Science.gov

Sample records for fuzzy controller based

  1. Fuzzy logic based robotic controller

    NASA Technical Reports Server (NTRS)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  2. Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Freeman, L. M.; Meredith, D. L.

    1990-01-01

    The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.

  3. Universal Approximation of Mamdani Fuzzy Controllers and Fuzzy Logical Controllers

    NASA Technical Reports Server (NTRS)

    Yuan, Bo; Klir, George J.

    1997-01-01

    In this paper, we first distinguish two types of fuzzy controllers, Mamdani fuzzy controllers and fuzzy logical controllers. Mamdani fuzzy controllers are based on the idea of interpolation while fuzzy logical controllers are based on fuzzy logic in its narrow sense, i.e., fuzzy propositional logic. The two types of fuzzy controllers treat IF-THEN rules differently. In Mamdani fuzzy controllers, rules are treated disjunctively. In fuzzy logic controllers, rules are treated conjunctively. Finally, we provide a unified proof of the property of universal approximation for both types of fuzzy controllers.

  4. Nonlinear adaptive control based on fuzzy sliding mode technique and fuzzy-based compensator.

    PubMed

    Nguyen, Sy Dzung; Vo, Hoang Duy; Seo, Tae-Il

    2017-09-01

    It is difficult to efficiently control nonlinear systems in the presence of uncertainty and disturbance (UAD). One of the main reasons derives from the negative impact of the unknown features of UAD as well as the response delay of the control system on the accuracy rate in the real time of the control signal. In order to deal with this, we propose a new controller named CO-FSMC for a class of nonlinear control systems subjected to UAD, which is constituted of a fuzzy sliding mode controller (FSMC) and a fuzzy-based compensator (CO). Firstly, the FSMC and CO are designed independently, and then an adaptive fuzzy structure is discovered to combine them. Solutions for avoiding the singular cases of the fuzzy-based function approximation and reducing the calculating cost are proposed. Based on the solutions, fuzzy sliding mode technique, lumped disturbance observer and Lyapunov stability analysis, a closed-loop adaptive control law is formulated. Simulations along with a real application based on a semi-active train-car suspension are performed to fully evaluate the method. The obtained results reflected that vibration of the chassis mass is insensitive to UAD. Compared with the other fuzzy sliding mode control strategies, the CO-FSMC can provide the best control ability to reduce unwanted vibrations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Fuzzy logic-based flight control system design

    NASA Astrophysics Data System (ADS)

    Nho, Kyungmoon

    The application of fuzzy logic to aircraft motion control is studied in this dissertation. The self-tuning fuzzy techniques are developed by changing input scaling factors to obtain a robust fuzzy controller over a wide range of operating conditions and nonlinearities for a nonlinear aircraft model. It is demonstrated that the properly adjusted input scaling factors can meet the required performance and robustness in a fuzzy controller. For a simple demonstration of the easy design and control capability of a fuzzy controller, a proportional-derivative (PD) fuzzy control system is compared to the conventional controller for a simple dynamical system. This thesis also describes the design principles and stability analysis of fuzzy control systems by considering the key features of a fuzzy control system including the fuzzification, rule-base and defuzzification. The wing-rock motion of slender delta wings, a linear aircraft model and the six degree of freedom nonlinear aircraft dynamics are considered to illustrate several self-tuning methods employing change in input scaling factors. Finally, this dissertation is concluded with numerical simulation of glide-slope capture in windshear demonstrating the robustness of the fuzzy logic based flight control system.

  6. Type-2 fuzzy model based controller design for neutralization processes.

    PubMed

    Kumbasar, Tufan; Eksin, Ibrahim; Guzelkaya, Mujde; Yesil, Engin

    2012-03-01

    In this study, an inverse controller based on a type-2 fuzzy model control design strategy is introduced and this main controller is embedded within an internal model control structure. Then, the overall proposed control structure is implemented in a pH neutralization experimental setup. The inverse fuzzy control signal generation is handled as an optimization problem and solved at each sampling time in an online manner. Although, inverse fuzzy model controllers may produce perfect control in perfect model match case and/or non-existence of disturbances, this open loop control would not be sufficient in the case of modeling mismatches or disturbances. Therefore, an internal model control structure is proposed to compensate these errors in order to overcome this deficiency where the basic controller is an inverse type-2 fuzzy model. This feature improves the closed-loop performance to disturbance rejection as shown through the real-time control of the pH neutralization process. Experimental results demonstrate the superiority of the inverse type-2 fuzzy model controller structure compared to the inverse type-1 fuzzy model controller and conventional control structures. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Fuzzy logic controller optimization

    DOEpatents

    Sepe, Jr., Raymond B; Miller, John Michael

    2004-03-23

    A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.

  8. Fuzzy Petri net-based programmable logic controller.

    PubMed

    Andreu, D; Pascal, J C; Valette, R

    1997-01-01

    Programmable logic controllers (PLCs) are able to directly implement control sequences specified by means of standard languages such as Grafcet or formal models such as Petri nets. In the case of simple regulation problems between two steps it could be of great interest to introduce a notion of "fuzzy events" in order to denote a continuous evolution from one state to another. This could result from a linear interpolation between the commands attached to two control steps represented by two Petri net (PN) places. This paper is an attempt to develop fuzzy PN-based PLCs in a similar way as fuzzy controllers (regulators). Our approach is based on a combination of Petri nets with possibility theory (Petri nets with fuzzy markings).

  9. Adaptive hierarchical fuzzy controller

    SciTech Connect

    Raju, G.V.S.; Jun Zhou

    1993-07-01

    A methodology for designing adaptive hierarchical fuzzy controllers is presented. In order to evaluate this concept, several suitable performance indices were developed and converted to linguistic fuzzy variables. Based on those variables, a supervisory fuzzy rule set was constructed and used to change the parameters of a hierarchical fuzzy controller to accommodate the variations of system parameters. The proposed algorithm was used in feedwater flow control to a steam generator. Simulation studies are presented that illustrate the effectiveness of the approach

  10. Fuzzy and neural control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.

  11. Design and performance comparison of fuzzy logic based tracking controllers

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1992-01-01

    Several camera tracking controllers based on fuzzy logic principles have been designed and tested in software simulation in the software technology branch at the Johnson Space Center. The fuzzy logic based controllers utilize range measurement and pixel positions from the image as input parameters and provide pan and tilt gimble rate commands as output. Two designs of the rulebase and tuning process applied to the membership functions are discussed in light of optimizing performance. Seven test cases have been designed to test the performance of the controllers for proximity operations where approaches like v-bar, fly-around and station keeping are performed. The controllers are compared in terms of responsiveness, and ability to maintain the object in the field-of-view of the camera. Advantages of the fuzzy logic approach with respect to the conventional approach have been discussed in terms of simplicity and robustness.

  12. A fuzzy behaviorist approach to sensor-based robot control

    SciTech Connect

    Pin, F.G.

    1996-05-01

    Sensor-based operation of autonomous robots in unstructured and/or outdoor environments has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. An approach. which we have named the {open_quotes}Fuzzy Behaviorist Approach{close_quotes} (FBA) is proposed in an attempt to remedy some of these difficulties. This approach is based on the representation of the system`s uncertainties using Fuzzy Set Theory-based approximations and on the representation of the reasoning and control schemes as sets of elemental behaviors. Using the FBA, a formalism for rule base development and an automated generator of fuzzy rules have been developed. This automated system can automatically construct the set of membership functions corresponding to fuzzy behaviors. Once these have been expressed in qualitative terms by the user. The system also checks for completeness of the rule base and for non-redundancy of the rules (which has traditionally been a major hurdle in rule base development). Two major conceptual features, the suppression and inhibition mechanisms which allow to express a dominance between behaviors are discussed in detail. Some experimental results obtained with the automated fuzzy, rule generator applied to the domain of sensor-based navigation in aprion unknown environments. using one of our autonomous test-bed robots as well as a real car in outdoor environments, are then reviewed and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using the {open_quotes}Fuzzy Behaviorist{close_quotes} concepts.

  13. Sampled-data fuzzy controller for time-delay nonlinear systems: fuzzy-model-based LMI approach.

    PubMed

    Lam, H K; Leung, Frank H F

    2007-06-01

    This paper presents the stability analysis and performance design for a sampled-data fuzzy control system with time delay, which is formed by a nonlinear plant with time delay and a sampled-data fuzzy controller connected in a closed loop. As the sampled-data fuzzy controller can be implemented by a microcontroller or a digital computer, the implementation time and cost can be reduced. However, the sampling activity and time delay, which are potential causes of system instability, will complicate the system dynamics and make the stability analysis much more difficult than that for a pure continuous-time fuzzy control system. In this paper, a sampled-data fuzzy controller with enhanced nonlinearity compensation ability is proposed. Based on the fuzzy-model-based control approach, linear matrix inequality (LMI)-based stability conditions are derived to guarantee the system stability. By using a descriptor representation, the complexity of the sampled-data fuzzy control system with time delay can be reduced to ease the stability analysis, which effectively leads to a smaller number of LMI-stability conditions. Information of the membership functions of both the fuzzy plant model and fuzzy controller are considered, which allows arbitrary matrices to be introduced, to ease the satisfaction of the stability conditions. An application example will be given to show the merits and design procedure of the proposed approach. Furthermore, LMI-based performance conditions are derived to aid the design of a well-performed sampled-data fuzzy controller.

  14. Computer control system based on fuzzy control for boilers

    NASA Astrophysics Data System (ADS)

    Zheng, Dezhong; Shang, Liping; Shi, Jinghao

    2000-10-01

    According tp the features of the combustion process of boiler the optimization of combustion is implemented by using fuzzy control principle. The paper states a control strategy implementing different control regulation in different phases (coarse, fine and precision tuning) for enhancing the thermal efficiency of combustion of boiler. The practice shows that the thermal efficiency increased 2.8%.

  15. A reinforcement learning-based architecture for fuzzy logic control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.

  16. A reinforcement learning-based architecture for fuzzy logic control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.

  17. Robust observer-based adaptive fuzzy sliding mode controller

    NASA Astrophysics Data System (ADS)

    Oveisi, Atta; Nestorović, Tamara

    2016-08-01

    In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.

  18. Intelligent control based on fuzzy logic and neural net theory

    NASA Technical Reports Server (NTRS)

    Lee, Chuen-Chien

    1991-01-01

    In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.

  19. Motion Control of the Soccer Robot Based on Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Coman, Daniela; Ionescu, Adela

    2009-08-01

    Robot soccer is a challenging platform for multi-agent research, involving topics such as real-time image processing and control, robot path planning, obstacle avoidance and machine learning. The conventional robot control consists of methods for path generation and path following. When a robot moves away the estimated path, it must return immediately, and while doing so, the obstacle avoidance behavior and the effectiveness of such a path are not guaranteed. So, motion control is a difficult task, especially in real time and high speed control. This paper describes the use of fuzzy logic control for the low level motion of a soccer robot. Firstly, the modelling of the soccer robot is presented. The soccer robot based on MiroSoT Small Size league is a differential-drive mobile robot with non-slipping and pure-rolling. Then, the design of fuzzy controller is describes. Finally, the computer simulations in MATLAB Simulink show that proposed fuzzy logic controller works well.

  20. Self-learning fuzzy controllers based on temporal back propagation

    NASA Technical Reports Server (NTRS)

    Jang, Jyh-Shing R.

    1992-01-01

    This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.

  1. Fuzzy logic controllers: A knowledge-based system perspective

    NASA Technical Reports Server (NTRS)

    Bonissone, Piero P.

    1993-01-01

    Over the last few years we have seen an increasing number of applications of Fuzzy Logic Controllers. These applications range from the development of auto-focus cameras, to the control of subway trains, cranes, automobile subsystems (automatic transmissions), domestic appliances, and various consumer electronic products. In summary, we consider a Fuzzy Logic Controller to be a high level language with its local semantics, interpreter, and compiler, which enables us to quickly synthesize non-linear controllers for dynamic systems.

  2. Active control of vibration using a fuzzy control method based on scaling universes of discourse

    NASA Astrophysics Data System (ADS)

    Si, Hongwei; Li, Dongxu

    2007-06-01

    Large flexible space structures are complex in structural dynamic characteristics. The control method based on custom control theory and modern control theory is difficult to solve for the complex problem. The fuzzy controller is not dependent on the accurate model. But the precision of a conventional fuzzy controller is not good, and the adaptive ability of a conventional fuzzy controller is limited. The fuzzy controller can make the system surge. Scaling universes of discourse is an effective method to improve the performance of the fuzzy controller. This paper is aimed at the difficult problem of designing a stable adaptive controller based on scaling universes of discourse, and letting input membership function and output membership function be denoted as input universes of discourse and the center value of output membership function, respectively. A kind of Lyapunov function, designed as an adaptive law of input universes of discourse and the center value of output membership function, was then adopted. A kind of stable self-adaptive fuzzy controller based on scaling universes of discourse is designed in this paper for the vibration control of a large flexible space truss driven by piezoelectric sensors and actuators (PZTs).

  3. The cognitive bases for the design of a new class of fuzzy logic controllers: The clearness transformation fuzzy logic controller

    NASA Technical Reports Server (NTRS)

    Sultan, Labib; Janabi, Talib

    1992-01-01

    This paper analyses the internal operation of fuzzy logic controllers as referenced to the human cognitive tasks of control and decision making. Two goals are targeted. The first goal focuses on the cognitive interpretation of the mechanisms employed in the current design of fuzzy logic controllers. This analysis helps to create a ground to explore the potential of enhancing the functional intelligence of fuzzy controllers. The second goal is to outline the features of a new class of fuzzy controllers, the Clearness Transformation Fuzzy Logic Controller (CT-FLC), whereby some new concepts are advanced to qualify fuzzy controllers as 'cognitive devices' rather than 'expert system devices'. The operation of the CT-FLC, as a fuzzy pattern processing controller, is explored, simulated, and evaluated.

  4. Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach.

    PubMed

    Lam, H K

    2012-02-01

    This paper investigates the stability of sampled-data output-feedback (SDOF) polynomial-fuzzy-model-based control systems. Representing the nonlinear plant using a polynomial fuzzy model, an SDOF fuzzy controller is proposed to perform the control process using the system output information. As only the system output is available for feedback compensation, it is more challenging for the controller design and system analysis compared to the full-state-feedback case. Furthermore, because of the sampling activity, the control signal is kept constant by the zero-order hold during the sampling period, which complicates the system dynamics and makes the stability analysis more difficult. In this paper, two cases of SDOF fuzzy controllers, which either share the same number of fuzzy rules or not, are considered. The system stability is investigated based on the Lyapunov stability theory using the sum-of-squares (SOS) approach. SOS-based stability conditions are obtained to guarantee the system stability and synthesize the SDOF fuzzy controller. Simulation examples are given to demonstrate the merits of the proposed SDOF fuzzy control approach.

  5. Fuzzy model-based servo and model following control for nonlinear systems.

    PubMed

    Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O

    2009-12-01

    This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.

  6. Turbine speed control system based on a fuzzy-PID

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Hua; Wang, Wei; Yu, Hai-Yan

    2008-12-01

    The flexibility demand of marine nuclear power plant is very high, the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled, and the normal PID control of the turbine speed can’t meet the control demand. This paper introduces a turbine speed Fuzzy-PID controller to coordinately control the steam pressure and thus realize the demand for quick tracking and steady state control over the turbine speed by using the Fuzzy control’s quick dynamic response and PID control’s steady state performance. The simulation shows the improvement of the response time and steady state performance of the control system.

  7. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    ERIC Educational Resources Information Center

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  8. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    ERIC Educational Resources Information Center

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  9. Neural-network-based fuzzy logic control system with applications on compliant robot control

    NASA Astrophysics Data System (ADS)

    Hor, MawKae; Lu, Hui L.

    1994-10-01

    In view of the success of neural network applications in inverted pendulum control, speech recognition, and other problem solving, we believe that one could inject the noise removing concepts and learning spirits into the algorithm in constructing the neural networks and apply it to the various tasks such as compliant coordinated motion using multiple robots. Based on the fuzzy logic, a fuzzy logical control system is a logical system which is much closer to human thinking than any other logical systems. During recent years, fuzzy logic control has emerged as a fruitful area in applications, especially the applications lacking quantitative data regarding the input-output relations. Whereas, the connectionist model injects the learning ability to the fuzzy logic system. This model, proposed by Lin and Lee, is a connected neural network that embedded the fuzzy rules in the architecture. Since this model is general enough and we expect the embedded fuzzy concepts can solve the problems caused by the defective training data, it is chosen as our base structure. Appropriate modifications have been made to this model to reflect the real situations encountered in the robot applications. Our goal is to control two different types of robots for coordinated motion using sensory feedback information.

  10. PC based speed control of dc motor using fuzzy logic controller

    SciTech Connect

    Mandal, S.K.; Kanphade, R.D.; Lavekar, K.P.

    1998-07-01

    The dc motor is extensively used as constant speed drive in textile mills, paper mills, printing press, etc.. If the load and supply voltage are time varying, the speed will be changed. Since last few decades the conventional PID controllers are used to maintain the constant speed by controlling the duty ratio of Chopper. Generally, four quadrant chopper is used for regenerative braking and reverse motoring operation. Fuzzy Logic is newly introduced in control system. Fuzzy Control is based on Fuzzy Logic, a logical system which is too much closer in spirit to human thinking and natural language. The Fuzzy Logic Controller (FLC) provides a linguistic control strategy based on knowledge base of the system. Firstly, the machine is started very smoothly from zero to reference speed in the proposed scheme by increasing the duty ratio. Then change and rate of change of speed (dN, dN/dt), change and rate of change input voltage (dV, dV/dt) and load current are input to FLC. The new value of duty ratio is determined from the Fuzzy rule base and defuzzification method. The chopper will be 'ON' according to new duty ratio to maintain the constant speed. The dynamic and steady state performance of the proposed system is better than conventional control system. In this paper mathematical simulation and experimental implementation are carried out to investigate the drive performance.

  11. Neural network-based self-organizing fuzzy controller for transient stability of multimachine power systems

    SciTech Connect

    Chang, H.C.; Wang, M.H.

    1995-06-01

    An efficient self-organizing neural fuzzy controller (SONFC) is designed to improve the transient stability of multimachine power systems. First, an artificial neural network (ANN)-based model is introduced for fuzzy logic control. The characteristic rules and their membership functions of fuzzy systems are represented as the processing nodes in the ANN model. With the excellent learning capability inherent in the ANN, the traditional heuristic fuzzy control rules and input-output fuzzy membership functions can be optimally tuned from training examples by the back propagation learning algorithm. Considerable rule-matching times of the inference engine in the traditional fuzzy system can be saved. To illustrate the performance and usefulness of the SONFC, comparative studies with a bang-bang controller are performed on the 34-generator Taipower system with rather encouraging results.

  12. Fuzzy-Logic Based Vibration Suppression Control Experiments on Active Structures

    NASA Astrophysics Data System (ADS)

    Kwak, M. K.; Sciulli, D.

    1996-03-01

    This paper is concerned with the fuzzy-logic based vibration suppression control of active structures equipped with piezoelectric sensors and actuators. The control methodology is based on the fuzzy logic control of the variable structures system type. The sufficient condition for the closed-loop stability of the decentralized fuzzy control for the system equipped with collocated sensors and actuators is derived from the sufficient condition of the decentralized collocated variable system control. Hence, it is concluded that the fuzzy control is in fact the variation of the variable structure system control in this case. Comparison of the variable structure system to the fuzzy control leads to a new fuzzy rule of the vibration suppression of the active structure equipped with collocated sensors and actuators. It is shown that the fuzzy-logic control can be designed for the collocated system without any knowledge of the system to be controlled. However, this may not be true in the case of multi-input and multi-output non-collocated systems. All the developments are demonstrated by means of a real-time fuzzy control experiment on the cantilever beam with surface-bonded piezoceramic sensors and actuators.

  13. Data-glove-based fuzzy control of piezoelectric forceps actuator

    NASA Astrophysics Data System (ADS)

    Susanto, Ken; Yang, Bingen

    2004-07-01

    This paper discusses a novel concept idea of utilizing smart structure in biomedical, minimum invasive surgery (MIS), MEMS manufacturing assembly line and also as a miniature robotic gripper system. The proposed prototype of a miniature piezoelectric forceps actuator (PFA) is composed of two symmetric slightly curved composite beams which each bonded with piezoelectric ceramic layer. The PFA is an innovative forceps actuator that comes with a data glove. The data glove is simply a custom-made glove with two embedded resistance-bending sensors located on thumb and index fingers. Any users can control opening and closing of the PFA by just wearing the data glove. A thin curved beam theory bonded with piezoelectric ceramic will be derived based on Hamilton's principle and its deflection behavior will be simulated based on distributed transfer function method (DTFM). A feasibility study of simulation open loop data glove-based fuzzy logic controller allows the user to open and close the PFA remotely. The bending movement of the thumb and index finger will be formulated in a table of rules based to produce the necessary output controller gain to control the PFA.

  14. Fuzzy PID control algorithm based on PSO and application in BLDC motor

    NASA Astrophysics Data System (ADS)

    Lin, Sen; Wang, Guanglong

    2017-06-01

    A fuzzy PID control algorithm is studied based on improved particle swarm optimization (PSO) to perform Brushless DC (BLDC) motor control which has high accuracy, good anti-jamming capability and steady state accuracy compared with traditional PID control. The mathematical and simulation model is established for BLDC motor by simulink software, and the speed loop of the fuzzy PID controller is designed. The simulation results show that the fuzzy PID control algorithm based on PSO has higher stability, high control precision and faster dynamic response speed.

  15. The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin

    The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.

  16. T-S model based indirect adaptive fuzzy control using online parameter estimation.

    PubMed

    Park, Chang-Woo; Cho, Young-Wan

    2004-12-01

    A parameter estimation scheme with an appropriate adaptive law for updating the parameters is designed and analyzed based on the Lyapunov theory for the general MIMO Takagi-Sugeno (T-S) fuzzy models. The parameters of the Takagi-Sugeno fuzzy models can be estimated by observing the behavior of the system and with the online parameter estimator, any type of fuzzy controllers works adaptively to the parameter perturbation. In order to show the applicability of the proposed estimator, an existing fuzzy state feedback controller is adopted and indirect adaptive fuzzy control design with the proposed estimator is shown. From the numerical simulations and experiments, it is shown that the derived adaptive law works for the estimation model to follows the parameterized plant model and the overall control system has robustness to the parameter perturbation.

  17. Signal frequency based self-tuning fuzzy controller for semi-active suspension system.

    PubMed

    Sun, Tao; Huang, Zhen-Yu; Chen, Da-Yue; Tang, Lei

    2003-01-01

    A new kind of fuzzy control scheme, based on the identification of the signal's main frequency and the behavior of the ER damper, is proposed to control the semi-active suspension system. This method adjusts the fuzzy controller to achieve the best isolation effect by analyzing the main frequency's characters and inspecting the change of system parameters. The input of the fuzzy controller is the main frequency and the optimal damping ratio is the output. Simulation results indicated that the proposed control method is very effective in isolating the vibration.

  18. Switching fuzzy controller design based on switching Lyapunov function for a class of nonlinear systems.

    PubMed

    Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O

    2006-02-01

    This paper presents a switching fuzzy controller design for a class of nonlinear systems. A switching fuzzy model is employed to represent the dynamics of a nonlinear system. In our previous papers, we proposed the switching fuzzy model and a switching Lyapunov function and derived stability conditions for open-loop systems. In this paper, we design a switching fuzzy controller. We firstly show that switching fuzzy controller design conditions based on the switching Lyapunov function are given in terms of bilinear matrix inequalities, which is difficult to design the controller numerically. Then, we propose a new controller design approach utilizing an augmented system. By introducing the augmented system which consists of the switching fuzzy model and a stable linear system, the controller design conditions based on the switching Lyapunov function are given in terms of linear matrix inequalities (LMIs). Therefore, we can effectively design the switching fuzzy controller via LMI-based approach. A design example illustrates the utility of this approach. Moreover, we show that the approach proposed in this paper is available in the research area of piecewise linear control.

  19. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation.

    PubMed

    Omrane, Hajer; Masmoudi, Mohamed Slim; Masmoudi, Mohamed

    This paper describes the design and the implementation of a trajectory tracking controller using fuzzy logic for mobile robot to navigate in indoor environments. Most of the previous works used two independent controllers for navigation and avoiding obstacles. The main contribution of the paper can be summarized in the fact that we use only one fuzzy controller for navigation and obstacle avoidance. The used mobile robot is equipped with DC motor, nine infrared range (IR) sensors to measure the distance to obstacles, and two optical encoders to provide the actual position and speeds. To evaluate the performances of the intelligent navigation algorithms, different trajectories are used and simulated using MATLAB software and SIMIAM navigation platform. Simulation results show the performances of the intelligent navigation algorithms in terms of simulation times and travelled path.

  20. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation

    PubMed Central

    Masmoudi, Mohamed Slim; Masmoudi, Mohamed

    2016-01-01

    This paper describes the design and the implementation of a trajectory tracking controller using fuzzy logic for mobile robot to navigate in indoor environments. Most of the previous works used two independent controllers for navigation and avoiding obstacles. The main contribution of the paper can be summarized in the fact that we use only one fuzzy controller for navigation and obstacle avoidance. The used mobile robot is equipped with DC motor, nine infrared range (IR) sensors to measure the distance to obstacles, and two optical encoders to provide the actual position and speeds. To evaluate the performances of the intelligent navigation algorithms, different trajectories are used and simulated using MATLAB software and SIMIAM navigation platform. Simulation results show the performances of the intelligent navigation algorithms in terms of simulation times and travelled path. PMID:27688748

  1. Fuzzy logic in control systems: Fuzzy logic controller. I, II

    NASA Technical Reports Server (NTRS)

    Lee, Chuen Chien

    1990-01-01

    Recent advances in the theory and applications of fuzzy-logic controllers (FLCs) are examined in an analytical review. The fundamental principles of fuzzy sets and fuzzy logic are recalled; the basic FLC components (fuzzification and defuzzification interfaces, knowledge base, and decision-making logic) are described; and the advantages of FLCs for incorporating expert knowledge into a control system are indicated. Particular attention is given to fuzzy implication functions, the interpretation of sentence connectives (and, also), compositional operators, and inference mechanisms. Applications discussed include the FLC-guided automobile developed by Sugeno and Nishida (1985), FLC hardware systems, FLCs for subway trains and ship-loading cranes, fuzzy-logic chips, and fuzzy computers.

  2. Fault tolerant control based on interval type-2 fuzzy sliding mode controller for coaxial trirotor aircraft.

    PubMed

    Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel

    2015-11-01

    In this paper, a robust controller for a Six Degrees of Freedom (6 DOF) coaxial trirotor helicopter control is proposed in presence of defects in the system. A control strategy based on the coupling of the interval type-2 fuzzy logic control and sliding mode control technique are used to design a controller. The main purpose of this work is to eliminate the chattering phenomenon and guaranteeing the stability and the robustness of the system. In order to achieve this goal, interval type-2 fuzzy logic control has been used to generate the discontinuous control signal. The simulation results have shown that the proposed control strategy can greatly alleviate the chattering effect, and perform good reference tracking in presence of defects in the system.

  3. Fuzzy control system design via fuzzy Lyapunov functions.

    PubMed

    Li, J; Zhou, S; Xu, S

    2008-12-01

    This correspondence deals with the problems of analysis and design for a class of continuous-time Takagi-Sugeno fuzzy control systems. Sufficient conditions for the stability of fuzzy control systems are derived based on a fuzzy Lyapunov function. Both parallel and nonparallel distributed compensation controllers are considered. Sufficient conditions for the solvability of the controller design problem are given in the form of linear matrix inequalities. Unlike the fuzzy Lyapunov function approaches reported in the literature, the bound of the time derivatives of the fuzzy basis functions is not required in the proposed approaches. The effectiveness of the proposed approaches is shown through a numerical example.

  4. Norepinephrine weaning in septic shock patients by closed loop control based on fuzzy logic

    PubMed Central

    Merouani, Mehdi; Guignard, Bruno; Vincent, François; Borron, Stephen W; Karoubi, Philippe; Fosse, Jean-Philippe; Cohen, Yves; Clec'h, Christophe; Vicaut, Eric; Marbeuf-Gueye, Carole; Lapostolle, Frederic; Adnet, Frederic

    2008-01-01

    Introduction The rate of weaning of vasopressors drugs is usually an empirical choice made by the treating in critically ill patients. We applied fuzzy logic principles to modify intravenous norepinephrine (noradrenaline) infusion rates during norepinephrine infusion in septic patients in order to reduce the duration of shock. Methods Septic patients were randomly assigned to norepinephrine infused either at the clinician's discretion (control group) or under closed-loop control based on fuzzy logic (fuzzy group). The infusion rate changed automatically after analysis of mean arterial pressure in the fuzzy group. The primary end-point was time to cessation of norepinephrine. The secondary end-points were 28-day survival, total amount of norepinephine infused and duration of mechanical ventilation. Results Nineteen patients were randomly assigned to fuzzy group and 20 to control group. Weaning of norepinephrine was achieved in 18 of the 20 control patients and in all 19 fuzzy group patients. Median (interquartile range) duration of shock was significantly shorter in the fuzzy group than in the control group (28.5 [20.5 to 42] hours versus 57.5 [43.7 to 117.5] hours; P < 0.0001). There was no significant difference in duration of mechanical ventilation or survival at 28 days between the two groups. The median (interquartile range) total amount of norepinephrine infused during shock was significantly lower in the fuzzy group than in the control group (0.6 [0.2 to 1.0] μg/kg versus 1.4 [0.6 to 2.7] μg/kg; P < 0.01). Conclusions Our study has shown a reduction in norepinephrine weaning duration in septic patients enrolled in the fuzzy group. We attribute this reduction to fuzzy control of norepinephrine infusion. Trial registration Trial registration: Clinicaltrials.gov NCT00763906. PMID:19068113

  5. Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system

    SciTech Connect

    Djukanovic, M.B.; Calovic, M.S.; Vesovic, B.V.; Sobajic, D.J.

    1997-12-01

    This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.

  6. Control of Nonlinear Networked Systems With Packet Dropouts: Interval Type-2 Fuzzy Model-Based Approach.

    PubMed

    Li, Hongyi; Wu, Chengwei; Shi, Peng; Gao, Yabin

    2015-11-01

    In this paper, the problem of fuzzy control for nonlinear networked control systems with packet dropouts and parameter uncertainties is studied based on the interval type-2 fuzzy-model-based approach. In the control design, the intermittent data loss existing in the closed-loop system is taken into account. The parameter uncertainties can be represented and captured effectively via the membership functions described by lower and upper membership functions and relative weighting functions. A novel fuzzy state-feedback controller is designed to guarantee the resulting closed-loop system to be stochastically stable with an optimal performance. Furthermore, to make the controller design more flexible, the designed controller does not need to share membership functions and amount of fuzzy rules with the model. Some simulation results are provided to demonstrate the effectiveness of the proposed results.

  7. Dissipativity-Based Reliable Control for Fuzzy Markov Jump Systems With Actuator Faults.

    PubMed

    Tao, Jie; Lu, Renquan; Shi, Peng; Su, Hongye; Wu, Zheng-Guang

    2017-09-01

    This paper is concerned with the problem of reliable dissipative control for Takagi-Sugeno fuzzy systems with Markov jumping parameters. Considering the influence of actuator faults, a sufficient condition is developed to ensure that the resultant closed-loop system is stochastically stable and strictly ( Q, S,R )-dissipative based on a relaxed approach in which mode-dependent and fuzzy-basis-dependent Lyapunov functions are employed. Then a reliable dissipative control for fuzzy Markov jump systems is designed, with sufficient condition proposed for the existence of guaranteed stability and dissipativity controller. The effectiveness and potential of the obtained design method is verified by two simulation examples.

  8. Nonmonotonic observer-based fuzzy controller designs for discrete time T-S fuzzy systems via LMI.

    PubMed

    Derakhshan, Siavash Fakhimi; Fatehi, Alireza; Sharabiany, Mehrad Ghasem

    2014-12-01

    In this paper, based on the nonmonotonic Lyapunov functions, a new less conservative state feedback controller synthesis method is proposed for a class of discrete time nonlinear systems represented by Takagi-Sugeno (T-S) fuzzy systems. Parallel distributed compensation (PDC) state feedback is employed as the controller structure. Also, a T-S fuzzy observer is designed in a manner similar to state feedback controller design. The observer and the controller can be obtained separately and then combined together to form an output feedback controller by means of the Separation theorem. Both observer and controller are obtained via solving a sequence of linear matrix inequalities. Nonmonotonic Lyapunov method allows the design of controllers for the aforementioned systems where other methods fail. Illustrative examples are presented which show how the proposed method outperforms other methods such as common quadratic, piecewise or non quadratic Lyapunov functions.

  9. Depth Control of Sevofluorane Anesthesia with Microcontroller Based Fuzzy Logic System

    DTIC Science & Technology

    2007-11-02

    sevoflurane in humans”, Anesthesiology, 66:301-303, 1987 [10].YARDIMCI, A., ONURAL A.,”Fuzzy Logic Control of Child Blood Pressure During Anaesthesia...microcontroller-based fuzzy logic control system according to the blood pressure and heart rate taken from the patient. The potential benefits of the... blood pressure and hearth rate. The main reason for automating the control of depth anesthesia is to release the anesthesiologist so that he or

  10. A neural fuzzy controller learning by fuzzy error propagation

    NASA Technical Reports Server (NTRS)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  11. A neural fuzzy controller learning by fuzzy error propagation

    NASA Technical Reports Server (NTRS)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  12. Design and implementation of the tree-based fuzzy logic controller.

    PubMed

    Liu, B D; Huang, C Y

    1997-01-01

    In this paper, a tree-based approach is proposed to design the fuzzy logic controller. Based on the proposed methodology, the fuzzy logic controller has the following merits: the fuzzy control rule can be extracted automatically from the input-output data of the system and the extraction process can be done in one-pass; owing to the fuzzy tree inference structure, the search spaces of the fuzzy inference process are largely reduced; the operation of the inference process can be simplified as a one-dimensional matrix operation because of the fuzzy tree approach; and the controller has regular and modular properties, so it is easy to be implemented by hardware. Furthermore, the proposed fuzzy tree approach has been applied to design the color reproduction system for verifying the proposed methodology. The color reproduction system is mainly used to obtain a color image through the printer that is identical to the original one. In addition to the software simulation, an FPGA is used to implement the prototype hardware system for real-time application. Experimental results show that the effect of color correction is quite good and that the prototype hardware system can operate correctly under the condition of 30 MHz clock rate.

  13. Fuzzy variable impedance control based on stiffness identification for human-robot cooperation

    NASA Astrophysics Data System (ADS)

    Mao, Dachao; Yang, Wenlong; Du, Zhijiang

    2017-06-01

    This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.

  14. Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system

    NASA Astrophysics Data System (ADS)

    Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L.

