Sample records for fuzzy clustering algorithm

  1. Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions.

    PubMed

    Zhu, Lin; Chung, Fu-Lai; Wang, Shitong

    2009-06-01

    The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities.

  2. Information Clustering Based on Fuzzy Multisets.

    ERIC Educational Resources Information Center

    Miyamoto, Sadaaki

    2003-01-01

    Proposes a fuzzy multiset model for information clustering with application to information retrieval on the World Wide Web. Highlights include search engines; term clustering; document clustering; algorithms for calculating cluster centers; theoretical properties concerning clustering algorithms; and examples to show how the algorithms work.…

  3. Hybrid fuzzy cluster ensemble framework for tumor clustering from biomolecular data.

    PubMed

    Yu, Zhiwen; Chen, Hantao; You, Jane; Han, Guoqiang; Li, Le

    2013-01-01

    Cancer class discovery using biomolecular data is one of the most important tasks for cancer diagnosis and treatment. Tumor clustering from gene expression data provides a new way to perform cancer class discovery. Most of the existing research works adopt single-clustering algorithms to perform tumor clustering is from biomolecular data that lack robustness, stability, and accuracy. To further improve the performance of tumor clustering from biomolecular data, we introduce the fuzzy theory into the cluster ensemble framework for tumor clustering from biomolecular data, and propose four kinds of hybrid fuzzy cluster ensemble frameworks (HFCEF), named as HFCEF-I, HFCEF-II, HFCEF-III, and HFCEF-IV, respectively, to identify samples that belong to different types of cancers. The difference between HFCEF-I and HFCEF-II is that they adopt different ensemble generator approaches to generate a set of fuzzy matrices in the ensemble. Specifically, HFCEF-I applies the affinity propagation algorithm (AP) to perform clustering on the sample dimension and generates a set of fuzzy matrices in the ensemble based on the fuzzy membership function and base samples selected by AP. HFCEF-II adopts AP to perform clustering on the attribute dimension, generates a set of subspaces, and obtains a set of fuzzy matrices in the ensemble by performing fuzzy c-means on subspaces. Compared with HFCEF-I and HFCEF-II, HFCEF-III and HFCEF-IV consider the characteristics of HFCEF-I and HFCEF-II. HFCEF-III combines HFCEF-I and HFCEF-II in a serial way, while HFCEF-IV integrates HFCEF-I and HFCEF-II in a concurrent way. HFCEFs adopt suitable consensus functions, such as the fuzzy c-means algorithm or the normalized cut algorithm (Ncut), to summarize generated fuzzy matrices, and obtain the final results. The experiments on real data sets from UCI machine learning repository and cancer gene expression profiles illustrate that 1) the proposed hybrid fuzzy cluster ensemble frameworks work well on real data sets, especially biomolecular data, and 2) the proposed approaches are able to provide more robust, stable, and accurate results when compared with the state-of-the-art single clustering algorithms and traditional cluster ensemble approaches.

  4. Fuzzy Subspace Clustering

    NASA Astrophysics Data System (ADS)

    Borgelt, Christian

    In clustering we often face the situation that only a subset of the available attributes is relevant for forming clusters, even though this may not be known beforehand. In such cases it is desirable to have a clustering algorithm that automatically weights attributes or even selects a proper subset. In this paper I study such an approach for fuzzy clustering, which is based on the idea to transfer an alternative to the fuzzifier (Klawonn and Höppner, What is fuzzy about fuzzy clustering? Understanding and improving the concept of the fuzzifier, In: Proc. 5th Int. Symp. on Intelligent Data Analysis, 254-264, Springer, Berlin, 2003) to attribute weighting fuzzy clustering (Keller and Klawonn, Int J Uncertain Fuzziness Knowl Based Syst 8:735-746, 2000). In addition, by reformulating Gustafson-Kessel fuzzy clustering, a scheme for weighting and selecting principal axes can be obtained. While in Borgelt (Feature weighting and feature selection in fuzzy clustering, In: Proc. 17th IEEE Int. Conf. on Fuzzy Systems, IEEE Press, Piscataway, NJ, 2008) I already presented such an approach for a global selection of attributes and principal axes, this paper extends it to a cluster-specific selection, thus arriving at a fuzzy subspace clustering algorithm (Parsons, Haque, and Liu, 2004).

  5. Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI.

    PubMed

    Kannan, S R; Ramathilagam, S; Devi, Pandiyarajan; Sathya, A

    2012-02-01

    Segmentation of medical images is a difficult and challenging problem due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. Many researchers have applied various techniques however fuzzy c-means (FCM) based algorithms is more effective compared to other methods. The objective of this work is to develop some robust fuzzy clustering segmentation systems for effective segmentation of DCE - breast MRI. This paper obtains the robust fuzzy clustering algorithms by incorporating kernel methods, penalty terms, tolerance of the neighborhood attraction, additional entropy term and fuzzy parameters. The initial centers are obtained using initialization algorithm to reduce the computation complexity and running time of proposed algorithms. Experimental works on breast images show that the proposed algorithms are effective to improve the similarity measurement, to handle large amount of noise, to have better results in dealing the data corrupted by noise, and other artifacts. The clustering results of proposed methods are validated using Silhouette Method.

  6. Fuzzy Document Clustering Approach using WordNet Lexical Categories

    NASA Astrophysics Data System (ADS)

    Gharib, Tarek F.; Fouad, Mohammed M.; Aref, Mostafa M.

    Text mining refers generally to the process of extracting interesting information and knowledge from unstructured text. This area is growing rapidly mainly because of the strong need for analysing the huge and large amount of textual data that reside on internal file systems and the Web. Text document clustering provides an effective navigation mechanism to organize this large amount of data by grouping their documents into a small number of meaningful classes. In this paper we proposed a fuzzy text document clustering approach using WordNet lexical categories and Fuzzy c-Means algorithm. Some experiments are performed to compare efficiency of the proposed approach with the recently reported approaches. Experimental results show that Fuzzy clustering leads to great performance results. Fuzzy c-means algorithm overcomes other classical clustering algorithms like k-means and bisecting k-means in both clustering quality and running time efficiency.

  7. Optimizing Energy Consumption in Vehicular Sensor Networks by Clustering Using Fuzzy C-Means and Fuzzy Subtractive Algorithms

    NASA Astrophysics Data System (ADS)

    Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.

    2017-09-01

    Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  8. Adaptive fuzzy system for 3-D vision

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda

    1993-01-01

    An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.

  9. Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization

    NASA Astrophysics Data System (ADS)

    Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li

    2018-04-01

    Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.

  10. Forecasting Jakarta composite index (IHSG) based on chen fuzzy time series and firefly clustering algorithm

    NASA Astrophysics Data System (ADS)

    Ningrum, R. W.; Surarso, B.; Farikhin; Safarudin, Y. M.

    2018-03-01

    This paper proposes the combination of Firefly Algorithm (FA) and Chen Fuzzy Time Series Forecasting. Most of the existing fuzzy forecasting methods based on fuzzy time series use the static length of intervals. Therefore, we apply an artificial intelligence, i.e., Firefly Algorithm (FA) to set non-stationary length of intervals for each cluster on Chen Method. The method is evaluated by applying on the Jakarta Composite Index (IHSG) and compare with classical Chen Fuzzy Time Series Forecasting. Its performance verified through simulation using Matlab.

  11. Fuzzy jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  12. Fuzzy jets

    DOE PAGES

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; ...

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  13. The implementation of hybrid clustering using fuzzy c-means and divisive algorithm for analyzing DNA human Papillomavirus cause of cervical cancer

    NASA Astrophysics Data System (ADS)

    Andryani, Diyah Septi; Bustamam, Alhadi; Lestari, Dian

    2017-03-01

    Clustering aims to classify the different patterns into groups called clusters. In this clustering method, we use n-mers frequency to calculate the distance matrix which is considered more accurate than using the DNA alignment. The clustering results could be used to discover biologically important sub-sections and groups of genes. Many clustering methods have been developed, while hard clustering methods considered less accurate than fuzzy clustering methods, especially if it is used for outliers data. Among fuzzy clustering methods, fuzzy c-means is one the best known for its accuracy and simplicity. Fuzzy c-means clustering uses membership function variable, which refers to how likely the data could be members into a cluster. Fuzzy c-means clustering works using the principle of minimizing the objective function. Parameters of membership function in fuzzy are used as a weighting factor which is also called the fuzzier. In this study we implement hybrid clustering using fuzzy c-means and divisive algorithm which could improve the accuracy of cluster membership compare to traditional partitional approach only. In this study fuzzy c-means is used in the first step to find partition results. Furthermore divisive algorithms will run on the second step to find sub-clusters and dendogram of phylogenetic tree. To find the best number of clusters is determined using the minimum value of Davies Bouldin Index (DBI) of the cluster results. In this research, the results show that the methods introduced in this paper is better than other partitioning methods. Finally, we found 3 clusters with DBI value of 1.126628 at first step of clustering. Moreover, DBI values after implementing the second step of clustering are always producing smaller IDB values compare to the results of using first step clustering only. This condition indicates that the hybrid approach in this study produce better performance of the cluster results, in term its DBI values.

  14. Collaborative filtering recommendation model based on fuzzy clustering algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Ye; Zhang, Yunhua

    2018-05-01

    As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.

  15. An effective fuzzy kernel clustering analysis approach for gene expression data.

    PubMed

    Sun, Lin; Xu, Jiucheng; Yin, Jiaojiao

    2015-01-01

    Fuzzy clustering is an important tool for analyzing microarray data. A major problem in applying fuzzy clustering method to microarray gene expression data is the choice of parameters with cluster number and centers. This paper proposes a new approach to fuzzy kernel clustering analysis (FKCA) that identifies desired cluster number and obtains more steady results for gene expression data. First of all, to optimize characteristic differences and estimate optimal cluster number, Gaussian kernel function is introduced to improve spectrum analysis method (SAM). By combining subtractive clustering with max-min distance mean, maximum distance method (MDM) is proposed to determine cluster centers. Then, the corresponding steps of improved SAM (ISAM) and MDM are given respectively, whose superiority and stability are illustrated through performing experimental comparisons on gene expression data. Finally, by introducing ISAM and MDM into FKCA, an effective improved FKCA algorithm is proposed. Experimental results from public gene expression data and UCI database show that the proposed algorithms are feasible for cluster analysis, and the clustering accuracy is higher than the other related clustering algorithms.

  16. A Self-Adaptive Fuzzy c-Means Algorithm for Determining the Optimal Number of Clusters

    PubMed Central

    Wang, Zhihao; Yi, Jing

    2016-01-01

    For the shortcoming of fuzzy c-means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of the dataset, automatically determined the possible maximum number of clusters instead of using the empirical rule n and obtained the optimal initial cluster centroids, improving the limitation of FCM that randomly selected cluster centroids lead the convergence result to the local minimum. Secondly, this paper, by introducing a penalty function, proposed a new fuzzy clustering validity index based on fuzzy compactness and separation, which ensured that when the number of clusters verged on that of objects in the dataset, the value of clustering validity index did not monotonically decrease and was close to zero, so that the optimal number of clusters lost robustness and decision function. Then, based on these studies, a self-adaptive FCM algorithm was put forward to estimate the optimal number of clusters by the iterative trial-and-error process. At last, experiments were done on the UCI, KDD Cup 1999, and synthetic datasets, which showed that the method not only effectively determined the optimal number of clusters, but also reduced the iteration of FCM with the stable clustering result. PMID:28042291

  17. Clustering of financial time series

    NASA Astrophysics Data System (ADS)

    D'Urso, Pierpaolo; Cappelli, Carmela; Di Lallo, Dario; Massari, Riccardo

    2013-05-01

    This paper addresses the topic of classifying financial time series in a fuzzy framework proposing two fuzzy clustering models both based on GARCH models. In general clustering of financial time series, due to their peculiar features, needs the definition of suitable distance measures. At this aim, the first fuzzy clustering model exploits the autoregressive representation of GARCH models and employs, in the framework of a partitioning around medoids algorithm, the classical autoregressive metric. The second fuzzy clustering model, also based on partitioning around medoids algorithm, uses the Caiado distance, a Mahalanobis-like distance, based on estimated GARCH parameters and covariances that takes into account the information about the volatility structure of time series. In order to illustrate the merits of the proposed fuzzy approaches an application to the problem of classifying 29 time series of Euro exchange rates against international currencies is presented and discussed, also comparing the fuzzy models with their crisp version.

  18. An Island Grouping Genetic Algorithm for Fuzzy Partitioning Problems

    PubMed Central

    Salcedo-Sanz, S.; Del Ser, J.; Geem, Z. W.

    2014-01-01

    This paper presents a novel fuzzy clustering technique based on grouping genetic algorithms (GGAs), which are a class of evolutionary algorithms especially modified to tackle grouping problems. Our approach hinges on a GGA devised for fuzzy clustering by means of a novel encoding of individuals (containing elements and clusters sections), a new fitness function (a superior modification of the Davies Bouldin index), specially tailored crossover and mutation operators, and the use of a scheme based on a local search and a parallelization process, inspired from an island-based model of evolution. The overall performance of our approach has been assessed over a number of synthetic and real fuzzy clustering problems with different objective functions and distance measures, from which it is concluded that the proposed approach shows excellent performance in all cases. PMID:24977235

  19. Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance

    PubMed Central

    Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao

    2018-01-01

    Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy. PMID:29795600

  20. Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance.

    PubMed

    Liu, Yongli; Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao

    2018-01-01

    Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy.

  1. A fuzzy clustering algorithm to detect planar and quadric shapes

    NASA Technical Reports Server (NTRS)

    Krishnapuram, Raghu; Frigui, Hichem; Nasraoui, Olfa

    1992-01-01

    In this paper, we introduce a new fuzzy clustering algorithm to detect an unknown number of planar and quadric shapes in noisy data. The proposed algorithm is computationally and implementationally simple, and it overcomes many of the drawbacks of the existing algorithms that have been proposed for similar tasks. Since the clustering is performed in the original image space, and since no features need to be computed, this approach is particularly suited for sparse data. The algorithm may also be used in pattern recognition applications.

  2. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    PubMed Central

    Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong

    2015-01-01

    In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896

  3. A curvature-based weighted fuzzy c-means algorithm for point clouds de-noising

    NASA Astrophysics Data System (ADS)

    Cui, Xin; Li, Shipeng; Yan, Xiutian; He, Xinhua

    2018-04-01

    In order to remove the noise of three-dimensional scattered point cloud and smooth the data without damnify the sharp geometric feature simultaneity, a novel algorithm is proposed in this paper. The feature-preserving weight is added to fuzzy c-means algorithm which invented a curvature weighted fuzzy c-means clustering algorithm. Firstly, the large-scale outliers are removed by the statistics of r radius neighboring points. Then, the algorithm estimates the curvature of the point cloud data by using conicoid parabolic fitting method and calculates the curvature feature value. Finally, the proposed clustering algorithm is adapted to calculate the weighted cluster centers. The cluster centers are regarded as the new points. The experimental results show that this approach is efficient to different scale and intensities of noise in point cloud with a high precision, and perform a feature-preserving nature at the same time. Also it is robust enough to different noise model.

  4. Adaptive fuzzy leader clustering of complex data sets in pattern recognition

    NASA Technical Reports Server (NTRS)

    Newton, Scott C.; Pemmaraju, Surya; Mitra, Sunanda

    1992-01-01

    A modular, unsupervised neural network architecture for clustering and classification of complex data sets is presented. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system that learns on-line in a stable and efficient manner. The initial classification is performed in two stages: a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from fuzzy C-means system equations for the centroids and the membership values. The AFLC algorithm is applied to the Anderson Iris data and laser-luminescent fingerprint image data. It is concluded that the AFLC algorithm successfully classifies features extracted from real data, discrete or continuous.

  5. Cloud classification from satellite data using a fuzzy sets algorithm: A polar example

    NASA Technical Reports Server (NTRS)

    Key, J. R.; Maslanik, J. A.; Barry, R. G.

    1988-01-01

    Where spatial boundaries between phenomena are diffuse, classification methods which construct mutually exclusive clusters seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each observation to all clusters, with membership values as a function of distance to the cluster center. The FCM algorithm is applied to AVHRR data for the purpose of classifying polar clouds and surfaces. Careful analysis of the fuzzy sets can provide information on which spectral channels are best suited to the classification of particular features, and can help determine likely areas of misclassification. General agreement in the resulting classes and cloud fraction was found between the FCM algorithm, a manual classification, and an unsupervised maximum likelihood classifier.

  6. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  7. A new neuro-fuzzy training algorithm for identifying dynamic characteristics of smart dampers

    NASA Astrophysics Data System (ADS)

    Dzung Nguyen, Sy; Choi, Seung-Bok

    2012-08-01

    This paper proposes a new algorithm, named establishing neuro-fuzzy system (ENFS), to identify dynamic characteristics of smart dampers such as magnetorheological (MR) and electrorheological (ER) dampers. In the ENFS, data clustering is performed based on the proposed algorithm named partitioning data space (PDS). Firstly, the PDS builds data clusters in joint input-output data space with appropriate constraints. The role of these constraints is to create reasonable data distribution in clusters. The ENFS then uses these clusters to perform the following tasks. Firstly, the fuzzy sets expressing characteristics of data clusters are established. The structure of the fuzzy sets is adjusted to be suitable for features of the data set. Secondly, an appropriate structure of neuro-fuzzy (NF) expressed by an optimal number of labeled data clusters and the fuzzy-set groups is determined. After the ENFS is introduced, its effectiveness is evaluated by a prediction-error-comparative work between the proposed method and some other methods in identifying numerical data sets such as ‘daily data of stock A’, or in identifying a function. The ENFS is then applied to identify damping force characteristics of the smart dampers. In order to evaluate the effectiveness of the ENFS in identifying the damping forces of the smart dampers, the prediction errors are presented by comparing with experimental results.

  8. Developing the fuzzy c-means clustering algorithm based on maximum entropy for multitarget tracking in a cluttered environment

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing

    2018-01-01

    For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.

  9. A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering

    ERIC Educational Resources Information Center

    Chahine, Firas Safwan

    2012-01-01

    Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a major…

  10. A robust fuzzy local Information c-means clustering algorithm with noise detection

    NASA Astrophysics Data System (ADS)

    Shang, Jiayu; Li, Shiren; Huang, Junwei

    2018-04-01

    Fuzzy c-means clustering (FCM), especially with spatial constraints (FCM_S), is an effective algorithm suitable for image segmentation. Its reliability contributes not only to the presentation of fuzziness for belongingness of every pixel but also to exploitation of spatial contextual information. But these algorithms still remain some problems when processing the image with noise, they are sensitive to the parameters which have to be tuned according to prior knowledge of the noise. In this paper, we propose a new FCM algorithm, combining the gray constraints and spatial constraints, called spatial and gray-level denoised fuzzy c-means (SGDFCM) algorithm. This new algorithm conquers the parameter disadvantages mentioned above by considering the possibility of noise of each pixel, which aims to improve the robustness and obtain more detail information. Furthermore, the possibility of noise can be calculated in advance, which means the algorithm is effective and efficient.

  11. Adaptive Scaling of Cluster Boundaries for Large-Scale Social Media Data Clustering.

    PubMed

    Meng, Lei; Tan, Ah-Hwee; Wunsch, Donald C

    2016-12-01

    The large scale and complex nature of social media data raises the need to scale clustering techniques to big data and make them capable of automatically identifying data clusters with few empirical settings. In this paper, we present our investigation and three algorithms based on the fuzzy adaptive resonance theory (Fuzzy ART) that have linear computational complexity, use a single parameter, i.e., the vigilance parameter to identify data clusters, and are robust to modest parameter settings. The contribution of this paper lies in two aspects. First, we theoretically demonstrate how complement coding, commonly known as a normalization method, changes the clustering mechanism of Fuzzy ART, and discover the vigilance region (VR) that essentially determines how a cluster in the Fuzzy ART system recognizes similar patterns in the feature space. The VR gives an intrinsic interpretation of the clustering mechanism and limitations of Fuzzy ART. Second, we introduce the idea of allowing different clusters in the Fuzzy ART system to have different vigilance levels in order to meet the diverse nature of the pattern distribution of social media data. To this end, we propose three vigilance adaptation methods, namely, the activation maximization (AM) rule, the confliction minimization (CM) rule, and the hybrid integration (HI) rule. With an initial vigilance value, the resulting clustering algorithms, namely, the AM-ART, CM-ART, and HI-ART, can automatically adapt the vigilance values of all clusters during the learning epochs in order to produce better cluster boundaries. Experiments on four social media data sets show that AM-ART, CM-ART, and HI-ART are more robust than Fuzzy ART to the initial vigilance value, and they usually achieve better or comparable performance and much faster speed than the state-of-the-art clustering algorithms that also do not require a predefined number of clusters.

  12. Receptive field optimisation and supervision of a fuzzy spiking neural network.

    PubMed

    Glackin, Cornelius; Maguire, Liam; McDaid, Liam; Sayers, Heather

    2011-04-01

    This paper presents a supervised training algorithm that implements fuzzy reasoning on a spiking neural network. Neuron selectivity is facilitated using receptive fields that enable individual neurons to be responsive to certain spike train firing rates and behave in a similar manner as fuzzy membership functions. The connectivity of the hidden and output layers in the fuzzy spiking neural network (FSNN) is representative of a fuzzy rule base. Fuzzy C-Means clustering is utilised to produce clusters that represent the antecedent part of the fuzzy rule base that aid classification of the feature data. Suitable cluster widths are determined using two strategies; subjective thresholding and evolutionary thresholding respectively. The former technique typically results in compact solutions in terms of the number of neurons, and is shown to be particularly suited to small data sets. In the latter technique a pool of cluster candidates is generated using Fuzzy C-Means clustering and then a genetic algorithm is employed to select the most suitable clusters and to specify cluster widths. In both scenarios, the network is supervised but learning only occurs locally as in the biological case. The advantages and disadvantages of the network topology for the Fisher Iris and Wisconsin Breast Cancer benchmark classification tasks are demonstrated and directions of current and future work are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. A possibilistic approach to clustering

    NASA Technical Reports Server (NTRS)

    Krishnapuram, Raghu; Keller, James M.

    1993-01-01

    Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering methods in that total commitment of a vector to a given class is not required at each image pattern recognition iteration. Recently fuzzy clustering methods have shown spectacular ability to detect not only hypervolume clusters, but also clusters which are actually 'thin shells', i.e., curves and surfaces. Most analytic fuzzy clustering approaches are derived from the 'Fuzzy C-Means' (FCM) algorithm. The FCM uses the probabilistic constraint that the memberships of a data point across classes sum to one. This constraint was used to generate the membership update equations for an iterative algorithm. Recently, we cast the clustering problem into the framework of possibility theory using an approach in which the resulting partition of the data can be interpreted as a possibilistic partition, and the membership values may be interpreted as degrees of possibility of the points belonging to the classes. We show the ability of this approach to detect linear and quartic curves in the presence of considerable noise.

  14. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  15. Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering

    PubMed Central

    Vianney Kinani, Jean Marie; Gallegos Funes, Francisco; Mújica Vargas, Dante; Ramos Díaz, Eduardo; Arellano, Alfonso

    2017-01-01

    We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient's response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR) and fluid-attenuated inversion recovery (FLAIR) images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time. PMID:29158887

  16. Fast divide-and-conquer algorithm for evaluating polarization in classical force fields

    NASA Astrophysics Data System (ADS)

    Nocito, Dominique; Beran, Gregory J. O.

    2017-03-01

    Evaluation of the self-consistent polarization energy forms a major computational bottleneck in polarizable force fields. In large systems, the linear polarization equations are typically solved iteratively with techniques based on Jacobi iterations (JI) or preconditioned conjugate gradients (PCG). Two new variants of JI are proposed here that exploit domain decomposition to accelerate the convergence of the induced dipoles. The first, divide-and-conquer JI (DC-JI), is a block Jacobi algorithm which solves the polarization equations within non-overlapping sub-clusters of atoms directly via Cholesky decomposition, and iterates to capture interactions between sub-clusters. The second, fuzzy DC-JI, achieves further acceleration by employing overlapping blocks. Fuzzy DC-JI is analogous to an additive Schwarz method, but with distance-based weighting when averaging the fuzzy dipoles from different blocks. Key to the success of these algorithms is the use of K-means clustering to identify natural atomic sub-clusters automatically for both algorithms and to determine the appropriate weights in fuzzy DC-JI. The algorithm employs knowledge of the 3-D spatial interactions to group important elements in the 2-D polarization matrix. When coupled with direct inversion in the iterative subspace (DIIS) extrapolation, fuzzy DC-JI/DIIS in particular converges in a comparable number of iterations as PCG, but with lower computational cost per iteration. In the end, the new algorithms demonstrated here accelerate the evaluation of the polarization energy by 2-3 fold compared to existing implementations of PCG or JI/DIIS.

  17. A dynamic fuzzy genetic algorithm for natural image segmentation using adaptive mean shift

    NASA Astrophysics Data System (ADS)

    Arfan Jaffar, M.

    2017-01-01

    In this paper, a colour image segmentation approach based on hybridisation of adaptive mean shift (AMS), fuzzy c-mean and genetic algorithms (GAs) is presented. Image segmentation is the perceptual faction of pixels based on some likeness measure. GA with fuzzy behaviour is adapted to maximise the fuzzy separation and minimise the global compactness among the clusters or segments in spatial fuzzy c-mean (sFCM). It adds diversity to the search process to find the global optima. A simple fusion method has been used to combine the clusters to overcome the problem of over segmentation. The results show that our technique outperforms state-of-the-art methods.

  18. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering.

    PubMed

    Gong, Maoguo; Zhou, Zhiqiang; Ma, Jingjing

    2012-04-01

    This paper presents an unsupervised distribution-free change detection approach for synthetic aperture radar (SAR) images based on an image fusion strategy and a novel fuzzy clustering algorithm. The image fusion technique is introduced to generate a difference image by using complementary information from a mean-ratio image and a log-ratio image. In order to restrain the background information and enhance the information of changed regions in the fused difference image, wavelet fusion rules based on an average operator and minimum local area energy are chosen to fuse the wavelet coefficients for a low-frequency band and a high-frequency band, respectively. A reformulated fuzzy local-information C-means clustering algorithm is proposed for classifying changed and unchanged regions in the fused difference image. It incorporates the information about spatial context in a novel fuzzy way for the purpose of enhancing the changed information and of reducing the effect of speckle noise. Experiments on real SAR images show that the image fusion strategy integrates the advantages of the log-ratio operator and the mean-ratio operator and gains a better performance. The change detection results obtained by the improved fuzzy clustering algorithm exhibited lower error than its preexistences.

  19. Fuzzy-Logic Based Distributed Energy-Efficient Clustering Algorithm for Wireless Sensor Networks.

    PubMed

    Zhang, Ying; Wang, Jun; Han, Dezhi; Wu, Huafeng; Zhou, Rundong

    2017-07-03

    Due to the high-energy efficiency and scalability, the clustering routing algorithm has been widely used in wireless sensor networks (WSNs). In order to gather information more efficiently, each sensor node transmits data to its Cluster Head (CH) to which it belongs, by multi-hop communication. However, the multi-hop communication in the cluster brings the problem of excessive energy consumption of the relay nodes which are closer to the CH. These nodes' energy will be consumed more quickly than the farther nodes, which brings the negative influence on load balance for the whole networks. Therefore, we propose an energy-efficient distributed clustering algorithm based on fuzzy approach with non-uniform distribution (EEDCF). During CHs' election, we take nodes' energies, nodes' degree and neighbor nodes' residual energies into consideration as the input parameters. In addition, we take advantage of Takagi, Sugeno and Kang (TSK) fuzzy model instead of traditional method as our inference system to guarantee the quantitative analysis more reasonable. In our scheme, each sensor node calculates the probability of being as CH with the help of fuzzy inference system in a distributed way. The experimental results indicate EEDCF algorithm is better than some current representative methods in aspects of data transmission, energy consumption and lifetime of networks.

  20. QoE collaborative evaluation method based on fuzzy clustering heuristic algorithm.

    PubMed

    Bao, Ying; Lei, Weimin; Zhang, Wei; Zhan, Yuzhuo

    2016-01-01

    At present, to realize or improve the quality of experience (QoE) is a major goal for network media transmission service, and QoE evaluation is the basis for adjusting the transmission control mechanism. Therefore, a kind of QoE collaborative evaluation method based on fuzzy clustering heuristic algorithm is proposed in this paper, which is concentrated on service score calculation at the server side. The server side collects network transmission quality of service (QoS) parameter, node location data, and user expectation value from client feedback information. Then it manages the historical data in database through the "big data" process mode, and predicts user score according to heuristic rules. On this basis, it completes fuzzy clustering analysis, and generates service QoE score and management message, which will be finally fed back to clients. Besides, this paper mainly discussed service evaluation generative rules, heuristic evaluation rules and fuzzy clustering analysis methods, and presents service-based QoE evaluation processes. The simulation experiments have verified the effectiveness of QoE collaborative evaluation method based on fuzzy clustering heuristic rules.

  1. Performance analysis of unsupervised optimal fuzzy clustering algorithm for MRI brain tumor segmentation.

    PubMed

    Blessy, S A Praylin Selva; Sulochana, C Helen

    2015-01-01

    Segmentation of brain tumor from Magnetic Resonance Imaging (MRI) becomes very complicated due to the structural complexities of human brain and the presence of intensity inhomogeneities. To propose a method that effectively segments brain tumor from MR images and to evaluate the performance of unsupervised optimal fuzzy clustering (UOFC) algorithm for segmentation of brain tumor from MR images. Segmentation is done by preprocessing the MR image to standardize intensity inhomogeneities followed by feature extraction, feature fusion and clustering. Different validation measures are used to evaluate the performance of the proposed method using different clustering algorithms. The proposed method using UOFC algorithm produces high sensitivity (96%) and low specificity (4%) compared to other clustering methods. Validation results clearly show that the proposed method with UOFC algorithm effectively segments brain tumor from MR images.

  2. Modified fuzzy c-means applied to a Bragg grating-based spectral imager for material clustering

    NASA Astrophysics Data System (ADS)

    Rodríguez, Aida; Nieves, Juan Luis; Valero, Eva; Garrote, Estíbaliz; Hernández-Andrés, Javier; Romero, Javier

    2012-01-01

    We have modified the Fuzzy C-Means algorithm for an application related to segmentation of hyperspectral images. Classical fuzzy c-means algorithm uses Euclidean distance for computing sample membership to each cluster. We have introduced a different distance metric, Spectral Similarity Value (SSV), in order to have a more convenient similarity measure for reflectance information. SSV distance metric considers both magnitude difference (by the use of Euclidean distance) and spectral shape (by the use of Pearson correlation). Experiments confirmed that the introduction of this metric improves the quality of hyperspectral image segmentation, creating spectrally more dense clusters and increasing the number of correctly classified pixels.

  3. Possibilistic clustering for shape recognition

    NASA Technical Reports Server (NTRS)

    Keller, James M.; Krishnapuram, Raghu

    1993-01-01

    Clustering methods have been used extensively in computer vision and pattern recognition. Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering in that total commitment of a vector to a given class is not required at each iteration. Recently fuzzy clustering methods have shown spectacular ability to detect not only hypervolume clusters, but also clusters which are actually 'thin shells', i.e., curves and surfaces. Most analytic fuzzy clustering approaches are derived from Bezdek's Fuzzy C-Means (FCM) algorithm. The FCM uses the probabilistic constraint that the memberships of a data point across classes sum to one. This constraint was used to generate the membership update equations for an iterative algorithm. Unfortunately, the memberships resulting from FCM and its derivatives do not correspond to the intuitive concept of degree of belonging, and moreover, the algorithms have considerable trouble in noisy environments. Recently, the clustering problem was cast into the framework of possibility theory. Our approach was radically different from the existing clustering methods in that the resulting partition of the data can be interpreted as a possibilistic partition, and the membership values may be interpreted as degrees of possibility of the points belonging to the classes. An appropriate objective function whose minimum will characterize a good possibilistic partition of the data was constructed, and the membership and prototype update equations from necessary conditions for minimization of our criterion function were derived. The ability of this approach to detect linear and quartic curves in the presence of considerable noise is shown.

  4. Possibilistic clustering for shape recognition

    NASA Technical Reports Server (NTRS)

    Keller, James M.; Krishnapuram, Raghu

    1992-01-01

    Clustering methods have been used extensively in computer vision and pattern recognition. Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering in that total commitment of a vector to a given class is not required at each iteration. Recently fuzzy clustering methods have shown spectacular ability to detect not only hypervolume clusters, but also clusters which are actually 'thin shells', i.e., curves and surfaces. Most analytic fuzzy clustering approaches are derived from Bezdek's Fuzzy C-Means (FCM) algorithm. The FCM uses the probabilistic constraint that the memberships of a data point across classes sum to one. This constraint was used to generate the membership update equations for an iterative algorithm. Unfortunately, the memberships resulting from FCM and its derivatives do not correspond to the intuitive concept of degree of belonging, and moreover, the algorithms have considerable trouble in noisy environments. Recently, we cast the clustering problem into the framework of possibility theory. Our approach was radically different from the existing clustering methods in that the resulting partition of the data can be interpreted as a possibilistic partition, and the membership values may be interpreted as degrees of possibility of the points belonging to the classes. We constructed an appropriate objective function whose minimum will characterize a good possibilistic partition of the data, and we derived the membership and prototype update equations from necessary conditions for minimization of our criterion function. In this paper, we show the ability of this approach to detect linear and quartic curves in the presence of considerable noise.

  5. Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies

    NASA Astrophysics Data System (ADS)

    Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan

    2017-12-01

    Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.

  6. Automated segmentation of comet assay images using Gaussian filtering and fuzzy clustering.

    PubMed

    Sansone, Mario; Zeni, Olga; Esposito, Giovanni

    2012-05-01

    Comet assay is one of the most popular tests for the detection of DNA damage at single cell level. In this study, an algorithm for comet assay analysis has been proposed, aiming to minimize user interaction and providing reproducible measurements. The algorithm comprises two-steps: (a) comet identification via Gaussian pre-filtering and morphological operators; (b) comet segmentation via fuzzy clustering. The algorithm has been evaluated using comet images from human leukocytes treated with a commonly used DNA damaging agent. A comparison of the proposed approach with a commercial system has been performed. Results show that fuzzy segmentation can increase overall sensitivity, giving benefits in bio-monitoring studies where weak genotoxic effects are expected.

  7. Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model

    NASA Astrophysics Data System (ADS)

    Li, X. L.; Zhao, Q. H.; Li, Y.

    2017-09-01

    Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.

  8. Multiple Imputation based Clustering Validation (MIV) for Big Longitudinal Trial Data with Missing Values in eHealth.

    PubMed

    Zhang, Zhaoyang; Fang, Hua; Wang, Honggang

    2016-06-01

    Web-delivered trials are an important component in eHealth services. These trials, mostly behavior-based, generate big heterogeneous data that are longitudinal, high dimensional with missing values. Unsupervised learning methods have been widely applied in this area, however, validating the optimal number of clusters has been challenging. Built upon our multiple imputation (MI) based fuzzy clustering, MIfuzzy, we proposed a new multiple imputation based validation (MIV) framework and corresponding MIV algorithms for clustering big longitudinal eHealth data with missing values, more generally for fuzzy-logic based clustering methods. Specifically, we detect the optimal number of clusters by auto-searching and -synthesizing a suite of MI-based validation methods and indices, including conventional (bootstrap or cross-validation based) and emerging (modularity-based) validation indices for general clustering methods as well as the specific one (Xie and Beni) for fuzzy clustering. The MIV performance was demonstrated on a big longitudinal dataset from a real web-delivered trial and using simulation. The results indicate MI-based Xie and Beni index for fuzzy-clustering are more appropriate for detecting the optimal number of clusters for such complex data. The MIV concept and algorithms could be easily adapted to different types of clustering that could process big incomplete longitudinal trial data in eHealth services.

  9. Multiple Imputation based Clustering Validation (MIV) for Big Longitudinal Trial Data with Missing Values in eHealth

    PubMed Central

    Zhang, Zhaoyang; Wang, Honggang

    2016-01-01

    Web-delivered trials are an important component in eHealth services. These trials, mostly behavior-based, generate big heterogeneous data that are longitudinal, high dimensional with missing values. Unsupervised learning methods have been widely applied in this area, however, validating the optimal number of clusters has been challenging. Built upon our multiple imputation (MI) based fuzzy clustering, MIfuzzy, we proposed a new multiple imputation based validation (MIV) framework and corresponding MIV algorithms for clustering big longitudinal eHealth data with missing values, more generally for fuzzy-logic based clustering methods. Specifically, we detect the optimal number of clusters by auto-searching and -synthesizing a suite of MI-based validation methods and indices, including conventional (bootstrap or cross-validation based) and emerging (modularity-based) validation indices for general clustering methods as well as the specific one (Xie and Beni) for fuzzy clustering. The MIV performance was demonstrated on a big longitudinal dataset from a real web-delivered trial and using simulation. The results indicate MI-based Xie and Beni index for fuzzy-clustering is more appropriate for detecting the optimal number of clusters for such complex data. The MIV concept and algorithms could be easily adapted to different types of clustering that could process big incomplete longitudinal trial data in eHealth services. PMID:27126063

  10. Characterization and prediction of the backscattered form function of an immersed cylindrical shell using hybrid fuzzy clustering and bio-inspired algorithms.

    PubMed

    Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique

    2018-02-01

    The acoustic scattering of a plane wave by an elastic cylindrical shell is studied. A new approach is developed to predict the form function of an immersed cylindrical shell of the radius ratio b/a ('b' is the inner radius and 'a' is the outer radius). The prediction of the backscattered form function is investigated by a combined approach between fuzzy clustering algorithms and bio-inspired algorithms. Four famous fuzzy clustering algorithms: the fuzzy c-means (FCM), the Gustafson-Kessel algorithm (GK), the fuzzy c-regression model (FCRM) and the Gath-Geva algorithm (GG) are combined with particle swarm optimization and genetic algorithm. The symmetric and antisymmetric circumferential waves A, S 0 , A 1 , S 1 and S 2 are investigated in a reduced frequency (k 1 a) range extends over 0.1

  11. Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants

    PubMed Central

    Castro, Alfonso; Boveda, Carmen; Arcay, Bernardino; Sanjurjo, Pedro

    2016-01-01

    The detection of pulmonary nodules is one of the most studied problems in the field of medical image analysis due to the great difficulty in the early detection of such nodules and their social impact. The traditional approach involves the development of a multistage CAD system capable of informing the radiologist of the presence or absence of nodules. One stage in such systems is the detection of ROI (regions of interest) that may be nodules in order to reduce the space of the problem. This paper evaluates fuzzy clustering algorithms that employ different classification strategies to achieve this goal. After characterising these algorithms, the authors propose a new algorithm and different variations to improve the results obtained initially. Finally it is shown as the most recent developments in fuzzy clustering are able to detect regions that may be nodules in CT studies. The algorithms were evaluated using helical thoracic CT scans obtained from the database of the LIDC (Lung Image Database Consortium). PMID:27517049

  12. Multivariate Spatial Condition Mapping Using Subtractive Fuzzy Cluster Means

    PubMed Central

    Sabit, Hakilo; Al-Anbuky, Adnan

    2014-01-01

    Wireless sensor networks are usually deployed for monitoring given physical phenomena taking place in a specific space and over a specific duration of time. The spatio-temporal distribution of these phenomena often correlates to certain physical events. To appropriately characterise these events-phenomena relationships over a given space for a given time frame, we require continuous monitoring of the conditions. WSNs are perfectly suited for these tasks, due to their inherent robustness. This paper presents a subtractive fuzzy cluster means algorithm and its application in data stream mining for wireless sensor systems over a cloud-computing-like architecture, which we call sensor cloud data stream mining. Benchmarking on standard mining algorithms, the k-means and the FCM algorithms, we have demonstrated that the subtractive fuzzy cluster means model can perform high quality distributed data stream mining tasks comparable to centralised data stream mining. PMID:25313495

  13. Reference set design for relational modeling of fuzzy systems

    NASA Astrophysics Data System (ADS)

    Lapohos, Tibor; Buchal, Ralph O.

    1994-10-01

    One of the keys to the successful relational modeling of fuzzy systems is the proper design of fuzzy reference sets. This has been discussed throughout the literature. In the frame of modeling a stochastic system, we analyze the problem numerically. First, we briefly describe the relational model and present the performance of the modeling in the most trivial case: the reference sets are triangle shaped. Next, we present a known fuzzy reference set generator algorithm (FRSGA) which is based on the fuzzy c-means (Fc-M) clustering algorithm. In the second section of this chapter we improve the previous FRSGA by adding a constraint to the Fc-M algorithm (modified Fc-M or MFc-M): two cluster centers are forced to coincide with the domain limits. This is needed to obtain properly shaped extreme linguistic reference values. We apply this algorithm to uniformly discretized domains of the variables involved. The fuzziness of the reference sets produced by both Fc-M and MFc-M is determined by a parameter, which in our experiments is modified iteratively. Each time, a new model is created and its performance analyzed. For certain algorithm parameter values both of these two algorithms have shortcomings. To eliminate the drawbacks of these two approaches, we develop a completely new generator algorithm for reference sets which we call Polyline. This algorithm and its performance are described in the last section. In all three cases, the modeling is performed for a variety of operators used in the inference engine and two defuzzification methods. Therefore our results depend neither on the system model order nor the experimental setup.

  14. Lane detection based on color probability model and fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Jo, Kang-Hyun

    2018-04-01

    In the vehicle driver assistance systems, the accuracy and speed of lane line detection are the most important. This paper is based on color probability model and Fuzzy Local Information C-Means (FLICM) clustering algorithm. The Hough transform and the constraints of structural road are used to detect the lane line accurately. The global map of the lane line is drawn by the lane curve fitting equation. The experimental results show that the algorithm has good robustness.

  15. Logistics Enterprise Evaluation Model Based On Fuzzy Clustering Analysis

    NASA Astrophysics Data System (ADS)

    Fu, Pei-hua; Yin, Hong-bo

    In this thesis, we introduced an evaluation model based on fuzzy cluster algorithm of logistics enterprises. First of all,we present the evaluation index system which contains basic information, management level, technical strength, transport capacity,informatization level, market competition and customer service. We decided the index weight according to the grades, and evaluated integrate ability of the logistics enterprises using fuzzy cluster analysis method. In this thesis, we introduced the system evaluation module and cluster analysis module in detail and described how we achieved these two modules. At last, we gave the result of the system.

  16. Comments on "The multisynapse neural network and its application to fuzzy clustering".

    PubMed

    Yu, Jian; Hao, Pengwei

    2005-05-01

    In the above-mentioned paper, Wei and Fahn proposed a neural architecture, the multisynapse neural network, to solve constrained optimization problems including high-order, logarithmic, and sinusoidal forms, etc. As one of its main applications, a fuzzy bidirectional associative clustering network (FBACN) was proposed for fuzzy-partition clustering according to the objective-functional method. The connection between the objective-functional-based fuzzy c-partition algorithms and FBACN is the Lagrange multiplier approach. Unfortunately, the Lagrange multiplier approach was incorrectly applied so that FBACN does not equivalently minimize its corresponding constrained objective-function. Additionally, Wei and Fahn adopted traditional definition of fuzzy c-partition, which is not satisfied by FBACN. Therefore, FBACN can not solve constrained optimization problems, either.

  17. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain

    NASA Technical Reports Server (NTRS)

    Hall, Lawrence O.; Bensaid, Amine M.; Clarke, Laurence P.; Velthuizen, Robert P.; Silbiger, Martin S.; Bezdek, James C.

    1992-01-01

    Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms and a supervised computational neural network, a dynamic multilayered perception trained with the cascade correlation learning algorithm. Initial clinical results are presented on both normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. However, for a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed.

  18. Two generalizations of Kohonen clustering

    NASA Technical Reports Server (NTRS)

    Bezdek, James C.; Pal, Nikhil R.; Tsao, Eric C. K.

    1993-01-01

    The relationship between the sequential hard c-means (SHCM), learning vector quantization (LVQ), and fuzzy c-means (FCM) clustering algorithms is discussed. LVQ and SHCM suffer from several major problems. For example, they depend heavily on initialization. If the initial values of the cluster centers are outside the convex hull of the input data, such algorithms, even if they terminate, may not produce meaningful results in terms of prototypes for cluster representation. This is due in part to the fact that they update only the winning prototype for every input vector. The impact and interaction of these two families with Kohonen's self-organizing feature mapping (SOFM), which is not a clustering method, but which often leads ideas to clustering algorithms is discussed. Then two generalizations of LVQ that are explicitly designed as clustering algorithms are presented; these algorithms are referred to as generalized LVQ = GLVQ; and fuzzy LVQ = FLVQ. Learning rules are derived to optimize an objective function whose goal is to produce 'good clusters'. GLVQ/FLVQ (may) update every node in the clustering net for each input vector. Neither GLVQ nor FLVQ depends upon a choice for the update neighborhood or learning rate distribution - these are taken care of automatically. Segmentation of a gray tone image is used as a typical application of these algorithms to illustrate the performance of GLVQ/FLVQ.

  19. Fuzzy forecasting based on fuzzy-trend logical relationship groups.

    PubMed

    Chen, Shyi-Ming; Wang, Nai-Yi

    2010-10-01

    In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.

  20. Fuzzy Set Methods for Object Recognition in Space Applications

    NASA Technical Reports Server (NTRS)

    Keller, James M. (Editor)

    1992-01-01

    Progress on the following four tasks is described: (1) fuzzy set based decision methodologies; (2) membership calculation; (3) clustering methods (including derivation of pose estimation parameters), and (4) acquisition of images and testing of algorithms.

  1. Segmentation of dermatoscopic images by frequency domain filtering and k-means clustering algorithms.

    PubMed

    Rajab, Maher I

    2011-11-01

    Since the introduction of epiluminescence microscopy (ELM), image analysis tools have been extended to the field of dermatology, in an attempt to algorithmically reproduce clinical evaluation. Accurate image segmentation of skin lesions is one of the key steps for useful, early and non-invasive diagnosis of coetaneous melanomas. This paper proposes two image segmentation algorithms based on frequency domain processing and k-means clustering/fuzzy k-means clustering. The two methods are capable of segmenting and extracting the true border that reveals the global structure irregularity (indentations and protrusions), which may suggest excessive cell growth or regression of a melanoma. As a pre-processing step, Fourier low-pass filtering is applied to reduce the surrounding noise in a skin lesion image. A quantitative comparison of the techniques is enabled by the use of synthetic skin lesion images that model lesions covered with hair to which Gaussian noise is added. The proposed techniques are also compared with an established optimal-based thresholding skin-segmentation method. It is demonstrated that for lesions with a range of different border irregularity properties, the k-means clustering and fuzzy k-means clustering segmentation methods provide the best performance over a range of signal to noise ratios. The proposed segmentation techniques are also demonstrated to have similar performance when tested on real skin lesions representing high-resolution ELM images. This study suggests that the segmentation results obtained using a combination of low-pass frequency filtering and k-means or fuzzy k-means clustering are superior to the result that would be obtained by using k-means or fuzzy k-means clustering segmentation methods alone. © 2011 John Wiley & Sons A/S.

  2. Self-organization and clustering algorithms

    NASA Technical Reports Server (NTRS)

    Bezdek, James C.

    1991-01-01

    Kohonen's feature maps approach to clustering is often likened to the k or c-means clustering algorithms. Here, the author identifies some similarities and differences between the hard and fuzzy c-Means (HCM/FCM) or ISODATA algorithms and Kohonen's self-organizing approach. The author concludes that some differences are significant, but at the same time there may be some important unknown relationships between the two methodologies. Several avenues of research are proposed.

  3. Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm.

    PubMed

    Yang, Zhang; Shufan, Ye; Li, Guo; Weifeng, Ding

    2016-01-01

    The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method.

  4. Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm

    PubMed Central

    Yang, Zhang; Li, Guo; Weifeng, Ding

    2016-01-01

    The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method. PMID:27403428

  5. Fuzzy C-Means Algorithm for Segmentation of Aerial Photography Data Obtained Using Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Akinin, M. V.; Akinina, N. V.; Klochkov, A. Y.; Nikiforov, M. B.; Sokolova, A. V.

    2015-05-01

    The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.

  6. Distribution-based fuzzy clustering of electrical resistivity tomography images for interface detection

    NASA Astrophysics Data System (ADS)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J. E.; Oxby, L. S.; Bai, L.

    2014-04-01

    A novel method for the effective identification of bedrock subsurface elevation from electrical resistivity tomography images is described. Identifying subsurface boundaries in the topographic data can be difficult due to smoothness constraints used in inversion, so a statistical population-based approach is used that extends previous work in calculating isoresistivity surfaces. The analysis framework involves a procedure for guiding a clustering approach based on the fuzzy c-means algorithm. An approximation of resistivity distributions, found using kernel density estimation, was utilized as a means of guiding the cluster centroids used to classify data. A fuzzy method was chosen over hard clustering due to uncertainty in hard edges in the topography data, and a measure of clustering uncertainty was identified based on the reciprocal of cluster membership. The algorithm was validated using a direct comparison of known observed bedrock depths at two 3-D survey sites, using real-time GPS information of exposed bedrock by quarrying on one site, and borehole logs at the other. Results show similarly accurate detection as a leading isosurface estimation method, and the proposed algorithm requires significantly less user input and prior site knowledge. Furthermore, the method is effectively dimension-independent and will scale to data of increased spatial dimensions without a significant effect on the runtime. A discussion on the results by automated versus supervised analysis is also presented.

  7. Soft learning vector quantization and clustering algorithms based on ordered weighted aggregation operators.

    PubMed

    Karayiannis, N B

    2000-01-01

    This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms.

  8. Novel density-based and hierarchical density-based clustering algorithms for uncertain data.

    PubMed

    Zhang, Xianchao; Liu, Han; Zhang, Xiaotong

    2017-09-01

    Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Approximation Of Multi-Valued Inverse Functions Using Clustering And Sugeno Fuzzy Inference

    NASA Technical Reports Server (NTRS)

    Walden, Maria A.; Bikdash, Marwan; Homaifar, Abdollah

    1998-01-01

    Finding the inverse of a continuous function can be challenging and computationally expensive when the inverse function is multi-valued. Difficulties may be compounded when the function itself is difficult to evaluate. We show that we can use fuzzy-logic approximators such as Sugeno inference systems to compute the inverse on-line. To do so, a fuzzy clustering algorithm can be used in conjunction with a discriminating function to split the function data into branches for the different values of the forward function. These data sets are then fed into a recursive least-squares learning algorithm that finds the proper coefficients of the Sugeno approximators; each Sugeno approximator finds one value of the inverse function. Discussions about the accuracy of the approximation will be included.

  10. Implementation of Automatic Clustering Algorithm and Fuzzy Time Series in Motorcycle Sales Forecasting

    NASA Astrophysics Data System (ADS)

    Rasim; Junaeti, E.; Wirantika, R.

    2018-01-01

    Accurate forecasting for the sale of a product depends on the forecasting method used. The purpose of this research is to build motorcycle sales forecasting application using Fuzzy Time Series method combined with interval determination using automatic clustering algorithm. Forecasting is done using the sales data of motorcycle sales in the last ten years. Then the error rate of forecasting is measured using Means Percentage Error (MPE) and Means Absolute Percentage Error (MAPE). The results of forecasting in the one-year period obtained in this study are included in good accuracy.

  11. The cascaded moving k-means and fuzzy c-means clustering algorithms for unsupervised segmentation of malaria images

    NASA Astrophysics Data System (ADS)

    Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Halim, Nurul Hazwani Abd; Mohamed, Zeehaida

    2015-05-01

    Malaria is a life-threatening parasitic infectious disease that corresponds for nearly one million deaths each year. Due to the requirement of prompt and accurate diagnosis of malaria, the current study has proposed an unsupervised pixel segmentation based on clustering algorithm in order to obtain the fully segmented red blood cells (RBCs) infected with malaria parasites based on the thin blood smear images of P. vivax species. In order to obtain the segmented infected cell, the malaria images are first enhanced by using modified global contrast stretching technique. Then, an unsupervised segmentation technique based on clustering algorithm has been applied on the intensity component of malaria image in order to segment the infected cell from its blood cells background. In this study, cascaded moving k-means (MKM) and fuzzy c-means (FCM) clustering algorithms has been proposed for malaria slide image segmentation. After that, median filter algorithm has been applied to smooth the image as well as to remove any unwanted regions such as small background pixels from the image. Finally, seeded region growing area extraction algorithm has been applied in order to remove large unwanted regions that are still appeared on the image due to their size in which cannot be cleaned by using median filter. The effectiveness of the proposed cascaded MKM and FCM clustering algorithms has been analyzed qualitatively and quantitatively by comparing the proposed cascaded clustering algorithm with MKM and FCM clustering algorithms. Overall, the results indicate that segmentation using the proposed cascaded clustering algorithm has produced the best segmentation performances by achieving acceptable sensitivity as well as high specificity and accuracy values compared to the segmentation results provided by MKM and FCM algorithms.

