding of…
Data mining for multiagent rules, strategies, and fuzzy decision tree structure
NASA Astrophysics Data System (ADS)
Smith, James F., III; Rhyne, Robert D., II; Fisher, Kristin
2002-03-01
A fuzzy logic based resource manager (RM) has been developed that automatically allocates electronic attack resources in real-time over many dissimilar platforms. Two different data mining algorithms have been developed to determine rules, strategies, and fuzzy decision tree structure. The first data mining algorithm uses a genetic algorithm as a data mining function and is called from an electronic game. The game allows a human expert to play against the resource manager in a simulated battlespace with each of the defending platforms being exclusively directed by the fuzzy resource manager and the attacking platforms being controlled by the human expert or operating autonomously under their own logic. This approach automates the data mining problem. The game automatically creates a database reflecting the domain expert's knowledge. It calls a data mining function, a genetic algorithm, for data mining of the database as required and allows easy evaluation of the information mined in the second step. The criterion for re- optimization is discussed as well as experimental results. Then a second data mining algorithm that uses a genetic program as a data mining function is introduced to automatically discover fuzzy decision tree structures. Finally, a fuzzy decision tree generated through this process is discussed.
Fuzzy Logic Path Planning System for Collision Avoidance by an Autonomous Rover Vehicle
NASA Technical Reports Server (NTRS)
Murphy, Michael G.
1991-01-01
Systems already developed at JSC have shown the benefits of applying fuzzy logic control theory to space related operations. Four major issues are addressed that are associated with developing an autonomous collision avoidance subsystem within a path planning system designed for application in a remote, hostile environment that does not lend itself well to remote manipulation of the vehicle involved through Earth-based telecommunication. A good focus for this is unmanned exploration of the surface of Mars. The uncertainties involved indicate that robust approaches such as fuzzy logic control are particularly appropriate. The four major issues addressed are: (1) avoidance of a single fuzzy moving obstacle; (2) back off from a dead end in a static obstacle environment; (3) fusion of sensor data to detect obstacles; and (4) options for adaptive learning in a path planning system.
Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers
NASA Astrophysics Data System (ADS)
Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok
2016-01-01
In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.
Maximum entropy approach to fuzzy control
NASA Technical Reports Server (NTRS)
Ramer, Arthur; Kreinovich, Vladik YA.
1992-01-01
For the same expert knowledge, if one uses different &- and V-operations in a fuzzy control methodology, one ends up with different control strategies. Each choice of these operations restricts the set of possible control strategies. Since a wrong choice can lead to a low quality control, it is reasonable to try to loose as few possibilities as possible. This idea is formalized and it is shown that it leads to the choice of min(a + b,1) for V and min(a,b) for &. This choice was tried on NASA Shuttle simulator; it leads to a maximally stable control.
A new type of simplified fuzzy rule-based system
NASA Astrophysics Data System (ADS)
Angelov, Plamen; Yager, Ronald
2012-02-01
Over the last quarter of a century, two types of fuzzy rule-based (FRB) systems dominated, namely Mamdani and Takagi-Sugeno type. They use the same type of scalar fuzzy sets defined per input variable in their antecedent part which are aggregated at the inference stage by t-norms or co-norms representing logical AND/OR operations. In this paper, we propose a significantly simplified alternative to define the antecedent part of FRB systems by data Clouds and density distribution. This new type of FRB systems goes further in the conceptual and computational simplification while preserving the best features (flexibility, modularity, and human intelligibility) of its predecessors. The proposed concept offers alternative non-parametric form of the rules antecedents, which fully reflects the real data distribution and does not require any explicit aggregation operations and scalar membership functions to be imposed. Instead, it derives the fuzzy membership of a particular data sample to a Cloud by the data density distribution of the data associated with that Cloud. Contrast this to the clustering which is parametric data space decomposition/partitioning where the fuzzy membership to a cluster is measured by the distance to the cluster centre/prototype ignoring all the data that form that cluster or approximating their distribution. The proposed new approach takes into account fully and exactly the spatial distribution and similarity of all the real data by proposing an innovative and much simplified form of the antecedent part. In this paper, we provide several numerical examples aiming to illustrate the concept.
Experimental Verification of Electric Drive Technologies Based on Artificial Intelligence Tools
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed; Ricketts, Daniel; Kotaru, Raj; Thomas, Robert; Noga, Donald F. (Technical Monitor); Kankam, Mark D. (Technical Monitor)
2000-01-01
In this report, a fully integrated prototype of a flight servo control system is successfully developed and implemented using brushless dc motors. The control system is developed by the fuzzy logic theory, and implemented with a multilayer neural network. First, a neural network-based architecture is introduced for fuzzy logic control. The characteristic rules and their membership functions of fuzzy systems are represented as the processing nodes in the neural network structure. The network structure and the parameter learning are performed simultaneously and online in the fuzzy-neural network system. The structure learning is based on the partition of input space. The parameter learning is based on the supervised gradient decent method, using a delta adaptation law. Using experimental setup, the performance of the proposed control system is evaluated under various operating conditions. Test results are presented and discussed in the report. The proposed learning control system has several advantages, namely, simple structure and learning capability, robustness and high tracking performance and few nodes at hidden layers. In comparison with the PI controller, the proposed fuzzy-neural network system can yield a better dynamic performance with shorter settling time, and without overshoot. Experimental results have shown that the proposed control system is adaptive and robust in responding to a wide range of operating conditions. In summary, the goal of this study is to design and implement-advanced servosystems to actuate control surfaces for flight vehicles, namely, aircraft and helicopters, missiles and interceptors, and mini- and micro-air vehicles.
Modified signed-digit arithmetic based on redundant bit representation.
Huang, H; Itoh, M; Yatagai, T
1994-09-10
Fully parallel modified signed-digit arithmetic operations are realized based on redundant bit representation of the digits proposed. A new truth-table minimizing technique is presented based on redundant-bitrepresentation coding. It is shown that only 34 minterms are enough for implementing one-step modified signed-digit addition and subtraction with this new representation. Two optical implementation schemes, correlation and matrix multiplication, are described. Experimental demonstrations of the correlation architecture are presented. Both architectures use fixed minterm masks for arbitrary-length operands, taking full advantage of the parallelism of the modified signed-digit number system and optics.
Pinel, Philippe; Dehaene, Stanislas
2010-01-01
Language and arithmetic are both lateralized to the left hemisphere in the majority of right-handed adults. Yet, does this similar lateralization reflect a single overall constraint of brain organization, such an overall "dominance" of the left hemisphere for all linguistic and symbolic operations? Is it related to the lateralization of specific cerebral subregions? Or is it merely coincidental? To shed light on this issue, we performed a "colateralization analysis" over 209 healthy subjects: We investigated whether normal variations in the degree of left hemispheric asymmetry in areas involved in sentence listening and reading are mirrored in the asymmetry of areas involved in mental arithmetic. Within the language network, a region-of-interest analysis disclosed partially dissociated patterns of lateralization, inconsistent with an overall "dominance" model. Only two of these areas presented a lateralization during sentence listening and reading which correlated strongly with the lateralization of two regions active during calculation. Specifically, the profile of asymmetry in the posterior superior temporal sulcus during sentence processing covaried with the asymmetry of calculation-induced activation in the intraparietal sulcus, and a similar colateralization linked the middle frontal gyrus with the superior posterior parietal lobule. Given recent neuroimaging results suggesting a late emergence of hemispheric asymmetries for symbolic arithmetic during childhood, we speculate that these colateralizations might constitute developmental traces of how the acquisition of linguistic symbols affects the cerebral organization of the arithmetic network.
Processing of ICARTT Data Files Using Fuzzy Matching and Parser Combinators
NASA Technical Reports Server (NTRS)
Rutherford, Matthew T.; Typanski, Nathan D.; Wang, Dali; Chen, Gao
2014-01-01
In this paper, the task of parsing and matching inconsistent, poorly formed text data through the use of parser combinators and fuzzy matching is discussed. An object-oriented implementation of the parser combinator technique is used to allow for a relatively simple interface for adapting base parsers. For matching tasks, a fuzzy matching algorithm with Levenshtein distance calculations is implemented to match string pair, which are otherwise difficult to match due to the aforementioned irregularities and errors in one or both pair members. Used in concert, the two techniques allow parsing and matching operations to be performed which had previously only been done manually.
On Decision-Making Among Multiple Rule-Bases in Fuzzy Control Systems
NASA Technical Reports Server (NTRS)
Tunstel, Edward; Jamshidi, Mo
1997-01-01
Intelligent control of complex multi-variable systems can be a challenge for single fuzzy rule-based controllers. This class of problems cam often be managed with less difficulty by distributing intelligent decision-making amongst a collection of rule-bases. Such an approach requires that a mechanism be chosen to ensure goal-oriented interaction between the multiple rule-bases. In this paper, a hierarchical rule-based approach is described. Decision-making mechanisms based on generalized concepts from single-rule-based fuzzy control are described. Finally, the effects of different aggregation operators on multi-rule-base decision-making are examined in a navigation control problem for mobile robots.
Study on some useful Operators for Graph-theoretic Image Processing
NASA Astrophysics Data System (ADS)
Moghani, Ali; Nasiri, Parviz
2010-11-01
In this paper we describe a human perception based approach to pixel color segmentation which applied in color reconstruction by numerical method associated with graph-theoretic image processing algorithm typically in grayscale. Fuzzy sets defined on the Hue, Saturation and Value components of the HSV color space, provide a fuzzy logic model that aims to follow the human intuition of color classification.
eFSM--a novel online neural-fuzzy semantic memory model.
Tung, Whye Loon; Quek, Chai
2010-01-01
Fuzzy rule-based systems (FRBSs) have been successfully applied to many areas. However, traditional fuzzy systems are often manually crafted, and their rule bases that represent the acquired knowledge are static and cannot be trained to improve the modeling performance. This subsequently leads to intensive research on the autonomous construction and tuning of a fuzzy system directly from the observed training data to address the knowledge acquisition bottleneck, resulting in well-established hybrids such as neural-fuzzy systems (NFSs) and genetic fuzzy systems (GFSs). However, the complex and dynamic nature of real-world problems demands that fuzzy rule-based systems and models be able to adapt their parameters and ultimately evolve their rule bases to address the nonstationary (time-varying) characteristics of their operating environments. Recently, considerable research efforts have been directed to the study of evolving Tagaki-Sugeno (T-S)-type NFSs based on the concept of incremental learning. In contrast, there are very few incremental learning Mamdani-type NFSs reported in the literature. Hence, this paper presents the evolving neural-fuzzy semantic memory (eFSM) model, a neural-fuzzy Mamdani architecture with a data-driven progressively adaptive structure (i.e., rule base) based on incremental learning. Issues related to the incremental learning of the eFSM rule base are carefully investigated, and a novel parameter learning approach is proposed for the tuning of the fuzzy set parameters in eFSM. The proposed eFSM model elicits highly interpretable semantic knowledge in the form of Mamdani-type if-then fuzzy rules from low-level numeric training data. These Mamdani fuzzy rules define the computing structure of eFSM and are incrementally learned with the arrival of each training data sample. New rules are constructed from the emergence of novel training data and obsolete fuzzy rules that no longer describe the recently observed data trends are pruned. This enables eFSM to maintain a current and compact set of Mamdani-type if-then fuzzy rules that collectively generalizes and describes the salient associative mappings between the inputs and outputs of the underlying process being modeled. The learning and modeling performances of the proposed eFSM are evaluated using several benchmark applications and the results are encouraging.
Ramesh, Tejavathu; Kumar Panda, Anup; Shiva Kumar, S
2015-07-01
In this research study, a model reference adaptive system (MRAS) speed estimator for speed sensorless direct torque and flux control (DTFC) of an induction motor drive (IMD) using two adaptation mechanism schemes are proposed to replace the conventional proportional integral controller (PIC). The first adaptation mechanism scheme is based on Type-1 fuzzy logic controller (T1FLC), which is used to achieve high performance sensorless drive in both transient as well as steady state conditions. However, the Type-1 fuzzy sets are certain and unable to work effectively when higher degree of uncertainties presents in the system which can be caused by sudden change in speed or different load disturbances, process noise etc. Therefore, a new Type-2 fuzzy logic controller (T2FLC) based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties and improves the performance and also robust to various load torque and sudden change in speed conditions, respectively. The detailed performances of various adaptation mechanism schemes are carried out in a MATLAB/Simulink environment with a speed sensor and speed sensorless modes of operation when an IMD is operating under different operating conditions, such as, no-load, load and sudden change in speed, respectively. To validate the different control approaches, the system also implemented on real-time system and adequate results are reported for its validation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Boosted ARTMAP: modifications to fuzzy ARTMAP motivated by boosting theory.
Verzi, Stephen J; Heileman, Gregory L; Georgiopoulos, Michael
2006-05-01
In this paper, several modifications to the Fuzzy ARTMAP neural network architecture are proposed for conducting classification in complex, possibly noisy, environments. The goal of these modifications is to improve upon the generalization performance of Fuzzy ART-based neural networks, such as Fuzzy ARTMAP, in these situations. One of the major difficulties of employing Fuzzy ARTMAP on such learning problems involves over-fitting of the training data. Structural risk minimization is a machine-learning framework that addresses the issue of over-fitting by providing a backbone for analysis as well as an impetus for the design of better learning algorithms. The theory of structural risk minimization reveals a trade-off between training error and classifier complexity in reducing generalization error, which will be exploited in the learning algorithms proposed in this paper. Boosted ART extends Fuzzy ART by allowing the spatial extent of each cluster formed to be adjusted independently. Boosted ARTMAP generalizes upon Fuzzy ARTMAP by allowing non-zero training error in an effort to reduce the hypothesis complexity and hence improve overall generalization performance. Although Boosted ARTMAP is strictly speaking not a boosting algorithm, the changes it encompasses were motivated by the goals that one strives to achieve when employing boosting. Boosted ARTMAP is an on-line learner, it does not require excessive parameter tuning to operate, and it reduces precisely to Fuzzy ARTMAP for particular parameter values. Another architecture described in this paper is Structural Boosted ARTMAP, which uses both Boosted ART and Boosted ARTMAP to perform structural risk minimization learning. Structural Boosted ARTMAP will allow comparison of the capabilities of off-line versus on-line learning as well as empirical risk minimization versus structural risk minimization using Fuzzy ARTMAP-based neural network architectures. Both empirical and theoretical results are presented to enhance the understanding of these architectures.
Polspoel, Brecht; Peters, Lien; Vandermosten, Maaike; De Smedt, Bert
2017-09-01
Arithmetic development is characterized by strategy shifts between procedural strategy use and fact retrieval. This study is the first to explicitly investigate children's neural activation associated with the use of these different strategies. Participants were 26 typically developing 4th graders (9- to 10-year-olds), who, in a behavioral session, were asked to verbally report on a trial-by-trial basis how they had solved 100 subtraction and multiplication items. These items were subsequently presented during functional magnetic resonance imaging. An event-related design allowed us to analyze the brain responses during retrieval and procedural trials, based on the children's verbal reports. During procedural strategy use, and more specifically for the decomposition of operands strategy, activation increases were observed in the inferior and superior parietal lobes (intraparietal sulci), inferior to superior frontal gyri, bilateral areas in the occipital lobe, and insular cortex. For retrieval, in comparison to procedural strategy use, we observed increased activity in the bilateral angular and supramarginal gyri, left middle to inferior temporal gyrus, right superior temporal gyrus, and superior medial frontal gyrus. No neural differences were found between the two operations under study. These results are the first in children to provide direct evidence for alternate neural activation when different arithmetic strategies are used and further unravel that previously found effects of operation on brain activity reflect differences in arithmetic strategy use. Hum Brain Mapp 38:4657-4670, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
FBC: a flat binary code scheme for fast Manhattan hash retrieval
NASA Astrophysics Data System (ADS)
Kong, Yan; Wu, Fuzhang; Gao, Lifa; Wu, Yanjun
2018-04-01
Hash coding is a widely used technique in approximate nearest neighbor (ANN) search, especially in document search and multimedia (such as image and video) retrieval. Based on the difference of distance measurement, hash methods are generally classified into two categories: Hamming hashing and Manhattan hashing. Benefitting from better neighborhood structure preservation, Manhattan hashing methods outperform earlier methods in search effectiveness. However, due to using decimal arithmetic operations instead of bit operations, Manhattan hashing becomes a more time-consuming process, which significantly decreases the whole search efficiency. To solve this problem, we present an intuitive hash scheme which uses Flat Binary Code (FBC) to encode the data points. As a result, the decimal arithmetic used in previous Manhattan hashing can be replaced by more efficient XOR operator. The final experiments show that with a reasonable memory space growth, our FBC speeds up more than 80% averagely without any search accuracy loss when comparing to the state-of-art Manhattan hashing methods.