    2017-02-01

    In this paper the model of a grid connected hybrid system is presented. The hybrid system includes a variable speed wind turbine controlled by aFuzzy MPPT control, and a photovoltaic generator controlled with PSO Fuzzy MPPT control to compensate the power fluctuations caused by the wind in a short and long term, the inverter currents injected to the grid is controlled by a decoupled PI current control. In the first phase, we start by modeling of the conversion system components; the wind system is consisted of a turbine coupled to a gearless permanent magnet generator (PMG), the AC/DC and DC-DC (Boost) converter are responsible to feed the electric energy produced by the PMG to the DC-link. The solar system consists of a photovoltaic generator (GPV) connected to a DC/DC boost converter controlled by a PSO fuzzy MPPT control to extract at any moment the maximum available power at the GPV terminals, the system is based on maximum utilization of both of sources because of their complementary. At the end. The active power reached to the DC-link is injected to the grid through a DC/AC inverter, this function is achieved by controlling the DC bus voltage to keep it constant and close to its reference value, The simulation studies have been performed using Matlab/Simulink. It can be concluded that a good control system performance can be achieved.

  15. Maximum Energy Extraction Control for Wind Power Generation Systems Based on the Fuzzy Controller

    NASA Astrophysics Data System (ADS)

    Kamal, Elkhatib; Aitouche, Abdel; Mohammed, Walaa; Sobaih, Abdel Azim

    2016-10-01

    This paper presents a robust controller for a variable speed wind turbine with a squirrel cage induction generator (SCIG). For variable speed wind energy conversion system, the maximum power point tracking (MPPT) is a very important requirement in order to maximize the efficiency. The system is nonlinear with parametric uncertainty and subject to large disturbances. A Takagi-Sugeno (TS) fuzzy logic is used to model the system dynamics. Based on the TS fuzzy model, a controller is developed for MPPT in the presence of disturbances and parametric uncertainties. The proposed technique ensures that the maximum power point (MPP) is determined, the generator speed is controlled and the closed loop system is stable. Robustness of the controller is tested via the variation of model's parameters. Simulation studies clearly indicate the robustness and efficiency of the proposed control scheme compared to other techniques.

  16. Wastewater neutralization control based on fuzzy logic: Experimental results

    SciTech Connect

    Adroer, M.; Alsina, A.; Aumatell, J.; Poch, M.

    1999-07-01

    Many industrial wastes contain acidic or alkaline materials that require neutralization of previous discharge into receiving waters or to chemical and biological treatment plants. The control of the wastewater neutralization process is subjected to several difficulties, such as the highly nonlinear titration curve (with special sensitivity around neutrality), the unknown water composition, the variable buffering capacity of the system, and the changes in input loading. To deal with these problems, this study proposes a fixed fuzzy logic controller (FLC) structure coupled with a tuning factor. The versatility and robustness of this controller has been proved when faced with solutions of variable buffering capacity, with acids that cover a wide pK range and with switches between acids throughout the course of a test. Laboratory experiments and simulation runs using the proposed controller were successful in a wide operational range.

  17. MATLAB Simulation of UPQC for Power Quality Mitigation Using an Ant Colony Based Fuzzy Control Technique.

    PubMed

    Kumarasabapathy, N; Manoharan, P S

    2015-01-01

    This paper proposes a fuzzy logic based new control scheme for the Unified Power Quality Conditioner (UPQC) for minimizing the voltage sag and total harmonic distortion in the distribution system consequently to improve the power quality. UPQC is a recent power electronic module which guarantees better power quality mitigation as it has both series-active and shunt-active power filters (APFs). The fuzzy logic controller has recently attracted a great deal of attention and possesses conceptually the quality of the simplicity by tackling complex systems with vagueness and ambiguity. In this research, the fuzzy logic controller is utilized for the generation of reference signal controlling the UPQC. To enable this, a systematic approach for creating the fuzzy membership functions is carried out by using an ant colony optimization technique for optimal fuzzy logic control. An exhaustive simulation study using the MATLAB/Simulink is carried out to investigate and demonstrate the performance of the proposed fuzzy logic controller and the simulation results are compared with the PI controller in terms of its performance in improving the power quality by minimizing the voltage sag and total harmonic distortion.

  18. MATLAB Simulation of UPQC for Power Quality Mitigation Using an Ant Colony Based Fuzzy Control Technique

    PubMed Central

    Kumarasabapathy, N.; Manoharan, P. S.

    2015-01-01

    This paper proposes a fuzzy logic based new control scheme for the Unified Power Quality Conditioner (UPQC) for minimizing the voltage sag and total harmonic distortion in the distribution system consequently to improve the power quality. UPQC is a recent power electronic module which guarantees better power quality mitigation as it has both series-active and shunt-active power filters (APFs). The fuzzy logic controller has recently attracted a great deal of attention and possesses conceptually the quality of the simplicity by tackling complex systems with vagueness and ambiguity. In this research, the fuzzy logic controller is utilized for the generation of reference signal controlling the UPQC. To enable this, a systematic approach for creating the fuzzy membership functions is carried out by using an ant colony optimization technique for optimal fuzzy logic control. An exhaustive simulation study using the MATLAB/Simulink is carried out to investigate and demonstrate the performance of the proposed fuzzy logic controller and the simulation results are compared with the PI controller in terms of its performance in improving the power quality by minimizing the voltage sag and total harmonic distortion. PMID:26504895

  19. A fuzzy-based shared controller for brain-actuated simulated robotic system.

    PubMed

    Liu, Rong; Xue, Kuang-Zheng; Wang, Yong-Xuan; Yang, Le

    2011-01-01

    The primary problems of brain-computer interface (BCI) are the low channel capacity and high error rate. Therefore, an assistive motion control method is important for the brain-actuated robot to realize real-time and reliable control. To make the brain-actuated robot respond to the external environments with more flexibility, a shared control method based on fuzzy logic is proposed. Experimental results obtained with ten healthy voluntary subjects show that the proposed fuzzy-based shared controller has improved performance compared with direct control approach.

  20. Design and implementation of fuzzy-PD controller based on relation models: A cross-entropy optimization approach

    NASA Astrophysics Data System (ADS)

    Anisimov, D. N.; Dang, Thai Son; Banerjee, Santo; Mai, The Anh

    2017-07-01

    In this paper, an intelligent system use fuzzy-PD controller based on relation models is developed for a two-wheeled self-balancing robot. Scaling factors of the fuzzy-PD controller are optimized by a Cross-Entropy optimization method. A linear Quadratic Regulator is designed to bring a comparison with the fuzzy-PD controller by control quality parameters. The controllers are ported and run on STM32F4 Discovery Kit based on the real-time operating system. The experimental results indicate that the proposed fuzzy-PD controller runs exactly on embedded system and has desired performance in term of fast response, good balance and stabilize.

  1. Observer-Based Output-Feedback Asynchronous Control for Switched Fuzzy Systems.

    PubMed

    Wang, Tiechao; Tong, Shaocheng

    2017-09-01

    This paper investigates an output-feedback control design problem for a class of switched continuous-time Takagi-Sugeno (T-S) fuzzy systems. The considered fuzzy systems consist of several switching modes and each switching mode is described by T-S fuzzy models. In addition, there exists the asynchronous switching between the system switching modes and the controller switching modes. By using parallel distributed compensation design method, the output-feedback control schemes are developed based on state observers for the measurable and immeasurable premise variables cases. The sufficient conditions of ensuring the switched control system stabilization are proposed based on the theory of Lyapunov stability and average-dwell time methods. The controller and observer gains are obtained via two-step method. An illustrated numerical example is provided to show the effectiveness of the proposed control approaches.

  2. Modelling and Control of the Qball X4 Quadrotor System based on Pid and Fuzzy Logic Structure

    NASA Astrophysics Data System (ADS)

    Bodrumlu, Tolga; Turan Soylemez, Mehmet; Mutlu, Ilhan

    2017-01-01

    This work focuses on a quadrocopter model, which was developed by QuanserTM and named as Qball X4. First, mathematical model of the Qball X4 is obtained. Then, a conventional PID control technique is presented. This PID control parameters come from Qball user manual. After the presentation of conventional PID control, as an extension of the conventional PID control theory, a different fuzzy controller structure is given. The proposed fuzzy controller structure is based on fuzzy logic and its name is PID type fuzzy controller. All of the simulations are done in MATLABTM environment.

  3. Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV.

    PubMed

    Ali, Zain Anwar; Wang, Daobo; Aamir, Muhammad

    2016-05-09

    In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability.

  4. Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV

    PubMed Central

    Ali, Zain Anwar; Wang, Daobo; Aamir, Muhammad

    2016-01-01

    In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability. PMID:27171084

  5. Takagi-Sugeno Fuzzy Model-Based Control of Spacecraft with Flexible Appendage

    NASA Astrophysics Data System (ADS)

    Ayoubi, Mohammad A.; Sendi, Chokri

    2015-06-01

    This paper presents a Takagi-Sugeno (T-S) fuzzy model-based approach to model and control a rigid spacecraft with flexible antenna. First, the equations of motion of the flexible spacecraft, which are based on Lagrange equations and given in terms of quasi-coordinates and the Rayleigh-Ritz method, are briefly reviewed. Then, the T-S fuzzy modeling and the parallel distributed compensation control technique are introduced. We utilize full state-feedback and optimal H∞ robustness performance via a T-S fuzzy model to achieve position and attitude stabilization, vibration suppression, and disturbance rejection objectives. Finally, this technique is applied to the flexible spacecraft equations of motion resulting in a nonlinear controller. The controller produces an asymptotically stable closed-loop system which is robust to external disturbances and has a simple structure for straightforward implementation. Numerical simulation is provided for performance evaluation of the proposed controller design.

  6. Online elicitation of Mamdani-type fuzzy rules via TSK-based generalized predictive control.

    PubMed

    Mahfouf, M; Abbod, M F; Linkens, D A

    2003-01-01

    Many synergies have been proposed between soft-computing techniques, such as neural networks (NNs), fuzzy logic (FL), and genetic algorithms (GAs), which have shown that such hybrid structures can work well and also add more robustness to the control system design. In this paper, a new control architecture is proposed whereby the on-line generated fuzzy rules relating to the self-organizing fuzzy logic controller (SOFLC) are obtained via integration with the popular generalized predictive control (GPC) algorithm using a Takagi-Sugeno-Kang (TSK)-based controlled autoregressive integrated moving average (CARIMA) model structure. In this approach, GPC replaces the performance index (PI) table which, as an incremental model, is traditionally used to discover, amend, and delete the rules. Because the GPC sequence is computed using predicted future outputs, the new hybrid approach rewards the time-delay very well. The new generic approach, named generalized predictive self-organizing fuzzy logic control (GPSOFLC), is simulated on a well-known nonlinear chemical process, the distillation column, and is shown to produce an effective fuzzy rule-base in both qualitative (minimum number of generated rules) and quantitative (good rules) terms.

  7. Fuzzy Inference Based Obstacle Avoidance Control of Electric Powered Wheelchair Considering Driving Risk

    NASA Astrophysics Data System (ADS)

    Kiso, Atsushi; Murakami, Hiroki; Seki, Hirokazu

    This paper describes a novel obstacle avoidance control scheme of electric powered wheelchairs for realizing the safe driving in various environments. The “electric powered wheelchair” which generates the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people; however, the driving performance must be further improved because the number of driving accidents caused by elderly operator's narrow sight and joystick operation errors is increasing. This paper proposes a novel obstacle avoidance control scheme based on fuzzy algorithm to prevent driving accidents. The proposed control system determines the driving direction by fuzzy algorithm based on the information of the joystick operation and distance to obstacles measured by ultrasonic sensors. Fuzzy rules to determine the driving direction are designed surely to avoid passers-by and walls considering the human's intent and driving environments. Some driving experiments on the practical situations show the effectiveness of the proposed control system.

  8. Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms.

    PubMed

    Liu, B D; Chen, C Y; Tsao, J Y

    2001-01-01

    In this paper, we propose a novel fuzzy logic controller, called linguistic hedge fuzzy logic controller, to simplify the membership function constructions and the rule developments. The design methodology of linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of the linguistic hedges and the genetic algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically, and ran speed up the control result to fit the system demand. The genetic algorithms are adopted to search the optimal linguistic hedge combination in the linguistic hedge module, According to the proposed methodology, the linguistic hedge fuzzy logic controller has the following advantages: 1) it needs only the simple-shape membership functions rather than the carefully designed ones for characterizing the related variables; 2) it is sufficient to adopt a fewer number of rules for inference; 3) the rules are developed intuitionally without heavily depending on the endeavor of experts; 4) the linguistic hedge module associated with the genetic algorithm enables it to be adaptive; 5) it performs better than the conventional fuzzy logic controllers do; and 6) it can be realized with low design complexity and small hardware overhead. Furthermore, the proposed approach has been applied to design three well-known nonlinear systems. The simulation and experimental results demonstrate the effectiveness of this design.

  9. Design issues of a reinforcement-based self-learning fuzzy controller for petrochemical process control

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Daugherity, Walter C.

    1992-01-01

    Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.

  10. Indirect adaptive control of nonlinear systems based on bilinear neuro-fuzzy approximation.

    PubMed

    Boutalis, Yiannis; Christodoulou, Manolis; Theodoridis, Dimitrios

    2013-10-01

    In this paper, we investigate the indirect adaptive regulation problem of unknown affine in the control nonlinear systems. The proposed approach consists of choosing an appropriate system approximation model and a proper control law, which will regulate the system under the certainty equivalence principle. The main difference from other relevant works of the literature lies in the proposal of a potent approximation model that is bilinear with respect to the tunable parameters. To deploy the bilinear model, the components of the nonlinear plant are initially approximated by Fuzzy subsystems. Then, using appropriately defined fuzzy rule indicator functions, the initial dynamical fuzzy system is translated to a dynamical neuro-fuzzy model, where the indicator functions are replaced by High Order Neural Networks (HONNS), trained by sampled system data. The fuzzy output partitions of the initial fuzzy components are also estimated based on sampled data. This way, the parameters to be estimated are the weights of the HONNs and the centers of the output partitions, both arranged in matrices of appropriate dimensions and leading to a matrix to matrix bilinear parametric model. Based on the bilinear parametric model and the design of appropriate control law we use a Lyapunov stability analysis to obtain parameter adaptation laws and to regulate the states of the system. The weight updating laws guarantee that both the identification error and the system states reach zero exponentially fast, while keeping all signals in the closed loop bounded. Moreover, introducing a method of "concurrent" parameter hopping, the updating laws are modified so that the existence of the control signal is always assured. The main characteristic of the proposed approach is that the a priori experts information required by the identification scheme is extremely low, limited to the knowledge of the signs of the centers of the fuzzy output partitions. Therefore, the proposed scheme is not

  11. Supervisory control design based on hybrid systems and fuzzy events detection. Application to an oxichlorination reactor.

    PubMed

    Altamiranda, Edmary; Torres, Horacio; Colina, Eliezer; Chacón, Edgar

    2002-10-01

    This paper presents a supervisory control scheme based on hybrid systems theory and fuzzy events detection. The fuzzy event detector is a linguistic model, which synthesizes complex relations between process variables and process events incorporating experts' knowledge about the process operation. This kind of detection allows the anticipation of appropriate control actions, which depend upon the selected membership functions used to characterize the process under scrutiny. The proposed supervisory control scheme was successfully implemented for an oxichlorination reactor in a vinyl monomer plant. This implementation has allowed improvement of reactor stability and reduction of raw material consumption.

  12. Fuzzy scheduled RTDA controller design.

    PubMed

    Srinivasan, K; Anbarasan, K

    2013-03-01

    In this paper, the design and development of fuzzy scheduled robustness, tracking, disturbance rejection and overall aggressiveness (RTDA) controller design for non-linear processes are discussed. pH process is highly non-linear and the design of good controller for this process is always a challenging one due to large gain variation. Fuzzy scheduled RTDA controller design based on normalized integral square error (N_ISE) performance criteria for pH neutralization process is developed. The applicability of the proposed controller is tested for other different non-linear processes like type I diabetic process and conical tank process. The servo and regulatory performance of fuzzy scheduled RTDA controller design is compared with well-tuned internal model control (IMC) and dynamic matrix control (DMC)-based control schemes. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Expert system training and control based on the fuzzy relation matrix

    NASA Technical Reports Server (NTRS)

    Ren, Jie; Sheridan, T. B.

    1991-01-01

    Fuzzy knowledge, that for which the terms of reference are not crisp but overlapped, seems to characterize human expertise. This can be shown from the fact that an experienced human operator can control some complex plants better than a computer can. Proposed here is fuzzy theory to build a fuzzy expert relation matrix (FERM) from given rules or/and examples, either in linguistic terms or in numerical values to mimic human processes of perception and decision making. The knowledge base is codified in terms of many implicit fuzzy rules. Fuzzy knowledge thus codified may also be compared with explicit rules specified by a human expert. It can also provide a basis for modeling the human operator and allow comparison of what a human operator says to what he does in practice. Two experiments were performed. In the first, control of liquid in a tank, demonstrates how the FERM knowledge base is elicited and trained. The other shows how to use a FERM, build up from linguistic rules, and to control an inverted pendulum without a dynamic model.

  14. Adaptive Fuzzy Tracking Control of Nonlinear Systems With Asymmetric Actuator Backlash Based on a New Smooth Inverse.

    PubMed

    Lai, Guanyu; Liu, Zhi; Zhang, Yun; Philip Chen, C L

    2016-06-01

    This paper is concentrated on the problem of adaptive fuzzy tracking control for an uncertain nonlinear system whose actuator is encountered by the asymmetric backlash behavior. First, we propose a new smooth inverse model which can approximate the asymmetric actuator backlash arbitrarily. By applying it, two adaptive fuzzy control scenarios, namely, the compensation-based control scheme and nonlinear decomposition-based control scheme, are then developed successively. It is worth noticing that the first fuzzy controller exhibits a better tracking control performance, although it recourses to a known slope ratio of backlash nonlinearity. The second one further removes the restriction, and also gets a desirable control performance. By the strict Lyapunov argument, both adaptive fuzzy controllers guarantee that the output tracking error is convergent to an adjustable region of zero asymptotically, while all the signals remain semiglobally uniformly ultimately bounded. Lastly, two comparative simulations are conducted to verify the effectiveness of the proposed fuzzy controllers.

  15. Rough set-based hybrid fuzzy-neural controller design for industrial wastewater treatment.

    PubMed

    Chen, W C; Chang, Ni-Bin; Chen, Jeng-Chung

    2003-01-01

    Recent advances in control engineering suggest that hybrid control strategies, integrating some ideas and paradigms existing in different soft computing techniques, such as fuzzy logic, genetic algorithms, rough set theory, and neural networks, may provide improved control performance in wastewater treatment processes. This paper presents an innovative hybrid control algorithm leading to integrate the distinct aspects of indiscernibility capability of rough set theory and search capability of genetic algorithms with conventional neural-fuzzy controller design. The methodology proposed in this study employs a three-stage analysis that is designed in series for generating a representative state function, searching for a set of multi-objective control strategies, and performing a rough set-based autotuning for the neural-fuzzy logic controller to make it applicable for controlling an industrial wastewater treatment process. Research findings in the case study clearly indicate that the use of rough set theory to aid in the neural-fuzzy logic controller design can produce relatively better plant performance in terms of operating cost, control stability, and response time simultaneously, which is effective at least in the selected industrial wastewater treatment plant. Such a methodology is anticipated to be capable of dealing with many other types of process control problems in waste treatment processes by making only minor modifications.

  16. A fuzzy logic based spacecraft controller for six degree of freedom control and performance results

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Hoblit, Jeffrey; Jani, Yashvant

    1991-01-01

    The development philosophy of the fuzzy logic controller is explained, details of the rules and membership functions used are given, and the early results of testing of the control system for a representative range of scenarios are reported. The fuzzy attitude controller was found capable of performing all rotational maneuvers, including rate hold and rate maneuvers. It handles all orbital perturbations very efficiently and is very responsive in correcting errors.

  17. Command Filtering-Based Fuzzy Control for Nonlinear Systems With Saturation Input.

    PubMed

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Lin, Chong

    2017-09-01

    In this paper, command filtering-based fuzzy control is designed for uncertain multi-input multioutput (MIMO) nonlinear systems with saturation nonlinearity input. First, the command filtering method is employed to deal with the explosion of complexity caused by the derivative of virtual controllers. Then, fuzzy logic systems are utilized to approximate the nonlinear functions of MIMO systems. Furthermore, error compensation mechanism is introduced to overcome the drawback of the dynamics surface approach. The developed method will guarantee all signals of the systems are bounded. The effectiveness and advantages of the theoretic result are obtained by a simulation example.

  18. Towards autonomous fuzzy control

    NASA Technical Reports Server (NTRS)

    Shenoi, Sujeet; Ramer, Arthur

    1993-01-01

    The efficient implementation of on-line adaptation in real time is an important research problem in fuzzy control. The goal is to develop autonomous self-organizing controllers employing system-independent control meta-knowledge which enables them to adjust their control policies depending on the systems they control and the environments in which they operate. An autonomous fuzzy controller would continuously observe system behavior while implementing its control actions and would use the outcomes of these actions to refine its control policy. It could be designed to lie dormant when its control actions give rise to adequate performance characteristics but could rapidly and autonomously initiate real-time adaptation whenever its performance degrades. Such an autonomous fuzzy controller would have immense practical value. It could accommodate individual variations in system characteristics and also compensate for degradations in system characteristics caused by wear and tear. It could also potentially deal with black-box systems and control scenarios. On-going research in autonomous fuzzy control is reported. The ultimate research objective is to develop robust and relatively inexpensive autonomous fuzzy control hardware suitable for use in real time environments.

  19. Adaptive fuzzy PID temperature control system based on single-chip computer for the autoclave

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Wang, J.; Fu, S. L.; He, Z. T.; Li, X. P.

    2008-12-01

    The autoclave is one of main preparation equipments of crystal preparation by hydrothermal method. The preparation temperature will seriously influence crystals quality and crystals size at high temperature, how to measure and control precisely the autoclave temperature can be of real significance. The characteristic of hysteresis, nonlinearity and difficulty to acquire the precise mathematical model existing in the temperature control of the autoclave was researched. The general PID controller adopted usually in the autoclave temperature control system is hard to improve temperature control performance. Based on the advantages of fuzzy controller that does not depend on the precise mathematical model and the stabilization of PID controller, single-chip computer integrated fuzzy PID control algorithm is adopted, and the temperature system is designed, the foundational working principle was discussed. The control system includes SCM (AT89C52), temperature sensor, A/D converter circuit and corresponding circuit and interface, can make the autoclave temperature measure and control accurately. The system hardware includes main circuit, thyristor drive circuit, audible and visual alarm circuit, watchdog circuit, clock circuit, keyboard and display circuit so on, which can achieve gathering, analyzing, comparing and controlling the autoclave temperature parameter. The program of control system includes the treatment and collection of temperature data, the dynamic display program, the fuzzy PID control system, the audible and visual alarm program, et al, and the system's main software, which includes initialization, key-press processing, input processing, display, and the fuzzy PID control program was analyzed. The results showed that the fuzzy PID control system makes the adjustment time of temperature decreased and the precision of temperature control improved, the quality and the crystals size of the preparation crystals can achieve the expect experiment results.

  20. On Decision-Making Among Multiple Rule-Bases in Fuzzy Control Systems

    NASA Technical Reports Server (NTRS)

    Tunstel, Edward; Jamshidi, Mo

    1997-01-01

    Intelligent control of complex multi-variable systems can be a challenge for single fuzzy rule-based controllers. This class of problems cam often be managed with less difficulty by distributing intelligent decision-making amongst a collection of rule-bases. Such an approach requires that a mechanism be chosen to ensure goal-oriented interaction between the multiple rule-bases. In this paper, a hierarchical rule-based approach is described. Decision-making mechanisms based on generalized concepts from single-rule-based fuzzy control are described. Finally, the effects of different aggregation operators on multi-rule-base decision-making are examined in a navigation control problem for mobile robots.

  1. A Fuzzy Logic Based Controller for the Automated Alignment of a Laser-beam-smoothing Spatial Filter

    NASA Technical Reports Server (NTRS)

    Krasowski, M. J.; Dickens, D. E.

    1992-01-01

    A fuzzy logic based controller for a laser-beam-smoothing spatial filter is described. It is demonstrated that a human operator's alignment actions can easily be described by a system of fuzzy rules of inference. The final configuration uses inexpensive, off-the-shelf hardware and allows for a compact, readily implemented embedded control system.

  2. FUZZY-LOGIC-BASED CONTROLLERS FOR EFFICIENCY OPTIMIZATION OF INVERTER-FED INDUCTION MOTOR DRIVES

    EPA Science Inventory

    This paper describes a fuzzy-logic-based energy optimizing controller to improve the efficiency of induction motor/drives operating at various load (torque) and speed conditions. Improvement of induction motor efficiency is important not only from the considerations of energy sav...

  3. FUZZY-LOGIC-BASED CONTROLLERS FOR EFFICIENCY OPTIMIZATION OF INVERTER-FED INDUCTION MOTOR DRIVES

    EPA Science Inventory

    This paper describes a fuzzy-logic-based energy optimizing controller to improve the efficiency of induction motor/drives operating at various load (torque) and speed conditions. Improvement of induction motor efficiency is important not only from the considerations of energy sav...

  4. The comparison of manual and LabVIEW-based fuzzy control on mechanical ventilation.

    PubMed

    Guler, Hasan; Ata, Fikret

    2014-09-01

    The aim of this article is to develop a knowledge-based therapy for management of rats with respiratory distress. A mechanical ventilator was designed to achieve this aim. The designed ventilator is called an intelligent mechanical ventilator since fuzzy logic was used to control the pneumatic equipment according to the rat's status. LabVIEW software was used to control all equipments in the ventilator prototype and to monitor respiratory variables in the experiment. The designed ventilator can be controlled both manually and by fuzzy logic. Eight female Wistar-Albino rats were used to test the designed ventilator and to show the effectiveness of fuzzy control over manual control on pressure control ventilation mode. The anesthetized rats were first ventilated for 20 min manually. After that time, they were ventilated for 20 min by fuzzy logic. Student's t-test for p < 0.05 was applied to the measured minimum, maximum and mean peak inspiration pressures to analyze the obtained results. The results show that there is no statistical difference in the rat's lung parameters before and after the experiments. It can be said that the designed ventilator and developed knowledge-based therapy support artificial respiration of living things successfully.

  5. Fuzzy neural-based control for nonlinear time-varying delay systems.

    PubMed

    Hwang, Chih-Lyang; Chang, Li-Jui

    2007-12-01

    In this paper, a partially known nonlinear dynamic system with time-varying delays of the input and state is approximated by N fuzzy-based linear subsystems described by a state-space model with average delay. To shape the response of the closed-loop system, a set of fuzzy reference models is established. Similarly, the same fuzzy sets of the system rule are employed to design a fuzzy neural-based control. The proposed control contains a radial-basis function neural network to learn the uncertainties caused by the approximation error of the fuzzy model (e.g., time-varying delays and parameter variations) and the interactions resulting from the other subsystems. As the norm of the switching surface is inside of a defined set, the learning law starts; in this situation, the proposed method is an adaptive control possessing an extra compensation of uncertainties. As it is outside of the other set, which is smaller than the aforementioned set, the learning law stops; under this circumstance, the proposed method becomes a robust control without the compensation of uncertainties. A transition between robust control and adaptive control is also assigned to smooth the possible discontinuity of the control input. No assumption about the upper bound of the time-varying delays for the state and the input is required. However, two time-average delays are needed to simplify the controller design: 1) the stabilized conditions for every transformed delay-free subsystem must be satisfied; and 2) the learning uncertainties must be relatively bounded. The stability of the overall system is verified by Lyapunov stability theory. Simulations as compared with a linear transformed state feedback with integration control are also arranged to consolidate the usefulness of the proposed control.

  6. Fuzzy Logic Controller for Hemodialysis Machine Based on Human Body Model

    PubMed Central

    Nafisi, Vahid Reza; Eghbal, Manouchehr; Motlagh, Mohammad Reza Jahed; Yavari, Fatemeh

    2011-01-01

    Fuzzy controllers are being used in various control schemes. The aim of this study is to adjust the hemodialysis machine parameters by utilizing a fuzzy logic controller (FLC) so that patient's hemodynamic condition remains stable during hemodialysis treatment. For this purpose, a comprehensive mathematical model of the arterial pressure response during hemodialysis, including hemodynamic, osmotic, and regulatory phenomena has been used. The multi-input multi-output (MIMO) fuzzy logic controller receives three parameters from the model (heart rate, arterial blood pressure, and relative blood volume) as input. According to the changes in the controller input values and its rule base, the outputs change so that the patient's hemodynamic condition remains stable. The results of the simulations illustrate that applying the controller can improve the stability of a patient's hemodynamic condition during hemodialysis treatment and it also decreases the treatment time. Furthermore, by using fuzzy logic, there is no need to have prior knowledge about the system under control and the FLC is compatible with different patients. PMID:22606657

  7. Fuzzy-Neural Controller in Service Requests Distribution Broker for SOA-Based Systems

    NASA Astrophysics Data System (ADS)

    Fras, Mariusz; Zatwarnicka, Anna; Zatwarnicki, Krzysztof

    The evolution of software architectures led to the rising importance of the Service Oriented Architecture (SOA) concept. This architecture paradigm support building flexible distributed service systems. In the paper the architecture of service request distribution broker designed for use in SOA-based systems is proposed. The broker is built with idea of fuzzy control. The functional and non-functional request requirements in conjunction with monitoring of execution and communication links are used to distribute requests. Decisions are made with use of fuzzy-neural network.

  8. Induction machine Direct Torque Control system based on fuzzy adaptive control

    NASA Astrophysics Data System (ADS)

    Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng

    2009-07-01

    Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.

  9. Flatness-based embedded adaptive fuzzy control of turbocharged diesel engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    In this paper nonlinear embedded control for turbocharged Diesel engines is developed with the use of Differential flatness theory and adaptive fuzzy control. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances an adaptive fuzzy control scheme is implemanted making use of the transformed dynamical system of the diesel engine that is obtained through the application of differential flatness theory. Since only the system's output is measurable the complete state vector has to be reconstructed with the use of a state observer. It is shown that a suitable learning law can be defined for neuro-fuzzy approximators, which are part of the controller, so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis it is proven that the proposed observer-based adaptive fuzzy control scheme results in H∞ tracking performance.

  10. PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization

    SciTech Connect

    Priyambodo, Tri Kuntoro Putra, Agfianto Eko; Dharmawan, Andi

    2016-02-01

    Quadrotor as one type of UAV have the ability to perform Vertical Take Off and Landing (VTOL). It allows the Quadrotor to be stationary hovering in the air. PID (Proportional Integral Derivative) control system is one of the control methods that are commonly used. It is usually used to optimize the Quadrotor stabilization at least based on the three Eulerian angles (roll, pitch, and yaw) as input parameters for the control system. The three constants of PID can be obtained in various methods. The simplest method is tuning manually. This method has several weaknesses. For example if the three constants are not exact, the resulting response will deviate from the desired result. By combining the methods of PID with fuzzy logic systems where human expertise is implemented into the machine language is expected to further optimize the control system.

  11. Relaxed stabilization criteria for discrete-time T-S fuzzy control systems based on a switching fuzzy model and piecewise Lyapunov function.

    PubMed

    Wang, Wen-June; Chen, Ying-Jen; Sun, Chung-Hsun

    2007-06-01

    In this paper, two new relaxed stabilization criteria for discrete-time T-S fuzzy systems are proposed. In the beginning, the operation state space is divided into several subregions, and then, the T-S fuzzy system is transformed to an equivalent switching fuzzy system corresponding to each subregion. Consequently, based on the piecewise Lyapunov function, the stabilization criteria of the switching fuzzy system are derived. The criteria have two features: 1) the behavior of the two successive states of the system is considered in the inequalities and 2) the interactions among the fuzzy subsystems in each subregion Sj are presented by one matrix Xj. Due to the above two features, the feasible solutions of the inequalities in the criteria are much easier to be found. In other words, the criteria are much more relaxed than the existing criteria proposed in other literature. The proposed conditions in the criteria and the fuzzy control design can be solved and achieved by means of linear matrix inequality tools. Two examples are given to present the superiority of the proposed criteria and the effectiveness of the fuzzy controller's design, respectively.

  12. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    NASA Astrophysics Data System (ADS)

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.

    2010-09-01

    Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagatiom fuzzy neural network (CFNN) for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  13. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    NASA Astrophysics Data System (ADS)

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.

    2011-01-01

    Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  14. Analysis and Synthesis of Memory-Based Fuzzy Sliding Mode Controllers.

    PubMed

    Zhang, Jinhui; Lin, Yujuan; Feng, Gang

    2015-12-01

    This paper addresses the sliding mode control problem for a class of Takagi-Sugeno fuzzy systems with matched uncertainties. Different from the conventional memoryless sliding surface, a memory-based sliding surface is proposed which consists of not only the current state but also the delayed state. Both robust and adaptive fuzzy sliding mode controllers are designed based on the proposed memory-based sliding surface. It is shown that the sliding surface can be reached and the closed-loop control system is asymptotically stable. Furthermore, to reduce the chattering, some continuous sliding mode controllers are also presented. Finally, the ball and beam system is used to illustrate the advantages and effectiveness of the proposed approaches. It can be seen that, with the proposed control approaches, not only can the stability be guaranteed, but also its transient performance can be improved significantly.

  15. Dynamic response improvement of doubly fed induction generator-based wind farm using fuzzy logic controller

    NASA Astrophysics Data System (ADS)

    Hasanien, Hany M.; Al-Ammar, Essam A.

    2012-11-01

    Doubly fed induction generator (DFIG) based wind farm is today the most widely used concept. This paper presents dynamic response enhancement of DFIG based wind farm under remote fault conditions using the fuzzy logic controller. The goal of the work is to improve the dynamic response of DFIG based wind farm during and after the clearance of fault using the proposed controller. The stability of wind farm during and after the clearance of fault is investigated. The effectiveness of the fuzzy logic controller is then compared with that of a PI controller. The validity of the controllers in restoring the wind farms normal operation after the clearance of fault is illustrated by the simulation results which are carried out using MATLAB/SIMULINK. Simulation results are analyzed under different fault conditions.

  16. Terminal sliding mode fuzzy control based on multiple sliding surfaces for nonlinear ship autopilot systems

    NASA Astrophysics Data System (ADS)

    Yuan, Lei; Wu, Han-Song

    2010-12-01

    A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the problem, the controller was designed by employing the universal approximation property of fuzzy logic system, the advantage of Nussbaum function, and using multiple sliding mode control algorithm based on the recursive technique. In the last step of designing, a nonsingular terminal sliding mode was utilized to drive the last state of the system to converge in a finite period of time, and high-order sliding mode control law was designed to eliminate the chattering and make the system robust. The simulation results showed that the controller designed here could track a desired course fast and accurately. It also exhibited strong robustness peculiarly to system, and had better adaptive ability than traditional PID control algorithms.

  17. Fuzzy logic control and optimization system

    DOEpatents

    Lou, Xinsheng [West Hartford, CT

    2012-04-17

    A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  18. Design and implementation of a fuzzy controller based automatic voltage regulator for a synchronous generator

    SciTech Connect

    Hasan, A.R.; Martis, T.S. . Dept. of Electrical Engineering); Ula, A.H.M.S. Sr. . Dept. of Electrical Engineering)

    1994-09-01

    Fuzzy controllers are increasingly being accepted by engineers and scientists alike as a viable alternative for classical controllers. The processes involved in fuzzy controllers closely imitate human control processes. Human responses to stimuli are not governed by transfer function and neither are those from fuzzy controllers. This study involves the design and application of fuzzy control to the problem of automatic voltage regulation of a synchronous generator. The method explored deals with the use of Binary Input-output Fuzzy Associative Memories for control. Error and rate of change of voltage are used to maintain a constant output voltage. Software routines were written in ''C'' language and were fast enough for real time computer control. The fuzzy controller was implemented in an IBM compatible personal computer to control an industrial size 5 kVA synchronous machine.