  12. Distributed k-Means Algorithm and Fuzzy c-Means Algorithm for Sensor Networks Based on Multiagent Consensus Theory.

    PubMed

    Qin, Jiahu; Fu, Weiming; Gao, Huijun; Zheng, Wei Xing

    2016-03-03

    This paper is concerned with developing a distributed k-means algorithm and a distributed fuzzy c-means algorithm for wireless sensor networks (WSNs) where each node is equipped with sensors. The underlying topology of the WSN is supposed to be strongly connected. The consensus algorithm in multiagent consensus theory is utilized to exchange the measurement information of the sensors in WSN. To obtain a faster convergence speed as well as a higher possibility of having the global optimum, a distributed k-means++ algorithm is first proposed to find the initial centroids before executing the distributed k-means algorithm and the distributed fuzzy c-means algorithm. The proposed distributed k-means algorithm is capable of partitioning the data observed by the nodes into measure-dependent groups which have small in-group and large out-group distances, while the proposed distributed fuzzy c-means algorithm is capable of partitioning the data observed by the nodes into different measure-dependent groups with degrees of membership values ranging from 0 to 1. Simulation results show that the proposed distributed algorithms can achieve almost the same results as that given by the centralized clustering algorithms.

  13. Fractal dimension to classify the heart sound recordings with KNN and fuzzy c-mean clustering methods

    NASA Astrophysics Data System (ADS)

    Juniati, D.; Khotimah, C.; Wardani, D. E. K.; Budayasa, K.

    2018-01-01

    The heart abnormalities can be detected from heart sound. A heart sound can be heard directly with a stethoscope or indirectly by a phonocardiograph, a machine of the heart sound recording. This paper presents the implementation of fractal dimension theory to make a classification of phonocardiograms into a normal heart sound, a murmur, or an extrasystole. The main algorithm used to calculate the fractal dimension was Higuchi’s Algorithm. There were two steps to make a classification of phonocardiograms, feature extraction, and classification. For feature extraction, we used Discrete Wavelet Transform to decompose the signal of heart sound into several sub-bands depending on the selected level. After the decomposition process, the signal was processed using Fast Fourier Transform (FFT) to determine the spectral frequency. The fractal dimension of the FFT output was calculated using Higuchi Algorithm. The classification of fractal dimension of all phonocardiograms was done with KNN and Fuzzy c-mean clustering methods. Based on the research results, the best accuracy obtained was 86.17%, the feature extraction by DWT decomposition level 3 with the value of kmax 50, using 5-fold cross validation and the number of neighbors was 5 at K-NN algorithm. Meanwhile, for fuzzy c-mean clustering, the accuracy was 78.56%.

  14. Classification of posture maintenance data with fuzzy clustering algorithms

    NASA Technical Reports Server (NTRS)

    Bezdek, James C.

    1992-01-01

    Sensory inputs from the visual, vestibular, and proprioreceptive systems are integrated by the central nervous system to maintain postural equilibrium. Sustained exposure to microgravity causes neurosensory adaptation during spaceflight, which results in decreased postural stability until readaptation occurs upon return to the terrestrial environment. Data which simulate sensory inputs under various sensory organization test (SOT) conditions were collected in conjunction with Johnson Space Center postural control studies using a tilt-translation device (TTD). The University of West Florida applied the fuzzy c-meams (FCM) clustering algorithms to this data with a view towards identifying various states and stages of subjects experiencing such changes. Feature analysis, time step analysis, pooling data, response of the subjects, and the algorithms used are discussed.

  15. Application of fuzzy C-Means Algorithm for Determining Field of Interest in Information System Study STTH Medan

    NASA Astrophysics Data System (ADS)

    Rahman Syahputra, Edy; Agustina Dalimunthe, Yulia; Irvan

    2017-12-01

    Many students are confused in choosing their own field of specialization, ultimately choosing areas of specialization that are incompatible with a variety of reasons such as just following a friend or because of the area of interest of many choices without knowing whether they have Competencies in the chosen field of interest. This research aims to apply Clustering method with Fuzzy C-means algorithm to classify students in the chosen interest field. The Fuzzy C-Means algorithm is one of the easiest and often used algorithms in data grouping techniques because it makes efficient estimates and does not require many parameters. Several studies have led to the conclusion that the Fuzzy C-Means algorithm can be used to group data based on certain attributes. In this research will be used Fuzzy C-Means algorithm to classify student data based on the value of core subjects in the selection of specialization field. This study also tested the accuracy of the Fuzzy C-Means algorithm in the determination of interest area. The study was conducted on the STT-Harapan Medan Information System Study program, and the object of research is the value of all students of STT-Harapan Medan Information System Study Program 2012. From this research, it is expected to get the specialization field, according to the students' ability based on the prerequisite principal value.

  16. Fast detection of the fuzzy communities based on leader-driven algorithm

    NASA Astrophysics Data System (ADS)

    Fang, Changjian; Mu, Dejun; Deng, Zhenghong; Hu, Jun; Yi, Chen-He

    2018-03-01

    In this paper, we present the leader-driven algorithm (LDA) for learning community structure in networks. The algorithm allows one to find overlapping clusters in a network, an important aspect of real networks, especially social networks. The algorithm requires no input parameters and learns the number of clusters naturally from the network. It accomplishes this using leadership centrality in a clever manner. It identifies local minima of leadership centrality as followers which belong only to one cluster, and the remaining nodes are leaders which connect clusters. In this way, the number of clusters can be learned using only the network structure. The LDA is also an extremely fast algorithm, having runtime linear in the network size. Thus, this algorithm can be used to efficiently cluster extremely large networks.

  17. Fuzzy Kernel k-Medoids algorithm for anomaly detection problems

    NASA Astrophysics Data System (ADS)

    Rustam, Z.; Talita, A. S.

    2017-07-01

    Intrusion Detection System (IDS) is an essential part of security systems to strengthen the security of information systems. IDS can be used to detect the abuse by intruders who try to get into the network system in order to access and utilize the available data sources in the system. There are two approaches of IDS, Misuse Detection and Anomaly Detection (behavior-based intrusion detection). Fuzzy clustering-based methods have been widely used to solve Anomaly Detection problems. Other than using fuzzy membership concept to determine the object to a cluster, other approaches as in combining fuzzy and possibilistic membership or feature-weighted based methods are also used. We propose Fuzzy Kernel k-Medoids that combining fuzzy and possibilistic membership as a powerful method to solve anomaly detection problem since on numerical experiment it is able to classify IDS benchmark data into five different classes simultaneously. We classify IDS benchmark data KDDCup'99 data set into five different classes simultaneously with the best performance was achieved by using 30 % of training data with clustering accuracy reached 90.28 percent.

  18. A Fuzzy-Decision Based Approach for Composite Event Detection in Wireless Sensor Networks

    PubMed Central

    Zhang, Shukui; Chen, Hao; Zhu, Qiaoming

    2014-01-01

    The event detection is one of the fundamental researches in wireless sensor networks (WSNs). Due to the consideration of various properties that reflect events status, the Composite event is more consistent with the objective world. Thus, the research of the Composite event becomes more realistic. In this paper, we analyze the characteristics of the Composite event; then we propose a criterion to determine the area of the Composite event and put forward a dominating set based network topology construction algorithm under random deployment. For the unreliability of partial data in detection process and fuzziness of the event definitions in nature, we propose a cluster-based two-dimensional τ-GAS algorithm and fuzzy-decision based composite event decision mechanism. In the case that the sensory data of most nodes are normal, the two-dimensional τ-GAS algorithm can filter the fault node data effectively and reduce the influence of erroneous data on the event determination. The Composite event judgment mechanism which is based on fuzzy-decision holds the superiority of the fuzzy-logic based algorithm; moreover, it does not need the support of a huge rule base and its computational complexity is small. Compared to CollECT algorithm and CDS algorithm, this algorithm improves the detection accuracy and reduces the traffic. PMID:25136690

  19. Data mining in forecasting PVT correlations of crude oil systems based on Type1 fuzzy logic inference systems

    NASA Astrophysics Data System (ADS)

    El-Sebakhy, Emad A.

    2009-09-01

    Pressure-volume-temperature properties are very important in the reservoir engineering computations. There are many empirical approaches for predicting various PVT properties based on empirical correlations and statistical regression models. Last decade, researchers utilized neural networks to develop more accurate PVT correlations. These achievements of neural networks open the door to data mining techniques to play a major role in oil and gas industry. Unfortunately, the developed neural networks correlations are often limited, and global correlations are usually less accurate compared to local correlations. Recently, adaptive neuro-fuzzy inference systems have been proposed as a new intelligence framework for both prediction and classification based on fuzzy clustering optimization criterion and ranking. This paper proposes neuro-fuzzy inference systems for estimating PVT properties of crude oil systems. This new framework is an efficient hybrid intelligence machine learning scheme for modeling the kind of uncertainty associated with vagueness and imprecision. We briefly describe the learning steps and the use of the Takagi Sugeno and Kang model and Gustafson-Kessel clustering algorithm with K-detected clusters from the given database. It has featured in a wide range of medical, power control system, and business journals, often with promising results. A comparative study will be carried out to compare their performance of this new framework with the most popular modeling techniques, such as neural networks, nonlinear regression, and the empirical correlations algorithms. The results show that the performance of neuro-fuzzy systems is accurate, reliable, and outperform most of the existing forecasting techniques. Future work can be achieved by using neuro-fuzzy systems for clustering the 3D seismic data, identification of lithofacies types, and other reservoir characterization.

  20. Spatial pattern recognition of seismic events in South West Colombia

    NASA Astrophysics Data System (ADS)

    Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber

    2013-09-01

    Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.

  1. Evaluating water management strategies in watersheds by new hybrid Fuzzy Analytical Network Process (FANP) methods

    NASA Astrophysics Data System (ADS)

    RazaviToosi, S. L.; Samani, J. M. V.

    2016-03-01

    Watersheds are considered as hydrological units. Their other important aspects such as economic, social and environmental functions play crucial roles in sustainable development. The objective of this work is to develop methodologies to prioritize watersheds by considering different development strategies in environmental, social and economic sectors. This ranking could play a significant role in management to assign the most critical watersheds where by employing water management strategies, best condition changes are expected to be accomplished. Due to complex relations among different criteria, two new hybrid fuzzy ANP (Analytical Network Process) algorithms, fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and fuzzy max-min set methods are used to provide more flexible and accurate decision model. Five watersheds in Iran named Oroomeyeh, Atrak, Sefidrood, Namak and Zayandehrood are considered as alternatives. Based on long term development goals, 38 water management strategies are defined as subcriteria in 10 clusters. The main advantage of the proposed methods is its ability to overcome uncertainty. This task is accomplished by using fuzzy numbers in all steps of the algorithms. To validate the proposed method, the final results were compared with those obtained from the ANP algorithm and the Spearman rank correlation coefficient is applied to find the similarity in the different ranking methods. Finally, the sensitivity analysis was conducted to investigate the influence of cluster weights on the final ranking.

  2. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain.

    PubMed

    Hall, L O; Bensaid, A M; Clarke, L P; Velthuizen, R P; Silbiger, M S; Bezdek, J C

    1992-01-01

    Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms, and a supervised computational neural network. Initial clinical results are presented on normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. For a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed, with fuzz-c-means approaches being slightly preferred over feedforward cascade correlation results. Various facets of both approaches, such as supervised versus unsupervised learning, time complexity, and utility for the diagnostic process, are compared.

  3. Block clustering based on difference of convex functions (DC) programming and DC algorithms.

    PubMed

    Le, Hoai Minh; Le Thi, Hoai An; Dinh, Tao Pham; Huynh, Van Ngai

    2013-10-01

    We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.

  4. MRI brain tumor segmentation based on improved fuzzy c-means method

    NASA Astrophysics Data System (ADS)

    Deng, Wankai; Xiao, Wei; Pan, Chao; Liu, Jianguo

    2009-10-01

    This paper focuses on the image segmentation, which is one of the key problems in medical image processing. A new medical image segmentation method is proposed based on fuzzy c- means algorithm and spatial information. Firstly, we classify the image into the region of interest and background using fuzzy c means algorithm. Then we use the information of the tissues' gradient and the intensity inhomogeneities of regions to improve the quality of segmentation. The sum of the mean variance in the region and the reciprocal of the mean gradient along the edge of the region are chosen as an objective function. The minimum of the sum is optimum result. The result shows that the clustering segmentation algorithm is effective.

  5. Ozone levels in the Empty Quarter of Saudi Arabia--application of adaptive neuro-fuzzy model.

    PubMed

    Rahman, Syed Masiur; Khondaker, A N; Khan, Rouf Ahmad

    2013-05-01

    In arid regions, primary pollutants may contribute to the increase of ozone levels and cause negative effects on biotic health. This study investigates the use of adaptive neuro-fuzzy inference system (ANFIS) for ozone prediction. The initial fuzzy inference system is developed by using fuzzy C-means (FCM) and subtractive clustering (SC) algorithms, which determines the important rules, increases generalization capability of the fuzzy inference system, reduces computational needs, and ensures speedy model development. The study area is located in the Empty Quarter of Saudi Arabia, which is considered as a source of huge potential for oil and gas field development. The developed clustering algorithm-based ANFIS model used meteorological data and derived meteorological data, along with NO and NO₂ concentrations and their transformations, as inputs. The root mean square error and Willmott's index of agreement of the FCM- and SC-based ANFIS models are 3.5 ppbv and 0.99, and 8.9 ppbv and 0.95, respectively. Based on the analysis of the performance measures and regression error characteristic curves, it is concluded that the FCM-based ANFIS model outperforms the SC-based ANFIS model.

  6. Joint inversion of multiple geophysical and petrophysical data using generalized fuzzy clustering algorithms

    NASA Astrophysics Data System (ADS)

    Sun, Jiajia; Li, Yaoguo

    2017-02-01

    Joint inversion that simultaneously inverts multiple geophysical data sets to recover a common Earth model is increasingly being applied to exploration problems. Petrophysical data can serve as an effective constraint to link different physical property models in such inversions. There are two challenges, among others, associated with the petrophysical approach to joint inversion. One is related to the multimodality of petrophysical data because there often exist more than one relationship between different physical properties in a region of study. The other challenge arises from the fact that petrophysical relationships have different characteristics and can exhibit point, linear, quadratic, or exponential forms in a crossplot. The fuzzy c-means (FCM) clustering technique is effective in tackling the first challenge and has been applied successfully. We focus on the second challenge in this paper and develop a joint inversion method based on variations of the FCM clustering technique. To account for the specific shapes of petrophysical relationships, we introduce several different fuzzy clustering algorithms that are capable of handling different shapes of petrophysical relationships. We present two synthetic and one field data examples and demonstrate that, by choosing appropriate distance measures for the clustering component in the joint inversion algorithm, the proposed joint inversion method provides an effective means of handling common petrophysical situations we encounter in practice. The jointly inverted models have both enhanced structural similarity and increased petrophysical correlation, and better represent the subsurface in the spatial domain and the parameter domain of physical properties.

  7. SAR image segmentation using skeleton-based fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Cao, Yun Yi; Chen, Yan Qiu

    2003-06-01

    SAR image segmentation can be converted to a clustering problem in which pixels or small patches are grouped together based on local feature information. In this paper, we present a novel framework for segmentation. The segmentation goal is achieved by unsupervised clustering upon characteristic descriptors extracted from local patches. The mixture model of characteristic descriptor, which combines intensity and texture feature, is investigated. The unsupervised algorithm is derived from the recently proposed Skeleton-Based Data Labeling method. Skeletons are constructed as prototypes of clusters to represent arbitrary latent structures in image data. Segmentation using Skeleton-Based Fuzzy Clustering is able to detect the types of surfaces appeared in SAR images automatically without any user input.

  8. Grouped fuzzy SVM with EM-based partition of sample space for clustered microcalcification detection.

    PubMed

    Wang, Huiya; Feng, Jun; Wang, Hongyu

    2017-07-20

    Detection of clustered microcalcification (MC) from mammograms plays essential roles in computer-aided diagnosis for early stage breast cancer. To tackle problems associated with the diversity of data structures of MC lesions and the variability of normal breast tissues, multi-pattern sample space learning is required. In this paper, a novel grouped fuzzy Support Vector Machine (SVM) algorithm with sample space partition based on Expectation-Maximization (EM) (called G-FSVM) is proposed for clustered MC detection. The diversified pattern of training data is partitioned into several groups based on EM algorithm. Then a series of fuzzy SVM are integrated for classification with each group of samples from the MC lesions and normal breast tissues. From DDSM database, a total of 1,064 suspicious regions are selected from 239 mammography, and the measurement of Accuracy, True Positive Rate (TPR), False Positive Rate (FPR) and EVL = TPR* 1-FPR are 0.82, 0.78, 0.14 and 0.72, respectively. The proposed method incorporates the merits of fuzzy SVM and multi-pattern sample space learning, decomposing the MC detection problem into serial simple two-class classification. Experimental results from synthetic data and DDSM database demonstrate that our integrated classification framework reduces the false positive rate significantly while maintaining the true positive rate.

  9. A clustering-based fuzzy wavelet neural network model for short-term load forecasting.

    PubMed

    Kodogiannis, Vassilis S; Amina, Mahdi; Petrounias, Ilias

    2013-10-01

    Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi-Sugeno-Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models.

  10. Analysis of Intergrade Variables In The Fuzzy C-Means And Improved Algorithm Cat Swarm Optimization(FCM-ISO) In Search Segmentation

    NASA Astrophysics Data System (ADS)

    Saragih, Jepronel; Salim Sitompul, Opim; Situmorang, Zakaria

    2017-12-01

    One of the techniques known in Data Mining namely clustering. Image segmentation process does not always represent the actual image which is caused by a combination of algorithms as long as it has not been able to obtain optimal cluster centers. In this research will search for the smallest error with the counting result of a Fuzzy C Means process optimized with Cat swam Algorithm Optimization that has been developed by adding the weight of the energy in the process of Tracing Mode.So with the parameter can be determined the most optimal cluster centers and most closely with the data will be made the cluster. Weigh inertia in this research, namely: (0.1), (0.2), (0.3), (0.4), (0.5), (0.6), (0.7), (0.8) and (0.9). Then compare the results of each variable values inersia (W) which is different and taken the smallest results. Of this weighting analysis process can acquire the right produce inertia variable cost function the smallest.

  11. Fast detection of vascular plaque in optical coherence tomography images using a reduced feature set

    NASA Astrophysics Data System (ADS)

    Prakash, Ammu; Ocana Macias, Mariano; Hewko, Mark; Sowa, Michael; Sherif, Sherif

    2018-03-01

    Optical coherence tomography (OCT) images are capable of detecting vascular plaque by using the full set of 26 Haralick textural features and a standard K-means clustering algorithm. However, the use of the full set of 26 textural features is computationally expensive and may not be feasible for real time implementation. In this work, we identified a reduced set of 3 textural feature which characterizes vascular plaque and used a generalized Fuzzy C-means clustering algorithm. Our work involves three steps: 1) the reduction of a full set 26 textural feature to a reduced set of 3 textural features by using genetic algorithm (GA) optimization method 2) the implementation of an unsupervised generalized clustering algorithm (Fuzzy C-means) on the reduced feature space, and 3) the validation of our results using histology and actual photographic images of vascular plaque. Our results show an excellent match with histology and actual photographic images of vascular tissue. Therefore, our results could provide an efficient pre-clinical tool for the detection of vascular plaque in real time OCT imaging.

  12. Identification of piecewise affine systems based on fuzzy PCA-guided robust clustering technique

    NASA Astrophysics Data System (ADS)

    Khanmirza, Esmaeel; Nazarahari, Milad; Mousavi, Alireza

    2016-12-01

    Hybrid systems are a class of dynamical systems whose behaviors are based on the interaction between discrete and continuous dynamical behaviors. Since a general method for the analysis of hybrid systems is not available, some researchers have focused on specific types of hybrid systems. Piecewise affine (PWA) systems are one of the subsets of hybrid systems. The identification of PWA systems includes the estimation of the parameters of affine subsystems and the coefficients of the hyperplanes defining the partition of the state-input domain. In this paper, we have proposed a PWA identification approach based on a modified clustering technique. By using a fuzzy PCA-guided robust k-means clustering algorithm along with neighborhood outlier detection, the two main drawbacks of the well-known clustering algorithms, i.e., the poor initialization and the presence of outliers, are eliminated. Furthermore, this modified clustering technique enables us to determine the number of subsystems without any prior knowledge about system. In addition, applying the structure of the state-input domain, that is, considering the time sequence of input-output pairs, provides a more efficient clustering algorithm, which is the other novelty of this work. Finally, the proposed algorithm has been evaluated by parameter identification of an IGV servo actuator. Simulation together with experiment analysis has proved the effectiveness of the proposed method.

  13. Parallel fuzzy connected image segmentation on GPU

    PubMed Central

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K.; Miller, Robert W.

    2011-01-01

    Purpose: Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA’s compute unified device Architecture (cuda) platform for segmenting medical image data sets. Methods: In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as cuda kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Results: Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. Conclusions: The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set. PMID:21859037

  14. Parallel fuzzy connected image segmentation on GPU.

    PubMed

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K; Miller, Robert W

    2011-07-01

    Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA's compute unified device Architecture (CUDA) platform for segmenting medical image data sets. In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as CUDA kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set.

  15. Identification of different geologic units using fuzzy constrained resistivity tomography

    NASA Astrophysics Data System (ADS)

    Singh, Anand; Sharma, S. P.

    2018-01-01

    Different geophysical inversion strategies are utilized as a component of an interpretation process that tries to separate geologic units based on the resistivity distribution. In the present study, we present the results of separating different geologic units using fuzzy constrained resistivity tomography. This was accomplished using fuzzy c means, a clustering procedure to improve the 2D resistivity image and geologic separation within the iterative minimization through inversion. First, we developed a Matlab-based inversion technique to obtain a reliable resistivity image using different geophysical data sets (electrical resistivity and electromagnetic data). Following this, the recovered resistivity model was converted into a fuzzy constrained resistivity model by assigning the highest probability value of each model cell to the cluster utilizing fuzzy c means clustering procedure during the iterative process. The efficacy of the algorithm is demonstrated using three synthetic plane wave electromagnetic data sets and one electrical resistivity field dataset. The presented approach shows improvement on the conventional inversion approach to differentiate between different geologic units if the correct number of geologic units will be identified. Further, fuzzy constrained resistivity tomography was performed to examine the augmentation of uranium mineralization in the Beldih open cast mine as a case study. We also compared geologic units identified by fuzzy constrained resistivity tomography with geologic units interpreted from the borehole information.

  16. Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Todd Vollmer; Jason Wright

    Resiliency and security in critical infrastructure control systems in the modern world of cyber terrorism constitute a relevant concern. Developing a network security system specifically tailored to the requirements of such critical assets is of a primary importance. This paper proposes a novel learning algorithm for anomaly based network security cyber sensor together with its hardware implementation. The presented learning algorithm constructs a fuzzy logic rule based model of normal network behavior. Individual fuzzy rules are extracted directly from the stream of incoming packets using an online clustering algorithm. This learning algorithm was specifically developed to comply with the constrainedmore » computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental test-bed mimicking the environment of a critical infrastructure control system.« less

  17. Normed kernel function-based fuzzy possibilistic C-means (NKFPCM) algorithm for high-dimensional breast cancer database classification with feature selection is based on Laplacian Score

    NASA Astrophysics Data System (ADS)

    Lestari, A. W.; Rustam, Z.

    2017-07-01

    In the last decade, breast cancer has become the focus of world attention as this disease is one of the primary leading cause of death for women. Therefore, it is necessary to have the correct precautions and treatment. In previous studies, Fuzzy Kennel K-Medoid algorithm has been used for multi-class data. This paper proposes an algorithm to classify the high dimensional data of breast cancer using Fuzzy Possibilistic C-means (FPCM) and a new method based on clustering analysis using Normed Kernel Function-Based Fuzzy Possibilistic C-Means (NKFPCM). The objective of this paper is to obtain the best accuracy in classification of breast cancer data. In order to improve the accuracy of the two methods, the features candidates are evaluated using feature selection, where Laplacian Score is used. The results show the comparison accuracy and running time of FPCM and NKFPCM with and without feature selection.

  18. Short-term prediction of solar energy in Saudi Arabia using automated-design fuzzy logic systems

    PubMed Central

    2017-01-01

    Solar energy is considered as one of the main sources for renewable energy in the near future. However, solar energy and other renewable energy sources have a drawback related to the difficulty in predicting their availability in the near future. This problem affects optimal exploitation of solar energy, especially in connection with other resources. Therefore, reliable solar energy prediction models are essential to solar energy management and economics. This paper presents work aimed at designing reliable models to predict the global horizontal irradiance (GHI) for the next day in 8 stations in Saudi Arabia. The designed models are based on computational intelligence methods of automated-design fuzzy logic systems. The fuzzy logic systems are designed and optimized with two models using fuzzy c-means clustering (FCM) and simulated annealing (SA) algorithms. The first model uses FCM based on the subtractive clustering algorithm to automatically design the predictor fuzzy rules from data. The second model is using FCM followed by simulated annealing algorithm to enhance the prediction accuracy of the fuzzy logic system. The objective of the predictor is to accurately predict next-day global horizontal irradiance (GHI) using previous-day meteorological and solar radiation observations. The proposed models use observations of 10 variables of measured meteorological and solar radiation data to build the model. The experimentation and results of the prediction are detailed where the root mean square error of the prediction was approximately 88% for the second model tuned by simulated annealing compared to 79.75% accuracy using the first model. This results demonstrate a good modeling accuracy of the second model despite that the training and testing of the proposed models were carried out using spatially and temporally independent data. PMID:28806754

  19. Short-term prediction of solar energy in Saudi Arabia using automated-design fuzzy logic systems.

    PubMed

    Almaraashi, Majid

    2017-01-01

    Solar energy is considered as one of the main sources for renewable energy in the near future. However, solar energy and other renewable energy sources have a drawback related to the difficulty in predicting their availability in the near future. This problem affects optimal exploitation of solar energy, especially in connection with other resources. Therefore, reliable solar energy prediction models are essential to solar energy management and economics. This paper presents work aimed at designing reliable models to predict the global horizontal irradiance (GHI) for the next day in 8 stations in Saudi Arabia. The designed models are based on computational intelligence methods of automated-design fuzzy logic systems. The fuzzy logic systems are designed and optimized with two models using fuzzy c-means clustering (FCM) and simulated annealing (SA) algorithms. The first model uses FCM based on the subtractive clustering algorithm to automatically design the predictor fuzzy rules from data. The second model is using FCM followed by simulated annealing algorithm to enhance the prediction accuracy of the fuzzy logic system. The objective of the predictor is to accurately predict next-day global horizontal irradiance (GHI) using previous-day meteorological and solar radiation observations. The proposed models use observations of 10 variables of measured meteorological and solar radiation data to build the model. The experimentation and results of the prediction are detailed where the root mean square error of the prediction was approximately 88% for the second model tuned by simulated annealing compared to 79.75% accuracy using the first model. This results demonstrate a good modeling accuracy of the second model despite that the training and testing of the proposed models were carried out using spatially and temporally independent data.

  20. Estimating the concrete compressive strength using hard clustering and fuzzy clustering based regression techniques.

    PubMed

    Nagwani, Naresh Kumar; Deo, Shirish V

    2014-01-01

    Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm.

  1. Estimating the Concrete Compressive Strength Using Hard Clustering and Fuzzy Clustering Based Regression Techniques

    PubMed Central

    Nagwani, Naresh Kumar; Deo, Shirish V.

    2014-01-01

    Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm. PMID:25374939

  2. An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin

    2018-04-01

    Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.

  3. Automatic detection of multiple UXO-like targets using magnetic anomaly inversion and self-adaptive fuzzy c-means clustering

    NASA Astrophysics Data System (ADS)

    Yin, Gang; Zhang, Yingtang; Fan, Hongbo; Ren, Guoquan; Li, Zhining

    2017-12-01

    We have developed a method for automatically detecting UXO-like targets based on magnetic anomaly inversion and self-adaptive fuzzy c-means clustering. Magnetic anomaly inversion methods are used to estimate the initial locations of multiple UXO-like sources. Although these initial locations have some errors with respect to the real positions, they form dense clouds around the actual positions of the magnetic sources. Then we use the self-adaptive fuzzy c-means clustering algorithm to cluster these initial locations. The estimated number of cluster centroids represents the number of targets and the cluster centroids are regarded as the locations of magnetic targets. Effectiveness of the method has been demonstrated using synthetic datasets. Computational results show that the proposed method can be applied to the case of several UXO-like targets that are randomly scattered within in a confined, shallow subsurface, volume. A field test was carried out to test the validity of the proposed method and the experimental results show that the prearranged magnets can be detected unambiguously and located precisely.

  4. A Scalable Framework For Segmenting Magnetic Resonance Images

    PubMed Central

    Hore, Prodip; Goldgof, Dmitry B.; Gu, Yuhua; Maudsley, Andrew A.; Darkazanli, Ammar

    2009-01-01

    A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data. PMID:20046893

  5. A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot.

    PubMed

    Liu, Zhi; Xu, Shuqiong; Zhang, Yun; Chen, Chun Lung Philip

    2014-11-01

    This technical correspondence presents a multiple-feature and multiple-kernel support vector machine (MFMK-SVM) methodology to achieve a more reliable and robust segmentation performance for humanoid robot. The pixel wise intensity, gradient, and C1 SMF features are extracted via the local homogeneity model and Gabor filter, which would be used as inputs of MFMK-SVM model. It may provide multiple features of the samples for easier implementation and efficient computation of MFMK-SVM model. A new clustering method, which is called feature validity-interval type-2 fuzzy C-means (FV-IT2FCM) clustering algorithm, is proposed by integrating a type-2 fuzzy criterion in the clustering optimization process to improve the robustness and reliability of clustering results by the iterative optimization. Furthermore, the clustering validity is employed to select the training samples for the learning of the MFMK-SVM model. The MFMK-SVM scene segmentation method is able to fully take advantage of the multiple features of scene image and the ability of multiple kernels. Experiments on the BSDS dataset and real natural scene images demonstrate the superior performance of our proposed method.

  6. Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs).

    PubMed

    Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold

    2014-12-01

    In this study, we propose Hybrid Radial Basis Function Neural Networks (HRBFNNs) realized with the aid of fuzzy clustering method (Fuzzy C-Means, FCM) and polynomial neural networks. Fuzzy clustering used to form information granulation is employed to overcome a possible curse of dimensionality, while the polynomial neural network is utilized to build local models. Furthermore, genetic algorithm (GA) is exploited here to optimize the essential design parameters of the model (including fuzzification coefficient, the number of input polynomial fuzzy neurons (PFNs), and a collection of the specific subset of input PFNs) of the network. To reduce dimensionality of the input space, principal component analysis (PCA) is considered as a sound preprocessing vehicle. The performance of the HRBFNNs is quantified through a series of experiments, in which we use several modeling benchmarks of different levels of complexity (different number of input variables and the number of available data). A comparative analysis reveals that the proposed HRBFNNs exhibit higher accuracy in comparison to the accuracy produced by some models reported previously in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Fuzzy Modelling for Human Dynamics Based on Online Social Networks

    PubMed Central

    Cuenca-Jara, Jesus; Valdes-Vela, Mercedes; Skarmeta, Antonio F.

    2017-01-01

    Human mobility mining has attracted a lot of attention in the research community due to its multiple implications in the provisioning of innovative services for large metropolises. In this scope, Online Social Networks (OSN) have arisen as a promising source of location data to come up with new mobility models. However, the human nature of this data makes it rather noisy and inaccurate. In order to deal with such limitations, the present work introduces a framework for human mobility mining based on fuzzy logic. Firstly, a fuzzy clustering algorithm extracts the most active OSN areas at different time periods. Next, such clusters are the building blocks to compose mobility patterns. Furthermore, a location prediction service based on a fuzzy rule classifier has been developed on top of the framework. Finally, both the framework and the predictor has been tested with a Twitter and Flickr dataset in two large cities. PMID:28837120

  8. Fuzzy Modelling for Human Dynamics Based on Online Social Networks.

    PubMed

    Cuenca-Jara, Jesus; Terroso-Saenz, Fernando; Valdes-Vela, Mercedes; Skarmeta, Antonio F

    2017-08-24

    Human mobility mining has attracted a lot of attention in the research community due to its multiple implications in the provisioning of innovative services for large metropolises. In this scope, Online Social Networks (OSN) have arisen as a promising source of location data to come up with new mobility models. However, the human nature of this data makes it rather noisy and inaccurate. In order to deal with such limitations, the present work introduces a framework for human mobility mining based on fuzzy logic. Firstly, a fuzzy clustering algorithm extracts the most active OSN areas at different time periods. Next, such clusters are the building blocks to compose mobility patterns. Furthermore, a location prediction service based on a fuzzy rule classifier has been developed on top of the framework. Finally, both the framework and the predictor has been tested with a Twitter and Flickr dataset in two large cities.

  9. Systematic methods for the design of a class of fuzzy logic controllers

    NASA Astrophysics Data System (ADS)

    Yasin, Saad Yaser

    2002-09-01

    Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental data, and a conversion algorithm, to develop a fuzzy-based control algorithm. Results were similar to those obtained by recently published conventional control based studies. The influence of the fuzzy inference operators and parameters on performance and stability of the fuzzy logic controller was studied Results indicated that, the selections of certain parameters or combinations of parameters, affect greatly the performance and stability of the fuzzy controller. Diagnostic guidelines used to tune or change certain factors or parameters to improve controller performance were developed based on knowledge gained from conventional control methods and knowledge gained from the experimental and the simulation results of this study.

  10. Dynamic fuzzy modeling of storm water infiltration in urban fractured aquifers

    USGS Publications Warehouse

    Hong, Y.-S.; Rosen, Michael R.; Reeves, R.R.

    2002-01-01

    In an urban fractured-rock aquifer in the Mt. Eden area of Auckland, New Zealand, disposal of storm water is via "soakholes" drilled directly into the top of the fractured basalt rock. The dynamic response of the groundwater level due to the storm water infiltration shows characteristics of a strongly time-varying system. A dynamic fuzzy modeling approach, which is based on multiple local models that are weighted using fuzzy membership functions, has been developed to identify and predict groundwater level fluctuations caused by storm water infiltration. The dynamic fuzzy model is initialized by the fuzzy clustering algorithm and optimized by the gradient-descent algorithm in order to effectively derive the multiple local models-each of which is associated with a locally valid model that represents the groundwater level state as a response to different intensities of rainfall events. The results have shown that even if the number of fuzzy local models derived is small, the fuzzy modeling approach developed provides good prediction results despite the highly time-varying nature of this urban fractured-rock aquifer system. Further, it allows interpretable representations of the dynamic behavior of the groundwater system due to storm water infiltration.

  11. Fast parallel algorithms that compute transitive closure of a fuzzy relation

    NASA Technical Reports Server (NTRS)

    Kreinovich, Vladik YA.

    1993-01-01

    The notion of a transitive closure of a fuzzy relation is very useful for clustering in pattern recognition, for fuzzy databases, etc. The original algorithm proposed by L. Zadeh (1971) requires the computation time O(n(sup 4)), where n is the number of elements in the relation. In 1974, J. C. Dunn proposed a O(n(sup 2)) algorithm. Since we must compute n(n-1)/2 different values s(a, b) (a not equal to b) that represent the fuzzy relation, and we need at least one computational step to compute each of these values, we cannot compute all of them in less than O(n(sup 2)) steps. So, Dunn's algorithm is in this sense optimal. For small n, it is ok. However, for big n (e.g., for big databases), it is still a lot, so it would be desirable to decrease the computation time (this problem was formulated by J. Bezdek). Since this decrease cannot be done on a sequential computer, the only way to do it is to use a computer with several processors working in parallel. We show that on a parallel computer, transitive closure can be computed in time O((log(sub 2)(n))2).

  12. a Novel 3d Intelligent Fuzzy Algorithm Based on Minkowski-Clustering

    NASA Astrophysics Data System (ADS)

    Toori, S.; Esmaeily, A.

    2017-09-01

    Assessing and monitoring the state of the earth surface is a key requirement for global change research. In this paper, we propose a new consensus fuzzy clustering algorithm that is based on the Minkowski distance. This research concentrates on Tehran's vegetation mass and its changes during 29 years using remote sensing technology. The main purpose of this research is to evaluate the changes in vegetation mass using a new process by combination of intelligent NDVI fuzzy clustering and Minkowski distance operation. The dataset includes the images of Landsat8 and Landsat TM, from 1989 to 2016. For each year three images of three continuous days were used to identify vegetation impact and recovery. The result was a 3D NDVI image, with one dimension for each day NDVI. The next step was the classification procedure which is a complicated process of categorizing pixels into a finite number of separate classes, based on their data values. If a pixel satisfies a certain set of standards, the pixel is allocated to the class that corresponds to those criteria. This method is less sensitive to noise and can integrate solutions from multiple samples of data or attributes for processing data in the processing industry. The result was a fuzzy one dimensional image. This image was also computed for the next 28 years. The classification was done in both specified urban and natural park areas of Tehran. Experiments showed that our method worked better in classifying image pixels in comparison with the standard classification methods.

  13. A research of road centerline extraction algorithm from high resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhang, Yushan; Xu, Tingfa

    2017-09-01

    Satellite remote sensing technology has become one of the most effective methods for land surface monitoring in recent years, due to its advantages such as short period, large scale and rich information. Meanwhile, road extraction is an important field in the applications of high resolution remote sensing images. An intelligent and automatic road extraction algorithm with high precision has great significance for transportation, road network updating and urban planning. The fuzzy c-means (FCM) clustering segmentation algorithms have been used in road extraction, but the traditional algorithms did not consider spatial information. An improved fuzzy C-means clustering algorithm combined with spatial information (SFCM) is proposed in this paper, which is proved to be effective for noisy image segmentation. Firstly, the image is segmented using the SFCM. Secondly, the segmentation result is processed by mathematical morphology to remover the joint region. Thirdly, the road centerlines are extracted by morphology thinning and burr trimming. The average integrity of the centerline extraction algorithm is 97.98%, the average accuracy is 95.36% and the average quality is 93.59%. Experimental results show that the proposed method in this paper is effective for road centerline extraction.

  14. Hyperspectral Image Classification for Land Cover Based on an Improved Interval Type-II Fuzzy C-Means Approach

    PubMed Central

    Li, Zhao-Liang

    2018-01-01

    Few studies have examined hyperspectral remote-sensing image classification with type-II fuzzy sets. This paper addresses image classification based on a hyperspectral remote-sensing technique using an improved interval type-II fuzzy c-means (IT2FCM*) approach. In this study, in contrast to other traditional fuzzy c-means-based approaches, the IT2FCM* algorithm considers the ranking of interval numbers and the spectral uncertainty. The classification results based on a hyperspectral dataset using the FCM, IT2FCM, and the proposed improved IT2FCM* algorithms show that the IT2FCM* method plays the best performance according to the clustering accuracy. In this paper, in order to validate and demonstrate the separability of the IT2FCM*, four type-I fuzzy validity indexes are employed, and a comparative analysis of these fuzzy validity indexes also applied in FCM and IT2FCM methods are made. These four indexes are also applied into different spatial and spectral resolution datasets to analyze the effects of spectral and spatial scaling factors on the separability of FCM, IT2FCM, and IT2FCM* methods. The results of these validity indexes from the hyperspectral datasets show that the improved IT2FCM* algorithm have the best values among these three algorithms in general. The results demonstrate that the IT2FCM* exhibits good performance in hyperspectral remote-sensing image classification because of its ability to handle hyperspectral uncertainty. PMID:29373548

  15. A fuzzy adaptive network approach to parameter estimation in cases where independent variables come from an exponential distribution

    NASA Astrophysics Data System (ADS)

    Dalkilic, Turkan Erbay; Apaydin, Aysen

    2009-11-01

    In a regression analysis, it is assumed that the observations come from a single class in a data cluster and the simple functional relationship between the dependent and independent variables can be expressed using the general model; Y=f(X)+[epsilon]. However; a data cluster may consist of a combination of observations that have different distributions that are derived from different clusters. When faced with issues of estimating a regression model for fuzzy inputs that have been derived from different distributions, this regression model has been termed the [`]switching regression model' and it is expressed with . Here li indicates the class number of each independent variable and p is indicative of the number of independent variables [J.R. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transaction on Systems, Man and Cybernetics 23 (3) (1993) 665-685; M. Michel, Fuzzy clustering and switching regression models using ambiguity and distance rejects, Fuzzy Sets and Systems 122 (2001) 363-399; E.Q. Richard, A new approach to estimating switching regressions, Journal of the American Statistical Association 67 (338) (1972) 306-310]. In this study, adaptive networks have been used to construct a model that has been formed by gathering obtained models. There are methods that suggest the class numbers of independent variables heuristically. Alternatively, in defining the optimal class number of independent variables, the use of suggested validity criterion for fuzzy clustering has been aimed. In the case that independent variables have an exponential distribution, an algorithm has been suggested for defining the unknown parameter of the switching regression model and for obtaining the estimated values after obtaining an optimal membership function, which is suitable for exponential distribution.

  16. Adaptive density trajectory cluster based on time and space distance

    NASA Astrophysics Data System (ADS)

    Liu, Fagui; Zhang, Zhijie

    2017-10-01

    There are some hotspot problems remaining in trajectory cluster for discovering mobile behavior regularity, such as the computation of distance between sub trajectories, the setting of parameter values in cluster algorithm and the uncertainty/boundary problem of data set. As a result, based on the time and space, this paper tries to define the calculation method of distance between sub trajectories. The significance of distance calculation for sub trajectories is to clearly reveal the differences in moving trajectories and to promote the accuracy of cluster algorithm. Besides, a novel adaptive density trajectory cluster algorithm is proposed, in which cluster radius is computed through using the density of data distribution. In addition, cluster centers and number are selected by a certain strategy automatically, and uncertainty/boundary problem of data set is solved by designed weighted rough c-means. Experimental results demonstrate that the proposed algorithm can perform the fuzzy trajectory cluster effectively on the basis of the time and space distance, and obtain the optimal cluster centers and rich cluster results information adaptably for excavating the features of mobile behavior in mobile and sociology network.

  17. A decentralized fuzzy C-means-based energy-efficient routing protocol for wireless sensor networks.

    PubMed

    Alia, Osama Moh'd

    2014-01-01

    Energy conservation in wireless sensor networks (WSNs) is a vital consideration when designing wireless networking protocols. In this paper, we propose a Decentralized Fuzzy Clustering Protocol, named DCFP, which minimizes total network energy dissipation to promote maximum network lifetime. The process of constructing the infrastructure for a given WSN is performed only once at the beginning of the protocol at a base station, which remains unchanged throughout the network's lifetime. In this initial construction step, a fuzzy C-means algorithm is adopted to allocate sensor nodes into their most appropriate clusters. Subsequently, the protocol runs its rounds where each round is divided into a CH-Election phase and a Data Transmission phase. In the CH-Election phase, the election of new cluster heads is done locally in each cluster where a new multicriteria objective function is proposed to enhance the quality of elected cluster heads. In the Data Transmission phase, the sensing and data transmission from each sensor node to their respective cluster head is performed and cluster heads in turn aggregate and send the sensed data to the base station. Simulation results demonstrate that the proposed protocol improves network lifetime, data delivery, and energy consumption compared to other well-known energy-efficient protocols.

  18. A Decentralized Fuzzy C-Means-Based Energy-Efficient Routing Protocol for Wireless Sensor Networks

    PubMed Central

    2014-01-01

    Energy conservation in wireless sensor networks (WSNs) is a vital consideration when designing wireless networking protocols. In this paper, we propose a Decentralized Fuzzy Clustering Protocol, named DCFP, which minimizes total network energy dissipation to promote maximum network lifetime. The process of constructing the infrastructure for a given WSN is performed only once at the beginning of the protocol at a base station, which remains unchanged throughout the network's lifetime. In this initial construction step, a fuzzy C-means algorithm is adopted to allocate sensor nodes into their most appropriate clusters. Subsequently, the protocol runs its rounds where each round is divided into a CH-Election phase and a Data Transmission phase. In the CH-Election phase, the election of new cluster heads is done locally in each cluster where a new multicriteria objective function is proposed to enhance the quality of elected cluster heads. In the Data Transmission phase, the sensing and data transmission from each sensor node to their respective cluster head is performed and cluster heads in turn aggregate and send the sensed data to the base station. Simulation results demonstrate that the proposed protocol improves network lifetime, data delivery, and energy consumption compared to other well-known energy-efficient protocols. PMID:25162060

  19. Robust traffic sign detection using fuzzy shape recognizer

    NASA Astrophysics Data System (ADS)

    Li, Lunbo; Li, Jun; Sun, Jianhong

    2009-10-01

    A novel fuzzy approach for the detection of traffic signs in natural environments is presented. More than 3000 road images were collected under different weather conditions by a digital camera, and used for testing this approach. Every RGB image was converted into HSV colour space, and segmented by the hue and saturation thresholds. A symmetrical detector was used to extract the local features of the regions of interest (ROI), and the shape of ROI was determined by a fuzzy shape recognizer which invoked a set of fuzzy rules. The experimental results show that the proposed algorithm is translation, rotation and scaling invariant, and gives reliable shape recognition in complex traffic scenes where clustering and partial occlusion normally occur.

  20. Adding-point strategy for reduced-order hypersonic aerothermodynamics modeling based on fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Liu, Li; Zhou, Sida; Yue, Zhenjiang

    2016-09-01

    Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.

  1. Boosted ARTMAP: modifications to fuzzy ARTMAP motivated by boosting theory.

    PubMed

    Verzi, Stephen J; Heileman, Gregory L; Georgiopoulos, Michael

    2006-05-01

    In this paper, several modifications to the Fuzzy ARTMAP neural network architecture are proposed for conducting classification in complex, possibly noisy, environments. The goal of these modifications is to improve upon the generalization performance of Fuzzy ART-based neural networks, such as Fuzzy ARTMAP, in these situations. One of the major difficulties of employing Fuzzy ARTMAP on such learning problems involves over-fitting of the training data. Structural risk minimization is a machine-learning framework that addresses the issue of over-fitting by providing a backbone for analysis as well as an impetus for the design of better learning algorithms. The theory of structural risk minimization reveals a trade-off between training error and classifier complexity in reducing generalization error, which will be exploited in the learning algorithms proposed in this paper. Boosted ART extends Fuzzy ART by allowing the spatial extent of each cluster formed to be adjusted independently. Boosted ARTMAP generalizes upon Fuzzy ARTMAP by allowing non-zero training error in an effort to reduce the hypothesis complexity and hence improve overall generalization performance. Although Boosted ARTMAP is strictly speaking not a boosting algorithm, the changes it encompasses were motivated by the goals that one strives to achieve when employing boosting. Boosted ARTMAP is an on-line learner, it does not require excessive parameter tuning to operate, and it reduces precisely to Fuzzy ARTMAP for particular parameter values. Another architecture described in this paper is Structural Boosted ARTMAP, which uses both Boosted ART and Boosted ARTMAP to perform structural risk minimization learning. Structural Boosted ARTMAP will allow comparison of the capabilities of off-line versus on-line learning as well as empirical risk minimization versus structural risk minimization using Fuzzy ARTMAP-based neural network architectures. Both empirical and theoretical results are presented to enhance the understanding of these architectures.

  2. An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images.

    PubMed

    Chin Neoh, Siew; Srisukkham, Worawut; Zhang, Li; Todryk, Stephen; Greystoke, Brigit; Peng Lim, Chee; Alamgir Hossain, Mohammed; Aslam, Nauman

    2015-10-09

    This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm, and background regions. Subsequently, a total of eighty features consisting of shape, texture, and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method.

  3. An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images

    PubMed Central

    Chin Neoh, Siew; Srisukkham, Worawut; Zhang, Li; Todryk, Stephen; Greystoke, Brigit; Peng Lim, Chee; Alamgir Hossain, Mohammed; Aslam, Nauman

    2015-01-01

    This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm, and background regions. Subsequently, a total of eighty features consisting of shape, texture, and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method. PMID:26450665

  4. A Data Analytics Approach to Discovering Unique Microstructural Configurations Susceptible to Fatigue

    NASA Astrophysics Data System (ADS)

    Jha, S. K.; Brockman, R. A.; Hoffman, R. M.; Sinha, V.; Pilchak, A. L.; Porter, W. J.; Buchanan, D. J.; Larsen, J. M.; John, R.

    2018-05-01

    Principal component analysis and fuzzy c-means clustering algorithms were applied to slip-induced strain and geometric metric data in an attempt to discover unique microstructural configurations and their frequencies of occurrence in statistically representative instantiations of a titanium alloy microstructure. Grain-averaged fatigue indicator parameters were calculated for the same instantiation. The fatigue indicator parameters strongly correlated with the spatial location of the microstructural configurations in the principal components space. The fuzzy c-means clustering method identified clusters of data that varied in terms of their average fatigue indicator parameters. Furthermore, the number of points in each cluster was inversely correlated to the average fatigue indicator parameter. This analysis demonstrates that data-driven methods have significant potential for providing unbiased determination of unique microstructural configurations and their frequencies of occurrence in a given volume from the point of view of strain localization and fatigue crack initiation.

  5. Implementation of spectral clustering on microarray data of carcinoma using k-means algorithm

    NASA Astrophysics Data System (ADS)

    Frisca, Bustamam, Alhadi; Siswantining, Titin

    2017-03-01

    Clustering is one of data analysis methods that aims to classify data which have similar characteristics in the same group. Spectral clustering is one of the most popular modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c-means, and k-means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k-means algorithm provide better accuracy than PAM algorithm. So in this paper we use k-means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset. Microarray data is a small-sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The purpose of this research is to classify the data that have high similarity in the same group and the data that have low similarity in the others. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k-means algorithm is two clusters.

  6. Using Machine Learning Techniques in the Analysis of Oceanographic Data

    NASA Astrophysics Data System (ADS)

    Falcinelli, K. E.; Abuomar, S.

    2017-12-01

    Acoustic Doppler Current Profilers (ADCPs) are oceanographic tools capable of collecting large amounts of current profile data. Using unsupervised machine learning techniques such as principal component analysis, fuzzy c-means clustering, and self-organizing maps, patterns and trends in an ADCP dataset are found. Cluster validity algorithms such as visual assessment of cluster tendency and clustering index are used to determine the optimal number of clusters in the ADCP dataset. These techniques prove to be useful in analysis of ADCP data and demonstrate potential for future use in other oceanographic applications.

  7. Classification of posture maintenance data with fuzzy clustering algorithms

    NASA Technical Reports Server (NTRS)

    Bezdek, James C.

    1991-01-01

    Sensory inputs from the visual, vestibular, and proprioreceptive systems are integrated by the central nervous system to maintain postural equilibrium. Sustained exposure to microgravity causes neurosensory adaptation during spaceflight, which results in decreased postural stability until readaptation occurs upon return to the terrestrial environment. Data which simulate sensory inputs under various conditions were collected in conjunction with JSC postural control studies using a Tilt-Translation Device (TTD). The University of West Florida proposed applying the Fuzzy C-Means Clustering (FCM) Algorithms to this data with a view towards identifying various states and stages. Data supplied by NASA/JSC were submitted to the FCM algorithms in an attempt to identify and characterize cluster substructure in a mixed ensemble of pre- and post-adaptational TTD data. Following several unsuccessful trials with FCM using a full 11 dimensional data set, a set of two channels (features) were found to enable FCM to separate pre- from post-adaptational TTD data. The main conclusions are that: (1) FCM seems able to separate pre- from post-TTD subject no. 2 on the one trial that was used, but only in certain subintervals of time; and (2) Channels 2 (right rear transducer force) and 8 (hip sway bar) contain better discrimination information than other supersets and combinations of the data that were tried so far.

  8. A recurrent self-organizing neural fuzzy inference network.

    PubMed

    Juang, C F; Lin, C T

    1999-01-01

    A recurrent self-organizing neural fuzzy inference network (RSONFIN) is proposed in this paper. The RSONFIN is inherently a recurrent multilayered connectionist network for realizing the basic elements and functions of dynamic fuzzy inference, and may be considered to be constructed from a series of dynamic fuzzy rules. The temporal relations embedded in the network are built by adding some feedback connections representing the memory elements to a feedforward neural fuzzy network. Each weight as well as node in the RSONFIN has its own meaning and represents a special element in a fuzzy rule. There are no hidden nodes (i.e., no membership functions and fuzzy rules) initially in the RSONFIN. They are created on-line via concurrent structure identification (the construction of dynamic fuzzy if-then rules) and parameter identification (the tuning of the free parameters of membership functions). The structure learning together with the parameter learning forms a fast learning algorithm for building a small, yet powerful, dynamic neural fuzzy network. Two major characteristics of the RSONFIN can thus be seen: 1) the recurrent property of the RSONFIN makes it suitable for dealing with temporal problems and 2) no predetermination, like the number of hidden nodes, must be given, since the RSONFIN can find its optimal structure and parameters automatically and quickly. Moreover, to reduce the number of fuzzy rules generated, a flexible input partition method, the aligned clustering-based algorithm, is proposed. Various simulations on temporal problems are done and performance comparisons with some existing recurrent networks are also made. Efficiency of the RSONFIN is verified from these results.

  9. Clustering approaches to identifying gene expression patterns from DNA microarray data.

    PubMed

    Do, Jin Hwan; Choi, Dong-Kug

    2008-04-30

    The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

  10. A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals

    PubMed Central

    Castañón–Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo

    2015-01-01

    The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi–Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information. PMID:26633417

  11. A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals.

    PubMed

    Castañón-Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo

    2015-12-02

    The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi-Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information.

  12. A HIERARCHIAL STOCHASTIC MODEL OF LARGE SCALE ATMOSPHERIC CIRCULATION PATTERNS AND MULTIPLE STATION DAILY PRECIPITATION

    EPA Science Inventory

    A stochastic model of weather states and concurrent daily precipitation at multiple precipitation stations is described. our algorithms are invested for classification of daily weather states; k means, fuzzy clustering, principal components, and principal components coupled with ...

  13. Comparison of K-means and fuzzy c-means algorithm performance for automated determination of the arterial input function.