Relearning To Teach Arithmetic Addition and Subtraction: A Teacher's Study Guide.
ERIC Educational Resources Information Center
Russell, Susan Jo
This package features videotapes and a study guide that are designed to help teachers revisit the operations of addition and subtraction and consider how students can develop meaningful approaches to these operations. The study guides' sessions are on addition, subtraction, the teacher's role, and goals for students and teachers. The readings in…
Operator Priming and Generalization of Practice in Adults' Simple Arithmetic
ERIC Educational Resources Information Center
Chen, Yalin; Campbell, Jamie I. D.
2016-01-01
There is a renewed debate about whether educated adults solve simple addition problems (e.g., 2 + 3) by direct fact retrieval or by fast, automatic counting-based procedures. Recent research testing adults' simple addition and multiplication showed that a 150-ms preview of the operator (+ or ×) facilitated addition, but not multiplication,…
Fast, Massively Parallel Data Processors
NASA Technical Reports Server (NTRS)
Heaton, Robert A.; Blevins, Donald W.; Davis, ED
1994-01-01
Proposed fast, massively parallel data processor contains 8x16 array of processing elements with efficient interconnection scheme and options for flexible local control. Processing elements communicate with each other on "X" interconnection grid with external memory via high-capacity input/output bus. This approach to conditional operation nearly doubles speed of various arithmetic operations.
Fuzzy Matching Based on Gray-scale Difference for Quantum Images
NASA Astrophysics Data System (ADS)
Luo, GaoFeng; Zhou, Ri-Gui; Liu, XingAo; Hu, WenWen; Luo, Jia
2018-05-01
Quantum image processing has recently emerged as an essential problem in practical tasks, e.g. real-time image matching. Previous studies have shown that the superposition and entanglement of quantum can greatly improve the efficiency of complex image processing. In this paper, a fuzzy quantum image matching scheme based on gray-scale difference is proposed to find out the target region in a reference image, which is very similar to the template image. Firstly, we employ the proposed enhanced quantum representation (NEQR) to store digital images. Then some certain quantum operations are used to evaluate the gray-scale difference between two quantum images by thresholding. If all of the obtained gray-scale differences are not greater than the threshold value, it indicates a successful fuzzy matching of quantum images. Theoretical analysis and experiments show that the proposed scheme performs fuzzy matching at a low cost and also enables exponentially significant speedup via quantum parallel computation.
Risk Assessment in Underground Coalmines Using Fuzzy Logic in the Presence of Uncertainty
NASA Astrophysics Data System (ADS)
Tripathy, Debi Prasad; Ala, Charan Kumar
2018-04-01
Fatal accidents are occurring every year as regular events in Indian coal mining industry. To increase the safety conditions, it has become a prerequisite to performing a risk assessment of various operations in mines. However, due to uncertain accident data, it is hard to conduct a risk assessment in mines. The object of this study is to present a method to assess safety risks in underground coalmines. The assessment of safety risks is based on the fuzzy reasoning approach. Mamdani fuzzy logic model is developed in the fuzzy logic toolbox of MATLAB. A case study is used to demonstrate the applicability of the developed model. The summary of risk evaluation in case study mine indicated that mine fire has the highest risk level among all the hazard factors. This study could help the mine management to prepare safety measures based on the risk rankings obtained.
NASA Astrophysics Data System (ADS)
Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.
2016-10-01
This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.
Predictability in space launch vehicle anomaly detection using intelligent neuro-fuzzy systems
NASA Technical Reports Server (NTRS)
Gulati, Sandeep; Toomarian, Nikzad; Barhen, Jacob; Maccalla, Ayanna; Tawel, Raoul; Thakoor, Anil; Daud, Taher
1994-01-01
Included in this viewgraph presentation on intelligent neuroprocessors for launch vehicle health management systems (HMS) are the following: where the flight failures have been in launch vehicles; cumulative delay time; breakdown of operations hours; failure of Mars Probe; vehicle health management (VHM) cost optimizing curve; target HMS-STS auxiliary power unit location; APU monitoring and diagnosis; and integration of neural networks and fuzzy logic.
Qi, Xiao-Wen; Zhang, Jun-Ling; Zhao, Shu-Ping; Liang, Chang-Yong
2017-10-02
In order to be prepared against potential balance-breaking risks affecting economic development, more and more countries have recognized emergency response solutions evaluation (ERSE) as an indispensable activity in their governance of sustainable development. Traditional multiple criteria group decision making (MCGDM) approaches to ERSE have been facing simultaneous challenging characteristics of decision hesitancy and prioritization relations among assessing criteria, due to the complexity in practical ERSE problems. Therefore, aiming at the special type of ERSE problems that hold the two characteristics, we investigate effective MCGDM approaches by hiring interval-valued dual hesitant fuzzy set (IVDHFS) to comprehensively depict decision hesitancy. To exploit decision information embedded in prioritization relations among criteria, we firstly define an fuzzy entropy measure for IVDHFS so that its derivative decision models can avoid potential information distortion in models based on classic IVDHFS distance measures with subjective supplementing mechanism; further, based on defined entropy measure, we develop two fundamental prioritized operators for IVDHFS by extending Yager's prioritized operators. Furthermore, on the strength of above methods, we construct two hesitant fuzzy MCGDM approaches to tackle complex scenarios with or without known weights for decision makers, respectively. Finally, case studies have been conducted to show effectiveness and practicality of our proposed approaches.
Qi, Xiao-Wen; Zhang, Jun-Ling; Zhao, Shu-Ping; Liang, Chang-Yong
2017-01-01
In order to be prepared against potential balance-breaking risks affecting economic development, more and more countries have recognized emergency response solutions evaluation (ERSE) as an indispensable activity in their governance of sustainable development. Traditional multiple criteria group decision making (MCGDM) approaches to ERSE have been facing simultaneous challenging characteristics of decision hesitancy and prioritization relations among assessing criteria, due to the complexity in practical ERSE problems. Therefore, aiming at the special type of ERSE problems that hold the two characteristics, we investigate effective MCGDM approaches by hiring interval-valued dual hesitant fuzzy set (IVDHFS) to comprehensively depict decision hesitancy. To exploit decision information embedded in prioritization relations among criteria, we firstly define an fuzzy entropy measure for IVDHFS so that its derivative decision models can avoid potential information distortion in models based on classic IVDHFS distance measures with subjective supplementing mechanism; further, based on defined entropy measure, we develop two fundamental prioritized operators for IVDHFS by extending Yager’s prioritized operators. Furthermore, on the strength of above methods, we construct two hesitant fuzzy MCGDM approaches to tackle complex scenarios with or without known weights for decision makers, respectively. Finally, case studies have been conducted to show effectiveness and practicality of our proposed approaches. PMID:28974045
A Fuzzy Technique for Performing Lateral-Axis Formation Flight Navigation Using Wingtip Vortices
NASA Technical Reports Server (NTRS)
Hanson, Curtis E.
2003-01-01
Close formation flight involving aerodynamic coupling through wingtip vortices shows significant promise to improve the efficiency of cooperative aircraft operations. Impediments to the application of this technology include internship communication required to establish precise relative positioning. This report proposes a method for estimating the lateral relative position between two aircraft in close formation flight through real-time estimates of the aerodynamic effects imparted by the leading airplane on the trailing airplane. A fuzzy algorithm is developed to map combinations of vortex-induced drag and roll effects to relative lateral spacing. The algorithm is refined using self-tuning techniques to provide lateral relative position estimates accurate to 14 in., well within the requirement to maintain significant levels of drag reduction. The fuzzy navigation algorithm is integrated with a leader-follower formation flight autopilot in a two-ship F/A-18 simulation with no intership communication modeled. It is shown that in the absence of measurements from the leading airplane the algorithm provides sufficient estimation of lateral formation spacing for the autopilot to maintain stable formation flight within the vortex. Formation autopilot trim commands are used to estimate vortex effects for the algorithm. The fuzzy algorithm is shown to operate satisfactorily with anticipated levels of input uncertainties.
ELIPS: Toward a Sensor Fusion Processor on a Chip
NASA Technical Reports Server (NTRS)
Daud, Taher; Stoica, Adrian; Tyson, Thomas; Li, Wei-te; Fabunmi, James
1998-01-01
The paper presents the concept and initial tests from the hardware implementation of a low-power, high-speed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) processor is developed to seamlessly combine rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor in compact low power VLSI. The first demonstration of the ELIPS concept targets interceptor functionality; other applications, mainly in robotics and autonomous systems are considered for the future. The main assumption behind ELIPS is that fuzzy, rule-based and neural forms of computation can serve as the main primitives of an "intelligent" processor. Thus, in the same way classic processors are designed to optimize the hardware implementation of a set of fundamental operations, ELIPS is developed as an efficient implementation of computational intelligence primitives, and relies on a set of fuzzy set, fuzzy inference and neural modules, built in programmable analog hardware. The hardware programmability allows the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Following software demonstrations on several interceptor data, three important ELIPS building blocks (a fuzzy set preprocessor, a rule-based fuzzy system and a neural network) have been fabricated in analog VLSI hardware and demonstrated microsecond-processing times.
Implementation of a new fuzzy vector control of induction motor.
Rafa, Souad; Larabi, Abdelkader; Barazane, Linda; Manceur, Malik; Essounbouli, Najib; Hamzaoui, Abdelaziz
2014-05-01
The aim of this paper is to present a new approach to control an induction motor using type-1 fuzzy logic. The induction motor has a nonlinear model, uncertain and strongly coupled. The vector control technique, which is based on the inverse model of the induction motors, solves the coupling problem. Unfortunately, in practice this is not checked because of model uncertainties. Indeed, the presence of the uncertainties led us to use human expertise such as the fuzzy logic techniques. In order to maintain the decoupling and to overcome the problem of the sensitivity to the parametric variations, the field-oriented control is replaced by a new block control. The simulation results show that the both control schemes provide in their basic configuration, comparable performances regarding the decoupling. However, the fuzzy vector control provides the insensitivity to the parametric variations compared to the classical one. The fuzzy vector control scheme is successfully implemented in real-time using a digital signal processor board dSPACE 1104. The efficiency of this technique is verified as well as experimentally at different dynamic operating conditions such as sudden loads change, parameter variations, speed changes, etc. The fuzzy vector control is found to be a best control for application in an induction motor. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Anticipatory systems using a probabilistic-possibilistic formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsoukalas, L.H.
1989-01-01
A methodology for the realization of the Anticipatory Paradigm in the diagnosis and control of complex systems, such as power plants, is developed. The objective is to synthesize engineering systems as analogs of certain biological systems which are capable of modifying their present states on the basis of anticipated future states. These future states are construed to be the output of predictive, numerical, stochastic or symbolic models. The mathematical basis of the implementation is developed on the basis of a formulation coupling probabilistic (random) and possibilistic(fuzzy) data in the form of an Information Granule. Random data are generated from observationsmore » and sensors input from the environment. Fuzzy data consists of eqistemic information, such as criteria or constraints qualifying the environmental inputs. The approach generates mathematical performance measures upon which diagnostic inferences and control functions are based. Anticipated performance is generated using a fuzzified Bayes formula. Triplex arithmetic is used in the numerical estimation of the performance measures. Representation of the system is based upon a goal-tree within the rule-based paradigm from the field of Applied Artificial Intelligence. The ensuing construction incorporates a coupling of Symbolic and Procedural programming methods. As a demonstration of the possibility of constructing such systems, a model-based system of a nuclear reactor is constructed. A numerical model of the reactor as a damped simple harmonic oscillator is used. The neutronic behavior is described by a point kinetics model with temperature feedback. The resulting system is programmed in OPS5 for the symbolic component and in FORTRAN for the procedural part.« less
Wang, Lihan; Gan, John Q; Zhang, Li; Wang, Haixian
2018-06-01
Previous neuroimaging research investigating dissociation between single-digit addition and multiplication has suggested that the former placed more reliance on the visuo-spatial processing whereas the latter on the verbal processing. However, there has been little exploration into the disassociation in spatio-temporal dynamics of the oscillatory brain activity in specific frequency bands during the two arithmetic operations. To address this issue, the electroencephalogram (EEG) data were recorded from 19 participants engaged in a delayed verification arithmetic task. By analyzing oscillatory EEG activity in theta (5-7 Hz) and lower alpha frequency (9-10 Hz) bands, we found different patterns of oscillatory brain activity between single-digit addition and multiplication during the early processing stage (0-400 ms post-operand onset). Experiment results in this study showed a larger phasic increase of theta-band power for addition than for multiplication in the midline and the right frontal and central regions during the operator and operands presentation intervals, which was extended to the right parietal and the right occipito-temporal regions during the interval immediately after the operands presentation. In contrast, during multiplication higher phase-locking in lower alpha band was evident in the centro-parietal regions during the operator presentation, which was extended to the left fronto-central and anterior regions during the operands presentation. Besides, we found stronger theta phase synchrony between the parietal areas and the right occipital areas for single-digit addition than for multiplication during operands encoding. These findings of oscillatory brain activity extend the previous observations on functional dissociation between the two arithmetic operations. Copyright © 2018 Elsevier B.V. All rights reserved.
Automated segmentation of comet assay images using Gaussian filtering and fuzzy clustering.
Sansone, Mario; Zeni, Olga; Esposito, Giovanni
2012-05-01
Comet assay is one of the most popular tests for the detection of DNA damage at single cell level. In this study, an algorithm for comet assay analysis has been proposed, aiming to minimize user interaction and providing reproducible measurements. The algorithm comprises two-steps: (a) comet identification via Gaussian pre-filtering and morphological operators; (b) comet segmentation via fuzzy clustering. The algorithm has been evaluated using comet images from human leukocytes treated with a commonly used DNA damaging agent. A comparison of the proposed approach with a commercial system has been performed. Results show that fuzzy segmentation can increase overall sensitivity, giving benefits in bio-monitoring studies where weak genotoxic effects are expected.
Collaborating Fuzzy Reinforcement Learning Agents
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1997-01-01
Earlier, we introduced GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Relearning and at the local level, each agent learns and operates based on ANTARCTIC, a technique for fuzzy reinforcement learning. In this paper, we show that it is possible for these agents to compete in order to affect the selected control policy but at the same time, they can collaborate while investigating the state space. In this model, the evaluator or the critic learns by observing all the agents behaviors but the control policy changes only based on the behavior of the winning agent also known as the super agent.
A reinforcement learning-based architecture for fuzzy logic control
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1992-01-01
This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.
Fuzzy Neuron: Method and Hardware Realization
NASA Technical Reports Server (NTRS)
Krasowski, Michael J.; Prokop, Norman F.
2014-01-01
This innovation represents a method by which single-to-multi-input, single-to-many-output system transfer functions can be estimated from input/output data sets. This innovation can be run in the background while a system is operating under other means (e.g., through human operator effort), or may be utilized offline using data sets created from observations of the estimated system. It utilizes a set of fuzzy membership functions spanning the input space for each input variable. Linear combiners associated with combinations of input membership functions are used to create the output(s) of the estimator. Coefficients are adjusted online through the use of learning algorithms.
Detection and quantification of MS lesions using fuzzy topological principles
NASA Astrophysics Data System (ADS)
Udupa, Jayaram K.; Wei, Luogang; Samarasekera, Supun; Miki, Yukio; van Buchem, M. A.; Grossman, Robert I.