  19. Fuzzy based attitude controller for flexible spacecraft with on/off thrusters

    NASA Technical Reports Server (NTRS)

    Knapp, Roger G.; Adams, Neil J.

    1993-01-01

    A fuzzy-based attitude controller is designed for attitude control of a generic spacecraft with on/off thrusters. The controller is comprised of packages of rules dedicated to addressing different objectives (e.g., disturbance rejection, low fuel consumption, avoiding the excitation of flexible appendages, etc.). These rule packages can be inserted or removed depending on the requirements of the particular spacecraft and are parameterized based on vehicle parameters such as inertia or operational parameters such as the maneuvering rate. Individual rule packages can be 'weighted' relative to each other to emphasize the importance of one objective relative to another. Finally, the fuzzy controller and rule packages are demonstrated using the high-fidelity Space Shuttle Interactive On-Orbit Simulator (IOS) while performing typical on-orbit operations and are subsequently compared with the existing shuttle flight control system performance.

  20. Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.

    PubMed

    Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour

    2015-09-01

    The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. Copyright © 2015. Published by Elsevier Ltd.

  1. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    NASA Astrophysics Data System (ADS)

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  2. Fuzzy Integral-Based Gaze Control of a Robotic Head for Human Robot Interaction.

    PubMed

    Yoo, Bum-Soo; Kim, Jong-Hwan

    2015-09-01

    During the last few decades, as a part of effort to enhance natural human robot interaction (HRI), considerable research has been carried out to develop human-like gaze control. However, most studies did not consider hardware implementation, real-time processing, and the real environment, factors that should be taken into account to achieve natural HRI. This paper proposes a fuzzy integral-based gaze control algorithm, operating in real-time and the real environment, for a robotic head. We formulate the gaze control as a multicriteria decision making problem and devise seven human gaze-inspired criteria. Partial evaluations of all candidate gaze directions are carried out with respect to the seven criteria defined from perceived visual, auditory, and internal inputs, and fuzzy measures are assigned to a power set of the criteria to reflect the user defined preference. A fuzzy integral of the partial evaluations with respect to the fuzzy measures is employed to make global evaluations of all candidate gaze directions. The global evaluation values are adjusted by applying inhibition of return and are compared with the global evaluation values of the previous gaze directions to decide the final gaze direction. The effectiveness of the proposed algorithm is demonstrated with a robotic head, developed in the Robot Intelligence Technology Laboratory at Korea Advanced Institute of Science and Technology, through three interaction scenarios and three comparison scenarios with another algorithm.

  3. Fuzzy control of small servo motors

    NASA Technical Reports Server (NTRS)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  4. Visual-based quadrotor control by means of fuzzy cognitive maps.

    PubMed

    Amirkhani, Abdollah; Shirzadeh, Masoud; Papageorgiou, Elpiniki I; Mosavi, Mohammad R

    2016-01-01

    By applying an image-based visual servoing (IBVS) method, the intelligent image-based controlling of a quadrotor type unmanned aerial vehicle (UAV) tracking a moving target is studied in this paper. A fuzzy cognitive map (FCM) is a soft computing method which is classified as a fuzzy neural system and exploits the main aspects of fuzzy logic and neural network systems; so it seems to be a suitable choice for implementing a vision-based intelligent technique. An FCM has been employed in implementing an IBVS scheme on a quadrotor UAV, so that the UAV can track a moving target on the ground. For this purpose, by properly combining the perspective image moments, some features with the desired characteristics for controlling the translational and yaw motions of a UAV have been presented. In designing a vision-based control method for a UAV quadrotor, there are some challenges, including the target mobility and not knowing the height of UAV above the target. Also, no sensor has been installed on the moving object and the changes of its yaw angle are not available. Despite all the stated challenges, the proposed method, which uses an FCM in controlling the translational motion and the yaw rotation of a UAV, adequately enables the quadrotor to follow the moving target. The simulation results for different paths show the satisfactory performance of the designed controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Learning fuzzy logic control system

    NASA Technical Reports Server (NTRS)

    Lung, Leung Kam

    1994-01-01

    The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the

  6. Fuzzy logic control for camera tracking system

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  7. Fuzzy control of a fluidized bed dryer

    SciTech Connect

    Taprantzis, A.V.; Siettos, C.I.; Bafas, G.V.

    1997-05-01

    Fluidized bed dryers are utilized in almost every area of drying applications and therefore improved control strategies are always of great interest. The nonlinear character of the process, exhibited in the mathematical model and the open loop analysis, implies that a fuzzy logic controller is appropriate because, in contrast with conventional control schemes, fuzzy control inherently compensates for process nonlinearities and exhibits more robust behavior. In this study, a fuzzy logic controller is proposed; its design is based on a heuristic approach and its performance is compared against a conventional PI controller for a variety of responses. It is shown that the fuzzy controller exhibits a remarkable dynamic behavior, equivalent if not better than the PI controller, for a wide range of disturbances. In addition, the proposed fuzzy controller seems to be less sensitive to the nonlinearities of the process, achieves energy savings and enables MIMO control.

  8. Control of Hydrogen Generation from Water Molecules Dissociated by Activated Aluminum Particles Based on Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Maekawa, Koji; Takahara, Kenji; Kajiwara, Toshinori; Watanabe, Masao

    This paper proposes a control system to keep hydrogen generation by a reaction between water and activated aluminum particles at desired level. Because the activated aluminum particles are produced shredded aluminum sawdust, the characteristics of hydrogen generation vary depending on its samples. Therefore, the fuzzy control system to determine the quantum of the activated aluminum particles is designed based on the measured characteristics of hydrogen generation. Error form a desired value, error rate and dead time of the reaction are chosen as the labels of the proposed fuzzy membership functions. The reactor vessel that the activated aluminum particles are put into is developed to generate hydrogen continuously. Three types of aluminum particles of the characteristic are used for the experiments. The proposed system is confirmed to be useful for the control of hydrogen generation, coping with the effect of reacting characteristic changes according to the activated aluminum samples.

  9. Non-monotonic robust H2 fuzzy observer-based control for discrete time nonlinear systems with parametric uncertainties

    NASA Astrophysics Data System (ADS)

    Fakhimi Derakhshan, Siavash; Fatehi, Alireza

    2015-09-01

    A non-monotonic Lyapunov function (NMLF) is deployed to design a robust H2 fuzzy observer-based control problem for discrete-time nonlinear systems in the presence of parametric uncertainties. The uncertain nonlinear system is presented as a Takagi and Sugeno (T-S) fuzzy model with norm-bounded uncertainties. The states of the fuzzy system are estimated by a fuzzy observer and the control design is established based on a parallel distributed compensation scheme. In order to derive a sufficient condition to establish the global asymptotic stability of the proposed closed-loop fuzzy system, an NMLF is adopted and an upper bound on the quadratic cost function is provided. The existence of a robust H2 fuzzy observer-based controller is expressed as a sufficient condition in the form of linear matrix inequalities (LMIs) and a sub-optimal fuzzy observer-based controller in the sense of cost bound minimization is obtained by utilising the aforementioned LMI optimisation techniques. Finally, the effectiveness of the proposed scheme is shown through an example.

  10. A fuzzy classifier system for process control

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Phillips, J. C.

    1994-01-01

    A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.

  11. An improved robust fuzzy-PID controller with optimal fuzzy reasoning.

    PubMed

    Li, Han-Xiong; Zhang, Lei; Cai, Kai-Yuan; Chen, Guanrong

    2005-12-01

    Many fuzzy control schemes used in industrial practice today are based on some simplified fuzzy reasoning methods, which are simple but at the expense of losing robustness, missing fuzzy characteristics, and having inconsistent inference. The concept of optimal fuzzy reasoning is introduced in this paper to overcome these shortcomings. The main advantage is that an integration of the optimal fuzzy reasoning with a PID control structure will generate a new type of fuzzy-PID control schemes with inherent optimal-tuning features for both local optimal performance and global tracking robustness. This new fuzzy-PID controller is then analyzed quantitatively and compared with other existing fuzzy-PID control methods. Both analytical and numerical studies clearly show the improved robustness of the new fuzzy-PID controller.

  12. Fuzzy logic based intelligent control of a variable speed cage machine wind generation system

    SciTech Connect

    Simoes, M.G.; Bose, B.K.; Spiegel, R.J.

    1997-01-01

    The paper describes a variable speed wind generation system where fuzzy logic principles are used for efficiency optimization and performance enhancement control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which pumps power to a utility grid or can supply to an autonomous system. The generation system has fuzzy logic control with vector control in the inner loops. A fuzzy controller tracks the generator speed with the wind velocity to extract the maximum power. A second fuzzy controller programs the machine flux for light load efficiency improvement, and a third fuzzy controller gives robust speed control against wind gust and turbine oscillatory torque. The complete control system has been developed, analyzed, and validated by simulation study. Performances have then been evaluated in detail.

  13. Improved control configuration of PWM rectifiers based on neuro-fuzzy controller.

    PubMed

    Acikgoz, Hakan; Kececioglu, O Fatih; Gani, Ahmet; Yildiz, Ceyhun; Sekkeli, Mustafa

    2016-01-01

    It is well-known that rectifiers are used widely in many applications required AC/DC transformation. With technological advances, many studies are performed for AC/DC converters and many control methods are proposed in order to improve the performance of these rectifiers in recent years. Pulse width modulation (PWM) based rectifiers are one of the most popular rectifier types. PWM rectifiers have lower input current harmonics and higher power factor compared to classical diode and thyristor rectifiers. In this study, neuro-fuzzy controller (NFC) which has robust, nonlinear structure and do not require the mathematical model of the system to be controlled has been proposed for PWM rectifiers. Three NFCs are used in control scheme of proposed PWM rectifier in order to control the dq-axis currents and DC voltage of PWM rectifier. Moreover, simulation studies are carried out to demonstrate the performance of the proposed control scheme at MATLAB/Simulink environment in terms of rise time, settling time, overshoot, power factor, total harmonic distortion and power quality.

  14. Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems versus external disturbances via Lyapunov rule-based fuzzy control.

    PubMed

    Farivar, Faezeh; Shoorehdeli, Mahdi Aliyari

    2012-01-01

    In this paper, fault tolerant synchronization of chaotic gyroscope systems versus external disturbances via Lyapunov rule-based fuzzy control is investigated. Taking the general nature of faults in the slave system into account, a new synchronization scheme, namely, fault tolerant synchronization, is proposed, by which the synchronization can be achieved no matter whether the faults and disturbances occur or not. By making use of a slave observer and a Lyapunov rule-based fuzzy control, fault tolerant synchronization can be achieved. Two techniques are considered as control methods: classic Lyapunov-based control and Lyapunov rule-based fuzzy control. On the basis of Lyapunov stability theory and fuzzy rules, the nonlinear controller and some generic sufficient conditions for global asymptotic synchronization are obtained. The fuzzy rules are directly constructed subject to a common Lyapunov function such that the error dynamics of two identical chaotic motions of symmetric gyros satisfy stability in the Lyapunov sense. Two proposed methods are compared. The Lyapunov rule-based fuzzy control can compensate for the actuator faults and disturbances occurring in the slave system. Numerical simulation results demonstrate the validity and feasibility of the proposed method for fault tolerant synchronization.

  15. Refining fuzzy logic controllers with machine learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1994-01-01

    In this paper, we describe the GARIC (Generalized Approximate Reasoning-Based Intelligent Control) architecture, which learns from its past performance and modifies the labels in the fuzzy rules to improve performance. It uses fuzzy reinforcement learning which is a hybrid method of fuzzy logic and reinforcement learning. This technology can simplify and automate the application of fuzzy logic control to a variety of systems. GARIC has been applied in simulation studies of the Space Shuttle rendezvous and docking experiments. It has the potential of being applied in other aerospace systems as well as in consumer products such as appliances, cameras, and cars.

  16. Anticipatory Monitoring and Control of Complex Systems using a Fuzzy based Fusion of Support Vector Regressors

    SciTech Connect

    Miltiadis Alamaniotis; Vivek Agarwal

    2014-10-01

    This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are then inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.

  17. Design of an electrorheological fluid shock absorber base on fuzzy control technology

    NASA Astrophysics Data System (ADS)

    He, Fengqin; Lin, Jun; Li, Dan; Li, Ning

    2008-12-01

    Electrorheological fluid is a new type of "smart" fluid. In this paper, a new type Electrorheological fluid shock absorber is designed by putting electrorheological fluid in damper as a damp medium, a fuzzy control arithmetic for this electrorheologival fluid shock absorber is designed and a fuzzy control electrorheological fluid shock absorber system is designed. Validity of this design is made sure by experiment.

  18. SVR learning-based spatiotemporal fuzzy logic controller for nonlinear spatially distributed dynamic systems.

    PubMed

    Zhang, Xian-Xia; Jiang, Ye; Li, Han-Xiong; Li, Shao-Yuan

    2013-10-01

    A data-driven 3-D fuzzy-logic controller (3-D FLC) design methodology based on support vector regression (SVR) learning is developed for nonlinear spatially distributed dynamic systems. Initially, the spatial information expression and processing as well as the fuzzy linguistic expression and rule inference of a 3-D FLC are integrated into spatial fuzzy basis functions (SFBFs), and then the 3-D FLC can be depicted by a three-layer network structure. By relating SFBFs of the 3-D FLC directly to spatial kernel functions of an SVR, an equivalence relationship of the 3-D FLC and the SVR is established, which means that the 3-D FLC can be designed with the help of the SVR learning. Subsequently, for an easy implementation, a systematic SVR learning-based 3-D FLC design scheme is formulated. In addition, the universal approximation capability of the proposed 3-D FLC is presented. Finally, the control of a nonlinear catalytic packed-bed reactor is considered as an application to demonstrate the effectiveness of the proposed 3-D FLC.

  19. A Position Controller Model on Color-Based Object Tracking using Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Cahyo Wibowo, Budi; Much Ibnu Subroto, Imam; Arifin, Bustanul

    2017-04-01

    Robotics vision is applying technology on the camera to view the environmental conditions as well as the function of the human eye. Colour object tracking system is one application of robotics vision technology with the ability to follow the object being detected. Several methods have been used to generate a good response position control, but most are still using conventional control approach. Fuzzy logic which includes several step of which is to determine the value of crisp input must be fuzzification. The output of fuzzification is forwarded to the process of inference in which there are some fuzzy logic rules. The inference output forwarded to the process of defuzzification to be transformed into outputs (crisp output) to drive the servo motors on the X-axis and Y-axis. Fuzzy logic control is applied to the color-based object tracking system, the system is successful to follow a moving object with average speed of 7.35 cm/s in environments with 117 lux light intensity.

  20. Combining genetic algorithms and Lyapunov-based adaptation for online design of fuzzy controllers.

    PubMed

    Giordano, Vincenzo; Naso, David; Turchiano, Biagio

    2006-10-01

    This paper proposes a hybrid approach for the design of adaptive fuzzy controllers (FCs) in which two learning algorithms with different characteristics are merged together to obtain an improved method. The approach combines a genetic algorithm (GA), devised to optimize all the configuration parameters of the FC, including the number of membership functions and rules, and a Lyapunov-based adaptation law performing a local tuning of the output singletons of the controller, and guaranteeing the stability of each new controller investigated by the GA. The effectiveness of the proposed method is confirmed using both numerical simulations on a known case study and experiments on a nonlinear hardware benchmark.

  1. Adaptive Neuro-Fuzzy Control of a Spherical Rolling Robot Using Sliding-Mode-Control-Theory-Based Online Learning Algorithm.

    PubMed

    Kayacan, Erkan; Kayacan, Erdal; Ramon, Herman; Saeys, Wouter

    2013-02-01

    As a model is only an abstraction of the real system, unmodeled dynamics, parameter variations, and disturbances can result in poor performance of a conventional controller based on this model. In such cases, a conventional controller cannot remain well tuned. This paper presents the control of a spherical rolling robot by using an adaptive neuro-fuzzy controller in combination with a sliding-mode control (SMC)-theory-based learning algorithm. The proposed control structure consists of a neuro-fuzzy network and a conventional controller which is used to guarantee the asymptotic stability of the system in a compact space. The parameter updating rules of the neuro-fuzzy system using SMC theory are derived, and the stability of the learning is proven using a Lyapunov function. The simulation results show that the control scheme with the proposed SMC-theory-based learning algorithm is able to not only eliminate the steady-state error but also improve the transient response performance of the spherical rolling robot without knowing its dynamic equations.

  2. Knowledge-based control and case-based diagnosis based upon empirical knowledge and fuzzy logic for the SBR plant.

    PubMed

    Bae, H; Seo, H Y; Kim, S; Kim, Y

    2006-01-01

    Because biological wastewater treatment plants (WWTPs) involve a long time-delay and various disturbances, in general, skilled operators manually control the plant based on empirical knowledge. And operators usually diagnose the plant using similar cases experienced in the past. For the effective management of the plant, system automation has to be accomplished based upon operating recipes. This paper introduces automatic control and diagnosis based upon the operator's knowledge. Fuzzy logic was employed to design this knowledge-based controller because fuzzy logic can convert the linguistic information to rules. The controller can manage the influent and external carbon in considering the loading rate. The input of the controller is not the loading rate but the dissolved oxygen (DO) lag-time, which has a strong relation to the loading rate. This approach can replace an expensive sensor, which measures the loading rate and ammonia concentration in the reactor, with a cheaper DO sensor. The proposed controller can assure optimal operation and prevent the over-feeding problem. Case-based diagnosis was achieved by the analysis of profile patterns collected from the past. A new test profile was diagnosed by comparing it with template patterns containing normal and abnormal cases. The proposed control and diagnostic system will guarantee the effective and stable operation of WWTPs.

  3. Chaotic queue-based genetic algorithm for design of a self-tuning fuzzy logic controller

    NASA Astrophysics Data System (ADS)

    Saini, Sanju; Saini, J. S.

    2012-11-01

    This paper employs a chaotic queue-based method using logistic equation in a non-canonical genetic algorithm for optimizing the performance of a self-tuning Fuzzy Logic Controller, used for controlling a nonlinear double-coupled system. A comparison has been made with a standard canonical genetic algorithm implemented on the same plant. It has been shown that chaotic queue-method brings an improvement in the performance of the FLC for wide range of set point changes by a more profound initial population spread in the search space.

  4. Research on Acceleration Compensation Strategy of Electric Vehicle Based on Fuzzy Control Theory

    NASA Astrophysics Data System (ADS)

    Zhu, Tianjun; Li, Bin; Zong, Changfu; Wei, Zhicheng

    2017-09-01

    Nowadays, the driving technology of electric vehicle is developing rapidly. There are many kinds of methods in driving performance control technology. The paper studies the acceleration performance of electric vehicle. Under the premise of energy management, an acceleration power compensation method by fuzzy control theory based on driver intention recognition is proposed, which can meet the driver’s subjective feelings better. It avoids the problem that the pedal opening and power output are single correspondence when the traditional vehicle accelerates. Through the simulation test, this method can significantly improve the performance of acceleration and output torque smoothly in non-emergency acceleration to ensure vehicle comfortable and stable.

  5. Improvement on fuzzy controller design techniques

    NASA Technical Reports Server (NTRS)

    Wang, Paul P.

    1993-01-01

    This paper addresses three main issues, which are somewhat interrelated. The first issue deals with the classification or types of fuzzy controllers. Careful examination of the fuzzy controllers designed by various engineers reveals distinctive classes of fuzzy controllers. Classification is believed to be helpful from different perspectives. The second issue deals with the design according to specifications, experiments related to the tuning of fuzzy controllers, according to the specification, will be discussed. General design procedure, hopefully, can be outlined in order to ease the burden of a design engineer. The third issue deals with the simplicity and limitation of the rule-based IF-THEN logical statements. The methodology of fuzzy-constraint network is proposed here as an alternative to the design practice at present. It is our belief that predicate calculus and the first order logic possess much more expressive power.

  6. LMI-Based Fuzzy Optimal Variance Control of Airfoil Model Subject to Input Constraints

    NASA Technical Reports Server (NTRS)

    Swei, Sean S.M.; Ayoubi, Mohammad A.

    2017-01-01

    This paper presents a study of fuzzy optimal variance control problem for dynamical systems subject to actuator amplitude and rate constraints. Using Takagi-Sugeno fuzzy modeling and dynamic Parallel Distributed Compensation technique, the stability and the constraints can be cast as a multi-objective optimization problem in the form of Linear Matrix Inequalities. By utilizing the formulations and solutions for the input and output variance constraint problems, we develop a fuzzy full-state feedback controller. The stability and performance of the proposed controller is demonstrated through its application to the airfoil flutter suppression.

  7. Observer-Based Non-PDC Control for Networked T-S Fuzzy Systems With an Event-Triggered Communication.

    PubMed

    Peng, Chen; Ma, Shaodong; Xie, Xiangpeng

    2017-02-07

    This paper addresses the problem of an event-triggered non-parallel distribution compensation (PDC) control for networked Takagi-Sugeno (T-S) fuzzy systems, under consideration of the limited data transmission bandwidth and the imperfect premise matching membership functions. First, a unified event-triggered T-S fuzzy model is provided, in which: 1) a fuzzy observer with the imperfect premise matching is constructed to estimate the unmeasurable states of the studied system; 2) a fuzzy controller is designed following the same premise as the observer; and 3) an output-based event-triggering transmission scheme is designed to economize the restricted network resources. Different from the traditional PDC method, the synchronous premise between the fuzzy observer and the T-S fuzzy system are no longer needed in this paper. Second, by use of Lyapunov theory, a stability criterion and a stabilization condition are obtained for ensuring asymptotically stable of the studied system. On account of the imperfect premise matching conditions are well considered in the derivation of the above criteria, less conservation can be expected to enhance the design flexibility. Compared with some existing emulation-based methods, the controller gains are no longer required to be known a priori. Finally, the availability of proposed non-PDC design scheme is illustrated by the backing-up control of a truck-trailer system.

  8. Network-Based Output Tracking Control for a Class of T-S Fuzzy Systems That Can Not Be Stabilized by Nondelayed Output Feedback Controllers.

    PubMed

    Zhang, Dawei; Han, Qing-Long; Jia, Xinchun

    2015-08-01

    This paper investigates network-based output tracking control for a T-S fuzzy system that can not be stabilized by a nondelayed fuzzy static output feedback controller, but can be stabilized by a delayed fuzzy static output feedback controller. By intentionally introducing a communication network that produces proper network-induced delays in the feedback control loop, a stable and satisfactory tracking control can be ensured for the T-S fuzzy system. Due to the presence of network-induced delays, the fuzzy system and the fuzzy tracking controller operate in an asynchronous way. Taking the asynchronous operation and network-induced delays into consideration, the network-based tracking control system is modeled as an asynchronous T-S fuzzy system with an interval time-varying delay. A new delay-dependent criterion for L2 -gain tracking performance is derived by using the deviation bounds of asynchronous normalized membership functions and a complete Lyapunov-Krasovskii functional. Applying a particle swarm optimization technique with the feasibility of the derived criterion, a novel design algorithm is presented to determine the minimum L2 -gain tracking performance and control gains simultaneously. The effectiveness of the proposed method is illustrated by performing network-based output tracking control of a Duffing-Van der Pol's oscillator.

  9. Hierarchical rule-based monitoring and fuzzy logic control for neuromuscular block.

    PubMed

    Shieh, J S; Fan, S Z; Chang, L W; Liu, C C

    2000-01-01

    activity. The results showed that a hierarchical rule-based monitoring and fuzzy logic control architecture can provide stable control of neuromuscular block despite the considerable individual variation in neuromuscular block required among patients. Also, there was less variation in T1% error compared with that of previous study on mivacurium. Meanwhile, the consistent medium CV of the MIR of both rocuronium and mivacurium indicated a good controller activity which is able to withstand noise, diathermy effect, artifacts and surgical disturbances.

  10. A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme

    SciTech Connect

    Hilloowala, R.M.; Sharaf, A.M.

    1996-01-01

    The paper presents a rule-based fuzzy logic controller to control the output power of a pulse width modulated (PWM) inverter used in a stand alone wind energy conversion scheme (SAWECS). The self-excited induction generator used in SAWECS has the inherent problem of fluctuations in the magnitude and frequency of its terminal voltage with changes in wind velocity and load. To overcome this drawback the variable magnitude, variable frequency voltage at the generator terminals is rectified and the dc power is transferred to the load through a PWM inverter. The objective is to track and extract maximum power from the wind energy system (WES) and transfer this power to the local isolated load. This is achieved by using the fuzzy logic controller which regulates the modulation index of the PWM inverter based on the input signals: the power error e = (P{sub ref} {minus} P{sub o}) and its rate of change {dot e}. These input signals are fuzzified, that is defined by a set of linguistic labels characterized by their membership functions predefined for each class. Using a set of 49 rules which relate the fuzzified input signals (e, {dot e}) to the fuzzy controller output U, fuzzy set theory and associated fuzzy logic operations, the fuzzy controller`s output (in terms of linguistic labels) is defuzzified to obtain the actual analog (numerical) output signal which is then used to control the PWM inverter and ensure complete utilization of the available wind energy. The proposed rule-based fuzzy logic controller is simulated and the results are experimentally verified on a scaled down laboratory prototype of the SAWECS.

  11. Design and simulation of an image-based fuzzy tracking controller for a wheeled mobile robot

    NASA Astrophysics Data System (ADS)

    Shiao, Ying Shing; Wu, Ching Wei

    2011-12-01

    Image processing algorithms and fuzzy logic method are used to design a visual tracking controller for mobile robot navigation. In this paper, a wheeled mobile robot is equipped with a camera for detecting its task space. The grabbed environmental images are treated using image recognition processing to obtain target's size and position. The images are treated using input membership functions as the fuzzy logic controller input. The recognized target's size and position are input into a fuzzy logic controller in which fuzzy rules are used for inference. The inference results are output to the defuzzifier to obtain a physical control signal to control the mobile robot's movement. The velocity and direction of the mobile robot are the output of fuzzy logic controller. The differences in velocities for two wheels are used to control the robot's movement directions. The fuzzy logic controller outputs the control commands to drive the mobile robot to reach a position 50cm front of the target location. The simulation results verify that the proposed FLC is effective in navigating the mobile robot to track a moving target.

  12. Observer-Based Adaptive Fuzzy Backstepping Dynamic Surface Control for a Class of MIMO Nonlinear Systems.

    PubMed

    Shao-Cheng Tong; Yong-Ming Li; Gang Feng; Tie-Shan Li

    2011-08-01

    In this paper, an adaptive fuzzy backstepping dynamic surface control (DSC) approach is developed for a class of multiple-input-multiple-output nonlinear systems with immeasurable states. Using fuzzy-logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed to estimate the immeasurable states. By combining adaptive-backstepping technique and DSC technique, an adaptive fuzzy output-feedback backstepping-control approach is developed. The proposed control method not only overcomes the problem of "explosion of complexity" inherent in the backstepping-design methods but also overcomes the problem of unavailable state measurements. It is proved that all the signals of the closed-loop adaptive-control system are semiglobally uniformly ultimately bounded, and the tracking errors converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approach.

  13. A fuzzy-logic-based controller for methane production in anaerobic fixed-film reactors.

    PubMed

    Robles, A; Latrille, E; Ruano, M V; Steyer, J P

    2017-01-01

    The main objective of this work was to develop a controller for biogas production in continuous anaerobic fixed-bed reactors, which used effluent total volatile fatty acids (VFA) concentration as control input in order to prevent process acidification at closed loop. To this aim, a fuzzy-logic-based control system was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale that treated industrial winery wastewater. The proposed controller varied the flow rate of wastewater entering the system as a function of the gaseous outflow rate of methane and VFA concentration. Simulation results show that the proposed controller is capable to achieve great process stability even when operating at high VFA concentrations. Pilot results showed the potential of this control approach to maintain the process working properly under similar conditions to the ones expected at full-scale plants.

  14. Disturbance observer based Takagi-Sugeno fuzzy control for an active seat suspension

    NASA Astrophysics Data System (ADS)

    Ning, Donghong; Sun, Shuaishuai; Zhang, Fei; Du, Haiping; Li, Weihua; Zhang, Bangji

    2017-09-01

    In this paper, a disturbance observer based Takagi-Sugeno (TS) fuzzy controller is proposed for an active seat suspension; both simulations and experiments have been performed verifying the performance enhancement and stability of the proposed controller. The controller incorporates closed-loop feedback control using the measured acceleration of the seat and deflection of the suspension; these two variables can be easily measured in practical applications, thus allowing the proposed controller to be robust and adaptable. A disturbance observer that can estimate the disturbance caused by friction, model simplification, and controller output error has also been used to compensate a H∞ state feedback controller. The TS fuzzy control method is applied to enhance the controller's performance by considering the variation of driver's weight during operation. The vibration of a heavy duty vehicle seat is largest in the frequency range between 2 Hz and 4 Hz, in the vertical direction; therefore, it is reasonable to focus on controlling low frequency vibration amplitudes and maintain the seat suspensions passivity at high frequency. Moreover, both the simulation and experimental results show that the active seat suspension with the proposed controller can effectively isolate unwanted vibration amplitudes below 4.5 Hz, when compared with a well-tuned passive seat suspension. The active controller has been further validated under bump and random road tests with both a 55 kg and a 70 kg loads. The bump road test demonstrated the controller has good transient response capabilities. The random road test result has been presented both in the time domain and the frequency domain. When with the above two loads, the controlled seat suspensions root-mean-square (RMS) accelerations were reduced by 45.5% and 49.5%, respectively, compared with a well-tuned passive seat suspension. The proposed active seat suspension controller has great potential and is very practical for application

  15. Design issues for a reinforcement-based self-learning fuzzy controller

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Dauherity, Walter

    1993-01-01

    Fuzzy logic controllers have some often cited advantages over conventional techniques such as PID control: easy implementation, its accommodation to natural language, the ability to cover wider range of operating conditions and others. One major obstacle that hinders its broader application is the lack of a systematic way to develop and modify its rules and as result the creation and modification of fuzzy rules often depends on try-error or pure experimentation. One of the proposed approaches to address this issue is self-learning fuzzy logic controllers (SFLC) that use reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of self-learning fuzzy controller is highly contingent on the design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for the application to chemical process are discussed and its performance is compared with that of PID and self-tuning fuzzy logic controller.

  16. Design issues for a reinforcement-based self-learning fuzzy controller

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Dauherity, Walter

    1993-01-01

    Fuzzy logic controllers have some often cited advantages over conventional techniques such as PID control: easy implementation, its accommodation to natural language, the ability to cover wider range of operating conditions and others. One major obstacle that hinders its broader application is the lack of a systematic way to develop and modify its rules and as result the creation and modification of fuzzy rules often depends on try-error or pure experimentation. One of the proposed approaches to address this issue is self-learning fuzzy logic controllers (SFLC) that use reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of self-learning fuzzy controller is highly contingent on the design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for the application to chemical process are discussed and its performance is compared with that of PID and self-tuning fuzzy logic controller.

  17. Observed-Based Adaptive Fuzzy Tracking Control for Switched Nonlinear Systems With Dead-Zone.

    PubMed

    Tong, Shaocheng; Sui, Shuai; Li, Yongming

    2015-12-01

    In this paper, the problem of adaptive fuzzy output-feedback control is investigated for a class of uncertain switched nonlinear systems in strict-feedback form. The considered switched systems contain unknown nonlinearities, dead-zone, and immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, a switched fuzzy state observer is designed and thus the immeasurable states are obtained by it. By applying the adaptive backstepping design principle and the average dwell time method, an adaptive fuzzy output-feedback tracking control approach is developed. It is proved that the proposed control approach can guarantee that all the variables in the closed-loop system are bounded under a class of switching signals with average dwell time, and also that the system output can track a given reference signal as closely as possible. The simulation results are given to check the effectiveness of the proposed approach.

  18. Design of a biped locomotion controller based on adaptive neuro-fuzzy inference systems

    NASA Astrophysics Data System (ADS)

    Shieh, M.-Y.; Chang, K.-H.; Lia, Y.-S.

    2008-02-01

    This paper proposes a method for the design of a biped locomotion controller based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) inverse learning model. In the model developed here, an integrated ANFIS structure is trained to function as the system identifier for the modeling of the inverse dynamics of a biped robot. The parameters resulting from the modeling process are duplicated and integrated as those of the biped locomotion controller to provide favorable control action. As the simulation results show, the proposed controller is able to generate a stable walking cycle for a biped robot. Moreover, the experimental results demonstrate that the performance of the proposed controller is satisfactory under conditions when the robot stands in different postures or moves on a rugged surface.

  19. Fuzzy Logic Controller Based on Observed Signals and a Genetic Algorithm Application with STATCOM for Power System Stabilization

    NASA Astrophysics Data System (ADS)

    Hongesombut, Komsan; Mitani, Yasunori; Tsuji, Kiichiro

    Fuzzy logic control has been applied to various applications in power systems. Its control rules and membership functions are typically obtained by trial and error methods or experience knowledge. Proposed here is the application of a micro-genetic algorithm (micro-GA) to simultaneously design optimal membership functions and control rules for STATCOM. First, we propose a simple approach to extract membership functions and fuzzy logic control rules based on observed signals. Then a proposed GA will be applied to optimize membership functions and its control rules. To validate the effectiveness of the proposed approach, several simulation studies have been performed on a multimachine power system. Simulation results show that the proposed fuzzy logic controller with STATCOM can effectively and robustly enhance the damping of oscillations.

  20. A fuzzy-based methodology for volt/var control on distribution systems containing dispersed wind generation

    NASA Astrophysics Data System (ADS)

    Black, Clifton R. M.

    This research focuses on voltage and reactive power control on the distribution system in an atmosphere of uncertainty. It also investigates the incorporation of wind turbines into load-flow analysis. It is widely recognized, that in practice, data are only known with finite accuracy and are hence, inexact in nature. In this research, fuzzy load-flow is used to handle this uncertainty. Fuzzy load-flow is based on fuzzy-set theory which has the ability to handle various forms of uncertainty including that from random variables. The fuzzy load flow technique [FLFT] presented in this dissertation, is different from the approach of other authors, in that it is more straightforward. It is based on fuzzy numbers and fuzzy arithmetic, and it calls for only one power-flow solution. The introduction of partial fuzzy arithmetic along with the use of fuzzy arithmetic and point-by-point calculations is significant. The result is a simple and fast technique. The proposed technique is suited for loosely meshed distribution systems with multiple sources. These attributes make this new approach quite attractive for application in today's distribution system which is characterized by the presence of distributed generators and meshes. The voltage and reactive power control problem is de-coupled into sub-problems characterized by the reaction speed of the different control devices. The sub-problem categories are "fast", "medium", and "slow", based on the frequency with which the control devices are adjusted. The control elements include transformer load tap changers (LTC), voltage regulators, and switched capacitors. Fuzzy models for these control devices are introduced and effectively demonstrated. There is a great demand for alternative sources of electric energy. In this research, a fuzzy model for the wind turbine generator is presented. The active power produced by the wind turbines and the reactive power absorbed are expressed as functions of the wind velocity. This research

  1. Model Based Predictive Control of Multivariable Hammerstein Processes with Fuzzy Logic Hypercube Interpolated Models.

    PubMed

    Jeronymo, Daniel Cavalcanti; Coelho, Antonio Augusto Rodrigues

    This paper introduces the Fuzzy Logic Hypercube Interpolator (FLHI) and demonstrates applications in control of multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) processes with Hammerstein nonlinearities. FLHI consists of a Takagi-Sugeno fuzzy inference system where membership functions act as kernel functions of an interpolator. Conjunction of membership functions in an unitary hypercube space enables multivariable interpolation of N-dimensions. Membership functions act as interpolation kernels, such that choice of membership functions determines interpolation characteristics, allowing FLHI to behave as a nearest-neighbor, linear, cubic, spline or Lanczos interpolator, to name a few. The proposed interpolator is presented as a solution to the modeling problem of static nonlinearities since it is capable of modeling both a function and its inverse function. Three study cases from literature are presented, a single-input single-output (SISO) system, a MISO and a MIMO system. Good results are obtained regarding performance metrics such as set-point tracking, control variation and robustness. Results demonstrate applicability of the proposed method in modeling Hammerstein nonlinearities and their inverse functions for implementation of an output compensator with Model Based Predictive Control (MBPC), in particular Dynamic Matrix Control (DMC).