    PubMed

    Yin, Jiandong; Sun, Hongzan; Yang, Jiawen; Guo, Qiyong

    2014-01-01

    The arterial input function (AIF) plays a crucial role in the quantification of cerebral perfusion parameters. The traditional method for AIF detection is based on manual operation, which is time-consuming and subjective. Two automatic methods have been reported that are based on two frequently used clustering algorithms: fuzzy c-means (FCM) and K-means. However, it is still not clear which is better for AIF detection. Hence, we compared the performance of these two clustering methods using both simulated and clinical data. The results demonstrate that K-means analysis can yield more accurate and robust AIF results, although it takes longer to execute than the FCM method. We consider that this longer execution time is trivial relative to the total time required for image manipulation in a PACS setting, and is acceptable if an ideal AIF is obtained. Therefore, the K-means method is preferable to FCM in AIF detection.

  14. Comparison of K-Means and Fuzzy c-Means Algorithm Performance for Automated Determination of the Arterial Input Function

    PubMed Central

    Yin, Jiandong; Sun, Hongzan; Yang, Jiawen; Guo, Qiyong

    2014-01-01

    The arterial input function (AIF) plays a crucial role in the quantification of cerebral perfusion parameters. The traditional method for AIF detection is based on manual operation, which is time-consuming and subjective. Two automatic methods have been reported that are based on two frequently used clustering algorithms: fuzzy c-means (FCM) and K-means. However, it is still not clear which is better for AIF detection. Hence, we compared the performance of these two clustering methods using both simulated and clinical data. The results demonstrate that K-means analysis can yield more accurate and robust AIF results, although it takes longer to execute than the FCM method. We consider that this longer execution time is trivial relative to the total time required for image manipulation in a PACS setting, and is acceptable if an ideal AIF is obtained. Therefore, the K-means method is preferable to FCM in AIF detection. PMID:24503700

  15. GOClonto: an ontological clustering approach for conceptualizing PubMed abstracts.

    PubMed

    Zheng, Hai-Tao; Borchert, Charles; Kim, Hong-Gee

    2010-02-01

    Concurrent with progress in biomedical sciences, an overwhelming of textual knowledge is accumulating in the biomedical literature. PubMed is the most comprehensive database collecting and managing biomedical literature. To help researchers easily understand collections of PubMed abstracts, numerous clustering methods have been proposed to group similar abstracts based on their shared features. However, most of these methods do not explore the semantic relationships among groupings of documents, which could help better illuminate the groupings of PubMed abstracts. To address this issue, we proposed an ontological clustering method called GOClonto for conceptualizing PubMed abstracts. GOClonto uses latent semantic analysis (LSA) and gene ontology (GO) to identify key gene-related concepts and their relationships as well as allocate PubMed abstracts based on these key gene-related concepts. Based on two PubMed abstract collections, the experimental results show that GOClonto is able to identify key gene-related concepts and outperforms the STC (suffix tree clustering) algorithm, the Lingo algorithm, the Fuzzy Ants algorithm, and the clustering based TRS (tolerance rough set) algorithm. Moreover, the two ontologies generated by GOClonto show significant informative conceptual structures.

  16. Applications of cluster analysis to the creation of perfectionism profiles: a comparison of two clustering approaches.

    PubMed

    Bolin, Jocelyn H; Edwards, Julianne M; Finch, W Holmes; Cassady, Jerrell C

    2014-01-01

    Although traditional clustering methods (e.g., K-means) have been shown to be useful in the social sciences it is often difficult for such methods to handle situations where clusters in the population overlap or are ambiguous. Fuzzy clustering, a method already recognized in many disciplines, provides a more flexible alternative to these traditional clustering methods. Fuzzy clustering differs from other traditional clustering methods in that it allows for a case to belong to multiple clusters simultaneously. Unfortunately, fuzzy clustering techniques remain relatively unused in the social and behavioral sciences. The purpose of this paper is to introduce fuzzy clustering to these audiences who are currently relatively unfamiliar with the technique. In order to demonstrate the advantages associated with this method, cluster solutions of a common perfectionism measure were created using both fuzzy clustering and K-means clustering, and the results compared. Results of these analyses reveal that different cluster solutions are found by the two methods, and the similarity between the different clustering solutions depends on the amount of cluster overlap allowed for in fuzzy clustering.

  17. Applications of cluster analysis to the creation of perfectionism profiles: a comparison of two clustering approaches

    PubMed Central

    Bolin, Jocelyn H.; Edwards, Julianne M.; Finch, W. Holmes; Cassady, Jerrell C.

    2014-01-01

    Although traditional clustering methods (e.g., K-means) have been shown to be useful in the social sciences it is often difficult for such methods to handle situations where clusters in the population overlap or are ambiguous. Fuzzy clustering, a method already recognized in many disciplines, provides a more flexible alternative to these traditional clustering methods. Fuzzy clustering differs from other traditional clustering methods in that it allows for a case to belong to multiple clusters simultaneously. Unfortunately, fuzzy clustering techniques remain relatively unused in the social and behavioral sciences. The purpose of this paper is to introduce fuzzy clustering to these audiences who are currently relatively unfamiliar with the technique. In order to demonstrate the advantages associated with this method, cluster solutions of a common perfectionism measure were created using both fuzzy clustering and K-means clustering, and the results compared. Results of these analyses reveal that different cluster solutions are found by the two methods, and the similarity between the different clustering solutions depends on the amount of cluster overlap allowed for in fuzzy clustering. PMID:24795683

  18. [Predicting Incidence of Hepatitis E in Chinausing Fuzzy Time Series Based on Fuzzy C-Means Clustering Analysis].

    PubMed

    Luo, Yi; Zhang, Tao; Li, Xiao-song

    2016-05-01

    To explore the application of fuzzy time series model based on fuzzy c-means clustering in forecasting monthly incidence of Hepatitis E in mainland China. Apredictive model (fuzzy time series method based on fuzzy c-means clustering) was developed using Hepatitis E incidence data in mainland China between January 2004 and July 2014. The incidence datafrom August 2014 to November 2014 were used to test the fitness of the predictive model. The forecasting results were compared with those resulted from traditional fuzzy time series models. The fuzzy time series model based on fuzzy c-means clustering had 0.001 1 mean squared error (MSE) of fitting and 6.977 5 x 10⁻⁴ MSE of forecasting, compared with 0.0017 and 0.0014 from the traditional forecasting model. The results indicate that the fuzzy time series model based on fuzzy c-means clustering has a better performance in forecasting incidence of Hepatitis E.

  19. Function Clustering Self-Organization Maps (FCSOMs) for mining differentially expressed genes in Drosophila and its correlation with the growth medium.

    PubMed

    Liu, L L; Liu, M J; Ma, M

    2015-09-28

    The central task of this study was to mine the gene-to-medium relationship. Adequate knowledge of this relationship could potentially improve the accuracy of differentially expressed gene mining. One of the approaches to differentially expressed gene mining uses conventional clustering algorithms to identify the gene-to-medium relationship. Compared to conventional clustering algorithms, self-organization maps (SOMs) identify the nonlinear aspects of the gene-to-medium relationships by mapping the input space into another higher dimensional feature space. However, SOMs are not suitable for huge datasets consisting of millions of samples. Therefore, a new computational model, the Function Clustering Self-Organization Maps (FCSOMs), was developed. FCSOMs take advantage of the theory of granular computing as well as advanced statistical learning methodologies, and are built specifically for each information granule (a function cluster of genes), which are intelligently partitioned by the clustering algorithm provided by the DAVID_6.7 software platform. However, only the gene functions, and not their expression values, are considered in the fuzzy clustering algorithm of DAVID. Compared to the clustering algorithm of DAVID, these experimental results show a marked improvement in the accuracy of classification with the application of FCSOMs. FCSOMs can handle huge datasets and their complex classification problems, as each FCSOM (modeled for each function cluster) can be easily parallelized.

  20. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach.

    PubMed

    Julie, E Golden; Selvi, S Tamil

    2016-01-01

    Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.

  1. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach

    PubMed Central

    Julie, E. Golden; Selvi, S. Tamil

    2016-01-01

    Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269

  2. Remote Sensing Image Change Detection Based on NSCT-HMT Model and Its Application.

    PubMed

    Chen, Pengyun; Zhang, Yichen; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola

    2017-06-06

    Traditional image change detection based on a non-subsampled contourlet transform always ignores the neighborhood information's relationship to the non-subsampled contourlet coefficients, and the detection results are susceptible to noise interference. To address these disadvantages, we propose a denoising method based on the non-subsampled contourlet transform domain that uses the Hidden Markov Tree model (NSCT-HMT) for change detection of remote sensing images. First, the ENVI software is used to calibrate the original remote sensing images. After that, the mean-ratio operation is adopted to obtain the difference image that will be denoised by the NSCT-HMT model. Then, using the Fuzzy Local Information C-means (FLICM) algorithm, the difference image is divided into the change area and unchanged area. The proposed algorithm is applied to a real remote sensing data set. The application results show that the proposed algorithm can effectively suppress clutter noise, and retain more detailed information from the original images. The proposed algorithm has higher detection accuracy than the Markov Random Field-Fuzzy C-means (MRF-FCM), the non-subsampled contourlet transform-Fuzzy C-means clustering (NSCT-FCM), the pointwise approach and graph theory (PA-GT), and the Principal Component Analysis-Nonlocal Means (PCA-NLM) denosing algorithm. Finally, the five algorithms are used to detect the southern boundary of the Gurbantunggut Desert in Xinjiang Uygur Autonomous Region of China, and the results show that the proposed algorithm has the best effect on real remote sensing image change detection.

  3. Remote Sensing Image Change Detection Based on NSCT-HMT Model and Its Application

    PubMed Central

    Chen, Pengyun; Zhang, Yichen; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola

    2017-01-01

    Traditional image change detection based on a non-subsampled contourlet transform always ignores the neighborhood information’s relationship to the non-subsampled contourlet coefficients, and the detection results are susceptible to noise interference. To address these disadvantages, we propose a denoising method based on the non-subsampled contourlet transform domain that uses the Hidden Markov Tree model (NSCT-HMT) for change detection of remote sensing images. First, the ENVI software is used to calibrate the original remote sensing images. After that, the mean-ratio operation is adopted to obtain the difference image that will be denoised by the NSCT-HMT model. Then, using the Fuzzy Local Information C-means (FLICM) algorithm, the difference image is divided into the change area and unchanged area. The proposed algorithm is applied to a real remote sensing data set. The application results show that the proposed algorithm can effectively suppress clutter noise, and retain more detailed information from the original images. The proposed algorithm has higher detection accuracy than the Markov Random Field-Fuzzy C-means (MRF-FCM), the non-subsampled contourlet transform-Fuzzy C-means clustering (NSCT-FCM), the pointwise approach and graph theory (PA-GT), and the Principal Component Analysis-Nonlocal Means (PCA-NLM) denosing algorithm. Finally, the five algorithms are used to detect the southern boundary of the Gurbantunggut Desert in Xinjiang Uygur Autonomous Region of China, and the results show that the proposed algorithm has the best effect on real remote sensing image change detection. PMID:28587299

  4. Detecting subject-specific activations using fuzzy clustering

    PubMed Central

    Seghier, Mohamed L.; Friston, Karl J.; Price, Cathy J.

    2007-01-01

    Inter-subject variability in evoked brain responses is attracting attention because it may reflect important variability in structure–function relationships over subjects. This variability could be a signature of degenerate (many-to-one) structure–function mappings in normal subjects or reflect changes that are disclosed by brain damage. In this paper, we describe a non-iterative fuzzy clustering algorithm (FCP: fuzzy clustering with fixed prototypes) for characterizing inter-subject variability in between-subject or second-level analyses of fMRI data. The approach identifies the contribution of each subject to response profiles in voxels surviving a classical F-statistic criterion. The output identifies subjects who drive activation in specific cortical regions (local effects) or in voxels distributed across neural systems (global effects). The sensitivity of the approach was assessed in 38 normal subjects performing an overt naming task. FCP revealed that several subjects had either abnormally high or abnormally low responses. FCP may be particularly useful for characterizing outlier responses in rare patients or heterogeneous populations. In these cases, atypical activations may not be detected by standard tests, under parametric assumptions. The advantage of using FCP is that it searches all voxels systematically and can identify atypical activation patterns in a quantitative and unsupervised manner. PMID:17478103

  5. Optimal operation management of fuel cell/wind/photovoltaic power sources connected to distribution networks

    NASA Astrophysics Data System (ADS)

    Niknam, Taher; Kavousifard, Abdollah; Tabatabaei, Sajad; Aghaei, Jamshid

    2011-10-01

    In this paper a new multiobjective modified honey bee mating optimization (MHBMO) algorithm is presented to investigate the distribution feeder reconfiguration (DFR) problem considering renewable energy sources (RESs) (photovoltaics, fuel cell and wind energy) connected to the distribution network. The objective functions of the problem to be minimized are the electrical active power losses, the voltage deviations, the total electrical energy costs and the total emissions of RESs and substations. During the optimization process, the proposed algorithm finds a set of non-dominated (Pareto) optimal solutions which are stored in an external memory called repository. Since the objective functions investigated are not the same, a fuzzy clustering algorithm is utilized to handle the size of the repository in the specified limits. Moreover, a fuzzy-based decision maker is adopted to select the 'best' compromised solution among the non-dominated optimal solutions of multiobjective optimization problem. In order to see the feasibility and effectiveness of the proposed algorithm, two standard distribution test systems are used as case studies.

  6. Deterministic annealing for density estimation by multivariate normal mixtures

    NASA Astrophysics Data System (ADS)

    Kloppenburg, Martin; Tavan, Paul

    1997-03-01

    An approach to maximum-likelihood density estimation by mixtures of multivariate normal distributions for large high-dimensional data sets is presented. Conventionally that problem is tackled by notoriously unstable expectation-maximization (EM) algorithms. We remove these instabilities by the introduction of soft constraints, enabling deterministic annealing. Our developments are motivated by the proof that algorithmically stable fuzzy clustering methods that are derived from statistical physics analogs are special cases of EM procedures.

  7. Color image analysis technique for measuring of fat in meat: an application for the meat industry

    NASA Astrophysics Data System (ADS)

    Ballerini, Lucia; Hogberg, Anders; Lundstrom, Kerstin; Borgefors, Gunilla

    2001-04-01

    Intramuscular fat content in meat influences some important meat quality characteristics. The aim of the present study was to develop and apply image processing techniques to quantify intramuscular fat content in beefs together with the visual appearance of fat in meat (marbling). Color images of M. longissimus dorsi meat samples with a variability of intramuscular fat content and marbling were captured. Image analysis software was specially developed for the interpretation of these images. In particular, a segmentation algorithm (i.e. classification of different substances: fat, muscle and connective tissue) was optimized in order to obtain a proper classification and perform subsequent analysis. Segmentation of muscle from fat was achieved based on their characteristics in the 3D color space, and on the intrinsic fuzzy nature of these structures. The method is fully automatic and it combines a fuzzy clustering algorithm, the Fuzzy c-Means Algorithm, with a Genetic Algorithm. The percentages of various colors (i.e. substances) within the sample are then determined; the number, size distribution, and spatial distributions of the extracted fat flecks are measured. Measurements are correlated with chemical and sensory properties. Results so far show that advanced image analysis is useful for quantify the visual appearance of meat.

  8. Using an Improved SIFT Algorithm and Fuzzy Closed-Loop Control Strategy for Object Recognition in Cluttered Scenes

    PubMed Central

    Nie, Haitao; Long, Kehui; Ma, Jun; Yue, Dan; Liu, Jinguo

    2015-01-01

    Partial occlusions, large pose variations, and extreme ambient illumination conditions generally cause the performance degradation of object recognition systems. Therefore, this paper presents a novel approach for fast and robust object recognition in cluttered scenes based on an improved scale invariant feature transform (SIFT) algorithm and a fuzzy closed-loop control method. First, a fast SIFT algorithm is proposed by classifying SIFT features into several clusters based on several attributes computed from the sub-orientation histogram (SOH), in the feature matching phase only features that share nearly the same corresponding attributes are compared. Second, a feature matching step is performed following a prioritized order based on the scale factor, which is calculated between the object image and the target object image, guaranteeing robust feature matching. Finally, a fuzzy closed-loop control strategy is applied to increase the accuracy of the object recognition and is essential for autonomous object manipulation process. Compared to the original SIFT algorithm for object recognition, the result of the proposed method shows that the number of SIFT features extracted from an object has a significant increase, and the computing speed of the object recognition processes increases by more than 40%. The experimental results confirmed that the proposed method performs effectively and accurately in cluttered scenes. PMID:25714094

  9. Fuzzy set methods for object recognition in space applications

    NASA Technical Reports Server (NTRS)

    Keller, James M.

    1991-01-01

    Progress on the following tasks is reported: (1) fuzzy set-based decision making methodologies; (2) feature calculation; (3) clustering for curve and surface fitting; and (4) acquisition of images. The general structure for networks based on fuzzy set connectives which are being used for information fusion and decision making in space applications is described. The structure and training techniques for such networks consisting of generalized means and gamma-operators are described. The use of other hybrid operators in multicriteria decision making is currently being examined. Numerous classical features on image regions such as gray level statistics, edge and curve primitives, texture measures from cooccurrance matrix, and size and shape parameters were implemented. Several fractal geometric features which may have a considerable impact on characterizing cluttered background, such as clouds, dense star patterns, or some planetary surfaces, were used. A new approach to a fuzzy C-shell algorithm is addressed. NASA personnel are in the process of acquiring suitable simulation data and hopefully videotaped actual shuttle imagery. Photographs have been digitized to use in the algorithms. Also, a model of the shuttle was assembled and a mechanism to orient this model in 3-D to digitize for experiments on pose estimation is being constructed.

  10. Biclustering Models for Two-Mode Ordinal Data.

    PubMed

    Matechou, Eleni; Liu, Ivy; Fernández, Daniel; Farias, Miguel; Gjelsvik, Bergljot

    2016-09-01

    The work in this paper introduces finite mixture models that can be used to simultaneously cluster the rows and columns of two-mode ordinal categorical response data, such as those resulting from Likert scale responses. We use the popular proportional odds parameterisation and propose models which provide insights into major patterns in the data. Model-fitting is performed using the EM algorithm, and a fuzzy allocation of rows and columns to corresponding clusters is obtained. The clustering ability of the models is evaluated in a simulation study and demonstrated using two real data sets.

  11. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    USGS Publications Warehouse

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  12. Fingerprint recognition of wavelet-based compressed images by neuro-fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Liu, Ti C.; Mitra, Sunanda

    1996-06-01

    Image compression plays a crucial role in many important and diverse applications requiring efficient storage and transmission. This work mainly focuses on a wavelet transform (WT) based compression of fingerprint images and the subsequent classification of the reconstructed images. The algorithm developed involves multiresolution wavelet decomposition, uniform scalar quantization, entropy and run- length encoder/decoder and K-means clustering of the invariant moments as fingerprint features. The performance of the WT-based compression algorithm has been compared with JPEG current image compression standard. Simulation results show that WT outperforms JPEG in high compression ratio region and the reconstructed fingerprint image yields proper classification.

  13. Fuzzy CMAC With incremental Bayesian Ying-Yang learning and dynamic rule construction.

    PubMed

    Nguyen, M N

    2010-04-01

    Inspired by the philosophy of ancient Chinese Taoism, Xu's Bayesian ying-yang (BYY) learning technique performs clustering by harmonizing the training data (yang) with the solution (ying). In our previous work, the BYY learning technique was applied to a fuzzy cerebellar model articulation controller (FCMAC) to find the optimal fuzzy sets; however, this is not suitable for time series data analysis. To address this problem, we propose an incremental BYY learning technique in this paper, with the idea of sliding window and rule structure dynamic algorithms. Three contributions are made as a result of this research. First, an online expectation-maximization algorithm incorporated with the sliding window is proposed for the fuzzification phase. Second, the memory requirement is greatly reduced since the entire data set no longer needs to be obtained during the prediction process. Third, the rule structure dynamic algorithm with dynamically initializing, recruiting, and pruning rules relieves the "curse of dimensionality" problem that is inherent in the FCMAC. Because of these features, the experimental results of the benchmark data sets of currency exchange rates and Mackey-Glass show that the proposed model is more suitable for real-time streaming data analysis.

  14. Software tool for data mining and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Ye, Chenzhou; Chen, Nianyi

    2002-03-01

    A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.

  15. The implementation of two stages clustering (k-means clustering and adaptive neuro fuzzy inference system) for prediction of medicine need based on medical data

    NASA Astrophysics Data System (ADS)

    Husein, A. M.; Harahap, M.; Aisyah, S.; Purba, W.; Muhazir, A.

    2018-03-01

    Medication planning aim to get types, amount of medicine according to needs, and avoid the emptiness medicine based on patterns of disease. In making the medicine planning is still rely on ability and leadership experience, this is due to take a long time, skill, difficult to obtain a definite disease data, need a good record keeping and reporting, and the dependence of the budget resulted in planning is not going well, and lead to frequent lack and excess of medicines. In this research, we propose Adaptive Neuro Fuzzy Inference System (ANFIS) method to predict medication needs in 2016 and 2017 based on medical data in 2015 and 2016 from two source of hospital. The framework of analysis using two approaches. The first phase is implementing ANFIS to a data source, while the second approach we keep using ANFIS, but after the process of clustering from K-Means algorithm, both approaches are calculated values of Root Mean Square Error (RMSE) for training and testing. From the testing result, the proposed method with better prediction rates based on the evaluation analysis of quantitative and qualitative compared with existing systems, however the implementation of K-Means Algorithm against ANFIS have an effect on the timing of the training process and provide a classification accuracy significantly better without clustering.

  16. Information mining in remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Li, Jiang

    The volume of remotely sensed imagery continues to grow at an enormous rate due to the advances in sensor technology, and our capability for collecting and storing images has greatly outpaced our ability to analyze and retrieve information from the images. This motivates us to develop image information mining techniques, which is very much an interdisciplinary endeavor drawing upon expertise in image processing, databases, information retrieval, machine learning, and software design. This dissertation proposes and implements an extensive remote sensing image information mining (ReSIM) system prototype for mining useful information implicitly stored in remote sensing imagery. The system consists of three modules: image processing subsystem, database subsystem, and visualization and graphical user interface (GUI) subsystem. Land cover and land use (LCLU) information corresponding to spectral characteristics is identified by supervised classification based on support vector machines (SVM) with automatic model selection, while textural features that characterize spatial information are extracted using Gabor wavelet coefficients. Within LCLU categories, textural features are clustered using an optimized k-means clustering approach to acquire search efficient space. The clusters are stored in an object-oriented database (OODB) with associated images indexed in an image database (IDB). A k-nearest neighbor search is performed using a query-by-example (QBE) approach. Furthermore, an automatic parametric contour tracing algorithm and an O(n) time piecewise linear polygonal approximation (PLPA) algorithm are developed for shape information mining of interesting objects within the image. A fuzzy object-oriented database based on the fuzzy object-oriented data (FOOD) model is developed to handle the fuzziness and uncertainty. Three specific applications are presented: integrated land cover and texture pattern mining, shape information mining for change detection of lakes, and fuzzy normalized difference vegetation index (NDVI) pattern mining. The study results show the effectiveness of the proposed system prototype and the potentials for other applications in remote sensing.

  17. Tissue Probability Map Constrained 4-D Clustering Algorithm for Increased Accuracy and Robustness in Serial MR Brain Image Segmentation

    PubMed Central

    Xue, Zhong; Shen, Dinggang; Li, Hai; Wong, Stephen

    2010-01-01

    The traditional fuzzy clustering algorithm and its extensions have been successfully applied in medical image segmentation. However, because of the variability of tissues and anatomical structures, the clustering results might be biased by the tissue population and intensity differences. For example, clustering-based algorithms tend to over-segment white matter tissues of MR brain images. To solve this problem, we introduce a tissue probability map constrained clustering algorithm and apply it to serial MR brain image segmentation, i.e., a series of 3-D MR brain images of the same subject at different time points. Using the new serial image segmentation algorithm in the framework of the CLASSIC framework, which iteratively segments the images and estimates the longitudinal deformations, we improved both accuracy and robustness for serial image computing, and at the mean time produced longitudinally consistent segmentation and stable measures. In the algorithm, the tissue probability maps consist of both the population-based and subject-specific segmentation priors. Experimental study using both simulated longitudinal MR brain data and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data confirmed that using both priors more accurate and robust segmentation results can be obtained. The proposed algorithm can be applied in longitudinal follow up studies of MR brain imaging with subtle morphological changes for neurological disorders. PMID:26566399

  18. A system for learning statistical motion patterns.

    PubMed

    Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve

    2006-09-01

    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.

  19. Efficient fuzzy C-means architecture for image segmentation.

    PubMed

    Li, Hui-Ya; Hwang, Wen-Jyi; Chang, Chia-Yen

    2011-01-01

    This paper presents a novel VLSI architecture for image segmentation. The architecture is based on the fuzzy c-means algorithm with spatial constraint for reducing the misclassification rate. In the architecture, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. In addition, an efficient pipelined circuit is used for the updating process for accelerating the computational speed. Experimental results show that the the proposed circuit is an effective alternative for real-time image segmentation with low area cost and low misclassification rate.

  20. Inference from clustering with application to gene-expression microarrays.

    PubMed

    Dougherty, Edward R; Barrera, Junior; Brun, Marcel; Kim, Seungchan; Cesar, Roberto M; Chen, Yidong; Bittner, Michael; Trent, Jeffrey M

    2002-01-01

    There are many algorithms to cluster sample data points based on nearness or a similarity measure. Often the implication is that points in different clusters come from different underlying classes, whereas those in the same cluster come from the same class. Stochastically, the underlying classes represent different random processes. The inference is that clusters represent a partition of the sample points according to which process they belong. This paper discusses a model-based clustering toolbox that evaluates cluster accuracy. Each random process is modeled as its mean plus independent noise, sample points are generated, the points are clustered, and the clustering error is the number of points clustered incorrectly according to the generating random processes. Various clustering algorithms are evaluated based on process variance and the key issue of the rate at which algorithmic performance improves with increasing numbers of experimental replications. The model means can be selected by hand to test the separability of expected types of biological expression patterns. Alternatively, the model can be seeded by real data to test the expected precision of that output or the extent of improvement in precision that replication could provide. In the latter case, a clustering algorithm is used to form clusters, and the model is seeded with the means and variances of these clusters. Other algorithms are then tested relative to the seeding algorithm. Results are averaged over various seeds. Output includes error tables and graphs, confusion matrices, principal-component plots, and validation measures. Five algorithms are studied in detail: K-means, fuzzy C-means, self-organizing maps, hierarchical Euclidean-distance-based and correlation-based clustering. The toolbox is applied to gene-expression clustering based on cDNA microarrays using real data. Expression profile graphics are generated and error analysis is displayed within the context of these profile graphics. A large amount of generated output is available over the web.

  1. AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection

    PubMed Central

    Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying

    2015-01-01

    Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes’ status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors’ detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability. PMID:26193280

  2. Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Freeman, L. M.; Meredith, D. L.

    1990-01-01

    The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.

  3. Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering

    PubMed Central

    2012-01-01

    Background Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue. Results Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting), which is designed to optimize: (i) fast and accurate detection, (ii) offline sorting and (iii) online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com) using LabVIEW (National Instruments, USA). We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is competitive with respect to other robust spike sorting algorithms. Conclusions This new software provides neuroscience laboratories with a new tool for fast and robust online classification of single neuron activity. This feature could become crucial in situations when online spike detection from multiple electrodes is paramount, such as in human clinical recordings or in brain-computer interfaces. PMID:22871125

  4. Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering.

    PubMed

    Oliynyk, Andriy; Bonifazzi, Claudio; Montani, Fernando; Fadiga, Luciano

    2012-08-08

    Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue. Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting), which is designed to optimize: (i) fast and accurate detection, (ii) offline sorting and (iii) online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com) using LabVIEW (National Instruments, USA). We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is competitive with respect to other robust spike sorting algorithms. This new software provides neuroscience laboratories with a new tool for fast and robust online classification of single neuron activity. This feature could become crucial in situations when online spike detection from multiple electrodes is paramount, such as in human clinical recordings or in brain-computer interfaces.

  5. Precipitation, pH and metal load in AMD river basins: an application of fuzzy clustering algorithms to the process characterization.

    PubMed

    Grande, J A; Andújar, J M; Aroba, J; de la Torre, M L; Beltrán, R

    2005-04-01

    In the present work, Acid Mine Drainage (AMD) processes in the Chorrito Stream, which flows into the Cobica River (Iberian Pyrite Belt, Southwest Spain) are characterized by means of clustering techniques based on fuzzy logic. Also, pH behavior in contrast to precipitation is clearly explained, proving that the influence of rainfall inputs on the acidity and, as a result, on the metal load of a riverbed undergoing AMD processes highly depends on the moment when it occurs. In general, the riverbed dynamic behavior is the response to the sum of instant stimuli produced by isolated rainfall, the seasonal memory depending on the moment of the target hydrological year and, finally, the own inertia of the river basin, as a result of an accumulation process caused by age-long mining activity.

  6. Using Fuzzy Clustering for Real-time Space Flight Safety

    NASA Technical Reports Server (NTRS)

    Lee, Charles; Haskell, Richard E.; Hanna, Darrin; Alena, Richard L.

    2004-01-01

    To ensure space flight safety, it is necessary to monitor myriad sensor readings on the ground and in flight. Since a space shuttle has many sensors, monitoring data and drawing conclusions from information contained within the data in real time is challenging. The nature of the information can be critical to the success of the mission and safety of the crew and therefore, must be processed with minimal data-processing time. Data analysis algorithms could be used to synthesize sensor readings and compare data associated with normal operation with the data obtained that contain fault patterns to draw conclusions. Detecting abnormal operation during early stages in the transition from safe to unsafe operation requires a large amount of historical data that can be categorized into different classes (non-risk, risk). Even though the 40 years of shuttle flight program has accumulated volumes of historical data, these data don t comprehensively represent all possible fault patterns since fault patterns are usually unknown before the fault occurs. This paper presents a method that uses a similarity measure between fuzzy clusters to detect possible faults in real time. A clustering technique based on a fuzzy equivalence relation is used to characterize temporal data. Data collected during an initial time period are separated into clusters. These clusters are characterized by their centroids. Clusters formed during subsequent time periods are either merged with an existing cluster or added to the cluster list. The resulting list of cluster centroids, called a cluster group, characterizes the behavior of a particular set of temporal data. The degree to which new clusters formed in a subsequent time period are similar to the cluster group is characterized by a similarity measure, q. This method is applied to downlink data from Columbia flights. The results show that this technique can detect an unexpected fault that has not been present in the training data set.

  7. Coordinated control system modelling of ultra-supercritical unit based on a new T-S fuzzy structure.

    PubMed

    Hou, Guolian; Du, Huan; Yang, Yu; Huang, Congzhi; Zhang, Jianhua

    2018-03-01

    The thermal power plant, especially the ultra-supercritical unit is featured with severe nonlinearity, strong multivariable coupling. In order to deal with these difficulties, it is of great importance to build an accurate and simple model of the coordinated control system (CCS) in the ultra-supercritical unit. In this paper, an improved T-S fuzzy model identification approach is proposed. First of all, the k-means++ algorithm is employed to identify the premise parameters so as to guarantee the number of fuzzy rules. Then, the local linearized models are determined by using the incremental historical data around the cluster centers, which are obtained via the stochastic gradient descent algorithm with momentum and variable learning rate. Finally, with the proposed method, the CCS model of a 1000 MW USC unit in Tai Zhou power plant is developed. The effectiveness of the proposed approach is validated by the given extensive simulation results, and it can be further employed to design the overall advanced controllers for the CCS in an USC unit. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Fuzzy α-minimum spanning tree problem: definition and solutions

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Chen, Lu; Wang, Ke; Yang, Fan

    2016-04-01

    In this paper, the minimum spanning tree problem is investigated on the graph with fuzzy edge weights. The notion of fuzzy ? -minimum spanning tree is presented based on the credibility measure, and then the solutions of the fuzzy ? -minimum spanning tree problem are discussed under different assumptions. First, we respectively, assume that all the edge weights are triangular fuzzy numbers and trapezoidal fuzzy numbers and prove that the fuzzy ? -minimum spanning tree problem can be transformed to a classical problem on a crisp graph in these two cases, which can be solved by classical algorithms such as the Kruskal algorithm and the Prim algorithm in polynomial time. Subsequently, as for the case that the edge weights are general fuzzy numbers, a fuzzy simulation-based genetic algorithm using Prüfer number representation is designed for solving the fuzzy ? -minimum spanning tree problem. Some numerical examples are also provided for illustrating the effectiveness of the proposed solutions.

  9. Fuzzy Sarsa with Focussed Replacing Eligibility Traces for Robust and Accurate Control

    NASA Astrophysics Data System (ADS)

    Kamdem, Sylvain; Ohki, Hidehiro; Sueda, Naomichi

    Several methods of reinforcement learning in continuous state and action spaces that utilize fuzzy logic have been proposed in recent years. This paper introduces Fuzzy Sarsa(λ), an on-policy algorithm for fuzzy learning that relies on a novel way of computing replacing eligibility traces to accelerate the policy evaluation. It is tested against several temporal difference learning algorithms: Sarsa(λ), Fuzzy Q(λ), an earlier fuzzy version of Sarsa and an actor-critic algorithm. We perform detailed evaluations on two benchmark problems : a maze domain and the cart pole. Results of various tests highlight the strengths and weaknesses of these algorithms and show that Fuzzy Sarsa(λ) outperforms all other algorithms tested for a larger granularity of design and under noisy conditions. It is a highly competitive method of learning in realistic noisy domains where a denser fuzzy design over the state space is needed for a more precise control.

  10. Interactive visual exploration and refinement of cluster assignments.

    PubMed

    Kern, Michael; Lex, Alexander; Gehlenborg, Nils; Johnson, Chris R

    2017-09-12

    With ever-increasing amounts of data produced in biology research, scientists are in need of efficient data analysis methods. Cluster analysis, combined with visualization of the results, is one such method that can be used to make sense of large data volumes. At the same time, cluster analysis is known to be imperfect and depends on the choice of algorithms, parameters, and distance measures. Most clustering algorithms don't properly account for ambiguity in the source data, as records are often assigned to discrete clusters, even if an assignment is unclear. While there are metrics and visualization techniques that allow analysts to compare clusterings or to judge cluster quality, there is no comprehensive method that allows analysts to evaluate, compare, and refine cluster assignments based on the source data, derived scores, and contextual data. In this paper, we introduce a method that explicitly visualizes the quality of cluster assignments, allows comparisons of clustering results and enables analysts to manually curate and refine cluster assignments. Our methods are applicable to matrix data clustered with partitional, hierarchical, and fuzzy clustering algorithms. Furthermore, we enable analysts to explore clustering results in context of other data, for example, to observe whether a clustering of genomic data results in a meaningful differentiation in phenotypes. Our methods are integrated into Caleydo StratomeX, a popular, web-based, disease subtype analysis tool. We show in a usage scenario that our approach can reveal ambiguities in cluster assignments and produce improved clusterings that better differentiate genotypes and phenotypes.

  11. A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng

    2009-11-01

    Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.

  12. Implementation of hybrid clustering based on partitioning around medoids algorithm and divisive analysis on human Papillomavirus DNA

    NASA Astrophysics Data System (ADS)

    Arimbi, Mentari Dian; Bustamam, Alhadi; Lestari, Dian

    2017-03-01

    Data clustering can be executed through partition or hierarchical method for many types of data including DNA sequences. Both clustering methods can be combined by processing partition algorithm in the first level and hierarchical in the second level, called hybrid clustering. In the partition phase some popular methods such as PAM, K-means, or Fuzzy c-means methods could be applied. In this study we selected partitioning around medoids (PAM) in our partition stage. Furthermore, following the partition algorithm, in hierarchical stage we applied divisive analysis algorithm (DIANA) in order to have more specific clusters and sub clusters structures. The number of main clusters is determined using Davies Bouldin Index (DBI) value. We choose the optimal number of clusters if the results minimize the DBI value. In this work, we conduct the clustering on 1252 HPV DNA sequences data from GenBank. The characteristic extraction is initially performed, followed by normalizing and genetic distance calculation using Euclidean distance. In our implementation, we used the hybrid PAM and DIANA using the R open source programming tool. In our results, we obtained 3 main clusters with average DBI value is 0.979, using PAM in the first stage. After executing DIANA in the second stage, we obtained 4 sub clusters for Cluster-1, 9 sub clusters for Cluster-2 and 2 sub clusters in Cluster-3, with the BDI value 0.972, 0.771, and 0.768 for each main cluster respectively. Since the second stage produce lower DBI value compare to the DBI value in the first stage, we conclude that this hybrid approach can improve the accuracy of our clustering results.

  13. Comparison of optimized algorithms in facility location allocation problems with different distance measures

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Chandrawat, Rajesh Kumar; Garg, B. P.; Joshi, Varun

    2017-07-01

    Opening the new firm or branch with desired execution is very relevant to facility location problem. Along the lines to locate the new ambulances and firehouses, the government desires to minimize average response time for emergencies from all residents of cities. So finding the best location is biggest challenge in day to day life. These type of problems were named as facility location problems. A lot of algorithms have been developed to handle these problems. In this paper, we review five algorithms that were applied to facility location problems. The significance of clustering in facility location problems is also presented. First we compare Fuzzy c-means clustering (FCM) algorithm with alternating heuristic (AH) algorithm, then with Particle Swarm Optimization (PSO) algorithms using different type of distance function. The data was clustered with the help of FCM and then we apply median model and min-max problem model on that data. After finding optimized locations using these algorithms we find the distance from optimized location point to the demanded point with different distance techniques and compare the results. At last, we design a general example to validate the feasibility of the five algorithms for facilities location optimization, and authenticate the advantages and drawbacks of them.

  14. Fuzzy multi objective transportation problem – evolutionary algorithm approach

    NASA Astrophysics Data System (ADS)

    Karthy, T.; Ganesan, K.

    2018-04-01

    This paper deals with fuzzy multi objective transportation problem. An fuzzy optimal compromise solution is obtained by using Fuzzy Genetic Algorithm. A numerical example is provided to illustrate the methodology.

  15. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques.

    PubMed

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-12-01

    Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications.

  16. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques

    PubMed Central

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-01-01

    Background: Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. Methods: In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. Results: With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Conclusion: Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications. PMID:28077898

  17. Fuzzy Mixed Assembly Line Sequencing and Scheduling Optimization Model Using Multiobjective Dynamic Fuzzy GA

    PubMed Central

    Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari

    2014-01-01

    A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962

  18. Data-driven modeling and predictive control for boiler-turbine unit using fuzzy clustering and subspace methods.

    PubMed

    Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y

    2014-05-01

    This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Fuzzy regression modeling for tool performance prediction and degradation detection.

    PubMed

    Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L

    2010-10-01

    In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.

  20. Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen

    Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.

  1. Selection of representative embankments based on rough set - fuzzy clustering method

    NASA Astrophysics Data System (ADS)

    Bin, Ou; Lin, Zhi-xiang; Fu, Shu-yan; Gao, Sheng-song

    2018-02-01

    The premise condition of comprehensive evaluation of embankment safety is selection of representative unit embankment, on the basis of dividing the unit levee the influencing factors and classification of the unit embankment are drafted.Based on the rough set-fuzzy clustering, the influence factors of the unit embankment are measured by quantitative and qualitative indexes.Construct to fuzzy similarity matrix of standard embankment then calculate fuzzy equivalent matrix of fuzzy similarity matrix by square method. By setting the threshold of the fuzzy equivalence matrix, the unit embankment is clustered, and the representative unit embankment is selected from the classification of the embankment.

  2. Improved hybridization of Fuzzy Analytic Hierarchy Process (FAHP) algorithm with Fuzzy Multiple Attribute Decision Making - Simple Additive Weighting (FMADM-SAW)

    NASA Astrophysics Data System (ADS)

    Zaiwani, B. E.; Zarlis, M.; Efendi, S.

    2018-03-01

    In this research, the improvement of hybridization algorithm of Fuzzy Analytic Hierarchy Process (FAHP) with Fuzzy Technique for Order Preference by Similarity to Ideal Solution (FTOPSIS) in selecting the best bank chief inspector based on several qualitative and quantitative criteria with various priorities. To improve the performance of the above research, FAHP algorithm hybridization with Fuzzy Multiple Attribute Decision Making - Simple Additive Weighting (FMADM-SAW) algorithm was adopted, which applied FAHP algorithm to the weighting process and SAW for the ranking process to determine the promotion of employee at a government institution. The result of improvement of the average value of Efficiency Rate (ER) is 85.24%, which means that this research has succeeded in improving the previous research that is equal to 77.82%. Keywords: Ranking and Selection, Fuzzy AHP, Fuzzy TOPSIS, FMADM-SAW.

  3. Computer-aided detection of breast lesions in DCE-MRI using region growing based on fuzzy C-means clustering and vesselness filter

    NASA Astrophysics Data System (ADS)

    B. Shokouhi, Shahriar; Fooladivanda, Aida; Ahmadinejad, Nasrin

    2017-12-01

    A computer-aided detection (CAD) system is introduced in this paper for detection of breast lesions in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The proposed CAD system firstly compensates motion artifacts and segments the breast region. Then, the potential lesion voxels are detected and used as the initial seed points for the seeded region-growing algorithm. A new and robust region-growing algorithm incorporating with Fuzzy C-means (FCM) clustering and vesselness filter is proposed to segment any potential lesion regions. Subsequently, the false positive detections are reduced by applying a discrimination step. This is based on 3D morphological characteristics of the potential lesion regions and kinetic features which are fed to the support vector machine (SVM) classifier. The performance of the proposed CAD system is evaluated using the free-response operating characteristic (FROC) curve. We introduce our collected dataset that includes 76 DCE-MRI studies, 63 malignant and 107 benign lesions. The prepared dataset has been used to verify the accuracy of the proposed CAD system. At 5.29 false positives per case, the CAD system accurately detects 94% of the breast lesions.

  4. Model of cholera dissemination using geographic information systems and fuzzy clustering means: case study, Chabahar, Iran.

    PubMed

    Pezeshki, Z; Tafazzoli-Shadpour, M; Mansourian, A; Eshrati, B; Omidi, E; Nejadqoli, I

    2012-10-01

    Cholera is spread by drinking water or eating food that is contaminated by bacteria, and is related to climate changes. Several epidemics have occurred in Iran, the most recent of which was in 2005 with 1133 cases and 12 deaths. This study investigated the incidence of cholera over a 10-year period in Chabahar district, a region with one of the highest incidence rates of cholera in Iran. Descriptive retrospective study on data of patients with Eltor and NAG cholera reported to the Iranian Centre of Disease Control between 1997 and 2006. Data on the prevalence of cholera were gathered through a surveillance system, and a spatial database was developed using geographic information systems (GIS) to describe the relation of spatial and climate variables to cholera incidences. Fuzzy clustering (fuzzy C) method and statistical analysis based on logistic regression were used to develop a model of cholera dissemination. The variables were demographic characteristics, specifications of cholera infection, climate conditions and some geographical parameters. The incidence of cholera was found to be significantly related to higher temperature and humidity, lower precipitation, shorter distance to the eastern border of Iran and local health centres, and longer distance to the district health centre. The fuzzy C means algorithm showed that clusters were geographically distributed in distinct regions. In order to plan, manage and monitor any public health programme, GIS provide ideal platforms for the convergence of disease-specific information, analysis and computation of new data for statistical analysis. Copyright © 2012 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  5. Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions.

    PubMed

    Abe, S

    1998-01-01

    In this paper, we discuss a fuzzy classifier with ellipsoidal regions that dynamically generates clusters. First, for the data belonging to a class we define a fuzzy rule with an ellipsoidal region. Namely, using the training data for each class, we calculate the center and the covariance matrix of the ellipsoidal region for the class. Then we tune the fuzzy rules, i.e., the slopes of the membership functions, successively until there is no improvement in the recognition rate of the training data. Then if the number of the data belonging to a class that are misclassified into another class exceeds a prescribed number, we define a new cluster to which those data belong and the associated fuzzy rule. Then we tune the newly defined fuzzy rules in the similar way as stated above, fixing the already obtained fuzzy rules. We iterate generation of clusters and tuning of the newly generated fuzzy rules until the number of the data belonging to a class that are misclassified into another class does not exceed the prescribed number. We evaluate our method using thyroid data, Japanese Hiragana data of vehicle license plates, and blood cell data. By dynamic cluster generation, the generalization ability of the classifier is improved and the recognition rate of the fuzzy classifier for the test data is the best among the neural network classifiers and other fuzzy classifiers if there are no discrete input variables.

  6. Inhomogeneity compensation for MR brain image segmentation using a multi-stage FCM-based approach.

    PubMed

    Szilágyi, László; Szilágyi, Sándor M; Dávid, László; Benyó, Zoltán

    2008-01-01

    Intensity inhomogeneity or intensity non-uniformity (INU) is an undesired phenomenon that represents the main obstacle for MR image segmentation and registration methods. Various techniques have been proposed to eliminate or compensate the INU, most of which are embedded into clustering algorithms. This paper proposes a multiple stage fuzzy c-means (FCM) based algorithm for the estimation and compensation of the slowly varying additive or multiplicative noise, supported by a pre-filtering technique for Gaussian and impulse noise elimination. The slowly varying behavior of the bias or gain field is assured by a smoothening filter that performs a context dependent averaging, based on a morphological criterion. The experiments using 2-D synthetic phantoms and real MR images show, that the proposed method provides accurate segmentation. The produced segmentation and fuzzy membership values can serve as excellent support for 3-D registration and segmentation techniques.

  7. Ellipsoidal fuzzy learning for smart car platoons

    NASA Astrophysics Data System (ADS)

    Dickerson, Julie A.; Kosko, Bart

    1993-12-01

    A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.

  8. Dynamic Fuzzy Model Development for a Drum-type Boiler-turbine Plant Through GK Clustering

    NASA Astrophysics Data System (ADS)

    Habbi, Ahcène; Zelmat, Mimoun

    2008-10-01

    This paper discusses a TS fuzzy model identification method for an industrial drum-type boiler plant using the GK fuzzy clustering approach. The fuzzy model is constructed from a set of input-output data that covers a wide operating range of the physical plant. The reference data is generated using a complex first-principle-based mathematical model that describes the key dynamical properties of the boiler-turbine dynamics. The proposed fuzzy model is derived by means of fuzzy clustering method with particular attention on structure flexibility and model interpretability issues. This may provide a basement of a new way to design model based control and diagnosis mechanisms for the complex nonlinear plant.

  9. Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach

    NASA Astrophysics Data System (ADS)

    Verma, Akhilesh K.; Chaki, Soumi; Routray, Aurobinda; Mohanty, William K.; Jenamani, Mamata

    2014-12-01

    In this paper, we illustrate the modeling of a reservoir property (sand fraction) from seismic attributes namely seismic impedance, seismic amplitude, and instantaneous frequency using Neuro-Fuzzy (NF) approach. Input dataset includes 3D post-stacked seismic attributes and six well logs acquired from a hydrocarbon field located in the western coast of India. Presence of thin sand and shale layers in the basin area makes the modeling of reservoir characteristic a challenging task. Though seismic data is helpful in extrapolation of reservoir properties away from boreholes; yet, it could be challenging to delineate thin sand and shale reservoirs using seismic data due to its limited resolvability. Therefore, it is important to develop state-of-art intelligent methods for calibrating a nonlinear mapping between seismic data and target reservoir variables. Neural networks have shown its potential to model such nonlinear mappings; however, uncertainties associated with the model and datasets are still a concern. Hence, introduction of Fuzzy Logic (FL) is beneficial for handling these uncertainties. More specifically, hybrid variants of Artificial Neural Network (ANN) and fuzzy logic, i.e., NF methods, are capable for the modeling reservoir characteristics by integrating the explicit knowledge representation power of FL with the learning ability of neural networks. In this paper, we opt for ANN and three different categories of Adaptive Neuro-Fuzzy Inference System (ANFIS) based on clustering of the available datasets. A comparative analysis of these three different NF models (i.e., Sugeno-type fuzzy inference systems using a grid partition on the data (Model 1), using subtractive clustering (Model 2), and using Fuzzy c-means (FCM) clustering (Model 3)) and ANN suggests that Model 3 has outperformed its counterparts in terms of performance evaluators on the present dataset. Performance of the selected algorithms is evaluated in terms of correlation coefficients (CC), root mean square error (RMSE), absolute error mean (AEM) and scatter index (SI) between target and predicted sand fraction values. The achieved estimation accuracy may diverge minutely depending on geological characteristics of a particular study area. The documented results in this study demonstrate acceptable resemblance between target and predicted variables, and hence, encourage the application of integrated machine learning approaches such as Neuro-Fuzzy in reservoir characterization domain. Furthermore, visualization of the variation of sand probability in the study area would assist in identifying placement of potential wells for future drilling operations.

  10. Query by example video based on fuzzy c-means initialized by fixed clustering center

    NASA Astrophysics Data System (ADS)

    Hou, Sujuan; Zhou, Shangbo; Siddique, Muhammad Abubakar

    2012-04-01

    Currently, the high complexity of video contents has posed the following major challenges for fast retrieval: (1) efficient similarity measurements, and (2) efficient indexing on the compact representations. A video-retrieval strategy based on fuzzy c-means (FCM) is presented for querying by example. Initially, the query video is segmented and represented by a set of shots, each shot can be represented by a key frame, and then we used video processing techniques to find visual cues to represent the key frame. Next, because the FCM algorithm is sensitive to the initializations, here we initialized the cluster center by the shots of query video so that users could achieve appropriate convergence. After an FCM cluster was initialized by the query video, each shot of query video was considered a benchmark point in the aforesaid cluster, and each shot in the database possessed a class label. The similarity between the shots in the database with the same class label and benchmark point can be transformed into the distance between them. Finally, the similarity between the query video and the video in database was transformed into the number of similar shots. Our experimental results demonstrated the performance of this proposed approach.

  11. Evaluation of a fuzzy logic ramp metering algorithm : a comparative study among three ramp metering algorithms used in the greater Seattle area

    DOT National Transportation Integrated Search

    2000-02-01

    A Fuzzy Logic Ramp Metering Algorithm was implemented on 126 ramps in the greater Seattle area. Two multiple-ramp study sites were evaluted by comparing the fuzzy logic controller (FLC) to the other two ramp metering algorithms in operation at those ...

  12. A Distributed Fuzzy Associative Classifier for Big Data.

    PubMed

    Segatori, Armando; Bechini, Alessio; Ducange, Pietro; Marcelloni, Francesco

    2017-09-19

    Fuzzy associative classification has not been widely analyzed in the literature, although associative classifiers (ACs) have proved to be very effective in different real domain applications. The main reason is that learning fuzzy ACs is a very heavy task, especially when dealing with large datasets. To overcome this drawback, in this paper, we propose an efficient distributed fuzzy associative classification approach based on the MapReduce paradigm. The approach exploits a novel distributed discretizer based on fuzzy entropy for efficiently generating fuzzy partitions of the attributes. Then, a set of candidate fuzzy association rules is generated by employing a distributed fuzzy extension of the well-known FP-Growth algorithm. Finally, this set is pruned by using three purposely adapted types of pruning. We implemented our approach on the popular Hadoop framework. Hadoop allows distributing storage and processing of very large data sets on computer clusters built from commodity hardware. We have performed an extensive experimentation and a detailed analysis of the results using six very large datasets with up to 11,000,000 instances. We have also experimented different types of reasoning methods. Focusing on accuracy, model complexity, computation time, and scalability, we compare the results achieved by our approach with those obtained by two distributed nonfuzzy ACs recently proposed in the literature. We highlight that, although the accuracies result to be comparable, the complexity, evaluated in terms of number of rules, of the classifiers generated by the fuzzy distributed approach is lower than the one of the nonfuzzy classifiers.

  13. Cooperative inversion of magnetotelluric and seismic data sets

    NASA Astrophysics Data System (ADS)

    Markovic, M.; Santos, F.

    2012-04-01

    Cooperative inversion of magnetotelluric and seismic data sets Milenko Markovic,Fernando Monteiro Santos IDL, Faculdade de Ciências da Universidade de Lisboa 1749-016 Lisboa Inversion of single geophysical data has well-known limitations due to the non-linearity of the fields and non-uniqueness of the model. There is growing need, both in academy and industry to use two or more different data sets and thus obtain subsurface property distribution. In our case ,we are dealing with magnetotelluric and seismic data sets. In our approach,we are developing algorithm based on fuzzy-c means clustering technique, for pattern recognition of geophysical data. Separate inversion is performed on every step, information exchanged for model integration. Interrelationships between parameters from different models is not required in analytical form. We are investigating how different number of clusters, affects zonation and spatial distribution of parameters. In our study optimization in fuzzy c-means clustering (for magnetotelluric and seismic data) is compared for two cases, firstly alternating optimization and then hybrid method (alternating optimization+ Quasi-Newton method). Acknowledgment: This work is supported by FCT Portugal

  14. Research on intelligent algorithm of electro - hydraulic servo control system

    NASA Astrophysics Data System (ADS)

    Wang, Yannian; Zhao, Yuhui; Liu, Chengtao

    2017-09-01

    In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.