1996-04-01
Quantification of the severity of the multiple sclerosis (MS) disease through estimation of lesion volume via MR imaging is vital for understanding and monitoring the disease and its treatment. This paper presents a novel methodology and a system that can be routinely used for segmenting and estimating the volume of MS lesions via dual-echo spin-echo MR imagery. An operator indicates a few points in the images by pointing to the white matter, the gray matter, and the CSF. Each of these objects is then detected as a fuzzy connected set. The holes in the union of these objects correspond to potential lesion sites which are utilized to detect each potential lesion as a fuzzy connected object. These 3D objects are presented to the operator who indicates acceptance/rejection through the click of a mouse button. The volume of accepted lesions is then computed and output. Based on several evaluation studies and over 300 3D data sets that were processed, we conclude that the methodology is highly reliable and consistent, with a coefficient of variation (due to subjective operator actions) of less than 1.0% for volume.
Fuzzy logic based sensor performance evaluation of vehicle mounted metal detector systems
NASA Astrophysics Data System (ADS)
Abeynayake, Canicious; Tran, Minh D.
2015-05-01
Vehicle Mounted Metal Detector (VMMD) systems are widely used for detection of threat objects in humanitarian demining and military route clearance scenarios. Due to the diverse nature of such operational conditions, operational use of VMMD without a proper understanding of its capability boundaries may lead to heavy causalities. Multi-criteria fitness evaluations are crucial for determining capability boundaries of any sensor-based demining equipment. Evaluation of sensor based military equipment is a multi-disciplinary topic combining the efforts of researchers, operators, managers and commanders having different professional backgrounds and knowledge profiles. Information acquired through field tests usually involves uncertainty, vagueness and imprecision due to variations in test and evaluation conditions during a single test or series of tests. This report presents a fuzzy logic based methodology for experimental data analysis and performance evaluation of VMMD. This data evaluation methodology has been developed to evaluate sensor performance by consolidating expert knowledge with experimental data. A case study is presented by implementing the proposed data analysis framework in a VMMD evaluation scenario. The results of this analysis confirm accuracy, practicability and reliability of the fuzzy logic based sensor performance evaluation framework.
Predicting Arithmetic Abilities: The Role of Preparatory Arithmetic Markers and Intelligence
ERIC Educational Resources Information Center
Stock, Pieter; Desoete, Annemie; Roeyers, Herbert
2009-01-01
Arithmetic abilities acquired in kindergarten are found to be strong predictors for later deficient arithmetic abilities. This longitudinal study (N = 684) was designed to examine if it was possible to predict the level of children's arithmetic abilities in first and second grade from their performance on preparatory arithmetic abilities in…
NASA Astrophysics Data System (ADS)
Oztekin, Halit; Temurtas, Feyzullah; Gulbag, Ali
The Arithmetic and Logic Unit (ALU) design is one of the important topics in Computer Architecture and Organization course in Computer and Electrical Engineering departments. There are ALU designs that have non-modular nature to be used as an educational tool. As the programmable logic technology has developed rapidly, it is feasible that ALU design based on Field Programmable Gate Array (FPGA) is implemented in this course. In this paper, we have adopted the modular approach to ALU design based on FPGA. All the modules in the ALU design are realized using schematic structure on Altera's Cyclone II Development board. Under this model, the ALU content is divided into four distinct modules. These are arithmetic unit except for multiplication and division operations, logic unit, multiplication unit and division unit. User can easily design any size of ALU unit since this approach has the modular nature. Then, this approach was applied to microcomputer architecture design named BZK.SAU.FPGA10.0 instead of the current ALU unit.
Memory Updating and Mental Arithmetic
Han, Cheng-Ching; Yang, Tsung-Han; Lin, Chia-Yuan; Yen, Nai-Shing
2016-01-01
Is domain-general memory updating ability predictive of calculation skills or are such skills better predicted by the capacity for updating specifically numerical information? Here, we used multidigit mental multiplication (MMM) as a measure for calculating skill as this operation requires the accurate maintenance and updating of information in addition to skills needed for arithmetic more generally. In Experiment 1, we found that only individual differences with regard to a task updating numerical information following addition (MUcalc) could predict the performance of MMM, perhaps owing to common elements between the task and MMM. In Experiment 2, new updating tasks were designed to clarify this: a spatial updating task with no numbers, a numerical task with no calculation, and a word task. The results showed that both MUcalc and the spatial task were able to predict the performance of MMM but only with the more difficult problems, while other updating tasks did not predict performance. It is concluded that relevant processes involved in updating the contents of working memory support mental arithmetic in adults. PMID:26869971
Design and evaluation of online arithmetic for signal processing applications on FPGAs
NASA Astrophysics Data System (ADS)
Galli, Reto; Tenca, Alexandre F.
2001-11-01
This paper shows the design and the evaluation of on-line arithmetic modules for the most common operators used in DSP applications, using FPGAs as the target technology. The designs are highly optimized for the target technology and the common range of precision in DSP. The results are based on experimental data collected using CAD tools. All designs are synthesized for the same type of devices (Xilinx XC4000) for comparison, avoiding rough estimates of the system performance, and generating a more reliable and detailed comparison of on-line signal processing solutions with other state of the art approaches, such as distributed arithmetic. We show that on-line designs have a hard stand for basic DSP applications that use only addition and multiplication. However, we also show that on-line designs are able to overtake other approaches as the applications become more sophisticated, e.g. when data dependencies exist, or when non constant multiplicands restrict the use of other approaches.
Neural correlates of mathematical problem solving.
Lin, Chun-Ling; Jung, Melody; Wu, Ying Choon; She, Hsiao-Ching; Jung, Tzyy-Ping
2015-03-01
This study explores electroencephalography (EEG) brain dynamics associated with mathematical problem solving. EEG and solution latencies (SLs) were recorded as 11 neurologically healthy volunteers worked on intellectually challenging math puzzles that involved combining four single-digit numbers through basic arithmetic operators (addition, subtraction, division, multiplication) to create an arithmetic expression equaling 24. Estimates of EEG spectral power were computed in three frequency bands - θ (4-7 Hz), α (8-13 Hz) and β (14-30 Hz) - over a widely distributed montage of scalp electrode sites. The magnitude of power estimates was found to change in a linear fashion with SLs - that is, relative to a base of power spectrum, theta power increased with longer SLs, while alpha and beta power tended to decrease. Further, the topographic distribution of spectral fluctuations was characterized by more pronounced asymmetries along the left-right and anterior-posterior axes for solutions that involved a longer search phase. These findings reveal for the first time the topography and dynamics of EEG spectral activities important for sustained solution search during arithmetical problem solving.
Fuzzy Arden Syntax: A fuzzy programming language for medicine.
Vetterlein, Thomas; Mandl, Harald; Adlassnig, Klaus-Peter
2010-05-01
The programming language Arden Syntax has been optimised for use in clinical decision support systems. We describe an extension of this language named Fuzzy Arden Syntax, whose original version was introduced in S. Tiffe's dissertation on "Fuzzy Arden Syntax: Representation and Interpretation of Vague Medical Knowledge by Fuzzified Arden Syntax" (Vienna University of Technology, 2003). The primary aim is to provide an easy means of processing vague or uncertain data, which frequently appears in medicine. For both propositional and number data types, fuzzy equivalents have been added to Arden Syntax. The Boolean data type was generalised to represent any truth degree between the two extremes 0 (falsity) and 1 (truth); fuzzy data types were introduced to represent fuzzy sets. The operations on truth values and real numbers were generalised accordingly. As the conditions to decide whether a certain programme unit is executed or not may be indeterminate, a Fuzzy Arden Syntax programme may split. The data in the different branches may be optionally aggregated subsequently. Fuzzy Arden Syntax offers the possibility to formulate conveniently Medical Logic Modules (MLMs) based on the principle of a continuously graded applicability of statements. Furthermore, ad hoc decisions about sharp value boundaries can be avoided. As an illustrative example shows, an MLM making use of the features of Fuzzy Arden Syntax is not significantly more complex than its Arden Syntax equivalent; in the ideal case, a programme handling crisp data remains practically unchanged when compared to its fuzzified version. In the latter case, the output data, which can be a set of weighted alternatives, typically depends continuously from the input data. In typical applications an Arden Syntax MLM can produce a different output after only slight changes of the input; discontinuities are in fact unavoidable when the input varies continuously but the output is taken from a discrete set of possibilities. This inconvenience can, however, be attenuated by means of certain mechanisms on which the programme flow under Fuzzy Arden Syntax is based. To write a programme making use of these possibilities is not significantly more difficult than to write a programme according to the usual practice. 2010 Elsevier B.V. All rights reserved.
Benchmarking Memory Performance with the Data Cube Operator
NASA Technical Reports Server (NTRS)
Frumkin, Michael A.; Shabanov, Leonid V.
2004-01-01
Data movement across a computer memory hierarchy and across computational grids is known to be a limiting factor for applications processing large data sets. We use the Data Cube Operator on an Arithmetic Data Set, called ADC, to benchmark capabilities of computers and of computational grids to handle large distributed data sets. We present a prototype implementation of a parallel algorithm for computation of the operatol: The algorithm follows a known approach for computing views from the smallest parent. The ADC stresses all levels of grid memory and storage by producing some of 2d views of an Arithmetic Data Set of d-tuples described by a small number of integers. We control data intensity of the ADC by selecting the tuple parameters, the sizes of the views, and the number of realized views. Benchmarking results of memory performance of a number of computer architectures and of a small computational grid are presented.
Realization of arithmetic addition and subtraction in a quantum system
NASA Astrophysics Data System (ADS)
Um, Mark; Zhang, Junhua; Lv, Dingshun; Lu, Yao; An, Shuoming; Zhang, Jing-Ning; Kim, Kihwan; Kim, M. S.; Nha, Hyunchul
2015-05-01
We report an experimental realization of the conventional arithmetic on a bosonic system, in particular, phonons of a 171Yb+ ion trapped in a harmonic potential. The conventional addition and subtraction are totally different from the quantum operations of creation ↠and annihilation â that have the modification of √{ n } factor due to the symmetric nature of bosons. In our realization, the addition and subtraction do not depend on the number of particles originally in the system and nearly deterministically bring a classical state into a non-classical state. We implement such operations by applying the scheme of transitionless shortcuts to adiabaticity on anti-Jaynes-Cummings transition. This technology enables quantum state engineering and can be applied to many other experimental platforms. This work was supported by the National Basic Research Program of China under Grants No. 2011CBA00300 (No. 2011CBA00301), the National Natural Science Foundation of China 11374178.
A Hybrid Stochastic-Neuro-Fuzzy Model-Based System for In-Flight Gas Turbine Engine Diagnostics
2001-04-05
Margin (ADM) and (ii) Fault Detection Margin (FDM). Key Words: ANFIS, Engine Health Monitoring , Gas Path Analysis, and Stochastic Analysis Adaptive Network...The paper illustrates the application of a hybrid Stochastic- Fuzzy -Inference Model-Based System (StoFIS) to fault diagnostics and prognostics for both...operational history monitored on-line by the engine health management (EHM) system. To capture the complex functional relationships between different
A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.
Hajri, S; Liouane, N; Hammadi, S; Borne, P
2000-01-01
Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1992-01-01
As part of the RICIS activity, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Max satellite simulation. This activity is carried out in the software technology laboratory utilizing the Orbital Operations Simulator (OOS). This report is deliverable D2 Altitude Control Results and provides the status of the project after four months of activities and outlines the future plans. In section 2 we describe the Fuzzy-Learner system for the attitude control functions. In section 3, we provide the description of test cases and results in a chronological order. In section 4, we have summarized our results and conclusions. Our future plans and recommendations are provided in section 5.
Basic Techniques in Environmental Simulation.
1982-07-01
the devel- ’I or oper is liable for all necessary changes in the model or its supporting computer software . After the 90-day warranty expires, the user...processing unit, that part of a computer which accom- plishes arithmetic and logical operations DCFLOS Dynamic cloud -free line-of-sight, a simulation... Software Development ......... 12 1.7.7 Operational Environment, Interfaces, and Constraints. . 12 1.7.8 Effectiveness Evaluation, Value Analysis, and
NASA Astrophysics Data System (ADS)
Tohir, M.; Abidin, Z.; Dafik; Hobri
2018-04-01
Arithmetics is one of the topics in Mathematics, which deals with logic and detailed process upon generalizing formula. Creativity and flexibility are needed in generalizing formula of arithmetics series. This research aimed at analyzing students creative thinking skills in generalizing arithmetic series. The triangulation method and research-based learning was used in this research. The subjects were students of the Master Program of Mathematics Education in Faculty of Teacher Training and Education at Jember University. The data was collected by giving assignments to the students. The data collection was done by giving open problem-solving task and documentation study to the students to arrange generalization pattern based on the dependent function formula i and the function depend on i and j. Then, the students finished the next problem-solving task to construct arithmetic generalization patterns based on the function formula which depends on i and i + n and the sum formula of functions dependent on i and j of the arithmetic compiled. The data analysis techniques operative in this study was Miles and Huberman analysis model. Based on the result of data analysis on task 1, the levels of students creative thinking skill were classified as follows; 22,22% of the students categorized as “not creative” 38.89% of the students categorized as “less creative” category; 22.22% of the students categorized as “sufficiently creative” and 16.67% of the students categorized as “creative”. By contrast, the results of data analysis on task 2 found that the levels of students creative thinking skills were classified as follows; 22.22% of the students categorized as “sufficiently creative”, 44.44% of the students categorized as “creative” and 33.33% of the students categorized as “very creative”. This analysis result can set the basis for teaching references and actualizing a better teaching model in order to increase students creative thinking skills.
NASA Astrophysics Data System (ADS)
Fernández-González, Daniel; Martín-Duarte, Ramón; Ruiz-Bustinza, Íñigo; Mochón, Javier; González-Gasca, Carmen; Verdeja, Luis Felipe
2016-08-01
Blast furnace operators expect to get sinter with homogenous and regular properties (chemical and mechanical), necessary to ensure regular blast furnace operation. Blends for sintering also include several iron by-products and other wastes that are obtained in different processes inside the steelworks. Due to their source, the availability of such materials is not always consistent, but their total production should be consumed in the sintering process, to both save money and recycle wastes. The main scope of this paper is to obtain the least expensive iron ore blend for the sintering process, which will provide suitable chemical and mechanical features for the homogeneous and regular operation of the blast furnace. The systematic use of statistical tools was employed to analyze historical data, including linear and partial correlations applied to the data and fuzzy clustering based on the Sugeno Fuzzy Inference System to establish relationships among the available variables.
Learning Aggregation Operators for Preference Modeling
NASA Astrophysics Data System (ADS)
Torra, Vicenç
Aggregation operators are useful tools for modeling preferences. Such operators include weighted means, OWA and WOWA operators, as well as some fuzzy integrals, e.g. Choquet and Sugeno integrals. To apply these operators in an effective way, their parameters have to be properly defined. In this chapter, we review some of the existing tools for learning these parameters from examples.