  2. Model Based Predictive Control of Multivariable Hammerstein Processes with Fuzzy Logic Hypercube Interpolated Models

    PubMed Central

    Coelho, Antonio Augusto Rodrigues

    2016-01-01

    This paper introduces the Fuzzy Logic Hypercube Interpolator (FLHI) and demonstrates applications in control of multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) processes with Hammerstein nonlinearities. FLHI consists of a Takagi-Sugeno fuzzy inference system where membership functions act as kernel functions of an interpolator. Conjunction of membership functions in an unitary hypercube space enables multivariable interpolation of N-dimensions. Membership functions act as interpolation kernels, such that choice of membership functions determines interpolation characteristics, allowing FLHI to behave as a nearest-neighbor, linear, cubic, spline or Lanczos interpolator, to name a few. The proposed interpolator is presented as a solution to the modeling problem of static nonlinearities since it is capable of modeling both a function and its inverse function. Three study cases from literature are presented, a single-input single-output (SISO) system, a MISO and a MIMO system. Good results are obtained regarding performance metrics such as set-point tracking, control variation and robustness. Results demonstrate applicability of the proposed method in modeling Hammerstein nonlinearities and their inverse functions for implementation of an output compensator with Model Based Predictive Control (MBPC), in particular Dynamic Matrix Control (DMC). PMID:27657723

  3. GA and Lyapunov theory-based hybrid adaptive fuzzy controller for non-linear systems

    NASA Astrophysics Data System (ADS)

    Roy, Ananya; Das Sharma, Kaushik

    2015-02-01

    In this present article, a new hybrid methodology for designing stable adaptive fuzzy logic controllers (AFLCs) for a class of non-linear system is proposed. The proposed design strategy exploits the features of genetic algorithm (GA)-based stochastic evolutionary global search technique and Lyapunov theory-based local adaptation scheme. The objective is to develop a methodology for designing AFLCs with optimised free parameters and guaranteed closed-loop stability. Simultaneously, the proposed method introduces automation in the design process. The stand-alone Lyapunov theory-based design, GA-based design and proposed hybrid GA-Lyapunov design methodologies are implemented for two benchmark non-linear plants in simulation case studies with different reference signals and one experimental case study. The results demonstrate that the hybrid design methodology outperforms the other control strategies on the whole.

  4. Observer-Based Fuzzy Adaptive Output-Feedback Control of Stochastic Nonlinear Multiple Time-Delay Systems.

    PubMed

    Wang, Huanqing; Liu, Peter Xiaoping; Shi, Peng

    2017-09-01

    This paper is concerned with the observer-based fuzzy output-feedback control for stochastic nonlinear multiple time-delay systems. On the basis of the consistent form of virtual input signals and increasing characteristics of the system upper bound functions, a variable splitting technique is employed to surmount the difficulty occurred in the nonlower-triangular form. In the controller design procedure, a state observer is first designed, and then an adaptive fuzzy output-feedback control method is presented by combining backstepping design together with fuzzy systems' universal approximation capability. The proposed adaptive controller guarantees the semi-global boundedness of closed-loop system trajectories in terms of fourth-moment. Two simulation examples are displayed to demonstrate the feasibility of the suggested controller.

  5. Disturbance Observer-Based Fuzzy Control of Uncertain MIMO Mechanical Systems With Input Nonlinearities and its Application to Robotic Exoskeleton.

    PubMed

    Chen, Ziting; Li, Zhijun; Chen, C L Philip

    2016-03-16

    We develop a novel disturbance observer-based adaptive fuzzy control approach in this paper for a class of uncertain multi-input-multi-output mechanical systems possessing unknown input nonlinearities, i.e., deadzone and saturation and time-varying external disturbance. It is shown that the input nonlinearities can be represented by a nominal part and a nonlinear disturbance term. High-dimensional integral-type Lyapunov function is used to construct the controller. Fuzzy logic system is employed to cancel model uncertainties, and disturbance observer is also integrated into control design to compensate the fuzzy approximation error, external disturbance, and nonlinear disturbance caused by the unknown input nonlinearities. Semiglobally uniformly ultimately boundness of the closed-loop control system is guaranteed with tracking errors keeping bounded. Experimental studies on a robotic exoskeleton using the proposed control demonstrate the effectiveness of the approach.

  6. Fuzzy Logic Control Based QoS Management in Wireless Sensor/Actuator Networks

    PubMed Central

    Xia, Feng; Zhao, Wenhong; Sun, Youxian; Tian, Yu-Chu

    2007-01-01

    Wireless sensor/actuator networks (WSANs) are emerging rapidly as a new generation of sensor networks. Despite intensive research in wireless sensor networks (WSNs), limited work has been found in the open literature in the field of WSANs. In particular, quality-of-service (QoS) management in WSANs remains an important issue yet to be investigated. As an attempt in this direction, this paper develops a fuzzy logic control based QoS management (FLC-QM) scheme for WSANs with constrained resources and in dynamic and unpredictable environments. Taking advantage of the feedback control technology, this scheme deals with the impact of unpredictable changes in traffic load on the QoS of WSANs. It utilizes a fuzzy logic controller inside each source sensor node to adapt sampling period to the deadline miss ratio associated with data transmission from the sensor to the actuator. The deadline miss ratio is maintained at a pre-determined desired level so that the required QoS can be achieved. The FLC-QM has the advantages of generality, scalability, and simplicity. Simulation results show that the FLC-QM can provide WSANs with QoS support. PMID:28903288

  7. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  8. Analysis of direct action fuzzy PID controller structures.

    PubMed

    Mann, G I; Hu, B G; Gosine, R G

    1999-01-01

    The majority of the research work on fuzzy PID controllers focuses on the conventional two-input PI or PD type controller proposed by Mamdani (1974). However, fuzzy PID controller design is still a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. This paper investigates different fuzzy PID controller structures, including the Mamdani-type controller. By expressing the fuzzy rules in different forms, each PLD structure is distinctly identified. For purpose of analysis, a linear-like fuzzy controller is defined. A simple analytical procedure is developed to deduce the closed form solution for a three-input fuzzy inference. This solution is used to identify the fuzzy PID action of each structure type in the dissociated form. The solution for single-input-single-output nonlinear fuzzy inferences illustrates the effect of nonlinearity tuning. The design of a fuzzy PID controller is then treated as a two-level tuning problem. The first level tunes the nonlinear PID gains and the second level tunes the linear gains, including scale factors of fuzzy variables. By assigning a minimum number of rules to each type, the linear and nonlinear gains are deduced and explicitly presented. The tuning characteristics of different fuzzy PID structures are evaluated with respect to their functional behaviors. The rule decoupled and one-input rule structures proposed in this paper provide greater flexibility and better functional properties than the conventional fuzzy PHD structures.

  9. Control of suspended low-gravity simulation system based on self-adaptive fuzzy PID

    NASA Astrophysics Data System (ADS)

    Chen, Zhigang; Qu, Jiangang

    2017-09-01

    In this paper, an active suspended low-gravity simulation system is proposed to follow the vertical motion of the spacecraft. Firstly, working principle and mathematical model of the low-gravity simulation system are shown. In order to establish the balance process and suppress the strong position interference of the system, the idea of self-adaptive fuzzy PID control strategy is proposed. It combines the PID controller with a fuzzy controll strategy, the control system can be automatically adjusted by changing the proportional parameter, integral parameter and differential parameter of the controller in real-time. At last, we use the Simulink tools to verify the performance of the controller. The results show that the system can reach balanced state quickly without overshoot and oscillation by the method of the self-adaptive fuzzy PID, and follow the speed of 3m/s, while simulation degree of accuracy of system can reach to 95.9% or more.

  10. Shunt hybrid active power filter under nonideal voltage based on fuzzy logic controller

    NASA Astrophysics Data System (ADS)

    Dey, Papan; Mekhilef, Saad

    2016-09-01

    In this paper, a synchronous reference frame (SRF) method based on a modified phase lock loop (PLL) circuit is developed for a three-phase four-wire shunt hybrid active power filter (APF). Its performance is analysed under unbalanced grid conditions. The dominant lower order harmonics as well as reactive power can be compensated by the passive elements, whereas the active part mitigates the remaining distortions and improves the power quality. As different control methods show contradictory performance, fuzzy logic controller is considered here for DC-link voltage regulation of the inverter. Extensive simulations of the proposed technique are carried out in a MATLAB-SIMULINK environment. A laboratory prototype has been built on dSPACE1104 platform to verify the feasibility of the suggested SHAPF controller. The simulation and experimental results validate the effectiveness of the proposed technique.

  11. Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian

    In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.

  12. Knowledge-based fuzzy system for diagnosis and control of an integrated biological wastewater treatment process.

    PubMed

    Pires, O C; Palma, C; Costa, J C; Moita, I; Alves, M M; Ferreira, E C

    2006-01-01

    A supervisory expert system based on fuzzy logic rules was developed for diagnosis and control of a laboratory- scale plant comprising anaerobic digestion and anoxic/aerobic modules for combined high rate biological N and C removal. The design and implementation of a computational environment in LabVIEW for data acquisition, plant operation and distributed equipment control is described. A step increase in ammonia concentration from 20 to 60 mg N/L was applied during a trial period of 73 h. Recycle flow rate from the aerobic to the anoxic module and bypass flow rate from the influent directly to the anoxic reactor were the output variables of the fuzzy system. They were automatically changed (from 34 to 111 L/day and from 8 to 13 L/day, respectively), when new plant conditions were recognised by the expert system. Denitrification efficiency higher than 85% was achieved 30 h after the disturbance and 15 h after the system response at an HRT as low as 1.5 h. Nitrification efficiency gradually increased from 12 to 50% at an HRT of 3 h. The system proved to react properly in order to set adequate operating conditions that led to timely and efficient recovery of N and C removal rates.

  13. A fault-tolerant attitude control system for a satellite based on fuzzy global sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Liang, Jinjin; Dong, Chaoyang; Wang, Qing

    2008-10-01

    The structures and missions of modern satellites are very complicated, so the reliability of satellites is becoming increasingly important. This paper proposed a fault-tolerant attitude control system for a satellite based on Fuzzy Global Sliding Mode Control (FGSMC) algorithm. We designed a controller for the nonlinear model of a satellite. By designing a global sliding surface, this controller can ensure that the response of the system has global robustness against the uncertainties of system and external disturbances. In this paper attitude control is performed by four reaction flywheels. The attitude control system distributed the three control torques to the four reaction flywheels according to the distribution matrix. We deduced the formula to calculate the distribution matrix. Paper proved the stability of the designed control law, and simulated the attitude control system. The simulation results show that the attitude control law has high accuracy and robustness.

  14. A tuning algorithm for model predictive controllers based on genetic algorithms and fuzzy decision making.

    PubMed

    van der Lee, J H; Svrcek, W Y; Young, B R

    2008-01-01

    Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.

  15. Predictive fuzzy controller for robotic motion control

    SciTech Connect

    Huang, S.J.; Hu, C.F.

    1995-12-31

    A system output prediction strategy incorporated with a fuzzy controller is proposed to manipulate the robotic motion control. Usually, the current position and velocity errors are used to operate the fuzzy logic controller for picking out a corresponding rule. When the system has fast planning speed or time varying behavior, the required tracking accuracy is difficult to achieve by adjusting the fuzzy rules. In order to improve the position control accuracy and system robustness for the industrial application, the current position error in the fuzzy rules look-up table is substituted by the predictive position error of the next step by using the grey predictive algorithm. This idea is implemented on a five degrees of freedom robot. The experimental results show that this fuzzy controller has effectively improve the system performance and achieved the facilitation of fuzzy controller implementation.

  16. Stability analysis and H infinity controller design of fuzzy large-scale systems based on piecewise Lyapunov functions.

    PubMed

    Zhang, Hongbin; Li, Chunguang; Liao, Xiaofeng

    2006-06-01

    This paper presents a novel approach to stability analysis of a fuzzy large-scale system in which the system is composed of a number of Takagi-Sugeno (T-S) fuzzy subsystems with interconnections. The stability analysis is based on Lyapunov functions that are continuous and piecewise quadratic. It is shown that the stability of the fuzzy large-scale systems can be established if a piecewise Lyapunov function can be constructed, and, moreover, the function can be obtained by solving a set of linear matrix inequalities (LMIs) that are numerically feasible. It is also demonstrated via a numerical example that the stability result based on the piecewise quadratic Lyapunov functions is less conservative than that based on the common quadratic Lyapunov functions. The H infinity controllers can also be designed by solving a set of LMIs based on these powerful piecewise quadratic Lyapunov functions.

  17. Takagi-Sugeno fuzzy model based robust dissipative control for uncertain flexible spacecraft with saturated time-delay input.

    PubMed

    Xu, Shidong; Sun, Guanghui; Sun, Weichao

    2017-01-01

    In this paper, the problem of robust dissipative control is investigated for uncertain flexible spacecraft based on Takagi-Sugeno (T-S) fuzzy model with saturated time-delay input. Different from most existing strategies, T-S fuzzy approximation approach is used to model the nonlinear dynamics of flexible spacecraft. Simultaneously, the physical constraints of system, like input delay, input saturation, and parameter uncertainties, are also taken care of in the fuzzy model. By employing Lyapunov-Krasovskii method and convex optimization technique, a novel robust controller is proposed to implement rest-to-rest attitude maneuver for flexible spacecraft, and the guaranteed dissipative performance enables the uncertain closed-loop system to reject the influence of elastic vibrations and external disturbances. Finally, an illustrative design example integrated with simulation results are provided to confirm the applicability and merits of the developed control strategy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. BMI-based stability and performance design for fuzzy-model-based control systems subject to parameter uncertainties.

    PubMed

    Lam, H K; Seneviratne, Lakmal D

    2007-06-01

    This paper presents the stability and performance design of a fuzzy-model-based control system subject to parameter uncertainties. A nonlinear controller with a favorable characteristic to relax the stability conditions is proposed to drive the system states of the nonlinear plant to follow those of a stable reference model. Stability and performance conditions in terms of bilinear matrix inequalities (BMIs) will be derived based on a Lyapunov-based approach. A combined genetic algorithm and convex programming technique process will be developed to solve the solution to the BMIs. An application example will be given to illustrate the merits of the proposed approach.

  19. Fuzzy Modeling and Control of HIV Infection

    PubMed Central

    Zarei, Hassan; Kamyad, Ali Vahidian; Heydari, Ali Akbar

    2012-01-01

    The present study proposes a fuzzy mathematical model of HIV infection consisting of a linear fuzzy differential equations (FDEs) system describing the ambiguous immune cells level and the viral load which are due to the intrinsic fuzziness of the immune system's strength in HIV-infected patients. The immune cells in question are considered CD4+ T-cells and cytotoxic T-lymphocytes (CTLs). The dynamic behavior of the immune cells level and the viral load within the three groups of patients with weak, moderate, and strong immune systems are analyzed and compared. Moreover, the approximate explicit solutions of the proposed model are derived using a fitting-based method. In particular, a fuzzy control function indicating the drug dosage is incorporated into the proposed model and a fuzzy optimal control problem (FOCP) minimizing both the viral load and the drug costs is constructed. An optimality condition is achieved as a fuzzy boundary value problem (FBVP). In addition, the optimal fuzzy control function is completely characterized and a numerical solution for the optimality system is computed. PMID:22536298

  20. Variable Admittance Control Based on Fuzzy Reinforcement Learning for Minimally Invasive Surgery Manipulator.

    PubMed

    Du, Zhijiang; Wang, Wei; Yan, Zhiyuan; Dong, Wei; Wang, Weidong

    2017-04-12

    In order to get natural and intuitive physical interaction in the pose adjustment of the minimally invasive surgery manipulator, a hybrid variable admittance model based on Fuzzy Sarsa(λ)-learning is proposed in this paper. The proposed model provides continuous variable virtual damping to the admittance controller to respond to human intentions, and it effectively enhances the comfort level during the task execution by modifying the generated virtual damping dynamically. A fuzzy partition defined over the state space is used to capture the characteristics of the operator in physical human-robot interaction. For the purpose of maximizing the performance index in the long run, according to the identification of the current state input, the virtual damping compensations are determined by a trained strategy which can be learned through the experience generated from interaction with humans, and the influence caused by humans and the changing dynamics in the robot are also considered in the learning process. To evaluate the performance of the proposed model, some comparative experiments in joint space are conducted on our experimental minimally invasive surgical manipulator.

  1. Variable Admittance Control Based on Fuzzy Reinforcement Learning for Minimally Invasive Surgery Manipulator

    PubMed Central

    Du, Zhijiang; Wang, Wei; Yan, Zhiyuan; Dong, Wei; Wang, Weidong

    2017-01-01

    In order to get natural and intuitive physical interaction in the pose adjustment of the minimally invasive surgery manipulator, a hybrid variable admittance model based on Fuzzy Sarsa(λ)-learning is proposed in this paper. The proposed model provides continuous variable virtual damping to the admittance controller to respond to human intentions, and it effectively enhances the comfort level during the task execution by modifying the generated virtual damping dynamically. A fuzzy partition defined over the state space is used to capture the characteristics of the operator in physical human-robot interaction. For the purpose of maximizing the performance index in the long run, according to the identification of the current state input, the virtual damping compensations are determined by a trained strategy which can be learned through the experience generated from interaction with humans, and the influence caused by humans and the changing dynamics in the robot are also considered in the learning process. To evaluate the performance of the proposed model, some comparative experiments in joint space are conducted on our experimental minimally invasive surgical manipulator. PMID:28417944

  2. Takagi-Sugeno fuzzy-model-based fault detection for networked control systems with Markov delays.

    PubMed

    Zheng, Ying; Fang, Huajing; Wang, Hua O

    2006-08-01

    A Takagi-Sugeno (T-S) model is employed to represent a networked control system (NCS) with different network-induced delays. Comparing with existing NCS modeling methods, this approach does not require the knowledge of exact values of network-induced delays. Instead, it addresses situations involving all possible network-induced delays. Moreover, this approach also handles data-packet loss. As an application of the T-S-based modeling method, a parity-equation approach and a fuzzy-observer-based approach for fault detection of an NCS were developed. An example of a two-link inverted pendulum is used to illustrate the utility and viability of the proposed approaches.

  3. Hierarchical control of ride height system for electronically controlled air suspension based on variable structure and fuzzy control theory

    NASA Astrophysics Data System (ADS)

    Xu, Xing; Zhou, Kongkang; Zou, Nannan; Jiang, Hong; Cui, Xiaoli

    2015-09-01

    The current research of air suspension mainly focuses on the characteristics and design of the air spring. In fact, electronically controlled air suspension (ECAS) has excellent performance in flexible height adjustment during different driving conditions. However, the nonlinearity of the ride height adjusting system and the uneven distribution of payload affect the control accuracy of ride height and the body attitude. Firstly, the three-point measurement system of three height sensors is used to establish the mathematical model of the ride height adjusting system. The decentralized control of ride height and the centralized control of body attitude are presented to design the ride height control system for ECAS. The exact feedback linearization method is adopted for the nonlinear mathematical model of the ride height system. Secondly, according to the hierarchical control theory, the variable structure control (VSC) technique is used to design a controller that is able to adjust the ride height for the quarter-vehicle anywhere, and each quarter-vehicle height control system is independent. Meanwhile, the three-point height signals obtained by three height sensors are tracked to calculate the body pitch and roll attitude over time, and then by calculating the deviation of pitch and roll and its rates, the height control correction is reassigned based on the fuzzy algorithm. Finally, to verify the effectiveness and performance of the proposed combined control strategy, a validating test of ride height control system with and without road disturbance is carried out. Testing results show that the height adjusting time of both lifting and lowering is over 5 s, and the pitch angle and the roll angle of body attitude are less than 0.15°. This research proposes a hierarchical control method that can guarantee the attitude stability, as well as satisfy the ride height tracking system.

  4. Robust Fuzzy Controllers Using FPGAs

    NASA Technical Reports Server (NTRS)

    Monroe, Author Gene S., Jr.

    2007-01-01

    Electro-mechanical device controllers typically come in one of three forms, proportional (P), Proportional Derivative (PD), and Proportional Integral Derivative (PID). Two methods of control are discussed in this paper; they are (1) the classical technique that requires an in-depth mathematical use of poles and zeros, and (2) the fuzzy logic (FL) technique that is similar to the way humans think and make decisions. FL controllers are used in multiple industries; examples include control engineering, computer vision, pattern recognition, statistics, and data analysis. Presented is a study on the development of a PD motor controller written in very high speed hardware description language (VHDL), and implemented in FL. Four distinct abstractions compose the FL controller, they are the fuzzifier, the rule-base, the fuzzy inference system (FIS), and the defuzzifier. FL is similar to, but different from, Boolean logic; where the output value may be equal to 0 or 1, but it could also be equal to any decimal value between them. This controller is unique because of its VHDL implementation, which uses integer mathematics. To compensate for VHDL's inability to synthesis floating point numbers, a scale factor equal to 10(sup (N/4) is utilized; where N is equal to data word size. The scaling factor shifts the decimal digits to the left of the decimal point for increased precision. PD controllers are ideal for use with servo motors, where position control is effective. This paper discusses control methods for motion-base platforms where a constant velocity equivalent to a spectral resolution of 0.25 cm(exp -1) is required; however, the control capability of this controller extends to various other platforms.

  5. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control

    NASA Astrophysics Data System (ADS)

    Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed

    2012-12-01

    In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.

  6. Design and tuning of standard additive model based fuzzy PID controllers for multivariable process systems.

    PubMed

    Harinath, Eranda; Mann, George K I

    2008-06-01

    This paper describes a design and two-level tuning method for fuzzy proportional-integral derivative (FPID) controllers for a multivariable process where the fuzzy inference uses the inference of standard additive model. The proposed method can be used for any n x n multi-input-multi-output process and guarantees closed-loop stability. In the two-level tuning scheme, the tuning follows two steps: low-level tuning followed by high-level tuning. The low-level tuning adjusts apparent linear gains, whereas the high-level tuning changes the nonlinearity in the normalized fuzzy output. In this paper, two types of FPID configurations are considered, and their performances are evaluated by using a real-time multizone temperature control problem having a 3 x 3 process system.

  7. Based on interval type-2 adaptive fuzzy H∞ tracking controller for SISO time-delay nonlinear systems

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Chih; Roopaei, Mehdi

    2010-12-01

    In this article, based on the adaptive interval type-2 fuzzy logic, by adjusting weights, centers and widths of proposed fuzzy neural network (FNN), the modeling errors can be eliminated for a class of SISO time-delay nonlinear systems. The proposed scheme has the advantage that can guarantee the H∞ tracking performance to attenuate the lumped uncertainties caused by the unmodelled dynamics, the approximation error and the external disturbances. Moreover, the stability analysis of the proposed control scheme will be guaranteed in the sense that all the states and signals are uniformly bounded and arbitrary small attenuation level. The simulation results are demonstrated to show the effectiveness of the advocated design methodology.

  8. FPGA-based adaptive backstepping fuzzy control for a micro-positioning Scott-Russell mechanism

    NASA Astrophysics Data System (ADS)

    Fung, Rong-Fong; Weng, Ming-Hong; Kung, Ying-Shieh

    2009-11-01

    This paper utilizes the field programmable gate array (FPGA) and Nios II embedded processor technologies to design a controller IC for a micro-positioning Scott-Russell (SR) mechanism, which is driven by a piezoelectric actuator (PA) and its hysteresis phenomenon is described by Bouc-Wen hysteresis model. For the controller design, the adaptive backstepping fuzzy control (ABFC) method is developed to compensate the PA's hysteresis and achieve the motion tracking control. The fuzzy logic method (FLM) is utilized to find the best adaptation gain of the adaptation law and control gain of the stabilization controls. This ABFC controller method can improve the transient and asymptotic tracking performances, and make the SR mechanism keep good working performance when external disturbances is added in the control system. Finally, we successfully apply the system-on-a-programmable-chip (SoPC) technologies to develop the motion controller IC, and achieve the advantages of reduced space, high performance and low cost.

  9. Decentralized fuzzy control of multiple nonholonomic vehicles

    SciTech Connect

    Driessen, B.J.; Feddema, J.T.; Kwok, K.S.

    1997-09-01

    This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.

  10. A Fuzzy Control Irrigation System For Cottonfield

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhao, Yandong; Wang, Yiming; Li, Jinping

    A fuzzy control irrigation system for cotton field is presented in this paper. The system is composed of host computer, slave computer controller, communication module, soil water sensors, valve controllers, and system software. A fuzzy control model is constructed to control the irrigation time and irrigation quantity for cotton filed. According to the water-required rules of different cotton growing periods, different irrigation strategies can be carried out automatically. This system had been used for precision irrigation of the cotton field in Langfang experimental farm of Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences in 2006. The results show that the fuzzy control irrigation system can improve cotton yield and save much water quantity than the irrigation system based on simple on-off control algorithm.

  11. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The report gives results of a demonstration of the successful application of fuzzy logic to enhance the performance and control of a variable-speed wind generation system. A squirrel cage induction generator feeds the power to either a double-sided pulse-width modulation converte...

  12. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  13. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The report gives results of a demonstration of the successful application of fuzzy logic to enhance the performance and control of a variable-speed wind generation system. A squirrel cage induction generator feeds the power to either a double-sided pulse-width modulation converte...

  14. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  15. Active fault tolerant control based on interval type-2 fuzzy sliding mode controller and non linear adaptive observer for 3-DOF laboratory helicopter.

    PubMed

    Zeghlache, Samir; Benslimane, Tarak; Bouguerra, Abderrahmen

    2017-09-14

    In this paper, a robust controller for a three degree of freedom (3 DOF) helicopter control is proposed in presence of actuator and sensor faults. For this purpose, Interval type-2 fuzzy logic control approach (IT2FLC) and sliding mode control (SMC) technique are used to design a controller, named active fault tolerant interval type-2 Fuzzy Sliding mode controller (AFTIT2FSMC) based on non-linear adaptive observer to estimate and detect the system faults for each subsystem of the 3-DOF helicopter. The proposed control scheme allows avoiding difficult modeling, attenuating the chattering effect of the SMC, reducing the rules number of the fuzzy controller. Exponential stability of the closed loop is guaranteed by using the Lyapunov method. The simulation results show that the AFTIT2FSMC can greatly alleviate the chattering effect, providing good tracking performance, even in presence of actuator and sensor faults. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Adaptive fuzzy sliding-mode controller of uncertain nonlinear systems.

    PubMed

    Wu, Tai-Zu; Juang, Yau-Tarng

    2008-07-01

    This paper deals with the design of adaptive fuzzy sliding-mode controllers for the T-S fuzzy model based on the Lyapunov function. It is shown that the Lyapunov function can be used to establish fuzzy sliding surfaces by solving a set of linear matrix inequalities (LMIs). The design of the fuzzy sliding surfaces and the adaptive fuzzy sliding-mode controllers is proposed. The adaptive mechanism is also used to deal with unknown parameter perturbations and external disturbances. Two examples illustrate the feasibility of the proposed methods.

  17. Flatness-based adaptive fuzzy control of an autonomous submarine model

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Raffo, Guilherme

    2015-12-01

    The article presents a differential flatness theory-based method for adaptive control of autonomous submarines. A proof is provided about the differential flatness properties of the submarine's model (having as state variables the vessel's depth and its pitch angle). This also means that all its state variables and its control inputs can be written as differential functions of the flat output. Making use of its differential flatness features, the submarine's dynamic model is transformed into the multivariable linear canonical (Brunovsky) form. In the transformed model, the control inputs consist of unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning rate for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Furthermore, with the use of Lyapunov stability analysis it is proven that an H-infinity tracking performance is succeeded for the feedback control loop. This implies enhanced robustness to model uncertainty and to external perturbations. Simulation experiments are carried out to further confirm the efficiency of the proposed adaptive fuzzy control scheme.

  18. Fuzzy coordinator in control problems

    NASA Technical Reports Server (NTRS)

    Rueda, A.; Pedrycz, W.

    1992-01-01

    In this paper a hierarchical control structure using a fuzzy system for coordination of the control actions is studied. The architecture involves two levels of control: a coordination level and an execution level. Numerical experiments will be utilized to illustrate the behavior of the controller when it is applied to a nonlinear plant.

  19. Fuzzy control of battery chargers

    NASA Astrophysics Data System (ADS)

    Aldridge, Jack

    1996-03-01

    The increasing reliance on battery power for portable terrestrial purposes, such as portable tools, portable computers, and telecommunications, provides motivation to optimize the battery charging process with respect to speed of charging and charging cycle lifetime of the battery. Fuzzy control, implemented on a small microcomputer, optimizes charging in the presence of nonlinear effects and large uncertainty in the voltage vs. charge state characteristics for the battery. Use of a small microcontroller makes possible a small, capable, and affordable package for the charger. Microcontroller-based chargers provide improved performance by adjusting both charging voltage and charging current during the entire charging process depending on a current estimate of the state of charge of the battery. The estimate is derived from the zero-current voltage of the battery and the temperature and their rates of change. All of these quantities are uncertain due to the variation in condition between the individual cells in a battery, the rapid and nonlinear dependence of the fundamental electrochemistry on the internal temperature, and the placement of a single temperature sensor within the battery package. While monitoring the individual cell voltages and temperatures would be desirable, cost and complexity considerations preclude the practice. NASA has developed considerable technology in batteries for supplying significant amounts of power for spacecraft and in fuzzy control techniques for the space applications. In this paper, we describe how we are using both technologies to build an optimal charger prototype as a precursor to a commercial version.

  20. Unity power factor converter based on a fuzzy controller and predictive input current.

    PubMed

    Bouafassa, Amar; Rahmani, Lazhar; Kessal, Abdelhalim; Babes, Badreddine

    2014-11-01

    This paper proposes analysis and control of a single-phase power factor corrector (PFC). The proposed control is capable of achieving a unity power factor for each DC link voltage or load fluctuation. The method under study is composed of two intelligent approaches, a fuzzy logic controller to ensure an output voltage at a suitable value and predictive current control. The fuzzy controller is used with minimum rules to attain a low cost. The method is verified and discussed through simulation on the MATLAB/Simulink platform. It presents high dynamic performance under various parameter changes. Moreover, in order to examine and evaluate the method in real-time, a test bench is built using dSPACE 1104. The implantation of the proposed method is very easy and flexible and allows for operation under parameter variations. Additionally, the obtained results are very significant. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Robust H infinity fuzzy control for a class of uncertain discrete fuzzy bilinear systems.

    PubMed

    Li, Tzuu-Hseng; Tsai, Shun-Hung; Lee, Jia-Zhen; Hsiao, Ming-Ying; Chao, Chan-Hong

    2008-04-01

    The main theme of this paper is to present robust fuzzy controllers for a class of discrete fuzzy bilinear systems. First, the parallel distributed compensation method is utilized to design a fuzzy controller, which ensures the robust asymptotic stability of the closed-loop system and guarantees an H(infinity) norm-bound constraint on disturbance attenuation for all admissible uncertainties. Second, based on the Schur complement and some variable transformations, the stability conditions of the overall fuzzy control system are formulated by linear matrix inequalities. Finally, the validity and applicability of the proposed schemes are demonstrated by a numerical simulation and the Van de Vusse example.

  2. An analytical fuzzy-based approach to ?-gain optimal control of input-affine nonlinear systems using Newton-type algorithm

    NASA Astrophysics Data System (ADS)

    Milic, Vladimir; Kasac, Josip; Novakovic, Branko

    2015-10-01

    This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.

  3. Fuzzy-rule-based Adaptive Resource Control for Information Sharing in P2P Networks

    NASA Astrophysics Data System (ADS)

    Wu, Zhengping; Wu, Hao

    With more and more peer-to-peer (P2P) technologies available for online collaboration and information sharing, people can launch more and more collaborative work in online social networks with friends, colleagues, and even strangers. Without face-to-face interactions, the question of who can be trusted and then share information with becomes a big concern of a user in these online social networks. This paper introduces an adaptive control service using fuzzy logic in preference definition for P2P information sharing control, and designs a novel decision-making mechanism using formal fuzzy rules and reasoning mechanisms adjusting P2P information sharing status following individual users' preferences. Applications of this adaptive control service into different information sharing environments show that this service can provide a convenient and accurate P2P information sharing control for individual users in P2P networks.

  4. Adaptive Fuzzy Control for Nonstrict Feedback Systems With Unmodeled Dynamics and Fuzzy Dead Zone via Output Feedback.

    PubMed

    Wang, Lijie; Li, Hongyi; Zhou, Qi; Lu, Renquan

    2017-09-01

    This paper investigates the problem of observer-based adaptive fuzzy control for a category of nonstrict feedback systems subject to both unmodeled dynamics and fuzzy dead zone. Through constructing a fuzzy state observer and introducing a center of gravity method, unmeasurable states are estimated and the fuzzy dead zone is defuzzified, respectively. By employing fuzzy logic systems to identify the unknown functions. And combining small-gain approach with adaptive backstepping control technique, a novel adaptive fuzzy output feedback control strategy is developed, which ensures that all signals involved are semi-globally uniformly bounded. Simulation results are given to demonstrate the effectiveness of the presented method.

  5. Fuzzy forecasting based on fuzzy-trend logical relationship groups.

    PubMed

    Chen, Shyi-Ming; Wang, Nai-Yi

    2010-10-01

    In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.

  6. A controller based on Optimal Type-2 Fuzzy Logic: systematic design, optimization and real-time implementation.

    PubMed

    Fayek, H M; Elamvazuthi, I; Perumal, N; Venkatesh, B

    2014-09-01

    A computationally-efficient systematic procedure to design an Optimal Type-2 Fuzzy Logic Controller (OT2FLC) is proposed. The main scheme is to optimize the gains of the controller using Particle Swarm Optimization (PSO), then optimize only two parameters per type-2 membership function using Genetic Algorithm (GA). The proposed OT2FLC was implemented in real-time to control the position of a DC servomotor, which is part of a robotic arm. The performance judgments were carried out based on the Integral Absolute Error (IAE), as well as the computational cost. Various type-2 defuzzification methods were investigated in real-time. A comparative analysis with an Optimal Type-1 Fuzzy Logic Controller (OT1FLC) and a PI controller, demonstrated OT2FLC׳s superiority; which is evident in handling uncertainty and imprecision induced in the system by means of noise and disturbances. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Fuzzy integral-based gaze control architecture incorporated with modified-univector field-based navigation for humanoid robots.