  15. Two-Way Regularized Fuzzy Clustering of Multiple Correspondence Analysis.

    PubMed

    Kim, Sunmee; Choi, Ji Yeh; Hwang, Heungsun

    2017-01-01

    Multiple correspondence analysis (MCA) is a useful tool for investigating the interrelationships among dummy-coded categorical variables. MCA has been combined with clustering methods to examine whether there exist heterogeneous subclusters of a population, which exhibit cluster-level heterogeneity. These combined approaches aim to classify either observations only (one-way clustering of MCA) or both observations and variable categories (two-way clustering of MCA). The latter approach is favored because its solutions are easier to interpret by providing explicitly which subgroup of observations is associated with which subset of variable categories. Nonetheless, the two-way approach has been built on hard classification that assumes observations and/or variable categories to belong to only one cluster. To relax this assumption, we propose two-way fuzzy clustering of MCA. Specifically, we combine MCA with fuzzy k-means simultaneously to classify a subgroup of observations and a subset of variable categories into a common cluster, while allowing both observations and variable categories to belong partially to multiple clusters. Importantly, we adopt regularized fuzzy k-means, thereby enabling us to decide the degree of fuzziness in cluster memberships automatically. We evaluate the performance of the proposed approach through the analysis of simulated and real data, in comparison with existing two-way clustering approaches.

  16. Dynamic Trajectory Extraction from Stereo Vision Using Fuzzy Clustering

    NASA Astrophysics Data System (ADS)

    Onishi, Masaki; Yoda, Ikushi

    In recent years, many human tracking researches have been proposed in order to analyze human dynamic trajectory. These researches are general technology applicable to various fields, such as customer purchase analysis in a shopping environment and safety control in a (railroad) crossing. In this paper, we present a new approach for tracking human positions by stereo image. We use the framework of two-stepped clustering with k-means method and fuzzy clustering to detect human regions. In the initial clustering, k-means method makes middle clusters from objective features extracted by stereo vision at high speed. In the last clustering, c-means fuzzy method cluster middle clusters based on attributes into human regions. Our proposed method can be correctly clustered by expressing ambiguity using fuzzy clustering, even when many people are close to each other. The validity of our technique was evaluated with the experiment of trajectories extraction of doctors and nurses in an emergency room of a hospital.

  17. Fuzzy Classification of Ocean Color Satellite Data for Bio-optical Algorithm Constituent Retrievals

    NASA Technical Reports Server (NTRS)

    Campbell, Janet W.

    1998-01-01

    The ocean has been traditionally viewed as a 2 class system. Morel and Prieur (1977) classified ocean water according to the dominant absorbent particle suspended in the water column. Case 1 is described as having a high concentration of phytoplankton (and detritus) relative to other particles. Conversely, case 2 is described as having inorganic particles such as suspended sediments in high concentrations. Little work has gone into the problem of mixing bio-optical models for these different water types. An approach is put forth here to blend bio-optical algorithms based on a fuzzy classification scheme. This scheme involves two procedures. First, a clustering procedure identifies classes and builds class statistics from in-situ optical measurements. Next, a classification procedure assigns satellite pixels partial memberships to these classes based on their ocean color reflectance signature. These membership assignments can be used as the basis for a weighting retrievals from class-specific bio-optical algorithms. This technique is demonstrated with in-situ optical measurements and an image from the SeaWiFS ocean color satellite.

  18. Programmer's guide to the fuzzy logic ramp metering algorithm : software design, integration, testing, and evaluation

    DOT National Transportation Integrated Search

    2000-02-01

    A Fuzzy Logic Ramp Metering Algorithm was implemented on 126 ramps in the greater Seattle area. This report documents the implementation of the Fuzzy Logic Ramp Metering Algorithm at the Northwest District of the Washington State Department of Transp...

  19. Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths

    NASA Astrophysics Data System (ADS)

    Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna

    2011-06-01

    We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using α -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.

  20. Sensitivity evaluation of dynamic speckle activity measurements using clustering methods.

    PubMed

    Etchepareborda, Pablo; Federico, Alejandro; Kaufmann, Guillermo H

    2010-07-01

    We evaluate and compare the use of competitive neural networks, self-organizing maps, the expectation-maximization algorithm, K-means, and fuzzy C-means techniques as partitional clustering methods, when the sensitivity of the activity measurement of dynamic speckle images needs to be improved. The temporal history of the acquired intensity generated by each pixel is analyzed in a wavelet decomposition framework, and it is shown that the mean energy of its corresponding wavelet coefficients provides a suited feature space for clustering purposes. The sensitivity obtained by using the evaluated clustering techniques is also compared with the well-known methods of Konishi-Fujii, weighted generalized differences, and wavelet entropy. The performance of the partitional clustering approach is evaluated using simulated dynamic speckle patterns and also experimental data.

  1. On the fusion of tuning parameters of fuzzy rules and neural network

    NASA Astrophysics Data System (ADS)

    Mamuda, Mamman; Sathasivam, Saratha

    2017-08-01

    Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.

  2. PCA based clustering for brain tumor segmentation of T1w MRI images.

    PubMed

    Kaya, Irem Ersöz; Pehlivanlı, Ayça Çakmak; Sekizkardeş, Emine Gezmez; Ibrikci, Turgay

    2017-03-01

    Medical images are huge collections of information that are difficult to store and process consuming extensive computing time. Therefore, the reduction techniques are commonly used as a data pre-processing step to make the image data less complex so that a high-dimensional data can be identified by an appropriate low-dimensional representation. PCA is one of the most popular multivariate methods for data reduction. This paper is focused on T1-weighted MRI images clustering for brain tumor segmentation with dimension reduction by different common Principle Component Analysis (PCA) algorithms. Our primary aim is to present a comparison between different variations of PCA algorithms on MRIs for two cluster methods. Five most common PCA algorithms; namely the conventional PCA, Probabilistic Principal Component Analysis (PPCA), Expectation Maximization Based Principal Component Analysis (EM-PCA), Generalize Hebbian Algorithm (GHA), and Adaptive Principal Component Extraction (APEX) were applied to reduce dimensionality in advance of two clustering algorithms, K-Means and Fuzzy C-Means. In the study, the T1-weighted MRI images of the human brain with brain tumor were used for clustering. In addition to the original size of 512 lines and 512 pixels per line, three more different sizes, 256 × 256, 128 × 128 and 64 × 64, were included in the study to examine their effect on the methods. The obtained results were compared in terms of both the reconstruction errors and the Euclidean distance errors among the clustered images containing the same number of principle components. According to the findings, the PPCA obtained the best results among all others. Furthermore, the EM-PCA and the PPCA assisted K-Means algorithm to accomplish the best clustering performance in the majority as well as achieving significant results with both clustering algorithms for all size of T1w MRI images. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. A Weight-Adaptive Laplacian Embedding for Graph-Based Clustering.

    PubMed

    Cheng, De; Nie, Feiping; Sun, Jiande; Gong, Yihong

    2017-07-01

    Graph-based clustering methods perform clustering on a fixed input data graph. Thus such clustering results are sensitive to the particular graph construction. If this initial construction is of low quality, the resulting clustering may also be of low quality. We address this drawback by allowing the data graph itself to be adaptively adjusted in the clustering procedure. In particular, our proposed weight adaptive Laplacian (WAL) method learns a new data similarity matrix that can adaptively adjust the initial graph according to the similarity weight in the input data graph. We develop three versions of these methods based on the L2-norm, fuzzy entropy regularizer, and another exponential-based weight strategy, that yield three new graph-based clustering objectives. We derive optimization algorithms to solve these objectives. Experimental results on synthetic data sets and real-world benchmark data sets exhibit the effectiveness of these new graph-based clustering methods.

  4. Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm.

    PubMed

    Saberkari, Hamidreza; Bahrami, Sheyda; Shamsi, Mousa; Amoshahy, Mohammad Javad; Ghavifekr, Habib Badri; Sedaaghi, Mohammad Hossein

    2015-01-01

    DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.

  5. A novel approach for analyzing fuzzy system reliability using different types of intuitionistic fuzzy failure rates of components.

    PubMed

    Kumar, Mohit; Yadav, Shiv Prasad

    2012-03-01

    This paper addresses the fuzzy system reliability analysis using different types of intuitionistic fuzzy numbers. Till now, in the literature, to analyze the fuzzy system reliability, it is assumed that the failure rates of all components of a system follow the same type of fuzzy set or intuitionistic fuzzy set. However, in practical problems, such type of situation rarely occurs. Therefore, in the present paper, a new algorithm has been introduced to construct the membership function and non-membership function of fuzzy reliability of a system having components following different types of intuitionistic fuzzy failure rates. Functions of intuitionistic fuzzy numbers are calculated to construct the membership function and non-membership function of fuzzy reliability via non-linear programming techniques. Using the proposed algorithm, membership functions and non-membership functions of fuzzy reliability of a series system and a parallel systems are constructed. Our study generalizes the various works of the literature. Numerical examples are given to illustrate the proposed algorithm. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Meta-analyses of microarrays of Arabidopsis asymmetric leaves1 (as1), as2 and their modifying mutants reveal a critical role for the ETT pathway in stabilization of adaxial-abaxial patterning and cell division during leaf development.

    PubMed

    Takahashi, Hiro; Iwakawa, Hidekazu; Ishibashi, Nanako; Kojima, Shoko; Matsumura, Yoko; Prananingrum, Pratiwi; Iwasaki, Mayumi; Takahashi, Anna; Ikezaki, Masaya; Luo, Lilan; Kobayashi, Takeshi; Machida, Yasunori; Machida, Chiyoko

    2013-03-01

    It is necessary to use algorithms to analyze gene expression data from DNA microarrays, such as in clustering and machine learning. Previously, we developed the knowledge-based fuzzy adaptive resonance theory (KB-FuzzyART), a clustering algorithm suitable for analyzing gene expression data, to find clues for identifying gene networks. Leaf primordia form around the shoot apical meristem (SAM), which consists of indeterminate stem cells. Upon initiation of leaf development, adaxial-abaxial patterning is crucial for lateral expansion, via cellular proliferation, and the formation of flat symmetric leaves. Many regulatory genes that specify such patterning have been identified. Analysis by the KB-FuzzyART and subsequent molecular and genetic analyses previously showed that ASYMMETRIC LEAVES1 (AS1) and AS2 repress the expression of some abaxial-determinant genes, such as AUXIN RESPONSE FACTOR3 (ARF3)/ETTIN (ETT) and ARF4, which are responsible for defects in leaf adaxial-abaxial polarity in as1 and as2. In the present study, genetic analysis revealed that ARF3/ETT and ARF4 were regulated by modifier genes, BOBBER1 (BOB1) and ELONGATA3 (ELO3), together with AS1-AS2. We analyzed expression arrays with as2 elo3 and as2 bob1, and extracted genes downstream of ARF3/ETT by using KB-FuzzyART and molecular analyses. The results showed that expression of Kip-related protein (KRP) (for inhibitors of cyclin-dependent protein kinases) and Isopentenyltransferase (IPT) (for biosynthesis of cytokinin) genes were controlled by AS1-AS2 through ARF3/ETT and ARF4 functions, which suggests that the AS1-AS2-ETT pathway plays a critical role in controlling the cell division cycle and the biosynthesis of cytokinin around SAM to stabilize leaf development in Arabidopsis thaliana.

  7. Signal-Noise Identification of Magnetotelluric Signals Using Fractal-Entropy and Clustering Algorithm for Targeted De-Noising

    NASA Astrophysics Data System (ADS)

    Li, Jin; Zhang, Xian; Gong, Jinzhe; Tang, Jingtian; Ren, Zhengyong; Li, Guang; Deng, Yanli; Cai, Jin

    A new technique is proposed for signal-noise identification and targeted de-noising of Magnetotelluric (MT) signals. This method is based on fractal-entropy and clustering algorithm, which automatically identifies signal sections corrupted by common interference (square, triangle and pulse waves), enabling targeted de-noising and preventing the loss of useful information in filtering. To implement the technique, four characteristic parameters — fractal box dimension (FBD), higuchi fractal dimension (HFD), fuzzy entropy (FuEn) and approximate entropy (ApEn) — are extracted from MT time-series. The fuzzy c-means (FCM) clustering technique is used to analyze the characteristic parameters and automatically distinguish signals with strong interference from the rest. The wavelet threshold (WT) de-noising method is used only to suppress the identified strong interference in selected signal sections. The technique is validated through signal samples with known interference, before being applied to a set of field measured MT/Audio Magnetotelluric (AMT) data. Compared with the conventional de-noising strategy that blindly applies the filter to the overall dataset, the proposed method can automatically identify and purposefully suppress the intermittent interference in the MT/AMT signal. The resulted apparent resistivity-phase curve is more continuous and smooth, and the slow-change trend in the low-frequency range is more precisely reserved. Moreover, the characteristic of the target-filtered MT/AMT signal is close to the essential characteristic of the natural field, and the result more accurately reflects the inherent electrical structure information of the measured site.

  8. A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process

    NASA Astrophysics Data System (ADS)

    Nourani, Vahid; Komasi, Mehdi

    2013-05-01

    This paper demonstrates the potential use of Artificial Intelligence (AI) techniques for predicting daily runoff at multiple gauging stations. Uncertainty and complexity of the rainfall-runoff process due to its variability in space and time in one hand and lack of historical data on the other hand, cause difficulties in the spatiotemporal modeling of the process. In this paper, an Integrated Geomorphological Adaptive Neuro-Fuzzy Inference System (IGANFIS) model conjugated with C-means clustering algorithm was used for rainfall-runoff modeling at multiple stations of the Eel River watershed, California. The proposed model could be used for predicting runoff in the stations with lack of data or any sub-basin within the watershed because of employing the spatial and temporal variables of the sub-basins as the model inputs. This ability of the integrated model for spatiotemporal modeling of the process was examined through the cross validation technique for a station. In this way, different ANFIS structures were trained using Sugeno algorithm in order to estimate daily discharge values at different stations. In order to improve the model efficiency, the input data were then classified into some clusters by the means of fuzzy C-means (FCMs) method. The goodness-of-fit measures support the gainful use of the IGANFIS and FCM methods in spatiotemporal modeling of hydrological processes.

  9. Application of affinity propagation algorithm based on manifold distance for transformer PD pattern recognition

    NASA Astrophysics Data System (ADS)

    Wei, B. G.; Huo, K. X.; Yao, Z. F.; Lou, J.; Li, X. Y.

    2018-03-01

    It is one of the difficult problems encountered in the research of condition maintenance technology of transformers to recognize partial discharge (PD) pattern. According to the main physical characteristics of PD, three models of oil-paper insulation defects were set up in laboratory to study the PD of transformers, and phase resolved partial discharge (PRPD) was constructed. By using least square method, the grey-scale images of PRPD were constructed and features of each grey-scale image were 28 box dimensions and 28 information dimensions. Affinity propagation algorithm based on manifold distance (AP-MD) for transformers PD pattern recognition was established, and the data of box dimension and information dimension were clustered based on AP-MD. Study shows that clustering result of AP-MD is better than the results of affinity propagation (AP), k-means and fuzzy c-means algorithm (FCM). By choosing different k values of k-nearest neighbor, we find clustering accuracy of AP-MD falls when k value is larger or smaller, and the optimal k value depends on sample size.

  10. Recurrent-neural-network-based Boolean factor analysis and its application to word clustering.

    PubMed

    Frolov, Alexander A; Husek, Dusan; Polyakov, Pavel Yu

    2009-07-01

    The objective of this paper is to introduce a neural-network-based algorithm for word clustering as an extension of the neural-network-based Boolean factor analysis algorithm (Frolov , 2007). It is shown that this extended algorithm supports even the more complex model of signals that are supposed to be related to textual documents. It is hypothesized that every topic in textual data is characterized by a set of words which coherently appear in documents dedicated to a given topic. The appearance of each word in a document is coded by the activity of a particular neuron. In accordance with the Hebbian learning rule implemented in the network, sets of coherently appearing words (treated as factors) create tightly connected groups of neurons, hence, revealing them as attractors of the network dynamics. The found factors are eliminated from the network memory by the Hebbian unlearning rule facilitating the search of other factors. Topics related to the found sets of words can be identified based on the words' semantics. To make the method complete, a special technique based on a Bayesian procedure has been developed for the following purposes: first, to provide a complete description of factors in terms of component probability, and second, to enhance the accuracy of classification of signals to determine whether it contains the factor. Since it is assumed that every word may possibly contribute to several topics, the proposed method might be related to the method of fuzzy clustering. In this paper, we show that the results of Boolean factor analysis and fuzzy clustering are not contradictory, but complementary. To demonstrate the capabilities of this attempt, the method is applied to two types of textual data on neural networks in two different languages. The obtained topics and corresponding words are at a good level of agreement despite the fact that identical topics in Russian and English conferences contain different sets of keywords.

  11. A Novel Approach to Implement Takagi-Sugeno Fuzzy Models.

    PubMed

    Chang, Chia-Wen; Tao, Chin-Wang

    2017-09-01

    This paper proposes new algorithms based on the fuzzy c-regressing model algorithm for Takagi-Sugeno (T-S) fuzzy modeling of the complex nonlinear systems. A fuzzy c-regression state model (FCRSM) algorithm is a T-S fuzzy model in which the functional antecedent and the state-space-model-type consequent are considered with the available input-output data. The antecedent and consequent forms of the proposed FCRSM consists mainly of two advantages: one is that the FCRSM has low computation load due to only one input variable is considered in the antecedent part; another is that the unknown system can be modeled to not only the polynomial form but also the state-space form. Moreover, the FCRSM can be extended to FCRSM-ND and FCRSM-Free algorithms. An algorithm FCRSM-ND is presented to find the T-S fuzzy state-space model of the nonlinear system when the input-output data cannot be precollected and an assumed effective controller is available. In the practical applications, the mathematical model of controller may be hard to be obtained. In this case, an online tuning algorithm, FCRSM-FREE, is designed such that the parameters of a T-S fuzzy controller and the T-S fuzzy state model of an unknown system can be online tuned simultaneously. Four numerical simulations are given to demonstrate the effectiveness of the proposed approach.

  12. Intelligent neural network and fuzzy logic control of industrial and power systems

    NASA Astrophysics Data System (ADS)

    Kuljaca, Ognjen

    The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of adaptive and neural network control systems, as well as for the analysis of the different algorithms such as elastic fuzzy systems.

  13. Genetic algorithm optimized rainfall-runoff fuzzy inference system for row crop watersheds with claypan soils

    USDA-ARS?s Scientific Manuscript database

    The fuzzy logic algorithm has the ability to describe knowledge in a descriptive human-like manner in the form of simple rules using linguistic variables, and provides a new way of modeling uncertain or naturally fuzzy hydrological processes like non-linear rainfall-runoff relationships. Fuzzy infe...

  14. Semisupervised GDTW kernel-based fuzzy c-means algorithm for mapping vegetation dynamics in mining region using normalized difference vegetation index time series

    NASA Astrophysics Data System (ADS)

    Jia, Duo; Wang, Cangjiao; Lei, Shaogang

    2018-01-01

    Mapping vegetation dynamic types in mining areas is significant for revealing the mechanisms of environmental damage and for guiding ecological construction. Dynamic types of vegetation can be identified by applying interannual normalized difference vegetation index (NDVI) time series. However, phase differences and time shifts in interannual time series decrease mapping accuracy in mining regions. To overcome these problems and to increase the accuracy of mapping vegetation dynamics, an interannual Landsat time series for optimum vegetation growing status was constructed first by using the enhanced spatial and temporal adaptive reflectance fusion model algorithm. We then proposed a Markov random field optimized semisupervised Gaussian dynamic time warping kernel-based fuzzy c-means (FCM) cluster algorithm for interannual NDVI time series to map dynamic vegetation types in mining regions. The proposed algorithm has been tested in the Shengli mining region and Shendong mining region, which are typical representatives of China's open-pit and underground mining regions, respectively. Experiments show that the proposed algorithm can solve the problems of phase differences and time shifts to achieve better performance when mapping vegetation dynamic types. The overall accuracies for the Shengli and Shendong mining regions were 93.32% and 89.60%, respectively, with improvements of 7.32% and 25.84% when compared with the original semisupervised FCM algorithm.

  15. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic.

    PubMed

    Li, Ning; Martínez, José-Fernán; Hernández Díaz, Vicente

    2015-08-10

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters' dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively.

  16. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic

    PubMed Central

    Li, Ning; Martínez, José-Fernán; Díaz, Vicente Hernández

    2015-01-01

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively. PMID:26266412

  17. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    ERIC Educational Resources Information Center

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  18. Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories

    NASA Technical Reports Server (NTRS)

    Burchett, Bradley T.

    2003-01-01

    The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.

  19. Efficient architecture for spike sorting in reconfigurable hardware.

    PubMed

    Hwang, Wen-Jyi; Lee, Wei-Hao; Lin, Shiow-Jyu; Lai, Sheng-Ying

    2013-11-01

    This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA) and fuzzy C-means (FCM) algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA). It is embedded in a System-on-Chip (SOC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation.

  20. Hybrid Clustering And Boundary Value Refinement for Tumor Segmentation using Brain MRI

    NASA Astrophysics Data System (ADS)

    Gupta, Anjali; Pahuja, Gunjan

    2017-08-01

    The method of brain tumor segmentation is the separation of tumor area from Brain Magnetic Resonance (MR) images. There are number of methods already exist for segmentation of brain tumor efficiently. However it’s tedious task to identify the brain tumor from MR images. The segmentation process is extraction of different tumor tissues such as active, tumor, necrosis, and edema from the normal brain tissues such as gray matter (GM), white matter (WM), as well as cerebrospinal fluid (CSF). As per the survey study, most of time the brain tumors are detected easily from brain MR image using region based approach but required level of accuracy, abnormalities classification is not predictable. The segmentation of brain tumor consists of many stages. Manually segmenting the tumor from brain MR images is very time consuming hence there exist many challenges in manual segmentation. In this research paper, our main goal is to present the hybrid clustering which consists of Fuzzy C-Means Clustering (for accurate tumor detection) and level set method(for handling complex shapes) for the detection of exact shape of tumor in minimal computational time. using this approach we observe that for a certain set of images 0.9412 sec of time is taken to detect tumor which is very less in comparison to recent existing algorithm i.e. Hybrid clustering (Fuzzy C-Means and K Means clustering).

  1. Fuzzy logic applications to control engineering

    NASA Astrophysics Data System (ADS)

    Langari, Reza

    1993-12-01

    This paper presents the results of a project presently under way at Texas A&M which focuses on the use of fuzzy logic in integrated control of manufacturing systems. The specific problems investigated here include diagnosis of critical tool wear in machining of metals via a neuro-fuzzy algorithm, as well as compensation of friction in mechanical positioning systems via an adaptive fuzzy logic algorithm. The results indicate that fuzzy logic in conjunction with conventional algorithmic based approaches or neural nets can prove useful in dealing with the intricacies of control/monitoring of manufacturing systems and can potentially play an active role in multi-modal integrated control systems of the future.

  2. High-efficiency induction motor drives using type-2 fuzzy logic

    NASA Astrophysics Data System (ADS)

    Khemis, A.; Benlaloui, I.; Drid, S.; Chrifi-Alaoui, L.; Khamari, D.; Menacer, A.

    2018-03-01

    In this work we propose to develop an algorithm for improving the efficiency of an induction motor using type-2 fuzzy logic. Vector control is used to control this motor due to the high performances of this strategy. The type-2 fuzzy logic regulators are developed to obtain the optimal rotor flux for each torque load by minimizing the copper losses. We have compared the performances of our fuzzy type-2 algorithm with the type-1 fuzzy one proposed in the literature. The proposed algorithm is tested with success on the dSPACE DS1104 system even if there is parameters variance.

  3. Classifying human operator functional state based on electrophysiological and performance measures and fuzzy clustering method.

    PubMed

    Zhang, Jian-Hua; Peng, Xiao-Di; Liu, Hua; Raisch, Jörg; Wang, Ru-Bin

    2013-12-01

    The human operator's ability to perform their tasks can fluctuate over time. Because the cognitive demands of the task can also vary it is possible that the capabilities of the operator are not sufficient to satisfy the job demands. This can lead to serious errors when the operator is overwhelmed by the task demands. Psychophysiological measures, such as heart rate and brain activity, can be used to monitor operator cognitive workload. In this paper, the most influential psychophysiological measures are extracted to characterize Operator Functional State (OFS) in automated tasks under a complex form of human-automation interaction. The fuzzy c-mean (FCM) algorithm is used and tested for its OFS classification performance. The results obtained have shown the feasibility and effectiveness of the FCM algorithm as well as the utility of the selected input features for OFS classification. Besides being able to cope with nonlinearity and fuzzy uncertainty in the psychophysiological data it can provide information about the relative importance of the input features as well as the confidence estimate of the classification results. The OFS pattern classification method developed can be incorporated into an adaptive aiding system in order to enhance the overall performance of a large class of safety-critical human-machine cooperative systems.

  4. Big Data GPU-Driven Parallel Processing Spatial and Spatio-Temporal Clustering Algorithms

    NASA Astrophysics Data System (ADS)

    Konstantaras, Antonios; Skounakis, Emmanouil; Kilty, James-Alexander; Frantzeskakis, Theofanis; Maravelakis, Emmanuel

    2016-04-01

    Advances in graphics processing units' technology towards encompassing parallel architectures [1], comprised of thousands of cores and multiples of parallel threads, provide the foundation in terms of hardware for the rapid processing of various parallel applications regarding seismic big data analysis. Seismic data are normally stored as collections of vectors in massive matrices, growing rapidly in size as wider areas are covered, denser recording networks are being established and decades of data are being compiled together [2]. Yet, many processes regarding seismic data analysis are performed on each seismic event independently or as distinct tiles [3] of specific grouped seismic events within a much larger data set. Such processes, independent of one another can be performed in parallel narrowing down processing times drastically [1,3]. This research work presents the development and implementation of three parallel processing algorithms using Cuda C [4] for the investigation of potentially distinct seismic regions [5,6] present in the vicinity of the southern Hellenic seismic arc. The algorithms, programmed and executed in parallel comparatively, are the: fuzzy k-means clustering with expert knowledge [7] in assigning overall clusters' number; density-based clustering [8]; and a selves-developed spatio-temporal clustering algorithm encompassing expert [9] and empirical knowledge [10] for the specific area under investigation. Indexing terms: GPU parallel programming, Cuda C, heterogeneous processing, distinct seismic regions, parallel clustering algorithms, spatio-temporal clustering References [1] Kirk, D. and Hwu, W.: 'Programming massively parallel processors - A hands-on approach', 2nd Edition, Morgan Kaufman Publisher, 2013 [2] Konstantaras, A., Valianatos, F., Varley, M.R. and Makris, J.P.: 'Soft-Computing Modelling of Seismicity in the Southern Hellenic Arc', Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [3] Papadakis, S. and Diamantaras, K.: 'Programming and architecture of parallel processing systems', 1st Edition, Eds. Kleidarithmos, 2011 [4] NVIDIA.: 'NVidia CUDA C Programming Guide', version 5.0, NVidia (reference book) [5] Konstantaras, A.: 'Classification of Distinct Seismic Regions and Regional Temporal Modelling of Seismicity in the Vicinity of the Hellenic Seismic Arc', IEEE Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6 (4), pp. 1857-1863, 2013 [6] Konstantaras, A. Varley, M.R.,. Valianatos, F., Collins, G. and Holifield, P.: 'Recognition of electric earthquake precursors using neuro-fuzzy models: methodology and simulation results', Proc. IASTED International Conference on Signal Processing Pattern Recognition and Applications (SPPRA 2002), Crete, Greece, 2002, pp 303-308, 2002 [7] Konstantaras, A., Katsifarakis, E., Maravelakis, E., Skounakis, E., Kokkinos, E. and Karapidakis, E.: 'Intelligent Spatial-Clustering of Seismicity in the Vicinity of the Hellenic Seismic Arc', Earth Science Research, vol. 1 (2), pp. 1-10, 2012 [8] Georgoulas, G., Konstantaras, A., Katsifarakis, E., Stylios, C.D., Maravelakis, E. and Vachtsevanos, G.: '"Seismic-Mass" Density-based Algorithm for Spatio-Temporal Clustering', Expert Systems with Applications, vol. 40 (10), pp. 4183-4189, 2013 [9] Konstantaras, A. J.: 'Expert knowledge-based algorithm for the dynamic discrimination of interactive natural clusters', Earth Science Informatics, 2015 (In Press, see: www.scopus.com) [10] Drakatos, G. and Latoussakis, J.: 'A catalog of aftershock sequences in Greece (1971-1997): Their spatial and temporal characteristics', Journal of Seismology, vol. 5, pp. 137-145, 2001

  5. Comparison of crisp and fuzzy character networks in handwritten word recognition

    NASA Technical Reports Server (NTRS)

    Gader, Paul; Mohamed, Magdi; Chiang, Jung-Hsien

    1992-01-01

    Experiments involving handwritten word recognition on words taken from images of handwritten address blocks from the United States Postal Service mailstream are described. The word recognition algorithm relies on the use of neural networks at the character level. The neural networks are trained using crisp and fuzzy desired outputs. The fuzzy outputs were defined using a fuzzy k-nearest neighbor algorithm. The crisp networks slightly outperformed the fuzzy networks at the character level but the fuzzy networks outperformed the crisp networks at the word level.

  6. Fuzzy decoupling controller based on multimode control algorithm of PI-single neuron and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Xianxia; Wang, Jian; Qin, Tinggao

    2003-09-01

    Intelligent control algorithms are introduced into the control system of temperature and humidity. A multi-mode control algorithm of PI-Single Neuron is proposed for single loop control of temperature and humidity. In order to remove the coupling between temperature and humidity, a new decoupling method is presented, which is called fuzzy decoupling. The decoupling is achieved by using a fuzzy controller that dynamically modifies the static decoupling coefficient. Taking the control algorithm of PI-Single Neuron as the single loop control of temperature and humidity, the paper provides the simulated output response curves with no decoupling control, static decoupling control and fuzzy decoupling control. Those control algorithms are easily implemented in singlechip-based hardware systems.

  7. An improved approach for the segmentation of starch granules in microscopic images

    PubMed Central

    2010-01-01

    Background Starches are the main storage polysaccharides in plants and are distributed widely throughout plants including seeds, roots, tubers, leaves, stems and so on. Currently, microscopic observation is one of the most important ways to investigate and analyze the structure of starches. The position, shape, and size of the starch granules are the main measurements for quantitative analysis. In order to obtain these measurements, segmentation of starch granules from the background is very important. However, automatic segmentation of starch granules is still a challenging task because of the limitation of imaging condition and the complex scenarios of overlapping granules. Results We propose a novel method to segment starch granules in microscopic images. In the proposed method, we first separate starch granules from background using automatic thresholding and then roughly segment the image using watershed algorithm. In order to reduce the oversegmentation in watershed algorithm, we use the roundness of each segment, and analyze the gradient vector field to find the critical points so as to identify oversegments. After oversegments are found, we extract the features, such as the position and intensity of the oversegments, and use fuzzy c-means clustering to merge the oversegments to the objects with similar features. Experimental results demonstrate that the proposed method can alleviate oversegmentation of watershed segmentation algorithm successfully. Conclusions We present a new scheme for starch granules segmentation. The proposed scheme aims to alleviate the oversegmentation in watershed algorithm. We use the shape information and critical points of gradient vector flow (GVF) of starch granules to identify oversegments, and use fuzzy c-mean clustering based on prior knowledge to merge these oversegments to the objects. Experimental results on twenty microscopic starch images demonstrate the effectiveness of the proposed scheme. PMID:21047380

  8. An analytical fuzzy-based approach to ?-gain optimal control of input-affine nonlinear systems using Newton-type algorithm

    NASA Astrophysics Data System (ADS)

    Milic, Vladimir; Kasac, Josip; Novakovic, Branko

    2015-10-01

    This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.

  9. Fuzzy PID control algorithm based on PSO and application in BLDC motor

    NASA Astrophysics Data System (ADS)

    Lin, Sen; Wang, Guanglong

    2017-06-01

    A fuzzy PID control algorithm is studied based on improved particle swarm optimization (PSO) to perform Brushless DC (BLDC) motor control which has high accuracy, good anti-jamming capability and steady state accuracy compared with traditional PID control. The mathematical and simulation model is established for BLDC motor by simulink software, and the speed loop of the fuzzy PID controller is designed. The simulation results show that the fuzzy PID control algorithm based on PSO has higher stability, high control precision and faster dynamic response speed.

  10. Pattern Classification of Tropical Cyclone Tracks over the Western North Pacific using a Fuzzy Clustering Method

    NASA Astrophysics Data System (ADS)

    Kim, H.; Ho, C.; Kim, J.

    2008-12-01

    This study presents the pattern classification of tropical cyclone (TC) tracks over the western North Pacific (WNP) basin during the typhoon season (June through October) for 1965-2006 (total 42 years) using a fuzzy clustering method. After the fuzzy c-mean clustering algorithm to the TC trajectory interpolated into 20 segments of equivalent length, we divided the whole tracks into 7 patterns. The optimal number of the fuzzy cluster is determined by several validity measures. The classified TC track patterns represent quite different features in the recurving latitudes, genesis locations, and geographical pathways: TCs mainly forming in east-northern part of the WNP and striking Korean and Japan (C1); mainly forming in west-southern part of the WNP, traveling long pathway, and partly striking Japan (C2); mainly striking Taiwan and East China (C3); traveling near the east coast of Japan (C4); traveling the distant ocean east of Japan (C5); moving toward South China and Vietnam straightly (C6); and forming in the South China Sea (C7). Atmospheric environments related to each cluster show physically consistent with each TC track patterns. The straight track pattern is closely linked to a developed anticyclonic circulation to the north of the TC. It implies that this ridge acts as a steering flow forcing TCs to move to the northwest with a more west-oriented track. By contrast, recurving patterns occur commonly under the influence of the strong anomalous westerlies over the TC pathway but there definitely exist characteristic anomalous circulations over the mid- latitudes by pattern. Some clusters are closely related to the well-known large-scale phenomena. The C1 and C2 are highly related to the ENSO phase: The TCs in the C1 (C2) is more active during La Niña (El Niño). The TC activity in the C3 is associated with the WNP summer monsoon. The TCs in the C4 is more (less) vigorous during the easterly (westerly) phase of the stratospheric quasi-biennial oscillation. This study may be applied to the statistical-dynamic long-range forecast model of TC activity as well as the diagnostic study of TC activity.

  11. Clustering of Multi-Temporal Fully Polarimetric L-Band SAR Data for Agricultural Land Cover Mapping

    NASA Astrophysics Data System (ADS)

    Tamiminia, H.; Homayouni, S.; Safari, A.

    2015-12-01

    Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.

  12. A diabetic retinopathy detection method using an improved pillar K-means algorithm.

    PubMed

    Gogula, Susmitha Valli; Divakar, Ch; Satyanarayana, Ch; Rao, Allam Appa

    2014-01-01

    The paper presents a new approach for medical image segmentation. Exudates are a visible sign of diabetic retinopathy that is the major reason of vision loss in patients with diabetes. If the exudates extend into the macular area, blindness may occur. Automated detection of exudates will assist ophthalmologists in early diagnosis. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after getting optimized by Pillar algorithm; pillars are constructed in such a way that they can withstand the pressure. Improved pillar algorithm can optimize the K-means clustering for image segmentation in aspects of precision and computation time. This evaluates the proposed approach for image segmentation by comparing with Kmeans and Fuzzy C-means in a medical image. Using this method, identification of dark spot in the retina becomes easier and the proposed algorithm is applied on diabetic retinal images of all stages to identify hard and soft exudates, where the existing pillar K-means is more appropriate for brain MRI images. This proposed system help the doctors to identify the problem in the early stage and can suggest a better drug for preventing further retinal damage.

  13. Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process.

    PubMed

    Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan

    2013-12-01

    An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.

  14. PGA/MOEAD: a preference-guided evolutionary algorithm for multi-objective decision-making problems with interval-valued fuzzy preferences

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Lin, Lin; Zhong, ShiSheng

    2018-02-01

    In this research, we propose a preference-guided optimisation algorithm for multi-criteria decision-making (MCDM) problems with interval-valued fuzzy preferences. The interval-valued fuzzy preferences are decomposed into a series of precise and evenly distributed preference-vectors (reference directions) regarding the objectives to be optimised on the basis of uniform design strategy firstly. Then the preference information is further incorporated into the preference-vectors based on the boundary intersection approach, meanwhile, the MCDM problem with interval-valued fuzzy preferences is reformulated into a series of single-objective optimisation sub-problems (each sub-problem corresponds to a decomposed preference-vector). Finally, a preference-guided optimisation algorithm based on MOEA/D (multi-objective evolutionary algorithm based on decomposition) is proposed to solve the sub-problems in a single run. The proposed algorithm incorporates the preference-vectors within the optimisation process for guiding the search procedure towards a more promising subset of the efficient solutions matching the interval-valued fuzzy preferences. In particular, lots of test instances and an engineering application are employed to validate the performance of the proposed algorithm, and the results demonstrate the effectiveness and feasibility of the algorithm.

  15. An Indoor Pedestrian Positioning Method Using HMM with a Fuzzy Pattern Recognition Algorithm in a WLAN Fingerprint System

    PubMed Central

    Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin

    2016-01-01

    With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability. PMID:27618053

  16. Real coded genetic algorithm for fuzzy time series prediction

    NASA Astrophysics Data System (ADS)

    Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.

    2017-10-01

    Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.

  17. A Genetic Algorithm and Fuzzy Logic Approach for Video Shot Boundary Detection

    PubMed Central

    Thounaojam, Dalton Meitei; Khelchandra, Thongam; Singh, Kh. Manglem; Roy, Sudipta

    2016-01-01

    This paper proposed a shot boundary detection approach using Genetic Algorithm and Fuzzy Logic. In this, the membership functions of the fuzzy system are calculated using Genetic Algorithm by taking preobserved actual values for shot boundaries. The classification of the types of shot transitions is done by the fuzzy system. Experimental results show that the accuracy of the shot boundary detection increases with the increase in iterations or generations of the GA optimization process. The proposed system is compared to latest techniques and yields better result in terms of F1score parameter. PMID:27127500

  18. Genetic reinforcement learning through symbiotic evolution for fuzzy controller design.

    PubMed

    Juang, C F; Lin, J Y; Lin, C T

    2000-01-01

    An efficient genetic reinforcement learning algorithm for designing fuzzy controllers is proposed in this paper. The genetic algorithm (GA) adopted in this paper is based upon symbiotic evolution which, when applied to fuzzy controller design, complements the local mapping property of a fuzzy rule. Using this Symbiotic-Evolution-based Fuzzy Controller (SEFC) design method, the number of control trials, as well as consumed CPU time, are considerably reduced when compared to traditional GA-based fuzzy controller design methods and other types of genetic reinforcement learning schemes. Moreover, unlike traditional fuzzy controllers, which partition the input space into a grid, SEFC partitions the input space in a flexible way, thus creating fewer fuzzy rules. In SEFC, different types of fuzzy rules whose consequent parts are singletons, fuzzy sets, or linear equations (TSK-type fuzzy rules) are allowed. Further, the free parameters (e.g., centers and widths of membership functions) and fuzzy rules are all tuned automatically. For the TSK-type fuzzy rule especially, which put the proposed learning algorithm in use, only the significant input variables are selected to participate in the consequent of a rule. The proposed SEFC design method has been applied to different simulated control problems, including the cart-pole balancing system, a magnetic levitation system, and a water bath temperature control system. The proposed SEFC has been verified to be efficient and superior from these control problems, and from comparisons with some traditional GA-based fuzzy systems.

  19. Hybrid swarm intelligence optimization approach for optimal data storage position identification in wireless sensor networks.

    PubMed

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.

  20. Data mining for multiagent rules, strategies, and fuzzy decision tree structure

    NASA Astrophysics Data System (ADS)

    Smith, James F., III; Rhyne, Robert D., II; Fisher, Kristin

    2002-03-01

    A fuzzy logic based resource manager (RM) has been developed that automatically allocates electronic attack resources in real-time over many dissimilar platforms. Two different data mining algorithms have been developed to determine rules, strategies, and fuzzy decision tree structure. The first data mining algorithm uses a genetic algorithm as a data mining function and is called from an electronic game. The game allows a human expert to play against the resource manager in a simulated battlespace with each of the defending platforms being exclusively directed by the fuzzy resource manager and the attacking platforms being controlled by the human expert or operating autonomously under their own logic. This approach automates the data mining problem. The game automatically creates a database reflecting the domain expert's knowledge. It calls a data mining function, a genetic algorithm, for data mining of the database as required and allows easy evaluation of the information mined in the second step. The criterion for re- optimization is discussed as well as experimental results. Then a second data mining algorithm that uses a genetic program as a data mining function is introduced to automatically discover fuzzy decision tree structures. Finally, a fuzzy decision tree generated through this process is discussed.

  1. Introduction to Fuzzy Set Theory

    NASA Technical Reports Server (NTRS)

    Kosko, Bart

    1990-01-01

    An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.

  2. Logistics Distribution Center Location Evaluation Based on Genetic Algorithm and Fuzzy Neural Network

    NASA Astrophysics Data System (ADS)

    Shao, Yuxiang; Chen, Qing; Wei, Zhenhua

    Logistics distribution center location evaluation is a dynamic, fuzzy, open and complicated nonlinear system, which makes it difficult to evaluate the distribution center location by the traditional analysis method. The paper proposes a distribution center location evaluation system which uses the fuzzy neural network combined with the genetic algorithm. In this model, the neural network is adopted to construct the fuzzy system. By using the genetic algorithm, the parameters of the neural network are optimized and trained so as to improve the fuzzy system’s abilities of self-study and self-adaptation. At last, the sampled data are trained and tested by Matlab software. The simulation results indicate that the proposed identification model has very small errors.

  3. Challenges And Results of the Applications of Fuzzy Logic in the Classification of Rich Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Santiago Girola Schneider, Rafael

    2015-08-01

    The fuzzy logic is a branch of the artificial intelligence founded on the concept that 'everything is a matter of degree.' It intends to create mathematical approximations on the resolution of certain types of problems. In addition, it aims to produce exact results obtained from imprecise data, for which it is particularly useful for electronic and computer applications. This enables it to handle vague or unspecific information when certain parts of a system are unknown or ambiguous and, therefore, they cannot be measured in a reliable manner. Also, when the variation of a variable can produce an alteration on the others.The main focus of this paper is to prove the importance of these techniques formulated from a theoretical analysis on its application on ambiguous situations in the field of the rich clusters of galaxies. The purpose is to show its applicability in the several classification systems proposed for the rich clusters, which are based on criteria such as the level of richness of the cluster, the distribution of the brightest galaxies, whether there are signs of type-cD galaxies or not or the existence of sub-clusters.Fuzzy logic enables the researcher to work with “imprecise” information implementing fuzzy sets and combining rules to define actions. The control systems based on fuzzy logic join input variables that are defined in terms of fuzzy sets through rule groups that produce one or several output values of the system under study. From this context, the application of the fuzzy logic’s techniques approximates the solution of the mathematical models in abstractions about the rich galaxy cluster classification of physical properties in order to solve the obscurities that must be confronted by an investigation group in order to make a decision.

  4. Challenges And Results of the Applications of Fuzzy Logic in the Classification of Rich Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Girola Schneider, R.

    2017-07-01

    The fuzzy logic is a branch of the artificial intelligence founded on the concept that everything is a matter of degree. It intends to create mathematical approximations on the resolution of certain types of problems. In addition, it aims to produce exact results obtained from imprecise data, for which it is particularly useful for electronic and computer applications. This enables it to handle vague or unspecific information when certain parts of a system are unknown or ambiguous and, therefore, they cannot be measured in a reliable manner. Also, when the variation of a variable can produce an alteration on the others The main focus of this paper is to prove the importance of these techniques formulated from a theoretical analysis on its application on ambiguous situations in the field of the rich clusters of galaxies. The purpose is to show its applicability in the several classification systems proposed for the rich clusters, which are based on criteria such as the level of richness of the cluster, the distribution of the brightest galaxies, whether there are signs of type-cD galaxies or not or the existence of sub-clusters. Fuzzy logic enables the researcher to work with "imprecise" information implementing fuzzy sets and combining rules to define actions. The control systems based on fuzzy logic join input variables that are defined in terms of fuzzy sets through rule groups that produce one or several output values of the system under study. From this context, the application of the fuzzy logic's techniques approximates the solution of the mathematical models in abstractions about the rich galaxy cluster classification of physical properties in order to solve the obscurities that must be confronted by an investigation group in order to make a decision.

  5. Remote sensing imagery classification using multi-objective gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie

    2016-10-01

    Simultaneous optimization of different validity measures can capture different data characteristics of remote sensing imagery (RSI) and thereby achieving high quality classification results. In this paper, two conflicting cluster validity indices, the Xie-Beni (XB) index and the fuzzy C-means (FCM) (Jm) measure, are integrated with a diversity-enhanced and memory-based multi-objective gravitational search algorithm (DMMOGSA) to present a novel multi-objective optimization based RSI classification method. In this method, the Gabor filter method is firstly implemented to extract texture features of RSI. Then, the texture features are syncretized with the spectral features to construct the spatial-spectral feature space/set of the RSI. Afterwards, cluster of the spectral-spatial feature set is carried out on the basis of the proposed method. To be specific, cluster centers are randomly generated initially. After that, the cluster centers are updated and optimized adaptively by employing the DMMOGSA. Accordingly, a set of non-dominated cluster centers are obtained. Therefore, numbers of image classification results of RSI are produced and users can pick up the most promising one according to their problem requirements. To quantitatively and qualitatively validate the effectiveness of the proposed method, the proposed classification method was applied to classifier two aerial high-resolution remote sensing imageries. The obtained classification results are compared with that produced by two single cluster validity index based and two state-of-the-art multi-objective optimization algorithms based classification results. Comparison results show that the proposed method can achieve more accurate RSI classification.

  6. A Spacecraft Electrical Characteristics Multi-Label Classification Method Based on Off-Line FCM Clustering and On-Line WPSVM

    PubMed Central

    Li, Ke; Liu, Yi; Wang, Quanxin; Wu, Yalei; Song, Shimin; Sun, Yi; Liu, Tengchong; Wang, Jun; Li, Yang; Du, Shaoyi

    2015-01-01

    This paper proposes a novel multi-label classification method for resolving the spacecraft electrical characteristics problems which involve many unlabeled test data processing, high-dimensional features, long computing time and identification of slow rate. Firstly, both the fuzzy c-means (FCM) offline clustering and the principal component feature extraction algorithms are applied for the feature selection process. Secondly, the approximate weighted proximal support vector machine (WPSVM) online classification algorithms is used to reduce the feature dimension and further improve the rate of recognition for electrical characteristics spacecraft. Finally, the data capture contribution method by using thresholds is proposed to guarantee the validity and consistency of the data selection. The experimental results indicate that the method proposed can obtain better data features of the spacecraft electrical characteristics, improve the accuracy of identification and shorten the computing time effectively. PMID:26544549

  7. A fuzzy automated object classification by infrared laser camera

    NASA Astrophysics Data System (ADS)

    Kanazawa, Seigo; Taniguchi, Kazuhiko; Asari, Kazunari; Kuramoto, Kei; Kobashi, Syoji; Hata, Yutaka

    2011-06-01

    Home security in night is very important, and the system that watches a person's movements is useful in the security. This paper describes a classification system of adult, child and the other object from distance distribution measured by an infrared laser camera. This camera radiates near infrared waves and receives reflected ones. Then, it converts the time of flight into distance distribution. Our method consists of 4 steps. First, we do background subtraction and noise rejection in the distance distribution. Second, we do fuzzy clustering in the distance distribution, and form several clusters. Third, we extract features such as the height, thickness, aspect ratio, area ratio of the cluster. Then, we make fuzzy if-then rules from knowledge of adult, child and the other object so as to classify the cluster to one of adult, child and the other object. Here, we made the fuzzy membership function with respect to each features. Finally, we classify the clusters to one with the highest fuzzy degree among adult, child and the other object. In our experiment, we set up the camera in room and tested three cases. The method successfully classified them in real time processing.

  8. Mining Building Energy Management System Data Using Fuzzy Anomaly Detection and Linguistic Descriptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumidu Wijayasekara; Ondrej Linda; Milos Manic

    Building Energy Management Systems (BEMSs) are essential components of modern buildings that utilize digital control technologies to minimize energy consumption while maintaining high levels of occupant comfort. However, BEMSs can only achieve these energy savings when properly tuned and controlled. Since indoor environment is dependent on uncertain criteria such as weather, occupancy, and thermal state, performance of BEMS can be sub-optimal at times. Unfortunately, the complexity of BEMS control mechanism, the large amount of data available and inter-relations between the data can make identifying these sub-optimal behaviors difficult. This paper proposes a novel Fuzzy Anomaly Detection and Linguistic Description (Fuzzy-ADLD)more » based method for improving the understandability of BEMS behavior for improved state-awareness. The presented method is composed of two main parts: 1) detection of anomalous BEMS behavior and 2) linguistic representation of BEMS behavior. The first part utilizes modified nearest neighbor clustering algorithm and fuzzy logic rule extraction technique to build a model of normal BEMS behavior. The second part of the presented method computes the most relevant linguistic description of the identified anomalies. The presented Fuzzy-ADLD method was applied to real-world BEMS system and compared against a traditional alarm based BEMS. In six different scenarios, the Fuzzy-ADLD method identified anomalous behavior either as fast as or faster (an hour or more), that the alarm based BEMS. In addition, the Fuzzy-ADLD method identified cases that were missed by the alarm based system, demonstrating potential for increased state-awareness of abnormal building behavior.« less

  9. Fuzzy C-mean clustering on kinetic parameter estimation with generalized linear least square algorithm in SPECT

    NASA Astrophysics Data System (ADS)

    Choi, Hon-Chit; Wen, Lingfeng; Eberl, Stefan; Feng, Dagan

    2006-03-01

    Dynamic Single Photon Emission Computed Tomography (SPECT) has the potential to quantitatively estimate physiological parameters by fitting compartment models to the tracer kinetics. The generalized linear least square method (GLLS) is an efficient method to estimate unbiased kinetic parameters and parametric images. However, due to the low sensitivity of SPECT, noisy data can cause voxel-wise parameter estimation by GLLS to fail. Fuzzy C-Mean (FCM) clustering and modified FCM, which also utilizes information from the immediate neighboring voxels, are proposed to improve the voxel-wise parameter estimation of GLLS. Monte Carlo simulations were performed to generate dynamic SPECT data with different noise levels and processed by general and modified FCM clustering. Parametric images were estimated by Logan and Yokoi graphical analysis and GLLS. The influx rate (K I), volume of distribution (V d) were estimated for the cerebellum, thalamus and frontal cortex. Our results show that (1) FCM reduces the bias and improves the reliability of parameter estimates for noisy data, (2) GLLS provides estimates of micro parameters (K I-k 4) as well as macro parameters, such as volume of distribution (Vd) and binding potential (BP I & BP II) and (3) FCM clustering incorporating neighboring voxel information does not improve the parameter estimates, but improves noise in the parametric images. These findings indicated that it is desirable for pre-segmentation with traditional FCM clustering to generate voxel-wise parametric images with GLLS from dynamic SPECT data.

  10. Data Clustering

    NASA Astrophysics Data System (ADS)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained clustering, in which some partial information about item assignments or other components of the resulting output are already known and must be accommodated by the solution. Some algorithms seek a partition of the data set into distinct clusters, while others build a hierarchy of nested clusters that can capture taxonomic relationships. Some produce a single optimal solution, while others construct a probabilistic model of cluster membership. More formally, clustering algorithms operate on a data set X composed of items represented by one or more features (dimensions). These could include physical location, such as right ascension and declination, as well as other properties such as brightness, color, temporal change, size, texture, and so on. Let D be the number of dimensions used to represent each item, xi ∈ RD. The clustering goal is to produce an organization P of the items in X that optimizes an objective function f : P -> R, which quantifies the quality of solution P. Often f is defined so as to maximize similarity within a cluster and minimize similarity between clusters. To that end, many algorithms make use of a measure d : X x X -> R of the distance between two items. A partitioning algorithm produces a set of clusters P = {c1, . . . , ck} such that the clusters are nonoverlapping (c_i intersected with c_j = empty set, i != j) subsets of the data set (Union_i c_i=X). Hierarchical algorithms produce a series of partitions P = {p1, . . . , pn }. For a complete hierarchy, the number of partitions n’= n, the number of items in the data set; the top partition is a single cluster containing all items, and the bottom partition contains n clusters, each containing a single item. For model-based clustering, each cluster c_j is represented by a model m_j , such as the cluster center or a Gaussian distribution. The wide array of available clustering algorithms may seem bewildering, and covering all of them is beyond the scope of this chapter. Choosing among them for a particular application involves considerations of the kind of data being analyzed, algorithm runtime efficiency, and how much prior knowledge is available about the problem domain, which can dictate the nature of clusters sought. Fundamentally, the clustering method and its representations of clusters carries with it a definition of what a cluster is, and it is important that this be aligned with the analysis goals for the problem at hand. In this chapter, I emphasize this point by identifying for each algorithm the cluster representation as a model, m_j , even for algorithms that are not typically thought of as creating a “model.” This chapter surveys a basic collection of clustering methods useful to any practitioner who is interested in applying clustering to a new data set. The algorithms include k-means (Section 25.2), EM (Section 25.3), agglomerative (Section 25.4), and spectral (Section 25.5) clustering, with side mentions of variants such as kernel k-means and divisive clustering. The chapter also discusses each algorithm’s strengths and limitations and provides pointers to additional in-depth reading for each subject. Section 25.6 discusses methods for incorporating domain knowledge into the clustering process. This chapter concludes with a brief survey of interesting applications of clustering methods to astronomy data (Section 25.7). The chapter begins with k-means because it is both generally accessible and so widely used that understanding it can be considered a necessary prerequisite for further work in the field. EM can be viewed as a more sophisticated version of k-means that uses a generative model for each cluster and probabilistic item assignments. Agglomerative clustering is the most basic form of hierarchical clustering and provides a basis for further exploration of algorithms in that vein. Spectral clustering permits a departure from feature-vector-based clustering and can operate on data sets instead represented as affinity, or similarity matrices—cases in which only pairwise information is known. The list of algorithms covered in this chapter is representative of those most commonly in use, but it is by no means comprehensive. There is an extensive collection of existing books on clustering that provide additional background and depth. Three early books that remain useful today are Anderberg’s Cluster Analysis for Applications [3], Hartigan’s Clustering Algorithms [25], and Gordon’s Classification [22]. The latter covers basics on similarity measures, partitioning and hierarchical algorithms, fuzzy clustering, overlapping clustering, conceptual clustering, validations methods, and visualization or data reduction techniques such as principal components analysis (PCA),multidimensional scaling, and self-organizing maps. More recently, Jain et al. provided a useful and informative survey [27] of a variety of different clustering algorithms, including those mentioned here as well as fuzzy, graph-theoretic, and evolutionary clustering. Everitt’s Cluster Analysis [19] provides a modern overview of algorithms, similarity measures, and evaluation methods.