CADNA: a library for estimating round-off error propagation
NASA Astrophysics Data System (ADS)
Jézéquel, Fabienne; Chesneaux, Jean-Marie
2008-06-01
The CADNA library enables one to estimate round-off error propagation using a probabilistic approach. With CADNA the numerical quality of any simulation program can be controlled. Furthermore by detecting all the instabilities which may occur at run time, a numerical debugging of the user code can be performed. CADNA provides new numerical types on which round-off errors can be estimated. Slight modifications are required to control a code with CADNA, mainly changes in variable declarations, input and output. This paper describes the features of the CADNA library and shows how to interpret the information it provides concerning round-off error propagation in a code. Program summaryProgram title:CADNA Catalogue identifier:AEAT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAT_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:53 420 No. of bytes in distributed program, including test data, etc.:566 495 Distribution format:tar.gz Programming language:Fortran Computer:PC running LINUX with an i686 or an ia64 processor, UNIX workstations including SUN, IBM Operating system:LINUX, UNIX Classification:4.14, 6.5, 20 Nature of problem:A simulation program which uses floating-point arithmetic generates round-off errors, due to the rounding performed at each assignment and at each arithmetic operation. Round-off error propagation may invalidate the result of a program. The CADNA library enables one to estimate round-off error propagation in any simulation program and to detect all numerical instabilities that may occur at run time. Solution method:The CADNA library [1] implements Discrete Stochastic Arithmetic [2-4] which is based on a probabilistic model of round-off errors. The program is run several times with a random rounding mode generating different results each time. From this set of results, CADNA estimates the number of exact significant digits in the result that would have been computed with standard floating-point arithmetic. Restrictions:CADNA requires a Fortran 90 (or newer) compiler. In the program to be linked with the CADNA library, round-off errors on complex variables cannot be estimated. Furthermore array functions such as product or sum must not be used. Only the arithmetic operators and the abs, min, max and sqrt functions can be used for arrays. Running time:The version of a code which uses CADNA runs at least three times slower than its floating-point version. This cost depends on the computer architecture and can be higher if the detection of numerical instabilities is enabled. In this case, the cost may be related to the number of instabilities detected. References:The CADNA library, URL address: http://www.lip6.fr/cadna. J.-M. Chesneaux, L'arithmétique Stochastique et le Logiciel CADNA, Habilitation á diriger des recherches, Université Pierre et Marie Curie, Paris, 1995. J. Vignes, A stochastic arithmetic for reliable scientific computation, Math. Comput. Simulation 35 (1993) 233-261. J. Vignes, Discrete stochastic arithmetic for validating results of numerical software, Numer. Algorithms 37 (2004) 377-390.
Choi, Angelo Earvin Sy; Park, Hung Suck
2018-06-20
This paper presents the development and evaluation of fuzzy multi-objective optimization for decision-making that includes the process optimization of anaerobic digestion (AD) process. The operating cost criteria which is a fundamental research gap in previous AD analysis was integrated for the case study in this research. In this study, the mixing ratio of food waste leachate (FWL) and piggery wastewater (PWW), calcium carbonate (CaCO 3 ) and sodium chloride (NaCl) concentrations were optimized to enhance methane production while minimizing operating cost. The results indicated a maximum of 63.3% satisfaction for both methane production and operating cost under the following optimal conditions: mixing ratio (FWL: PWW) - 1.4, CaCO 3 - 2970.5 mg/L and NaCl - 2.7 g/L. In multi-objective optimization, the specific methane yield (SMY) was 239.0 mL CH 4 /g VS added , while 41.2% volatile solids reduction (VSR) was obtained at an operating cost of 56.9 US$/ton. In comparison with the previous optimization study that utilized the response surface methodology, the SMY, VSR and operating cost of the AD process were 310 mL/g, 54% and 83.2 US$/ton, respectively. The results from multi-objective fuzzy optimization proves to show the potential application of this technique for practical decision-making in the process optimization of AD process. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shao, Xinxin; Naghdy, Fazel; Du, Haiping
2017-03-01
A fault-tolerant fuzzy H∞ control design approach for active suspension of in-wheel motor driven electric vehicles in the presence of sprung mass variation, actuator faults and control input constraints is proposed. The controller is designed based on the quarter-car active suspension model with a dynamic-damping-in-wheel-motor-driven-system, in which the suspended motor is operated as a dynamic absorber. The Takagi-Sugeno (T-S) fuzzy model is used to model this suspension with possible sprung mass variation. The parallel-distributed compensation (PDC) scheme is deployed to derive a fault-tolerant fuzzy controller for the T-S fuzzy suspension model. In order to reduce the motor wear caused by the dynamic force transmitted to the in-wheel motor, the dynamic force is taken as an additional controlled output besides the traditional optimization objectives such as sprung mass acceleration, suspension deflection and actuator saturation. The H∞ performance of the proposed controller is derived as linear matrix inequalities (LMIs) comprising three equality constraints which are solved efficiently by means of MATLAB LMI Toolbox. The proposed controller is applied to an electric vehicle suspension and its effectiveness is demonstrated through computer simulation.
A clustering-based fuzzy wavelet neural network model for short-term load forecasting.
Kodogiannis, Vassilis S; Amina, Mahdi; Petrounias, Ilias
2013-10-01
Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi-Sugeno-Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models.
Development of common neural representations for distinct numerical problems
Chang, Ting-Ting; Rosenberg-Lee, Miriam; Metcalfe, Arron W. S.; Chen, Tianwen; Menon, Vinod
2015-01-01
How the brain develops representations for abstract cognitive problems is a major unaddressed question in neuroscience. Here we tackle this fundamental question using arithmetic problem solving, a cognitive domain important for the development of mathematical reasoning. We first examined whether adults demonstrate common neural representations for addition and subtraction problems, two complementary arithmetic operations that manipulate the same quantities. We then examined how the common neural representations for the two problem types change with development. Whole-brain multivoxel representational similarity (MRS) analysis was conducted to examine common coding of addition and subtraction problems in children and adults. We found that adults exhibited significant levels of MRS between the two problem types, not only in the intra-parietal sulcus (IPS) region of the posterior parietal cortex (PPC), but also in ventral temporal-occipital, anterior temporal and dorsolateral prefrontal cortices. Relative to adults, children showed significantly reduced levels of MRS in these same regions. In contrast, no brain areas showed significantly greater MRS between problem types in children. Our findings provide novel evidence that the emergence of arithmetic problem solving skills from childhood to adulthood is characterized by maturation of common neural representations between distinct numerical operations, and involve distributed brain regions important for representing and manipulating numerical quantity. More broadly, our findings demonstrate that representational analysis provides a powerful approach for uncovering fundamental mechanisms by which children develop proficiencies that are a hallmark of human cognition. PMID:26160287
Are artificial neural networks black boxes?
Benitez, J M; Castro, J L; Requena, I
1997-01-01
Artificial neural networks are efficient computing models which have shown their strengths in solving hard problems in artificial intelligence. They have also been shown to be universal approximators. Notwithstanding, one of the major criticisms is their being black boxes, since no satisfactory explanation of their behavior has been offered. In this paper, we provide such an interpretation of neural networks so that they will no longer be seen as black boxes. This is stated after establishing the equality between a certain class of neural nets and fuzzy rule-based systems. This interpretation is built with fuzzy rules using a new fuzzy logic operator which is defined after introducing the concept of f-duality. In addition, this interpretation offers an automated knowledge acquisition procedure.
Fuzzy net present valuation based on risk assessment of Malaysian infrastructure
NASA Astrophysics Data System (ADS)
Shaffie, Siti Salihah; Jaaman, Saiful Hafizah; Mohamad, Daud
2017-04-01
In recent years, built-operate-transfer (BOT) projects have profoundly been accepted under project financing for infrastructure developments in many countries. It requires high financing and involves complex mutual risk. The assessment of the risks is vital to avert huge financial loss. Net present value is widely applied to BOT project where the uncertainties in cash flows are deemed to be deterministic values. This study proposed a fuzzy net present value model taking consideration the assessment of risks from the BOT project. The proposed model is adopted to provide more flexible net present valuation of the project. It is shown and proven that the improved fuzzy cash flow model will provide a valuation that is closed to the real value of the project.
Anfis Approach for Sssc Controller Design for the Improvement of Transient Stability Performance
NASA Astrophysics Data System (ADS)
Khuntia, Swasti R.; Panda, Sidhartha
2011-06-01
In this paper, Adaptive Neuro-Fuzzy Inference System (ANFIS) method based on the Artificial Neural Network (ANN) is applied to design a Static Synchronous Series Compensator (SSSC)-based controller for improvement of transient stability. The proposed ANFIS controller combines the advantages of fuzzy controller and quick response and adaptability nature of ANN. The ANFIS structures were trained using the generated database by fuzzy controller of SSSC. It is observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances. The results prove that the proposed SSSC-based ANFIS controller is found to be robust to fault location and change in operating conditions. Further, the results obtained are compared with the conventional lead-lag controllers for SSSC.
Chaotic operation and chaos control of travelling wave ultrasonic motor.
Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie
2013-08-01
The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled. Copyright © 2013 Elsevier B.V. All rights reserved.
Fuzzy logic of Aristotelian forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perlovsky, L.I.
1996-12-31
Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties.more » In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.« less
Fusion of fuzzy statistical distributions for classification of thyroid ultrasound patterns.
Iakovidis, Dimitris K; Keramidas, Eystratios G; Maroulis, Dimitris
2010-09-01
This paper proposes a novel approach for thyroid ultrasound pattern representation. Considering that texture and echogenicity are correlated with thyroid malignancy, the proposed approach encodes these sonographic features via a noise-resistant representation. This representation is suitable for the discrimination of nodules of high malignancy risk from normal thyroid parenchyma. The material used in this study includes a total of 250 thyroid ultrasound patterns obtained from 75 patients in Greece. The patterns are represented by fused vectors of fuzzy features. Ultrasound texture is represented by fuzzy local binary patterns, whereas echogenicity is represented by fuzzy intensity histograms. The encoded thyroid ultrasound patterns are discriminated by support vector classifiers. The proposed approach was comprehensively evaluated using receiver operating characteristics (ROCs). The results show that the proposed fusion scheme outperforms previous thyroid ultrasound pattern representation methods proposed in the literature. The best classification accuracy was obtained with a polynomial kernel support vector machine, and reached 97.5% as estimated by the area under the ROC curve. The fusion of fuzzy local binary patterns and fuzzy grey-level histogram features is more effective than the state of the art approaches for the representation of thyroid ultrasound patterns and can be effectively utilized for the detection of nodules of high malignancy risk in the context of an intelligent medical system. Copyright (c) 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Eliaš, Peter; Frič, Roman
2017-12-01
Categorical approach to probability leads to better understanding of basic notions and constructions in generalized (fuzzy, operational, quantum) probability, where observables—dual notions to generalized random variables (statistical maps)—play a major role. First, to avoid inconsistencies, we introduce three categories L, S, and P, the objects and morphisms of which correspond to basic notions of fuzzy probability theory and operational probability theory, and describe their relationships. To illustrate the advantages of categorical approach, we show that two categorical constructions involving observables (related to the representation of generalized random variables via products, or smearing of sharp observables, respectively) can be described as factorizing a morphism into composition of two morphisms having desired properties. We close with a remark concerning products.
Decentralized Fuzzy MPC on Spatial Power Control of a Large PHWR
NASA Astrophysics Data System (ADS)
Liu, Xiangjie; Jiang, Di; Lee, Kwang Y.
2016-08-01
Reliable power control for stabilizing the spatial oscillations is quite important for ensuring the safe operation of a modern pressurized heavy water reactor (PHWR), since these spatial oscillations can cause “flux tilting” in the reactor core. In this paper, a decentralized fuzzy model predictive control (DFMPC) is proposed for spatial control of PHWR. Due to the load dependent dynamics of the nuclear power plant, fuzzy modeling is used to approximate the nonlinear process. A fuzzy Lyapunov function and “quasi-min-max” strategy is utilized in designing the DFMPC, to reduce the conservatism. The plant-wide stability is achieved by the asymptotically positive realness constraint (APRC) for this decentralized MPC. The solving optimization problem is based on a receding horizon scheme involving the linear matrix inequalities (LMIs) technique. Through dynamic simulations, it is demonstrated that the designed DFMPC can effectively suppress spatial oscillations developed in PHWR, and further, shows the advantages over the typical parallel distributed compensation (PDC) control scheme.
Novel Observer Scheme of Fuzzy-MRAS Sensorless Speed Control of Induction Motor Drive
NASA Astrophysics Data System (ADS)
Chekroun, S.; Zerikat, M.; Mechernene, A.; Benharir, N.
2017-01-01
This paper presents a novel approach Fuzzy-MRAS conception for robust accurate tracking of induction motor drive operating in a high-performance drives environment. Of the different methods for sensorless control of induction motor drive the model reference adaptive system (MRAS) finds lot of attention due to its good performance. The analysis of the sensorless vector control system using MRAS is presented and the resistance parameters variations and speed observer using new Fuzzy Self-Tuning adaptive IP Controller is proposed. In fact, fuzzy logic is reminiscent of human thinking processes and natural language enabling decisions to be made based on vague information. The present approach helps to achieve a good dynamic response, disturbance rejection and low to plant parameter variations of the induction motor. In order to verify the performances of the proposed observer and control algorithms and to test behaviour of the controlled system, numerical simulation is achieved. Simulation results are presented and discussed to shown the validity and the performance of the proposed observer.
On structuring the rules of a fuzzy controller
NASA Technical Reports Server (NTRS)
Zhou, Jun; Raju, G. V. S.
1993-01-01
Since the pioneering work of Zadeh and Mamdani and Assilian, fuzzy logic control has emerged as one of the most active and fruitful research areas. The applications of fuzzy logic control can be found in many fields such as control of stream generators, automatic train operation systems, elevator control, nuclear reactor control, automobile transmission control, etc. In this paper, two new structures of hierarchical fuzzy rule-based controller are proposed to reduce the number of rules in a complete rule set of a controller. In one approach, the overall system is split into sub-systems which are treated independently in parallel. A coordinator is then used to take into account the interactions. This is done via an iterating information exchange between the lower level and the coordinator level. From the point of view of information used, this structure is very similar to central structure in that the coordinator can have at least in principle, all the information that the local controllers have.
NASA Astrophysics Data System (ADS)
Xu, Jiuping; Zeng, Ziqiang; Han, Bernard; Lei, Xiao
2013-07-01
This article presents a dynamic programming-based particle swarm optimization (DP-based PSO) algorithm for solving an inventory management problem for large-scale construction projects under a fuzzy random environment. By taking into account the purchasing behaviour and strategy under rules of international bidding, a multi-objective fuzzy random dynamic programming model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform fuzzy random parameters into fuzzy variables that are subsequently defuzzified by using an expected value operator with optimistic-pessimistic index. The iterative nature of the authors' model motivates them to develop a DP-based PSO algorithm. More specifically, their approach treats the state variables as hidden parameters. This in turn eliminates many redundant feasibility checks during initialization and particle updates at each iteration. Results and sensitivity analysis are presented to highlight the performance of the authors' optimization method, which is very effective as compared to the standard PSO algorithm.
Xu, Jiuping; Feng, Cuiying
2014-01-01
This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method.
Xu, Jiuping
2014-01-01
This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method. PMID:24550708
Fuzzy Multicriteria Decision Analysis for Adaptive Watershed Management
NASA Astrophysics Data System (ADS)
Chang, N.
2006-12-01
The dramatic changes of societal complexity due to intensive interactions among agricultural, industrial, and municipal sectors have resulted in acute issues of water resources redistribution and water quality management in many river basins. Given the fact that integrated watershed management is more a political and societal than a technical challenge, there is a need for developing a compelling method leading to justify a water-based land use program in some critical regions. Adaptive watershed management is viewed as an indispensable tool nowadays for providing step-wise constructive decision support that is concerned with all related aspects of the water consumption cycle and those facilities affecting water quality and quantity temporally and spatially. Yet the greatest challenge that decision makers face today is to consider how to leverage ambiguity, paradox, and uncertainty to their competitive advantage of management policy quantitatively. This paper explores a fuzzy multicriteria evaluation method for water resources redistribution and subsequent water quality management with respect to a multipurpose channel-reservoir system--the Tseng- Wen River Basin, South Taiwan. Four fuzzy operators tailored for this fuzzy multicriteria decision analysis depict greater flexibility in representing the complexity of various possible trade-offs among management alternatives constrained by physical, economic, and technical factors essential for adaptive watershed management. The management strategies derived may enable decision makers to integrate a vast number of internal weirs, water intakes, reservoirs, drainage ditches, transfer pipelines, and wastewater treatment facilities within the basin and bring up the permitting issue for transboundary diversion from a neighboring river basin. Experience gained indicates that the use of different types of fuzzy operators is highly instructive, which also provide unique guidance collectively for achieving the overarching goals of sustainable development on a regional scale.