    PubMed

    Yoo, Jeong-Ki; Kim, Jong-Hwan

    2012-02-01

    When a humanoid robot moves in a dynamic environment, a simple process of planning and following a path may not guarantee competent performance for dynamic obstacle avoidance because the robot acquires limited information from the environment using a local vision sensor. Thus, it is essential to update its local map as frequently as possible to obtain more information through gaze control while walking. This paper proposes a fuzzy integral-based gaze control architecture incorporated with the modified-univector field-based navigation for humanoid robots. To determine the gaze direction, four criteria based on local map confidence, waypoint, self-localization, and obstacles, are defined along with their corresponding partial evaluation functions. Using the partial evaluation values and the degree of consideration for criteria, fuzzy integral is applied to each candidate gaze direction for global evaluation. For the effective dynamic obstacle avoidance, partial evaluation functions about self-localization error and surrounding obstacles are also used for generating virtual dynamic obstacle for the modified-univector field method which generates the path and velocity of robot toward the next waypoint. The proposed architecture is verified through the comparison with the conventional weighted sum-based approach with the simulations using a developed simulator for HanSaRam-IX (HSR-IX).

  8. An adaptive fuzzy controller for permanent-magnet AC servo drives

    SciTech Connect

    Le-Huy, H.

    1995-12-31

    This paper presents a theoretical study on a model-reference adaptive fuzzy logic controller for vector-controlled permanent-magnet ac servo drives. In the proposed system, fuzzy logic is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The results are compared with that provided by a non-adaptive fuzzy controller. The implementation of proposed adaptive fuzzy controller is discussed.

  9. Fuzzy Current-Mode Control and Stability Analysis

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2000-01-01

    In this paper a current-mode control (CMC) methodology is developed for a buck converter by using a fuzzy logic controller. Conventional CMC methodologies are based on lead-lag compensation with voltage and inductor current feedback. In this paper the converter lead-lag compensation will be substituted with a fuzzy controller. A small-signal model of the fuzzy controller will also be developed in order to examine the stability properties of this buck converter control system. The paper develops an analytical approach, introducing fuzzy control into the area of CMC.

  10. Self-Adaptive Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless Sensors Networks.

    PubMed

    Hernández Díaz, Vicente; Martínez, José-Fernán; Lucas Martínez, Néstor; del Toro, Raúl M

    2015-09-18

    The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.

  11. Fuzzy control based engine sizing optimization for a fuel cell/battery hybrid mini-bus

    NASA Astrophysics Data System (ADS)

    Kim, Minjin; Sohn, Young-Jun; Lee, Won-Yong; Kim, Chang-Soo

    The fuel cell/battery hybrid vehicle has been focused for the alternative engine of the existing internal-combustion engine due to the following advantages of the fuel cell and the battery. Firstly, the fuel cell is highly efficient and eco-friendly. Secondly, the battery has the fast response for the changeable power demand. However, the competitive efficiency of the hybrid fuel cell vehicle is necessary to successfully alternate the conventional vehicles with the fuel cell hybrid vehicle. The most relevant factor which affects the overall efficiency of the hybrid fuel cell vehicle is the relative engine sizing between the fuel cell and the battery. Therefore the design method to optimize the engine sizing of the fuel cell hybrid vehicle has been proposed. The target system is the fuel cell/battery hybrid mini-bus and its power distribution is controlled based on the fuzzy logic. The optimal engine sizes are determined based on the simulator developed in this paper. The simulator includes the several models for the fuel cell, the battery, and the major balance of plants. After the engine sizing, the system efficiency and the stability of the power distribution are verified based on the well-known driving schedule. Consequently, the optimally designed mini-bus shows good performance.

  12. Self-Adaptive Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless Sensors Networks

    PubMed Central

    Hernández Díaz, Vicente; Martínez, José-Fernán; Lucas Martínez, Néstor; del Toro, Raúl M.

    2015-01-01

    The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries. PMID:26393612

  13. Design of an adaptive fuzzy sliding mode control for uncertain discrete-time nonlinear systems based on noisy measurements

    NASA Astrophysics Data System (ADS)

    Yoshimura, Toshio

    2016-02-01

    This paper presents the design of an adaptive fuzzy sliding mode control (AFSMC) for uncertain discrete-time nonlinear dynamic systems. The dynamic systems are described by a discrete-time state equation with nonlinear uncertainties, and the uncertainties include the modelling errors and the external disturbances to be unknown but nonlinear with the bounded properties. The states are measured by the restriction of measurement sensors and the contamination with independent measurement noises. The nonlinear uncertainties are approximated by using the fuzzy IF-THEN rules based on the universal approximation theorem, and the approximation error is compensated by adding an adaptive complementary term to the proposed AFSMC. The fuzzy inference approach based on the extended single input rule modules is proposed to reduce the number of the fuzzy IF-THEN rules. The estimates for the un-measurable states and the adjustable parameters are obtained by using the weighted least squares estimator and its simplified one. It is proved that under some conditions the estimation errors will remain in the vicinity of zero as time increases, and the states are ultimately bounded subject to the proposed AFSMC. The effectiveness of the proposed method is indicated through the simulation experiment of a simple numerical system.

  14. A Laboratory Testbed for Embedded Fuzzy Control

    ERIC Educational Resources Information Center

    Srivastava, S.; Sukumar, V.; Bhasin, P. S.; Arun Kumar, D.

    2011-01-01

    This paper presents a novel scheme called "Laboratory Testbed for Embedded Fuzzy Control of a Real Time Nonlinear System." The idea is based upon the fact that project-based learning motivates students to learn actively and to use their engineering skills acquired in their previous years of study. It also fosters initiative and focuses…

  15. A Laboratory Testbed for Embedded Fuzzy Control

    ERIC Educational Resources Information Center

    Srivastava, S.; Sukumar, V.; Bhasin, P. S.; Arun Kumar, D.

    2011-01-01

    This paper presents a novel scheme called "Laboratory Testbed for Embedded Fuzzy Control of a Real Time Nonlinear System." The idea is based upon the fact that project-based learning motivates students to learn actively and to use their engineering skills acquired in their previous years of study. It also fosters initiative and focuses…

  16. Fuzzy Vibration Control of a Smart Plate

    NASA Astrophysics Data System (ADS)

    Muradova, Aliki D.; Stavroulakis, Georgios E.

    2013-04-01

    Vibration suppression of a smart thin elastic rectangular plate is considered. The plate is subjected to external disturbances and generalized control forces, produced, for instance, by electromechanical feedback. A nonlinear controller is designed, based on fuzzy inference. The initial-boundary value problem is spatially discretized by means of the time spectral method. The implicit Newmark-beta method is employed for time integration. Two numerical algorithms are proposed. The techniques have been implemented within MATLAB with the use of the Fuzzy Logic Toolbox. Representative numerical results are given.

  17. Intelligent fuzzy controller for event-driven real time systems

    NASA Technical Reports Server (NTRS)

    Grantner, Janos; Patyra, Marek; Stachowicz, Marian S.

    1992-01-01

    Most of the known linguistic models are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show a model for synchronous finite state machines based on fuzzy logic. Such finite state machines can be used to build both event-driven, time-varying, rule-based systems and the control unit section of a fuzzy logic computer. The architecture of a pipelined intelligent fuzzy controller is presented, and the linguistic model is represented by an overall fuzzy relation stored in a single rule memory. A VLSI integrated circuit implementation of the fuzzy controller is suggested. At a clock rate of 30 MHz, the controller can perform 3 MFLIPS on multi-dimensional fuzzy data.

  18. Fuzzy logic control of telerobot manipulators

    NASA Technical Reports Server (NTRS)

    Franke, Ernest A.; Nedungadi, Ashok

    1992-01-01

    Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.

  19. Stability analysis and H(infinity) controller design of discrete-time fuzzy large-scale systems based on piecewise Lyapunov functions.

    PubMed

    Zhang, Hongbin; Feng, Gang

    2008-10-01

    This paper is concerned with stability analysis and H(infinity) decentralized control of discrete-time fuzzy large-scale systems based on piecewise Lyapunov functions. The fuzzy large-scale systems consist of J interconnected discrete-time Takagi-Sugeno (T-S) fuzzy subsystems, and the stability analysis is based on Lyapunov functions that are piecewise quadratic. It is shown that the stability of the discrete-time fuzzy large-scale systems can be established if a piecewise quadratic Lyapunov function can be constructed, and moreover, the function can be obtained by solving a set of linear matrix inequalities (LMIs) that are numerically feasible. The H(infinity) controllers are also designed by solving a set of LMIs based on these powerful piecewise quadratic Lyapunov functions. It is demonstrated via numerical examples that the stability and controller synthesis results based on the piecewise quadratic Lyapunov functions are less conservative than those based on the common quadratic Lyapunov functions.

  20. Neural network and fuzzy logic based secondary cells charging algorithm development and the controller architecture for implementation

    NASA Astrophysics Data System (ADS)

    Ullah, Muhammed Zafar

    Neural Network and Fuzzy Logic are the two key technologies that have recently received growing attention in solving real world, nonlinear, time variant problems. Because of their learning and/or reasoning capabilities, these techniques do not need a mathematical model of the system, which may be difficult, if not impossible, to obtain for complex systems. One of the major problems in portable or electric vehicle world is secondary cell charging, which shows non-linear characteristics. Portable-electronic equipment, such as notebook computers, cordless and cellular telephones and cordless-electric lawn tools use batteries in increasing numbers. These consumers demand fast charging times, increased battery lifetime and fuel gauge capabilities. All of these demands require that the state-of-charge within a battery be known. Charging secondary cells Fast is a problem, which is difficult to solve using conventional techniques. Charge control is important in fast charging, preventing overcharging and improving battery life. This research work provides a quick and reliable approach to charger design using Neural-Fuzzy technology, which learns the exact battery charging characteristics. Neural-Fuzzy technology is an intelligent combination of neural net with fuzzy logic that learns system behavior by using system input-output data rather than mathematical modeling. The primary objective of this research is to improve the secondary cell charging algorithm and to have faster charging time based on neural network and fuzzy logic technique. Also a new architecture of a controller will be developed for implementing the charging algorithm for the secondary battery.

  1. Atlas-based segmentation of 3D cerebral structures with competitive level sets and fuzzy control.

    PubMed

    Ciofolo, Cybèle; Barillot, Christian

    2009-06-01

    We propose a novel approach for the simultaneous segmentation of multiple structures with competitive level sets driven by fuzzy control. To this end, several contours evolve simultaneously toward previously defined anatomical targets. A fuzzy decision system combines the a priori knowledge provided by an anatomical atlas with the intensity distribution of the image and the relative position of the contours. This combination automatically determines the directional term of the evolution equation of each level set. This leads to a local expansion or contraction of the contours, in order to match the boundaries of their respective targets. Two applications are presented: the segmentation of the brain hemispheres and the cerebellum, and the segmentation of deep internal structures. Experimental results on real magnetic resonance (MR) images are presented, quantitatively assessed and discussed.

  2. Fuzzy-neural control of an aircraft tracking camera platform

    NASA Technical Reports Server (NTRS)

    Mcgrath, Dennis

    1994-01-01

    A fuzzy-neural control system simulation was developed for the control of a camera platform used to observe aircraft on final approach to an aircraft carrier. The fuzzy-neural approach to control combines the structure of a fuzzy knowledge base with a supervised neural network's ability to adapt and improve. The performance characteristics of this hybrid system were compared to those of a fuzzy system and a neural network system developed independently to determine if the fusion of these two technologies offers any advantage over the use of one or the other. The results of this study indicate that the fuzzy-neural approach to control offers some advantages over either fuzzy or neural control alone.

  3. Fuzzy logic based intelligent control of a variable speed cage machine wind generation system. Report for January 1994-June 1995

    SciTech Connect

    Simoes, M.G.; Bose, B.K.; Spiegel, R.J.

    1995-10-01

    The paper describes a variable speed wind generation system where fuzzy logic principles are used for efficiency optimization and performance enhancement control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which pumps power to a utility grid or can supply to an autonomous system. The generation system has fuzzy logic control with vector control in the inner loops. A fuzzy controller tracks the generator speed with the wind velocity to extract the maximum power. A second fuzzy controller programs the machine flux for light load efficiency improvement, and third fuzzy controller gives robust speed control against wind gust and turbine oscillatory torque. The complete control system has been developed, analyzed, validated by simulation study, and then performances have been evaluated in detail.

  4. Application of fuzzy logic-neural network based reinforcement learning to proximity and docking operations: Translational controller results

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant

    1992-01-01

    The reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we also use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use two terms interchangeable to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS). This report is the deliverable D3 in our project activity and provides the test results of the fuzzy learning translational controller. This report is organized in six sections. Based on our experience and analysis with the attitude controller, we have modified the basic configuration of the reinforcement learning algorithm in ARIC as described in section 2. The shuttle translational controller and its implementation in fuzzy learning architecture is described in section 3. Two test cases that we have performed are described in section 4. Our results and conclusions are discussed in section 5, and section 6 provides future plans and summary for the project.

  5. Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant.

    PubMed

    Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit

    2014-10-01

    This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The proposed control scheme is verified through computer simulations.

  6. Fuzzy PID controller combines with closed-loop optimal fuzzy reasoning for pitch control system

    NASA Astrophysics Data System (ADS)

    Li, Yezi; Xiao, Cheng; Sun, Jinhao

    2013-03-01

    PID and fuzzy PID controller are applied into the pitch control system. PID control has simple principle and its parameters setting are rather easy. Fuzzy control need not to establish the mathematical of the control system and has strong robustness. The advantages of fuzzy PID control are simple, easy in setting parameters and strong robustness. Fuzzy PID controller combines with closed-loop optimal fuzzy reasoning (COFR), which can effectively improve the robustness, when the robustness is special requirement. MATLAB software is used for simulations, results display that fuzzy PID controller which combines with COFR has better performances than PID controller when errors exist.

  7. Observer-Based Adaptive Fuzzy Backstepping Control for a Class of Stochastic Nonlinear Strict-Feedback Systems.

    PubMed

    Shaocheng Tong; Yue Li; Yongming Li; Yanjun Liu

    2011-12-01

    In this paper, two adaptive fuzzy output feedback control approaches are proposed for a class of uncertain stochastic nonlinear strict-feedback systems without the measurements of the states. The fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the fuzzy state observer, and by combining the adaptive backstepping technique with fuzzy adaptive control design, an adaptive fuzzy output feedback control approach is developed. To overcome the problem of "explosion of complexity" inherent in the proposed control method, the dynamic surface control (DSC) technique is incorporated into the first adaptive fuzzy control scheme, and a simplified adaptive fuzzy output feedback DSC approach is developed. It is proved that these two control approaches can guarantee that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) in mean square, and the observer errors and the output of the system converge to a small neighborhood of the origin. A simulation example is provided to show the effectiveness of the proposed approaches.

  8. Fuzzy chaos control for vehicle lateral dynamics based on active suspension system

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Chen, Long; Jiang, Haobin; Yuan, Chaochun; Xia, Tian

    2014-07-01

    The existing research of the active suspension system (ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.

  9. Fuzzy rule-based expert system for evaluating level of asthma control.

    PubMed

    Zolnoori, Maryam; Fazel Zarandi, Mohammad Hosain; Moin, Mostafa; Taherian, Mehran

    2012-10-01

    Asthma control is a final goal of asthma therapy process. Despite outstanding progress in discovering various variables affecting asthma control levels, disregarding some of them by physicians and variables' inherent uncertainty are the major causes of underestimating of asthma control levels and as a result asthma morbidity and mortality. In this paper, we provide an intelligent fuzzy system as a solution for this problem. Inputs of this system are composed of 14 variables organized in five modules of respiratory symptoms severity, bronchial obstruction, asthma instability, current treatment, and quality of life. Output of this system is degree of asthma control defined in the score (0-10). Evaluation of performance of this system by 42 asthmatic patients at asthma, allergy, immunology research center of Emam Khomeini hospital, Tehran, Iran reinforces that the system's results not only correspond with the evaluations of experienced asthma physicians, but represents slight differences in the levels of asthma control between asthmatic patients.

  10. Fuzzy Behavior-Based Navigation for Planetary

    NASA Technical Reports Server (NTRS)

    Tunstel, Edward; Danny, Harrison; Lippincott, Tanya; Jamshidi, Mo

    1997-01-01

    Adaptive behavioral capabilities are necessary for robust rover navigation in unstructured and partially-mapped environments. A control approach is described which exploits the approximate reasoning capability of fuzzy logic to produce adaptive motion behavior. In particular, a behavior-based architecture for hierarchical fuzzy control of microrovers is presented. Its structure is described, as well as mechanisms of control decision-making which give rise to adaptive behavior. Control decisions for local navigation result from a consensus of recommendations offered only by behaviors that are applicable to current situations. Simulation predicts the navigation performance on a microrover in simplified Mars-analog terrain.

  11. Fuzzy multinomial control chart and its application

    NASA Astrophysics Data System (ADS)

    Wibawati, Mashuri, Muhammad; Purhadi, Irhamah

    2016-03-01

    Control chart is a technique that has been used widely in industry and services. P chart is the simplest control chart. In this chart, item is classified into two categories as either conforming and non conforming. This chart based on binomial distribution. In practice, each item can classify in more than two categories such as very bad, bad, good and very good. Then to monitor the process we used multinomial p control chart. However, if the classification is an element of vagueness, the fuzzy multinomial control chart (FM) is more appropriately used. Control limit of FM chart obtained multinomial distribution and the degree of membership using fuzzy trianguler are 0, 0.25. 0.5 and 1. This chart will be applied to the data glass and will compare with multinomial p control chart.

  12. Non-linear system control using a recurrent fuzzy neural network based on improved particle swarm optimisation

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Jian; Lee, Chi-Yung

    2010-04-01

    This article introduces a recurrent fuzzy neural network based on improved particle swarm optimisation (IPSO) for non-linear system control. An IPSO method which consists of the modified evolutionary direction operator (MEDO) and the Particle Swarm Optimisation (PSO) is proposed in this article. A MEDO combining the evolutionary direction operator and the migration operation is also proposed. The MEDO will improve the global search solution. Experimental results have shown that the proposed IPSO method controls the magnetic levitation system and the planetary train type inverted pendulum system better than the traditional PSO and the genetic algorithm methods.

  13. Free-flying dynamics and control of an astronaut assistant robot based on fuzzy sliding mode algorithm

    NASA Astrophysics Data System (ADS)

    Gao, Qing; Liu, Jinguo; Tian, Tongtong; Li, Yangmin

    2017-09-01

    Space robots can perform some tasks in harsh environment as assistants of astronauts or substitutions of astronauts. Taking the limited working time and the arduous task of the astronauts in the space station into account, an astronaut assistant robot (AAR-2) applied in the space station is proposed and designed in this paper. The AAR-2 is achieved with some improvements on the basis of AAR-1 which was designed before. It can exploit its position and attitude sensors and control system to free flight or hover in the space cabin. And it also has a definite environmental awareness and artificial intelligence to complete some specified tasks under the control of astronauts or autonomously. In this paper, it mainly analyzes and controls the 6-DOF motion of the AAR-2. Firstly, the system configuration of AAR-2 is specifically described, and the movement principles are analyzed. Secondly, according to the physical model of the AAR-2, the Newton - Euler equation is applied in the preparation of space dynamics model of 6-DOF motion. Then, according to the mathematical model's characteristics which are nonlinear and strong coupling, a dual closed loop position and attitude controller based on fuzzy sliding mode control is proposed and designed. Finally, simulation experiments are appropriate to provide for AAR-2 control system by using Matlab/Simulink. From the simulation results it can be observed that the designed fuzzy sliding mode controller can control the 6-DOF motion of AAR-2 quickly and precisely.

  14. Type-1 and Type-2 Fuzzy Logic and Sliding-Mode Based Speed Control of Direct Torque and Flux Control Induction Motor Drives - A Comparative Study

    NASA Astrophysics Data System (ADS)

    Ramesh, Tejavathu; Panda, A. K.; Kumar, S. Shiva

    2013-08-01

    In this research study, the performance of direct torque and flux control induction motor drive (IMD) is presented using five different speed control techniques. The performance of IMD mainly depends on the design of speed controller. The PI speed controller requires precise mathematical model, continuous and appropriate gain values. Therefore, adaptive control based speed controller is desirable to achieve high-performance drive. The sliding-mode speed controller (SMSC) is developed to achieve continuous control of motor speed and torque. Furthermore, the type-1 fuzzy logic speed controller (T1FLSC), type-1 fuzzy SMSC and a new type-2 fuzzy logic speed controller are designed to obtain high performance, dynamic tracking behaviour, speed accuracy and also robustness to parameter variations. The performance of each control technique has been tested for its robustness to parameter uncertainties and load disturbances. The detailed comparison of different control schemes are carried out in a MATALB/Simulink environment at different speed operating conditions, such as, forward and reversal motoring under no-load, load and sudden change in speed.

  15. Simulation and experimental control of a 3-RPR parallel robot using optimal fuzzy controller and fast on/off solenoid valves based on the PWM wave.

    PubMed

    Moezi, Seyed Alireza; Rafeeyan, Mansour; Zakeri, Ehsan; Zare, Amin

    2016-03-01

    In this paper, a robust optimal fuzzy controller based on the Pulse Width Modulation (PWM) technique is proposed to control a laboratory parallel robot using inexpensive on/off solenoid valves. The controller coefficients are determined using Modified Cuckoo Optimization Algorithm. The objective function of this method is considered such that the results show the position tracking by the robot with less force and more efficiency. Regarding the results of experimental tests, the control strategy with on/off valves indicates good performance such that the maximum value of RMS of error for a circular path with increasing force on the system is 3.1mm. Furthermore, the results show the superiority of the optimal fuzzy controller compared with optimal PID controller in tracking paths with different conditions and uncertainties. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Disturbance observer based fault estimation and dynamic output feedback fault tolerant control for fuzzy systems with local nonlinear models.

    PubMed

    Han, Jian; Zhang, Huaguang; Wang, Yingchun; Liu, Yang

    2015-11-01

    This paper addresses the problems of fault estimation (FE) and fault tolerant control (FTC) for fuzzy systems with local nonlinear models, external disturbances, sensor and actuator faults, simultaneously. Disturbance observer (DO) and FE observer are designed, simultaneously. Compared with the existing results, the proposed observer is with a wider application range. Using the estimation information, a novel fuzzy dynamic output feedback fault tolerant controller (DOFFTC) is designed. The controller can be used for the fuzzy systems with unmeasurable local nonlinear models, mismatched input disturbances, and measurement output affecting by sensor faults and disturbances. At last, the simulation shows the effectiveness of the proposed methods.

  17. Comments on fuzzy control systems design via fuzzy Lyapunov functions.

    PubMed

    Guelton, Kevin; Guerra, Thierry-Marie; Bernal, Miguel; Bouarar, Tahar; Manamanni, Noureddine

    2010-06-01

    This paper considers the work entitled "Fuzzy control systems design via fuzzy Lyapunov functions" and published in IEEE Transactions on Systems, Man, and Cybernetics-Part B , where the authors try to extend the work of Rhee and Won. Nevertheless, the results proposed by Li have been obtained without taking into account a necessary path independency condition to ensure the line integral function to be a Lyapunov function candidate, and consequently, the proposed global asymptotic stability and stabilization conditions are unsuitable.

  18. Fuzzy logic control of an AGV

    NASA Astrophysics Data System (ADS)

    Kelkar, Nikhal; Samu, Tayib; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The controller incorporates a fuzzy logic approach for steering and speed control, a neuro-fuzzy approach for ultrasound sensing (not discussed in this paper) and an overall expert system. The advantages of a modular system are related to portability and transportability, i.e. any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors. The speed and steering fuzzy logic controller is supervised by a 486 computer through a multi-axis motion controller. The obstacle avoidance system is based on a micro-controller interfaced with six ultrasonic transducers. This micro- controller independently handles all timing and distance calculations and sends a steering angle correction back to the computer via the serial line. This design yields a portable independent system in which high speed computer communication is not necessary. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected by a vision tracking device that transmits the X, Y coordinates of the lane marker to the control computer. Simulation and testing of these systems yielded promising results. This design, in its modularity, creates a portable autonomous fuzzy logic controller applicable to any mobile vehicle with only minor adaptations.

  19. Analysis of Aircraft Control Performance using a Fuzzy Rule Base Representation of the Cooper-Harper Aircraft Handling Quality Rating

    NASA Technical Reports Server (NTRS)

    Tseng, Chris; Gupta, Pramod; Schumann, Johann

    2006-01-01

    The Cooper-Harper rating of Aircraft Handling Qualities has been adopted as a standard for measuring the performance of aircraft since it was introduced in 1966. Aircraft performance, ability to control the aircraft, and the degree of pilot compensation needed are three major key factors used in deciding the aircraft handling qualities in the Cooper- Harper rating. We formulate the Cooper-Harper rating scheme as a fuzzy rule-based system and use it to analyze the effectiveness of the aircraft controller. The automatic estimate of the system-level handling quality provides valuable up-to-date information for diagnostics and vehicle health management. Analyzing the performance of a controller requires a set of concise design requirements and performance criteria. Ir, the case of control systems fm a piloted aircraft, generally applicable quantitative design criteria are difficult to obtain. The reason for this is that the ultimate evaluation of a human-operated control system is necessarily subjective and, with aircraft, the pilot evaluates the aircraft in different ways depending on the type of the aircraft and the phase of flight. In most aerospace applications (e.g., for flight control systems), performance assessment is carried out in terms of handling qualities. Handling qualities may be defined as those dynamic and static properties of a vehicle that permit the pilot to fully exploit its performance in a variety of missions and roles. Traditionally, handling quality is measured using the Cooper-Harper rating and done subjectively by the human pilot. In this work, we have formulated the rules of the Cooper-Harper rating scheme as fuzzy rules with performance, control, and compensation as the antecedents, and pilot rating as the consequent. Appropriate direct measurements on the controller are related to the fuzzy Cooper-Harper rating system: a stability measurement like the rate of change of the cost function can be used as an indicator if the aircraft is under

  20. Analysis of Aircraft Control Performance using a Fuzzy Rule Base Representation of the Cooper-Harper Aircraft Handling Quality Rating

    NASA Technical Reports Server (NTRS)

    Tseng, Chris; Gupta, Pramod; Schumann, Johann

    2006-01-01

    The Cooper-Harper rating of Aircraft Handling Qualities has been adopted as a standard for measuring the performance of aircraft since it was introduced in 1966. Aircraft performance, ability to control the aircraft, and the degree of pilot compensation needed are three major key factors used in deciding the aircraft handling qualities in the Cooper- Harper rating. We formulate the Cooper-Harper rating scheme as a fuzzy rule-based system and use it to analyze the effectiveness of the aircraft controller. The automatic estimate of the system-level handling quality provides valuable up-to-date information for diagnostics and vehicle health management. Analyzing the performance of a controller requires a set of concise design requirements and performance criteria. Ir, the case of control systems fm a piloted aircraft, generally applicable quantitative design criteria are difficult to obtain. The reason for this is that the ultimate evaluation of a human-operated control system is necessarily subjective and, with aircraft, the pilot evaluates the aircraft in different ways depending on the type of the aircraft and the phase of flight. In most aerospace applications (e.g., for flight control systems), performance assessment is carried out in terms of handling qualities. Handling qualities may be defined as those dynamic and static properties of a vehicle that permit the pilot to fully exploit its performance in a variety of missions and roles. Traditionally, handling quality is measured using the Cooper-Harper rating and done subjectively by the human pilot. In this work, we have formulated the rules of the Cooper-Harper rating scheme as fuzzy rules with performance, control, and compensation as the antecedents, and pilot rating as the consequent. Appropriate direct measurements on the controller are related to the fuzzy Cooper-Harper rating system: a stability measurement like the rate of change of the cost function can be used as an indicator if the aircraft is under

  1. Coordination of Distributed Fuzzy Behaviors in Mobile Robot Control

    NASA Technical Reports Server (NTRS)

    Tunstel, E.

    1995-01-01

    This presentation describes an approach to behavior coordination and conflict resolution within the context of a hierarchical architecture of fuzzy behaviors. Coordination is achieved using weighted decision-making based on behavioral degrees of applicability. This strategy is appropriate for fuzzy control of systems that can be represented by hierarchical or decentralized structures.

  2. Control synthesis of continuous-time T-S fuzzy systems with local nonlinear models.

    PubMed

    Dong, Jiuxiang; Wang, Youyi; Yang, Guang-Hong

    2009-10-01

    This paper is concerned with the problem of designing fuzzy controllers for a class of nonlinear dynamic systems. The considered nonlinear systems are described by T-S fuzzy models with nonlinear local models, and the fuzzy models have fewer fuzzy rules than conventional T-S fuzzy models with local linear models. A new fuzzy control scheme with local nonlinear feedbacks is proposed, and the corresponding control synthesis conditions are given in terms of solutions to a set of linear matrix inequalities (LMIs). In contrast to the existing methods for fuzzy control synthesis, the new proposed control design method is based on fewer fuzzy rules and less computational burden. Moreover, the local nonlinear feedback laws in the new fuzzy controllers are also helpful in achieving good control effects. Numerical examples are given to illustrate the effectiveness of the proposed method.

  3. Reliable Mixed H∞ and Passivity-Based Control for Fuzzy Markovian Switching Systems With Probabilistic Time Delays and Actuator Failures.

    PubMed

    Sakthivel, Rathinasamy; Selvi, Subramaniam; Mathiyalagan, Kalidass; Shi, Peng

    2015-12-01

    This paper is concerned with the problem of reliable mixed H ∞ and passivity-based control for a class of stochastic Takagi-Sugeno (TS) fuzzy systems with Markovian switching and probabilistic time varying delays. Different from the existing works, the H∞ and passivity control problem with probabilistic occurrence of time-varying delays and actuator failures is considered in a unified framework, which is more general in some practical situations. The main aim of this paper is to design a reliable mixed H∞ and passivity-based controller such that the stochastic TS fuzzy system with Markovian switching is stochastically stable with a prescribed mixed H∞ and passivity performance level γ > 0 . Based on the Lyapunov-Krasovskii functional (LKF) involving lower and upper bound of probabilistic time delay and convex combination technique, a new set of delay-dependent sufficient condition in terms of linear matrix inequalities (LMIs) is established for obtaining the required result. Finally, a numerical example based on the modified truck-trailer model is given to demonstrate the effectiveness and applicability of the proposed design techniques.

  4. A fuzzy model based adaptive PID controller design for nonlinear and uncertain processes.

    PubMed

    Savran, Aydogan; Kahraman, Gokalp

    2014-03-01

    We develop a novel adaptive tuning method for classical proportional-integral-derivative (PID) controller to control nonlinear processes to adjust PID gains, a problem which is very difficult to overcome in the classical PID controllers. By incorporating classical PID control, which is well-known in industry, to the control of nonlinear processes, we introduce a method which can readily be used by the industry. In this method, controller design does not require a first principal model of the process which is usually very difficult to obtain. Instead, it depends on a fuzzy process model which is constructed from the measured input-output data of the process. A soft limiter is used to impose industrial limits on the control input. The performance of the system is successfully tested on the bioreactor, a highly nonlinear process involving instabilities. Several tests showed the method's success in tracking, robustness to noise, and adaptation properties. We as well compared our system's performance to those of a plant with altered parameters with measurement noise, and obtained less ringing and better tracking. To conclude, we present a novel adaptive control method that is built upon the well-known PID architecture that successfully controls highly nonlinear industrial processes, even under conditions such as strong parameter variations, noise, and instabilities.

  5. Predictive neuro-fuzzy controller for multilink robot manipulator

    NASA Astrophysics Data System (ADS)

    Kaymaz, Emre; Mitra, Sunanda

    1995-10-01

    A generalized controller based on fuzzy clustering and fuzzy generalized predictive control has been developed for nonlinear systems including multilink robot manipulators. The proposed controller is particularly useful when the dynamics of the nonlinear system to be controlled are difficult to yield exact solutions and the system specification can be obtained in terms of crisp input-output pairs. It inherits the advantages of both fuzzy logic and predictive control. The identification of the nonlinear mapping of the system to be controlled is realized by a three- layer feed-forward neural network model employing the input-output data obtained from the system. The speed of convergence of the neural network is improved by the introduction of a fuzzy logic controlled backpropagation learning algorithm. The neural network model is then used as a simulation tool to generate the input-output data for developing the predictive fuzzy logic controller for the chosen nonlinear system. The use of fuzzy clustering facilitates automatic generation of membership relations of the input-output data. Unlike the linguistic fuzzy logic controller which requires approximate knowledge of the shape and the numbers of the membership functions in the input and output universes of the discourse, this integrated neuro-fuzzy approach allows one to find the fuzzy relations and the membership functions more accurately. Furthermore, it is not necessary to tune the controller. For a two-link robot manipulator, the performance of this predictive fuzzy controller is shown to be superior to that of a conventional controller employing an ARMA model of the system in terms of accuracy and consumption of energy.

  6. A high-speed multiplexer-based fine-grain pipelined architecture for digital fuzzy logic controllers

    NASA Astrophysics Data System (ADS)

    Rashidi, Bahram; Masoud Sayedi, Sayed

    2015-12-01

    Design and implementation of a high-speed multiplexer-based fine-grain pipelined architecture for a general digital fuzzy logic controller has been presented. All the operators have been designed at gate level. For the multiplication, a multiplexer-based modified Wallace tree multiplier has been designed, and for the division and addition multiplexer-based non-restoring parallel divider and multiplexer-based Manchester adder have been used, respectively. To further increase the processing speed, fine-grain pipelining technique has been employed. By using this technique, the critical path of the circuit is broken into finer pieces. Based on the proposed architecture, and by using Quartus II 9.1, a sample two-input, one-output digital fuzzy logic controller with eight rules has been successfully synthesised and implemented on Stratix II field programmable gate array. Simulations were carried out using DSP Builder in the MATLAB/Simulink tool at a maximum clock rate of 301.84 MHz.

  7. Hierarchical fuzzy control of low-energy building systems

    SciTech Connect

    Yu, Zhen; Dexter, Arthur

    2010-04-15

    A hierarchical fuzzy supervisory controller is described that is capable of optimizing the operation of a low-energy building, which uses solar energy to heat and cool its interior spaces. The highest level fuzzy rules choose the most appropriate set of lower level rules according to the weather and occupancy information; the second level fuzzy rules determine an optimal energy profile and the overall modes of operation of the heating, ventilating and air-conditioning system (HVAC); the third level fuzzy rules select the mode of operation of specific equipment, and assign schedules to the local controllers so that the optimal energy profile can be achieved in the most efficient way. Computer simulation is used to compare the hierarchical fuzzy control scheme with a supervisory control scheme based on expert rules. The performance is evaluated by comparing the energy consumption and thermal comfort. (author)

  8. Analysis of inventory difference using fuzzy controllers

    SciTech Connect

    Zardecki, A.

    1994-08-01

    The principal objectives of an accounting system for safeguarding nuclear materials are as follows: (a) to provide assurance that all material quantities are present in the correct amount; (b) to provide timely detection of material loss; and (c) to estimate the amount of any loss and its location. In fuzzy control, expert knowledge is encoded in the form of fuzzy rules, which describe recommended actions for different classes of situations represented by fuzzy sets. The concept of a fuzzy controller is applied to the forecasting problem in a time series, specifically, to forecasting and detecting anomalies in inventory differences. This paper reviews the basic notion underlying the fuzzy control systems and provides examples of application. The well-known material-unaccounted-for diffusion plant data of Jaech are analyzed using both feedforward neural networks and fuzzy controllers. By forming a deference between the forecasted and observed signals, an efficient method to detect small signals in background noise is implemented.