  11. Image segmentation using fuzzy LVQ clustering networks

    NASA Technical Reports Server (NTRS)

    Tsao, Eric Chen-Kuo; Bezdek, James C.; Pal, Nikhil R.

    1992-01-01

    In this note we formulate image segmentation as a clustering problem. Feature vectors extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of a Kohonen learning vector quantization (LVQ) which integrates the Fuzzy c-Means (FCM) model with the learning rate and updating strategies of the LVQ is used for this task. This network, which segments images in an unsupervised manner, is thus related to the FCM optimization problem. Numerical examples on photographic and magnetic resonance images are given to illustrate this approach to image segmentation.

  12. Training the Recurrent neural network by the Fuzzy Min-Max algorithm for fault prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemouri, Ryad; Racoceanu, Daniel; Zerhouni, Noureddine

    2009-03-05

    In this paper, we present a training technique of a Recurrent Radial Basis Function neural network for fault prediction. We use the Fuzzy Min-Max technique to initialize the k-center of the RRBF neural network. The k-means algorithm is then applied to calculate the centers that minimize the mean square error of the prediction task. The performances of the k-means algorithm are then boosted by the Fuzzy Min-Max technique.

  13. A particle swarm optimized kernel-based clustering method for crop mapping from multi-temporal polarimetric L-band SAR observations

    NASA Astrophysics Data System (ADS)

    Tamiminia, Haifa; Homayouni, Saeid; McNairn, Heather; Safari, Abdoreza

    2017-06-01

    Polarimetric Synthetic Aperture Radar (PolSAR) data, thanks to their specific characteristics such as high resolution, weather and daylight independence, have become a valuable source of information for environment monitoring and management. The discrimination capability of observations acquired by these sensors can be used for land cover classification and mapping. The aim of this paper is to propose an optimized kernel-based C-means clustering algorithm for agriculture crop mapping from multi-temporal PolSAR data. Firstly, several polarimetric features are extracted from preprocessed data. These features are linear polarization intensities, and several statistical and physical based decompositions such as Cloude-Pottier, Freeman-Durden and Yamaguchi techniques. Then, the kernelized version of hard and fuzzy C-means clustering algorithms are applied to these polarimetric features in order to identify crop types. The kernel function, unlike the conventional partitioning clustering algorithms, simplifies the non-spherical and non-linearly patterns of data structure, to be clustered easily. In addition, in order to enhance the results, Particle Swarm Optimization (PSO) algorithm is used to tune the kernel parameters, cluster centers and to optimize features selection. The efficiency of this method was evaluated by using multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Manitoba, Canada, during June and July in 2012. The results demonstrate more accurate crop maps using the proposed method when compared to the classical approaches, (e.g. 12% improvement in general). In addition, when the optimization technique is used, greater improvement is observed in crop classification, e.g. 5% in overall. Furthermore, a strong relationship between Freeman-Durden volume scattering component, which is related to canopy structure, and phenological growth stages is observed.

  14. Algorithm design, user interface, and optimization procedure for a fuzzy logic ramp metering algorithm : a training manual for freeway operations engineers

    DOT National Transportation Integrated Search

    2000-02-01

    This training manual describes the fuzzy logic ramp metering algorithm in detail, as implemented system-wide in the greater Seattle area. The method of defining the inputs to the controller and optimizing the performance of the algorithm is explained...

  15. [Research on magnetic coupling centrifugal blood pump control based on a self-tuning fuzzy PI algorithm].

    PubMed

    Yang, Lei; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Wang, Wei; Zhang, Haibo; Han, Lu; Xu, Liang

    2014-10-01

    The purpose of this paper is to report the research and design of control system of magnetic coupling centrifugal blood pump in our laboratory, and to briefly describe the structure of the magnetic coupling centrifugal blood pump and principles of the body circulation model. The performance of blood pump is not only related to materials and structure, but also depends on the control algorithm. We studied the algorithm about motor current double-loop control for brushless DC motor. In order to make the algorithm adjust parameter change in different situations, we used the self-tuning fuzzy PI control algorithm and gave the details about how to design fuzzy rules. We mainly used Matlab Simulink to simulate the motor control system to test the performance of algorithm, and briefly introduced how to implement these algorithms in hardware system. Finally, by building the platform and conducting experiments, we proved that self-tuning fuzzy PI control algorithm could greatly improve both dynamic and static performance of blood pump and make the motor speed and the blood pump flow stable and adjustable.

  16. Three-dimensional slum urban reconstruction in Envisat and Google Earth Egypt

    NASA Astrophysics Data System (ADS)

    Marghany, M.; Genderen, J. v.

    2014-02-01

    This study aims to aim to investigate the capability of ENVISAT ASAR satellite and Google Earth data for three-dimensional (3-D) slum urban reconstruction in developed country such as Egypt. The main objective of this work is to utilize 3-D automatic detection algorithm for urban slum in ENVISAT ASAR and Google Erath images were acquired in Cairo, Egypt using Fuzzy B-spline algorithm. The results show that fuzzy algorithm is the best indicator for chaotic urban slum as it can discriminate them from its surrounding environment. The combination of Fuzzy and B-spline then used to reconstruct 3-D of urban slam. The results show that urban slums, road network, and infrastructures are perfectly discriminated. It can therefore be concluded that fuzzy algorithm is an appropriate algorithm for chaotic urban slum automatic detection in ENVSIAT ASAR and Google Earth data.

  17. GPU accelerated fuzzy connected image segmentation by using CUDA.

    PubMed

    Zhuge, Ying; Cao, Yong; Miller, Robert W

    2009-01-01

    Image segmentation techniques using fuzzy connectedness principles have shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem of these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays commodity graphics hardware provides high parallel computing power. In this paper, we present a parallel fuzzy connected image segmentation algorithm on Nvidia's Compute Unified Device Architecture (CUDA) platform for segmenting large medical image data sets. Our experiments based on three data sets with small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets over the sequential implementation of fuzzy connected image segmentation algorithm on CPU.

  18. Classification of underground pipe scanned images using feature extraction and neuro-fuzzy algorithm.

    PubMed

    Sinha, S K; Karray, F

    2002-01-01

    Pipeline surface defects such as holes and cracks cause major problems for utility managers, particularly when the pipeline is buried under the ground. Manual inspection for surface defects in the pipeline has a number of drawbacks, including subjectivity, varying standards, and high costs. Automatic inspection system using image processing and artificial intelligence techniques can overcome many of these disadvantages and offer utility managers an opportunity to significantly improve quality and reduce costs. A recognition and classification of pipe cracks using images analysis and neuro-fuzzy algorithm is proposed. In the preprocessing step the scanned images of pipe are analyzed and crack features are extracted. In the classification step the neuro-fuzzy algorithm is developed that employs a fuzzy membership function and error backpropagation algorithm. The idea behind the proposed approach is that the fuzzy membership function will absorb variation of feature values and the backpropagation network, with its learning ability, will show good classification efficiency.

  19. A clustering-based graph Laplacian framework for value function approximation in reinforcement learning.

    PubMed

    Xu, Xin; Huang, Zhenhua; Graves, Daniel; Pedrycz, Witold

    2014-12-01

    In order to deal with the sequential decision problems with large or continuous state spaces, feature representation and function approximation have been a major research topic in reinforcement learning (RL). In this paper, a clustering-based graph Laplacian framework is presented for feature representation and value function approximation (VFA) in RL. By making use of clustering-based techniques, that is, K-means clustering or fuzzy C-means clustering, a graph Laplacian is constructed by subsampling in Markov decision processes (MDPs) with continuous state spaces. The basis functions for VFA can be automatically generated from spectral analysis of the graph Laplacian. The clustering-based graph Laplacian is integrated with a class of approximation policy iteration algorithms called representation policy iteration (RPI) for RL in MDPs with continuous state spaces. Simulation and experimental results show that, compared with previous RPI methods, the proposed approach needs fewer sample points to compute an efficient set of basis functions and the learning control performance can be improved for a variety of parameter settings.

  20. A fuzzy optimal threshold technique for medical images

    NASA Astrophysics Data System (ADS)

    Thirupathi Kannan, Balaji; Krishnasamy, Krishnaveni; Pradeep Kumar Kenny, S.

    2012-01-01

    A new fuzzy based thresholding method for medical images especially cervical cytology images having blob and mosaic structures is proposed in this paper. Many existing thresholding algorithms may segment either blob or mosaic images but there aren't any single algorithm that can do both. In this paper, an input cervical cytology image is binarized, preprocessed and the pixel value with minimum Fuzzy Gaussian Index is identified as an optimal threshold value and used for segmentation. The proposed technique is tested on various cervical cytology images having blob or mosaic structures, compared with various existing algorithms and proved better than the existing algorithms.

  1. An algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equations

    NASA Astrophysics Data System (ADS)

    Daud, Wan Suhana Wan; Ahmad, Nazihah; Malkawi, Ghassan

    2017-11-01

    Sylvester matrix equations played a prominent role in various areas including control theory. Considering to any un-certainty problems that can be occurred at any time, the Sylvester matrix equation has to be adapted to the fuzzy environment. Therefore, in this study, an algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equation is constructed. The construction of the algorithm is based on the max-min arithmetic multiplication operation. Besides that, an associated arbitrary matrix equation is modified in obtaining the final solution. Finally, some numerical examples are presented to illustrate the proposed algorithm.

  2. Path planning of decentralized multi-quadrotor based on fuzzy-cell decomposition algorithm

    NASA Astrophysics Data System (ADS)

    Iswanto, Wahyunggoro, Oyas; Cahyadi, Adha Imam

    2017-04-01

    The paper aims to present a design algorithm for multi quadrotor lanes in order to move towards the goal quickly and avoid obstacles in an area with obstacles. There are several problems in path planning including how to get to the goal position quickly and avoid static and dynamic obstacles. To overcome the problem, therefore, the paper presents fuzzy logic algorithm and fuzzy cell decomposition algorithm. Fuzzy logic algorithm is one of the artificial intelligence algorithms which can be applied to robot path planning that is able to detect static and dynamic obstacles. Cell decomposition algorithm is an algorithm of graph theory used to make a robot path map. By using the two algorithms the robot is able to get to the goal position and avoid obstacles but it takes a considerable time because they are able to find the shortest path. Therefore, this paper describes a modification of the algorithms by adding a potential field algorithm used to provide weight values on the map applied for each quadrotor by using decentralized controlled, so that the quadrotor is able to move to the goal position quickly by finding the shortest path. The simulations conducted have shown that multi-quadrotor can avoid various obstacles and find the shortest path by using the proposed algorithms.

  3. Fuzzy variable impedance control based on stiffness identification for human-robot cooperation

    NASA Astrophysics Data System (ADS)

    Mao, Dachao; Yang, Wenlong; Du, Zhijiang

    2017-06-01

    This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Man Gyun; Oh, Seungrohk

    A neuro-fuzzy inference system combined with the wavelet denoising, principal component analysis (PCA), and sequential probability ratio test (SPRT) methods has been developed to monitor the relevant sensor using the information of other sensors. The parameters of the neuro-fuzzy inference system that estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce themore » time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system, and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors.« less

  5. A comparison of fuzzy logic and cluster renewal approaches for heat transfer modeling in a 1296 t/h CFB boiler with low level of flue gas recirculation

    NASA Astrophysics Data System (ADS)

    Błaszczuk, Artur; Krzywański, Jarosław

    2017-03-01

    The interrelation between fuzzy logic and cluster renewal approaches for heat transfer modeling in a circulating fluidized bed (CFB) has been established based on a local furnace data. The furnace data have been measured in a 1296 t/h CFB boiler with low level of flue gas recirculation. In the present study, the bed temperature and suspension density were treated as experimental variables along the furnace height. The measured bed temperature and suspension density were varied in the range of 1131-1156 K and 1.93-6.32 kg/m3, respectively. Using the heat transfer coefficient for commercial CFB combustor, two empirical heat transfer correlation were developed in terms of important operating parameters including bed temperature and also suspension density. The fuzzy logic results were found to be in good agreement with the corresponding experimental heat transfer data obtained based on cluster renewal approach. The predicted bed-to-wall heat transfer coefficient covered a range of 109-241 W/(m2K) and 111-240 W/(m2K), for fuzzy logic and cluster renewal approach respectively. The divergence in calculated heat flux recovery along the furnace height between fuzzy logic and cluster renewal approach did not exceeded ±2%.

  6. Hybrid algorithms for fuzzy reverse supply chain network design.

    PubMed

    Che, Z H; Chiang, Tzu-An; Kuo, Y C; Cui, Zhihua

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods.

  7. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    PubMed Central

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  8. Fuzzy multi-objective chance-constrained programming model for hazardous materials transportation

    NASA Astrophysics Data System (ADS)

    Du, Jiaoman; Yu, Lean; Li, Xiang

    2016-04-01

    Hazardous materials transportation is an important and hot issue of public safety. Based on the shortest path model, this paper presents a fuzzy multi-objective programming model that minimizes the transportation risk to life, travel time and fuel consumption. First, we present the risk model, travel time model and fuel consumption model. Furthermore, we formulate a chance-constrained programming model within the framework of credibility theory, in which the lengths of arcs in the transportation network are assumed to be fuzzy variables. A hybrid intelligent algorithm integrating fuzzy simulation and genetic algorithm is designed for finding a satisfactory solution. Finally, some numerical examples are given to demonstrate the efficiency of the proposed model and algorithm.

  9. Artificial bee colony algorithm with dynamic multi-population

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Ji, Zhicheng; Wang, Yan

    2017-07-01

    To improve the convergence rate and make a balance between the global search and local turning abilities, this paper proposes a decentralized form of artificial bee colony (ABC) algorithm with dynamic multi-populations by means of fuzzy C-means (FCM) clustering. Each subpopulation periodically enlarges with the same size during the search process, and the overlapping individuals among different subareas work for delivering information acting as exploring the search space with diffusion of solutions. Moreover, a Gaussian-based search equation with redefined local attractor is proposed to further accelerate the diffusion of the best solution and guide the search towards potential areas. Experimental results on a set of benchmarks demonstrate the competitive performance of our proposed approach.

  10. Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV.

    PubMed

    Ali, Zain Anwar; Wang, Daobo; Aamir, Muhammad

    2016-05-09

    In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability.

  11. Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.

    PubMed

    Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi

    2013-01-01

    The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.

  12. Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung

    2016-07-01

    In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.

  13. Fuzzy Edge Connectivity of Graphical Fuzzy State Space Model in Multi-connected System

    NASA Astrophysics Data System (ADS)

    Harish, Noor Ainy; Ismail, Razidah; Ahmad, Tahir

    2010-11-01

    Structured networks of interacting components illustrate complex structure in a direct or intuitive way. Graph theory provides a mathematical modeling for studying interconnection among elements in natural and man-made systems. On the other hand, directed graph is useful to define and interpret the interconnection structure underlying the dynamics of the interacting subsystem. Fuzzy theory provides important tools in dealing various aspects of complexity, imprecision and fuzziness of the network structure of a multi-connected system. Initial development for systems of Fuzzy State Space Model (FSSM) and a fuzzy algorithm approach were introduced with the purpose of solving the inverse problems in multivariable system. In this paper, fuzzy algorithm is adapted in order to determine the fuzzy edge connectivity between subsystems, in particular interconnected system of Graphical Representation of FSSM. This new approach will simplify the schematic diagram of interconnection of subsystems in a multi-connected system.

  14. Effect of defuzzification method of fuzzy modeling

    NASA Astrophysics Data System (ADS)

    Lapohos, Tibor; Buchal, Ralph O.

    1994-10-01

    Imprecision can arise in fuzzy relational modeling as a result of fuzzification, inference and defuzzification. These three sources of imprecision are difficult to separate. We have determined through numerical studies that an important source of imprecision is the defuzzification stage. This imprecision adversely affects the quality of the model output. The most widely used defuzzification algorithm is known by the name of `center of area' (COA) or `center of gravity' (COG). In this paper, we show that this algorithm not only maps the near limit values of the variables improperly but also introduces errors for middle domain values of the same variables. Furthermore, the behavior of this algorithm is a function of the shape of the reference sets. We compare the COA method to the weighted average of cluster centers (WACC) procedure in which the transformation is carried out based on the values of the cluster centers belonging to each of the reference membership functions instead of using the functions themselves. We show that this procedure is more effective and computationally much faster than the COA. The method is tested for a family of reference sets satisfying certain constraints, that is, for any support value the sum of reference membership function values equals one and the peak values of the two marginal membership functions project to the boundaries of the universe of discourse. For all the member sets of this family of reference sets the defuzzification errors do not get bigger as the linguistic variables tend to their extreme values. In addition, the more reference sets that are defined for a certain linguistic variable, the less the average defuzzification error becomes. In case of triangle shaped reference sets there is no defuzzification error at all. Finally, an alternative solution is provided that improves the performance of the COA method.

  15. Automatic microseismic event picking via unsupervised machine learning

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang

    2018-01-01

    Effective and efficient arrival picking plays an important role in microseismic and earthquake data processing and imaging. Widely used short-term-average long-term-average ratio (STA/LTA) based arrival picking algorithms suffer from the sensitivity to moderate-to-strong random ambient noise. To make the state-of-the-art arrival picking approaches effective, microseismic data need to be first pre-processed, for example, removing sufficient amount of noise, and second analysed by arrival pickers. To conquer the noise issue in arrival picking for weak microseismic or earthquake event, I leverage the machine learning techniques to help recognizing seismic waveforms in microseismic or earthquake data. Because of the dependency of supervised machine learning algorithm on large volume of well-designed training data, I utilize an unsupervised machine learning algorithm to help cluster the time samples into two groups, that is, waveform points and non-waveform points. The fuzzy clustering algorithm has been demonstrated to be effective for such purpose. A group of synthetic, real microseismic and earthquake data sets with different levels of complexity show that the proposed method is much more robust than the state-of-the-art STA/LTA method in picking microseismic events, even in the case of moderately strong background noise.

  16. Effect of Deep Cryogenic treatment on AISI A8 Tool steel & Development of Wear Mechanism maps using Fuzzy Clustering

    NASA Astrophysics Data System (ADS)

    Pillai, Nandakumar; Karthikeyan, R., Dr.

    2018-04-01

    Tool steels are widely classified according to their constituents and type of thermal treatments carried out to obtain its properties. Viking a special purpose tool steel coming under AISI A8 cold working steel classification is widely used for heavy duty blanking and forming operations. The optimum combination of wear resistance and toughness as well as ease of machinability in pre-treated condition makes this material accepted in heavy cutting and non cutting tool manufacture. Air or vacuum hardening is recommended as the normal treatment procedure to obtain the desired mechanical and tribological properties for steels under this category. In this study, we are incorporating a deep cryogenic phase within the conventional treatment cycle both before and after tempering. The thermal treatments at sub zero temperatures up to -195°C using cryogenic chamber with liquid nitrogen as medium was conducted. Micro structural changes in its microstructure and the corresponding improvement in the tribological and physical properties are analyzed. The cryogenic treatment leads to more conversion of retained austenite to martensite and also formation of fine secondary carbides. The microstructure is studied using the micrographs taken using optical microscopy. The wear tests are conducted on DUCOM tribometer for different combinations of speed and load under normal temperature. The wear rates and coefficient of friction obtained from these experiments are used to developed wear mechanism maps with the help of fuzzy c means clustering and probabilistic neural network models. Fuzzy C means clustering is an effective algorithm to group data of similar patterns. The wear mechanisms obtained from the computationally developed maps are then compared with the SEM photographs taken and the improvement in properties due to this additional cryogenic treatment is validated.

  17. Determination System Of Food Vouchers For the Poor Based On Fuzzy C-Means Method

    NASA Astrophysics Data System (ADS)

    Anamisa, D. R.; Yusuf, M.; Syakur, M. A.

    2018-01-01

    Food vouchers are government programs to tackle the poverty of rural communities. This program aims to help the poor group in getting enough food and nutrients from carbohydrates. There are several factors that influence to receive the food voucher, such as: job, monthly income, Taxes, electricity bill, size of house, number of family member, education certificate and amount of rice consumption every week. In the execution for the distribution of vouchers is often a lot of problems, such as: the distribution of food vouchers has been misdirected and someone who receives is still subjective. Some of the solutions to decision making have not been done. The research aims to calculating the change of each partition matrix and each cluster using Fuzzy C-Means method. Hopefully this research makes contribution by providing higher result using Fuzzy C-Means comparing to other method for this case study. In this research, decision making is done by using Fuzzy C-Means method. The Fuzzy C-Means method is a clustering method that has an organized and scattered cluster structure with regular patterns on two-dimensional datasets. Furthermore, Fuzzy C-Means method used for calculates the change of each partition matrix. Each cluster will be sorted by the proximity of the data element to the centroid of the cluster to get the ranking. Various trials were conducted for grouping and ranking of proposed data that received food vouchers based on the quota of each village. This testing by Fuzzy C-Means method, is developed and abled for determining the recipient of the food voucher with satisfaction results. Fulfillment of the recipient of the food voucher is 80% to 90% and this testing using data of 115 Family Card from 6 Villages. The quality of success affected, has been using the number of iteration factors is 20 and the number of clusters is 3

  18. SPEQTACLE: An automated generalized fuzzy C-means algorithm for tumor delineation in PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapuyade-Lahorgue, Jérôme; Visvikis, Dimitris; Hatt, Mathieu, E-mail: hatt@univ-brest.fr

    Purpose: Accurate tumor delineation in positron emission tomography (PET) images is crucial in oncology. Although recent methods achieved good results, there is still room for improvement regarding tumors with complex shapes, low signal-to-noise ratio, and high levels of uptake heterogeneity. Methods: The authors developed and evaluated an original clustering-based method called spatial positron emission quantification of tumor—Automatic Lp-norm estimation (SPEQTACLE), based on the fuzzy C-means (FCM) algorithm with a generalization exploiting a Hilbertian norm to more accurately account for the fuzzy and non-Gaussian distributions of PET images. An automatic and reproducible estimation scheme of the norm on an image-by-image basismore » was developed. Robustness was assessed by studying the consistency of results obtained on multiple acquisitions of the NEMA phantom on three different scanners with varying acquisition parameters. Accuracy was evaluated using classification errors (CEs) on simulated and clinical images. SPEQTACLE was compared to another FCM implementation, fuzzy local information C-means (FLICM) and fuzzy locally adaptive Bayesian (FLAB). Results: SPEQTACLE demonstrated a level of robustness similar to FLAB (variability of 14% ± 9% vs 14% ± 7%, p = 0.15) and higher than FLICM (45% ± 18%, p < 0.0001), and improved accuracy with lower CE (14% ± 11%) over both FLICM (29% ± 29%) and FLAB (22% ± 20%) on simulated images. Improvement was significant for the more challenging cases with CE of 17% ± 11% for SPEQTACLE vs 28% ± 22% for FLAB (p = 0.009) and 40% ± 35% for FLICM (p < 0.0001). For the clinical cases, SPEQTACLE outperformed FLAB and FLICM (15% ± 6% vs 37% ± 14% and 30% ± 17%, p < 0.004). Conclusions: SPEQTACLE benefitted from the fully automatic estimation of the norm on a case-by-case basis. This promising approach will be extended to multimodal images and multiclass estimation in future developments.« less

  19. Optimized face recognition algorithm using radial basis function neural networks and its practical applications.

    PubMed

    Yoo, Sung-Hoon; Oh, Sung-Kwun; Pedrycz, Witold

    2015-09-01

    In this study, we propose a hybrid method of face recognition by using face region information extracted from the detected face region. In the preprocessing part, we develop a hybrid approach based on the Active Shape Model (ASM) and the Principal Component Analysis (PCA) algorithm. At this step, we use a CCD (Charge Coupled Device) camera to acquire a facial image by using AdaBoost and then Histogram Equalization (HE) is employed to improve the quality of the image. ASM extracts the face contour and image shape to produce a personal profile. Then we use a PCA method to reduce dimensionality of face images. In the recognition part, we consider the improved Radial Basis Function Neural Networks (RBF NNs) to identify a unique pattern associated with each person. The proposed RBF NN architecture consists of three functional modules realizing the condition phase, the conclusion phase, and the inference phase completed with the help of fuzzy rules coming in the standard 'if-then' format. In the formation of the condition part of the fuzzy rules, the input space is partitioned with the use of Fuzzy C-Means (FCM) clustering. In the conclusion part of the fuzzy rules, the connections (weights) of the RBF NNs are represented by four kinds of polynomials such as constant, linear, quadratic, and reduced quadratic. The values of the coefficients are determined by running a gradient descent method. The output of the RBF NNs model is obtained by running a fuzzy inference method. The essential design parameters of the network (including learning rate, momentum coefficient and fuzzification coefficient used by the FCM) are optimized by means of Differential Evolution (DE). The proposed P-RBF NNs (Polynomial based RBF NNs) are applied to facial recognition and its performance is quantified from the viewpoint of the output performance and recognition rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Learning control of inverted pendulum system by neural network driven fuzzy reasoning: The learning function of NN-driven fuzzy reasoning under changes of reasoning environment

    NASA Technical Reports Server (NTRS)

    Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru

    1991-01-01

    Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.

  1. Fuzzy-Rough Nearest Neighbour Classification

    NASA Astrophysics Data System (ADS)

    Jensen, Richard; Cornelis, Chris

    A new fuzzy-rough nearest neighbour (FRNN) classification algorithm is presented in this paper, as an alternative to Sarkar's fuzzy-rough ownership function (FRNN-O) approach. By contrast to the latter, our method uses the nearest neighbours to construct lower and upper approximations of decision classes, and classifies test instances based on their membership to these approximations. In the experimental analysis, we evaluate our approach with both classical fuzzy-rough approximations (based on an implicator and a t-norm), as well as with the recently introduced vaguely quantified rough sets. Preliminary results are very good, and in general FRNN outperforms FRNN-O, as well as the traditional fuzzy nearest neighbour (FNN) algorithm.

  2. Estimating Reservoir Inflow Using RADAR Forecasted Precipitation and Adaptive Neuro Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Yi, J.; Choi, C.

    2014-12-01

    Rainfall observation and forecasting using remote sensing such as RADAR(Radio Detection and Ranging) and satellite images are widely used to delineate the increased damage by rapid weather changeslike regional storm and flash flood. The flood runoff was calculated by using adaptive neuro-fuzzy inference system, the data driven models and MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as the input variables.The result of flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated by comparing it with the actual data.The Adaptive Neuro Fuzzy method was applied to the Chungju Reservoir basin in Korea. The six rainfall events during the flood seasons in 2010 and 2011 were used for the input data.The reservoir inflow estimation results were comparedaccording to the rainfall data used for training, checking and testing data in the model setup process. The results of the 15 models with the combination of the input variables were compared and analyzed. Using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation in this study.The model using the MAPLE forecasted precipitation data showed better result for inflow estimation in the Chungju Reservoir.

  3. Health state evaluation of shield tunnel SHM using fuzzy cluster method

    NASA Astrophysics Data System (ADS)

    Zhou, Fa; Zhang, Wei; Sun, Ke; Shi, Bin

    2015-04-01

    Shield tunnel SHM is in the path of rapid development currently while massive monitoring data processing and quantitative health grading remain a real challenge, since multiple sensors belonging to different types are employed in SHM system. This paper addressed the fuzzy cluster method based on fuzzy equivalence relationship for the health evaluation of shield tunnel SHM. The method was optimized by exporting the FSV map to automatically generate the threshold value. A new holistic health score(HHS) was proposed and its effectiveness was validated by conducting a pilot test. A case study on Nanjing Yangtze River Tunnel was presented to apply this method. Three types of indicators, namely soil pressure, pore pressure and steel strain, were used to develop the evaluation set U. The clustering results were verified by analyzing the engineering geological conditions; the applicability and validity of the proposed method was also demonstrated. Besides, the advantage of multi-factor evaluation over single-factor model was discussed by using the proposed HHS. This investigation indicated the fuzzy cluster method and HHS is capable of characterizing the fuzziness of tunnel health, and it is beneficial to clarify the tunnel health evaluation uncertainties.

  4. Study on application of adaptive fuzzy control and neural network in the automatic leveling system

    NASA Astrophysics Data System (ADS)

    Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng

    2015-04-01

    This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.

  5. Hybrid Swarm Intelligence Optimization Approach for Optimal Data Storage Position Identification in Wireless Sensor Networks

    PubMed Central

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182

  6. Recourse-based facility-location problems in hybrid uncertain environment.

    PubMed

    Wang, Shuming; Watada, Junzo; Pedrycz, Witold

    2010-08-01

    The objective of this paper is to study facility-location problems in the presence of a hybrid uncertain environment involving both randomness and fuzziness. A two-stage fuzzy-random facility-location model with recourse (FR-FLMR) is developed in which both the demands and costs are assumed to be fuzzy-random variables. The bounds of the optimal objective value of the two-stage FR-FLMR are derived. As, in general, the fuzzy-random parameters of the FR-FLMR can be regarded as continuous fuzzy-random variables with an infinite number of realizations, the computation of the recourse requires solving infinite second-stage programming problems. Owing to this requirement, the recourse function cannot be determined analytically, and, hence, the model cannot benefit from the use of techniques of classical mathematical programming. In order to solve the location problems of this nature, we first develop a technique of fuzzy-random simulation to compute the recourse function. The convergence of such simulation scenarios is discussed. In the sequel, we propose a hybrid mutation-based binary ant-colony optimization (MBACO) approach to the two-stage FR-FLMR, which comprises the fuzzy-random simulation and the simplex algorithm. A numerical experiment illustrates the application of the hybrid MBACO algorithm. The comparison shows that the hybrid MBACO finds better solutions than the one using other discrete metaheuristic algorithms, such as binary particle-swarm optimization, genetic algorithm, and tabu search.

  7. Fuzzy image processing in sun sensor

    NASA Technical Reports Server (NTRS)

    Mobasser, S.; Liebe, C. C.; Howard, A.

    2003-01-01

    This paper will describe how the fuzzy image processing is implemented in the instrument. Comparison of the Fuzzy image processing and a more conventional image processing algorithm is provided and shows that the Fuzzy image processing yields better accuracy then conventional image processing.

  8. Simulation of the Predictive Control Algorithm for Container Crane Operation using Matlab Fuzzy Logic Tool Box

    NASA Technical Reports Server (NTRS)

    Richardson, Albert O.

    1997-01-01

    This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.

  9. An optimization design for evacuation planning based on fuzzy credibility theory and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Zhang, W. Y.

    2017-08-01

    Evacuation planning is an important activity in disaster management. It has to be planned in advance due to the unpredictable occurrence of disasters. It is necessary that the evacuation plans are as close as possible to the real evacuation work. However, the evacuation plan is extremely challenging because of the inherent uncertainty of the required information. There is a kind of vehicle routing problem based on the public traffic evacuation. In this paper, the demand for each evacuation set point is a fuzzy number, and each routing selection of the point is based on the fuzzy credibility preference index. This paper proposes an approximate optimal solution for this problem by the genetic algorithm based on the fuzzy reliability theory. Finally, the algorithm is applied to an optimization model, and the experiment result shows that the algorithm is effective.

  10. A new algorithm to find fuzzy Hamilton cycle in a fuzzy network using adjacency matrix and minimum vertex degree.

    PubMed

    Nagoor Gani, A; Latha, S R

    2016-01-01

    A Hamiltonian cycle in a graph is a cycle that visits each node/vertex exactly once. A graph containing a Hamiltonian cycle is called a Hamiltonian graph. There have been several researches to find the number of Hamiltonian cycles of a Hamilton graph. As the number of vertices and edges grow, it becomes very difficult to keep track of all the different ways through which the vertices are connected. Hence, analysis of large graphs can be efficiently done with the assistance of a computer system that interprets graphs as matrices. And, of course, a good and well written algorithm will expedite the analysis even faster. The most convenient way to quickly test whether there is an edge between two vertices is to represent graphs using adjacent matrices. In this paper, a new algorithm is proposed to find fuzzy Hamiltonian cycle using adjacency matrix and the degree of the vertices of a fuzzy graph. A fuzzy graph structure is also modeled to illustrate the proposed algorithms with the selected air network of Indigo airlines.

  11. CONCAM's Fuzzy-Logic All-Sky Star Recognition Algorithm

    NASA Astrophysics Data System (ADS)

    Shamir, L.; Nemiroff, R. J.

    2004-05-01

    One of the purposes of the global Night Sky Live (NSL) network of fisheye CONtinuous CAMeras (CONCAMs) is to monitor and archive the entire bright night sky, track stellar variability, and search for transients. The high quality of raw CONCAM data allows automation of stellar object recognition, although distortions of the fisheye lens and frequent slight shifts in CONCAM orientations can make even this seemingly simple task formidable. To meet this challenge, a fuzzy logic based algorithm has been developed that transforms (x,y) image coordinates in the CCD frame into fuzzy right ascension and declination coordinates for use in matching with star catalogs. Using a training set of reference stars, the algorithm statically builds the fuzzy logic model. At runtime, the algorithm searches for peaks, and then applies the fuzzy logic model to perform the coordinate transformation before choosing the optimal star catalog match. The present fuzzy-logic algorithm works much better than our first generation, straightforward coordinate transformation formula. Following this essential step, algorithms dealing with the higher level data products can then provide a stream of photometry for a few hundred stellar objects visible in the night sky. Accurate photometry further enables the computation of all-sky maps of skyglow and opacity, as well as a search for uncataloged transients. All information is stored in XML-like tagged ASCII files that are instantly copied to the public domain and available at http://NightSkyLive.net. Currently, the NSL software detects stars and creates all-sky image files from eight different locations around the globe every 3 minutes and 56 seconds.

  12. Two modular neuro-fuzzy system for mobile robot navigation

    NASA Astrophysics Data System (ADS)

    Bobyr, M. V.; Titov, V. S.; Kulabukhov, S. A.; Syryamkin, V. I.

    2018-05-01

    The article considers the fuzzy model for navigation of a mobile robot operating in two modes. In the first mode the mobile robot moves along a line. In the second mode, the mobile robot looks for an target in unknown space. Structural and schematic circuit of four-wheels mobile robot are presented in the article. The article describes the movement of a mobile robot based on two modular neuro-fuzzy system. The algorithm of neuro-fuzzy inference used in two modular control system for movement of a mobile robot is given in the article. The experimental model of the mobile robot and the simulation of the neuro-fuzzy algorithm used for its control are presented in the article.

  13. Incremental Adaptive Fuzzy Control for Sensorless Stroke Control of A Halbach-type Linear Oscillatory Motor

    NASA Astrophysics Data System (ADS)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.

  14. Automated modal parameter estimation using correlation analysis and bootstrap sampling

    NASA Astrophysics Data System (ADS)

    Yaghoubi, Vahid; Vakilzadeh, Majid K.; Abrahamsson, Thomas J. S.

    2018-02-01

    The estimation of modal parameters from a set of noisy measured data is a highly judgmental task, with user expertise playing a significant role in distinguishing between estimated physical and noise modes of a test-piece. Various methods have been developed to automate this procedure. The common approach is to identify models with different orders and cluster similar modes together. However, most proposed methods based on this approach suffer from high-dimensional optimization problems in either the estimation or clustering step. To overcome this problem, this study presents an algorithm for autonomous modal parameter estimation in which the only required optimization is performed in a three-dimensional space. To this end, a subspace-based identification method is employed for the estimation and a non-iterative correlation-based method is used for the clustering. This clustering is at the heart of the paper. The keys to success are correlation metrics that are able to treat the problems of spatial eigenvector aliasing and nonunique eigenvectors of coalescent modes simultaneously. The algorithm commences by the identification of an excessively high-order model from frequency response function test data. The high number of modes of this model provides bases for two subspaces: one for likely physical modes of the tested system and one for its complement dubbed the subspace of noise modes. By employing the bootstrap resampling technique, several subsets are generated from the same basic dataset and for each of them a model is identified to form a set of models. Then, by correlation analysis with the two aforementioned subspaces, highly correlated modes of these models which appear repeatedly are clustered together and the noise modes are collected in a so-called Trashbox cluster. Stray noise modes attracted to the mode clusters are trimmed away in a second step by correlation analysis. The final step of the algorithm is a fuzzy c-means clustering procedure applied to a three-dimensional feature space to assign a degree of physicalness to each cluster. The proposed algorithm is applied to two case studies: one with synthetic data and one with real test data obtained from a hammer impact test. The results indicate that the algorithm successfully clusters similar modes and gives a reasonable quantification of the extent to which each cluster is physical.

  15. Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV

    PubMed Central

    Ali, Zain Anwar; Wang, Daobo; Aamir, Muhammad

    2016-01-01

    In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability. PMID:27171084

  16. Extracting TSK-type Neuro-Fuzzy model using the Hunting search algorithm

    NASA Astrophysics Data System (ADS)

    Bouzaida, Sana; Sakly, Anis; M'Sahli, Faouzi

    2014-01-01

    This paper proposes a Takagi-Sugeno-Kang (TSK) type Neuro-Fuzzy model tuned by a novel metaheuristic optimization algorithm called Hunting Search (HuS). The HuS algorithm is derived based on a model of group hunting of animals such as lions, wolves, and dolphins when looking for a prey. In this study, the structure and parameters of the fuzzy model are encoded into a particle. Thus, the optimal structure and parameters are achieved simultaneously. The proposed method was demonstrated through modeling and control problems, and the results have been compared with other optimization techniques. The comparisons indicate that the proposed method represents a powerful search approach and an effective optimization technique as it can extract the accurate TSK fuzzy model with an appropriate number of rules.

  17. Research on a pulmonary nodule segmentation method combining fast self-adaptive FCM and classification.

    PubMed

    Liu, Hui; Zhang, Cai-Ming; Su, Zhi-Yuan; Wang, Kai; Deng, Kai

    2015-01-01

    The key problem of computer-aided diagnosis (CAD) of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO) pulmonary nodules than other typical algorithms.

  18. Combined spectroscopic imaging and chemometric approach for automatically partitioning tissue types in human prostate tissue biopsies

    NASA Astrophysics Data System (ADS)

    Haka, Abigail S.; Kidder, Linda H.; Lewis, E. Neil

    2001-07-01

    We have applied Fourier transform infrared (FTIR) spectroscopic imaging, coupling a mercury cadmium telluride (MCT) focal plane array detector (FPA) and a Michelson step scan interferometer, to the investigation of various states of malignant human prostate tissue. The MCT FPA used consists of 64x64 pixels, each 61 micrometers 2, and has a spectral range of 2-10.5 microns. Each imaging data set was collected at 16-1 resolution, resulting in 512 image planes and a total of 4096 interferograms. In this article we describe a method for separating different tissue types contained within FTIR spectroscopic imaging data sets of human prostate tissue biopsies. We present images, generated by the Fuzzy C-Means clustering algorithm, which demonstrate the successful partitioning of distinct tissue type domains. Additionally, analysis of differences in the centroid spectra corresponding to different tissue types provides an insight into their biochemical composition. Lastly, we demonstrate the ability to partition tissue type regions in a different data set using centroid spectra calculated from the original data set. This has implications for the use of the Fuzzy C-Means algorithm as an automated technique for the separation and examination of tissue domains in biopsy samples.

  19. A Fuzzy Aproach For Facial Emotion Recognition

    NASA Astrophysics Data System (ADS)

    Gîlcă, Gheorghe; Bîzdoacă, Nicu-George

    2015-09-01

    This article deals with an emotion recognition system based on the fuzzy sets. Human faces are detected in images with the Viola - Jones algorithm and for its tracking in video sequences we used the Camshift algorithm. The detected human faces are transferred to the decisional fuzzy system, which is based on the variable fuzzyfication measurements of the face: eyebrow, eyelid and mouth. The system can easily determine the emotional state of a person.

  20. A genetic algorithms approach for altering the membership functions in fuzzy logic controllers

    NASA Technical Reports Server (NTRS)

    Shehadeh, Hana; Lea, Robert N.

    1992-01-01

    Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.

  1. A Granular Self-Organizing Map for Clustering and Gene Selection in Microarray Data.

    PubMed

    Ray, Shubhra Sankar; Ganivada, Avatharam; Pal, Sankar K

    2016-09-01

    A new granular self-organizing map (GSOM) is developed by integrating the concept of a fuzzy rough set with the SOM. While training the GSOM, the weights of a winning neuron and the neighborhood neurons are updated through a modified learning procedure. The neighborhood is newly defined using the fuzzy rough sets. The clusters (granules) evolved by the GSOM are presented to a decision table as its decision classes. Based on the decision table, a method of gene selection is developed. The effectiveness of the GSOM is shown in both clustering samples and developing an unsupervised fuzzy rough feature selection (UFRFS) method for gene selection in microarray data. While the superior results of the GSOM, as compared with the related clustering methods, are provided in terms of β -index, DB-index, Dunn-index, and fuzzy rough entropy, the genes selected by the UFRFS are not only better in terms of classification accuracy and a feature evaluation index, but also statistically more significant than the related unsupervised methods. The C-codes of the GSOM and UFRFS are available online at http://avatharamg.webs.com/software-code.

  2. Fuzzy control of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Feeley, J. J.; Niederauer, G. M.; Ahlstrom, D. J.

    1991-01-01

    The use of an adaptive fuzzy control algorithm implemented on a VLSI chip for the control of a magnetic bearing was considered. The architecture of the adaptive fuzzy controller is similar to that of a neural network. The performance of the fuzzy controller is compared to that of a conventional controller by computer simulation.

  3. Multilayer perceptron, fuzzy sets, and classification

    NASA Technical Reports Server (NTRS)

    Pal, Sankar K.; Mitra, Sushmita

    1992-01-01

    A fuzzy neural network model based on the multilayer perceptron, using the back-propagation algorithm, and capable of fuzzy classification of patterns is described. The input vector consists of membership values to linguistic properties while the output vector is defined in terms of fuzzy class membership values. This allows efficient modeling of fuzzy or uncertain patterns with appropriate weights being assigned to the backpropagated errors depending upon the membership values at the corresponding outputs. During training, the learning rate is gradually decreased in discrete steps until the network converges to a minimum error solution. The effectiveness of the algorithm is demonstrated on a speech recognition problem. The results are compared with those of the conventional MLP, the Bayes classifier, and the other related models.

  4. Optimizing Constrained Single Period Problem under Random Fuzzy Demand

    NASA Astrophysics Data System (ADS)

    Taleizadeh, Ata Allah; Shavandi, Hassan; Riazi, Afshin

    2008-09-01

    In this paper, we consider the multi-product multi-constraint newsboy problem with random fuzzy demands and total discount. The demand of the products is often stochastic in the real word but the estimation of the parameters of distribution function may be done by fuzzy manner. So an appropriate option to modeling the demand of products is using the random fuzzy variable. The objective function of proposed model is to maximize the expected profit of newsboy. We consider the constraints such as warehouse space and restriction on quantity order for products, and restriction on budget. We also consider the batch size for products order. Finally we introduce a random fuzzy multi-product multi-constraint newsboy problem (RFM-PM-CNP) and it is changed to a multi-objective mixed integer nonlinear programming model. Furthermore, a hybrid intelligent algorithm based on genetic algorithm, Pareto and TOPSIS is presented for the developed model. Finally an illustrative example is presented to show the performance of the developed model and algorithm.

  5. Fluorescence intensity positivity classification of Hep-2 cells images using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Sazali, Dayang Farzana Abang; Janier, Josefina Barnachea; May, Zazilah Bt.

    2014-10-01

    Indirect Immunofluorescence (IIF) is a good standard used for antinuclear autoantibody (ANA) test using Hep-2 cells to determine specific diseases. Different classifier algorithm methods have been proposed in previous works however, there still no valid set as a standard to classify the fluorescence intensity. This paper presents the use of fuzzy logic to classify the fluorescence intensity and to determine the positivity of the Hep-2 cell serum samples. The fuzzy algorithm involves the image pre-processing by filtering the noises and smoothen the image, converting the red, green and blue (RGB) color space of images to luminosity layer, chromaticity layer "a" and "b" (LAB) color space where the mean value of the lightness and chromaticity layer "a" was extracted and classified by using fuzzy logic algorithm based on the standard score ranges of antinuclear autoantibody (ANA) fluorescence intensity. Using 100 data sets of positive and intermediate fluorescence intensity for testing the performance measurements, the fuzzy logic obtained an accuracy of intermediate and positive class as 85% and 87% respectively.

  6. Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory

    NASA Astrophysics Data System (ADS)

    Deyi, Feng; Ichikawa, M.

    1989-11-01

    In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.

  7. OLYMPUS: an automated hybrid clustering method in time series gene expression. Case study: host response after Influenza A (H1N1) infection.

    PubMed

    Dimitrakopoulou, Konstantina; Vrahatis, Aristidis G; Wilk, Esther; Tsakalidis, Athanasios K; Bezerianos, Anastasios

    2013-09-01

    The increasing flow of short time series microarray experiments for the study of dynamic cellular processes poses the need for efficient clustering tools. These tools must deal with three primary issues: first, to consider the multi-functionality of genes; second, to evaluate the similarity of the relative change of amplitude in the time domain rather than the absolute values; third, to cope with the constraints of conventional clustering algorithms such as the assignment of the appropriate cluster number. To address these, we propose OLYMPUS, a novel unsupervised clustering algorithm that integrates Differential Evolution (DE) method into Fuzzy Short Time Series (FSTS) algorithm with the scope to utilize efficiently the information of population of the first and enhance the performance of the latter. Our hybrid approach provides sets of genes that enable the deciphering of distinct phases in dynamic cellular processes. We proved the efficiency of OLYMPUS on synthetic as well as on experimental data. The discriminative power of OLYMPUS provided clusters, which refined the so far perspective of the dynamics of host response mechanisms to Influenza A (H1N1). Our kinetic model sets a timeline for several pathways and cell populations, implicated to participate in host response; yet no timeline was assigned to them (e.g. cell cycle, homeostasis). Regarding the activity of B cells, our approach revealed that some antibody-related mechanisms remain activated until day 60 post infection. The Matlab codes for implementing OLYMPUS, as well as example datasets, are freely accessible via the Web (http://biosignal.med.upatras.gr/wordpress/biosignal/). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Vehicle tracking using fuzzy-based vehicle detection window with adaptive parameters

    NASA Astrophysics Data System (ADS)

    Chitsobhuk, Orachat; Kasemsiri, Watjanapong; Glomglome, Sorayut; Lapamonpinyo, Pipatphon

    2018-04-01

    In this paper, fuzzy-based vehicle tracking system is proposed. The proposed system consists of two main processes: vehicle detection and vehicle tracking. In the first process, the Gradient-based Adaptive Threshold Estimation (GATE) algorithm is adopted to provide the suitable threshold value for the sobel edge detection. The estimated threshold can be adapted to the changes of diverse illumination conditions throughout the day. This leads to greater vehicle detection performance compared to a fixed user's defined threshold. In the second process, this paper proposes the novel vehicle tracking algorithms namely Fuzzy-based Vehicle Analysis (FBA) in order to reduce the false estimation of the vehicle tracking caused by uneven edges of the large vehicles and vehicle changing lanes. The proposed FBA algorithm employs the average edge density and the Horizontal Moving Edge Detection (HMED) algorithm to alleviate those problems by adopting fuzzy rule-based algorithms to rectify the vehicle tracking. The experimental results demonstrate that the proposed system provides the high accuracy of vehicle detection about 98.22%. In addition, it also offers the low false detection rates about 3.92%.

  9. Fuzzy Algorithm for the Detection of Incidents in the Transport System

    ERIC Educational Resources Information Center

    Nikolaev, Andrey B.; Sapego, Yuliya S.; Jakubovich, Anatolij N.; Berner, Leonid I.; Stroganov, Victor Yu.

    2016-01-01

    In the paper it's proposed an algorithm for the management of traffic incidents, aimed at minimizing the impact of incidents on the road traffic in general. The proposed algorithm is based on the theory of fuzzy sets and provides identification of accidents, as well as the adoption of appropriate measures to address them as soon as possible. A…

  10. Fuzzy Naive Bayesian model for medical diagnostic decision support.

    PubMed

    Wagholikar, Kavishwar B; Vijayraghavan, Sundararajan; Deshpande, Ashok W

    2009-01-01

    This work relates to the development of computational algorithms to provide decision support to physicians. The authors propose a Fuzzy Naive Bayesian (FNB) model for medical diagnosis, which extends the Fuzzy Bayesian approach proposed by Okuda. A physician's interview based method is described to define a orthogonal fuzzy symptom information system, required to apply the model. For the purpose of elaboration and elicitation of characteristics, the algorithm is applied to a simple simulated dataset, and compared with conventional Naive Bayes (NB) approach. As a preliminary evaluation of FNB in real world scenario, the comparison is repeated on a real fuzzy dataset of 81 patients diagnosed with infectious diseases. The case study on simulated dataset elucidates that FNB can be optimal over NB for diagnosing patients with imprecise-fuzzy information, on account of the following characteristics - 1) it can model the information that, values of some attributes are semantically closer than values of other attributes, and 2) it offers a mechanism to temper exaggerations in patient information. Although the algorithm requires precise training data, its utility for fuzzy training data is argued for. This is supported by the case study on infectious disease dataset, which indicates optimality of FNB over NB for the infectious disease domain. Further case studies on large datasets are required to establish utility of FNB.

  11. Krill herd and piecewise-linear initialization algorithms for designing Takagi-Sugeno systems

    NASA Astrophysics Data System (ADS)

    Hodashinsky, I. A.; Filimonenko, I. V.; Sarin, K. S.

    2017-07-01

    A method for designing Takagi-Sugeno fuzzy systems is proposed which uses a piecewiselinear initialization algorithm for structure generation and a metaheuristic krill herd algorithm for parameter optimization. The obtained systems are tested against real data sets. The influence of some parameters of this algorithm on the approximation accuracy is analyzed. Estimates of the approximation accuracy and the number of fuzzy rules are compared with four known methods of design.

  12. Application of Fuzzy c-Means and Joint-Feature-Clustering to Detect Redundancies of Image-Features in Drug Combinations Studies of Breast Cancer

    NASA Astrophysics Data System (ADS)

    Brandl, Miriam B.; Beck, Dominik; Pham, Tuan D.

    2011-06-01

    The high dimensionality of image-based dataset can be a drawback for classification accuracy. In this study, we propose the application of fuzzy c-means clustering, cluster validity indices and the notation of a joint-feature-clustering matrix to find redundancies of image-features. The introduced matrix indicates how frequently features are grouped in a mutual cluster. The resulting information can be used to find data-derived feature prototypes with a common biological meaning, reduce data storage as well as computation times and improve the classification accuracy.

  13. Feedback error learning control of magnetic satellites using type-2 fuzzy neural networks with elliptic membership functions.

    PubMed

    Khanesar, Mojtaba Ahmadieh; Kayacan, Erdal; Reyhanoglu, Mahmut; Kaynak, Okyay

    2015-04-01

    A novel type-2 fuzzy membership function (MF) in the form of an ellipse has recently been proposed in literature, the parameters of which that represent uncertainties are de-coupled from its parameters that determine the center and the support. This property has enabled the proposers to make an analytical comparison of the noise rejection capabilities of type-1 fuzzy logic systems with its type-2 counterparts. In this paper, a sliding mode control theory-based learning algorithm is proposed for an interval type-2 fuzzy logic system which benefits from elliptic type-2 fuzzy MFs. The learning is based on the feedback error learning method and not only the stability of the learning is proved but also the stability of the overall system is shown by adding an additional component to the control scheme to ensure robustness. In order to test the efficiency and efficacy of the proposed learning and the control algorithm, the trajectory tracking problem of a magnetic rigid spacecraft is studied. The simulations results show that the proposed control algorithm gives better performance results in terms of a smaller steady state error and a faster transient response as compared to conventional control algorithms.

  14. Space-Time Joint Interference Cancellation Using Fuzzy-Inference-Based Adaptive Filtering Techniques in Frequency-Selective Multipath Channels

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Chang; Lin, Hsuan-Yu; Chen, Yu-Fan; Wen, Jyh-Horng

    2006-12-01

    An adaptive minimum mean-square error (MMSE) array receiver based on the fuzzy-logic recursive least-squares (RLS) algorithm is developed for asynchronous DS-CDMA interference suppression in the presence of frequency-selective multipath fading. This receiver employs a fuzzy-logic control mechanism to perform the nonlinear mapping of the squared error and squared error variation, denoted by ([InlineEquation not available: see fulltext.],[InlineEquation not available: see fulltext.]), into a forgetting factor[InlineEquation not available: see fulltext.]. For the real-time applicability, a computationally efficient version of the proposed receiver is derived based on the least-mean-square (LMS) algorithm using the fuzzy-inference-controlled step-size[InlineEquation not available: see fulltext.]. This receiver is capable of providing both fast convergence/tracking capability as well as small steady-state misadjustment as compared with conventional LMS- and RLS-based MMSE DS-CDMA receivers. Simulations show that the fuzzy-logic LMS and RLS algorithms outperform, respectively, other variable step-size LMS (VSS-LMS) and variable forgetting factor RLS (VFF-RLS) algorithms at least 3 dB and 1.5 dB in bit-error-rate (BER) for multipath fading channels.