Quality of Arithmetic Education for Children with Cerebral Palsy
ERIC Educational Resources Information Center
Jenks, Kathleen M.; de Moor, Jan; van Lieshout, Ernest C. D. M.; Withagen, Floortje
2010-01-01
The aim of this exploratory study was to investigate the quality of arithmetic education for children with cerebral palsy. The use of individual educational plans, amount of arithmetic instruction time, arithmetic instructional grouping, and type of arithmetic teaching method were explored in three groups: children with cerebral palsy (CP) in…
Träff, Ulf; Olsson, Linda; Skagerlund, Kenny; Östergren, Rickard
2018-03-01
A modified pathways to mathematics model was used to examine the cognitive mechanisms underlying arithmetic skills in third graders. A total of 269 children were assessed on tasks tapping the four pathways and arithmetic skills. A path analysis showed that symbolic number processing was directly supported by the linguistic and approximate quantitative pathways. The direct contribution from the four pathways to arithmetic proficiency varied; the linguistic pathway supported single-digit arithmetic and word problem solving, whereas the approximate quantitative pathway supported only multi-digit calculation. The spatial processing and verbal working memory pathways supported only arithmetic word problem solving. The notion of hierarchical levels of arithmetic was supported by the results, and the different levels were supported by different constellations of pathways. However, the strongest support to the hierarchical levels of arithmetic were provided by the proximal arithmetic skills. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Supianto, A. A.; Hayashi, Y.; Hirashima, T.
2017-02-01
Problem-posing is well known as an effective activity to learn problem-solving methods. Monsakun is an interactive problem-posing learning environment to facilitate arithmetic word problems learning for one operation of addition and subtraction. The characteristic of Monsakun is problem-posing as sentence-integration that lets learners make a problem of three sentences. Monsakun provides learners with five or six sentences including dummies, which are designed through careful considerations by an expert teacher as a meaningful distraction to the learners in order to learn the structure of arithmetic word problems. The results of the practical use of Monsakun in elementary schools show that many learners have difficulties in arranging the proper answer at the high level of assignments. The analysis of the problem-posing process of such learners found that their misconception of arithmetic word problems causes impasses in their thinking and mislead them to use dummies. This study proposes a method of changing assignments as a support for overcoming bottlenecks of thinking. In Monsakun, the bottlenecks are often detected as a frequently repeated use of a specific dummy. If such dummy can be detected, it is the key factor to support learners to overcome their difficulty. This paper discusses how to detect the bottlenecks and to realize such support in learning by problem-posing.
Digital hardware implementation of a stochastic two-dimensional neuron model.
Grassia, F; Kohno, T; Levi, T
2016-11-01
This study explores the feasibility of stochastic neuron simulation in digital systems (FPGA), which realizes an implementation of a two-dimensional neuron model. The stochasticity is added by a source of current noise in the silicon neuron using an Ornstein-Uhlenbeck process. This approach uses digital computation to emulate individual neuron behavior using fixed point arithmetic operation. The neuron model's computations are performed in arithmetic pipelines. It was designed in VHDL language and simulated prior to mapping in the FPGA. The experimental results confirmed the validity of the developed stochastic FPGA implementation, which makes the implementation of the silicon neuron more biologically plausible for future hybrid experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Efficient Fuzzy Controller Design for Parallel Connected Induction Motor Drives
NASA Astrophysics Data System (ADS)
Usha, S.; Subramani, C.
2018-04-01
Generally, an induction motors are highly non-linear and has a complex time varying dynamics. This makes the speed control of an induction motor a challenging issue in the industries. But, due to the recent trends in the power electronic devices and intelligent controllers, the speed control of the induction motor is achieved by including non-linear characteristics also. Conventionally a single inverter is used to run one induction motor in industries. In the traction applications, two or more inductions motors are operated in parallel to reduce the size and cost of induction motors. In this application, the parallel connected induction motors can be driven by a single inverter unit. The stability problems may introduce in the parallel operation under low speed operating conditions. Hence, the speed deviations should be reduce with help of suitable controllers. The speed control of the parallel connected system is performed by PID controller and fuzzy logic controller. In this paper the speed response of the induction motor for the rating of IHP, 1440 rpm, and 50Hz with these controller are compared in time domain specifications. The stability analysis of the system also performed under low speed using matlab platform. The hardware model is developed for speed control using fuzzy logic controller which exhibited superior performances over the other controller.
NASA Astrophysics Data System (ADS)
Huseyin Turan, Hasan; Kasap, Nihat; Savran, Huseyin
2014-03-01
Nowadays, every firm uses telecommunication networks in different amounts and ways in order to complete their daily operations. In this article, we investigate an optimisation problem that a firm faces when acquiring network capacity from a market in which there exist several network providers offering different pricing and quality of service (QoS) schemes. The QoS level guaranteed by network providers and the minimum quality level of service, which is needed for accomplishing the operations are denoted as fuzzy numbers in order to handle the non-deterministic nature of the telecommunication network environment. Interestingly, the mathematical formulation of the aforementioned problem leads to the special case of a well-known two-dimensional bin packing problem, which is famous for its computational complexity. We propose two different heuristic solution procedures that have the capability of solving the resulting nonlinear mixed integer programming model with fuzzy constraints. In conclusion, the efficiency of each algorithm is tested in several test instances to demonstrate the applicability of the methodology.
Implicit Learning of Arithmetic Regularities Is Facilitated by Proximal Contrast
Prather, Richard W.
2012-01-01
Natural number arithmetic is a simple, powerful and important symbolic system. Despite intense focus on learning in cognitive development and educational research many adults have weak knowledge of the system. In current study participants learn arithmetic principles via an implicit learning paradigm. Participants learn not by solving arithmetic equations, but through viewing and evaluating example equations, similar to the implicit learning of artificial grammars. We expand this to the symbolic arithmetic system. Specifically we find that exposure to principle-inconsistent examples facilitates the acquisition of arithmetic principle knowledge if the equations are presented to the learning in a temporally proximate fashion. The results expand on research of the implicit learning of regularities and suggest that contrasting cases, show to facilitate explicit arithmetic learning, is also relevant to implicit learning of arithmetic. PMID:23119101
NASA Astrophysics Data System (ADS)
Wong, Jianhui; Lim, Yun Seng; Morris, Stella; Morris, Ezra; Chua, Kein Huat
2017-04-01
The amount of small-scaled renewable energy sources is anticipated to increase on the low-voltage distribution networks for the improvement of energy efficiency and reduction of greenhouse gas emission. The growth of the PV systems on the low-voltage distribution networks can create voltage unbalance, voltage rise, and reverse-power flow. Usually these issues happen with little fluctuation. However, it tends to fluctuate severely as Malaysia is a region with low clear sky index. A large amount of clouds often passes over the country, hence making the solar irradiance to be highly scattered. Therefore, the PV power output fluctuates substantially. These issues can lead to the malfunction of the electronic based equipment, reduction in the network efficiency and improper operation of the power protection system. At the current practice, the amount of PV system installed on the distribution network is constraint by the utility company. As a result, this can limit the reduction of carbon footprint. Therefore, energy storage system is proposed as a solution for these power quality issues. To ensure an effective operation of the distribution network with PV system, a fuzzy control system is developed and implemented to govern the operation of an energy storage system. The fuzzy driven energy storage system is able to mitigate the fluctuating voltage rise and voltage unbalance on the electrical grid by actively manipulates the flow of real power between the grid and the batteries. To verify the effectiveness of the proposed fuzzy driven energy storage system, an experimental network integrated with 7.2kWp PV system was setup. Several case studies are performed to evaluate the response of the proposed solution to mitigate voltage rises, voltage unbalance and reduce the amount of reverse power flow under highly intermittent PV power output.
Arithmetic Circuit Verification Based on Symbolic Computer Algebra
NASA Astrophysics Data System (ADS)
Watanabe, Yuki; Homma, Naofumi; Aoki, Takafumi; Higuchi, Tatsuo
This paper presents a formal approach to verify arithmetic circuits using symbolic computer algebra. Our method describes arithmetic circuits directly with high-level mathematical objects based on weighted number systems and arithmetic formulae. Such circuit description can be effectively verified by polynomial reduction techniques using Gröbner Bases. In this paper, we describe how the symbolic computer algebra can be used to describe and verify arithmetic circuits. The advantageous effects of the proposed approach are demonstrated through experimental verification of some arithmetic circuits such as multiply-accumulator and FIR filter. The result shows that the proposed approach has a definite possibility of verifying practical arithmetic circuits.
The neural circuits for arithmetic principles.
Liu, Jie; Zhang, Han; Chen, Chuansheng; Chen, Hui; Cui, Jiaxin; Zhou, Xinlin
2017-02-15
Arithmetic principles are the regularities underlying arithmetic computation. Little is known about how the brain supports the processing of arithmetic principles. The current fMRI study examined neural activation and functional connectivity during the processing of verbalized arithmetic principles, as compared to numerical computation and general language processing. As expected, arithmetic principles elicited stronger activation in bilateral horizontal intraparietal sulcus and right supramarginal gyrus than did language processing, and stronger activation in left middle temporal lobe and left orbital part of inferior frontal gyrus than did computation. In contrast, computation elicited greater activation in bilateral horizontal intraparietal sulcus (extending to posterior superior parietal lobule) than did either arithmetic principles or language processing. Functional connectivity analysis with the psychophysiological interaction approach (PPI) showed that left temporal-parietal (MTG-HIPS) connectivity was stronger during the processing of arithmetic principle and language than during computation, whereas parietal-occipital connectivities were stronger during computation than during the processing of arithmetic principles and language. Additionally, the left fronto-parietal (orbital IFG-HIPS) connectivity was stronger during the processing of arithmetic principles than during computation. The results suggest that verbalized arithmetic principles engage a neural network that overlaps but is distinct from the networks for computation and language processing. Copyright © 2016 Elsevier Inc. All rights reserved.
Specificity and Overlap in Skills Underpinning Reading and Arithmetical Fluency
ERIC Educational Resources Information Center
van Daal, Victor; van der Leij, Aryan; Ader, Herman
2013-01-01
The aim of this study was to examine unique and common causes of problems in reading and arithmetic fluency. 13- to 14-year-old students were placed into one of five groups: reading disabled (RD, n = 16), arithmetic disabled (AD, n = 34), reading and arithmetic disabled (RAD, n = 17), reading, arithmetic, and listening comprehension disabled…
Code of Federal Regulations, 2014 CFR
2014-07-01
... combusted at any time at the steam generating unit. Daily average means the arithmetic average of the hourly... which may include, but is not limited to, monitoring results, review of operating and maintenance...
NASA Technical Reports Server (NTRS)
Munoz, Cesar A.; Butler, Ricky (Technical Monitor)
2003-01-01
PVSio is a conservative extension to the PVS prelude library that provides basic input/output capabilities to the PVS ground evaluator. It supports rapid prototyping in PVS by enhancing the specification language with built-in constructs for string manipulation, floating point arithmetic, and input/output operations.
Fuzzy Regression Prediction and Application Based on Multi-Dimensional Factors of Freight Volume
NASA Astrophysics Data System (ADS)
Xiao, Mengting; Li, Cheng
2018-01-01
Based on the reality of the development of air cargo, the multi-dimensional fuzzy regression method is used to determine the influencing factors, and the three most important influencing factors of GDP, total fixed assets investment and regular flight route mileage are determined. The system’s viewpoints and analogy methods, the use of fuzzy numbers and multiple regression methods to predict the civil aviation cargo volume. In comparison with the 13th Five-Year Plan for China’s Civil Aviation Development (2016-2020), it is proved that this method can effectively improve the accuracy of forecasting and reduce the risk of forecasting. It is proved that this model predicts civil aviation freight volume of the feasibility, has a high practical significance and practical operation.
Adaptive Fuzzy Hysteresis Band Current Controller for Four-Wire Shunt Active Filter
NASA Astrophysics Data System (ADS)
Hamoudi, F.; Chaghi, A.; Amimeur, H.; Merabet, E.
2008-06-01
This paper presents an adaptive fuzzy hysteresis band current controller for four-wire shunt active power filters to eliminate harmonics and to compensate reactive power in distribution systems in order to keep currents at the point of common coupling sinusoidal and in phase with the corresponding voltage and the cancel neutral current. The conventional hysteresis band known for its robustness and its advantage in current controlled applications is adapted with a fuzzy logic controller to change the bandwidth according to the operating point in order to keep the frequency modulation at tolerable limits. The algorithm used to identify the reference currents is based on the synchronous reference frame theory (dqγ). Finally, simulation results using Matlab/Simulink are given to validate the proposed control.
A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management
NASA Technical Reports Server (NTRS)
Wu, G. Gordon
1995-01-01
Due to the complexity of future space missions and the large amount of data involved, greater autonomy in data processing is demanded for mission operations, training, and vehicle health management. In this paper, we develop a fuzzy logic intelligent diagnostic system to perform data reduction, data analysis, and fault diagnosis for spacecraft vehicle health management applications. The diagnostic system contains a data filter and an inference engine. The data filter is designed to intelligently select only the necessary data for analysis, while the inference engine is designed for failure detection, warning, and decision on corrective actions using fuzzy logic synthesis. Due to its adaptive nature and on-line learning ability, the diagnostic system is capable of dealing with environmental noise, uncertainties, conflict information, and sensor faults.
ERIC Educational Resources Information Center
Vamvakoussi, Xenia; Van Dooren, Wim; Verschaffel, Lieven
2013-01-01
This study tested the hypothesis that intuitions about the effect of operations, e.g., "addition makes bigger" and "division makes smaller", are still present in educated adults, even after years of instruction. To establish the intuitive character, we applied a reaction time methodology, grounded in dual process theories of reasoning. Educated…
ERIC Educational Resources Information Center
Zhang, Xiao; Räsänen, Pekka; Koponen, Tuire; Aunola, Kaisa; Lerkkanen, Marja-Kristiina; Nurmi, Jari-Erik
2017-01-01
The longitudinal relations of domain-general and numerical skills at ages 6-7 years to 3 cognitive domains of arithmetic learning, namely knowing (written computation), applying (arithmetic word problems), and reasoning (arithmetic reasoning) at age 11, were examined for a representative sample of 378 Finnish children. The results showed that…
Foley, Alana E; Vasilyeva, Marina; Laski, Elida V
2017-06-01
This study examined the mediating role of children's use of decomposition strategies in the relation between visuospatial memory (VSM) and arithmetic accuracy. Children (N = 78; Age M = 9.36) completed assessments of VSM, arithmetic strategies, and arithmetic accuracy. Consistent with previous findings, VSM predicted arithmetic accuracy in children. Extending previous findings, the current study showed that the relation between VSM and arithmetic performance was mediated by the frequency of children's use of decomposition strategies. Identifying the role of arithmetic strategies in this relation has implications for increasing the math performance of children with lower VSM. Statement of contribution What is already known on this subject? The link between children's visuospatial working memory and arithmetic accuracy is well documented. Frequency of decomposition strategy use is positively related to children's arithmetic accuracy. Children's spatial skill positively predicts the frequency with which they use decomposition. What does this study add? Short-term visuospatial memory (VSM) positively relates to the frequency of children's decomposition use. Decomposition use mediates the relation between short-term VSM and arithmetic accuracy. Children with limited short-term VSM may struggle to use decomposition, decreasing accuracy. © 2016 The British Psychological Society.
Das, Saptarshi; Pan, Indranil; Das, Shantanu
2013-07-01
Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Application of fuzzy logic to the control of wind tunnel settling chamber temperature
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; Humphreys, Gregory L.
1994-01-01
The application of Fuzzy Logic Controllers (FLC's) to the control of nonlinear processes, typically controlled by a human operator, is a topic of much study. Recent application of a microprocessor-based FLC to the control of temperature processes in several wind tunnels has proven to be very successful. The control of temperature processes in the wind tunnels requires the ability to monitor temperature feedback from several points and to accommodate varying operating conditions in the wind tunnels. The FLC has an intuitive and easily configurable structure which incorporates the flexibility required to have such an ability. The design and implementation of the FLC is presented along with process data from the wind tunnels under automatic control.