  9. Development of a self-tuning fuzzy logic controller

    SciTech Connect

    Huang, S.H.; Nelson, R.M.

    1999-07-01

    To avoid the laborious task of modifying control rule sets for fuzzy logic controllers, a novel model-based self-tuning strategy has been developed. The performance of this advanced fuzzy logic controller is measured and analyzed in a linguistic plane. An optimal performance trajectory functions as the control model. The self-tuning strategy improves the performance automatically until it converges to a predetermined optimal global criterion. The experimental results indicate that the actual performance trajectory of the advanced fuzzy controller with the self-tuning strategy has reached the optimal criterion.

  10. Adaptive fuzzy logic control of a static VAR system

    SciTech Connect

    Dash, P.K.; Routray, A.; Panda, P.C.; Panda, S.K.

    1995-12-31

    A fuzzy gain scheduling scheme for PID controller for transient and dynamic voltage stabilization of power transmission systems has been presented in this paper. Fuzzy rules and reasoning are utilized on-line to determine the controller parameters based on the error signal and its derivative. The static VAR controller is designed with the bus angle deviation and its rate as the input signal to a fuzzy PI or PID control loop. This control is tested for a power transmission system supplying dynamic loads and provides superior performance.

  11. Development of Real Time Implementation of 5/5 Rule based Fuzzy Logic Controller Shunt Active Power Filter for Power Quality Improvement

    NASA Astrophysics Data System (ADS)

    Puhan, Pratap Sekhar; Ray, Pravat Kumar; Panda, Gayadhar

    2016-12-01

    This paper presents the effectiveness of 5/5 Fuzzy rule implementation in Fuzzy Logic Controller conjunction with indirect control technique to enhance the power quality in single phase system, An indirect current controller in conjunction with Fuzzy Logic Controller is applied to the proposed shunt active power filter to estimate the peak reference current and capacitor voltage. Current Controller based pulse width modulation (CCPWM) is used to generate the switching signals of voltage source inverter. Various simulation results are presented to verify the good behaviour of the Shunt active Power Filter (SAPF) with proposed two levels Hysteresis Current Controller (HCC). For verification of Shunt Active Power Filter in real time, the proposed control algorithm has been implemented in laboratory developed setup in dSPACE platform.

  12. Applied intelligent systems: blending fuzzy logic with conventional control

    NASA Astrophysics Data System (ADS)

    Filev, Dimitar; Syed, Fazal U.

    2010-05-01

    The aim of this paper is to show that design of applied intelligent control systems requires different types of blending between fuzzy logic and conventional control systems. Two alternative automotive applications - a manufacturing process control problem and an advisory system for fuel efficient driving - that benefit from both fuzzy and control theories are reviewed and different levels of prioritisations of both approaches are discussed based on the specificity of the applications.

  13. Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive.

    PubMed

    Ramesh, Tejavathu; Kumar Panda, Anup; Shiva Kumar, S

    2015-07-01

    In this research study, a model reference adaptive system (MRAS) speed estimator for speed sensorless direct torque and flux control (DTFC) of an induction motor drive (IMD) using two adaptation mechanism schemes are proposed to replace the conventional proportional integral controller (PIC). The first adaptation mechanism scheme is based on Type-1 fuzzy logic controller (T1FLC), which is used to achieve high performance sensorless drive in both transient as well as steady state conditions. However, the Type-1 fuzzy sets are certain and unable to work effectively when higher degree of uncertainties presents in the system which can be caused by sudden change in speed or different load disturbances, process noise etc. Therefore, a new Type-2 fuzzy logic controller (T2FLC) based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties and improves the performance and also robust to various load torque and sudden change in speed conditions, respectively. The detailed performances of various adaptation mechanism schemes are carried out in a MATLAB/Simulink environment with a speed sensor and speed sensorless modes of operation when an IMD is operating under different operating conditions, such as, no-load, load and sudden change in speed, respectively. To validate the different control approaches, the system also implemented on real-time system and adequate results are reported for its validation.

  14. Adaptive control design for a class of nonlinear systems based on fuzzy logic systems with scalers and saturators

    NASA Astrophysics Data System (ADS)

    Wang, Yin-He; Luo, Liang; Fan, Yong-Qing; Zhang, Yun; Liu, Xiao-Ping; Zhang, Si-Ying

    2014-03-01

    Many practical engineering applications require various types of fuzzy logic systems (FLSs) to design adaptive controllers for nonlinear systems with uncertainties. In this article, we will consider a fundamental theoretical question: is it possible to find a unified adaptive control design method suited to various types of FLSs? In order to solve this problem, we will introduce scalers and saturators at the input and output terminals of FLSs to form the extended FLSs (EFLS). The scalers and saturators have adjustable parameters. By designing the updated laws of these parameters and the estimate values of the fuzzy approximate accuracies, stable adaptive fuzzy controllers can be realised for a class of nonlinear systems with unknown homogeneous drift functions and gains. The proposed design method is only dependent on the outputs of EFLS and the above updated laws, thus increasing its adaptability. The fuzzy control scheme introduced in this article is suitable for all fuzzy systems with or without fuzzy rules. Simulations will also be used to show the validity of the method proposed in this article.

  15. Fuzzy power control algorithm for a pressurized water reactor

    SciTech Connect

    Hah, Y.J. ); Lee, B.W. )

    1994-05-01

    A fuzzy power control algorithm is presented for automatic reactor power control in a pressurized water reactor (PWR). Automatic power shape control is complicated by the use of control rods with a conventional proportional-integral-differential controller because it is highly coupled with reactivity compensation. Thus, manual shape controls are usually employed even for the limited capability needed for load-following operations including frequency control. In an attempt to achieve automatic power shape control without any design modifications to the core, a fuzzy power control algorithm is proposed. For the fuzzy control, the rule base is formulated based on a multiple-input multiple-output system. The minimum operation rule and the center of area method are implemented for the development of the fuzzy algorithm. The fuzzy power control algorithm has been applied to Yonggwang Nuclear Unit 3. The simulation results show that the fuzzy control can be adapted as a practical control strategy for automatic reactor power control of PWRs during the load-following operations.

  16. Fuzzy Logic-Based Audio Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Malcangi, M.

    2008-11-01

    Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.

  17. Fuzzy Adaptive Control System of a Non-Stationary Plant

    NASA Astrophysics Data System (ADS)

    Nadezhdin, Igor S.; Goryunov, Alexey G.; Manenti, Flavio

    2016-08-01

    This paper proposes a hybrid fuzzy PID control logic, whose tuning parameters are provided in real time. The fuzzy controller tuning is made on the basis of Mamdani controller. In addition, this paper compares a fuzzy logic based PID with PID regulators whose tuning is performed by standard and well-known methods. In some cases the proposed tuning methodology ensures a control performance that is comparable to that guaranteed by simpler and more common tuning methods. However, in case of dynamic changes in the parameters of the controlled system, conventionally tuned PID controllers do not show to be robust enough, thus suggesting that fuzzy logic based PIDs are definitively more reliable and effective.

  18. A fuzzy control design case: The fuzzy PLL

    NASA Technical Reports Server (NTRS)

    Teodorescu, H. N.; Bogdan, I.

    1992-01-01

    The aim of this paper is to present a typical fuzzy control design case. The analyzed controlled systems are the phase-locked loops (PLL's)--classic systems realized in both analogic and digital technology. The crisp PLL devices are well known.

  19. Performance analysis of electronic power transformer based on neuro-fuzzy controller.

    PubMed

    Acikgoz, Hakan; Kececioglu, O Fatih; Yildiz, Ceyhun; Gani, Ahmet; Sekkeli, Mustafa

    2016-01-01

    In recent years, electronic power transformer (EPT), which is also called solid state transformer, has attracted great interest and has been used in place of the conventional power transformers. These transformers have many important functions as high unity power factor, low harmonic distortion, constant DC bus voltage, regulated output voltage and compensation capability. In this study, proposed EPT structure contains a three-phase pulse width modulation rectifier that converts 800 Vrms AC to 2000 V DC bus at input stage, a dual active bridge converter that provides 400 V DC bus with 5:1 high frequency transformer at isolation stage and a three-phase two level inverter that is used to obtain AC output at output stage. In order to enhance dynamic performance of EPT structure, neuro fuzzy controllers which have durable and nonlinear nature are used in input and isolation stages instead of PI controllers. The main aim of EPT structure with the proposed controller is to improve the stability of power system and to provide faster response against disturbances. Moreover, a number of simulation results are carried out to verify EPT structure designed in MATLAB/Simulink environment and to analyze compensation ability for voltage harmonics, voltage flicker and voltage sag/swell conditions.

  20. Aircraft Attitude Control by Fuzzy Control

    NASA Astrophysics Data System (ADS)

    Kato, Akio; Matsuba, Takashi

    The fuzzy control law to improve dutch roll characteristics of aircraft was designed and its control performance was evaluated. First, the control law was designed for a small-high speed aircraft at low altitude and low-speed flight conditions. The control law was then applied to flight conditions from minimum speed to supersonic speed and from sea level to high altitude. The control performance for these conditions was evaluated. Furthermore, this control law was adapted to a large transport aircraft with no parameter changes. The evaluation showed good control performance to improve the dutch roll characteristics under all flight conditions for both small high-speed aircraft and large transport aircraft without the parameter changes. This means that the fuzzy control proved to provide effective flexible application to aircraft stability augmentation. If an aircraft in actual flight is in strong air turbulence, inputs to the fuzzy controller may exceed the limit of its effective range. To cope with this problem, the countermeasures were introduced, their methods tested, and their effectiveness proved.

  1. Tuning of a neuro-fuzzy controller by genetic algorithm.

    PubMed

    Seng, T L; Bin Khalid, M; Yusof, R

    1999-01-01

    Due to their powerful optimization property, genetic algorithms (GAs) are currently being investigated for the development of adaptive or self-tuning fuzzy logic control systems. This paper presents a neuro-fuzzy logic controller (NFLC) where all of its parameters can be tuned simultaneously by GA. The structure of the controller is based on the radial basis function neural network (RBF) with Gaussian membership functions. The NFLC tuned by GA can somewhat eliminate laborious design steps such as manual tuning of the membership functions and selection of the fuzzy rules. The GA implementation incorporates dynamic crossover and mutation probabilistic rates for faster convergence. A flexible position coding strategy of the NFLC parameters is also implemented to obtain near optimal solutions. The performance of the proposed controller is compared with a conventional fuzzy controller and a PID controller tuned by GA. Simulation results show that the proposed controller offers encouraging advantages and has better performance.

  2. Direct discrete-time design approach to robust ? sampled-data observer-based output-feedback fuzzy control

    NASA Astrophysics Data System (ADS)

    Kim, Do Wan; Lee, Ho Jae

    2016-01-01

    This paper addresses a direct discrete-time design methodology for a robust ? sampled-data observer-based output-feedback stabilisation problem for a class of non-linear systems suffering from parametric uncertainties and disturbances that is identically modelled as a Takagi-Sugeno (T-S) fuzzy model at least locally. The primary features in the current development are that (1) we are based on an exact (rather than approximate) discrete-time model in an integral (rather than closed) form while (2) the ? control performance is characterised with respect to an ? (rather than l2) norm. It is shown that the uncertain sampled-data non-linear control system is robustly asymptotically stable if the employed discrete-time model is so. Design conditions are investigated in the discrete-time Lyapunov sense and concretised in the format of linear matrix inequalities.

  3. Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process.

    PubMed

    Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan

    2013-12-01

    An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.

  4. Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.

    NASA Technical Reports Server (NTRS)

    Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.

    2014-01-01

    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).

  5. Fuzzy controller design for passive continuous-time affine T-S fuzzy models with relaxed stability conditions.

    PubMed

    Chang, Wen-Jer; Ku, Cheung-Chieh; Huang, Pei-Hwa; Chang, Wei

    2009-07-01

    In order to design a fuzzy controller for complex nonlinear systems, the work of this paper deals with developing the relaxed stability conditions for continuous-time affine Takagi-Sugeno (T-S) fuzzy models. By applying the passivity theory and Lyapunov theory, the relaxed stability conditions are derived to guarantee the stability and passivity property of closed-loop systems. Based on these relaxed stability conditions, the synthesis of fuzzy controller design problem for passive continuous-time affine T-S fuzzy models can be easily solved via the Optimal Convex Programming Algorithm (OCPA) and Linear Matrix Inequality (LMI) technique. At last, a simulation example for the fuzzy control of a nonlinear synchronous generator system is presented to manifest the applications and effectiveness of proposed fuzzy controller design approach.

  6. Fuzzy logic applications to expert systems and control

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    A considerable amount of work on the development of fuzzy logic algorithms and application to space related control problems has been done at the Johnson Space Center (JSC) over the past few years. Particularly, guidance control systems for space vehicles during proximity operations, learning systems utilizing neural networks, control of data processing during rendezvous navigation, collision avoidance algorithms, camera tracking controllers, and tether controllers have been developed utilizing fuzzy logic technology. Several other areas in which fuzzy sets and related concepts are being considered at JSC are diagnostic systems, control of robot arms, pattern recognition, and image processing. It has become evident, based on the commercial applications of fuzzy technology in Japan and China during the last few years, that this technology should be exploited by the government as well as private industry for energy savings.

  7. Fuzzy controllers and fuzzy expert systems: industrial applications of fuzzy technology

    NASA Astrophysics Data System (ADS)

    Bonissone, Piero P.

    1995-06-01

    We will provide a brief description of the field of approximate reasoning systems, with a particular emphasis on the development of fuzzy logic control (FLC). FLC technology has drastically reduced the development time and deployment cost for the synthesis of nonlinear controllers for dynamic systems. As a result we have experienced an increased number of FLC applications. In a recently published paper we have illustrated some of our efforts in FLC technology transfer, covering projects in turboshaft aircraft engine control, stream turbine startup, steam turbine cycling optimization, resonant converter power supply control, and data-induced modeling of the nonlinear relationship between process variable in a rolling mill stand. These applications will be illustrated in the oral presentation. In this paper, we will compare these applications in a cost/complexity framework, and examine the driving factors that led to the use of FLCs in each application. We will emphasize the role of fuzzy logic in developing supervisory controllers and in maintaining explicit the tradeoff criteria used to manage multiple control strategies. Finally, we will describe some of our FLC technology research efforts in automatic rule base tuning and generation, leading to a suite of programs for reinforcement learning, supervised learning, genetic algorithms, steepest descent algorithms, and rule clustering.

  8. Fuzzy-PI-based centralised control of semi-isolated FP-SEPIC/ZETA BDC in a PV/battery hybrid system

    NASA Astrophysics Data System (ADS)

    Mahendran, Venmathi; Ramabadran, Ramaprabha

    2016-11-01

    Multiport converters with centralised controller have been most commonly used in stand-alone photovoltaic (PV)/battery hybrid system to supply the load smoothly without any disturbances. This study presents the performance analysis of four-port SEPIC/ZETA bidirectional converter (FP-SEPIC/ZETA BDC) using various types of centralised control schemes like Fuzzy tuned proportional integral controller (Fuzzy-PI), fuzzy logic controller (FLC) and conventional proportional integral (PI) controller. The proposed FP-SEPIC/ZETA BDC with various control strategy is derived for simultaneous power management of a PV source using distributed maximum power point tracking (DMPPT) algorithm, a rechargeable battery, and a load by means of centralised controller. The steady state and the dynamic response of the FP-SEPIC/ZETA BDC are analysed using three different types of controllers under line and load regulation. The Fuzzy-PI-based control scheme improves the dynamic response of the system when compared with the FLC and the conventional PI controller. The power balance between the ports is achieved by pseudorandom carrier modulation scheme. The response of the FP-SEPIC/ZETA BDC is also validated experimentally using hardware prototype model of 500 W system. The effectiveness of the control strategy is validated using simulation and experimental results.

  9. Advanced intelligent coordinated control of coal fired power plant based on fuzzy reasoning and auto-tuning

    SciTech Connect

    Li, S.Y.; Liu, H.B.; Cai, W.J.; Soh, Y.C.; Xie, L.H.

    2004-07-01

    The load following operation of coal-fired boiler-turbine unit in power plants can lead to changes in operating points, and it results in nonlinear variations of the plant variables and parameters. As there exist strong couplings between the main steam pressure control loop and the power output control loop in the boiler-turbine unit with large time-delay and uncertainties, automatic coordinated control of the two loops is a very challenging problem. This paper presents a new coordinated control strategy (CCS) which is organized into two levels: a basic control level and a high supervision level. PID-type controllers are used in the basic level to perform basic control functions while the decoupling between two control loops can be realized in the high level. Moreover, PID-type controllers can be auto-tuned to achieve a better control performance in the whole operating range and to reject the unmeasurable disturbances. A special subclass of fuzzy inference systems, namely the Gaussian partition system with evenly spaced midpoints, is also proposed to auto-tune the PID controller in the main steam pressure loop based on the error signal and its first difference to overcome uncertainties caused by changing fuel calorific value, machine wear, contamination of the boiler heating surfaces and plant modeling errors, etc. The developed CCS has been implemented in a power plant in China, and satisfactory industrial operation results demonstrate that the proposed control strategy has enhanced the adaptability and robustness of the process.

  10. What procedure to choose while designing a fuzzy control? Towards mathematical foundations of fuzzy control

    NASA Technical Reports Server (NTRS)

    Kreinovich, Vladik YA.; Quintana, Chris; Lea, Robert

    1991-01-01

    Fuzzy control has been successfully applied in industrial systems. However, there is some caution in using it. The reason is that it is based on quite reasonable ideas, but each of these ideas can be implemented in several different ways, and depending on which of the implementations chosen different results are achieved. Some implementations lead to a high quality control, some of them not. And since there are no theoretical methods for choosing the implementation, the basic way to choose it now is experimental. But if one chooses a method that is good for several examples, there is no guarantee that it will work fine in all of them. Hence the caution. A theoretical basis for choosing the fuzzy control procedures is provided. In order to choose a procedure that transforms a fuzzy knowledge into a control, one needs, first, to choose a membership function for each of the fuzzy terms that the experts use, second, to choose operations of uncertainty values that corresponds to 'and' and 'or', and third, when a membership function for control is obtained, one must defuzzy it, that is, somehow generate a value of the control u that will be actually used. A general approach that will help to make all these choices is described: namely, it is proved that under reasonable assumptions membership functions should be linear or fractionally linear, defuzzification must be described by a centroid rule and describe all possible 'and' and 'or' operations. Thus, a theoretical explanation of the existing semi-heuristic choices is given and the basis for the further research on optimal fuzzy control is formulated.

  11. A hybrid clustering based fuzzy structure for vibration control - Part 2: An application to semi-active vehicle seat-suspension system

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-05-01

    This work presents a novel neuro-fuzzy controller (NFC) for car-driver's seat-suspension system featuring magnetorheological (MR) dampers. The NFC is built based on the algorithm for building adaptive neuro-fuzzy inference systems (ANFISs) named B-ANFIS, which has been developed in Part 1, and fuzzy logic inference systems (FISs). In order to create the NFC, the following steps are performed. Firstly, a control strategy based on a ride-comfort-oriented tendency (RCOT) is established. Subsequently, optimal FISs are built based on a genetic algorithm (GA) to estimate the desired damping force that satisfies the RCOT corresponding to the road status at each time. The B-ANFIS is then used to build ANFISs for inverse dynamic models of the suspension system (I-ANFIS). Based on the FISs, the desired force values are calculated according to the status of road at each time. The corresponding exciting current value to be applied to the MR damper is then determined by the I-ANFIS. In order to validate the effectiveness of the developed neuro-fuzzy controller, control performances of the seat-suspension systems featuring MR dampers are evaluated under different road conditions. In addition, a comparative work between conventional skyhook controller and the proposed NFC is undertaken in order to demonstrate superior control performances of the proposed methodology.

  12. Study on the idity fuzzy neural network controller based on improved genetic algorithm of intelligent temperature control system in vegetable greenhouse

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Yuan, Hongbo; Zhou, Yuhong; Wang, Nan

    2009-07-01

    In order to create the environment that the suitable crop grows, direct against the characteristic of the system of the greenhouse. The aim of the research was to study the intelligent temperature control system in vegetable greenhouse. Based on computer automatic control ,a kind of intelligent temperature control system in vegetable greenhouse was designed. The design thought of systematic hardwares such as temperature collection system, temperature display, control system, heater control circuit in the heater were expounded in detail The control algorithm of the system was improved and system simulation was made by using MATLAB finally. The control algorithm of the system was improved by a new fuzzy neural network controller. The stimulation curve showed that the system had better controlling and tracking performances ,higher accuracy of controlling the temperature. And this system and host epigyny computer could constitute the secondary computer control system which was favorable for realizing the centralized management of the production.

  13. Interval type-2 fuzzy neural network controller for a multivariable anesthesia system based on a hardware-in-the-loop simulation.

    PubMed

    El-Nagar, Ahmad M; El-Bardini, Mohammad

    2014-05-01

    This manuscript describes the use of a hardware-in-the-loop simulation to simulate the control of a multivariable anesthesia system based on an interval type-2 fuzzy neural network (IT2FNN) controller. The IT2FNN controller consists of an interval type-2 fuzzy linguistic process as the antecedent part and an interval neural network as the consequent part. It has been proposed that the IT2FNN controller can be used for the control of a multivariable anesthesia system to minimize the effects of surgical stimulation and to overcome the uncertainty problem introduced by the large inter-individual variability of the patient parameters. The parameters of the IT2FNN controller were trained online using a back-propagation algorithm. Three experimental cases are presented. All of the experimental results show good performance for the proposed controller over a wide range of patient parameters. Additionally, the results show better performance than the type-1 fuzzy neural network (T1FNN) controller under the effect of surgical stimulation. The response of the proposed controller has a smaller settling time and a smaller overshoot compared with the T1FNN controller and the adaptive interval type-2 fuzzy logic controller (AIT2FLC). The values of the performance indices for the proposed controller are lower than those obtained for the T1FNN controller and the AIT2FLC. The IT2FNN controller is superior to the T1FNN controller for the handling of uncertain information due to the structure of type-2 fuzzy logic systems (FLSs), which are able to model and minimize the numerical and linguistic uncertainties associated with the inputs and outputs of the FLSs. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream

    PubMed Central

    Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.

    2016-01-01

    This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081

  15. Fuzzy attitude control of solar sail via linear matrix inequalities

    NASA Astrophysics Data System (ADS)

    Baculi, Joshua; Ayoubi, Mohammad A.

    2017-09-01

    This study presents a fuzzy tracking controller based on the Takagi-Sugeno (T-S) fuzzy model of the solar sail. First, the T-S fuzzy model is constructed by linearizing the existing nonlinear equations of motion of the solar sail. Then, the T-S fuzzy model is used to derive the state feedback controller gains for the Twin Parallel Distributed Compensation (TPDC) technique. The TPDC tracks and stabilizes the attitude of the solar sail to any desired state in the presence of parameter uncertainties and external disturbances while satisfying actuator constraints. The performance of the TPDC is compared to a PID controller that is tuned using the Ziegler-Nichols method. Numerical simulation shows the TPDC outperforms the PID controller when stabilizing the solar sail to a desired state.

  16. Fuzzy-polar control of wind-turbine generator

    SciTech Connect

    Idowu, P.

    1995-12-31

    This paper presents a wind-turbine blade pitch angle controller based on fuzzy polar technique. the technique takes advantage of fuzzy-linguistic modeling in expressing the natural non-linearity or imprecision of the wind-turbine system in determining pitch angles for speed and power regulation. The fuzzy-polar method presents wind-turbine state in the phase-plane in terms of its rotational speed deviation and acceleration. The state vectors thus derived serve as an indicator of the magnitude of departure from the nominal operating point. In order to shift operating state back to the phase plane origin, an acceleration or deceleration control is applied through the pitch-angle adjustment mechanism as defined by the fuzzy-linguistic control law. The performance of the pitch control design method is demonstrated on a simulated wind-turbine-driven synchronous generator.

  17. Performance Analysis of Extracted Rule-Base Multivariable Type-2 Self-Organizing Fuzzy Logic Controller Applied to Anesthesia

    PubMed Central

    Fan, Shou-Zen; Shieh, Jiann-Shing

    2014-01-01

    We compare type-1 and type-2 self-organizing fuzzy logic controller (SOFLC) using expert initialized and pretrained extracted rule-bases applied to automatic control of anaesthesia during surgery. We perform experimental simulations using a nonfixed patient model and signal noise to account for environmental and patient drug interaction uncertainties. The simulations evaluate the performance of the SOFLCs in their ability to control anesthetic delivery rates for maintaining desired physiological set points for muscle relaxation and blood pressure during a multistage surgical procedure. The performances of the SOFLCs are evaluated by measuring the steady state errors and control stabilities which indicate the accuracy and precision of control task. Two sets of comparisons based on using expert derived and extracted rule-bases are implemented as Wilcoxon signed-rank tests. Results indicate that type-2 SOFLCs outperform type-1 SOFLC while handling the various sources of uncertainties. SOFLCs using the extracted rules are also shown to outperform those using expert derived rules in terms of improved control stability. PMID:25587533

  18. Design and implementation of fuzzy logic controllers. Thesis Final Report, 27 Jul. 1992 - 1 Jan. 1993

    NASA Technical Reports Server (NTRS)

    Abihana, Osama A.; Gonzalez, Oscar R.

    1993-01-01

    The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.

  19. Adaptive Fuzzy Control of a Direct Drive Motor

    NASA Technical Reports Server (NTRS)

    Medina, E.; Kim, Y. T.; Akbaradeh-T., M. -R.

    1997-01-01

    This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is verified by simulation results.

  20. Adaptive Fuzzy Control of a Direct Drive Motor: Experimental Aspects

    NASA Technical Reports Server (NTRS)

    Medina, E.; Akbarzadeh-T, M.-R.; Kim, Y. T.

    1998-01-01

    This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is experimentally verified. The real-time performance is compared with simulation results.

  1. Synthesis of nonlinear control strategies from fuzzy logic control algorithms

    NASA Technical Reports Server (NTRS)

    Langari, Reza

    1993-01-01

    Fuzzy control has been recognized as an alternative to conventional control techniques in situations where the plant model is not sufficiently well known to warrant the application of conventional control techniques. Precisely what fuzzy control does and how it does what it does is not quite clear, however. This important issue is discussed and in particular it is shown how a given fuzzy control scheme can resolve into a nonlinear control law and that in those situations the success of fuzzy control hinges on its ability to compensate for nonlinearities in plant dynamics.

  2. A Research of Weapon System Storage Reliability Simulation Method Based on Fuzzy Theory

    NASA Astrophysics Data System (ADS)

    Shi, Yonggang; Wu, Xuguang; Chen, Haijian; Xu, Tingxue

    Aimed at the problem of the new, complicated weapon equipment system storage reliability analyze, the paper researched on the methods of fuzzy fault tree analysis and fuzzy system storage reliability simulation, discussed the path that regarded weapon system as fuzzy system, and researched the storage reliability of weapon system based on fuzzy theory, provided a method of storage reliability research for the new, complicated weapon equipment system. As an example, built up the fuzzy fault tree of one type missile control instrument based on function analysis, and used the method of fuzzy system storage reliability simulation to analyze storage reliability index of control instrument.

  3. Fuzzy theory based control method for an in-pipe robot to move in variable resistance environment

    NASA Astrophysics Data System (ADS)

    Li, Te; Ma, Shugen; Li, Bin; Wang, Minghui; Wang, Yuechao

    2015-11-01

    Most of the existing screw drive in-pipe robots cannot actively adjust the maximum traction capacity, which limits the adaptability to the wide range of variable environment resistance, especially in curved pipes. In order to solve this problem, a screw drive in-pipe robot based on adaptive linkage mechanism is proposed. The differential property of the adaptive linkage mechanism allows the robot to move without motion interference in the straight and varied curved pipes by adjusting inclining angles of rollers self-adaptively. The maximum traction capacity of the robot can be changed by actively adjusting the inclining angles of rollers. In order to improve the adaptability to the variable resistance, a torque control method based on the fuzzy controller is proposed. For the variable environment resistance, the proposed control method can not only ensure enough traction force, but also limit the output torque in a feasible region. In the simulations, the robot with the proposed control method is compared to the robot with fixed inclining angles of rollers. The results show that the combination of the torque control method and the proposed robot achieves the better adaptability to the variable resistance in the straight and curved pipes.

  4. Systematic methods for the design of a class of fuzzy logic controllers

    NASA Astrophysics Data System (ADS)

    Yasin, Saad Yaser

    2002-09-01

    Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental

  5. Control loop noise rejection using fuzzy logic.

    PubMed

    Hay, Glen; Svrcek, William; Ross, Timothy; Young, Brent

    2005-10-01

    This paper describes an application of fuzzy logic to noise rejection in a control loop. This new use of fuzzy logic solves the problem of sluggish control loop response when using a set-point range to stop constant valve chattering due to noise in the output signal being sent to a control valve. Multiple related variables and a general understanding of their inter-relationship must be available for this method to be successfully applied. An overview of the specific fuzzy logic method used for this application is presented along with guidelines for the practical application. In addition, this paper includes results from the successful implementation of fuzzy logic to a control loop on a pilot plant distillation column.

  6. Fuzzy controllers in nuclear material accounting

    SciTech Connect

    Zardecki, A.

    1994-10-01

    Fuzzy controllers are applied to predicting and modeling a time series, with particular emphasis on anomaly detection in nuclear material inventory differences. As compared to neural networks, the fuzzy controllers can operate in real time; their learning process does not require many iterations to converge. For this reason fuzzy controllers are potentially useful in time series forecasting, where the authors want to detect and identify trends in real time. They describe an object-oriented implementation of the algorithm advanced by Wang and Mendel. Numerical results are presented both for inventory data and time series corresponding to chaotic situations, such as encountered in the context of strange attractors. In the latter case, the effects of noise on the predictive power of the fuzzy controller are explored.

  7. Enhanced adaptive fuzzy sliding mode control for uncertain nonlinear systems

    NASA Astrophysics Data System (ADS)

    Roopaei, Mehdi; Zolghadri, Mansoor; Meshksar, Sina

    2009-09-01

    In this article, a novel Adaptive Fuzzy Sliding Mode Control (AFSMC) methodology is proposed based on the integration of Sliding Mode Control (SMC) and Adaptive Fuzzy Control (AFC). Making use of the SMC design framework, we propose two fuzzy systems to be used as reaching and equivalent parts of the SMC. In this way, we make use of the fuzzy logic to handle uncertainty/disturbance in the design of the equivalent part and provide a chattering free control for the design of the reaching part. To construct the equivalent control law, an adaptive fuzzy inference engine is used to approximate the unknown parts of the system. To get rid of the chattering, a fuzzy logic model is assigned for reaching control law, which acting like the saturation function technique. The main advantage of our proposed methodology is that the structure of the system is unknown and no knowledge of the bounds of parameters, uncertainties and external disturbance are required in advance. Using Lyapunov stability theory and Barbalat's lemma, the closed-loop system is proved to be stable and convergence properties of the system is assured. Simulation examples are presented to verify the effectiveness of the method. Results are compared with some other methods proposed in the past research.

  8. A Car-Steering Model Based on an Adaptive Neuro-Fuzzy Controller

    NASA Astrophysics Data System (ADS)

    Amor, Mohamed Anis Ben; Oda, Takeshi; Watanabe, Shigeyoshi

    This paper is concerned with the development of a car-steering model for traffic simulation. Our focus in this paper is to propose a model of the steering behavior of a human driver for different driving scenarios. These scenarios are modeled in a unified framework using the idea of target position. The proposed approach deals with the driver’s approximation and decision-making mechanisms in tracking a target position by means of fuzzy set theory. The main novelty in this paper lies in the development of a learning algorithm that has the intention to imitate the driver’s self-learning from his driving experience and to mimic his maneuvers on the steering wheel, using linear networks as local approximators in the corresponding fuzzy areas. Results obtained from the simulation of an obstacle avoidance scenario show the capability of the model to carry out a human-like behavior with emphasis on learned skills.

  9. Universal fuzzy models and universal fuzzy controllers for discrete-time nonlinear systems.

    PubMed

    Gao, Qing; Feng, Gang; Dong, Daoyi; Liu, Lu

    2015-05-01

    This paper investigates the problems of universal fuzzy model and universal fuzzy controller for discrete-time nonaffine nonlinear systems (NNSs). It is shown that a kind of generalized T-S fuzzy model is the universal fuzzy model for discrete-time NNSs satisfying a sufficient condition. The results on universal fuzzy controllers are presented for two classes of discrete-time stabilizable NNSs. Constructive procedures are provided to construct the model reference fuzzy controllers. The simulation example of an inverted pendulum is presented to illustrate the effectiveness and advantages of the proposed method. These results significantly extend the approach for potential applications in solving complex engineering problems.

  10. A Load Frequency Control in an Off-Grid Sustainable Power System Based on a Parameter Adaptive PID-Type Fuzzy Controller

    NASA Astrophysics Data System (ADS)

    Ronilaya, Ferdian; Miyauchi, Hajime

    2014-10-01

    This paper presents a new implementation of a parameter adaptive PID-type fuzzy controller (PAPIDfc) for a grid-supporting inverter of battery to alleviate frequency fluctuations in a wind-diesel power system. A variable speed wind turbine that drives a permanent magnet synchronous generator is assumed for demonstrations. The PAPIDfc controller is built from a set of control rules that adopts the droop method and uses only locally measurable frequency signal. The output control signal is determined from the knowledge base and the fuzzy inference. The input-derivative gain and the output-integral gain of the PAPIDfc are tuned online. To ensure safe battery operating limits, we also propose a protection scheme called intelligent battery protection (IBP). Several simulation experiments are performed by using MATLAB®/SimPowersystems™. Next, to verify the scheme's effectiveness, the simulation results are compared with the results of conventional controllers. The results demonstrate the effectiveness of the PAPIDfc scheme to control a grid-supporting inverter of the battery in the reduction of frequency fluctuations.

  11. An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions

    NASA Astrophysics Data System (ADS)

    Ajay Kumar, M.; Srikanth, N. V.

    2014-03-01

    In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.

  12. Decomposed fuzzy systems and their application in direct adaptive fuzzy control.

    PubMed

    Hsueh, Yao-Chu; Su, Shun-Feng; Chen, Ming-Chang

    2014-10-01

    In this paper, a novel fuzzy structure termed as the decomposed fuzzy system (DFS) is proposed to act as the fuzzy approximator for adaptive fuzzy control systems. The proposed structure is to decompose each fuzzy variable into layers of fuzzy systems, and each layer is to characterize one traditional fuzzy set. Similar to forming fuzzy rules in traditional fuzzy systems, layers from different variables form the so-called component fuzzy systems. DFS is proposed to provide more adjustable parameters to facilitate possible adaptation in fuzzy rules, but without introducing a learning burden. It is because those component fuzzy systems are independent so that it can facilitate minimum distribution learning effects among component fuzzy systems. It can be seen from our experiments that even when the rule number increases, the learning time in terms of cycles is still almost constant. It can also be found that the function approximation capability and learning efficiency of the DFS are much better than that of the traditional fuzzy systems when employed in adaptive fuzzy control systems. Besides, in order to further reduce the computational burden, a simplified DFS is proposed in this paper to satisfy possible real time constraints required in many applications. From our simulation results, it can be seen that the simplified DFS can perform fairly with a more concise decomposition structure.