  15. Locating and decoding barcodes in fuzzy images captured by smart phones

    NASA Astrophysics Data System (ADS)

    Deng, Wupeng; Hu, Jiwei; Liu, Quan; Lou, Ping

    2017-07-01

    With the development of barcodes for commercial use, people's requirements for detecting barcodes by smart phone become increasingly pressing. The low quality of barcode image captured by mobile phone always affects the decoding and recognition rates. This paper focuses on locating and decoding EAN-13 barcodes in fuzzy images. We present a more accurate locating algorithm based on segment length and high fault-tolerant rate algorithm for decoding barcodes. Unlike existing approaches, location algorithm is based on the edge segment length of EAN -13 barcodes, while our decoding algorithm allows the appearance of fuzzy region in barcode image. Experimental results are performed on damaged, contaminated and scratched digital images, and provide a quite promising result for EAN -13 barcode location and decoding.

  16. What Fuzzy HOS May Mean

    DTIC Science & Technology

    1978-11-01

    a fuzzy set of real numbers clustered around m, or as a possibility distribution on the value of some ill-known quantity. A fuzzy relation R on the...distribution of . va.- nossibly clustered around some mean value. STho -Ict.n uf F to X is f. Moreover, It should be noticed that the image of a *uz!y L...10) 1(•)(y)= sup Rjin (i(x),• ()(y)) xcX One may verify that 11(-())(z)= sup min (V(x),N)( 0)(×)(z)) . Gmx ) xCX •) ’ . This shows that the extension

  17. Possibility expectation and its decision making algorithm

    NASA Technical Reports Server (NTRS)

    Keller, James M.; Yan, Bolin

    1992-01-01

    The fuzzy integral has been shown to be an effective tool for the aggregation of evidence in decision making. Of primary importance in the development of a fuzzy integral pattern recognition algorithm is the choice (construction) of the measure which embodies the importance of subsets of sources of evidence. Sugeno fuzzy measures have received the most attention due to the recursive nature of the fabrication of the measure on nested sequences of subsets. Possibility measures exhibit an even simpler generation capability, but usually require that one of the sources of information possess complete credibility. In real applications, such normalization may not be possible, or even desirable. In this report, both the theory and a decision making algorithm for a variation of the fuzzy integral are presented. This integral is based on a possibility measure where it is not required that the measure of the universe be unity. A training algorithm for the possibility densities in a pattern recognition application is also presented with the results demonstrated on the shuttle-earth-space training and testing images.

  18. A dynamic programming-based particle swarm optimization algorithm for an inventory management problem under uncertainty

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Zeng, Ziqiang; Han, Bernard; Lei, Xiao

    2013-07-01

    This article presents a dynamic programming-based particle swarm optimization (DP-based PSO) algorithm for solving an inventory management problem for large-scale construction projects under a fuzzy random environment. By taking into account the purchasing behaviour and strategy under rules of international bidding, a multi-objective fuzzy random dynamic programming model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform fuzzy random parameters into fuzzy variables that are subsequently defuzzified by using an expected value operator with optimistic-pessimistic index. The iterative nature of the authors' model motivates them to develop a DP-based PSO algorithm. More specifically, their approach treats the state variables as hidden parameters. This in turn eliminates many redundant feasibility checks during initialization and particle updates at each iteration. Results and sensitivity analysis are presented to highlight the performance of the authors' optimization method, which is very effective as compared to the standard PSO algorithm.

  19. Collaborative en-route and slot allocation algorithm based on fuzzy comprehensive evaluation

    NASA Astrophysics Data System (ADS)

    Yang, Shangwen; Guo, Baohua; Xiao, Xuefei; Gao, Haichao

    2018-01-01

    To allocate the en-routes and slots to the flights with collaborative decision making, a collaborative en-route and slot allocation algorithm based on fuzzy comprehensive evaluation was proposed. Evaluation indexes include flight delay costs, delay time and the number of turning points. Analytic hierarchy process is applied to determining index weights. Remark set for current two flights not yet obtained the en-route and slot in flight schedule is established. Then, fuzzy comprehensive evaluation is performed, and the en-route and slot for the current two flights are determined. Continue selecting the flight not yet obtained an en-route and a slot in flight schedule. Perform fuzzy comprehensive evaluation until all flights have obtained the en-routes and slots. MatlabR2007b was applied to numerical test based on the simulated data of a civil en-route. Test results show that, compared with the traditional strategy of first come first service, the algorithm gains better effect. The effectiveness of the algorithm was verified.

  20. Efficiency Improvement of Action Acquisition in Two-Link Robot Arm Using Fuzzy ART with Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kotani, Naoki; Taniguchi, Kenji

    An efficient learning method using Fuzzy ART with Genetic Algorithm is proposed. The proposed method reduces the number of trials by using a policy acquired in other tasks because a reinforcement learning needs a lot of the number of trials until an agent acquires appropriate actions. Fuzzy ART is an incremental unsupervised learning algorithm in responce to arbitrary sequences of analog or binary input vectors. Our proposed method gives a policy by crossover or mutation when an agent observes unknown states. Selection controls the category proliferation problem of Fuzzy ART. The effectiveness of the proposed method was verified with the simulation of the reaching problem for the two-link robot arm. The proposed method achieves a reduction of both the number of trials and the number of states.

  1. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitrios

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A totalmore » of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.« less

  2. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction.

    PubMed

    Tsantis, Stavros; Spiliopoulos, Stavros; Skouroliakou, Aikaterini; Karnabatidis, Dimitrios; Hazle, John D; Kagadis, George C

    2014-07-01

    Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists' qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.

  3. Distributed autonomous systems: resource management, planning, and control algorithms

    NASA Astrophysics Data System (ADS)

    Smith, James F., III; Nguyen, ThanhVu H.

    2005-05-01

    Distributed autonomous systems, i.e., systems that have separated distributed components, each of which, exhibit some degree of autonomy are increasingly providing solutions to naval and other DoD problems. Recently developed control, planning and resource allocation algorithms for two types of distributed autonomous systems will be discussed. The first distributed autonomous system (DAS) to be discussed consists of a collection of unmanned aerial vehicles (UAVs) that are under fuzzy logic control. The UAVs fly and conduct meteorological sampling in a coordinated fashion determined by their fuzzy logic controllers to determine the atmospheric index of refraction. Once in flight no human intervention is required. A fuzzy planning algorithm determines the optimal trajectory, sampling rate and pattern for the UAVs and an interferometer platform while taking into account risk, reliability, priority for sampling in certain regions, fuel limitations, mission cost, and related uncertainties. The real-time fuzzy control algorithm running on each UAV will give the UAV limited autonomy allowing it to change course immediately without consulting with any commander, request other UAVs to help it, alter its sampling pattern and rate when observing interesting phenomena, or to terminate the mission and return to base. The algorithms developed will be compared to a resource manager (RM) developed for another DAS problem related to electronic attack (EA). This RM is based on fuzzy logic and optimized by evolutionary algorithms. It allows a group of dissimilar platforms to use EA resources distributed throughout the group. For both DAS types significant theoretical and simulation results will be presented.

  4. Fuzzy C-means classification for corrosion evolution of steel images

    NASA Astrophysics Data System (ADS)

    Trujillo, Maite; Sadki, Mustapha

    2004-05-01

    An unavoidable problem of metal structures is their exposure to rust degradation during their operational life. Thus, the surfaces need to be assessed in order to avoid potential catastrophes. There is considerable interest in the use of patch repair strategies which minimize the project costs. However, to operate such strategies with confidence in the long useful life of the repair, it is essential that the condition of the existing coatings and the steel substrate can be accurately quantified and classified. This paper describes the application of fuzzy set theory for steel surfaces classification according to the steel rust time. We propose a semi-automatic technique to obtain image clustering using the Fuzzy C-means (FCM) algorithm and we analyze two kinds of data to study the classification performance. Firstly, we investigate the use of raw images" pixels without any pre-processing methods and neighborhood pixels. Secondly, we apply Gaussian noise to the images with different standard deviation to study the FCM method tolerance to Gaussian noise. The noisy images simulate the possible perturbations of the images due to the weather or rust deposits in the steel surfaces during typical on-site acquisition procedures

  5. Reliable Decentralized Control of Fuzzy Discrete-Event Systems and a Test Algorithm.

    PubMed

    Liu, Fuchun; Dziong, Zbigniew

    2013-02-01

    A framework for decentralized control of fuzzy discrete-event systems (FDESs) has been recently presented to guarantee the achievement of a given specification under the joint control of all local fuzzy supervisors. As a continuation, this paper addresses the reliable decentralized control of FDESs in face of possible failures of some local fuzzy supervisors. Roughly speaking, for an FDES equipped with n local fuzzy supervisors, a decentralized supervisor is called k-reliable (1 ≤ k ≤ n) provided that the control performance will not be degraded even when n - k local fuzzy supervisors fail. A necessary and sufficient condition for the existence of k-reliable decentralized supervisors of FDESs is proposed by introducing the notions of M̃uc-controllability and k-reliable coobservability of fuzzy language. In particular, a polynomial-time algorithm to test the k-reliable coobservability is developed by a constructive methodology, which indicates that the existence of k-reliable decentralized supervisors of FDESs can be checked with a polynomial complexity.

  6. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Brad M.; Nathan, Diane L.; Wang Yan

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., 'FOR PROCESSING') andmore » vendor postprocessed (i.e., 'FOR PRESENTATION'), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Results: Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r= 0.82, p < 0.001) and processed (r= 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r= 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's {kappa}{>=} 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). Conclusions: The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies.« less

  7. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    PubMed Central

    Keller, Brad M.; Nathan, Diane L.; Wang, Yan; Zheng, Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina

    2012-01-01

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., “FOR PROCESSING”) and vendor postprocessed (i.e., “FOR PRESENTATION”), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Results: Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r = 0.82, p < 0.001) and processed (r = 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r = 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's κ ≥ 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). Conclusions: The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies. PMID:22894417

  8. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation.

    PubMed

    Keller, Brad M; Nathan, Diane L; Wang, Yan; Zheng, Yuanjie; Gee, James C; Conant, Emily F; Kontos, Despina

    2012-08-01

    The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., "FOR PROCESSING") and vendor postprocessed (i.e., "FOR PRESENTATION"), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, mediolateral oblique, raw and processed screening digital mammograms were available, and agreement is assessed with both continuous and categorical density estimates made by a trained breast-imaging radiologist. Strong association between algorithm-estimated and radiologist-provided breast PD% was detected for both raw (r = 0.82, p < 0.001) and processed (r = 0.85, p < 0.001) digital mammograms on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a per-woman basis for both raw (r = 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms. Strong agreement between categorical density estimates was also seen (weighted Cohen's κ ≥ 0.79). Repeated measures analysis of variance demonstrated no statistically significant differences between the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of PD% assessment (radiologist vs algorithm). The proposed fully automated algorithm was successful in estimating breast percent density from both raw and processed digital mammographic images. Accurate assessment of a woman's breast density is critical in order for the estimate to be incorporated into risk assessment models. These results show promise for the clinical application of the algorithm in quantifying breast density in a repeatable manner, both at time of imaging as well as in retrospective studies.

  9. A generalized interval fuzzy mixed integer programming model for a multimodal transportation problem under uncertainty

    NASA Astrophysics Data System (ADS)

    Tian, Wenli; Cao, Chengxuan

    2017-03-01

    A generalized interval fuzzy mixed integer programming model is proposed for the multimodal freight transportation problem under uncertainty, in which the optimal mode of transport and the optimal amount of each type of freight transported through each path need to be decided. For practical purposes, three mathematical methods, i.e. the interval ranking method, fuzzy linear programming method and linear weighted summation method, are applied to obtain equivalents of constraints and parameters, and then a fuzzy expected value model is presented. A heuristic algorithm based on a greedy criterion and the linear relaxation algorithm are designed to solve the model.

  10. Fuzzy Clustering Analysis in Environmental Impact Assessment--A Complement Tool to Environmental Quality Index.

    ERIC Educational Resources Information Center

    Kung, Hsiang-Te; And Others

    1993-01-01

    In spite of rapid progress achieved in the methodological research underlying environmental impact assessment (EIA), the problem of weighting various parameters has not yet been solved. This paper presents a new approach, fuzzy clustering analysis, which is illustrated with an EIA case study on Baoshan-Wusong District in Shanghai, China. (Author)

  11. Integration of Genetic Algorithms and Fuzzy Logic for Urban Growth Modeling

    NASA Astrophysics Data System (ADS)

    Foroutan, E.; Delavar, M. R.; Araabi, B. N.

    2012-07-01

    Urban growth phenomenon as a spatio-temporal continuous process is subject to spatial uncertainty. This inherent uncertainty cannot be fully addressed by the conventional methods based on the Boolean algebra. Fuzzy logic can be employed to overcome this limitation. Fuzzy logic preserves the continuity of dynamic urban growth spatially by choosing fuzzy membership functions, fuzzy rules and the fuzzification-defuzzification process. Fuzzy membership functions and fuzzy rule sets as the heart of fuzzy logic are rather subjective and dependent on the expert. However, due to lack of a definite method for determining the membership function parameters, certain optimization is needed to tune the parameters and improve the performance of the model. This paper integrates genetic algorithms and fuzzy logic as a genetic fuzzy system (GFS) for modeling dynamic urban growth. The proposed approach is applied for modeling urban growth in Tehran Metropolitan Area in Iran. Historical land use/cover data of Tehran Metropolitan Area extracted from the 1988 and 1999 Landsat ETM+ images are employed in order to simulate the urban growth. The extracted land use classes of the year 1988 include urban areas, street, vegetation areas, slope and elevation used as urban growth physical driving forces. Relative Operating Characteristic (ROC) curve as an fitness function has been used to evaluate the performance of the GFS algorithm. The optimum membership function parameter is applied for generating a suitability map for the urban growth. Comparing the suitability map and real land use map of 1999 gives the threshold value for the best suitability map which can simulate the land use map of 1999. The simulation outcomes in terms of kappa of 89.13% and overall map accuracy of 95.58% demonstrated the efficiency and reliability of the proposed model.

  12. A 3D terrain reconstruction method of stereo vision based quadruped robot navigation system

    NASA Astrophysics Data System (ADS)

    Ge, Zhuo; Zhu, Ying; Liang, Guanhao

    2017-01-01

    To provide 3D environment information for the quadruped robot autonomous navigation system during walking through rough terrain, based on the stereo vision, a novel 3D terrain reconstruction method is presented. In order to solve the problem that images collected by stereo sensors have large regions with similar grayscale and the problem that image matching is poor at real-time performance, watershed algorithm and fuzzy c-means clustering algorithm are combined for contour extraction. Aiming at the problem of error matching, duel constraint with region matching and pixel matching is established for matching optimization. Using the stereo matching edge pixel pairs, the 3D coordinate algorithm is estimated according to the binocular stereo vision imaging model. Experimental results show that the proposed method can yield high stereo matching ratio and reconstruct 3D scene quickly and efficiently.

  13. Fuzzy B-spline optimization for urban slum three-dimensional reconstruction using ENVISAT satellite data

    NASA Astrophysics Data System (ADS)

    Marghany, Maged

    2014-06-01

    A critical challenges in urban aeras is slums. In fact, they are considered a source of crime and disease due to poor-quality housing, unsanitary conditions, poor infrastructures and occupancy security. The poor in the dense urban slums are the most vulnerable to infection due to (i) inadequate and restricted access to safety, drinking water and sufficient quantities of water for personal hygiene; (ii) the lack of removal and treatment of excreta; and (iii) the lack of removal of solid waste. This study aims to investigate the capability of ENVISAT ASAR satellite and Google Earth data for three-dimensional (3-D) slum urban reconstruction in developed countries such as Egypt. The main objective of this work is to utilize some 3-D automatic detection algorithm for urban slum in ENVISAT ASAR and Google Erath images were acquired in Cairo, Egypt using Fuzzy B-spline algorithm. The results show that the fuzzy algorithm is the best indicator for chaotic urban slum as it can discriminate between them from its surrounding environment. The combination of Fuzzy and B-spline then used to reconstruct 3-D of urban slum. The results show that urban slums, road network, and infrastructures are perfectly discriminated. It can therefore be concluded that the fuzzy algorithm is an appropriate algorithm for chaotic urban slum automatic detection in ENVSIAT ASAR and Google Earth data.

  14. Estimation of tool wear length in finish milling using a fuzzy inference algorithm

    NASA Astrophysics Data System (ADS)

    Ko, Tae Jo; Cho, Dong Woo

    1993-10-01

    The geometric accuracy and surface roughness are mainly affected by the flank wear at the minor cutting edge in finish machining. A fuzzy estimator obtained by a fuzzy inference algorithm with a max-min composition rule to evaluate the minor flank wear length in finish milling is introduced. The features sensitive to minor flank wear are extracted from the dispersion analysis of a time series AR model of the feed directional acceleration of the spindle housing. Linguistic rules for fuzzy estimation are constructed using these features, and then fuzzy inferences are carried out with test data sets under various cutting conditions. The proposed system turns out to be effective for estimating minor flank wear length, and its mean error is less than 12%.

  15. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    PubMed

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).

  16. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System

    PubMed Central

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639

  17. DecisionMaker software and extracting fuzzy rules under uncertainty

    NASA Technical Reports Server (NTRS)

    Walker, Kevin B.

    1992-01-01

    Knowledge acquisition under uncertainty is examined. Theories proposed in deKorvin's paper 'Extracting Fuzzy Rules Under Uncertainty and Measuring Definability Using Rough Sets' are discussed as they relate to rule calculation algorithms. A data structure for holding an arbitrary number of data fields is described. Limitations of Pascal for loops in the generation of combinations are also discussed. Finally, recursive algorithms for generating all possible combination of attributes and for calculating the intersection of an arbitrary number of fuzzy sets are presented.

  18. Fuzzy-TLX: using fuzzy integrals for evaluating human mental workload with NASA-Task Load indeX in laboratory and field studies.

    PubMed

    Mouzé-Amady, Marc; Raufaste, Eric; Prade, Henri; Meyer, Jean-Pierre

    2013-01-01

    The aim of this study was to assess mental workload in which various load sources must be integrated to derive reliable workload estimates. We report a new algorithm for computing weights from qualitative fuzzy integrals and apply it to the National Aeronautics and Space Administration -Task Load indeX (NASA-TLX) subscales in order to replace the standard pair-wise weighting technique (PWT). In this paper, two empirical studies were reported: (1) In a laboratory experiment, age- and task-related variables were investigated in 53 male volunteers and (2) In a field study, task- and job-related variables were studied on aircrews during 48 commercial flights. The results found in this study were as follows: (i) in the experimental setting, fuzzy estimates were highly correlated with classical (using PWT) estimates; (ii) in real work conditions, replacing PWT by automated fuzzy treatments simplified the NASA-TLX completion; (iii) the algorithm for computing fuzzy estimates provides a new classification procedure sensitive to various variables of work environments and (iv) subjective and objective measures can be used for the fuzzy aggregation of NASA-TLX subscales. NASA-TLX, a classical tool for mental workload assessment, is based on a weighted sum of ratings from six subscales. A new algorithm, which impacts on input data collection and computes weights and indexes from qualitative fuzzy integrals, is evaluated through laboratory and field studies. Pros and cons are discussed.

  19. Application of genetic algorithms to tuning fuzzy control systems

    NASA Technical Reports Server (NTRS)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  20. The architecture of adaptive neural network based on a fuzzy inference system for implementing intelligent control in photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Gimazov, R.; Shidlovskiy, S.

    2018-05-01

    In this paper, we consider the architecture of the algorithm for extreme regulation in the photovoltaic system. An algorithm based on an adaptive neural network with fuzzy inference is proposed. The implementation of such an algorithm not only allows solving a number of problems in existing algorithms for extreme power regulation of photovoltaic systems, but also creates a reserve for the creation of a universal control system for a photovoltaic system.

  1. Development of an evolutionary fuzzy expert system for estimating future behavior of stock price

    NASA Astrophysics Data System (ADS)

    Mehmanpazir, Farhad; Asadi, Shahrokh

    2017-03-01

    The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a "data mining-based evolutionary fuzzy expert system" (DEFES) approach to estimate the behavior of stock price. This tool is developed in seven-stage architecture. Data mining is used in three stages to reduce the complexity of the whole data space. The first stage, noise filtering, is used to make our raw data clean and smooth. Variable selection is second stage; we use stepwise regression analysis to choose the key variables been considered in the model. In the third stage, K-means is used to divide the data into sub-populations to decrease the effects of noise and rebate complexity of the patterns. At next stage, extraction of Mamdani type fuzzy rule-based system will be carried out for each cluster by means of genetic algorithm and evolutionary strategy. In the fifth stage, we use binary genetic algorithm to rule filtering to remove the redundant rules in order to solve over learning phenomenon. In the sixth stage, we utilize the genetic tuning process to slightly adjust the shape of the membership functions. Last stage is the testing performance of tool and adjusts parameters. This is the first study on using an approximate fuzzy rule base system and evolutionary strategy with the ability of extracting the whole knowledge base of fuzzy expert system for stock price forecasting problems. The superiority and applicability of DEFES are shown for International Business Machines Corporation and compared the outcome with the results of the other methods. Results with MAPE metric and Wilcoxon signed ranks test indicate that DEFES provides more accuracy and outperforms all previous methods, so it can be considered as a superior tool for stock price forecasting problems.

  2. A Fuzzy Technique for Performing Lateral-Axis Formation Flight Navigation Using Wingtip Vortices

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.

    2003-01-01

    Close formation flight involving aerodynamic coupling through wingtip vortices shows significant promise to improve the efficiency of cooperative aircraft operations. Impediments to the application of this technology include internship communication required to establish precise relative positioning. This report proposes a method for estimating the lateral relative position between two aircraft in close formation flight through real-time estimates of the aerodynamic effects imparted by the leading airplane on the trailing airplane. A fuzzy algorithm is developed to map combinations of vortex-induced drag and roll effects to relative lateral spacing. The algorithm is refined using self-tuning techniques to provide lateral relative position estimates accurate to 14 in., well within the requirement to maintain significant levels of drag reduction. The fuzzy navigation algorithm is integrated with a leader-follower formation flight autopilot in a two-ship F/A-18 simulation with no intership communication modeled. It is shown that in the absence of measurements from the leading airplane the algorithm provides sufficient estimation of lateral formation spacing for the autopilot to maintain stable formation flight within the vortex. Formation autopilot trim commands are used to estimate vortex effects for the algorithm. The fuzzy algorithm is shown to operate satisfactorily with anticipated levels of input uncertainties.

  3. Research on a Pulmonary Nodule Segmentation Method Combining Fast Self-Adaptive FCM and Classification

    PubMed Central

    Liu, Hui; Zhang, Cai-Ming; Su, Zhi-Yuan; Wang, Kai; Deng, Kai

    2015-01-01

    The key problem of computer-aided diagnosis (CAD) of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO) pulmonary nodules than other typical algorithms. PMID:25945120

  4. Fuzzy Performance between Surface Fitting and Energy Distribution in Turbulence Runner

    PubMed Central

    Liang, Zhongwei; Liu, Xiaochu; Ye, Bangyan; Brauwer, Richard Kars

    2012-01-01

    Because the application of surface fitting algorithms exerts a considerable fuzzy influence on the mathematical features of kinetic energy distribution, their relation mechanism in different external conditional parameters must be quantitatively analyzed. Through determining the kinetic energy value of each selected representative position coordinate point by calculating kinetic energy parameters, several typical algorithms of complicated surface fitting are applied for constructing microkinetic energy distribution surface models in the objective turbulence runner with those obtained kinetic energy values. On the base of calculating the newly proposed mathematical features, we construct fuzzy evaluation data sequence and present a new three-dimensional fuzzy quantitative evaluation method; then the value change tendencies of kinetic energy distribution surface features can be clearly quantified, and the fuzzy performance mechanism discipline between the performance results of surface fitting algorithms, the spatial features of turbulence kinetic energy distribution surface, and their respective environmental parameter conditions can be quantitatively analyzed in detail, which results in the acquirement of final conclusions concerning the inherent turbulence kinetic energy distribution performance mechanism and its mathematical relation. A further turbulence energy quantitative study can be ensured. PMID:23213287

  5. Reconciliation of Decision-Making Heuristics Based on Decision Trees Topologies and Incomplete Fuzzy Probabilities Sets

    PubMed Central

    Doubravsky, Karel; Dohnal, Mirko

    2015-01-01

    Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details. PMID:26158662

  6. Reconciliation of Decision-Making Heuristics Based on Decision Trees Topologies and Incomplete Fuzzy Probabilities Sets.

    PubMed

    Doubravsky, Karel; Dohnal, Mirko

    2015-01-01

    Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details.

  7. Enhanced image fusion using directional contrast rules in fuzzy transform domain.

    PubMed

    Nandal, Amita; Rosales, Hamurabi Gamboa

    2016-01-01

    In this paper a novel image fusion algorithm based on directional contrast in fuzzy transform (FTR) domain is proposed. Input images to be fused are first divided into several non-overlapping blocks. The components of these sub-blocks are fused using directional contrast based fuzzy fusion rule in FTR domain. The fused sub-blocks are then transformed into original size blocks using inverse-FTR. Further, these inverse transformed blocks are fused according to select maximum based fusion rule for reconstructing the final fused image. The proposed fusion algorithm is both visually and quantitatively compared with other standard and recent fusion algorithms. Experimental results demonstrate that the proposed method generates better results than the other methods.

  8. A new learning algorithm for a fully connected neuro-fuzzy inference system.

    PubMed

    Chen, C L Philip; Wang, Jing; Wang, Chi-Hsu; Chen, Long

    2014-10-01

    A traditional neuro-fuzzy system is transformed into an equivalent fully connected three layer neural network (NN), namely, the fully connected neuro-fuzzy inference systems (F-CONFIS). The F-CONFIS differs from traditional NNs by its dependent and repeated weights between input and hidden layers and can be considered as the variation of a kind of multilayer NN. Therefore, an efficient learning algorithm for the F-CONFIS to cope these repeated weights is derived. Furthermore, a dynamic learning rate is proposed for neuro-fuzzy systems via F-CONFIS where both premise (hidden) and consequent portions are considered. Several simulation results indicate that the proposed approach achieves much better accuracy and fast convergence.

  9. Application of an enhanced fuzzy algorithm for MR brain tumor image segmentation

    NASA Astrophysics Data System (ADS)

    Hemanth, D. Jude; Vijila, C. Kezi Selva; Anitha, J.

    2010-02-01

    Image segmentation is one of the significant digital image processing techniques commonly used in the medical field. One of the specific applications is tumor detection in abnormal Magnetic Resonance (MR) brain images. Fuzzy approaches are widely preferred for tumor segmentation which generally yields superior results in terms of accuracy. But most of the fuzzy algorithms suffer from the drawback of slow convergence rate which makes the system practically non-feasible. In this work, the application of modified Fuzzy C-means (FCM) algorithm to tackle the convergence problem is explored in the context of brain image segmentation. This modified FCM algorithm employs the concept of quantization to improve the convergence rate besides yielding excellent segmentation efficiency. This algorithm is experimented on real time abnormal MR brain images collected from the radiologists. A comprehensive feature vector is extracted from these images and used for the segmentation technique. An extensive feature selection process is performed which reduces the convergence time period and improve the segmentation efficiency. After segmentation, the tumor portion is extracted from the segmented image. Comparative analysis in terms of segmentation efficiency and convergence rate is performed between the conventional FCM and the modified FCM. Experimental results show superior results for the modified FCM algorithm in terms of the performance measures. Thus, this work highlights the application of the modified algorithm for brain tumor detection in abnormal MR brain images.

  10. A new intuitionistic fuzzy rule-based decision-making system for an operating system process scheduler.

    PubMed

    Butt, Muhammad Arif; Akram, Muhammad

    2016-01-01

    We present a new intuitionistic fuzzy rule-based decision-making system based on intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our proposed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time of all available processes in the ready queue, intuitionistically fuzzify the input values, triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calculates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of every process is calculated the ready queue is sorted in decreasing order of dp of every process. The process with maximum dp value is sent to the central processing unit for execution. Finally, we show complete working of our algorithm on two different data sets and give comparisons with some standard non-preemptive process schedulers.

  11. Fuzzy logic applications to expert systems and control

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    A considerable amount of work on the development of fuzzy logic algorithms and application to space related control problems has been done at the Johnson Space Center (JSC) over the past few years. Particularly, guidance control systems for space vehicles during proximity operations, learning systems utilizing neural networks, control of data processing during rendezvous navigation, collision avoidance algorithms, camera tracking controllers, and tether controllers have been developed utilizing fuzzy logic technology. Several other areas in which fuzzy sets and related concepts are being considered at JSC are diagnostic systems, control of robot arms, pattern recognition, and image processing. It has become evident, based on the commercial applications of fuzzy technology in Japan and China during the last few years, that this technology should be exploited by the government as well as private industry for energy savings.

  12. An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream

    PubMed Central

    Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.

    2016-01-01

    This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081

  13. Evolutionary Fuzzy Block-Matching-Based Camera Raw Image Denoising.

    PubMed

    Yang, Chin-Chang; Guo, Shu-Mei; Tsai, Jason Sheng-Hong

    2017-09-01

    An evolutionary fuzzy block-matching-based image denoising algorithm is proposed to remove noise from a camera raw image. Recently, a variance stabilization transform is widely used to stabilize the noise variance, so that a Gaussian denoising algorithm can be used to remove the signal-dependent noise in camera sensors. However, in the stabilized domain, the existed denoising algorithm may blur too much detail. To provide a better estimate of the noise-free signal, a new block-matching approach is proposed to find similar blocks by the use of a type-2 fuzzy logic system (FLS). Then, these similar blocks are averaged with the weightings which are determined by the FLS. Finally, an efficient differential evolution is used to further improve the performance of the proposed denoising algorithm. The experimental results show that the proposed denoising algorithm effectively improves the performance of image denoising. Furthermore, the average performance of the proposed method is better than those of two state-of-the-art image denoising algorithms in subjective and objective measures.

  14. Dissociating functional brain networks by decoding the between-subject variability

    PubMed Central

    Seghier, Mohamed L.; Price, Cathy J.

    2009-01-01

    In this study we illustrate how the functional networks involved in a single task (e.g. the sensory, cognitive and motor components) can be segregated without cognitive subtractions at the second-level. The method used is based on meaningful variability in the patterns of activation between subjects with the assumption that regions belonging to the same network will have comparable variations from subject to subject. fMRI data were collected from thirty nine healthy volunteers who were asked to indicate with a button press if visually presented words were semantically related or not. Voxels were classified according to the similarity in their patterns of between-subject variance using a second-level unsupervised fuzzy clustering algorithm. The results were compared to those identified by cognitive subtractions of multiple conditions tested in the same set of subjects. This illustrated that the second-level clustering approach (on activation for a single task) was able to identify the functional networks observed using cognitive subtractions (e.g. those associated with vision, semantic associations or motor processing). In addition the fuzzy clustering approach revealed other networks that were not dissociated by the cognitive subtraction approach (e.g. those associated with high- and low-level visual processing and oculomotor movements). We discuss the potential applications of our method which include the identification of “hidden” or unpredicted networks as well as the identification of systems level signatures for different subgroupings of clinical and healthy populations. PMID:19150501

  15. A New Multivariate Approach for Prognostics Based on Extreme Learning Machine and Fuzzy Clustering.

    PubMed

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine

    2015-12-01

    Prognostics is a core process of prognostics and health management (PHM) discipline, that estimates the remaining useful life (RUL) of a degrading machinery to optimize its service delivery potential. However, machinery operates in a dynamic environment and the acquired condition monitoring data are usually noisy and subject to a high level of uncertainty/unpredictability, which complicates prognostics. The complexity further increases, when there is absence of prior knowledge about ground truth (or failure definition). For such issues, data-driven prognostics can be a valuable solution without deep understanding of system physics. This paper contributes a new data-driven prognostics approach namely, an "enhanced multivariate degradation modeling," which enables modeling degrading states of machinery without assuming a homogeneous pattern. In brief, a predictability scheme is introduced to reduce the dimensionality of the data. Following that, the proposed prognostics model is achieved by integrating two new algorithms namely, the summation wavelet-extreme learning machine and subtractive-maximum entropy fuzzy clustering to show evolution of machine degradation by simultaneous predictions and discrete state estimation. The prognostics model is equipped with a dynamic failure threshold assignment procedure to estimate RUL in a realistic manner. To validate the proposition, a case study is performed on turbofan engines data from PHM challenge 2008 (NASA), and results are compared with recent publications.

  16. 3D magnetization vector inversion based on fuzzy clustering: inversion algorithm, uncertainty analysis, and application to geology differentiation

    NASA Astrophysics Data System (ADS)

    Sun, J.; Li, Y.

    2017-12-01

    Magnetic data contain important information about the subsurface rocks that were magnetized in the geological history, which provides an important avenue to the study of the crustal heterogeneities associated with magmatic and hydrothermal activities. Interpretation of magnetic data has been widely used in mineral exploration, basement characterization and large scale crustal studies for several decades. However, interpreting magnetic data has been often complicated by the presence of remanent magnetizations with unknown magnetization directions. Researchers have developed different methods to deal with the challenges posed by remanence. We have developed a new and effective approach to inverting magnetic data for magnetization vector distributions characterized by region-wise consistency in the magnetization directions. This approach combines the classical Tikhonov inversion scheme with fuzzy C-means clustering algorithm, and constrains the estimated magnetization vectors to a specified small number of possible directions while fitting the observed magnetic data to within noise level. Our magnetization vector inversion recovers both the magnitudes and the directions of the magnetizations in the subsurface. Magnetization directions reflect the unique geological or hydrothermal processes applied to each geological unit, and therefore, can potentially be used for the purpose of differentiating various geological units. We have developed a practically convenient and effective way of assessing the uncertainty associated with the inverted magnetization directions (Figure 1), and investigated how geological differentiation results might be affected (Figure 2). The algorithm and procedures we have developed for magnetization vector inversion and uncertainty analysis open up new possibilities of extracting useful information from magnetic data affected by remanence. We will use a field data example from exploration of an iron-oxide-copper-gold (IOCG) deposit in Brazil to illustrate how to solve the inverse problem, assess uncertainty, and perform geology differentiation in practice. We will also discuss the potential applications of this new method to large scale crustal studies.

  17. Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot

    PubMed Central

    Amador-Angulo, Leticia; Mendoza, Olivia; Castro, Juan R.; Rodríguez-Díaz, Antonio; Melin, Patricia; Castillo, Oscar

    2016-01-01

    A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in an autonomous mobile robot. We add two types of perturbations in the model for the Generalized Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better results when compared to the original BCO. We implemented various performance indices; ITAE, IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation the parameters for the BCO algorithm. PMID:27618062

  18. A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.

    PubMed

    Hajri, S; Liouane, N; Hammadi, S; Borne, P

    2000-01-01

    Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.

  19. Full design of fuzzy controllers using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah; Mccormick, ED

    1992-01-01

    This paper examines the applicability of genetic algorithms (GA) in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.

  20. Full design of fuzzy controllers using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah; Mccormick, ED

    1992-01-01

    This paper examines the applicability of genetic algorithms in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.

  1. A new type of simplified fuzzy rule-based system

    NASA Astrophysics Data System (ADS)

    Angelov, Plamen; Yager, Ronald

    2012-02-01

    Over the last quarter of a century, two types of fuzzy rule-based (FRB) systems dominated, namely Mamdani and Takagi-Sugeno type. They use the same type of scalar fuzzy sets defined per input variable in their antecedent part which are aggregated at the inference stage by t-norms or co-norms representing logical AND/OR operations. In this paper, we propose a significantly simplified alternative to define the antecedent part of FRB systems by data Clouds and density distribution. This new type of FRB systems goes further in the conceptual and computational simplification while preserving the best features (flexibility, modularity, and human intelligibility) of its predecessors. The proposed concept offers alternative non-parametric form of the rules antecedents, which fully reflects the real data distribution and does not require any explicit aggregation operations and scalar membership functions to be imposed. Instead, it derives the fuzzy membership of a particular data sample to a Cloud by the data density distribution of the data associated with that Cloud. Contrast this to the clustering which is parametric data space decomposition/partitioning where the fuzzy membership to a cluster is measured by the distance to the cluster centre/prototype ignoring all the data that form that cluster or approximating their distribution. The proposed new approach takes into account fully and exactly the spatial distribution and similarity of all the real data by proposing an innovative and much simplified form of the antecedent part. In this paper, we provide several numerical examples aiming to illustrate the concept.

  2. Quantified moving average strategy of crude oil futures market based on fuzzy logic rules and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojia; An, Haizhong; Wang, Lijun; Guan, Qing

    2017-09-01

    The moving average strategy is a technical indicator that can generate trading signals to assist investment. While the trading signals tell the traders timing to buy or sell, the moving average cannot tell the trading volume, which is a crucial factor for investment. This paper proposes a fuzzy moving average strategy, in which the fuzzy logic rule is used to determine the strength of trading signals, i.e., the trading volume. To compose one fuzzy logic rule, we use four types of moving averages, the length of the moving average period, the fuzzy extent, and the recommend value. Ten fuzzy logic rules form a fuzzy set, which generates a rating level that decides the trading volume. In this process, we apply genetic algorithms to identify an optimal fuzzy logic rule set and utilize crude oil futures prices from the New York Mercantile Exchange (NYMEX) as the experiment data. Each experiment is repeated for 20 times. The results show that firstly the fuzzy moving average strategy can obtain a more stable rate of return than the moving average strategies. Secondly, holding amounts series is highly sensitive to price series. Thirdly, simple moving average methods are more efficient. Lastly, the fuzzy extents of extremely low, high, and very high are more popular. These results are helpful in investment decisions.

  3. Evolutionary Local Search of Fuzzy Rules through a novel Neuro-Fuzzy encoding method.

    PubMed

    Carrascal, A; Manrique, D; Ríos, J; Rossi, C

    2003-01-01

    This paper proposes a new approach for constructing fuzzy knowledge bases using evolutionary methods. We have designed a genetic algorithm that automatically builds neuro-fuzzy architectures based on a new indirect encoding method. The neuro-fuzzy architecture represents the fuzzy knowledge base that solves a given problem; the search for this architecture takes advantage of a local search procedure that improves the chromosomes at each generation. Experiments conducted both on artificially generated and real world problems confirm the effectiveness of the proposed approach.

  4. Optimal solution of full fuzzy transportation problems using total integral ranking

    NASA Astrophysics Data System (ADS)

    Sam’an, M.; Farikhin; Hariyanto, S.; Surarso, B.

    2018-03-01

    Full fuzzy transportation problem (FFTP) is a transportation problem where transport costs, demand, supply and decision variables are expressed in form of fuzzy numbers. To solve fuzzy transportation problem, fuzzy number parameter must be converted to a crisp number called defuzzyfication method. In this new total integral ranking method with fuzzy numbers from conversion of trapezoidal fuzzy numbers to hexagonal fuzzy numbers obtained result of consistency defuzzyfication on symmetrical fuzzy hexagonal and non symmetrical type 2 numbers with fuzzy triangular numbers. To calculate of optimum solution FTP used fuzzy transportation algorithm with least cost method. From this optimum solution, it is found that use of fuzzy number form total integral ranking with index of optimism gives different optimum value. In addition, total integral ranking value using hexagonal fuzzy numbers has an optimal value better than the total integral ranking value using trapezoidal fuzzy numbers.

  5. Inflation data clustering of some cities in Indonesia

    NASA Astrophysics Data System (ADS)

    Setiawan, Adi; Susanto, Bambang; Mahatma, Tundjung

    2017-06-01

    In this paper, it is presented how to cluster inflation data of cities in Indonesia by using k-means cluster method and fuzzy c-means method. The data that are used is limited to the monthly inflation data from 15 cities across Indonesia which have highest weight of donations and is supplemented with 5 cities used in the calculation of inflation in Indonesia. When they are applied into two clusters with k = 2 for k-means cluster method and c = 2, w = 1.25 for fuzzy c-means cluster method, Ambon, Manado and Jayapura tend to become one cluster (high inflation) meanwhile other cities tend to become members of other cluster (low inflation). However, if they are applied into two clusters with c=2, w=1.5, Surabaya, Medan, Makasar, Samarinda, Makasar, Manado, Ambon dan Jayapura tend to become one cluster (high inflation) meanwhile other cities tend to become members of other cluster (low inflation). Furthermore, when we use two clusters with k=3 for k-means cluster method and c=3, w = 1.25 for fuzzy c-means cluster method, Ambon tends to become member of first cluster (high inflation), Manado and Jayapura tend to become member of second cluster (moderate inflation), other cities tend to become members of third cluster (low inflation). If it is applied c=3, w = 1.5, Ambon, Manado and Jayapura tend to become member of first cluster (high inflation), Surabaya, Bandung, Medan, Makasar, Banyuwangi, Denpasar, Samarinda dan Mataram tend to become members of second cluster (moderate inflation), meanwhile other cities tend to become members of third cluster (low inflation). Similarly, interpretation can be made to the results of applying 5 clusters.

  6. Performance of Geno-Fuzzy Model on rainfall-runoff predictions in claypan watersheds

    USDA-ARS?s Scientific Manuscript database

    Fuzzy logic provides a relatively simple approach to simulate complex hydrological systems while accounting for the uncertainty of environmental variables. The objective of this study was to develop a fuzzy inference system (FIS) with genetic algorithm (GA) optimization for membership functions (MF...

  7. Applications of Some Artificial Intelligence Methods to Satellite Soundings

    NASA Technical Reports Server (NTRS)

    Munteanu, M. J.; Jakubowicz, O.

    1985-01-01

    Hard clustering of temperature profiles and regression temperature retrievals were used to refine the method using the probabilities of membership of each pattern vector in each of the clusters derived with discriminant analysis. In hard clustering the maximum probability is taken and the corresponding cluster as the correct cluster are considered discarding the rest of the probabilities. In fuzzy partitioned clustering these probabilities are kept and the final regression retrieval is a weighted regression retrieval of several clusters. This method was used in the clustering of brightness temperatures where the purpose was to predict tropopause height. A further refinement is the division of temperature profiles into three major regions for classification purposes. The results are summarized in the tables total r.m.s. errors are displayed. An approach based on fuzzy logic which is intimately related to artificial intelligence methods is recommended.

  8. Fuzzy Logic, Neural Networks, Genetic Algorithms: Views of Three Artificial Intelligence Concepts Used in Modeling Scientific Systems

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.

    2003-01-01

    Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…

  9. Fuzzy set methods for object recognition in space applications

    NASA Technical Reports Server (NTRS)

    Keller, James M.

    1992-01-01

    Progress on the following tasks is reported: feature calculation; membership calculation; clustering methods (including initial experiments on pose estimation); and acquisition of images (including camera calibration information for digitization of model). The report consists of 'stand alone' sections, describing the activities in each task. We would like to highlight the fact that during this quarter, we believe that we have made a major breakthrough in the area of fuzzy clustering. We have discovered a method to remove the probabilistic constraints that the sum of the memberships across all classes must add up to 1 (as in the fuzzy c-means). A paper, describing this approach, is included.

  10. Learning and Tuning of Fuzzy Rules

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1997-01-01

    In this chapter, we review some of the current techniques for learning and tuning fuzzy rules. For clarity, we refer to the process of generating rules from data as the learning problem and distinguish it from tuning an already existing set of fuzzy rules. For learning, we touch on unsupervised learning techniques such as fuzzy c-means, fuzzy decision tree systems, fuzzy genetic algorithms, and linear fuzzy rules generation methods. For tuning, we discuss Jang's ANFIS architecture, Berenji-Khedkar's GARIC architecture and its extensions in GARIC-Q. We show that the hybrid techniques capable of learning and tuning fuzzy rules, such as CART-ANFIS, RNN-FLCS, and GARIC-RB, are desirable in development of a number of future intelligent systems.

  11. Fast Fuzzy Arithmetic Operations

    NASA Technical Reports Server (NTRS)

    Hampton, Michael; Kosheleva, Olga

    1997-01-01

    In engineering applications of fuzzy logic, the main goal is not to simulate the way the experts really think, but to come up with a good engineering solution that would (ideally) be better than the expert's control, In such applications, it makes perfect sense to restrict ourselves to simplified approximate expressions for membership functions. If we need to perform arithmetic operations with the resulting fuzzy numbers, then we can use simple and fast algorithms that are known for operations with simple membership functions. In other applications, especially the ones that are related to humanities, simulating experts is one of the main goals. In such applications, we must use membership functions that capture every nuance of the expert's opinion; these functions are therefore complicated, and fuzzy arithmetic operations with the corresponding fuzzy numbers become a computational problem. In this paper, we design a new algorithm for performing such operations. This algorithm is applicable in the case when negative logarithms - log(u(x)) of membership functions u(x) are convex, and reduces computation time from O(n(exp 2))to O(n log(n)) (where n is the number of points x at which we know the membership functions u(x)).

  12. Change detection of bitemporal multispectral images based on FCM and D-S theory

    NASA Astrophysics Data System (ADS)

    Shi, Aiye; Gao, Guirong; Shen, Shaohong

    2016-12-01

    In this paper, we propose a change detection method of bitemporal multispectral images based on the D-S theory and fuzzy c-means (FCM) algorithm. Firstly, the uncertainty and certainty regions are determined by thresholding method applied to the magnitudes of difference image (MDI) and spectral angle information (SAI) of bitemporal images. Secondly, the FCM algorithm is applied to the MDI and SAI in the uncertainty region, respectively. Then, the basic probability assignment (BPA) functions of changed and unchanged classes are obtained by the fuzzy membership values from the FCM algorithm. In addition, the optimal value of fuzzy exponent of FCM is adaptively determined by conflict degree between the MDI and SAI in uncertainty region. Finally, the D-S theory is applied to obtain the new fuzzy partition matrix for uncertainty region and further the change map is obtained. Experiments on bitemporal Landsat TM images and bitemporal SPOT images validate that the proposed method is effective.

  13. Clustering-based spot segmentation of cDNA microarray images.

    PubMed

    Uslan, Volkan; Bucak, Ihsan Ömür

    2010-01-01

    Microarrays are utilized as that they provide useful information about thousands of gene expressions simultaneously. In this study segmentation step of microarray image processing has been implemented. Clustering-based methods, fuzzy c-means and k-means, have been applied for the segmentation step that separates the spots from the background. The experiments show that fuzzy c-means have segmented spots of the microarray image more accurately than the k-means.

  14. Fuzzy cluster analysis of air quality in Beijing district

    NASA Astrophysics Data System (ADS)

    Liu, Hongkai

    2018-02-01

    The principle of fuzzy clustering analysis is applied in this article, by using the method of transitive closure, the main air pollutants in 17 districts of Beijing from 2014 to 2016 were classified. The results of the analysis reflects the nearly three year’s changes of the main air pollutants in Beijing. This can provide the scientific for atmospheric governance in the Beijing area and digital support.

  15. Fuzzy cluster analysis of simple physicochemical properties of amino acids for recognizing secondary structure in proteins.

    PubMed Central

    Mocz, G.

    1995-01-01

    Fuzzy cluster analysis has been applied to the 20 amino acids by using 65 physicochemical properties as a basis for classification. The clustering products, the fuzzy sets (i.e., classical sets with associated membership functions), have provided a new measure of amino acid similarities for use in protein folding studies. This work demonstrates that fuzzy sets of simple molecular attributes, when assigned to amino acid residues in a protein's sequence, can predict the secondary structure of the sequence with reasonable accuracy. An approach is presented for discriminating standard folding states, using near-optimum information splitting in half-overlapping segments of the sequence of assigned membership functions. The method is applied to a nonredundant set of 252 proteins and yields approximately 73% matching for correctly predicted and correctly rejected residues with approximately 60% overall success rate for the correctly recognized ones in three folding states: alpha-helix, beta-strand, and coil. The most useful attributes for discriminating these states appear to be related to size, polarity, and thermodynamic factors. Van der Waals volume, apparent average thickness of surrounding molecular free volume, and a measure of dimensionless surface electron density can explain approximately 95% of prediction results. hydrogen bonding and hydrophobicity induces do not yet enable clear clustering and prediction. PMID:7549882

  16. Peak reduction for commercial buildings using energy storage

    NASA Astrophysics Data System (ADS)

    Chua, K. H.; Lim, Y. S.; Morris, S.

    2017-11-01

    Battery-based energy storage has emerged as a cost-effective solution for peak reduction due to the decrement of battery’s price. In this study, a battery-based energy storage system is developed and implemented to achieve an optimal peak reduction for commercial customers with the limited energy capacity of the energy storage. The energy storage system is formed by three bi-directional power converter rated at 5 kVA and a battery bank with capacity of 64 kWh. Three control algorithms, namely fixed-threshold, adaptive-threshold, and fuzzy-based control algorithms have been developed and implemented into the energy storage system in a campus building. The control algorithms are evaluated and compared under different load conditions. The overall experimental results show that the fuzzy-based controller is the most effective algorithm among the three controllers in peak reduction. The fuzzy-based control algorithm is capable of incorporating a priori qualitative knowledge and expertise about the load characteristic of the buildings as well as the useable energy without over-discharging the batteries.

  17. Relative Wave Energy based Adaptive Neuro-Fuzzy Inference System model for the Estimation of Depth of Anaesthesia.

    PubMed

    Benzy, V K; Jasmin, E A; Koshy, Rachel Cherian; Amal, Frank; Indiradevi, K P

    2018-01-01

    The advancement in medical research and intelligent modeling techniques has lead to the developments in anaesthesia management. The present study is targeted to estimate the depth of anaesthesia using cognitive signal processing and intelligent modeling techniques. The neurophysiological signal that reflects cognitive state of anaesthetic drugs is the electroencephalogram signal. The information available on electroencephalogram signals during anaesthesia are drawn by extracting relative wave energy features from the anaesthetic electroencephalogram signals. Discrete wavelet transform is used to decomposes the electroencephalogram signals into four levels and then relative wave energy is computed from approximate and detail coefficients of sub-band signals. Relative wave energy is extracted to find out the degree of importance of different electroencephalogram frequency bands associated with different anaesthetic phases awake, induction, maintenance and recovery. The Kruskal-Wallis statistical test is applied on the relative wave energy features to check the discriminating capability of relative wave energy features as awake, light anaesthesia, moderate anaesthesia and deep anaesthesia. A novel depth of anaesthesia index is generated by implementing a Adaptive neuro-fuzzy inference system based fuzzy c-means clustering algorithm which uses relative wave energy features as inputs. Finally, the generated depth of anaesthesia index is compared with a commercially available depth of anaesthesia monitor Bispectral index.

  18. A Modified Dynamic Evolving Neural-Fuzzy Approach to Modeling Customer Satisfaction for Affective Design

    PubMed Central

    Kwong, C. K.; Fung, K. Y.; Jiang, Huimin; Chan, K. Y.

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort. PMID:24385884

  19. A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design.

    PubMed

    Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  20. Efficient video-equipped fire detection approach for automatic fire alarm systems

    NASA Astrophysics Data System (ADS)

    Kang, Myeongsu; Tung, Truong Xuan; Kim, Jong-Myon

    2013-01-01

    This paper proposes an efficient four-stage approach that automatically detects fire using video capabilities. In the first stage, an approximate median method is used to detect video frame regions involving motion. In the second stage, a fuzzy c-means-based clustering algorithm is employed to extract candidate regions of fire from all of the movement-containing regions. In the third stage, a gray level co-occurrence matrix is used to extract texture parameters by tracking red-colored objects in the candidate regions. These texture features are, subsequently, used as inputs of a back-propagation neural network to distinguish between fire and nonfire. Experimental results indicate that the proposed four-stage approach outperforms other fire detection algorithms in terms of consistently increasing the accuracy of fire detection in both indoor and outdoor test videos.

  1. Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2

    NASA Technical Reports Server (NTRS)

    Lea, Robert N. (Editor); Villarreal, James A. (Editor)

    1991-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.

  2. A fuzzy measure approach to motion frame analysis for scene detection. M.S. Thesis - Houston Univ.

    NASA Technical Reports Server (NTRS)

    Leigh, Albert B.; Pal, Sankar K.

    1992-01-01

    This paper addresses a solution to the problem of scene estimation of motion video data in the fuzzy set theoretic framework. Using fuzzy image feature extractors, a new algorithm is developed to compute the change of information in each of two successive frames to classify scenes. This classification process of raw input visual data can be used to establish structure for correlation. The algorithm attempts to fulfill the need for nonlinear, frame-accurate access to video data for applications such as video editing and visual document archival/retrieval systems in multimedia environments.

  3. Predicting Length of Stay in Intensive Care Units after Cardiac Surgery: Comparison of Artificial Neural Networks and Adaptive Neuro-fuzzy System.