NASA Astrophysics Data System (ADS)
Li, Xiaoying; Zhu, Qinghua
2017-01-01
The question on how to evaluate a company's green practice has recently become a key strategic consideration for the food service supply chain management. This paper proposed a novel hybrid model that combines a fuzzy Decision Making Trial And Evaluation Laboratory(DEMATEL) and Analysis Network Process(ANP) methods, which developed the green restaurant criteria and demonstrated the complicated relations among various criteria to help the food service operation to better analyze the real-world situation and determine the different weight value of the criteria .The analysis of the evaluation of green practices will help the food service operation to be clear about the key measures of green practice to improve supply chain management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, F.G.
Sensor-based operation of autonomous robots in unstructured and/or outdoor environments has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. An approach. which we have named the {open_quotes}Fuzzy Behaviorist Approach{close_quotes} (FBA) is proposed in an attempt to remedy some of these difficulties. This approach is based on the representation of the system`s uncertainties using Fuzzy Set Theory-basedmore » approximations and on the representation of the reasoning and control schemes as sets of elemental behaviors. Using the FBA, a formalism for rule base development and an automated generator of fuzzy rules have been developed. This automated system can automatically construct the set of membership functions corresponding to fuzzy behaviors. Once these have been expressed in qualitative terms by the user. The system also checks for completeness of the rule base and for non-redundancy of the rules (which has traditionally been a major hurdle in rule base development). Two major conceptual features, the suppression and inhibition mechanisms which allow to express a dominance between behaviors are discussed in detail. Some experimental results obtained with the automated fuzzy, rule generator applied to the domain of sensor-based navigation in aprion unknown environments. using one of our autonomous test-bed robots as well as a real car in outdoor environments, are then reviewed and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using the {open_quotes}Fuzzy Behaviorist{close_quotes} concepts.« less
NASA Astrophysics Data System (ADS)
Prakash, S.; Sinha, S. K.
2015-09-01
In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.
Garibaldi, Jonathan M; Zhou, Shang-Ming; Wang, Xiao-Ying; John, Robert I; Ellis, Ian O
2012-06-01
It has been often demonstrated that clinicians exhibit both inter-expert and intra-expert variability when making difficult decisions. In contrast, the vast majority of computerized models that aim to provide automated support for such decisions do not explicitly recognize or replicate this variability. Furthermore, the perfect consistency of computerized models is often presented as a de facto benefit. In this paper, we describe a novel approach to incorporate variability within a fuzzy inference system using non-stationary fuzzy sets in order to replicate human variability. We apply our approach to a decision problem concerning the recommendation of post-operative breast cancer treatment; specifically, whether or not to administer chemotherapy based on assessment of five clinical variables: NPI (the Nottingham Prognostic Index), estrogen receptor status, vascular invasion, age and lymph node status. In doing so, we explore whether such explicit modeling of variability provides any performance advantage over a more conventional fuzzy approach, when tested on a set of 1310 unselected cases collected over a fourteen year period at the Nottingham University Hospitals NHS Trust, UK. The experimental results show that the standard fuzzy inference system (that does not model variability) achieves overall agreement to clinical practice around 84.6% (95% CI: 84.1-84.9%), while the non-stationary fuzzy model can significantly increase performance to around 88.1% (95% CI: 88.0-88.2%), p<0.001. We conclude that non-stationary fuzzy models provide a valuable new approach that may be applied to clinical decision support systems in any application domain. Copyright © 2012 Elsevier Inc. All rights reserved.
Real-time qualitative reasoning for telerobotic systems
NASA Technical Reports Server (NTRS)
Pin, Eancois G.
1993-01-01
This paper discusses the sensor-based telerobotic driving of a car in a-priori unknown environments using 'human-like' reasoning schemes implemented on custom-designed VLSI fuzzy inferencing boards. These boards use the Fuzzy Set theoretic framework to allow very vast (30 kHz) processing of full sets of information that are expressed in qualitative form using membership functions. The sensor-based and fuzzy inferencing system was incorporated on an outdoor test-bed platform to investigate two control modes for driving a car on the basis of very sparse and imprecise range data. In the first mode, the car navigates fully autonomously to a goal specified by the operator, while in the second mode, the system acts as a telerobotic driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right, speed up, slow down, stop, or back up depending on the obstacles perceived by the sensors. Indoor and outdoor experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Sample results are presented that illustrate the feasibility of developing autonomous navigation modules and robust, safety-enhancing driver's aids for telerobotic systems using the new fuzzy inferencing VLSI hardware and 'human-like' reasoning schemes.
NASA Astrophysics Data System (ADS)
Błaszczuk, Artur; Krzywański, Jarosław
2017-03-01
The interrelation between fuzzy logic and cluster renewal approaches for heat transfer modeling in a circulating fluidized bed (CFB) has been established based on a local furnace data. The furnace data have been measured in a 1296 t/h CFB boiler with low level of flue gas recirculation. In the present study, the bed temperature and suspension density were treated as experimental variables along the furnace height. The measured bed temperature and suspension density were varied in the range of 1131-1156 K and 1.93-6.32 kg/m3, respectively. Using the heat transfer coefficient for commercial CFB combustor, two empirical heat transfer correlation were developed in terms of important operating parameters including bed temperature and also suspension density. The fuzzy logic results were found to be in good agreement with the corresponding experimental heat transfer data obtained based on cluster renewal approach. The predicted bed-to-wall heat transfer coefficient covered a range of 109-241 W/(m2K) and 111-240 W/(m2K), for fuzzy logic and cluster renewal approach respectively. The divergence in calculated heat flux recovery along the furnace height between fuzzy logic and cluster renewal approach did not exceeded ±2%.
A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken
This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology,more » comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)« less
Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems
NASA Technical Reports Server (NTRS)
Esogbue, Augustine O.
1998-01-01
The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of these are in progress in our laboratory while others await additional support. All of these enhancements will improve the attractiveness of the controller as an effective tool for the on line control of an array of complex process environments.
ERIC Educational Resources Information Center
Ameis, Jerry A.
2011-01-01
When learning the order of operations, students are instructed to adhere to a directive when determining the numerical value of an arithmetic expression. A more typical approach is the use of a popular mnemonic called PEDMAS (parentheses, exponents, division, multiplication, addition, subtraction). The literature is scant on conceptual approaches…
Technical Mathematics: Restructure of Technical Mathematics.
ERIC Educational Resources Information Center
Flannery, Carol A.
Designed to accompany a series of videotapes, this textbook provides information, examples, problems, and solutions relating to mathematics and its applications in technical fields. Chapter I deals with basic arithmetic, providing information on fractions, decimals, ratios, proportions, percentages, and order of operations. Chapter II focuses on…
A novel architecture of non-volatile magnetic arithmetic logic unit using magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Guo, Wei; Prenat, Guillaume; Dieny, Bernard
2014-04-01
Complementary metal-oxide-semiconductor (CMOS) technology is facing increasingly difficult obstacles such as power consumption and interconnection delay. Novel hybrid technologies and architectures are being investigated with the aim to circumvent some of these limits. In particular, hybrid CMOS/magnetic technology based on magnetic tunnel junctions (MTJs) is considered as a very promising approach thanks to the full compatibility of MTJs with CMOS technology. By tightly merging the conventional electronics with magnetism, both logic and memory functions can be implemented in the same device. As a result, non-volatility is directly brought into logic circuits, yielding significant improvement of device performances and new functionalities as well. We have conceived an innovative methodology to construct non-volatile magnetic arithmetic logic units (MALUs) combining spin-transfer torque MTJs with MOS transistors. The present 4-bit MALU utilizes 4 MTJ pairs to store its operation code (opcode). Its operations and performances have been confirmed and evaluated through electrical simulations.
NASA Astrophysics Data System (ADS)
Pricop, Emil; Zamfir, Florin; Paraschiv, Nicolae
2015-11-01
Process control is a challenging research topic for both academia and industry for a long time. Controllers evolved from the classical SISO approach to modern fuzzy or neuro-fuzzy embedded devices with networking capabilities, however PID algorithms are still used in the most industrial control loops. In this paper, we focus on the implementation of a PID controller using mbed NXP LPC1768 development board. This board integrates a powerful ARM Cortex- M3 core and has networking capabilities. The implemented controller can be remotely operated by using an Internet connection and a standard Web browser. The main advantages of the proposed embedded system are customizability, easy operation and very low power consumption. The experimental results obtained by using a simulated process are analysed and shows that the implementation can be done with success in industrial applications.
Unified commutation-pruning technique for efficient computation of composite DFTs
NASA Astrophysics Data System (ADS)
Castro-Palazuelos, David E.; Medina-Melendrez, Modesto Gpe.; Torres-Roman, Deni L.; Shkvarko, Yuriy V.
2015-12-01
An efficient computation of a composite length discrete Fourier transform (DFT), as well as a fast Fourier transform (FFT) of both time and space data sequences in uncertain (non-sparse or sparse) computational scenarios, requires specific processing algorithms. Traditional algorithms typically employ some pruning methods without any commutations, which prevents them from attaining the potential computational efficiency. In this paper, we propose an alternative unified approach with automatic commutations between three computational modalities aimed at efficient computations of the pruned DFTs adapted for variable composite lengths of the non-sparse input-output data. The first modality is an implementation of the direct computation of a composite length DFT, the second one employs the second-order recursive filtering method, and the third one performs the new pruned decomposed transform. The pruned decomposed transform algorithm performs the decimation in time or space (DIT) data acquisition domain and, then, decimation in frequency (DIF). The unified combination of these three algorithms is addressed as the DFTCOMM technique. Based on the treatment of the combinational-type hypotheses testing optimization problem of preferable allocations between all feasible commuting-pruning modalities, we have found the global optimal solution to the pruning problem that always requires a fewer or, at most, the same number of arithmetic operations than other feasible modalities. The DFTCOMM method outperforms the existing competing pruning techniques in the sense of attainable savings in the number of required arithmetic operations. It requires fewer or at most the same number of arithmetic operations for its execution than any other of the competing pruning methods reported in the literature. Finally, we provide the comparison of the DFTCOMM with the recently developed sparse fast Fourier transform (SFFT) algorithmic family. We feature that, in the sensing scenarios with sparse/non-sparse data Fourier spectrum, the DFTCOMM technique manifests robustness against such model uncertainties in the sense of insensitivity for sparsity/non-sparsity restrictions and the variability of the operating parameters.
Berg, Derek H
2008-04-01
The cognitive underpinnings of arithmetic calculation in children are noted to involve working memory; however, cognitive processes related to arithmetic calculation and working memory suggest that this relationship is more complex than stated previously. The purpose of this investigation was to examine the relative contributions of processing speed, short-term memory, working memory, and reading to arithmetic calculation in children. Results suggested four important findings. First, processing speed emerged as a significant contributor of arithmetic calculation only in relation to age-related differences in the general sample. Second, processing speed and short-term memory did not eliminate the contribution of working memory to arithmetic calculation. Third, individual working memory components--verbal working memory and visual-spatial working memory--each contributed unique variance to arithmetic calculation in the presence of all other variables. Fourth, a full model indicated that chronological age remained a significant contributor to arithmetic calculation in the presence of significant contributions from all other variables. Results are discussed in terms of directions for future research on working memory in arithmetic calculation.
The high accuracy data processing system of laser interferometry signals based on MSP430
NASA Astrophysics Data System (ADS)
Qi, Yong-yue; Lin, Yu-chi; Zhao, Mei-rong
2009-07-01
Generally speaking there are two orthogonal signals used in single-frequency laser interferometer for differentiating direction and electronic subdivision. However there usually exist three errors with the interferential signals: zero offsets error, unequal amplitude error and quadrature phase shift error. These three errors have a serious impact on subdivision precision. Based on Heydemann error compensation algorithm, it is proposed to achieve compensation of the three errors. Due to complicated operation of the Heydemann mode, a improved arithmetic is advanced to decrease the calculating time effectively in accordance with the special characteristic that only one item of data will be changed in each fitting algorithm operation. Then a real-time and dynamic compensatory circuit is designed. Taking microchip MSP430 as the core of hardware system, two input signals with the three errors are turned into digital quantity by the AD7862. After data processing in line with improved arithmetic, two ideal signals without errors are output by the AD7225. At the same time two original signals are turned into relevant square wave and imported to the differentiating direction circuit. The impulse exported from the distinguishing direction circuit is counted by the timer of the microchip. According to the number of the pulse and the soft subdivision the final result is showed by LED. The arithmetic and the circuit are adopted to test the capability of a laser interferometer with 8 times optical path difference and the measuring accuracy of 12-14nm is achieved.
NASA Astrophysics Data System (ADS)
Ossendrijver, Mathieu
2016-01-01
The idea of computing a body’s displacement as an area in time-velocity space is usually traced back to 14th-century Europe. I show that in four ancient Babylonian cuneiform tablets, Jupiter’s displacement along the ecliptic is computed as the area of a trapezoidal figure obtained by drawing its daily displacement against time. This interpretation is prompted by a newly discovered tablet on which the same computation is presented in an equivalent arithmetical formulation. The tablets date from 350 to 50 BCE. The trapezoid procedures offer the first evidence for the use of geometrical methods in Babylonian mathematical astronomy, which was thus far viewed as operating exclusively with arithmetical concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miltiadis Alamaniotis; Vivek Agarwal
This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are thenmore » inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.« less
Fast and precise thermoregulation system in physiological brain slice experiment
NASA Astrophysics Data System (ADS)
Sheu, Y. H.; Young, M. S.
1995-12-01
We have developed a fast and precise thermoregulation system incorporated within a physiological experiment on a brain slice. The thermoregulation system is used to control the temperature of a recording chamber in which the brain slice is placed. It consists of a single-chip microcomputer, a set command module, a display module, and an FLC module. A fuzzy control algorithm was developed and a fuzzy logic controller then designed for achieving fast, smooth thermostatic performance and providing precise temperature control with accuracy to 0.1 °C, from room temperature through 42 °C (experimental temperature range). The fuzzy logic controller is implemented by microcomputer software and related peripheral hardware circuits. Six operating modes of thermoregulation are offered with the system and this can be further extended according to experimental needs. The test results of this study demonstrate that the fuzzy control method is easily implemented by a microcomputer and also verifies that this method provides a simple way to achieve fast and precise high-performance control of a nonlinear thermoregulation system in a physiological brain slice experiment.
Ardeshir, A; Mohajeri, M
2018-06-01
The construction industry is known as one of the most dangerous industries, which not only requires sound operation of executive laws and regulations, but also necessitates the safety culture of all workers at workshops. Therefore, the aim of this research is to identify the factors of safety culture and ranking occupations in jobsites based on those factors in order to proactively improve the safety culture of construction projects and subsequently promote safety conditions and worksites. In this study, safety culture criteria are weighted by a combination of Fuzzy Decision Trail and Evaluation Laboratory and Fuzzy ANP methods. Next, different job positions in high-rise projects are ranked using the Fuzzy Technique for Order of Preference by Similarity to Ideal Solution method. Findings demonstrated that the project manager, site superintendent and supervisor occupations had the highest and labourers had the lowest level of safety culture in the high-rise construction industry. Furthermore, factors such as safety supervision and training must be considered more seriously in order to create a positive safety culture among workers.
Model predictive controller design for boost DC-DC converter using T-S fuzzy cost function
NASA Astrophysics Data System (ADS)
Seo, Sang-Wha; Kim, Yong; Choi, Han Ho
2017-11-01
This paper proposes a Takagi-Sugeno (T-S) fuzzy method to select cost function weights of finite control set model predictive DC-DC converter control algorithms. The proposed method updates the cost function weights at every sample time by using T-S type fuzzy rules derived from the common optimal control engineering knowledge that a state or input variable with an excessively large magnitude can be penalised by increasing the weight corresponding to the variable. The best control input is determined via the online optimisation of the T-S fuzzy cost function for all the possible control input sequences. This paper implements the proposed model predictive control algorithm in real time on a Texas Instruments TMS320F28335 floating-point Digital Signal Processor (DSP). Some experimental results are given to illuminate the practicality and effectiveness of the proposed control system under several operating conditions. The results verify that our method can yield not only good transient and steady-state responses (fast recovery time, small overshoot, zero steady-state error, etc.) but also insensitiveness to abrupt load or input voltage parameter variations.