  13. Improving nitrogen removal using a fuzzy neural network-based control system in the anoxic/oxic process.

    PubMed

    Huang, Mingzhi; Ma, Yongwen; Wan, Jinquan; Wang, Yan; Chen, Yangmei; Yoo, Changkyoo

    2014-10-01

    Due to the inherent complexity, uncertainty, and posterity in operating a biological wastewater treatment process, it is difficult to control nitrogen removal in the biological wastewater treatment process. In order to cope with this problem and perform a cost-effective operation, an integrated neural-fuzzy control system including a fuzzy neural network (FNN) predicted model for forecasting the nitrate concentration of the last anoxic zone and a FNN controller were developed to control the nitrate recirculation flow and realize nitrogen removal in an anoxic/oxic (A/O) process. In order to improve the network performance, a self-learning ability embedded in the FNN model was emphasized for improving the rule extraction performance. The results indicate that reasonable forecasting and control performances had been achieved through the developed control system. The effluent COD, TN, and the operation cost were reduced by about 14, 10.5, and 17 %, respectively.

  14. Fuzzy-control-based five-step Li-ion battery charger by using AC impedance technique

    NASA Astrophysics Data System (ADS)

    Asadi, Houshyar; Aghay Kaboli, Seyed Hamidreza; Mohammadi, Arash; Oladazimi, Maysam

    2012-01-01

    In This paper the previous Li-Ion battery charger techniques are reviewed and compared and the new fuzzy logic battery charging method which is proposed to optimize and improve the battery charger efficiently. According to results of comparison, using the fuzzy control charging system can shorten the charging time with higher efficiency and lower temperature rise. Additionally, we have used optimal Li-ion battery charging frequency by using AC impedance technique which means if the battery is charged by the optimal charging frequency fZmin, that obtain from Bode Plot of the Li-ion battery, the charging time and charging efficiency will improve. Thus using the switching frequency (fZmin) of the battery charger and the fuzzy logic control on the same system can optimize the performance on the charging process. According to the experimental results, the proposed charger can charge the Li-ion batteries with higher efficiency 97.16%, lower temperature rise1.513degree celosias, fast charging period around 50.43 minute and long life cycle. The results in this paper are presented by using MATLAB and dsPIC30F2020 is used as controller applying designed fuzzy logic inside.

  15. Fuzzy-control-based five-step Li-ion battery charger by using AC impedance technique

    NASA Astrophysics Data System (ADS)

    Asadi, Houshyar; Aghay Kaboli, Seyed Hamidreza; Mohammadi, Arash; Oladazimi, Maysam

    2011-12-01

    In This paper the previous Li-Ion battery charger techniques are reviewed and compared and the new fuzzy logic battery charging method which is proposed to optimize and improve the battery charger efficiently. According to results of comparison, using the fuzzy control charging system can shorten the charging time with higher efficiency and lower temperature rise. Additionally, we have used optimal Li-ion battery charging frequency by using AC impedance technique which means if the battery is charged by the optimal charging frequency fZmin, that obtain from Bode Plot of the Li-ion battery, the charging time and charging efficiency will improve. Thus using the switching frequency (fZmin) of the battery charger and the fuzzy logic control on the same system can optimize the performance on the charging process. According to the experimental results, the proposed charger can charge the Li-ion batteries with higher efficiency 97.16%, lower temperature rise1.513degree celosias, fast charging period around 50.43 minute and long life cycle. The results in this paper are presented by using MATLAB and dsPIC30F2020 is used as controller applying designed fuzzy logic inside.

  16. Industrial application of fuzzy control in bioprocesses.

    PubMed

    Honda, Hiroyuki; Kobayashi, Takeshi

    2004-01-01

    In a bioprocess, for example a fermentation process, many biological reactions are always working in intracellular space and the control of such a process is very complicated. Bioprocesses have therefore been controlled by the judgment of the experts who are the skilled operators and have much experience in the control of such processes. Such experience is normally described in terms of linguistic IF-THEN rules. Fuzzy inference is a powerful tool for incorporating linguistic rules into computer control of such processes. Fuzzy control is divided into two types--direct fuzzy control of process variables, for example sugar feed rate and fermentation temperature, and indirect control via phase recognition. In bioprocess control the experts decide the value of controllable process variables such as sugar feed rate or temperature as output data from several state variables as input data. Fuzzy control is regarded as a computational algorithm in which the causal relationship between input and output data are incorporated. In Japan fuzzy control has already been applied to practical industrial processes such as production of pravastatin precursor and vitamin B2 and to the Japanese sake mashing process; these examples are reviewed. In addition, an advanced control tool developed from a study on fuzzy control, fuzzy neural networks (FNN), are introduced. FNN can involve complicated causality between input and output data in a network model. FNN have been proven to be applicable to a research in biomedicine, for example modeling of the complicated causality between electroencephalogram or gene expression profiling data and prognostic prediction. Successful results on this research will be also explained.

  17. Fuzzy based attitude controller for flexible spacecraft with on/off thrusters. M.S. Thesis - M.I.T., 1993

    NASA Technical Reports Server (NTRS)

    Knapp, Roger Glenn

    1993-01-01

    A fuzzy-based attitude controller is designed for attitude control of a generic spacecraft with on/off thrusters. The controller is comprised of packages of rules dedicated to addressing different objectives (e.g., disturbance rejection, low fuel consumption, avoiding the excitation of flexible appendages, etc.). These rule packages can be inserted or removed depending on the requirements of the particular spacecraft and are parameterized based on vehicle parameters such as inertia or operational parameters such as the maneuvering rate. Individual rule packages can be 'weighted' relative to each other to emphasize the importance of one objective relative to another. Finally, the fuzzy controller and rule packages are demonstrated using the high-fidelity Space Shuttle Interactive On-Orbit Simulator (IOS) while performing typical on-orbit operations and are subsequently compared with the existing shuttle flight control system performance.

  18. Fuzzy control of parabolic antenna with backlash compensation

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammed; Noor, Samsul Bahari B. Mohd

    2015-05-01

    A fuzzy logic based controller (FLC) was proposed for position control of a parabolic dish antenna system with the major aim of eradicating the effect backlash disturbance which may be present in the system. The disturbance is nonlinear and is capable of generating steady state positional errors. Simulation results obtained using SIMULINK/MATLAB 2012a were compared with those obtained when the controller was proportional-derivative controller (PDC). The fuzzy controller portrays that it has the capability of reducing the noise due to backlash and possibly others more than the proportional-derivative controller.

  19. A comparative design and tuning for conventional fuzzy control.

    PubMed

    Li, H X

    1997-01-01

    A new methodology is introduced for designing and tuning the scaling gains of the conventional fuzzy logic controller (FLC) based on its well-tuned linear counterpart. The conventional FLC with a linear rule base is very similar to its linear counterpart. The linear three-term controller has proportional, integral and/or derivative gains. Similarly, the conventional fuzzy three-term controller also has fuzzy proportional, integral and/or derivative gains. The new concept "fuzzy transfer function" is invented to connect these fuzzy gains with the corresponding scaling gains. The comparative gain design is presented by using the gains of the well-tuned linear counterpart as the initial fuzzy gains of the conventional FLC. Furthermore, the relationship between the scaling gains and the performance can be deduced to produce the comparative tuning algorithm, which can tune the scaling gains to their optimum by less trial and error. The performance comparison in the simulation demonstrates the viability of the new methodology.

  20. Fuzzy Identities and Attribute-Based Encryption

    NASA Astrophysics Data System (ADS)

    Sahai, Amit; Waters, Brent

    We introduce a new type of Identity-Based Encryption (IBE) scheme that we call Fuzzy Identity-Based Encryption. In fuzzy IBE, we view an identity as a set of descriptive attributes. A fuzzy IBE scheme allows for a private key for an identity,ωù, to decrypt a ciphertext encrypted with an identity, ùω´, if and only if the identities ùω and ùω´are close to each other as measured by the "set overlap" distance metric. A fuzzy IBE scheme can be applied to enable encryption using biometric inputs as identities; the error-tolerance property of a fuzzy IBE scheme is precisely what allows for the use of biometric identities, which inherently will have some noise each time they are sampled. Additionally, we show that fuzzy IBE can be used for a type of application that we term "attribute-based encryption."

  1. Disturbance observer-based fuzzy control for flexible spacecraft combined attitude & sun tracking system

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth; Razoumny, Yury

    2017-04-01

    This paper investigates the combined attitude and sun-tracking control problem in the presence of external disturbances and internal disturbances, caused by flexible appendages. A new method based on Pythagorean trigonometric identity is proposed to drive the solar arrays. Using the control input and attitude output, a disturbance observer is developed to estimate the lumped disturbances consisting of the external and internal disturbances, and then compensated by the disturbance observer-based controller via a feed-forward control. The stability analysis demonstrates that the desired attitude trajectories are followed even in the presence of external disturbance and internal flexible modes. The main features of the proposed control scheme are that it can be designed separately and incorporated into the baseline controller to form the observer-based control system, and the combined attitude and sun-tracking control is achieved without the conventional attitude actuators. The attitude and sun-tracking performance using the proposed strategy is evaluated and validated through numerical simulations. The proposed control solution can serve as a fail-safe measure in case of failure of the conventional attitude actuator, which triggered by automatic reconfiguration of the attitude control components.

  2. Hemodynamic management of congestive heart failure by means of a multiple mode rule-based control system using fuzzy logic.

    PubMed

    Held, C M; Roy, R J

    2000-01-01

    A rule-based system was designed to control the mean arterial pressure (MAP) and the cardiac output (CO) of a patient with congestive heart failure (CHF), using two vasoactive drugs: sodium nitroprusside (SNP) and dopamine (DPM). The controller has three different modes, that engage according to the hemodynamic state. The critical conditions control mode (CCC) determines the initial infusion rates, and continues active if the MAP or the CO fall outside of the defined criticality thresholds: an upper and a lower boundary for the MAP and a lower boundary for the CO. Inside the boundaries the control is performed by noncritical conditions control modes (NCC's), which are fuzzy logic controllers. If the CO is within normal range and the MAP is close to the goal range, then the MAP is driven using only SNP, in a single-input-single-output mode (NCC-SISO). Otherwise the NCC multiple-input-multiple-output is active (NCC-MIMO). The goal values for the controlled variables are defined as a band of 5 mmHg for the MAP and 5 mL/kg/min for the CO, but there is little concern for this application if the CO is too high (i.e., in practical terms the CO only needs to achieve a necessary minimum rate). The NCC-MIMO includes a gain adaptation algorithm to cope with the wide variety in sensitivities to SNP. Supervisory capabilities to ensure adequate drug delivery complete the controller scheme. After extensive testing and tuning on a CHF-hemodynamics nonlinear model, the control system was applied in dog experiments, which led to further enhancements. The results show an adequate control, presenting a fast response to setpoint changes with an acceptable overshoot.

  3. Fuzzy fractional order sliding mode controller for nonlinear systems

    NASA Astrophysics Data System (ADS)

    Delavari, H.; Ghaderi, R.; Ranjbar, A.; Momani, S.

    2010-04-01

    In this paper, an intelligent robust fractional surface sliding mode control for a nonlinear system is studied. At first a sliding PD surface is designed and then, a fractional form of these networks PDα, is proposed. Fast reaching velocity into the switching hyperplane in the hitting phase and little chattering phenomena in the sliding phase is desired. To reduce the chattering phenomenon in sliding mode control (SMC), a fuzzy logic controller is used to replace the discontinuity in the signum function at the reaching phase in the sliding mode control. For the problem of determining and optimizing the parameters of fuzzy sliding mode controller (FSMC), genetic algorithm (GA) is used. Finally, the performance and the significance of the controlled system two case studies (robot manipulator and coupled tanks) are investigated under variation in system parameters and also in presence of an external disturbance. The simulation results signify performance of genetic-based fuzzy fractional sliding mode controller.

  4. Optoelectronic fuzzy associative memory with controllable attraction basin sizes

    NASA Astrophysics Data System (ADS)

    Wen, Zhiqing; Campbell, Scott; Wu, Weishu; Yeh, Pochi

    1995-10-01

    We propose and demonstrate a new fuzzy associative memory model that provides an option to control the sizes of the attraction basins in neural networks. In our optoelectronic implementation we use spatial/polarization encoding to represent the fuzzy variables. Shadow casting of the encoded patterns is employed to yield the fuzzy-absolute difference between fuzzy variables.

  5. Implementation of a new fuzzy vector control of induction motor.

    PubMed

    Rafa, Souad; Larabi, Abdelkader; Barazane, Linda; Manceur, Malik; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2014-05-01

    The aim of this paper is to present a new approach to control an induction motor using type-1 fuzzy logic. The induction motor has a nonlinear model, uncertain and strongly coupled. The vector control technique, which is based on the inverse model of the induction motors, solves the coupling problem. Unfortunately, in practice this is not checked because of model uncertainties. Indeed, the presence of the uncertainties led us to use human expertise such as the fuzzy logic techniques. In order to maintain the decoupling and to overcome the problem of the sensitivity to the parametric variations, the field-oriented control is replaced by a new block control. The simulation results show that the both control schemes provide in their basic configuration, comparable performances regarding the decoupling. However, the fuzzy vector control provides the insensitivity to the parametric variations compared to the classical one. The fuzzy vector control scheme is successfully implemented in real-time using a digital signal processor board dSPACE 1104. The efficiency of this technique is verified as well as experimentally at different dynamic operating conditions such as sudden loads change, parameter variations, speed changes, etc. The fuzzy vector control is found to be a best control for application in an induction motor.

  6. Optical generation of fuzzy-based rules.

    PubMed

    Gur, Eran; Mendlovic, David; Zalevsky, Zeev

    2002-08-10

    In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.

  7. Optical Generation of Fuzzy-Based Rules

    NASA Astrophysics Data System (ADS)

    Gur, Eran; Mendlovic, David; Zalevsky, Zeev

    2002-08-01

    In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.

  8. Variable-order fuzzy fractional PID controller.

    PubMed

    Liu, Lu; Pan, Feng; Xue, Dingyu

    2015-03-01

    In this paper, a new tuning method of variable-order fractional fuzzy PID controller (VOFFLC) is proposed for a class of fractional-order and integer-order control plants. Fuzzy logic control (FLC) could easily deal with parameter variations of control system, but the fractional-order parameters are unable to change through this way and it has confined the effectiveness of FLC. Therefore, an attempt is made in this paper to allow all the five parameters of fractional-order PID controller vary along with the transformation of system structure as the outputs of FLC, and the influence of fractional orders λ and μ on control systems has been investigated to make the fuzzy rules for VOFFLC. Four simulation results of different plants are shown to verify the availability of the proposed control strategy.

  9. Terminology and concepts of control and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Aldridge, Jack; Lea, Robert; Jani, Yashvant; Weiss, Jonathan

    1990-01-01

    Viewgraphs on terminology and concepts of control and fuzzy logic are presented. Topics covered include: control systems; issues in the design of a control system; state space control for inverted pendulum; proportional-integral-derivative (PID) controller; fuzzy controller; and fuzzy rule processing.

  10. [Research on magnetic coupling centrifugal blood pump control based on a self-tuning fuzzy PI algorithm].

    PubMed

    Yang, Lei; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Wang, Wei; Zhang, Haibo; Han, Lu; Xu, Liang

    2014-10-01

    The purpose of this paper is to report the research and design of control system of magnetic coupling centrifugal blood pump in our laboratory, and to briefly describe the structure of the magnetic coupling centrifugal blood pump and principles of the body circulation model. The performance of blood pump is not only related to materials and structure, but also depends on the control algorithm. We studied the algorithm about motor current double-loop control for brushless DC motor. In order to make the algorithm adjust parameter change in different situations, we used the self-tuning fuzzy PI control algorithm and gave the details about how to design fuzzy rules. We mainly used Matlab Simulink to simulate the motor control system to test the performance of algorithm, and briefly introduced how to implement these algorithms in hardware system. Finally, by building the platform and conducting experiments, we proved that self-tuning fuzzy PI control algorithm could greatly improve both dynamic and static performance of blood pump and make the motor speed and the blood pump flow stable and adjustable.

  11. Fuzzy logic control of the building structure with CLEMR dampers

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Cheng; Xu, Zhao-Dong; Huang, Xing-Huai; Zhu, Jun-Tao

    2013-04-01

    The semi-active control technology has been paid more attention in the field of structural vibration control due to its high controllability, excellent control effect and low power requirement. When semi-active control device are used for vibration control, some challenges must be taken into account, such as the reliability and the control strategy of the device. This study presents a new large tonnage compound lead extrusion magnetorheological (CLEMR) damper, whose mathematical model is introduced to describe the variation of damping force with current and velocity. Then a current controller based on the fuzzy logic control strategy is designed to determine control currents of the CLEMR dampers rapidly. A ten-floor frame structure with CLEMR dampers using the fuzzy logic control strategy is built and calculated by using MATLAB. Calculation results show that CLEMR dampers can reduce the seismic responses of structures effectively. Calculation results of the fuzzy logic control strategy are compared with those of the semi-active limit Hrovat control structure, the passive-off control structure, and the uncontrolled structure. Comparison results show that the fuzzy logic control strategy can determine control currents of CLEMR dampers quickly and can reduce seismic responses of the structures more effectively than the passive-off control strategy and the uncontrolled structure.

  12. A composite self tuning strategy for fuzzy control of dynamic systems

    NASA Technical Reports Server (NTRS)

    Shieh, C.-Y.; Nair, Satish S.

    1992-01-01

    The feature of self learning makes fuzzy logic controllers attractive in control applications. This paper proposes a strategy to tune the fuzzy logic controller on-line by tuning the data base as well as the rule base. The structure of the controller is outlined and preliminary results are presented using simulation studies.

  13. Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1997-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  14. Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Nan, Yu-Rong; Zheng, Heng-Huo; Ren, Xue-Mei

    2015-11-01

    A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method. Project supported by the National Natural Science Foundation of China (Grant Nos. 61403343 and 61433003), the Scientific Research Foundation of Education Department of Zhejiang Province, China (Grant No. Y201329260), and the Natural Science Foundation of Zhejiang University of Technology, China (Grant No. 1301103053408).

  15. Genetic optimization of fuzzy fractional PD+I controllers.

    PubMed

    Jesus, Isabel S; Barbosa, Ramiro S

    2015-07-01

    Fractional order calculus is a powerful emerging mathematical tool in science and engineering. There is currently an increasing interest in generalizing classical control theories and developing novel control strategies. The genetic algorithms (GA) are a stochastic search and optimization methods based on the reproduction processes found in biological systems, used for solving engineering problems. In the context of process control, the fuzzy logic usually means variables that are described by imprecise terms, and represented by quantities that are qualitative and vague. In this article we consider the development of an optimal fuzzy fractional PD+I controller in which the parameters are tuned by a GA. The performance of the proposed fuzzy fractional control is illustrated through some application examples. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Color identification and fuzzy reasoning based monitoring and controlling of fermentation process of branched chain amino acid

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning

    2009-11-01

    The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.

  17. Applications of fuzzy logic to control and decision making

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    Long range space missions will require high operational efficiency as well as autonomy to enhance the effectivity of performance. Fuzzy logic technology has been shown to be powerful and robust in interpreting imprecise measurements and generating appropriate control decisions for many space operations. Several applications are underway, studying the fuzzy logic approach to solving control and decision making problems. Fuzzy logic algorithms for relative motion and attitude control have been developed and demonstrated for proximity operations. Based on this experience, motion control algorithms that include obstacle avoidance were developed for a Mars Rover prototype for maneuvering during the sample collection process. A concept of an intelligent sensor system that can identify objects and track them continuously and learn from its environment is under development to support traffic management and proximity operations around the Space Station Freedom. For safe and reliable operation of Lunar/Mars based crew quarters, high speed controllers with ability to combine imprecise measurements from several sensors is required. A fuzzy logic approach that uses high speed fuzzy hardware chips is being studied.

  18. Distributed traffic signal control using fuzzy logic

    NASA Technical Reports Server (NTRS)

    Chiu, Stephen

    1992-01-01

    We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.

  19. Applications of fuzzy sets to rule-based expert system development

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.

    1989-01-01

    Problems of implementing rule-based expert systems using fuzzy sets are considered. A fuzzy logic software development shell is used that allows inclusion of both crisp and fuzzy rules indecision making and process control problems. Results are given that compare this type of expert system to a human expert in some specific applications. Advantages and disadvantages of such systems are discussed.

  20. Applications of fuzzy sets to rule-based expert system development

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.

    1989-01-01

    Problems of implementing rule-based expert systems using fuzzy sets are considered. A fuzzy logic software development shell is used that allows inclusion of both crisp and fuzzy rules in decision making and process control problems. Results are given that compare this type of expert system to a human expert in some specific applications. Advantages and disadvantages of such systems are discussed.

  1. Design of a switching controller for nonlinear systems with unknown parameters based on a fuzzy logic approach.

    PubMed

    Lam, H K; Leung, F H F; Lee, Y S

    2004-04-01

    This paper deals with nonlinear plants subject to unknown parameters. A fuzzy model is first used to represent the plant. An equivalent switching plant model is then derived, which supports the design of a switching controller. It will be shown that the closed-loop system formed by the plant and the switching controller is a linear system. Hence, the system performance of the closed-loop system can be designed. An application example on controlling a two-inverted pendulum system on a cart will be given to illustrate the design procedure of the proposed switching controller.

  2. Fuzzy control of a boiler steam drum

    SciTech Connect

    Mayer, K.; Crockett, W.K.

    1995-10-01

    The authors controlled the inlet water flow to a dynamic model of a steam drum using fuzzy logic. The drum level varied little with step inputs in steam flow. The fuzzy logic controller performed at least as well as a well-tuned traditional PI (which is notoriously difficult to tune). Using plant data in the model provided further evidence that fuzzy logic control gave excellent results. The drum level is a function of inlet water, steam production, and blowdown. To compensate for upsets caused by steam production, independent variables used in the fuzzy controller were drum level and change in drum level. The dependent variable was the change required in the inlet flow. By modeling a 175,000 lb/hr Riley-Stoker boiler, they determined the universe of discourse for each of the three variables. Three triangular and two trapezoidal membership functions characterize each of these universes. The knowledge of experts provided the fuzzy associative memory (FAM) for the variables. The authors modeled the complete dynamic system using Tutsim (Tutsim Products, 200 California Ave., Palo Alto, CA 94306).

  3. ANFIS optimized semi-active fuzzy logic controller for magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    César, Manuel Braz; Barros, Rui Carneiro

    2016-11-01

    In this paper, we report on the development of a neuro-fuzzy controller for magnetorheological dampers using an Adaptive Neuro-Fuzzy Inference System or ANFIS. Fuzzy logic based controllers are capable to deal with non-linear or uncertain systems, which make them particularly well suited for civil engineering applications. The main objective is to develop a semi-active control system with a MR damper to reduce the response of a three degrees-of-freedom (DOFs) building structure. The control system is designed using ANFIS to optimize the fuzzy inference rule of a simple fuzzy logic controller. The results show that the proposed semi-active neuro-fuzzy based controller is effective in reducing the response of structural system.

  4. Tuning a fuzzy controller using quadratic response surfaces

    NASA Technical Reports Server (NTRS)

    Schott, Brian; Whalen, Thomas

    1992-01-01

    Response surface methodology, an alternative method to traditional tuning of a fuzzy controller, is described. An example based on a simulated inverted pendulum 'plant' shows that with (only) 15 trial runs, the controller can be calibrated using a quadratic form to approximate the response surface.

  5. Control-oriented thermal management of solid oxide fuel cells based on a modified Takagi-Sugeno fuzzy model

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Li, Xi; Mou, Hong-Gang; Jian, Li

    Thermal management for a solid oxide fuel cell (SOFC) is actually temperature control, due to the importance of cell temperature for the performance of an SOFC. An SOFC stack is a nonlinear and multi-variable system which is difficult to model by traditional methods. A modified Takagi-Sugeno (T-S) fuzzy model that is suitable for nonlinear systems is built to model the SOFC stack. The model parameters are initialized by the fuzzy c-means clustering method, and learned using an off-line back-propagation algorithm. In order to obtain the training data to identify the modified T-S model, a SOFC physical model via MATLAB is established. The temperature model is the center of the physical model and is developed by enthalpy-balance equations. It is shown that the modified T-S fuzzy model is sufficiently accurate to follow the temperature response of the stack, and can be conveniently utilized to design temperature control strategies.

  6. Adaptive variable structure hierarchical fuzzy control for a class of high-order nonlinear dynamic systems.

    PubMed

    Mansouri, Mohammad; Teshnehlab, Mohammad; Aliyari Shoorehdeli, Mahdi

    2015-05-01

    In this paper, a novel adaptive hierarchical fuzzy control system based on the variable structure control is developed for a class of SISO canonical nonlinear systems in the presence of bounded disturbances. It is assumed that nonlinear functions of the systems be completely unknown. Switching surfaces are incorporated into the hierarchical fuzzy control scheme to ensure the system stability. A fuzzy soft switching system decides the operation area of the hierarchical fuzzy control and variable structure control systems. All the nonlinearly appeared parameters of conclusion parts of fuzzy blocks located in different layers of the hierarchical fuzzy control system are adjusted through adaptation laws deduced from the defined Lyapunov function. The proposed hierarchical fuzzy control system reduces the number of rules and consequently the number of tunable parameters with respect to the ordinary fuzzy control system. Global boundedness of the overall adaptive system and the desired precision are achieved using the proposed adaptive control system. In this study, an adaptive hierarchical fuzzy system is used for two objectives; it can be as a function approximator or a control system based on an intelligent-classic approach. Three theorems are proven to investigate the stability of the nonlinear dynamic systems. The important point about the proposed theorems is that they can be applied not only to hierarchical fuzzy controllers with different structures of hierarchical fuzzy controller, but also to ordinary fuzzy controllers. Therefore, the proposed algorithm is more general. To show the effectiveness of the proposed method four systems (two mechanical, one mathematical and one chaotic) are considered in simulations. Simulation results demonstrate the validity, efficiency and feasibility of the proposed approach to control of nonlinear dynamic systems. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Dynamic compensatory pattern matching in a fuzzy rule-based control system

    NASA Technical Reports Server (NTRS)

    Sun, Chuen-Tsai

    1991-01-01

    A dynamic compensatory matching procedure is suggested as a method to generate an aggregated measure for evaluating the appropriateness of rules for control systems. It is a dynamic weighted matching technique which takes into account incomplete information under real-time requirements. The initial weights of importance of variables are generated with a generalized neural network architecture and a gradient descent algorithm. An intuitive compensatory scheme based on correlations among input variables of training data is adopted so that the system is coherent to a noisy environment.

  8. Supervisory control of fuzzy discrete event systems: a formal approach.

    PubMed

    Qiu, Daowen

    2005-02-01

    Fuzzy discrete event systems (DESs) were proposed recently by Lin and Ying [19], which may better cope with the real-world problems of fuzziness, impreciseness, and subjectivity such as those in biomedicine. As a continuation of [19], in this paper, we further develop fuzzy DESs by dealing with supervisory control of fuzzy DESs. More specifically: 1) we reformulate the parallel composition of crisp DESs, and then define the parallel composition of fuzzy DESs that is equivalent to that in [19]. Max-product and max-min automata for modeling fuzzy DESs are considered, 2) we deal with a number of fundamental problems regarding supervisory control of fuzzy DESs, particularly demonstrate controllability theorem and nonblocking controllability theorem of fuzzy DESs, and thus, present the conditions for the existence of supervisors in fuzzy DESs; 3) we analyze the complexity for presenting a uniform criterion to test the fuzzy controllability condition of fuzzy DESs modeled by max-product automata; in particular, we present in detail a general computing method for checking whether or not the fuzzy controllability condition holds, if max-min automata are used to model fuzzy DESs, and by means of this method we can search for all possible fuzzy states reachable from initial fuzzy state in max-min automata. Also, we introduce the fuzzy n-controllability condition for some practical problems, and 4) a number of examples serving to illustrate the applications of the derived results and methods are described; some basic properties related to supervisory control of fuzzy DESs are investigated. To conclude, some related issues are raised for further consideration.

  9. Fuzzy self-learning control for magnetic servo system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  10. Nonlinear rescaling of control values simplifies fuzzy control

    NASA Technical Reports Server (NTRS)

    Vanlangingham, H.; Tsoukkas, A.; Kreinovich, V.; Quintana, C.

    1993-01-01

    Traditional control theory is well-developed mainly for linear control situations. In non-linear cases there is no general method of generating a good control, so we have to rely on the ability of the experts (operators) to control them. If we want to automate their control, we must acquire their knowledge and translate it into a precise control strategy. The experts' knowledge is usually represented in non-numeric terms, namely, in terms of uncertain statements of the type 'if the obstacle is straight ahead, the distance to it is small, and the velocity of the car is medium, press the brakes hard'. Fuzzy control is a methodology that translates such statements into precise formulas for control. The necessary first step of this strategy consists of assigning membership functions to all the terms that the expert uses in his rules (in our sample phrase these words are 'small', 'medium', and 'hard'). The appropriate choice of a membership function can drastically improve the quality of a fuzzy control. In the simplest cases, we can take the functions whose domains have equally spaced endpoints. Because of that, many software packages for fuzzy control are based on this choice of membership functions. This choice is not very efficient in more complicated cases. Therefore, methods have been developed that use neural networks or generic algorithms to 'tune' membership functions. But this tuning takes lots of time (for example, several thousands iterations are typical for neural networks). In some cases there are evident physical reasons why equally space domains do not work: e.g., if the control variable u is always positive (i.e., if we control temperature in a reactor), then negative values (that are generated by equal spacing) simply make no sense. In this case it sounds reasonable to choose another scale u' = f(u) to represent u, so that equal spacing will work fine for u'. In the present paper we formulate the problem of finding the best rescaling function, solve

  11. Robust adaptive self-structuring fuzzy control design for nonaffine, nonlinear systems

    NASA Astrophysics Data System (ADS)

    Chen, Pin-Cheng; Wang, Chi-Hsu; Lee, Tsu-Tian

    2011-01-01

    In this article, a robust adaptive self-structuring fuzzy control (RASFC) scheme for the uncertain or ill-defined nonlinear, nonaffine systems is proposed. The RASFC scheme is composed of a robust adaptive controller and a self-structuring fuzzy controller. In the self-structuring fuzzy controller design, a novel self-structuring fuzzy system (SFS) is used to approximate the unknown plant nonlinearity, and the SFS can automatically grow and prune fuzzy rules to realise a compact fuzzy rule base. The robust adaptive controller is designed to achieve an L 2 tracking performance to stabilise the closed-loop system. This L 2 tracking performance can provide a clear expression of tracking error in terms of the sum of lumped uncertainty and external disturbance, which has not been shown in previous works. Finally, five examples are presented to show that the proposed RASFC scheme can achieve favourable tracking performance, yet heavy computational burden is relieved.

  12. Research on Image-Based Fuzzy Visual Servo Forpicking Robot

    NASA Astrophysics Data System (ADS)

    Jian, Song

    An open eggplant picking robot experiment system is developed successfully which includes a arthral manipulator with 4 DOF, a motion controller, a color image processing card, a camera and a PC. The fixed bilateral threshold based histogram is adopted to segment the G-B gray images of eggplant in the growth environment.. To meet the vision requirement of the eggplant picking robot, the object's characters, such as outline, area, center of gravity, enclosing rectangle and the point to cut off, are extracted. We applied fuzzy control to the visual servo of picking robot and selected the fruit image's centre of gravity coordinate as variable for the fuzzy control system to create a fuzzy controller. The output control was modified by the self-adjustment factor and thus a fuzzy control diagram for the precise output control was obtained. The results show that the image-based picking robot fuzzy visual servo control overcomes time variation, nonlinearity and strong coupling of the robot visual servo control and has high response speed and good robustness.

  13. Research on Image-Based Fuzzy Visual Servo Forpicking Robot

    NASA Astrophysics Data System (ADS)

    Jian, Song

    An open eggplant picking robot experiment system is developed successfully which includes a arthral manipulator with 4 DOF, a motion controller, a color image processing card, a camera and a PC. The fixed bilateral threshold based histogram is adopted to segment the G-B gray images of eggplant in the growth environment.. To meet the vision requirement of the eggplant picking robot, the object's characters, such as outline, area, center of gravity, enclosing rectangle and the point to cut off, are extracted. We applied fuzzy control to the visual servo of picking robot and selected the fruit image's centre of gravity coordinate as variable for the fuzzy control system to create a fuzzy controller. The output control was modified by the self-adjustment factor and thus a fuzzy control diagram for the precise output control was obtained. The results show that the image-based picking robot fuzzy visual servo control overcomes time variation, nonlinearity and strong coupling of the robot visual servo control and has high response speed and good robustness.

  14. Comparative study of a learning fuzzy PID controller and a self-tuning controller.

    PubMed

    Kazemian, H B

    2001-01-01

    The self-organising fuzzy controller is an extension of the rule-based fuzzy controller with an additional learning capability. The self-organising fuzzy (SOF) is used as a master controller to readjust conventional PID gains at the actuator level during the system operation, copying the experience of a human operator. The application of the self-organising fuzzy PID (SOF-PID) controller to a 2-link non-linear revolute-joint robot-arm is studied using path tracking trajectories at the setpoint. For the purpose of comparison, the same experiments are repeated by using the self-tuning controller subject to the same data supplied at the setpoint. For the path tracking experiments, the output trajectories of the SOF-PID controller followed the specified path closer and smoother than the self-tuning controller.

  15. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  16. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  17. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  18. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System.

    PubMed

    Tang, Yongchuan; Zhou, Deyun; Jiang, Wen

    2016-01-01

    In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method.

  19. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System

    PubMed Central

    Tang, Yongchuan; Zhou, Deyun

    2016-01-01

    In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method. PMID:27482707

  20. Fuzzy Control/Space Station automation

    NASA Technical Reports Server (NTRS)

    Gersh, Mark

    1990-01-01

    Viewgraphs on fuzzy control/space station automation are presented. Topics covered include: Space Station Freedom (SSF); SSF evolution; factors pointing to automation & robotics (A&R); astronaut office inputs concerning A&R; flight system automation and ground operations applications; transition definition program; and advanced automation software tools.

  1. Fuzzy Logic Decoupled Longitudinal Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1996-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control difference airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control throttle position and another to control elevator position. These two controllers were used to control flight path angle and airspeed for both a piston powered single engine airplane simulation and a business jet simulation. Overspeed protection and stall protection were incorporated in the form of expert systems supervisors. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic longitudinal controller could be successfully used on two general aviation aircraft types that have very difference characteristics. These controllers worked for both airplanes over their entire flight envelopes including configuration changes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle lever travel, etc.). The controllers also handled configuration changes without mode switching or knowledge of the current configuration. This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  2. Vector control of wind turbine on the basis of the fuzzy selective neural net*

    NASA Astrophysics Data System (ADS)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.

  3. Generalizations of fuzzy linguistic control points in geometric design

    NASA Astrophysics Data System (ADS)

    Sallehuddin, M. H.; Wahab, A. F.; Gobithaasan, R. U.