    PubMed

    Maharlou, Hamidreza; Niakan Kalhori, Sharareh R; Shahbazi, Shahrbanoo; Ravangard, Ramin

    2018-04-01

    Accurate prediction of patients' length of stay is highly important. This study compared the performance of artificial neural network and adaptive neuro-fuzzy system algorithms to predict patients' length of stay in intensive care units (ICU) after cardiac surgery. A cross-sectional, analytical, and applied study was conducted. The required data were collected from 311 cardiac patients admitted to intensive care units after surgery at three hospitals of Shiraz, Iran, through a non-random convenience sampling method during the second quarter of 2016. Following the initial processing of influential factors, models were created and evaluated. The results showed that the adaptive neuro-fuzzy algorithm (with mean squared error [MSE] = 7 and R = 0.88) resulted in the creation of a more precise model than the artificial neural network (with MSE = 21 and R = 0.60). The adaptive neuro-fuzzy algorithm produces a more accurate model as it applies both the capabilities of a neural network architecture and experts' knowledge as a hybrid algorithm. It identifies nonlinear components, yielding remarkable results for prediction the length of stay, which is a useful calculation output to support ICU management, enabling higher quality of administration and cost reduction.

  4. A Kind of Nonlinear Programming Problem Based on Mixed Fuzzy Relation Equations Constraints

    NASA Astrophysics Data System (ADS)

    Li, Jinquan; Feng, Shuang; Mi, Honghai

    In this work, a kind of nonlinear programming problem with non-differential objective function and under the constraints expressed by a system of mixed fuzzy relation equations is investigated. First, some properties of this kind of optimization problem are obtained. Then, a polynomial-time algorithm for this kind of optimization problem is proposed based on these properties. Furthermore, we show that this algorithm is optimal for the considered optimization problem in this paper. Finally, numerical examples are provided to illustrate our algorithms.

  5. Fast and robust segmentation in the SDO-AIA era

    NASA Astrophysics Data System (ADS)

    Verbeeck, Cis; Delouille, Véronique; Mampaey, Benjamin; Hochedez, Jean-François; Boyes, David; Barra, Vincent

    Solar images from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Ob-servatory (SDO) will flood the solar physics community with a wealth of information on solar variability, of great importance both in solar physics and in view of Space Weather applica-tions. Obtaining this information, however, requires the ability to automatically process large amounts of data in an objective fashion. In previous work, we have proposed a multi-channel unsupervised spatially-constrained multi-channel fuzzy clustering algorithm (SPoCA) that automatically segments EUV solar images into Active Regions (AR), Coronal Holes (CH), and Quiet Sun (QS). This algorithm will run in near real time on AIA data as part of the SDO Feature Finding Project, a suite of software pipeline modules for automated feature recognition and analysis for the imagery from SDO. After having corrected for the limb brightening effect, SPoCA computes an optimal clustering with respect to the regions of interest using fuzzy logic on a quality criterion to manage the various noises present in the images and the imprecision in the definition of the above regions. Next, the algorithm applies a morphological opening operation, smoothing the cluster edges while preserving their general shape. The process is fast and automatic. A lower size limit is used to distinguish AR from Bright Points. As the algorithm segments the coronal images according to their brightness, it might happen that an AR is detected as several disjoint pieces, if the brightness in between is somewhat lower. Morphological dilation is employed to reconstruct the AR themselves from their constituent pieces. Combining SPoCA's detection of AR, CH, and QS on subsequent images allows automatic tracking and naming of any region of interest. In the SDO software pipeline, SPoCA will auto-matically populate the Heliophysics Events Knowledgebase(HEK) with Active Region events. Further, the algorithm has a huge potential for correct and automatic identification of AR, CH, and QS in any study that aims to address properties of those specific regions in the corona. SPoCA is now ready and waiting to tackle solar cycle 24 using SDO data. While we presently apply SPoCA to EUV data, the method is generic enough to allow the introduction of other channels or data, e.g., Differential Emission Measure (DEM) maps. Because of the unprecedented challenges brought up by the quantity of SDO data, European partners have gathered within an ISSI team on `Mining and Exploiting the NASA Solar Dynam-ics Observatory data in Europe' (a.k.a. Soldyneuro). Its aim is to provide automated feature recognition algorithms for scanning the SDO archive, as well as conducting scientific studies that combine different algorithm's outputs. Within the Soldyneuro project, we will use data from the EUV Variability Experiment (EVE) spectrometer in order to estimate the full Sun DEM. This DEM will next be used to estimate the total flux from AIA images so as to provide a validation for the calibration of AIA.

  6. A new algorithm for distorted fingerprints matching based on normalized fuzzy similarity measure.

    PubMed

    Chen, Xinjian; Tian, Jie; Yang, Xin

    2006-03-01

    Coping with nonlinear distortions in fingerprint matching is a challenging task. This paper proposes a novel algorithm, normalized fuzzy similarity measure (NFSM), to deal with the nonlinear distortions. The proposed algorithm has two main steps. First, the template and input fingerprints were aligned. In this process, the local topological structure matching was introduced to improve the robustness of global alignment. Second, the method NFSM was introduced to compute the similarity between the template and input fingerprints. The proposed algorithm was evaluated on fingerprints databases of FVC2004. Experimental results confirm that NFSM is a reliable and effective algorithm for fingerprint matching with nonliner distortions. The algorithm gives considerably higher matching scores compared to conventional matching algorithms for the deformed fingerprints.

  7. Fetal ECG extraction via Type-2 adaptive neuro-fuzzy inference systems.

    PubMed

    Ahmadieh, Hajar; Asl, Babak Mohammadzadeh

    2017-04-01

    We proposed a noninvasive method for separating the fetal ECG (FECG) from maternal ECG (MECG) by using Type-2 adaptive neuro-fuzzy inference systems. The method can extract FECG components from abdominal signal by using one abdominal channel, including maternal and fetal cardiac signals and other environmental noise signals, and one chest channel. The proposed algorithm detects the nonlinear dynamics of the mother's body. So, the components of the MECG are estimated from the abdominal signal. By subtracting estimated mother cardiac signal from abdominal signal, fetal cardiac signal can be extracted. This algorithm was applied on synthetic ECG signals generated based on the models developed by McSharry et al. and Behar et al. and also on DaISy real database. In environments with high uncertainty, our method performs better than the Type-1 fuzzy method. Specifically, in evaluation of the algorithm with the synthetic data based on McSharry model, for input signals with SNR of -5dB, the SNR of the extracted FECG was improved by 38.38% in comparison with the Type-1 fuzzy method. Also, the results show that increasing the uncertainty or decreasing the input SNR leads to increasing the percentage of the improvement in SNR of the extracted FECG. For instance, when the SNR of the input signal decreases to -30dB, our proposed algorithm improves the SNR of the extracted FECG by 71.06% with respect to the Type-1 fuzzy method. The same results were obtained on synthetic data based on Behar model. Our results on real database reflect the success of the proposed method to separate the maternal and fetal heart signals even if their waves overlap in time. Moreover, the proposed algorithm was applied to the simulated fetal ECG with ectopic beats and achieved good results in separating FECG from MECG. The results show the superiority of the proposed Type-2 neuro-fuzzy inference method over the Type-1 neuro-fuzzy inference and the polynomial networks methods, which is due to its capability to capture the nonlinearities of the model better. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem

    PubMed Central

    Molla-Alizadeh-Zavardehi, S.; Tavakkoli-Moghaddam, R.; Lotfi, F. Hosseinzadeh

    2014-01-01

    This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms. PMID:24883359

  9. Fuzzy control of power converters based on quasilinear modelling

    NASA Astrophysics Data System (ADS)

    Li, C. K.; Lee, W. L.; Chou, Y. W.

    1995-03-01

    Unlike feedback control by the fuzzy PID method, a new fuzzy control algorithm based on quasilinear modelling of the DC-DC converter is proposed. Investigation is carried out using a buck-boost converter. Simulation results demonstrated that the converter can be regulated with improved performance even when subjected to input disturbance and load variation.

  10. Shear wave prediction using committee fuzzy model constrained by lithofacies, Zagros basin, SW Iran

    NASA Astrophysics Data System (ADS)

    Shiroodi, Sadjad Kazem; Ghafoori, Mohammad; Ansari, Hamid Reza; Lashkaripour, Golamreza; Ghanadian, Mostafa

    2017-02-01

    The main purpose of this study is to introduce the geological controlling factors in improving an intelligence-based model to estimate shear wave velocity from seismic attributes. The proposed method includes three main steps in the framework of geological events in a complex sedimentary succession located in the Persian Gulf. First, the best attributes were selected from extracted seismic data. Second, these attributes were transformed into shear wave velocity using fuzzy inference systems (FIS) such as Sugeno's fuzzy inference (SFIS), adaptive neuro-fuzzy inference (ANFIS) and optimized fuzzy inference (OFIS). Finally, a committee fuzzy machine (CFM) based on bat-inspired algorithm (BA) optimization was applied to combine previous predictions into an enhanced solution. In order to show the geological effect on improving the prediction, the main classes of predominate lithofacies in the reservoir of interest including shale, sand, and carbonate were selected and then the proposed algorithm was performed with and without lithofacies constraint. The results showed a good agreement between real and predicted shear wave velocity in the lithofacies-based model compared to the model without lithofacies especially in sand and carbonate.

  11. FDT 2.0: Improving scalability of the fuzzy decision tree induction tool - integrating database storage.

    PubMed

    Durham, Erin-Elizabeth A; Yu, Xiaxia; Harrison, Robert W

    2014-12-01

    Effective machine-learning handles large datasets efficiently. One key feature of handling large data is the use of databases such as MySQL. The freeware fuzzy decision tree induction tool, FDT, is a scalable supervised-classification software tool implementing fuzzy decision trees. It is based on an optimized fuzzy ID3 (FID3) algorithm. FDT 2.0 improves upon FDT 1.0 by bridging the gap between data science and data engineering: it combines a robust decisioning tool with data retention for future decisions, so that the tool does not need to be recalibrated from scratch every time a new decision is required. In this paper we briefly review the analytical capabilities of the freeware FDT tool and its major features and functionalities; examples of large biological datasets from HIV, microRNAs and sRNAs are included. This work shows how to integrate fuzzy decision algorithms with modern database technology. In addition, we show that integrating the fuzzy decision tree induction tool with database storage allows for optimal user satisfaction in today's Data Analytics world.

  12. Applications of fuzzy logic to control and decision making

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    Long range space missions will require high operational efficiency as well as autonomy to enhance the effectivity of performance. Fuzzy logic technology has been shown to be powerful and robust in interpreting imprecise measurements and generating appropriate control decisions for many space operations. Several applications are underway, studying the fuzzy logic approach to solving control and decision making problems. Fuzzy logic algorithms for relative motion and attitude control have been developed and demonstrated for proximity operations. Based on this experience, motion control algorithms that include obstacle avoidance were developed for a Mars Rover prototype for maneuvering during the sample collection process. A concept of an intelligent sensor system that can identify objects and track them continuously and learn from its environment is under development to support traffic management and proximity operations around the Space Station Freedom. For safe and reliable operation of Lunar/Mars based crew quarters, high speed controllers with ability to combine imprecise measurements from several sensors is required. A fuzzy logic approach that uses high speed fuzzy hardware chips is being studied.

  13. Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization.

    PubMed

    Karayiannis, N B; Pai, P I

    1999-02-01

    This paper evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on fuzzy algorithms for learning vector quantization (FALVQ). These algorithms perform vector quantization by updating all prototypes of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the local values of different relaxation parameters form the feature vectors which are represented by a relatively small set of prototypes. The experiments evaluate a variety of FALVQ algorithms in terms of their ability to identify different tissues and discriminate between normal tissues and abnormalities.

  14. Load forecast method of electric vehicle charging station using SVR based on GA-PSO

    NASA Astrophysics Data System (ADS)

    Lu, Kuan; Sun, Wenxue; Ma, Changhui; Yang, Shenquan; Zhu, Zijian; Zhao, Pengfei; Zhao, Xin; Xu, Nan

    2017-06-01

    This paper presents a Support Vector Regression (SVR) method for electric vehicle (EV) charging station load forecast based on genetic algorithm (GA) and particle swarm optimization (PSO). Fuzzy C-Means (FCM) clustering is used to establish similar day samples. GA is used for global parameter searching and PSO is used for a more accurately local searching. Load forecast is then regressed using SVR. The practical load data of an EV charging station were taken to illustrate the proposed method. The result indicates an obvious improvement in the forecasting accuracy compared with SVRs based on PSO and GA exclusively.

  15. The design of free structure granular mappings: the use of the principle of justifiable granularity.

    PubMed

    Pedrycz, Witold; Al-Hmouz, Rami; Morfeq, Ali; Balamash, Abdullah

    2013-12-01

    The study introduces a concept of mappings realized in presence of information granules and offers a design framework supporting the formation of such mappings. Information granules are conceptually meaningful entities formed on a basis of a large number of experimental input–output numeric data available for the construction of the model. We develop a conceptually and algorithmically sound way of forming information granules. Considering the directional nature of the mapping to be formed, this directionality aspect needs to be taken into account when developing information granules. The property of directionality implies that while the information granules in the input space could be constructed with a great deal of flexibility, the information granules formed in the output space have to inherently relate to those built in the input space. The input space is granulated by running a clustering algorithm; for illustrative purposes, the focus here is on fuzzy clustering realized with the aid of the fuzzy C-means algorithm. The information granules in the output space are constructed with the aid of the principle of justifiable granularity (being one of the underlying fundamental conceptual pursuits of Granular Computing). The construct exhibits two important features. First, the constructed information granules are formed in the presence of information granules already constructed in the input space (and this realization is reflective of the direction of the mapping from the input to the output space). Second, the principle of justifiable granularity does not confine the realization of information granules to a single formalism such as fuzzy sets but helps form the granules expressed any required formalism of information granulation. The quality of the granular mapping (viz. the mapping realized for the information granules formed in the input and output spaces) is expressed in terms of the coverage criterion (articulating how well the experimental data are “covered” by information granules produced by the granular mapping for any input experimental data). Some parametric studies are reported by quantifying the performance of the granular mapping (expressed in terms of the coverage and specificity criteria) versus the values of a certain parameters utilized in the construction of output information granules through the principle of justifiable granularity. The plots of coverage–specificity dependency help determine a knee point and reach a sound compromise between these two conflicting requirements imposed on the quality of the granular mapping. Furthermore, quantified is the quality of the mapping with regard to the number of information granules (implying a certain granularity of the mapping). A series of experiments is reported as well.

  16. Evolutionary Algorithm Based Automated Reverse Engineering and Defect Discovery

    DTIC Science & Technology

    2007-09-21

    a previous application of a GP as a data mining function to evolve fuzzy decision trees symbolically [3-5], the terminal set consisted of fuzzy...of input and output information is required. In the case of fuzzy decision trees, the database represented a collection of scenarios about which the...fuzzy decision tree to be evolved would make decisions . The database also had entries created by experts representing decisions about the scenarios

  17. Fuzzy connectedness and object definition

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Samarasekera, Supun

    1995-04-01

    Approaches to object information extraction from images should attempt to use the fact that images are fuzzy. In past image segmentation research, the notion of `hanging togetherness' of image elements specified by their fuzzy connectedness has been lacking. We present a theory of fuzzy objects for n-dimensional digital spaces based on a notion of fuzzy connectedness of image elements. Although our definitions lead to problems of enormous combinatorial complexity, the theoretical results allow us to reduce this dramatically. We demonstrate the utility of the theory and algorithms in image segmentation based on several practical examples.

  18. Synthesis of nonlinear control strategies from fuzzy logic control algorithms

    NASA Technical Reports Server (NTRS)

    Langari, Reza

    1993-01-01

    Fuzzy control has been recognized as an alternative to conventional control techniques in situations where the plant model is not sufficiently well known to warrant the application of conventional control techniques. Precisely what fuzzy control does and how it does what it does is not quite clear, however. This important issue is discussed and in particular it is shown how a given fuzzy control scheme can resolve into a nonlinear control law and that in those situations the success of fuzzy control hinges on its ability to compensate for nonlinearities in plant dynamics.

  19. Fuzzy Hungarian Method for Solving Intuitionistic Fuzzy Travelling Salesman Problem

    NASA Astrophysics Data System (ADS)

    Prabakaran, K.; Ganesan, K.

    2018-04-01

    The travelling salesman problem is to identify the shortest route that the salesman journey all the places and return the starting place with minimum cost. We develop a fuzzy version of Hungarian algorithm for the solution of intuitionistic fuzzy travelling salesman problem using triangular intuitionistic fuzzy numbers without changing them to classical travelling salesman problem. The purposed method is easy to empathize and to implement for finding solution of intuitionistic travelling salesman problem happening in real life situations. To illustrate the proposed method numerical example are provided.

  20. Self-growing neural network architecture using crisp and fuzzy entropy

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.

    1992-01-01

    The paper briefly describes the self-growing neural network algorithm, CID2, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results of a real-life recognition problem of distinguishing defects in a glass ribbon and of a benchmark problem of differentiating two spirals are shown and discussed.

  1. Self-growing neural network architecture using crisp and fuzzy entropy

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.

    1992-01-01

    The paper briefly describes the self-growing neural network algorithm, CID3, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results for a real-life recognition problem of distinguishing defects in a glass ribbon, and for a benchmark problen of telling two spirals apart are shown and discussed.

  2. a New Multimodal Multi-Criteria Route Planning Model by Integrating a Fuzzy-Ahp Weighting Method and a Simulated Annealing Algorithm

    NASA Astrophysics Data System (ADS)

    Ghaderi, F.; Pahlavani, P.

    2015-12-01

    A multimodal multi-criteria route planning (MMRP) system provides an optimal multimodal route from an origin point to a destination point considering two or more criteria in a way this route can be a combination of public and private transportation modes. In this paper, the simulate annealing (SA) and the fuzzy analytical hierarchy process (fuzzy AHP) were combined in order to find this route. In this regard, firstly, the effective criteria that are significant for users in their trip were determined. Then the weight of each criterion was calculated using the fuzzy AHP weighting method. The most important characteristic of this weighting method is the use of fuzzy numbers that aids the users to consider their uncertainty in pairwise comparison of criteria. After determining the criteria weights, the proposed SA algorithm were used for determining an optimal route from an origin to a destination. One of the most important problems in a meta-heuristic algorithm is trapping in local minima. In this study, five transportation modes, including subway, bus rapid transit (BRT), taxi, walking, and bus were considered for moving between nodes. Also, the fare, the time, the user's bother, and the length of the path were considered as effective criteria for solving the problem. The proposed model was implemented in an area in centre of Tehran in a GUI MATLAB programming language. The results showed a high efficiency and speed of the proposed algorithm that support our analyses.

  3. The Node Deployment of Intelligent Sensor Networks Based on the Spatial Difference of Farmland Soil.

    PubMed

    Liu, Naisen; Cao, Weixing; Zhu, Yan; Zhang, Jingchao; Pang, Fangrong; Ni, Jun

    2015-11-11

    Considering that agricultural production is characterized by vast areas, scattered fields and long crop growth cycles, intelligent wireless sensor networks (WSNs) are suitable for monitoring crop growth information. Cost and coverage are the most key indexes for WSN applications. The differences in crop conditions are influenced by the spatial distribution of soil nutrients. If the nutrients are distributed evenly, the crop conditions are expected to be approximately uniform with little difference; on the contrary, there will be great differences in crop conditions. In accordance with the differences in the spatial distribution of soil information in farmland, fuzzy c-means clustering was applied to divide the farmland into several areas, where the soil fertility of each area is nearly uniform. Then the crop growth information in the area could be monitored with complete coverage by deploying a sensor node there, which could greatly decrease the deployed sensor nodes. Moreover, in order to accurately judge the optimal cluster number of fuzzy c-means clustering, a discriminant function for Normalized Intra-Cluster Coefficient of Variation (NICCV) was established. The sensitivity analysis indicates that NICCV is insensitive to the fuzzy weighting exponent, but it shows a strong sensitivity to the number of clusters.

  4. Indirect adaptive fuzzy wavelet neural network with self- recurrent consequent part for AC servo system.

    PubMed

    Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao

    2017-09-01

    This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.

  5. A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield

    NASA Astrophysics Data System (ADS)

    Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan

    2018-04-01

    In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.

  6. Obtaining ABET Student Outcome Satisfaction from Course Learning Outcome Data Using Fuzzy Logic

    ERIC Educational Resources Information Center

    Imam, Muhammad Hasan; Tasadduq, Imran Ali; Ahmad, Abdul-Rahim; Aldosari, Fahd

    2017-01-01

    One of the approaches for obtaining the satisfaction data for ABET "Student Outcomes" (SOs) is to transform Course Learning Outcomes (CLOs) satisfaction data obtained through assessment of CLOs to SO satisfaction data. Considering the fuzzy nature of metrics of CLOs and SOs, a Fuzzy Logic algorithm has been proposed to extract SO…

  7. The Type-2 Fuzzy Logic Controller-Based Maximum Power Point Tracking Algorithm and the Quadratic Boost Converter for Pv System

    NASA Astrophysics Data System (ADS)

    Altin, Necmi

    2018-05-01

    An interval type-2 fuzzy logic controller-based maximum power point tracking algorithm and direct current-direct current (DC-DC) converter topology are proposed for photovoltaic (PV) systems. The proposed maximum power point tracking algorithm is designed based on an interval type-2 fuzzy logic controller that has an ability to handle uncertainties. The change in PV power and the change in PV voltage are determined as inputs of the proposed controller, while the change in duty cycle is determined as the output of the controller. Seven interval type-2 fuzzy sets are determined and used as membership functions for input and output variables. The quadratic boost converter provides high voltage step-up ability without any reduction in performance and stability of the system. The performance of the proposed system is validated through MATLAB/Simulink simulations. It is seen that the proposed system provides high maximum power point tracking speed and accuracy even for fast changing atmospheric conditions and high voltage step-up requirements.

  8. A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Thammano, Arit; Teekeng, Wannaporn

    2015-05-01

    The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.

  9. Prediction system of hydroponic plant growth and development using algorithm Fuzzy Mamdani method

    NASA Astrophysics Data System (ADS)

    Sudana, I. Made; Purnawirawan, Okta; Arief, Ulfa Mediaty

    2017-03-01

    Hydroponics is a method of farming without soil. One of the Hydroponic plants is Watercress (Nasturtium Officinale). The development and growth process of hydroponic Watercress was influenced by levels of nutrients, acidity and temperature. The independent variables can be used as input variable system to predict the value level of plants growth and development. The prediction system is using Fuzzy Algorithm Mamdani method. This system was built to implement the function of Fuzzy Inference System (Fuzzy Inference System/FIS) as a part of the Fuzzy Logic Toolbox (FLT) by using MATLAB R2007b. FIS is a computing system that works on the principle of fuzzy reasoning which is similar to humans' reasoning. Basically FIS consists of four units which are fuzzification unit, fuzzy logic reasoning unit, base knowledge unit and defuzzification unit. In addition to know the effect of independent variables on the plants growth and development that can be visualized with the function diagram of FIS output surface that is shaped three-dimensional, and statistical tests based on the data from the prediction system using multiple linear regression method, which includes multiple linear regression analysis, T test, F test, the coefficient of determination and donations predictor that are calculated using SPSS (Statistical Product and Service Solutions) software applications.

  10. A fuzzy discrete harmony search algorithm applied to annual cost reduction in radial distribution systems

    NASA Astrophysics Data System (ADS)

    Ameli, Kazem; Alfi, Alireza; Aghaebrahimi, Mohammadreza

    2016-09-01

    Similarly to other optimization algorithms, harmony search (HS) is quite sensitive to the tuning parameters. Several variants of the HS algorithm have been developed to decrease the parameter-dependency character of HS. This article proposes a novel version of the discrete harmony search (DHS) algorithm, namely fuzzy discrete harmony search (FDHS), for optimizing capacitor placement in distribution systems. In the FDHS, a fuzzy system is employed to dynamically adjust two parameter values, i.e. harmony memory considering rate and pitch adjusting rate, with respect to normalized mean fitness of the harmony memory. The key aspect of FDHS is that it needs substantially fewer iterations to reach convergence in comparison with classical discrete harmony search (CDHS). To the authors' knowledge, this is the first application of DHS to specify appropriate capacitor locations and their best amounts in the distribution systems. Simulations are provided for 10-, 34-, 85- and 141-bus distribution systems using CDHS and FDHS. The results show the effectiveness of FDHS over previous related studies.

  11. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    NASA Astrophysics Data System (ADS)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  12. Computational intelligence techniques for biological data mining: An overview

    NASA Astrophysics Data System (ADS)

    Faye, Ibrahima; Iqbal, Muhammad Javed; Said, Abas Md; Samir, Brahim Belhaouari

    2014-10-01

    Computational techniques have been successfully utilized for a highly accurate analysis and modeling of multifaceted and raw biological data gathered from various genome sequencing projects. These techniques are proving much more effective to overcome the limitations of the traditional in-vitro experiments on the constantly increasing sequence data. However, most critical problems that caught the attention of the researchers may include, but not limited to these: accurate structure and function prediction of unknown proteins, protein subcellular localization prediction, finding protein-protein interactions, protein fold recognition, analysis of microarray gene expression data, etc. To solve these problems, various classification and clustering techniques using machine learning have been extensively used in the published literature. These techniques include neural network algorithms, genetic algorithms, fuzzy ARTMAP, K-Means, K-NN, SVM, Rough set classifiers, decision tree and HMM based algorithms. Major difficulties in applying the above algorithms include the limitations found in the previous feature encoding and selection methods while extracting the best features, increasing classification accuracy and decreasing the running time overheads of the learning algorithms. The application of this research would be potentially useful in the drug design and in the diagnosis of some diseases. This paper presents a concise overview of the well-known protein classification techniques.

  13. A hybrid skull-stripping algorithm based on adaptive balloon snake models

    NASA Astrophysics Data System (ADS)

    Liu, Hung-Ting; Sheu, Tony W. H.; Chang, Herng-Hua

    2013-02-01

    Skull-stripping is one of the most important preprocessing steps in neuroimage analysis. We proposed a hybrid algorithm based on an adaptive balloon snake model to handle this challenging task. The proposed framework consists of two stages: first, the fuzzy possibilistic c-means (FPCM) is used for voxel clustering, which provides a labeled image for the snake contour initialization. In the second stage, the contour is initialized outside the brain surface based on the FPCM result and evolves under the guidance of the balloon snake model, which drives the contour with an adaptive inward normal force to capture the boundary of the brain. The similarity indices indicate that our method outperformed the BSE and BET methods in skull-stripping the MR image volumes in the IBSR data set. Experimental results show the effectiveness of this new scheme and potential applications in a wide variety of skull-stripping applications.

  14. Automated segmentation of ventricles from serial brain MRI for the quantification of volumetric changes associated with communicating hydrocephalus in patients with brain tumor

    NASA Astrophysics Data System (ADS)

    Pura, John A.; Hamilton, Allison M.; Vargish, Geoffrey A.; Butman, John A.; Linguraru, Marius George

    2011-03-01

    Accurate ventricle volume estimates could improve the understanding and diagnosis of postoperative communicating hydrocephalus. For this category of patients, associated changes in ventricle volume can be difficult to identify, particularly over short time intervals. We present an automated segmentation algorithm that evaluates ventricle size from serial brain MRI examination. The technique combines serial T1- weighted images to increase SNR and segments the means image to generate a ventricle template. After pre-processing, the segmentation is initiated by a fuzzy c-means clustering algorithm to find the seeds used in a combination of fast marching methods and geodesic active contours. Finally, the ventricle template is propagated onto the serial data via non-linear registration. Serial volume estimates were obtained in an automated robust and accurate manner from difficult data.

  15. Identification of homogeneous regions for regionalization of watersheds by two-level self-organizing feature maps

    NASA Astrophysics Data System (ADS)

    Farsadnia, F.; Rostami Kamrood, M.; Moghaddam Nia, A.; Modarres, R.; Bray, M. T.; Han, D.; Sadatinejad, J.

    2014-02-01

    One of the several methods in estimating flood quantiles in ungauged or data-scarce watersheds is regional frequency analysis. Amongst the approaches to regional frequency analysis, different clustering techniques have been proposed to determine hydrologically homogeneous regions in the literature. Recently, Self-Organization feature Map (SOM), a modern hydroinformatic tool, has been applied in several studies for clustering watersheds. However, further studies are still needed with SOM on the interpretation of SOM output map for identifying hydrologically homogeneous regions. In this study, two-level SOM and three clustering methods (fuzzy c-mean, K-mean, and Ward's Agglomerative hierarchical clustering) are applied in an effort to identify hydrologically homogeneous regions in Mazandaran province watersheds in the north of Iran, and their results are compared with each other. Firstly the SOM is used to form a two-dimensional feature map. Next, the output nodes of the SOM are clustered by using unified distance matrix algorithm and three clustering methods to form regions for flood frequency analysis. The heterogeneity test indicates the four regions achieved by the two-level SOM and Ward approach after adjustments are sufficiently homogeneous. The results suggest that the combination of SOM and Ward is much better than the combination of either SOM and FCM or SOM and K-mean.

  16. Equipment Selection by using Fuzzy TOPSIS Method

    NASA Astrophysics Data System (ADS)

    Yavuz, Mahmut

    2016-10-01

    In this study, Fuzzy TOPSIS method was performed for the selection of open pit truck and the optimal solution of the problem was investigated. Data from Turkish Coal Enterprises was used in the application of the method. This paper explains the Fuzzy TOPSIS approaches with group decision-making application in an open pit coal mine in Turkey. An algorithm of the multi-person multi-criteria decision making with fuzzy set approach was applied an equipment selection problem. It was found that Fuzzy TOPSIS with a group decision making is a method that may help decision-makers in solving different decision-making problems in mining.

  17. Development of Solution Algorithm and Sensitivity Analysis for Random Fuzzy Portfolio Selection Model

    NASA Astrophysics Data System (ADS)

    Hasuike, Takashi; Katagiri, Hideki

    2010-10-01

    This paper focuses on the proposition of a portfolio selection problem considering an investor's subjectivity and the sensitivity analysis for the change of subjectivity. Since this proposed problem is formulated as a random fuzzy programming problem due to both randomness and subjectivity presented by fuzzy numbers, it is not well-defined. Therefore, introducing Sharpe ratio which is one of important performance measures of portfolio models, the main problem is transformed into the standard fuzzy programming problem. Furthermore, using the sensitivity analysis for fuzziness, the analytical optimal portfolio with the sensitivity factor is obtained.

  18. Character recognition using a neural network model with fuzzy representation

    NASA Technical Reports Server (NTRS)

    Tavakoli, Nassrin; Seniw, David

    1992-01-01

    The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.

  19. Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 1

    NASA Technical Reports Server (NTRS)

    Lea, Robert N. (Editor); Villarreal, James (Editor)

    1991-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Houston, Clear Lake. The workshop was held April 11 to 13 at the Johnson Space Flight Center. Technical topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.

  20. Mamdani Fuzzy System for Indoor Autonomous Mobile Robot

    NASA Astrophysics Data System (ADS)

    Khan, M. K. A. Ahamed; Rashid, Razif; Elamvazuthi, I.

    2011-06-01

    Several control algorithms for autonomous mobile robot navigation have been proposed in the literature. Recently, the employment of non-analytical methods of computing such as fuzzy logic, evolutionary computation, and neural networks has demonstrated the utility and potential of these paradigms for intelligent control of mobile robot navigation. In this paper, Mamdani fuzzy system for an autonomous mobile robot is developed. The paper begins with the discussion on the conventional controller and then followed by the description of fuzzy logic controller in detail.

  1. Fuzzy cluster analysis of high-field functional MRI data.

    PubMed

    Windischberger, Christian; Barth, Markus; Lamm, Claus; Schroeder, Lee; Bauer, Herbert; Gur, Ruben C; Moser, Ewald

    2003-11-01

    Functional magnetic resonance imaging (fMRI) based on blood-oxygen level dependent (BOLD) contrast today is an established brain research method and quickly gains acceptance for complementary clinical diagnosis. However, neither the basic mechanisms like coupling between neuronal activation and haemodynamic response are known exactly, nor can the various artifacts be predicted or controlled. Thus, modeling functional signal changes is non-trivial and exploratory data analysis (EDA) may be rather useful. In particular, identification and separation of artifacts as well as quantification of expected, i.e. stimulus correlated, and novel information on brain activity is important for both, new insights in neuroscience and future developments in functional MRI of the human brain. After an introduction on fuzzy clustering and very high-field fMRI we present several examples where fuzzy cluster analysis (FCA) of fMRI time series helps to identify and locally separate various artifacts. We also present and discuss applications and limitations of fuzzy cluster analysis in very high-field functional MRI: differentiate temporal patterns in MRI using (a) a test object with static and dynamic parts, (b) artifacts due to gross head motion artifacts. Using a synthetic fMRI data set we quantitatively examine the influences of relevant FCA parameters on clustering results in terms of receiver-operator characteristics (ROC) and compare them with a commonly used model-based correlation analysis (CA) approach. The application of FCA in analyzing in vivo fMRI data is shown for (a) a motor paradigm, (b) data from multi-echo imaging, and (c) a fMRI study using mental rotation of three-dimensional cubes. We found that differentiation of true "neural" from false "vascular" activation is possible based on echo time dependence and specific activation levels, as well as based on their signal time-course. Exploratory data analysis methods in general and fuzzy cluster analysis in particular may help to identify artifacts and add novel and unexpected information valuable for interpretation, classification and characterization of functional MRI data which can be used to design new data acquisition schemes, stimulus presentations, neuro(physio)logical paradigms, as well as to improve quantitative biophysical models.

  2. GPU-based relative fuzzy connectedness image segmentation.

    PubMed

    Zhuge, Ying; Ciesielski, Krzysztof C; Udupa, Jayaram K; Miller, Robert W

    2013-01-01

    Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. The most common FC segmentations, optimizing an [script-l](∞)-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.

  3. GPU-based relative fuzzy connectedness image segmentation

    PubMed Central

    Zhuge, Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W.

    2013-01-01

    Purpose: Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an ℓ∞-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology. PMID:23298094

  4. A fuzzy controller with nonlinear control rules is the sum of a global nonlinear controller and a local nonlinear PI-like controller

    NASA Technical Reports Server (NTRS)

    Ying, Hao

    1993-01-01

    The fuzzy controllers studied in this paper are the ones that employ N trapezoidal-shaped members for input fuzzy sets, Zadeh fuzzy logic and a centroid defuzzification algorithm for output fuzzy set. The author analytically proves that the structure of the fuzzy controllers is the sum of a global nonlinear controller and a local nonlinear proportional-integral-like controller. If N approaches infinity, the global controller becomes a nonlinear controller while the local controller disappears. If linear control rules are used, the global controller becomes a global two-dimensional multilevel relay which approaches a global linear proportional-integral (PI) controller as N approaches infinity.

  5. Desired Accuracy Estimation of Noise Function from ECG Signal by Fuzzy Approach

    PubMed Central

    Vahabi, Zahra; Kermani, Saeed

    2012-01-01

    Unknown noise and artifacts present in medical signals with non-linear fuzzy filter will be estimated and then removed. An adaptive neuro-fuzzy interference system which has a non-linear structure presented for the noise function prediction by before Samples. This paper is about a neuro-fuzzy method to estimate unknown noise of Electrocardiogram signal. Adaptive neural combined with Fuzzy System to construct a fuzzy Predictor. For this system setting parameters such as the number of Membership Functions for each input and output, training epochs, type of MFs for each input and output, learning algorithm and etc. is determined by learning data. At the end simulated experimental results are presented for proper validation. PMID:23717810

  6. Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis.

    PubMed

    Li, Ke; Ping, Xueliang; Wang, Huaqing; Chen, Peng; Cao, Yi

    2013-06-21

    A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well.

  7. Sequential Fuzzy Diagnosis Method for Motor Roller Bearing in Variable Operating Conditions Based on Vibration Analysis

    PubMed Central

    Li, Ke; Ping, Xueliang; Wang, Huaqing; Chen, Peng; Cao, Yi

    2013-01-01

    A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well. PMID:23793021

  8. Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Akhavan, P.; Karimi, M.; Pahlavani, P.

    2014-10-01

    Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL) created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.

  9. A novel stock forecasting model based on High-order-fuzzy-fluctuation Trends and Back Propagation Neural Network

    PubMed Central

    Dai, Zongli; Zhao, Aiwu; He, Jie

    2018-01-01

    In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method. PMID:29420584

  10. A novel stock forecasting model based on High-order-fuzzy-fluctuation Trends and Back Propagation Neural Network.

    PubMed

    Guan, Hongjun; Dai, Zongli; Zhao, Aiwu; He, Jie

    2018-01-01

    In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method.

  11. Fuzzy logic in autonomous orbital operations

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.

  12. [Amplicon density-weighted algorithms for analyzing dissimilarity and dynamic alterations of RAPD polymorphisms of Cordyceps sinensis].

    PubMed

    Yao, Yi-sang; Gao, Ling; Li, Yu-ling; Ma, Shao-li; Wu, Zi-mei; Tan, Ning-zhi; Wu, Jian-yong; Ni, Lu-qun; Zhu, Jia-shi

    2014-08-18

    To examine the dynamic maturational alterations of random amplified polymorphic DNA (RAPD) molecular marker polymorphism resulted from differential expressions of multiple fungi in the caterpillar body, stroma and ascocarp portion of Cordyceps sinensis (Cs). Used the fuzzy, integral RAPD molecular marker polymorphism method with 20 random primers; used density-weighted cluster algorithms and ZUNIX similarity equations; compared RAPD polymorphisms of the caterpillar body, stroma and ascocarp of Cs during maturation; and compared RAPD polymorphisms of Cs and Hirsutella sinensis (Hs). Density-unweighted algorithms neglected the differences in density of the DNA amplicons. Use of the density-weighted ZUNIX similarity equations and the clustering method integrated components of the amplicon density differences in similarity computations and clustering construction and prevented from the loss of the information of fungal genomes. An overall similarity 0.42 (< the overall dissimilarity 0.58) was observed for all compartments of Cs at different maturation stages. The similarities for the stromata or caterpillar bodies of Cs at 3 maturational stages were 0.57 or 0.50, respectively. During Cs maturation, there were dynamic Low→High→Low alterations of the RAPD polymorphisms between stromata and caterpillar bodies dissected from the same pieces of Cs. The polymorphic similarity was the highest (0.87) between the ascocarp and mature stroma, forming a clustering clade, while the premature stroma and caterpillar body formed another clade. These 2 clades merged into one cluster. Another clade containing the maturing stroma and caterpillar body merged with mature caterpillar body, forming another cluster. The RAPD polymorphic similarities between Hs and Cs samples were 0.55-0.69. Hs were separated from Cs clusters by the out-group control Paecilomyces militaris. The wealthy RAPD polymorphisms change dynamically in the Cs compartments with maturation. The different RAPD polymorphism for Hs from those for Cs supports the hypothesis of integrated micro-ecosystem Cs with multiple fungi, but does not support the "single fungal species" hypothesis for Cs and the anamorph-teleomorph connection between Hs and Cs.

  13. An algorithm of Saxena-Easo on fuzzy time series forecasting

    NASA Astrophysics Data System (ADS)

    Ramadhani, L. C.; Anggraeni, D.; Kamsyakawuni, A.; Hadi, A. F.

    2018-04-01

    This paper presents a forecast model of Saxena-Easo fuzzy time series prediction to study the prediction of Indonesia inflation rate in 1970-2016. We use MATLAB software to compute this method. The algorithm of Saxena-Easo fuzzy time series doesn’t need stationarity like conventional forecasting method, capable of dealing with the value of time series which are linguistic and has the advantage of reducing the calculation, time and simplifying the calculation process. Generally it’s focus on percentage change as the universe discourse, interval partition and defuzzification. The result indicate that between the actual data and the forecast data are close enough with Root Mean Square Error (RMSE) = 1.5289.

  14. Construction project selection with the use of fuzzy preference relation

    NASA Astrophysics Data System (ADS)

    Ibadov, Nabi

    2016-06-01

    In the article, author describes the problem of the construction project variant selection during pre-investment phase. As a solution, the algorithm basing on fuzzy preference relation is presented. The article provides an example of the algorithm used for selection of the best variant for construction project. The choice is made basing on criteria such as: net present value (NPV), level of technological difficulty, financing possibilities, and level of organizational difficulty.

  15. Novel Straight and Circular Road Driving Control of Electric Power Assisted Wheelchair Based on Fuzzy Algorithm

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Tadakuma, Susumu

    This paper describes a novel straight and circular road driving control scheme for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel driving control scheme based on fuzzy algorithm to realize the stable and reliable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity of the wheelchair and the human input torque proportion of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  16. Operationality Improvement Control of Electric Power Assisted Wheelchair by Fuzzy Algorithm Considering Posture Angle

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu

    This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  17. Genetic algorithms in adaptive fuzzy control

    NASA Technical Reports Server (NTRS)

    Karr, C. Lucas; Harper, Tony R.

    1992-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.

  18. Design of double fuzzy clustering-driven context neural networks.

    PubMed

    Kim, Eun-Hu; Oh, Sung-Kwun; Pedrycz, Witold

    2018-08-01

    In this study, we introduce a novel category of double fuzzy clustering-driven context neural networks (DFCCNNs). The study is focused on the development of advanced design methodologies for redesigning the structure of conventional fuzzy clustering-based neural networks. The conventional fuzzy clustering-based neural networks typically focus on dividing the input space into several local spaces (implied by clusters). In contrast, the proposed DFCCNNs take into account two distinct local spaces called context and cluster spaces, respectively. Cluster space refers to the local space positioned in the input space whereas context space concerns a local space formed in the output space. Through partitioning the output space into several local spaces, each context space is used as the desired (target) local output to construct local models. To complete this, the proposed network includes a new context layer for reasoning about context space in the output space. In this sense, Fuzzy C-Means (FCM) clustering is useful to form local spaces in both input and output spaces. The first one is used in order to form clusters and train weights positioned between the input and hidden layer, whereas the other one is applied to the output space to form context spaces. The key features of the proposed DFCCNNs can be enumerated as follows: (i) the parameters between the input layer and hidden layer are built through FCM clustering. The connections (weights) are specified as constant terms being in fact the centers of the clusters. The membership functions (represented through the partition matrix) produced by the FCM are used as activation functions located at the hidden layer of the "conventional" neural networks. (ii) Following the hidden layer, a context layer is formed to approximate the context space of the output variable and each node in context layer means individual local model. The outputs of the context layer are specified as a combination of both weights formed as linear function and the outputs of the hidden layer. The weights are updated using the least square estimation (LSE)-based method. (iii) At the output layer, the outputs of context layer are decoded to produce the corresponding numeric output. At this time, the weighted average is used and the weights are also adjusted with the use of the LSE scheme. From the viewpoint of performance improvement, the proposed design methodologies are discussed and experimented with the aid of benchmark machine learning datasets. Through the experiments, it is shown that the generalization abilities of the proposed DFCCNNs are better than those of the conventional FCNNs reported in the literature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis.

    PubMed

    El-Sappagh, Shaker; Elmogy, Mohammed; Riad, A M

    2015-11-01

    Case-based reasoning (CBR) is a problem-solving paradigm that uses past knowledge to interpret or solve new problems. It is suitable for experience-based and theory-less problems. Building a semantically intelligent CBR that mimic the expert thinking can solve many problems especially medical ones. Knowledge-intensive CBR using formal ontologies is an evolvement of this paradigm. Ontologies can be used for case representation and storage, and it can be used as a background knowledge. Using standard medical ontologies, such as SNOMED CT, enhances the interoperability and integration with the health care systems. Moreover, utilizing vague or imprecise knowledge further improves the CBR semantic effectiveness. This paper proposes a fuzzy ontology-based CBR framework. It proposes a fuzzy case-base OWL2 ontology, and a fuzzy semantic retrieval algorithm that handles many feature types. This framework is implemented and tested on the diabetes diagnosis problem. The fuzzy ontology is populated with 60 real diabetic cases. The effectiveness of the proposed approach is illustrated with a set of experiments and case studies. The resulting system can answer complex medical queries related to semantic understanding of medical concepts and handling of vague terms. The resulting fuzzy case-base ontology has 63 concepts, 54 (fuzzy) object properties, 138 (fuzzy) datatype properties, 105 fuzzy datatypes, and 2640 instances. The system achieves an accuracy of 97.67%. We compare our framework with existing CBR systems and a set of five machine-learning classifiers; our system outperforms all of these systems. Building an integrated CBR system can improve its performance. Representing CBR knowledge using the fuzzy ontology and building a case retrieval algorithm that treats different features differently improves the accuracy of the resulting systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Use of an Electronic Tongue System and Fuzzy Logic to Analyze Water Samples

    NASA Astrophysics Data System (ADS)

    Braga, Guilherme S.; Paterno, Leonardo G.; Fonseca, Fernando J.

    2009-05-01

    An electronic tongue (ET) system incorporating 8 chemical sensors was used in combination with two pattern recognition tools, namely principal component analysis (PCA) and Fuzzy logic for discriminating/classification of water samples from different sources (tap, distilled and three brands of mineral water). The Fuzzy program exhibited a higher accuracy than the PCA and allowed the ET to classify correctly 4 in 5 types of water. Exception was made for one brand of mineral water which was sometimes misclassified as tap water. On the other hand, the PCA grouped water samples in three clusters, one with the distilled water; a second with tap water and one brand of mineral water, and the third with the other two other brands of mineral water. Samples in the second and third clusters could not be distinguished. Nevertheless, close grouping between repeated tests indicated that the ET system response is reproducible. The potential use of the Fuzzy logic as the data processing tool in combination with an electronic tongue system is discussed.

  1. North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 1

    NASA Technical Reports Server (NTRS)

    Villarreal, James A. (Compiler)

    1992-01-01

    This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such as neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies.

  2. North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 2

    NASA Technical Reports Server (NTRS)

    Villarreal, James A. (Compiler)

    1992-01-01

    This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such a neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies.

  3. Segmentation of pomegranate MR images using spatial fuzzy c-means (SFCM) algorithm

    NASA Astrophysics Data System (ADS)

    Moradi, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.

    2011-10-01

    Segmentation is one of the fundamental issues of image processing and machine vision. It plays a prominent role in a variety of image processing applications. In this paper, one of the most important applications of image processing in MRI segmentation of pomegranate is explored. Pomegranate is a fruit with pharmacological properties such as being anti-viral and anti-cancer. Having a high quality product in hand would be critical factor in its marketing. The internal quality of the product is comprehensively important in the sorting process. The determination of qualitative features cannot be manually made. Therefore, the segmentation of the internal structures of the fruit needs to be performed as accurately as possible in presence of noise. Fuzzy c-means (FCM) algorithm is noise-sensitive and pixels with noise are classified inversely. As a solution, in this paper, the spatial FCM algorithm in pomegranate MR images' segmentation is proposed. The algorithm is performed with setting the spatial neighborhood information in FCM and modification of fuzzy membership function for each class. The segmentation algorithm results on the original and the corrupted Pomegranate MR images by Gaussian, Salt Pepper and Speckle noises show that the SFCM algorithm operates much more significantly than FCM algorithm. Also, after diverse steps of qualitative and quantitative analysis, we have concluded that the SFCM algorithm with 5×5 window size is better than the other windows.

  4. Fuzzy probabilistic design of water distribution networks

    NASA Astrophysics Data System (ADS)

    Fu, Guangtao; Kapelan, Zoran

    2011-05-01

    The primary aim of this paper is to present a fuzzy probabilistic approach for optimal design and rehabilitation of water distribution systems, combining aleatoric and epistemic uncertainties in a unified framework. The randomness and imprecision in future water consumption are characterized using fuzzy random variables whose realizations are not real but fuzzy numbers, and the nodal head requirements are represented by fuzzy sets, reflecting the imprecision in customers' requirements. The optimal design problem is formulated as a two-objective optimization problem, with minimization of total design cost and maximization of system performance as objectives. The system performance is measured by the fuzzy random reliability, defined as the probability that the fuzzy head requirements are satisfied across all network nodes. The satisfactory degree is represented by necessity measure or belief measure in the sense of the Dempster-Shafer theory of evidence. An efficient algorithm is proposed, within a Monte Carlo procedure, to calculate the fuzzy random system reliability and is effectively combined with the nondominated sorting genetic algorithm II (NSGAII) to derive the Pareto optimal design solutions. The newly proposed methodology is demonstrated with two case studies: the New York tunnels network and Hanoi network. The results from both cases indicate that the new methodology can effectively accommodate and handle various aleatoric and epistemic uncertainty sources arising from the design process and can provide optimal design solutions that are not only cost-effective but also have higher reliability to cope with severe future uncertainties.

  5. Fuzzy Integral-Based Gaze Control of a Robotic Head for Human Robot Interaction.

    PubMed

    Yoo, Bum-Soo; Kim, Jong-Hwan

    2015-09-01

    During the last few decades, as a part of effort to enhance natural human robot interaction (HRI), considerable research has been carried out to develop human-like gaze control. However, most studies did not consider hardware implementation, real-time processing, and the real environment, factors that should be taken into account to achieve natural HRI. This paper proposes a fuzzy integral-based gaze control algorithm, operating in real-time and the real environment, for a robotic head. We formulate the gaze control as a multicriteria decision making problem and devise seven human gaze-inspired criteria. Partial evaluations of all candidate gaze directions are carried out with respect to the seven criteria defined from perceived visual, auditory, and internal inputs, and fuzzy measures are assigned to a power set of the criteria to reflect the user defined preference. A fuzzy integral of the partial evaluations with respect to the fuzzy measures is employed to make global evaluations of all candidate gaze directions. The global evaluation values are adjusted by applying inhibition of return and are compared with the global evaluation values of the previous gaze directions to decide the final gaze direction. The effectiveness of the proposed algorithm is demonstrated with a robotic head, developed in the Robot Intelligence Technology Laboratory at Korea Advanced Institute of Science and Technology, through three interaction scenarios and three comparison scenarios with another algorithm.

  6. Detection of Anomalies in Hydrometric Data Using Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Lauzon, N.; Lence, B. J.

    2002-12-01

    This work focuses on the detection of anomalies in hydrometric data sequences, such as 1) outliers, which are individual data having statistical properties that differ from those of the overall population; 2) shifts, which are sudden changes over time in the statistical properties of the historical records of data; and 3) trends, which are systematic changes over time in the statistical properties. For the purpose of the design and management of water resources systems, it is important to be aware of these anomalies in hydrometric data, for they can induce a bias in the estimation of water quantity and quality parameters. These anomalies may be viewed as specific patterns affecting the data, and therefore pattern recognition techniques can be used for identifying them. However, the number of possible patterns is very large for each type of anomaly and consequently large computing capacities are required to account for all possibilities using the standard statistical techniques, such as cluster analysis. Artificial intelligence techniques, such as the Kohonen neural network and fuzzy c-means, are clustering techniques commonly used for pattern recognition in several areas of engineering and have recently begun to be used for the analysis of natural systems. They require much less computing capacity than the standard statistical techniques, and therefore are well suited for the identification of outliers, shifts and trends in hydrometric data. This work constitutes a preliminary study, using synthetic data representing hydrometric data that can be found in Canada. The analysis of the results obtained shows that the Kohonen neural network and fuzzy c-means are reasonably successful in identifying anomalies. This work also addresses the problem of uncertainties inherent to the calibration procedures that fit the clusters to the possible patterns for both the Kohonen neural network and fuzzy c-means. Indeed, for the same database, different sets of clusters can be established with these calibration procedures. A simple method for analyzing uncertainties associated with the Kohonen neural network and fuzzy c-means is developed here. The method combines the results from several sets of clusters, either from the Kohonen neural network or fuzzy c-means, so as to provide an overall diagnosis as to the identification of outliers, shifts and trends. The results indicate an improvement in the performance for identifying anomalies when the method of combining cluster sets is used, compared with when only one cluster set is used.

  7. A fuzzy-match search engine for physician directories.

    PubMed

    Rastegar-Mojarad, Majid; Kadolph, Christopher; Ye, Zhan; Wall, Daniel; Murali, Narayana; Lin, Simon

    2014-11-04

    A search engine to find physicians' information is a basic but crucial function of a health care provider's website. Inefficient search engines, which return no results or incorrect results, can lead to patient frustration and potential customer loss. A search engine that can handle misspellings and spelling variations of names is needed, as the United States (US) has culturally, racially, and ethnically diverse names. The Marshfield Clinic website provides a search engine for users to search for physicians' names. The current search engine provides an auto-completion function, but it requires an exact match. We observed that 26% of all searches yielded no results. The goal was to design a fuzzy-match algorithm to aid users in finding physicians easier and faster. Instead of an exact match search, we used a fuzzy algorithm to find similar matches for searched terms. In the algorithm, we solved three types of search engine failures: "Typographic", "Phonetic spelling variation", and "Nickname". To solve these mismatches, we used a customized Levenshtein distance calculation that incorporated Soundex coding and a lookup table of nicknames derived from US census data. Using the "Challenge Data Set of Marshfield Physician Names," we evaluated the accuracy of fuzzy-match engine-top ten (90%) and compared it with exact match (0%), Soundex (24%), Levenshtein distance (59%), and fuzzy-match engine-top one (71%). We designed, created a reference implementation, and evaluated a fuzzy-match search engine for physician directories. The open-source code is available at the codeplex website and a reference implementation is available for demonstration at the datamarsh website.