Sparse Matrices in MATLAB: Design and Implementation
NASA Technical Reports Server (NTRS)
Gilbert, John R.; Moler, Cleve; Schreiber, Robert
1992-01-01
The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.
Mathematics Framework for California Public Schools, Kindergarten Through Grade Twelve.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento.
This report, prepared by a statewide Mathematics Advisory Committee, revises the framework in the Second Strands Report of 1972, expanding it to encompass kindergarten through grade 12. Strands for kindergarten through grade 8 are: arithmetic, numbers, and operations; geometry; measurement, problem solving/ applications; probability and…
Students’ Mathematical Literacy in Solving PISA Problems Based on Keirsey Personality Theory
NASA Astrophysics Data System (ADS)
Masriyah; Firmansyah, M. H.
2018-01-01
This research is descriptive-qualitative research. The purpose is to describe students’ mathematical literacy in solving PISA on space and shape content based on Keirsey personality theory. The subjects are four junior high school students grade eight with guardian, artisan, rational or idealist personality. Data collecting methods used test and interview. Data of Keirsey Personality test, PISA test, and interview were analysed. Profile of mathematical literacy of each subject are described as follows. In formulating, guardian subject identified mathematical aspects are formula of rectangle area and sides length; significant variables are terms/conditions in problem and formula of ever encountered question; translated into mathematical language those are measurement and arithmetic operations. In employing, he devised and implemented strategies using ease of calculation on area-subtraction principle; declared truth of result but the reason was less correct; didn’t use and switch between different representations. In interpreting, he declared result as area of house floor; declared reasonableness according measurement estimation. In formulating, artisan subject identified mathematical aspects are plane and sides length; significant variables are solution procedure on both of daily problem and ever encountered question; translated into mathematical language those are measurement, variables, and arithmetic operations as well as symbol representation. In employing, he devised and implemented strategies using two design comparison; declared truth of result without reason; used symbol representation only. In interpreting, he expressed result as floor area of house; declared reasonableness according measurement estimation. In formulating, rational subject identified mathematical aspects are scale and sides length; significant variables are solution strategy on ever encountered question; translated into mathematical language those are measurement, variable, arithmetic operation as well as symbol and graphic representation. In employing, he devised and implemented strategies using additional plane forming on area-subtraction principle; declared truth of result according calculation process; used and switched between symbol and graphic representation. In interpreting, he declared result as house area within terrace and wall; declared reasonableness according measurement estimation. In formulating, idealist subject identified mathematical aspects are sides length; significant variables are terms/condition in problem; translated into mathematical language those are measurement, variables, arithmetic operations as well as symbol and graphic representation. In employing, he devised and implemented strategies using trial and error and two design in process of finding solutions; declared truth of result according the use of two design of solution; used and switched between symbol and graphic representation. In interpreting, he declared result as floor area of house; declared reasonableness according measurement estimation.
A fuzzy logic approach to control anaerobic digestion.
Domnanovich, A M; Strik, D P; Zani, L; Pfeiffer, B; Karlovits, M; Braun, R; Holubar, P
2003-01-01
One of the goals of the EU-Project AMONCO (Advanced Prediction, Monitoring and Controlling of Anaerobic Digestion Process Behaviour towards Biogas Usage in Fuel Cells) is to create a control tool for the anaerobic digestion process, which predicts the volumetric organic loading rate (Bv) for the next day, to obtain a high biogas quality and production. The biogas should contain a high methane concentration (over 50%) and a low concentration of components toxic for fuel cells, e.g. hydrogen sulphide, siloxanes, ammonia and mercaptanes. For producing data to test the control tool, four 20 l anaerobic Continuously Stirred Tank Reactors (CSTR) are operated. For controlling two systems were investigated: a pure fuzzy logic system and a hybrid-system which contains a fuzzy based reactor condition calculation and a hierachial neural net in a cascade of optimisation algorithms.
Handheld CZT radiation detector
Murray, William S.; Butterfield, Kenneth B.; Baird, William
2004-08-24
A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.
Neural networks with fuzzy Petri nets for modeling a machining process
NASA Astrophysics Data System (ADS)
Hanna, Moheb M.
1998-03-01
The paper presents an intelligent architecture based a feedforward neural network with fuzzy Petri nets for modeling product quality in a CNC machining center. It discusses how the proposed architecture can be used for modeling, monitoring and control a product quality specification such as surface roughness. The surface roughness represents the output quality specification manufactured by a CNC machining center as a result of a milling process. The neural network approach employed the selected input parameters which defined by the machine operator via the CNC code. The fuzzy Petri nets approach utilized the exact input milling parameters, such as spindle speed, feed rate, tool diameter and coolant (off/on), which can be obtained via the machine or sensors system. An aim of the proposed architecture is to model the demanded quality of surface roughness as high, medium or low.
Implementation Of Fuzzy Automated Brake Controller Using TSK Algorithm
NASA Astrophysics Data System (ADS)
Mittal, Ruchi; Kaur, Magandeep
2010-11-01
In this paper an application of Fuzzy Logic for Automatic Braking system is proposed. Anti-blocking system (ABS) brake controllers pose unique challenges to the designer: a) For optimal performance, the controller must operate at an unstable equilibrium point, b) Depending on road conditions, the maximum braking torque may vary over a wide range, c) The tire slippage measurement signal, crucial for controller performance, is both highly uncertain and noisy. A digital controller design was chosen which combines a fuzzy logic element and a decision logic network. The controller identifies the current road condition and generates a command braking pressure signal Depending upon the speed and distance of train. This paper describes design criteria, and the decision and rule structure of the control system. The simulation results present the system's performance depending upon the varying speed and distance of the train.
Fuzzy Temporal Logic Based Railway Passenger Flow Forecast Model
Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun
2014-01-01
Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models. PMID:25431586
Use of Fuzzy Logic Systems for Assessment of Primary Faults
NASA Astrophysics Data System (ADS)
Petrović, Ivica; Jozsa, Lajos; Baus, Zoran
2015-09-01
In electric power systems, grid elements are often subjected to very complex and demanding disturbances or dangerous operating conditions. Determining initial fault or cause of those states is a difficult task. When fault occurs, often it is an imperative to disconnect affected grid element from the grid. This paper contains an overview of possibilities for using fuzzy logic in an assessment of primary faults in the transmission grid. The tool for this task is SCADA system, which is based on information of currents, voltages, events of protection devices and status of circuit breakers in the grid. The function model described with the membership function and fuzzy logic systems will be presented in the paper. For input data, diagnostics system uses information of protection devices tripping, states of circuit breakers and measurements of currents and voltages before and after faults.
Inconsistencies in Numerical Simulations of Dynamical Systems Using Interval Arithmetic
NASA Astrophysics Data System (ADS)
Nepomuceno, Erivelton G.; Peixoto, Márcia L. C.; Martins, Samir A. M.; Rodrigues, Heitor M.; Perc, Matjaž
Over the past few decades, interval arithmetic has been attracting widespread interest from the scientific community. With the expansion of computing power, scientific computing is encountering a noteworthy shift from floating-point arithmetic toward increased use of interval arithmetic. Notwithstanding the significant reliability of interval arithmetic, this paper presents a theoretical inconsistency in a simulation of dynamical systems using a well-known implementation of arithmetic interval. We have observed that two natural interval extensions present an empty intersection during a finite time range, which is contrary to the fundamental theorem of interval analysis. We have proposed a procedure to at least partially overcome this problem, based on the union of the two generated pseudo-orbits. This paper also shows a successful case of interval arithmetic application in the reduction of interval width size on the simulation of discrete map. The implications of our findings on the reliability of scientific computing using interval arithmetic have been properly addressed using two numerical examples.
Type-2 fuzzy logic control of a 2-DOF helicopter (TRMS system)
NASA Astrophysics Data System (ADS)
Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel
2014-09-01
The helicopter dynamic includes nonlinearities, parametric uncertainties and is subject to unknown external disturbances. Such complicated dynamics involve designing sophisticated control algorithms that can deal with these difficulties. In this paper, a type 2 fuzzy logic PID controller is proposed for TRMS (twin rotor mimo system) control problem. Using triangular membership functions and based on a human operator experience, two controllers are designed to control the position of the yaw and the pitch angles of the TRMS. Simulation results are given to illustrate the effectiveness of the proposed control scheme.
NASA Astrophysics Data System (ADS)
Milani, Armin Ebrahimi; Haghifam, Mahmood Reza
2008-10-01
The reconfiguration is an operation process used for optimization with specific objectives by means of changing the status of switches in a distribution network. In this paper each objectives is normalized with inspiration from fuzzy sets-to cause optimization more flexible- and formulized as a unique multi-objective function. The genetic algorithm is used for solving the suggested model, in which there is no risk of non-liner objective functions and constraints. The effectiveness of the proposed method is demonstrated through the examples.
Lonnemann, Jan; Li, Su; Zhao, Pei; Li, Peng; Linkersdörfer, Janosch; Lindberg, Sven; Hasselhorn, Marcus; Yan, Song
2017-01-01
Human beings are assumed to possess an approximate number system (ANS) dedicated to extracting and representing approximate numerical magnitude information. The ANS is assumed to be fundamental to arithmetic learning and has been shown to be associated with arithmetic performance. It is, however, still a matter of debate whether better arithmetic skills are reflected in the ANS. To address this issue, Chinese and German adults were compared regarding their performance in simple arithmetic tasks and in a non-symbolic numerical magnitude comparison task. Chinese participants showed a better performance in solving simple arithmetic tasks and faster reaction times in the non-symbolic numerical magnitude comparison task without making more errors than their German peers. These differences in performance could not be ascribed to differences in general cognitive abilities. Better arithmetic skills were thus found to be accompanied by a higher speed of retrieving non-symbolic numerical magnitude knowledge but not by a higher precision of non-symbolic numerical magnitude representations. The group difference in the speed of retrieving non-symbolic numerical magnitude knowledge was fully mediated by the performance in arithmetic tasks, suggesting that arithmetic skills shape non-symbolic numerical magnitude processing skills. PMID:28384191
Fuzzy C-means classification for corrosion evolution of steel images
NASA Astrophysics Data System (ADS)
Trujillo, Maite; Sadki, Mustapha
2004-05-01
An unavoidable problem of metal structures is their exposure to rust degradation during their operational life. Thus, the surfaces need to be assessed in order to avoid potential catastrophes. There is considerable interest in the use of patch repair strategies which minimize the project costs. However, to operate such strategies with confidence in the long useful life of the repair, it is essential that the condition of the existing coatings and the steel substrate can be accurately quantified and classified. This paper describes the application of fuzzy set theory for steel surfaces classification according to the steel rust time. We propose a semi-automatic technique to obtain image clustering using the Fuzzy C-means (FCM) algorithm and we analyze two kinds of data to study the classification performance. Firstly, we investigate the use of raw images" pixels without any pre-processing methods and neighborhood pixels. Secondly, we apply Gaussian noise to the images with different standard deviation to study the FCM method tolerance to Gaussian noise. The noisy images simulate the possible perturbations of the images due to the weather or rust deposits in the steel surfaces during typical on-site acquisition procedures
Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.
Ko, Chien-Ho
2013-01-01
Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.
Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images
NASA Astrophysics Data System (ADS)
Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin
2016-10-01
Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.
A fuzzy decision tree for fault classification.
Zio, Enrico; Baraldi, Piero; Popescu, Irina C
2008-02-01
In plant accident management, the control room operators are required to identify the causes of the accident, based on the different patterns of evolution of the monitored process variables thereby developing. This task is often quite challenging, given the large number of process parameters monitored and the intense emotional states under which it is performed. To aid the operators, various techniques of fault classification have been engineered. An important requirement for their practical application is the physical interpretability of the relationships among the process variables underpinning the fault classification. In this view, the present work propounds a fuzzy approach to fault classification, which relies on fuzzy if-then rules inferred from the clustering of available preclassified signal data, which are then organized in a logical and transparent decision tree structure. The advantages offered by the proposed approach are precisely that a transparent fault classification model is mined out of the signal data and that the underlying physical relationships among the process variables are easily interpretable as linguistic if-then rules that can be explicitly visualized in the decision tree structure. The approach is applied to a case study regarding the classification of simulated faults in the feedwater system of a boiling water reactor.
Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks
2013-01-01
Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism. PMID:23864830
Mostafa, Salama A; Mustapha, Aida; Mohammed, Mazin Abed; Ahmad, Mohd Sharifuddin; Mahmoud, Moamin A
2018-04-01
Autonomous agents are being widely used in many systems, such as ambient assisted-living systems, to perform tasks on behalf of humans. However, these systems usually operate in complex environments that entail uncertain, highly dynamic, or irregular workload. In such environments, autonomous agents tend to make decisions that lead to undesirable outcomes. In this paper, we propose a fuzzy-logic-based adjustable autonomy (FLAA) model to manage the autonomy of multi-agent systems that are operating in complex environments. This model aims to facilitate the autonomy management of agents and help them make competent autonomous decisions. The FLAA model employs fuzzy logic to quantitatively measure and distribute autonomy among several agents based on their performance. We implement and test this model in the Automated Elderly Movements Monitoring (AEMM-Care) system, which uses agents to monitor the daily movement activities of elderly users and perform fall detection and prevention tasks in a complex environment. The test results show that the FLAA model improves the accuracy and performance of these agents in detecting and preventing falls. Copyright © 2018 Elsevier B.V. All rights reserved.
Lonnemann, Jan; Linkersdörfer, Janosch; Hasselhorn, Marcus; Lindberg, Sven
2016-01-01
Symbolic numerical magnitude processing skills are assumed to be fundamental to arithmetic learning. It is, however, still an open question whether better arithmetic skills are reflected in symbolic numerical magnitude processing skills. To address this issue, Chinese and German third graders were compared regarding their performance in arithmetic tasks and in a symbolic numerical magnitude comparison task. Chinese children performed better in the arithmetic tasks and were faster in deciding which one of two Arabic numbers was numerically larger. The group difference in symbolic numerical magnitude processing was fully mediated by the performance in arithmetic tasks. We assume that a higher degree of familiarity with arithmetic in Chinese compared to German children leads to a higher speed of retrieving symbolic numerical magnitude knowledge. PMID:27630606
Bartelet, Dimona; Vaessen, Anniek; Blomert, Leo; Ansari, Daniel
2014-01-01
Relations between children's mathematics achievement and their basic number processing skills have been reported in both cross-sectional and longitudinal studies. Yet, some key questions are currently unresolved, including which kindergarten skills uniquely predict children's arithmetic fluency during the first year of formal schooling and the degree to which predictors are contingent on children's level of arithmetic proficiency. The current study assessed kindergarteners' non-symbolic and symbolic number processing efficiency. In addition, the contribution of children's underlying magnitude representations to differences in arithmetic achievement was assessed. Subsequently, in January of Grade 1, their arithmetic proficiency was assessed. Hierarchical regression analysis revealed that children's efficiency to compare digits, count, and estimate numerosities uniquely predicted arithmetic differences above and beyond the non-numerical factors included. Moreover, quantile regression analysis indicated that symbolic number processing efficiency was consistently a significant predictor of arithmetic achievement scores regardless of children's level of arithmetic proficiency, whereas their non-symbolic number processing efficiency was not. Finally, none of the task-specific effects indexing children's representational precision was significantly associated with arithmetic fluency. The implications of the results are 2-fold. First, the findings indicate that children's efficiency to process symbols is important for the development of their arithmetic fluency in Grade 1 above and beyond the influence of non-numerical factors. Second, the impact of children's non-symbolic number processing skills does not depend on their arithmetic achievement level given that they are selected from a nonclinical population. Copyright © 2013 Elsevier Inc. All rights reserved.