  8. The Node Deployment of Intelligent Sensor Networks Based on the Spatial Difference of Farmland Soil

    PubMed Central

    Liu, Naisen; Cao, Weixing; Zhu, Yan; Zhang, Jingchao; Pang, Fangrong; Ni, Jun

    2015-01-01

    Considering that agricultural production is characterized by vast areas, scattered fields and long crop growth cycles, intelligent wireless sensor networks (WSNs) are suitable for monitoring crop growth information. Cost and coverage are the most key indexes for WSN applications. The differences in crop conditions are influenced by the spatial distribution of soil nutrients. If the nutrients are distributed evenly, the crop conditions are expected to be approximately uniform with little difference; on the contrary, there will be great differences in crop conditions. In accordance with the differences in the spatial distribution of soil information in farmland, fuzzy c-means clustering was applied to divide the farmland into several areas, where the soil fertility of each area is nearly uniform. Then the crop growth information in the area could be monitored with complete coverage by deploying a sensor node there, which could greatly decrease the deployed sensor nodes. Moreover, in order to accurately judge the optimal cluster number of fuzzy c-means clustering, a discriminant function for Normalized Intra-Cluster Coefficient of Variation (NICCV) was established. The sensitivity analysis indicates that NICCV is insensitive to the fuzzy weighting exponent, but it shows a strong sensitivity to the number of clusters. PMID:26569243

  9. A fuzzy classifier system for process control

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Phillips, J. C.

    1994-01-01

    A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.

  10. Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design

    PubMed Central

    Mata, Edson; Bandeira, Silvio; de Mattos Neto, Paulo; Lopes, Waslon; Madeiro, Francisco

    2016-01-01

    The performance of signal processing systems based on vector quantization depends on codebook design. In the image compression scenario, the quality of the reconstructed images depends on the codebooks used. In this paper, alternatives are proposed for accelerating families of fuzzy K-means algorithms for codebook design. The acceleration is obtained by reducing the number of iterations of the algorithms and applying efficient nearest neighbor search techniques. Simulation results concerning image vector quantization have shown that the acceleration obtained so far does not decrease the quality of the reconstructed images. Codebook design time savings up to about 40% are obtained by the accelerated versions with respect to the original versions of the algorithms. PMID:27886061

  11. Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design.

    PubMed

    Mata, Edson; Bandeira, Silvio; de Mattos Neto, Paulo; Lopes, Waslon; Madeiro, Francisco

    2016-11-23

    The performance of signal processing systems based on vector quantization depends on codebook design. In the image compression scenario, the quality of the reconstructed images depends on the codebooks used. In this paper, alternatives are proposed for accelerating families of fuzzy K-means algorithms for codebook design. The acceleration is obtained by reducing the number of iterations of the algorithms and applying efficient nearest neighbor search techniques. Simulation results concerning image vector quantization have shown that the acceleration obtained so far does not decrease the quality of the reconstructed images. Codebook design time savings up to about 40% are obtained by the accelerated versions with respect to the original versions of the algorithms.

  12. Application of fuzzy c-means clustering to PRTR chemicals uncovering their release and toxicity characteristics.

    PubMed

    Xue, Mianqiang; Zhou, Liang; Kojima, Naoya; Dos Muchangos, Leticia Sarmento; Machimura, Takashi; Tokai, Akihiro

    2018-05-01

    Increasing manufacture and usage of chemicals have not been matched by the increase in our understanding of their risks. Pollutant release and transfer register (PRTR) is becoming a popular measure for collecting chemical data and enhancing the public right to know. However, these data are usually in high dimensionality which restricts their wider use. The present study partitions Japanese PRTR chemicals into five fuzzy clusters by fuzzy c-mean clustering (FCM) to explore the implicit information. Each chemical with membership degrees belongs to each cluster. Cluster I features high releases from non-listed industries and the household sector and high environmental toxicity. Cluster II is characterized by high reported releases and transfers from 24 listed industries above the threshold, mutagenicity, and high environmental toxicity. Chemicals in cluster III have characteristics of high releases from non-listed industries and low toxicity. Cluster IV is characterized by high reported releases and transfers from 24 listed industries above the threshold and extremely high environmental toxicity. Cluster V is characterized by low releases yet mutagenicity and high carcinogenicity. Chemicals with the highest membership degree were identified as representatives for each cluster. For the highest membership degree, half of the chemicals have a value higher than 0.74. If we look at both the highest and the second highest membership degrees simultaneously, about 94% of the chemicals have a value higher than 0.5. FCM can serve as an approach to uncover the implicit information of highly complex chemical dataset, which subsequently supports the strategy development for efficient and effective chemical management. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination.

    PubMed

    Lin, Chin-Teng; Pal, Nikhil R; Wu, Shang-Lin; Liu, Yu-Ting; Lin, Yang-Yin

    2015-07-01

    We propose an integrated mechanism for discarding derogatory features and extraction of fuzzy rules based on an interval type-2 neural fuzzy system (NFS)-in fact, it is a more general scheme that can discard bad features, irrelevant antecedent clauses, and even irrelevant rules. High-dimensional input variable and a large number of rules not only enhance the computational complexity of NFSs but also reduce their interpretability. Therefore, a mechanism for simultaneous extraction of fuzzy rules and reducing the impact of (or eliminating) the inferior features is necessary. The proposed approach, namely an interval type-2 Neural Fuzzy System for online System Identification and Feature Elimination (IT2NFS-SIFE), uses type-2 fuzzy sets to model uncertainties associated with information and data in designing the knowledge base. The consequent part of the IT2NFS-SIFE is of Takagi-Sugeno-Kang type with interval weights. The IT2NFS-SIFE possesses a self-evolving property that can automatically generate fuzzy rules. The poor features can be discarded through the concept of a membership modulator. The antecedent and modulator weights are learned using a gradient descent algorithm. The consequent part weights are tuned via the rule-ordered Kalman filter algorithm to enhance learning effectiveness. Simulation results show that IT2NFS-SIFE not only simplifies the system architecture by eliminating derogatory/irrelevant antecedent clauses, rules, and features but also maintains excellent performance.

  14. Reinforcement interval type-2 fuzzy controller design by online rule generation and q-value-aided ant colony optimization.

    PubMed

    Juang, Chia-Feng; Hsu, Chia-Hung

    2009-12-01

    This paper proposes a new reinforcement-learning method using online rule generation and Q-value-aided ant colony optimization (ORGQACO) for fuzzy controller design. The fuzzy controller is based on an interval type-2 fuzzy system (IT2FS). The antecedent part in the designed IT2FS uses interval type-2 fuzzy sets to improve controller robustness to noise. There are initially no fuzzy rules in the IT2FS. The ORGQACO concurrently designs both the structure and parameters of an IT2FS. We propose an online interval type-2 rule generation method for the evolution of system structure and flexible partitioning of the input space. Consequent part parameters in an IT2FS are designed using Q -values and the reinforcement local-global ant colony optimization algorithm. This algorithm selects the consequent part from a set of candidate actions according to ant pheromone trails and Q-values, both of which are updated using reinforcement signals. The ORGQACO design method is applied to the following three control problems: 1) truck-backing control; 2) magnetic-levitation control; and 3) chaotic-system control. The ORGQACO is compared with other reinforcement-learning methods to verify its efficiency and effectiveness. Comparisons with type-1 fuzzy systems verify the noise robustness property of using an IT2FS.

  15. Development of a solar-powered electric bicycle in bike sharing transportation system

    NASA Astrophysics Data System (ADS)

    Adhisuwignjo, S.; Siradjuddin, I.; Rifa'i, M.; Putri, R. I.

    2017-06-01

    The increasing mobility has directly led to deteriorating traffic conditions, extra fuel consumption, increasing automobile exhaust emissions, air pollution and lowering quality of life. Apart from being clean, cheap and equitable mode of transport for short-distance journeys, cycling can potentially offer solutions to the problem of urban mobility. Many cities have tried promoting cycling particularly through the implementation of bike-sharing. Apparently the fourth generation bikesharing system has been promoted utilizing electric bicycles which considered as a clean technology implementation. Utilization of solar power is probably the development keys in the fourth generation bikesharing system and will become the standard in bikesharing system in the future. Electric bikes use batteries as a source of energy, thus they require a battery charger system which powered from the solar cells energy. This research aims to design and implement electric bicycle battery charging system with solar energy sources using fuzzy logic algorithm. It is necessary to develop an electric bicycle battery charging system with solar energy sources using fuzzy logic algorithm. The study was conducted by means of experimental method which includes the design, manufacture and testing controller systems. The designed fuzzy algorithm have been planted in EEPROM microcontroller ATmega8535. The charging current was set at 1.2 Amperes and the full charged battery voltage was observed to be 40 Volts. The results showed a fuzzy logic controller was able to maintain the charging current of 1.2 Ampere with an error rate of less than 5% around the set point. The process of charging electric bike lead acid batteries from empty to fully charged was 5 hours. In conclusion, the development of solar-powered electric bicycle controlled using fuzzy logic controller can keep the battery charging current in solar-powered electric bicycle to remain stable. This shows that the fuzzy algorithm can be used as a controller in the process of charging for a solar electric bicycle.

  16. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology

    PubMed Central

    Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang

    2016-01-01

    Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease. PMID:27977767

  17. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.

    PubMed

    Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang

    2016-01-01

    Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease.

  18. Clustering for unsupervised fault diagnosis in nuclear turbine shut-down transients

    NASA Astrophysics Data System (ADS)

    Baraldi, Piero; Di Maio, Francesco; Rigamonti, Marco; Zio, Enrico; Seraoui, Redouane

    2015-06-01

    Empirical methods for fault diagnosis usually entail a process of supervised training based on a set of examples of signal evolutions "labeled" with the corresponding, known classes of fault. However, in practice, the signals collected during plant operation may be, very often, "unlabeled", i.e., the information on the corresponding type of occurred fault is not available. To cope with this practical situation, in this paper we develop a methodology for the identification of transient signals showing similar characteristics, under the conjecture that operational/faulty transient conditions of the same type lead to similar behavior in the measured signals evolution. The methodology is founded on a feature extraction procedure, which feeds a spectral clustering technique, embedding the unsupervised fuzzy C-means (FCM) algorithm, which evaluates the functional similarity among the different operational/faulty transients. A procedure for validating the plausibility of the obtained clusters is also propounded based on physical considerations. The methodology is applied to a real industrial case, on the basis of 148 shut-down transients of a Nuclear Power Plant (NPP) steam turbine.

  19. Analysis of Bioactive Amino Acids from Fish Hydrolysates with a New Bioinformatic Intelligent System Approach.

    PubMed

    Elaziz, Mohamed Abd; Hemdan, Ahmed Monem; Hassanien, AboulElla; Oliva, Diego; Xiong, Shengwu

    2017-09-07

    The current economics of the fish protein industry demand rapid, accurate and expressive prediction algorithms at every step of protein production especially with the challenge of global climate change. This help to predict and analyze functional and nutritional quality then consequently control food allergies in hyper allergic patients. As, it is quite expensive and time-consuming to know these concentrations by the lab experimental tests, especially to conduct large-scale projects. Therefore, this paper introduced a new intelligent algorithm using adaptive neuro-fuzzy inference system based on whale optimization algorithm. This algorithm is used to predict the concentration levels of bioactive amino acids in fish protein hydrolysates at different times during the year. The whale optimization algorithm is used to determine the optimal parameters in adaptive neuro-fuzzy inference system. The results of proposed algorithm are compared with others and it is indicated the higher performance of the proposed algorithm.

  20. Fuzzy automata and pattern matching

    NASA Technical Reports Server (NTRS)

    Setzer, C. B.; Warsi, N. A.

    1986-01-01

    A wide-ranging search for articles and books concerned with fuzzy automata and syntactic pattern recognition is presented. A number of survey articles on image processing and feature detection were included. Hough's algorithm is presented to illustrate the way in which knowledge about an image can be used to interpret the details of the image. It was found that in hand generated pictures, the algorithm worked well on following the straight lines, but had great difficulty turning corners. An algorithm was developed which produces a minimal finite automaton recognizing a given finite set of strings. One difficulty of the construction is that, in some cases, this minimal automaton is not unique for a given set of strings and a given maximum length. This algorithm compares favorably with other inference algorithms. More importantly, the algorithm produces an automaton with a rigorously described relationship to the original set of strings that does not depend on the algorithm itself.

  1. Cluster Differences Scaling with a Within-Clusters Loss Component and a Fuzzy Successive Approximation Strategy To Avoid Local Minima.

    ERIC Educational Resources Information Center

    Heiser, Willem J.; And Others

    1997-01-01

    The least squares loss function of cluster differences scaling, originally defined only on residuals of pairs allocated to different clusters, is extended with a loss component for pairs allocated to the same cluster. Findings show that this makes the method equivalent to multidimensional scaling with cluster constraints on the coordinates. (SLD)

  2. Fuzzy logic and A* algorithm implementation on goat foraging games

    NASA Astrophysics Data System (ADS)

    Harsani, P.; Mulyana, I.; Zakaria, D.

    2018-03-01

    Goat foraging is one of the games that apply the search techniques within the scope of artificial intelligence. This game involves several actors including players and enemies. The method used in this research is fuzzy logic and Algorithm A*. Fuzzy logic is used to determine enemy behaviour. The A* algorithm is used to search for the shortest path. There are two input variables: the distance between the player and the enemy and the anger level of the goat. The output variable that has been defined is the enemy behaviour. The A* algorithm is used to determine the closest path between the player and the enemy and define the enemy's escape path to avoid the player. There are 4 types of enemies namely farmers, planters, farmers and sellers of plants. Players are goats that aims to find a meal that is a plant. In this game goats aim to spend grass in the garden in the form of a maze while avoiding the enemy. The game provides an application of artificial intelligence and is made in four difficulty levels.

  3. Intelligent Traffic Quantification System

    NASA Astrophysics Data System (ADS)

    Mohanty, Anita; Bhanja, Urmila; Mahapatra, Sudipta

    2017-08-01

    Currently, city traffic monitoring and controlling is a big issue in almost all cities worldwide. Vehicular ad-hoc Network (VANET) technique is an efficient tool to minimize this problem. Usually, different types of on board sensors are installed in vehicles to generate messages characterized by different vehicle parameters. In this work, an intelligent system based on fuzzy clustering technique is developed to reduce the number of individual messages by extracting important features from the messages of a vehicle. Therefore, the proposed fuzzy clustering technique reduces the traffic load of the network. The technique also reduces congestion and quantifies congestion.

  4. Estimation of power lithium-ion battery SOC based on fuzzy optimal decision

    NASA Astrophysics Data System (ADS)

    He, Dongmei; Hou, Enguang; Qiao, Xin; Liu, Guangmin

    2018-06-01

    In order to improve vehicle performance and safety, need to accurately estimate the power lithium battery state of charge (SOC), analyzing the common SOC estimation methods, according to the characteristics open circuit voltage and Kalman filter algorithm, using T - S fuzzy model, established a lithium battery SOC estimation method based on the fuzzy optimal decision. Simulation results show that the battery model accuracy can be improved.

  5. Fuzzy multiobjective models for optimal operation of a hydropower system

    NASA Astrophysics Data System (ADS)

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  6. Simulation Research Framework with Embedded Intelligent Algorithms for Analysis of Multi-Target, Multi-Sensor, High-Cluttered Environments

    NASA Astrophysics Data System (ADS)

    Hanlon, Nicholas P.

    The National Air Space (NAS) can be easily described as a complex aviation system-of-systems that seamlessly works in harmony to provide safe transit for all aircraft within its domain. The number of aircraft within the NAS is growing and according the FAA, "[o]n any given day, more than 85,000 flights are in the skies in the United States...This translates into roughly 5,000 planes in the skies above the United States at any given moment. More than 15,000 federal air traffic controllers in airport traffic control towers, terminal radar approach control facilities and air route traffic control centers guide pilots through the system". The FAA is currently rolling out the Next Generation Air Transportation System (NextGen) to handle projected growth while leveraging satellite-based navigation for improved tracking. A key component to instantiating NextGen lies in the equipage of Automatic Dependent Surveillance-Broadcast (ADS-B), a performance based surveillance technology that uses GPS navigation for more precise positioning than radars providing increased situational awareness to air traffic controllers. Furthermore, the FAA is integrating UAS into the NAS, further congesting the airways and information load on air traffic controllers. The expected increase in aircraft density due to NextGen implementation and UAS integration will require innovative algorithms to cope with the increase data flow and to support air traffic controllers in their decision-making. This research presents a few innovative algorithms to support increased aircraft density and UAS integration into the NAS. First, it is imperative that individual tracks are correlated prior to fusing to ensure a proper picture of the environment is correct. However, current approaches do not scale well as the number of targets and sensors are increased. This work presents a fuzzy clustering design to hierarchically break the problem down into smaller subspaces prior to correlation. This approach provides nearly identical performance metrics at orders of magnitude faster in execution. Second, a fuzzy inference system is presented that alleviates air traffic controllers from information overload by utilizing flight plan data and radar/GPS correlation values to highlight aircraft that deviate from their intended routes. Third, a genetic algorithm optimizes sensor placement that is robust and capable of handling unexpected routes in the environment. Fourth, a fuzzy CUSUM algorithm more accurately detects and corrects aircraft mode changes. Finally, all the work is packaged in a holistic simulation research framework that provides evaluation and analysis of various multi-sensor, multi-target scenarios.

  7. Feature extraction using molecular planes for fuzzy relational clustering of a flexible dopamine reuptake inhibitor.

    PubMed

    Banerjee, Amit; Misra, Milind; Pai, Deepa; Shih, Liang-Yu; Woodley, Rohan; Lu, Xiang-Jun; Srinivasan, A R; Olson, Wilma K; Davé, Rajesh N; Venanzi, Carol A

    2007-01-01

    Six rigid-body parameters (Shift, Slide, Rise, Tilt, Roll, Twist) are commonly used to describe the relative displacement and orientation of successive base pairs in a nucleic acid structure. The present work adapts this approach to describe the relative displacement and orientation of any two planes in an arbitrary molecule-specifically, planes which contain important pharmacophore elements. Relevant code from the 3DNA software package (Nucleic Acids Res. 2003, 31, 5108-5121) was generalized to treat molecular fragments other than DNA bases as input for the calculation of the corresponding rigid-body (or "planes") parameters. These parameters were used to construct feature vectors for a fuzzy relational clustering study of over 700 conformations of a flexible analogue of the dopamine reuptake inhibitor, GBR 12909. Several cluster validity measures were used to determine the optimal number of clusters. Translational (Shift, Slide, Rise) rather than rotational (Tilt, Roll, Twist) features dominate clustering based on planes that are relatively far apart, whereas both types of features are important to clustering when the pair of planes are close by. This approach was able to classify the data set of molecular conformations into groups and to identify representative conformers for use as template conformers in future Comparative Molecular Field Analysis studies of GBR 12909 analogues. The advantage of using the planes parameters, rather than the combination of atomic coordinates and angles between molecular planes used in our previous fuzzy relational clustering of the same data set (J. Chem. Inf. Model. 2005, 45, 610-623), is that the present clustering results are independent of molecular superposition and the technique is able to identify clusters in the molecule considered as a whole. This approach is easily generalizable to any two planes in any molecule.

  8. Intelligent Predictor of Energy Expenditure with the Use of Patch-Type Sensor Module

    PubMed Central

    Li, Meina; Kwak, Keun-Chang; Kim, Youn-Tae

    2012-01-01

    This paper is concerned with an intelligent predictor of energy expenditure (EE) using a developed patch-type sensor module for wireless monitoring of heart rate (HR) and movement index (MI). For this purpose, an intelligent predictor is designed by an advanced linguistic model (LM) with interval prediction based on fuzzy granulation that can be realized by context-based fuzzy c-means (CFCM) clustering. The system components consist of a sensor board, the rubber case, and the communication module with built-in analysis algorithm. This sensor is patched onto the user's chest to obtain physiological data in indoor and outdoor environments. The prediction performance was demonstrated by root mean square error (RMSE). The prediction performance was obtained as the number of contexts and clusters increased from 2 to 6, respectively. Thirty participants were recruited from Chosun University to take part in this study. The data sets were recorded during normal walking, brisk walking, slow running, and jogging in an outdoor environment and treadmill running in an indoor environment, respectively. We randomly divided the data set into training (60%) and test data set (40%) in the normalized space during 10 iterations. The training data set is used for model construction, while the test set is used for model validation. The experimental results revealed that the prediction error on treadmill running simulation was improved by about 51% and 12% in comparison to conventional LM for training and checking data set, respectively. PMID:23202166

  9. Computer aided detection of tumor and edema in brain FLAIR magnetic resonance image using ANN

    NASA Astrophysics Data System (ADS)

    Pradhan, Nandita; Sinha, A. K.

    2008-03-01

    This paper presents an efficient region based segmentation technique for detecting pathological tissues (Tumor & Edema) of brain using fluid attenuated inversion recovery (FLAIR) magnetic resonance (MR) images. This work segments FLAIR brain images for normal and pathological tissues based on statistical features and wavelet transform coefficients using k-means algorithm. The image is divided into small blocks of 4×4 pixels. The k-means algorithm is used to cluster the image based on the feature vectors of blocks forming different classes representing different regions in the whole image. With the knowledge of the feature vectors of different segmented regions, supervised technique is used to train Artificial Neural Network using fuzzy back propagation algorithm (FBPA). Segmentation for detecting healthy tissues and tumors has been reported by several researchers by using conventional MRI sequences like T1, T2 and PD weighted sequences. This work successfully presents segmentation of healthy and pathological tissues (both Tumors and Edema) using FLAIR images. At the end pseudo coloring of segmented and classified regions are done for better human visualization.

  10. Multiobject relative fuzzy connectedness and its implications in image segmentation

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Saha, Punam K.

    2001-07-01

    The notion of fuzzy connectedness captures the idea of hanging-togetherness of image elements in an object by assigning a strength of connectedness to every possible path between every possible pair of image elements. This concept leads to powerful image segmentation algorithms based on dynamic programming whose effectiveness has been demonstrated on 1000s of images in a variety of applications. In a previous framework, we introduced the notion of relative fuzzy connectedness for separating a foreground object from a background object. In this framework, an image element c is considered to belong to that among these two objects with respect to whose reference image element c has the higher strength of connectedness. In fuzzy connectedness, a local fuzzy reflation called affinity is used on the image domain. This relation was required for theoretical reasons to be of fixed form in the previous framework. In the present paper, we generalize relative connectedness to multiple objects, allowing all objects (of importance) to compete among themselves to grab membership of image elements based on their relative strength of connectedness to reference elements. We also allow affinity to be tailored to the individual objects. We present a theoretical and algorithmic framework and demonstrate that the objects defined are independent of the reference elements chosen as long as they are not in the fuzzy boundary between objects. Examples from medical imaging are presented to illustrate visually the effectiveness of multiple object relative fuzzy connectedness. A quantitative evaluation based on 160 mathematical phantom images demonstrates objectively the effectiveness of relative fuzzy connectedness with object- tailored affinity relation.

  11. Efficient fuzzy Bayesian inference algorithms for incorporating expert knowledge in parameter estimation

    NASA Astrophysics Data System (ADS)

    Rajabi, Mohammad Mahdi; Ataie-Ashtiani, Behzad

    2016-05-01

    Bayesian inference has traditionally been conceived as the proper framework for the formal incorporation of expert knowledge in parameter estimation of groundwater models. However, conventional Bayesian inference is incapable of taking into account the imprecision essentially embedded in expert provided information. In order to solve this problem, a number of extensions to conventional Bayesian inference have been introduced in recent years. One of these extensions is 'fuzzy Bayesian inference' which is the result of integrating fuzzy techniques into Bayesian statistics. Fuzzy Bayesian inference has a number of desirable features which makes it an attractive approach for incorporating expert knowledge in the parameter estimation process of groundwater models: (1) it is well adapted to the nature of expert provided information, (2) it allows to distinguishably model both uncertainty and imprecision, and (3) it presents a framework for fusing expert provided information regarding the various inputs of the Bayesian inference algorithm. However an important obstacle in employing fuzzy Bayesian inference in groundwater numerical modeling applications is the computational burden, as the required number of numerical model simulations often becomes extremely exhaustive and often computationally infeasible. In this paper, a novel approach of accelerating the fuzzy Bayesian inference algorithm is proposed which is based on using approximate posterior distributions derived from surrogate modeling, as a screening tool in the computations. The proposed approach is first applied to a synthetic test case of seawater intrusion (SWI) in a coastal aquifer. It is shown that for this synthetic test case, the proposed approach decreases the number of required numerical simulations by an order of magnitude. Then the proposed approach is applied to a real-world test case involving three-dimensional numerical modeling of SWI in Kish Island, located in the Persian Gulf. An expert elicitation methodology is developed and applied to the real-world test case in order to provide a road map for the use of fuzzy Bayesian inference in groundwater modeling applications.

  12. Adding dynamic rules to self-organizing fuzzy systems

    NASA Technical Reports Server (NTRS)

    Buhusi, Catalin V.

    1992-01-01

    This paper develops a Dynamic Self-Organizing Fuzzy System (DSOFS) capable of adding, removing, and/or adapting the fuzzy rules and the fuzzy reference sets. The DSOFS background consists of a self-organizing neural structure with neuron relocation features which will develop a map of the input-output behavior. The relocation algorithm extends the topological ordering concept. Fuzzy rules (neurons) are dynamically added or released while the neural structure learns the pattern. The DSOFS advantages are the automatic synthesis and the possibility of parallel implementation. A high adaptation speed and a reduced number of neurons is needed in order to keep errors under some limits. The computer simulation results are presented in a nonlinear systems modelling application.

  13. Optimization with Fuzzy Data via Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Kosiński, Witold

    2010-09-01

    Order fuzzy numbers (OFN) that make possible to deal with fuzzy inputs quantitatively, exactly in the same way as with real numbers, have been recently defined by the author and his 2 coworkers. The set of OFN forms a normed space and is a partially ordered ring. The case when the numbers are presented in the form of step functions, with finite resolution, simplifies all operations and the representation of defuzzification functionals. A general optimization problem with fuzzy data is formulated. Its fitness function attains fuzzy values. Since the adjoint space to the space of OFN is finite dimensional, a convex combination of all linear defuzzification functionals may be used to introduce a total order and a real-valued fitness function. Genetic operations on individuals representing fuzzy data are defined.

  14. Regionalization by fuzzy expert system based approach optimized by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Chavoshi, Sattar; Azmin Sulaiman, Wan Nor; Saghafian, Bahram; Bin Sulaiman, Md. Nasir; Manaf, Latifah Abd

    2013-04-01

    SummaryIn recent years soft computing methods are being increasingly used to model complex hydrologic processes. These methods can simulate the real life processes without prior knowledge of the exact relationship between their components. The principal aim of this paper is perform hydrological regionalization based on soft computing concepts in the southern strip of the Caspian Sea basin, north of Iran. The basin with an area of 42,400 sq. km has been affected by severe floods in recent years that caused damages to human life and properties. Although some 61 hydrometric stations and 31 weather stations with 44 years of observed data (1961-2005) are operated in the study area, previous flood studies in this region have been hampered by insufficient and/or reliable observed rainfall-runoff records. In order to investigate the homogeneity (h) of catchments and overcome incompatibility that may occur on boundaries of cluster groups, a fuzzy expert system (FES) approach is used which incorporates physical and climatic characteristics, as well as flood seasonality and geographic location. Genetic algorithm (GA) was employed to adjust parameters of FES and optimize the system. In order to achieve the objective, a MATLAB programming code was developed which considers the heterogeneity criteria of less than 1 (H < 1) as the satisfying criteria. The adopted approach was found superior to the conventional hydrologic regionalization methods in the region because it employs greater number of homogeneity parameters and produces lower values of heterogeneity criteria.

  15. Fuzzy Inference Based Obstacle Avoidance Control of Electric Powered Wheelchair Considering Driving Risk

    NASA Astrophysics Data System (ADS)

    Kiso, Atsushi; Murakami, Hiroki; Seki, Hirokazu

    This paper describes a novel obstacle avoidance control scheme of electric powered wheelchairs for realizing the safe driving in various environments. The “electric powered wheelchair” which generates the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people; however, the driving performance must be further improved because the number of driving accidents caused by elderly operator's narrow sight and joystick operation errors is increasing. This paper proposes a novel obstacle avoidance control scheme based on fuzzy algorithm to prevent driving accidents. The proposed control system determines the driving direction by fuzzy algorithm based on the information of the joystick operation and distance to obstacles measured by ultrasonic sensors. Fuzzy rules to determine the driving direction are designed surely to avoid passers-by and walls considering the human's intent and driving environments. Some driving experiments on the practical situations show the effectiveness of the proposed control system.

  16. Fuzzy bilevel programming with multiple non-cooperative followers: model, algorithm and application

    NASA Astrophysics Data System (ADS)

    Ke, Hua; Huang, Hu; Ralescu, Dan A.; Wang, Lei

    2016-04-01

    In centralized decision problems, it is not complicated for decision-makers to make modelling technique selections under uncertainty. When a decentralized decision problem is considered, however, choosing appropriate models is no longer easy due to the difficulty in estimating the other decision-makers' inconclusive decision criteria. These decision criteria may vary with different decision-makers because of their special risk tolerances and management requirements. Considering the general differences among the decision-makers in decentralized systems, we propose a general framework of fuzzy bilevel programming including hybrid models (integrated with different modelling methods in different levels). Specially, we discuss two of these models which may have wide applications in many fields. Furthermore, we apply the proposed two models to formulate a pricing decision problem in a decentralized supply chain with fuzzy coefficients. In order to solve these models, a hybrid intelligent algorithm integrating fuzzy simulation, neural network and particle swarm optimization based on penalty function approach is designed. Some suggestions on the applications of these models are also presented.

  17. Performance Analysis of Cluster Formation in Wireless Sensor Networks.

    PubMed

    Montiel, Edgar Romo; Rivero-Angeles, Mario E; Rubino, Gerardo; Molina-Lozano, Heron; Menchaca-Mendez, Rolando; Menchaca-Mendez, Ricardo

    2017-12-13

    Clustered-based wireless sensor networks have been extensively used in the literature in order to achieve considerable energy consumption reductions. However, two aspects of such systems have been largely overlooked. Namely, the transmission probability used during the cluster formation phase and the way in which cluster heads are selected. Both of these issues have an important impact on the performance of the system. For the former, it is common to consider that sensor nodes in a clustered-based Wireless Sensor Network (WSN) use a fixed transmission probability to send control data in order to build the clusters. However, due to the highly variable conditions experienced by these networks, a fixed transmission probability may lead to extra energy consumption. In view of this, three different transmission probability strategies are studied: optimal, fixed and adaptive. In this context, we also investigate cluster head selection schemes, specifically, we consider two intelligent schemes based on the fuzzy C-means and k-medoids algorithms and a random selection with no intelligence. We show that the use of intelligent schemes greatly improves the performance of the system, but their use entails higher complexity and selection delay. The main performance metrics considered in this work are energy consumption, successful transmission probability and cluster formation latency. As an additional feature of this work, we study the effect of errors in the wireless channel and the impact on the performance of the system under the different transmission probability schemes.

  18. Performance Analysis of Cluster Formation in Wireless Sensor Networks

    PubMed Central

    Montiel, Edgar Romo; Rivero-Angeles, Mario E.; Rubino, Gerardo; Molina-Lozano, Heron; Menchaca-Mendez, Rolando; Menchaca-Mendez, Ricardo

    2017-01-01

    Clustered-based wireless sensor networks have been extensively used in the literature in order to achieve considerable energy consumption reductions. However, two aspects of such systems have been largely overlooked. Namely, the transmission probability used during the cluster formation phase and the way in which cluster heads are selected. Both of these issues have an important impact on the performance of the system. For the former, it is common to consider that sensor nodes in a clustered-based Wireless Sensor Network (WSN) use a fixed transmission probability to send control data in order to build the clusters. However, due to the highly variable conditions experienced by these networks, a fixed transmission probability may lead to extra energy consumption. In view of this, three different transmission probability strategies are studied: optimal, fixed and adaptive. In this context, we also investigate cluster head selection schemes, specifically, we consider two intelligent schemes based on the fuzzy C-means and k-medoids algorithms and a random selection with no intelligence. We show that the use of intelligent schemes greatly improves the performance of the system, but their use entails higher complexity and selection delay. The main performance metrics considered in this work are energy consumption, successful transmission probability and cluster formation latency. As an additional feature of this work, we study the effect of errors in the wireless channel and the impact on the performance of the system under the different transmission probability schemes. PMID:29236065

  19. Unified method of knowledge representation in the evolutionary artificial intelligence systems

    NASA Astrophysics Data System (ADS)

    Bykov, Nickolay M.; Bykova, Katherina N.

    2003-03-01

    The evolution of artificial intelligence systems called by complicating of their operation topics and science perfecting has resulted in a diversification of the methods both the algorithms of knowledge representation and usage in these systems. Often by this reason it is very difficult to design the effective methods of knowledge discovering and operation for such systems. In the given activity the authors offer a method of unitized representation of the systems knowledge about objects of an external world by rank transformation of their descriptions, made in the different features spaces: deterministic, probabilistic, fuzzy and other. The proof of a sufficiency of the information about the rank configuration of the object states in the features space for decision making is presented. It is shown that the geometrical and combinatorial model of the rank configurations set introduce their by group of some system of incidence, that allows to store the information on them in a convolute kind. The method of the rank configuration description by the DRP - code (distance rank preserving code) is offered. The problems of its completeness, information capacity, noise immunity and privacy are reviewed. It is shown, that the capacity of a transmission channel for such submission of the information is more than unit, as the code words contain the information both about the object states, and about the distance ranks between them. The effective algorithm of the data clustering for the object states identification, founded on the given code usage, is described. The knowledge representation with the help of the rank configurations allows to unitize and to simplify algorithms of the decision making by fulfillment of logic operations above the DRP - code words. Examples of the proposed clustering techniques operation on the given samples set, the rank configuration of resulted clusters and its DRP-codes are presented.

  20. Lyapunov Stability of Fuzzy Discrete Event Systems

    NASA Astrophysics Data System (ADS)

    Liu, Fuchun; Qiu, Daowen

    Fuzzy discrete event systems (FDESs) as a generalization of (crisp) discrete event systems (DESs) may better deal with the problems of fuzziness, impreciseness, and subjectivity. Qiu, Cao and Ying, Liu and Qiu interestingly developed the theory of FDESs. As a continuation of Qiu's work, this paper is to deal with the Lyapunov stability of FDESs, some main results of crisp DESs are generalized. We formalize the notions of the reachability of fuzzy states defined on a metric space. A linear algorithm of computing the r-reachable fuzzy state set is presented. Then we introduce the definitions of stability and asymptotical stability in the sense of Lyapunov to guarantee the convergence of the behaviors of fuzzy automaton to the desired fuzzy states when system engages in some illegal behaviors which can be tolerated. In particular, we present a necessary and sufficient condition for stability and another for asymptotical stability of FDESs.

  1. Co-evolutionary data mining for fuzzy rules: automatic fitness function creation phase space, and experiments

    NASA Astrophysics Data System (ADS)

    Smith, James F., III; Blank, Joseph A.

    2003-03-01

    An approach is being explored that involves embedding a fuzzy logic based resource manager in an electronic game environment. Game agents can function under their own autonomous logic or human control. This approach automates the data mining problem. The game automatically creates a cleansed database reflecting the domain expert's knowledge, it calls a data mining function, a genetic algorithm, for data mining of the data base as required and allows easy evaluation of the information extracted. The co-evolutionary fitness functions, chromosomes and stopping criteria for ending the game are discussed. Genetic algorithm and genetic program based data mining procedures are discussed that automatically discover new fuzzy rules and strategies. The strategy tree concept and its relationship to co-evolutionary data mining are examined as well as the associated phase space representation of fuzzy concepts. The overlap of fuzzy concepts in phase space reduces the effective strategies available to adversaries. Co-evolutionary data mining alters the geometric properties of the overlap region known as the admissible region of phase space significantly enhancing the performance of the resource manager. Procedures for validation of the information data mined are discussed and significant experimental results provided.

  2. Design of an iterative auto-tuning algorithm for a fuzzy PID controller

    NASA Astrophysics Data System (ADS)

    Saeed, Bakhtiar I.; Mehrdadi, B.

    2012-05-01

    Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.

  3. An Image Processing Algorithm Based On FMAT

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Pal, Sankar K.

    1995-01-01

    Information deleted in ways minimizing adverse effects on reconstructed images. New grey-scale generalization of medial axis transformation (MAT), called FMAT (short for Fuzzy MAT) proposed. Formulated by making natural extension to fuzzy-set theory of all definitions and conditions (e.g., characteristic function of disk, subset condition of disk, and redundancy checking) used in defining MAT of crisp set. Does not need image to have any kind of priori segmentation, and allows medial axis (and skeleton) to be fuzzy subset of input image. Resulting FMAT (consisting of maximal fuzzy disks) capable of reconstructing exactly original image.

  4. Fuzzy geometry, entropy, and image information

    NASA Technical Reports Server (NTRS)

    Pal, Sankar K.

    1991-01-01

    Presented here are various uncertainty measures arising from grayness ambiguity and spatial ambiguity in an image, and their possible applications as image information measures. Definitions are given of an image in the light of fuzzy set theory, and of information measures and tools relevant for processing/analysis e.g., fuzzy geometrical properties, correlation, bound functions and entropy measures. Also given is a formulation of algorithms along with management of uncertainties for segmentation and object extraction, and edge detection. The output obtained here is both fuzzy and nonfuzzy. Ambiguity in evaluation and assessment of membership function are also described.

  5. Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 2

    NASA Technical Reports Server (NTRS)

    Culbert, Christopher J. (Editor)

    1993-01-01

    Papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake, held 1-3 Jun. 1992 at the Lyndon B. Johnson Space Center in Houston, Texas are included. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.

  6. A Quantum Hybrid PSO Combined with Fuzzy k-NN Approach to Feature Selection and Cell Classification in Cervical Cancer Detection.

    PubMed

    Iliyasu, Abdullah M; Fatichah, Chastine

    2017-12-19

    A quantum hybrid (QH) intelligent approach that blends the adaptive search capability of the quantum-behaved particle swarm optimisation (QPSO) method with the intuitionistic rationality of traditional fuzzy k -nearest neighbours (Fuzzy k -NN) algorithm (known simply as the Q-Fuzzy approach) is proposed for efficient feature selection and classification of cells in cervical smeared (CS) images. From an initial multitude of 17 features describing the geometry, colour, and texture of the CS images, the QPSO stage of our proposed technique is used to select the best subset features (i.e., global best particles) that represent a pruned down collection of seven features. Using a dataset of almost 1000 images, performance evaluation of our proposed Q-Fuzzy approach assesses the impact of our feature selection on classification accuracy by way of three experimental scenarios that are compared alongside two other approaches: the All-features (i.e., classification without prior feature selection) and another hybrid technique combining the standard PSO algorithm with the Fuzzy k -NN technique (P-Fuzzy approach). In the first and second scenarios, we further divided the assessment criteria in terms of classification accuracy based on the choice of best features and those in terms of the different categories of the cervical cells. In the third scenario, we introduced new QH hybrid techniques, i.e., QPSO combined with other supervised learning methods, and compared the classification accuracy alongside our proposed Q-Fuzzy approach. Furthermore, we employed statistical approaches to establish qualitative agreement with regards to the feature selection in the experimental scenarios 1 and 3. The synergy between the QPSO and Fuzzy k -NN in the proposed Q-Fuzzy approach improves classification accuracy as manifest in the reduction in number cell features, which is crucial for effective cervical cancer detection and diagnosis.

  7. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.

    PubMed

    Jiménez, Fernando; Sánchez, Gracia; Juárez, José M

    2014-03-01

    This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case-based reasoning) obtaining with ENORA a classification rate of 0.9298, specificity of 0.9385, and sensitivity of 0.9364, with 14.2 interpretable fuzzy rules on average. Our proposal improves the accuracy and interpretability of the classifiers, compared with other non-evolutionary techniques. We also conclude that ENORA outperforms niched pre-selection and NSGA-II algorithms. Moreover, given that our multi-objective evolutionary methodology is non-combinational based on real parameter optimization, the time cost is significantly reduced compared with other evolutionary approaches existing in literature based on combinational optimization. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Unsupervised seismic facies analysis with spatial constraints using regularized fuzzy c-means

    NASA Astrophysics Data System (ADS)

    Song, Chengyun; Liu, Zhining; Cai, Hanpeng; Wang, Yaojun; Li, Xingming; Hu, Guangmin

    2017-12-01

    Seismic facies analysis techniques combine classification algorithms and seismic attributes to generate a map that describes main reservoir heterogeneities. However, most of the current classification algorithms only view the seismic attributes as isolated data regardless of their spatial locations, and the resulting map is generally sensitive to noise. In this paper, a regularized fuzzy c-means (RegFCM) algorithm is used for unsupervised seismic facies analysis. Due to the regularized term of the RegFCM algorithm, the data whose adjacent locations belong to same classification will play a more important role in the iterative process than other data. Therefore, this method can reduce the effect of seismic data noise presented in discontinuous regions. The synthetic data with different signal/noise values are used to demonstrate the noise tolerance ability of the RegFCM algorithm. Meanwhile, the fuzzy factor, the neighbour window size and the regularized weight are tested using various values, to provide a reference of how to set these parameters. The new approach is also applied to a real seismic data set from the F3 block of the Netherlands. The results show improved spatial continuity, with clear facies boundaries and channel morphology, which reveals that the method is an effective seismic facies analysis tool.

  9. Towards semi-automatic rock mass discontinuity orientation and set analysis from 3D point clouds

    NASA Astrophysics Data System (ADS)

    Guo, Jiateng; Liu, Shanjun; Zhang, Peina; Wu, Lixin; Zhou, Wenhui; Yu, Yinan

    2017-06-01

    Obtaining accurate information on rock mass discontinuities for deformation analysis and the evaluation of rock mass stability is important. Obtaining measurements for high and steep zones with the traditional compass method is difficult. Photogrammetry, three-dimensional (3D) laser scanning and other remote sensing methods have gradually become mainstream methods. In this study, a method that is based on a 3D point cloud is proposed to semi-automatically extract rock mass structural plane information. The original data are pre-treated prior to segmentation by removing outlier points. The next step is to segment the point cloud into different point subsets. Various parameters, such as the normal, dip/direction and dip, can be calculated for each point subset after obtaining the equation of the best fit plane for the relevant point subset. A cluster analysis (a point subset that satisfies some conditions and thus forms a cluster) is performed based on the normal vectors by introducing the firefly algorithm (FA) and the fuzzy c-means (FCM) algorithm. Finally, clusters that belong to the same discontinuity sets are merged and coloured for visualization purposes. A prototype system is developed based on this method to extract the points of the rock discontinuity from a 3D point cloud. A comparison with existing software shows that this method is feasible. This method can provide a reference for rock mechanics, 3D geological modelling and other related fields.

  10. Underdetermined blind separation of three-way fluorescence spectra of PAHs in water

    NASA Astrophysics Data System (ADS)

    Yang, Ruifang; Zhao, Nanjing; Xiao, Xue; Zhu, Wei; Chen, Yunan; Yin, Gaofang; Liu, Jianguo; Liu, Wenqing

    2018-06-01

    In this work, underdetermined blind decomposition method is developed to recognize individual components from the three-way fluorescent spectra of their mixtures by using sparse component analysis (SCA). The mixing matrix is estimated from the mixtures using fuzzy data clustering algorithm together with the scatters corresponding to local energy maximum value in the time-frequency domain, and the spectra of object components are recovered by pseudo inverse technique. As an example, using this method three and four pure components spectra can be blindly extracted from two samples of their mixture, with similarities between resolved and reference spectra all above 0.80. This work opens a new and effective path to realize monitoring PAHs in water by three-way fluorescence spectroscopy technique.

  11. A method for automatic grain segmentation of multi-angle cross-polarized microscopic images of sandstone

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Gu, Qing; Hao, Huizhen; Li, Na; Wang, Bingqian; Hu, Xiumian

    2018-06-01

    Automatic grain segmentation of sandstone is to partition mineral grains into separate regions in the thin section, which is the first step for computer aided mineral identification and sandstone classification. The sandstone microscopic images contain a large number of mixed mineral grains where differences among adjacent grains, i.e., quartz, feldspar and lithic grains, are usually ambiguous, which make grain segmentation difficult. In this paper, we take advantage of multi-angle cross-polarized microscopic images and propose a method for grain segmentation with high accuracy. The method consists of two stages, in the first stage, we enhance the SLIC (Simple Linear Iterative Clustering) algorithm, named MSLIC, to make use of multi-angle images and segment the images as boundary adherent superpixels. In the second stage, we propose the region merging technique which combines the coarse merging and fine merging algorithms. The coarse merging merges the adjacent superpixels with less evident boundaries, and the fine merging merges the ambiguous superpixels using the spatial enhanced fuzzy clustering. Experiments are designed on 9 sets of multi-angle cross-polarized images taken from the three major types of sandstones. The results demonstrate both the effectiveness and potential of the proposed method, comparing to the available segmentation methods.

  12. Quick fuzzy backpropagation algorithm.

    PubMed

    Nikov, A; Stoeva, S

    2001-03-01

    A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.

  13. Designing Fuzzy Algorithms to Develop Healthy Dietary Pattern

    PubMed Central

    Asghari, Golaleh; Ejtahed, Hanieh-Sadat; Sarsharzadeh, Mohammad Mahdi; Nazeri, Pantea; Mirmiran, Parvin

    2013-01-01

    Background Fuzzy logic, a mathematical approach, defines the percentage of desirability for recommended amount of food groups and describes the range of intakes, from deficiency to excess. Objectives The purpose of this research was to find the best fuzzy dietary pattern that constraints energy and nutrients by the iterative algorithm. Materials and Methods An index is derived that reflects how closely the diet of an individual meets all the nutrient requirements set by the dietary reference intake. Fuzzy pyramid pattern was applied for the energy levels from 1000 to 4000 Kcal which estimated the range of recommended servings for seven food groups including fruits, vegetables, grains, meats, milk, oils, fat and added sugar. Results The optimum (lower attention – upper attention) recommended servings per day for fruits, vegetables, grain, meat, dairy, and oils of the 2000 kcal diet were 4.06 (3.75-4.25), 6.69 (6.25-7.00), 5.69 (5.75-6.25), 4.94 (4.5-5.2), 2.75(2.50-3.00), and 2.56 (2.5-2.75), respectively. The fuzzy pattern met most recommended nutrient intake levels except for potassium and vitamin E, which were estimated at 98% and 69% of the dietary reference intake, respectively. Conclusions Using fuzzy logic provides an elegant mathematical solution for finding the optimum point of food groups in dietary pattern. PMID:24454416

  14. Fuzzy Logic-based Intelligent Scheme for Enhancing QoS of Vertical Handover Decision in Vehicular Ad-hoc Networks

    NASA Astrophysics Data System (ADS)

    Azzali, F.; Ghazali, O.; Omar, M. H.

    2017-08-01

    The design of next generation networks in various technologies under the “Anywhere, Anytime” paradigm offers seamless connectivity across different coverage. A conventional algorithm such as RSSThreshold algorithm, that only uses the received strength signal (RSS) as a metric, will decrease handover performance regarding handover latency, delay, packet loss, and handover failure probability. Moreover, the RSS-based algorithm is only suitable for horizontal handover decision to examine the quality of service (QoS) compared to the vertical handover decision in advanced technologies. In the next generation network, vertical handover can be started based on the user’s convenience or choice rather than connectivity reasons. This study proposes a vertical handover decision algorithm that uses a Fuzzy Logic (FL) algorithm, to increase QoS performance in heterogeneous vehicular ad-hoc networks (VANET). The study uses network simulator 2.29 (NS 2.29) along with the mobility traffic network and generator to implement simulation scenarios and topologies. This helps the simulation to achieve a realistic VANET mobility scenario. The required analysis on the performance of QoS in the vertical handover can thus be conducted. The proposed Fuzzy Logic algorithm shows improvement over the conventional algorithm (RSSThreshold) in the average percentage of handover QoS whereby it achieves 20%, 21% and 13% improvement on handover latency, delay, and packet loss respectively. This is achieved through triggering a process in layer two and three that enhances the handover performance.

  15. A duality approach for solving bounded linear programming problems with fuzzy variables based on ranking functions and its application in bounded transportation problems

    NASA Astrophysics Data System (ADS)

    Ebrahimnejad, Ali

    2015-08-01

    There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.

  16. Comparison of two optimization algorithms for fuzzy finite element model updating for damage detection in a wind turbine blade

    NASA Astrophysics Data System (ADS)

    Turnbull, Heather; Omenzetter, Piotr

    2018-03-01

    vDifficulties associated with current health monitoring and inspection practices combined with harsh, often remote, operational environments of wind turbines highlight the requirement for a non-destructive evaluation system capable of remotely monitoring the current structural state of turbine blades. This research adopted a physics based structural health monitoring methodology through calibration of a finite element model using inverse techniques. A 2.36m blade from a 5kW turbine was used as an experimental specimen, with operational modal analysis techniques utilised to realize the modal properties of the system. Modelling the experimental responses as fuzzy numbers using the sub-level technique, uncertainty in the response parameters was propagated back through the model and into the updating parameters. Initially, experimental responses of the blade were obtained, with a numerical model of the blade created and updated. Deterministic updating was carried out through formulation and minimisation of a deterministic objective function using both firefly algorithm and virus optimisation algorithm. Uncertainty in experimental responses were modelled using triangular membership functions, allowing membership functions of updating parameters (Young's modulus and shear modulus) to be obtained. Firefly algorithm and virus optimisation algorithm were again utilised, however, this time in the solution of fuzzy objective functions. This enabled uncertainty associated with updating parameters to be quantified. Varying damage location and severity was simulated experimentally through addition of small masses to the structure intended to cause a structural alteration. A damaged model was created, modelling four variable magnitude nonstructural masses at predefined points and updated to provide a deterministic damage prediction and information in relation to the parameters uncertainty via fuzzy updating.

  17. A new kernel-based fuzzy level set method for automated segmentation of medical images in the presence of intensity inhomogeneity.

    PubMed

    Rastgarpour, Maryam; Shanbehzadeh, Jamshid

    2014-01-01

    Researchers recently apply an integrative approach to automate medical image segmentation for benefiting available methods and eliminating their disadvantages. Intensity inhomogeneity is a challenging and open problem in this area, which has received less attention by this approach. It has considerable effects on segmentation accuracy. This paper proposes a new kernel-based fuzzy level set algorithm by an integrative approach to deal with this problem. It can directly evolve from the initial level set obtained by Gaussian Kernel-Based Fuzzy C-Means (GKFCM). The controlling parameters of level set evolution are also estimated from the results of GKFCM. Moreover the proposed algorithm is enhanced with locally regularized evolution based on an image model that describes the composition of real-world images, in which intensity inhomogeneity is assumed as a component of an image. Such improvements make level set manipulation easier and lead to more robust segmentation in intensity inhomogeneity. The proposed algorithm has valuable benefits including automation, invariant of intensity inhomogeneity, and high accuracy. Performance evaluation of the proposed algorithm was carried on medical images from different modalities. The results confirm its effectiveness for medical image segmentation.

  18. Tuning fuzzy PD and PI controllers using reinforcement learning.

    PubMed

    Boubertakh, Hamid; Tadjine, Mohamed; Glorennec, Pierre-Yves; Labiod, Salim

    2010-10-01

    In this paper, we propose a new auto-tuning fuzzy PD and PI controllers using reinforcement Q-learning (QL) algorithm for SISO (single-input single-output) and TITO (two-input two-output) systems. We first, investigate the design parameters and settings of a typical class of Fuzzy PD (FPD) and Fuzzy PI (FPI) controllers: zero-order Takagi-Sugeno controllers with equidistant triangular membership functions for inputs, equidistant singleton membership functions for output, Larsen's implication method, and average sum defuzzification method. Secondly, the analytical structures of these typical fuzzy PD and PI controllers are compared to their classical counterpart PD and PI controllers. Finally, the effectiveness of the proposed method is proven through simulation examples. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Advanced Interval Type-2 Fuzzy Sliding Mode Control for Robot Manipulator.

    PubMed

    Hwang, Ji-Hwan; Kang, Young-Chang; Park, Jong-Wook; Kim, Dong W

    2017-01-01

    In this paper, advanced interval type-2 fuzzy sliding mode control (AIT2FSMC) for robot manipulator is proposed. The proposed AIT2FSMC is a combination of interval type-2 fuzzy system and sliding mode control. For resembling a feedback linearization (FL) control law, interval type-2 fuzzy system is designed. For compensating the approximation error between the FL control law and interval type-2 fuzzy system, sliding mode controller is designed, respectively. The tuning algorithms are derived in the sense of Lyapunov stability theorem. Two-link rigid robot manipulator with nonlinearity is used to test and the simulation results are presented to show the effectiveness of the proposed method that can control unknown system well.

  20. Quantification of Hepatorenal Index for Computer-Aided Fatty Liver Classification with Self-Organizing Map and Fuzzy Stretching from Ultrasonography.

    PubMed

    Kim, Kwang Baek; Kim, Chang Won

    2015-01-01

    Accurate measures of liver fat content are essential for investigating hepatic steatosis. For a noninvasive inexpensive ultrasonographic analysis, it is necessary to validate the quantitative assessment of liver fat content so that fully automated reliable computer-aided software can assist medical practitioners without any operator subjectivity. In this study, we attempt to quantify the hepatorenal index difference between the liver and the kidney with respect to the multiple severity status of hepatic steatosis. In order to do this, a series of carefully designed image processing techniques, including fuzzy stretching and edge tracking, are applied to extract regions of interest. Then, an unsupervised neural learning algorithm, the self-organizing map, is designed to establish characteristic clusters from the image, and the distribution of the hepatorenal index values with respect to the different levels of the fatty liver status is experimentally verified to estimate the differences in the distribution of the hepatorenal index. Such findings will be useful in building reliable computer-aided diagnostic software if combined with a good set of other characteristic feature sets and powerful machine learning classifiers in the future.

Top