Reference set design for relational modeling of fuzzy systems
NASA Astrophysics Data System (ADS)
Lapohos, Tibor; Buchal, Ralph O.
1994-10-01
One of the keys to the successful relational modeling of fuzzy systems is the proper design of fuzzy reference sets. This has been discussed throughout the literature. In the frame of modeling a stochastic system, we analyze the problem numerically. First, we briefly describe the relational model and present the performance of the modeling in the most trivial case: the reference sets are triangle shaped. Next, we present a known fuzzy reference set generator algorithm (FRSGA) which is based on the fuzzy c-means (Fc-M) clustering algorithm. In the second section of this chapter we improve the previous FRSGA by adding a constraint to the Fc-M algorithm (modified Fc-M or MFc-M): two cluster centers are forced to coincide with the domain limits. This is needed to obtain properly shaped extreme linguistic reference values. We apply this algorithm to uniformly discretized domains of the variables involved. The fuzziness of the reference sets produced by both Fc-M and MFc-M is determined by a parameter, which in our experiments is modified iteratively. Each time, a new model is created and its performance analyzed. For certain algorithm parameter values both of these two algorithms have shortcomings. To eliminate the drawbacks of these two approaches, we develop a completely new generator algorithm for reference sets which we call Polyline. This algorithm and its performance are described in the last section. In all three cases, the modeling is performed for a variety of operators used in the inference engine and two defuzzification methods. Therefore our results depend neither on the system model order nor the experimental setup.
Fuzzy self-learning control for magnetic servo system
NASA Technical Reports Server (NTRS)
Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.
1994-01-01
It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.
Turkdogan-Aydinol, F Ilter; Yetilmezsoy, Kaan
2010-10-15
A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R(V)), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (+/-3)% and an average volumetric TCOD removal rate of 6.87 (+/-3.93) kg TCOD(removed)/m(3)-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98. 2010 Elsevier B.V. All rights reserved.
A BCM theory of meta-plasticity for online self-reorganizing fuzzy-associative learning.
Tan, Javan; Quek, Chai
2010-06-01
Self-organizing neurofuzzy approaches have matured in their online learning of fuzzy-associative structures under time-invariant conditions. To maximize their operative value for online reasoning, these self-sustaining mechanisms must also be able to reorganize fuzzy-associative knowledge in real-time dynamic environments. Hence, it is critical to recognize that they would require self-reorganizational skills to rebuild fluid associative structures when their existing organizations fail to respond well to changing circumstances. In this light, while Hebbian theory (Hebb, 1949) is the basic computational framework for associative learning, it is less attractive for time-variant online learning because it suffers from stability limitations that impedes unlearning. Instead, this paper adopts the Bienenstock-Cooper-Munro (BCM) theory of neurological learning via meta-plasticity principles (Bienenstock et al., 1982) that provides for both online associative and dissociative learning. For almost three decades, BCM theory has been shown to effectively brace physiological evidence of synaptic potentiation (association) and depression (dissociation) into a sound mathematical framework for computational learning. This paper proposes an interpretation of the BCM theory of meta-plasticity for an online self-reorganizing fuzzy-associative learning system to realize online-reasoning capabilities. Experimental findings are twofold: 1) the analysis using S&P-500 stock index illustrated that the self-reorganizing approach could follow the trajectory shifts in the time-variant S&P-500 index for about 60 years, and 2) the benchmark profiles showed that the fuzzy-associative approach yielded comparable results with other fuzzy-precision models with similar online objectives.
Fuzzy logic applied to prospecting for areas for installation of wood panel industries.
Dos Santos, Alexandre Rosa; Paterlini, Ewerthon Mattos; Fiedler, Nilton Cesar; Ribeiro, Carlos Antonio Alvares Soares; Lorenzon, Alexandre Simões; Domingues, Getulio Fonseca; Marcatti, Gustavo Eduardo; de Castro, Nero Lemos Martins; Teixeira, Thaisa Ribeiro; Dos Santos, Gleissy Mary Amaral Dino Alves; Juvanhol, Ronie Silva; Branco, Elvis Ricardo Figueira; Mota, Pedro Henrique Santos; da Silva, Lilianne Gomes; Pirovani, Daiani Bernardo; de Jesus, Waldir Cintra; Santos, Ana Carolina de Albuquerque; Leite, Helio Garcia; Iwakiri, Setsuo
2017-05-15
Prospecting for suitable areas for forestry operations, where the objective is a reduction in production and transportation costs, as well as the maximization of profits and available resources, constitutes an optimization problem. However, fuzzy logic is an alternative method for solving this problem. In the context of prospecting for suitable areas for the installation of wood panel industries, we propose applying fuzzy logic analysis for simulating the planting of different species and eucalyptus hybrids in Espírito Santo State, Brazil. The necessary methodological steps for this study are as follows: a) agriclimatological zoning of different species and eucalyptus hybrids; b) the selection of the vector variables; c) the application of the Euclidean distance to the vector variables; d) the application of fuzzy logic to matrix variables of the Euclidean distance; and e) the application of overlap fuzzy logic to locate areas for installation of wood panel industries. Among all the species and hybrids, Corymbia citriodora showed the highest percentage values for the combined very good and good classes, with 8.60%, followed by Eucalyptus grandis with 8.52%, Eucalyptus urophylla with 8.35% and Urograndis with 8.34%. The fuzzy logic analysis afforded flexibility in prospecting for suitable areas for the installation of wood panel industries in the Espírito Santo State can bring great economic and social benefits to the local population with the generation of jobs, income, tax revenues and GDP increase for the State and municipalities involved. The proposed methodology can be adapted to other areas and agricultural crops. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Boroushaki, Soheil; Malczewski, Jacek
2008-04-01
This paper focuses on the integration of GIS and an extension of the analytical hierarchy process (AHP) using quantifier-guided ordered weighted averaging (OWA) procedure. AHP_OWA is a multicriteria combination operator. The nature of the AHP_OWA depends on some parameters, which are expressed by means of fuzzy linguistic quantifiers. By changing the linguistic terms, AHP_OWA can generate a wide range of decision strategies. We propose a GIS-multicriteria evaluation (MCE) system through implementation of AHP_OWA within ArcGIS, capable of integrating linguistic labels within conventional AHP for spatial decision making. We suggest that the proposed GIS-MCE would simplify the definition of decision strategies and facilitate an exploratory analysis of multiple criteria by incorporating qualitative information within the analysis.
ERIC Educational Resources Information Center
Rhodes, Katherine T.; Branum-Martin, Lee; Washington, Julie A.; Fuchs, Lynn S.
2017-01-01
Using multitrait, multimethod data, and confirmatory factor analysis, the current study examined the effects of arithmetic item formatting and the possibility that across formats, abilities other than arithmetic may contribute to children's answers. Measurement hypotheses were guided by several leading theories of arithmetic cognition. With a…
Personal Experience and Arithmetic Meaning in Semantic Dementia
ERIC Educational Resources Information Center
Julien, Camille L.; Neary, David; Snowden, Julie S.
2010-01-01
Arithmetic skills are generally claimed to be preserved in semantic dementia (SD), suggesting functional independence of arithmetic knowledge from other aspects of semantic memory. However, in a recent case series analysis we showed that arithmetic performance in SD is not entirely normal. The finding of a direct association between severity of…
40 CFR 60.273a - Emission monitoring.
Code of Federal Regulations, 2011 CFR
2011-07-01
... melting and refining period. All visible emissions observations shall be conducted in accordance with... operating in the meltdown and refining period. Shop opacity shall be determined as the arithmetic average of... could lead to an alarm in the monitoring plan, adequately explains why it is not feasible to alleviate...
40 CFR 60.273a - Emission monitoring.
Code of Federal Regulations, 2010 CFR
2010-07-01
... melting and refining period. All visible emissions observations shall be conducted in accordance with... operating in the meltdown and refining period. Shop opacity shall be determined as the arithmetic average of... could lead to an alarm in the monitoring plan, adequately explains why it is not feasible to alleviate...
MIDWEST PROGRAM ON AIRBORNE TELEVISION INSTRUCTION -- A REGIONAL EXPLORATION IN EDUCATION.
ERIC Educational Resources Information Center
IVEY, JOHN E.; AND OTHERS
STARTING IN FEBRUARY 1961, THE MIDWEST PROGRAM ON AIRBORNE TELEVISION INSTRUCTION (MPATI) TRANSMITTED COURSES IN FOREIGN LANGUAGES, SCIENCE, ARITHMETIC, ART, THE HUMANITIES, MUSIC, SOCIAL STUDIES, AND INTERNATIONAL RELATIONS TO 18 SCHOOLS IN THE MIDWEST. THE AIRBORNE TELECAST OPERATED OVER NORTH CENTRAL INDIANA AND TRANSMITTED COURSES OVER AN AREA…
The Functionator 3000: Transforming Numbers and Children
ERIC Educational Resources Information Center
Fisher, Elaine Cerrato; Roy, George; Reeves, Charles
2013-01-01
Mrs. Fisher's class was learning about arithmetic functions by pretending to operate real-world "function machines" (Reeves 2006). Functions are a unifying mathematics topic, and a great deal of emphasis is placed on understanding them in prekindergarten through grade 12 (Kilpatrick and Izsák 2008). In its Algebra Content Standard, the…
Non-Symbolic Halving in an Amazonian Indigene Group
ERIC Educational Resources Information Center
McCrink, Koleen; Spelke, Elizabeth S.; Dehaene, Stanislas; Pica, Pierre
2013-01-01
Much research supports the existence of an Approximate Number System (ANS) that is recruited by infants, children, adults, and non-human animals to generate coarse, non-symbolic representations of number. This system supports simple arithmetic operations such as addition, subtraction, and ordering of amounts. The current study tests whether an…
Can Percentiles Replace Raw Scores in the Statistical Analysis of Test Data?
ERIC Educational Resources Information Center
Zimmerman, Donald W.; Zumbo, Bruno D.
2005-01-01
Educational and psychological testing textbooks typically warn of the inappropriateness of performing arithmetic operations and statistical analysis on percentiles instead of raw scores. This seems inconsistent with the well-established finding that transforming scores to ranks and using nonparametric methods often improves the validity and power…
ERIC Educational Resources Information Center
Marine Corps Inst., Washington, DC.
This course is designed to review the arithmetic skills used by many Marines in the daily pursuance of their duties. It consists of six study units: (1) number systems and operations; (2) fractions and percents; (3) introduction to algebra; (4) units of measurement (considering both the metric and United States systems); (5) geometric forms; and…
Using the Relational Paradigm: Effects on Pupils' Reasoning in Solving Additive Word Problems
ERIC Educational Resources Information Center
Polotskaia, Elena; Savard, Annie
2018-01-01
Pupils' difficulties in solving word problems continue to attract attention: while researchers highlight the importance of relational reasoning and modelling, school curricula typically use short word problems to develop pupils' knowledge of arithmetic operations and calculation strategies. The Relational Paradigm attributes the leading role in…
ERIC Educational Resources Information Center
Pape, Stephen J.
2004-01-01
Many children read mathematics word problems and directly translate them to arithmetic operations. More sophisticated problem solvers transform word problems into object-based or mental models. Subsequent solutions are often qualitatively different because these models differentially support cognitive processing. Based on a conception of problem…
Fuzzy Integral-Based Gaze Control of a Robotic Head for Human Robot Interaction.
Yoo, Bum-Soo; Kim, Jong-Hwan
2015-09-01
During the last few decades, as a part of effort to enhance natural human robot interaction (HRI), considerable research has been carried out to develop human-like gaze control. However, most studies did not consider hardware implementation, real-time processing, and the real environment, factors that should be taken into account to achieve natural HRI. This paper proposes a fuzzy integral-based gaze control algorithm, operating in real-time and the real environment, for a robotic head. We formulate the gaze control as a multicriteria decision making problem and devise seven human gaze-inspired criteria. Partial evaluations of all candidate gaze directions are carried out with respect to the seven criteria defined from perceived visual, auditory, and internal inputs, and fuzzy measures are assigned to a power set of the criteria to reflect the user defined preference. A fuzzy integral of the partial evaluations with respect to the fuzzy measures is employed to make global evaluations of all candidate gaze directions. The global evaluation values are adjusted by applying inhibition of return and are compared with the global evaluation values of the previous gaze directions to decide the final gaze direction. The effectiveness of the proposed algorithm is demonstrated with a robotic head, developed in the Robot Intelligence Technology Laboratory at Korea Advanced Institute of Science and Technology, through three interaction scenarios and three comparison scenarios with another algorithm.
NASA Astrophysics Data System (ADS)
Lohani, A. K.; Kumar, Rakesh; Singh, R. D.
2012-06-01
SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Aleksandr I.; Lazarev, Alexander A.; Magas, Taras E.
2010-04-01
Equivalence models (EM) advantages of neural networks (NN) are shown in paper. EMs are based on vectormatrix procedures with basic operations of continuous neurologic: normalized vector operations "equivalence", "nonequivalence", "autoequivalence", "autononequivalence". The capacity of NN on the basis of EM and of its modifications, including auto-and heteroassociative memories for 2D images, exceeds in several times quantity of neurons. Such neuroparadigms are very perspective for processing, recognition, storing large size and strongly correlated images. A family of "normalized equivalence-nonequivalence" neuro-fuzzy logic operations on the based of generalized operations fuzzy-negation, t-norm and s-norm is elaborated. A biologically motivated concept and time pulse encoding principles of continuous logic photocurrent reflexions and sample-storage devices with pulse-width photoconverters have allowed us to design generalized structures for realization of the family of normalized linear vector operations "equivalence"-"nonequivalence". Simulation results show, that processing time in such circuits does not exceed units of micro seconds. Circuits are simple, have low supply voltage (1-3 V), low power consumption (milliwatts), low levels of input signals (microwatts), integrated construction, satisfy the problem of interconnections and cascading.
Early but not late blindness leads to enhanced arithmetic and working memory abilities.
Dormal, Valérie; Crollen, Virginie; Baumans, Christine; Lepore, Franco; Collignon, Olivier
2016-10-01
Behavioural and neurophysiological evidence suggest that vision plays an important role in the emergence and development of arithmetic abilities. However, how visual deprivation impacts on the development of arithmetic processing remains poorly understood. We compared the performances of early (EB), late blind (LB) and sighted control (SC) individuals during various arithmetic tasks involving addition, subtraction and multiplication of various complexities. We also assessed working memory (WM) performances to determine if they relate to a blind person's arithmetic capacities. Results showed that EB participants performed better than LB and SC in arithmetic tasks, especially in conditions in which verbal routines and WM abilities are needed. Moreover, EB participants also showed higher WM abilities. Together, our findings demonstrate that the absence of developmental vision does not prevent the development of refined arithmetic skills and can even trigger the refinement of these abilities in specific tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Long, Imogen; Malone, Stephanie A; Tolan, Anne; Burgoyne, Kelly; Heron-Delaney, Michelle; Witteveen, Kate; Hulme, Charles
2016-12-01
Following on from ideas developed by Gerstmann, a body of work has suggested that impairments in finger gnosis may be causally related to children's difficulties in learning arithmetic. We report a study with a large sample of typically developing children (N=197) in which we assessed finger gnosis and arithmetic along with a range of other relevant cognitive predictors of arithmetic skills (vocabulary, counting, and symbolic and nonsymbolic magnitude judgments). Contrary to some earlier claims, we found no meaningful association between finger gnosis and arithmetic skills. Counting and symbolic magnitude comparison were, however, powerful predictors of arithmetic skills, replicating a number of earlier findings. Our findings seriously question theories that posit either a simple association or a causal connection between finger gnosis and the development of arithmetic skills. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
[Acquisition of arithmetic knowledge].
Fayol, Michel
2008-01-01
The focus of this paper is on contemporary research on the number counting and arithmetical competencies that emerge during infancy, the preschool years, and the elementary school. I provide a brief overview of the evolution of children's conceptual knowledge of arithmetic knowledge, the acquisition and use of counting and how they solve simple arithmetic problems (e.g. 4 + 3).