    2014-07-01

    Control points are geometric primitives that play an important role in designing the geometry curve and surface. When these control points are blended with some basis functions, there are several geometric models such as Bezier, B-spline and NURBS(Non-Uniform Rational B-Spline) will be produced. If the control points are defined by the theory of fuzzy sets, then fuzzy geometric models are produced. But the fuzzy geometric models can only solve the problem of uncertainty complex. This paper proposes a new definition of fuzzy control points with linguistic terms. When the fuzzy control points with linguistic terms are blended with basis functions, then a fuzzy linguistic geometric model is produced. This paper ends with some numerical examples illustrating linguistic control attributes of fuzzy geometric models.

  4. A transductive neuro-fuzzy controller: application to a drilling process.

    PubMed

    Gajate, Agustín; Haber, Rodolfo E; Vega, Pastora I; Alique, José R

    2010-07-01

    Recently, new neuro-fuzzy inference algorithms have been developed to deal with the time-varying behavior and uncertainty of many complex systems. This paper presents the design and application of a novel transductive neuro-fuzzy inference method to control force in a high-performance drilling process. The main goal is to study, analyze, and verify the behavior of a transductive neuro-fuzzy inference system for controlling this complex process, specifically addressing the dynamic modeling, computational efficiency, and viability of the real-time application of this algorithm as well as assessing the topology of the neuro-fuzzy system (e.g., number of clusters, number of rules). A transductive reasoning method is used to create local neuro-fuzzy models for each input/output data set in a case study. The direct and inverse dynamics of a complex process are modeled using this strategy. The synergies among fuzzy, neural, and transductive strategies are then exploited to deal with process complexity and uncertainty through the application of the neuro-fuzzy models within an internal model control (IMC) scheme. A comparative study is made of the adaptive neuro-fuzzy inference system (ANFIS) and the suggested method inspired in a transductive neuro-fuzzy inference strategy. The two neuro-fuzzy strategies are evaluated in a real drilling force control problem. The experimental results demonstrated that the transductive neuro-fuzzy control system provides a good transient response (without overshoot) and better error-based performance indices than the ANFIS-based control system. In particular, the IMC system based on a transductive neuro-fuzzy inference approach reduces the influence of the increase in cutting force that occurs as the drill depth increases, reducing the risk of rapid tool wear and catastrophic tool breakage.

  5. Hardware implementation of fuzzy Petri net as a controller.

    PubMed

    Gniewek, Lesław; Kluska, Jacek

    2004-06-01

    The paper presents a new approach to fuzzy Petri net (FPN) and its hardware implementation. The authors' motivation is as follows. Complex industrial processes can be often decomposed into many parallelly working subprocesses, which can, in turn, be modeled using Petri nets. If all the process variables (or events) are assumed to be two-valued signals, then it is possible to obtain a hardware or software control device, which works according to the algorithm described by conventional Petri net. However, the values of real signals are contained in some bounded interval and can be interpreted as events which are not only true or false, but rather true in some degree from the interval [0, 1]. Such a natural interpretation from multivalued logic (fuzzy logic) point of view, concerns sensor outputs, control signals, time expiration, etc. It leads to the idea of FPN as a controller, which one can rather simply obtain, and which would be able to process both analog, and binary signals. In the paper both graphical, and algebraic representations of the proposed FPN are given. The conditions under which transitions can be fired are described. The algebraic description of the net and a theorem which enables computation of new marking in the net, based on current marking, are formulated. Hardware implementation of the FPN, which uses fuzzy JK flip-flops and fuzzy gates, are proposed. An example illustrating usefulness of the proposed FPN for control algorithm description and its synthesis as a controller device for the concrete production process are presented.

  6. The Fuzzy-PI mix control for the briquette production

    SciTech Connect

    Lan Xizhu; Yang Hongjun

    1998-12-31

    The paper applies the Fuzzy-PI mix control to the briquette production, a new kind of Fuzzy-PI controller is developed combining the Fuzzy control principle with classic control theory, and the pressure control system for the briquette production is also developed. The simulation research on the above system has been done, which was compared with the traditional PID control system. The simulation result shows: the Fuzzy-PI control system gives satisfactory effect in the field of the response speed, control accuracy and control performance, and moreover, the system has better robustness.

  7. Transportation optimization with fuzzy trapezoidal numbers based on possibility theory.

    PubMed

    He, Dayi; Li, Ran; Huang, Qi; Lei, Ping

    2014-01-01

    In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods.

  8. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    NASA Astrophysics Data System (ADS)

    Gering, Stefan; Adamy, Jürgen

    2014-12-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.

  9. Application of fuzzy logic-neural network based reinforcement learning to proximity and docking operations: Attitude control results

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant

    1992-01-01

    As part of the RICIS activity, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Max satellite simulation. This activity is carried out in the software technology laboratory utilizing the Orbital Operations Simulator (OOS). This report is deliverable D2 Altitude Control Results and provides the status of the project after four months of activities and outlines the future plans. In section 2 we describe the Fuzzy-Learner system for the attitude control functions. In section 3, we provide the description of test cases and results in a chronological order. In section 4, we have summarized our results and conclusions. Our future plans and recommendations are provided in section 5.

  10. Application of fuzzy GA for optimal vibration control of smart cylindrical shells

    NASA Astrophysics Data System (ADS)

    Jin, Zhanli; Yang, Yaowen; Kiong Soh, Chee

    2005-12-01

    In this paper, a fuzzy-controlled genetic-based optimization technique for optimal vibration control of cylindrical shell structures incorporating piezoelectric sensor/actuators (S/As) is proposed. The geometric design variables of the piezoelectric patches, including the placement and sizing of the piezoelectric S/As, are processed using fuzzy set theory. The criterion based on the maximization of energy dissipation is adopted for the geometric optimization. A fuzzy-rule-based system (FRBS) representing expert knowledge and experience is incorporated in a modified genetic algorithm (GA) to control its search process. A fuzzy logic integrated GA is then developed and implemented. The results of three numerical examples, which include a simply supported plate, a simply supported cylindrical shell, and a clamped simply supported plate, provide some meaningful and heuristic conclusions for practical design. The results also show that the proposed fuzzy-controlled GA approach is more effective and efficient than the pure GA method.

  11. Robust Takagi-Sugeno fuzzy control for fractional order hydro-turbine governing system.

    PubMed

    Wang, Bin; Xue, Jianyi; Wu, Fengjiao; Zhu, Delan

    2016-11-01

    A robust fuzzy control method for fractional order hydro-turbine governing system (FOHGS) in the presence of random disturbances is investigated in this paper. Firstly, the mathematical model of FOHGS is introduced, and based on Takagi-Sugeno (T-S) fuzzy rules, the generalized T-S fuzzy model of FOHGS is presented. Secondly, based on fractional order Lyapunov stability theory, a novel T-S fuzzy control method is designed for the stability control of FOHGS. Thirdly, the relatively loose sufficient stability condition is acquired, which could be transformed into a group of linear matrix inequalities (LMIs) via Schur complement as well as the strict mathematical derivation is given. Furthermore, the control method could resist random disturbances, which shows the good robustness. Simulation results indicate the designed fractional order T-S fuzzy control scheme works well compared with the existing method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV

    NASA Astrophysics Data System (ADS)

    Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.

    2015-11-01

    In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.

  13. Flexible complexity reduced PID-like fuzzy controllers.

    PubMed

    Tao, C W; Taur, J S

    2000-01-01

    In this paper, a flexible complexity reduced design approach for PID-like fuzzy controllers is proposed. With the linear combination of input variables as a new input variable, the complexity of the fuzzy mechanism of PID-like fuzzy controllers is significantly reduced. However, the performance of the complexity reduced fuzzy PID controller may be degraded since the degree of freedom is decreased by the combination of input variables. To alleviate the drawback and improve the performance of the complexity reduced PID-like fuzzy controller, a flexible complexity reduced design approach is introduced in which the functional scaling factors are heuristically generated. Since the functional scaling factors are heuristically created, they can be easily adjusted for the flexible complexity reduced PID-like fuzzy controller without a priori knowledge of the exact mathematical model of the plant. Moreover, heuristic scaling factors are implemented as functionals. Therefore, the complexity of the flexible PID-like fuzzy controller will not be increased. Further, the stability of the fuzzy control system with a flexible complexity reduced PID-like fuzzy controller is discussed. Finally, the simulation results are also included to show the effectiveness of the PID-like fuzzy controller designed with the flexible complexity reduced approach.

  14. Delay-dependent fuzzy static output feedback control for discrete-time fuzzy stochastic systems with distributed time-varying delays.

    PubMed

    Xia, ZhiLe; Li, JunMin; Li, JiangRong

    2012-11-01

    This paper is concerned with the delay-dependent H(∞) fuzzy static output feedback control scheme for discrete-time Takagi-Sugeno (T-S) fuzzy stochastic systems with distributed time-varying delays. To begin with, the T-S fuzzy stochastic system is transformed to an equivalent switching fuzzy stochastic system. Then, based on novel matrix decoupling technique, improved free-weighting matrix technique and piecewise Lyapunov-Krasovskii function (PLKF), a new delay-dependent H(∞) fuzzy static output feedback controller design approach is first derived for the switching fuzzy stochastic system. Some drawbacks existing in the previous papers such as matrix equalities constraint, coordinate transformation, the same output matrices, diagonal structure constraint on Lyapunov matrices and BMI problem have been eliminated. Since only a set of LMIs is involved, the controller parameters can be solved directly by the Matlab LMI toolbox. Finally, two examples are provided to illustrate the validity of the proposed method.

  15. Maximum entropy approach to fuzzy control

    NASA Technical Reports Server (NTRS)

    Ramer, Arthur; Kreinovich, Vladik YA.

    1992-01-01

    For the same expert knowledge, if one uses different &- and V-operations in a fuzzy control methodology, one ends up with different control strategies. Each choice of these operations restricts the set of possible control strategies. Since a wrong choice can lead to a low quality control, it is reasonable to try to loose as few possibilities as possible. This idea is formalized and it is shown that it leads to the choice of min(a + b,1) for V and min(a,b) for &. This choice was tried on NASA Shuttle simulator; it leads to a maximally stable control.

  16. Weighted Fuzzy Interpolative Reasoning Based on the Slopes of Fuzzy Sets and Particle Swarm Optimization Techniques.

    PubMed

    Chen, Shyi-Ming; Hsin, Wen-Chyuan

    2015-07-01

    In this paper, we propose a new weighted fuzzy interpolative reasoning method for sparse fuzzy rule-based systems based on the slopes of fuzzy sets. We also propose a particle swarm optimization (PSO)-based weights-learning algorithm to automatically learn the optimal weights of the antecedent variables of fuzzy rules for weighted fuzzy interpolative reasoning. We apply the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm to deal with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems. The experimental results show that the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm outperforms the existing methods for dealing with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems.

  17. Experiment Study on Fuzzy Vibration Control of Solar Panel

    NASA Astrophysics Data System (ADS)

    Li, Dongxu X.; Xu, Rui; Jiang, Jiangjian P.

    Some flexible appendages of spacecraft are cantilever plate structures, such as solar panels. These structures usually have very low damping ratios, high dimensional order, low modal frequencies and parameter uncertainties in dynamics. Their unwanted vibrations will be caused unavoidably, and harmful to the spacecraft. To solve this problem, the dynamic equations of the solar panel with piezoelectric patches are derived, and an accelerometer based fuzzy controller is designed. In order to verify the effectiveness of the vibration control algorithms, experiment research was conducted on a piezoelectric adaptive composite honeycomb cantilever panel. The experiment results demonstrate that the accelerometer-based fuzzy vibration control method can suppress the vibration of the solar panel effectively, the first bending mode damping ratio of the controlled system increase to 1.64%, and that is 3.56 times of the uncontrolled system.

  18. Hybrid compensation control for affine TSK fuzzy control systems.

    PubMed

    Hsiao, Chih-Ching; Su, Shun-Feng; Lee, Tsu-Tian; Chuang, Chen-Chia

    2004-08-01

    The paper proposes a way of designing state feedback controllers for affine Takagi-Sugeno-Kang (TSK) fuzzy models. In the approach, by combining two different control design methodologies, the proposed controller is designed to compensate all rules so that the desired control performance can appear in the overall system. Our approach treats all fuzzy rules as variations of a nominal rule and such variations are individually dealt with in a Lyapunov sense. Previous approaches have proposed a similar idea but the variations are dealt with as a whole in a robust control sense. As a consequence, when fuzzy rules are distributed in a wide range, the stability conditions may not be satisfied. In addition, the control performance of the closed-loop system cannot be anticipated in those approaches. Various examples were conducted in our study to demonstrate the effectiveness of the proposed control design approach. All results illustrate good control performances as desired.

  19. A new fuzzy sliding mode controller for vibration control systems using integrated-structure smart dampers

    NASA Astrophysics Data System (ADS)

    Dzung Nguyen, Sy; Kim, Wanho; Park, Jhinha; Choi, Seung-Bok

    2017-04-01

    Vibration control systems using smart dampers (SmDs) such as magnetorheological and electrorheological dampers (MRD and ERD), which are classified as the integrated structure-SmD control systems (ISSmDCSs), have been actively researched and widely used. This work proposes a new controller for a class of ISSmDCSs in which high accuracy of SmD models as well as increment of control ability to deal with uncertainty and time delay are to be expected. In order to achieve this goal, two formualtion steps are required; a non-parametric SmD model based on an adaptive neuro-fuzzy inference system (ANFIS) and a novel fuzzy sliding mode controller (FSMC) which can weaken the model error of the ISSmDCSs and hence provide enhanced vibration control performances. As for the formulation of the proposed controller, first, an ANFIS controller is desgned to identify SmDs using the improved control algorithm named improved establishing neuro-fuzzy system (establishing neuro-fuzzy system). Second, a new control law for the FSMC is designed via Lyapunov stability analysis. An application to a semi-active MRD vehicle suspension system is then undertaken to illustrate and evaluate the effectiveness of the proposed control method. It is demonstrated through an experimental realization that the FSMC proposed in this work shows superior vibration control performance of the vehicle suspension compared to other surveyed controller which have similar structures to the FSMC, such as fuzzy logic and sliding mode control.

  20. New hybrid adaptive neuro-fuzzy algorithms for manipulator control with uncertainties- comparative study.

    PubMed

    Alavandar, Srinivasan; Nigam, M J

    2009-10-01

    Control of an industrial robot includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. In this paper, some new hybrid adaptive neuro-fuzzy control algorithms (ANFIS) have been proposed for manipulator control with uncertainties. These hybrid controllers consist of adaptive neuro-fuzzy controllers and conventional controllers. The outputs of these controllers are applied to produce the final actuation signal based on current position and velocity errors. Numerical simulation using the dynamic model of six DOF puma robot arm with uncertainties shows the effectiveness of the approach in trajectory tracking problems. Performance indices of RMS error, maximum error are used for comparison. It is observed that the hybrid adaptive neuro-fuzzy controllers perform better than only conventional/adaptive controllers and in particular hybrid controller structure consisting of adaptive neuro-fuzzy controller and critically damped inverse dynamics controller.

  1. Fuzzy logic controller to improve powerline communication

    NASA Astrophysics Data System (ADS)

    Tirrito, Salvatore

    2015-12-01

    The Power Line Communications (PLC) technology allows the use of the power grid in order to ensure the exchange of data information among devices. This work proposes an approach, based on Fuzzy Logic, that dynamically manages the amplitude of the signal, with which each node transmits, by processing the master-slave link quality measured and the master-slave distance. The main objective of this is to reduce both the impact of communication interferences induced and power consumption.

  2. Enhanced porcine circovirus Cap protein production by Pichia pastoris with a fuzzy logic DO control based methanol/sorbitol co-feeding induction strategy.

    PubMed

    Ding, Jian; Zhang, Chunling; Gao, Minjie; Hou, Guoli; Liang, Kexue; Li, Chunhua; Ni, Jianping; Li, Zhen; Shi, Zhongping

    2014-05-10

    Porcine circovirus Cap protein production by P. pastoris with strong AOX promoter suffered with the problems with traditional pure methanol induction: (1) inefficient methanol metabolism; (2) extensive oxygen supply load; (3) difficulty in stable DO control; (4) low protein titer. In this study, based on the difference of DO change patterns in response to methanol and sorbitol additions, a novel fuzzy control system was proposed to automatically regulate the co-feeding rates of methanol and sorbitol for efficient Cap protein induction. With aid of the proposed control system when setting DO control level at 10%, overall fermentation performance was significantly improved: (1) DO could be stably controlled under mild aeration condition; (2) methanol consumption rate could be restricted at moderate level and the major enzymes involved with methanol metabolism were largely activated; (3) Cap protein concentration reached a highest level of 198mg/L, which was about 64% increase over the best one using the pure methanol induction strategies.

  3. Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok

    2016-01-01

    In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.

  4. Steady-state error of a system with fuzzy controller.

    PubMed

    Butkiewicz, B S

    1998-01-01

    We consider the problem of control error of a fuzzy system with feedback. The system consists of a plant, linear or nonlinear, fuzzy controller, and feedback loop. As controller we use both PD and PI fuzzy type controllers. We apply different t-norm and co-norm: logic, algebraic, Yager, Hamacher, bounded, drastic, etc. in the process of fuzzy reasoning. Triangular shape of membership functions is supposed, but we generalize the results obtained. Steady-state error of a system is calculated. We have obtained very interesting results. The steady-state error is identical for pairs of triangular t- and co-norms.

  5. Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control.

    PubMed

    Wu, Huai-Ning; Cai, Kai-Yuan

    2006-06-01

    This paper is concerned with the robust-stabilization problem of uncertain Markovian jump nonlinear systems (MJNSs) without mode observations via a fuzzy-control approach. The Takagi and Sugeno (T-S) fuzzy model is employed to represent a nonlinear system with norm-bounded parameter uncertainties and Markovian jump parameters. The aim is to design a mode-independent fuzzy controller such that the closed-loop Markovian jump fuzzy system (MJFS) is robustly stochastically stable. Based on a stochastic Lyapunov function, a robust-stabilization condition using a mode-independent fuzzy controller is derived for the uncertain MJFS in terms of linear matrix inequalities (LMIs). A new improved LMI formulation is used to alleviate the interrelation between the stochastic Lyapunov matrix and the system matrices containing controller variables in the derivation process. Finally, a simulation example is presented to illustrate the effectiveness of the proposed design method.

  6. Sampled-Data Fuzzy Control for Nonlinear Coupled Parabolic PDE-ODE Systems.

    PubMed

    Wang, Zi-Peng; Wu, Huai-Ning; Li, Han-Xiong

    2017-09-01

    In this paper, a sampled-data fuzzy control problem is addressed for a class of nonlinear coupled systems, which are described by a parabolic partial differential equation (PDE) and an ordinary differential equation (ODE). Initially, the nonlinear coupled system is accurately represented by the Takagi-Sugeno (T-S) fuzzy coupled parabolic PDE-ODE model. Then, based on the T-S fuzzy model, a novel time-dependent Lyapunov functional is used to design a sampled-data fuzzy controller such that the closed-loop coupled system is exponentially stable, where the sampled-data fuzzy controller consists of the ODE state feedback and the PDE static output feedback under spatially averaged measurements. The stabilization condition is presented in terms of a set of linear matrix inequalities. Finally, simulation results on the control of a hypersonic rocket car are given to illustrate the effectiveness of the proposed design method.

  7. Prediction of Solar Activity Based on Neuro-Fuzzy Modeling

    NASA Astrophysics Data System (ADS)

    Attia, Abdel-Fattah; Abdel-Hamid, Rabab; Quassim, Maha

    2005-03-01

    This paper presents an application of the neuro-fuzzy modeling to analyze the time series of solar activity, as measured through the relative Wolf number. The neuro-fuzzy structure is optimized based on the linear adapted genetic algorithm with controlling population size (LAGA-POP). Initially, the dimension of the time series characteristic attractor is obtained based on the smallest regularity criterion (RC) and the neuro-fuzzy model. Then the performance of the proposed approach, in forecasting yearly sunspot numbers, is favorably compared to that of other published methods. Finally, a comparison predictions for the remaining part of the 22nd and the whole 23rd cycle of the solar activity are presented.

  8. Inverting the Pendulum Using Fuzzy Control (Center Director's Discretionary Fund (Project 93-02)

    NASA Technical Reports Server (NTRS)

    Kissel, R. R.; Sutherland, W. T.

    1997-01-01

    A single pendulum was simulated in software and then built on a rotary base. A fuzzy controller was used to show its advantages as a nonlinear controller since bringing the pendulum inverted is extremely nonlinear. The controller was implemented in a Motorola 6811 microcontroller. A double pendulum was simulated and fuzzy control was used to hold it in a vertical position. The double pendulum was not built into hardware for lack of time. This project was for training and to show advantages of fuzzy control.

  9. Analysis, control and design of a non-inverting buck-boost converter: A bump-less two-level T-S fuzzy PI control.

    PubMed

    Almasi, Omid Naghash; Fereshtehpoor, Vahid; Khooban, Mohammad Hassan; Blaabjerg, Frede

    2017-03-01

    In this paper, a new modified fuzzy Two-Level Control Scheme (TLCS) is proposed to control a non-inverting buck-boost converter. Each level of fuzzy TLCS consists of a tuned fuzzy PI controller. In addition, a Takagi-Sugeno-Kang (TSK) fuzzy switch proposed to transfer the fuzzy PI controllers to each other in the control system. The major difficulty in designing fuzzy TLCS which degrades its performance is emerging unwanted drastic oscillations in the converter output voltage during replacing the controllers. Thereby, the fuzzy PI controllers in each level of TLCS structure are modified to eliminate these oscillations and improve the system performance. Some simulations and digital signal processor based experiments are conducted on a non-inverting buck-boost converter to support the effectiveness of the proposed TLCS in controlling the converter output voltage. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. H(∞) constrained fuzzy control via state observer feedback for discrete-time Takagi-Sugeno fuzzy systems with multiplicative noises.

    PubMed

    Chang, Wen-Jer; Wu, Wen-Yuan; Ku, Cheung-Chieh

    2011-01-01

    The purpose of this paper is to study the H(∞) constrained fuzzy controller design problem for discrete-time Takagi-Sugeno (T-S) fuzzy systems with multiplicative noises by using the state observer feedback technique. The proposed fuzzy controller design approach is developed based on the Parallel Distributed Compensation (PDC) technique. Through the Lyapunov stability criterion, the stability analysis is completed to develop stability conditions for the closed-loop systems. Besides, the H(∞) performance constraints is also considered in the stability condition derivations for the worst case effect of disturbance on system states. Solving these stability conditions via the two-step Linear Matrix Inequality (LMI) algorithm, the observer-based fuzzy controller is obtained to achieve the stability and H(∞) performance constraints, simultaneously. Finally, a numerical example is provided to verify the applicability and effectiveness of the proposed fuzzy control approach. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Active structural control by fuzzy logic rules: An introduction

    SciTech Connect

    Tang, Yu; Wu, Kung C.

    1996-12-31

    A zeroth level introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single- degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  12. Active structural control by fuzzy logic rules: An introduction

    SciTech Connect

    Tang, Y.

    1995-07-01

    An introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single-degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  13. Extending Fuzzy System Concepts for Control of a Vitrification Melter

    SciTech Connect

    Whitehouse, J.C.; Sorgel, W.; Garrison, A.; Schalkoff, R.J.

    1995-08-16

    Fuzzy systems provide a mathematical framework to capture uncertainty. The complete description of real, complex systems or situations often requires far more detail and information than could ever be obtained (or understood). Fuzzy approaches are an alternative technology for both system control and information processing and management. In this paper, we present the design of a fuzzy control system for a melter used in the vitrification of hazardous waste. Design issues, especially those related to melter shutdown and obtaining smooth control surfaces, are addressed. Several extensions to commonly-applied fuzzy techniques, notably adaptive defuzzification and modified rule structures are developed.

  14. Fuzzy control and multimedia with examples from law enforcement

    NASA Astrophysics Data System (ADS)

    Hackwood, Susan

    1995-06-01

    We present an extension of fuzzy controllers to include multimedia rules, i.e., rules which do not include verbal or numerical descriptors. We describe the structure and construction of such a multimedia fuzzy controller. In particular, we describe an empirical but unbiased methodology to measure, from human subjects, distances in feature space and hence determine fuzzy memberships. We also propose a practical multimedia fuzzy controller and describe its application examples are given from the law enforcement field where man-machine interactions are important and applications of the methodology described in this paper appear promising.

  15. A genetic algorithms approach for altering the membership functions in fuzzy logic controllers

    NASA Technical Reports Server (NTRS)

    Shehadeh, Hana; Lea, Robert N.

    1992-01-01

    Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.

  16. A genetic algorithms approach for altering the membership functions in fuzzy logic controllers

    NASA Technical Reports Server (NTRS)

    Shehadeh, Hana; Lea, Robert N.

    1992-01-01

    Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.

  17. Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator.

    PubMed

    Fei, Juntao; Zhou, Jian

    2012-12-01

    In this paper, a robust adaptive control strategy using a fuzzy compensator for MEMS triaxial gyroscope, which has system nonlinearities, including model uncertainties and external disturbances, is proposed. A fuzzy logic controller that could compensate for the model uncertainties and external disturbances is incorporated into the adaptive control scheme in the Lyapunov framework. The proposed adaptive fuzzy controller can guarantee the convergence and asymptotical stability of the closed-loop system. The proposed adaptive fuzzy control strategy does not depend on accurate mathematical models, which simplifies the design procedure. The innovative development of intelligent control methods incorporated with conventional control for the MEMS gyroscope is derived with the strict theoretical proof of the Lyapunov stability. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive fuzzy control scheme and demonstrate the satisfactory tracking performance and robustness against model uncertainties and external disturbances compared with conventional adaptive control method.

  18. Control of a fluidized bed combustor using fuzzy logic

    SciTech Connect

    Koffman, S.J.; Brown, R.C.; Fullmer, R.R.

    1996-01-01

    Fuzzy logic--an artificial intelligence technique--can be employed to exploit the wealth of information human experts have learned about complex systems while attempting to control them. This information is usually of a qualitative nature that is unusable by rigid conventional control techniques. Fuzzy logic, uses as a control method, manipulates linguistically expressed, heuristic knowledge from a human expert to derive control actions for a described system. As an alternative approach to classical controls, fuzzy logic is examined for start-up control and normal regulation of a bubbling fluidized bed combustor. To validate the fuzzy logic approach, the fuzzy controller is compared to a classical proportional and integral (PI) controller, commonly used in industrial applications, designed by Ziegler-Nichols tuning.

  19. Symmetric caging formation for convex polygonal object transportation by multiple mobile robots based on fuzzy sliding mode control.

    PubMed

    Dai, Yanyan; Kim, YoonGu; Wee, SungGil; Lee, DongHa; Lee, SukGyu

    2016-01-01

    In this paper, the problem of object caging and transporting is considered for multiple mobile robots. With the consideration of minimizing the number of robots and decreasing the rotation of the object, the proper points are calculated and assigned to the multiple mobile robots to allow them to form a symmetric caging formation. The caging formation guarantees that all of the Euclidean distances between any two adjacent robots are smaller than the minimal width of the polygonal object so that the object cannot escape. In order to avoid collision among robots, the parameter of the robots radius is utilized to design the caging formation, and the A⁎ algorithm is used so that mobile robots can move to the proper points. In order to avoid obstacles, the robots and the object are regarded as a rigid body to apply artificial potential field method. The fuzzy sliding mode control method is applied for tracking control of the nonholonomic mobile robots. Finally, the simulation and experimental results show that multiple mobile robots are able to cage and transport the polygonal object to the goal position, avoiding obstacles.

  20. Development of a GA-fuzzy-immune PID controller with incomplete derivation for robot dexterous hand.

    PubMed

    Liu, Xin-hua; Chen, Xiao-hu; Zheng, Xian-hua; Li, Sheng-peng; Wang, Zhong-bin

    2014-01-01

    In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters' optimization. Finally, a simulation example was provided and the designed controller was proved ideal.

  1. Development of a GA-Fuzzy-Immune PID Controller with Incomplete Derivation for Robot Dexterous Hand

    PubMed Central

    Liu, Xin-hua; Chen, Xiao-hu; Zheng, Xian-hua; Li, Sheng-peng; Wang, Zhong-bin

    2014-01-01

    In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters' optimization. Finally, a simulation example was provided and the designed controller was proved ideal. PMID:25097881

  2. Expert system driven fuzzy control application to power reactors

    SciTech Connect

    Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.

    1990-12-31

    For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a ``supervisory`` routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment.

  3. Two-level tuning of fuzzy PID controllers.

    PubMed

    Mann, G I; Hu, B G; Gosine, R G

    2001-01-01

    Fuzzy PID tuning requires two stages of tuning; low level tuning followed by high level tuning. At the higher level, a nonlinear tuning is performed to determine the nonlinear characteristics of the fuzzy output. At the lower level, a linear tuning is performed to determine the linear characteristics of the fuzzy output for achieving overall performance of fuzzy control. First, different fuzzy systems are defined and then simplified for two-point control. Non-linearity tuning diagrams are constructed for fuzzy systems in order to perform high level tuning. The linear tuning parameters are deduced from the conventional PID tuning knowledge. Using the tuning diagrams, high level tuning heuristics are developed. Finally, different applications are demonstrated to show the validity of the proposed tuning method.

  4. A PI-fuzzy logic controller for the regulation of blood glucose level in diabetic patients.

    PubMed

    Ibbini, M

    2006-01-01

    This manuscript investigates different fuzzy logic controllers for the regulation of blood glucose level in diabetic patients. While fuzzy logic control is still intuitive and at a very early stage, it has already been implemented in many industrial plants and reported results are very promising. A fuzzy logic control (FLC) scheme was recently proposed for maintaining blood glucose level in diabetics within acceptable limits, and was shown to be more effective with better transient characteristics than conventional techniques. In fact, FLC is based on human expertise and on desired output characteristics, and hence does not require precise mathematical models. This observation makes fuzzy rule-based technique very suitable for biomedical systems where models are, in general, either very complicated or over-simplistic. Another attractive feature of fuzzy techniques is their insensitivity to system parameter variations, as numerical values of physiological parameters are often not precise and usually vary from patient to another. PI and PID controllers are very popular and are efficiently used in many industrial plants. Fuzzy PI and PID controllers behave in a similar fashion to those classical controllers with the obvious advantage that the controller parameters are time dependant on the range of the control variables and consequently, result in a better performance. In this manuscript, a fuzzy PI controller is designed using a simplified design scheme and then subjected to simulations of the two common diabetes disturbances--sudden glucose meal and system parameter variations. The performance of the proposed fuzzy PI controller is compared to that of the conventional PID and optimal techniques and is shown to be superior. Moreover, the proposed fuzzy PI controller is shown to be more effective than the previously proposed FLC, especially with respect to the overshoot and settling time.

  5. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.

    PubMed

    Wai, Rong-Jong; Yang, Zhi-Wei

    2008-10-01

    This paper focuses on the development of adaptive fuzzy neural network control (AFNNC), including indirect and direct frameworks for an n-link robot manipulator, to achieve high-precision position tracking. In general, it is difficult to adopt a model-based design to achieve this control objective due to the uncertainties in practical applications, such as friction forces, external disturbances, and parameter variations. In order to cope with this problem, an indirect AFNNC (IAFNNC) scheme and a direct AFNNC (DAFNNC) strategy are investigated without the requirement of prior system information. In these model-free control topologies, a continuous-time Takagi-Sugeno (T-S) dynamic fuzzy model with online learning ability is constructed to represent the system dynamics of an n-link robot manipulator. In the IAFNNC, an FNN estimator is designed to tune the nonlinear dynamic function vector in fuzzy local models, and then, the estimative vector is used to indirectly develop a stable IAFNNC law. In the DAFNNC, an FNN controller is directly designed to imitate a predetermined model-based stabilizing control law, and then, the stable control performance can be achieved by only using joint position information. All the IAFNNC and DAFNNC laws and the corresponding adaptive tuning algorithms for FNN weights are established in the sense of Lyapunov stability analyses to ensure the stable control performance. Numerical simulations and experimental results of a two-link robot manipulator actuated by dc servomotors are given to verify the effectiveness and robustness of the proposed methodologies. In addition, the superiority of the proposed control schemes is indicated in comparison with proportional-differential control, fuzzy-model-based control, T-S-type FNN control, and robust neural fuzzy network control systems.

  6. Modular fuzzy-neuro controller driven by spoken language commands.

    PubMed

    Pulasinghe, Koliya; Watanabe, Keigo; Izumi, Kiyotaka; Kiguchi, Kazuo

    2004-02-01

    We present a methodology of controlling machines using spoken language commands. The two major problems relating to the speech interfaces for machines, namely, the interpretation of words with fuzzy implications and the out-of-vocabulary (OOV) words in natural conversation, are investigated. The system proposed in this paper is designed to overcome the above two problems in controlling machines using spoken language commands. The present system consists of a hidden Markov model (HMM) based automatic speech recognizer (ASR), with a keyword spotting system to capture the machine sensitive words from the running utterances and a fuzzy-neural network (FNN) based controller to represent the words with fuzzy implications in spoken language commands. Significance of the words, i.e., the contextual meaning of the words according to the machine's current state, is introduced to the system to obtain more realistic output equivalent to users' desire. Modularity of the system is also considered to provide a generalization of the methodology for systems having heterogeneous functions without diminishing the performance of the system. The proposed system is experimentally tested by navigating a mobile robot in real time using spoken language commands.

  7. Fuzzy model-based observers for fault detection in CSTR.

    PubMed

    Ballesteros-Moncada, Hazael; Herrera-López, Enrique J; Anzurez-Marín, Juan

    2015-11-01

    Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of ±0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Coordinated signal control for arterial intersections using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Kermanian, Davood; Zare, Assef; Balochian, Saeed

    2013-09-01

    Every day growth of the vehicles has become one of the biggest problems of urbanism especially in major cities. This can waste people's time, increase the fuel consumption, air pollution, and increase the density of cars and vehicles. Fuzzy controllers have been widely used in many consumer products and industrial applications with success over the past two decades. This article proposes a comprehensive model of urban traffic network using state space equations and then using Fuzzy Logic Tool Box and SIMULINK Program MATLAB a fuzzy controller in order to optimize and coordinate signal control at two intersections at an arterial road. The fuzzy controller decides to extend, early cut or terminate a signal phase and phase sequence to ensure smooth flow of traffic with minimal waiting time and length of queue. Results show that the performance of the proposed traffic controller at novel fuzzy model is better that of conventional controllers under normal and abnormal traffic conditions.

  9. On-line fuzzy logic control of tube bending

    NASA Astrophysics Data System (ADS)

    Lieh, Junghsen; Li, Wei Jie

    2005-11-01

    This paper describes the simulation and on-line fuzzy logic control of tube bending. By combining elasticity and plasticity theories, a conventional model was developed. The results from simulation were compared with those obtained from testing. The experimental data reveal that there exists certain level of uncertainty and nonlinearity in tube bending, and its variation could be significant. To overcome this, a on-line fuzzy logic controller with self-tuning capabilities was designed. The advantages of this on-line system are (1) its computational requirement is simple in comparison with more algorithmic-based controllers, and (2) the system does not need prior knowledge of material characteristics. The device includes an AC motor, a servo controller, a forming mechanism, a 3D optical sensor, and a microprocessor. This automated bending machine adopts primary and secondary errors between the actual response and desired output to conduct on-line rule reasoning. Results from testing show that the spring back angle can be effectively compensated by the self- tuning fuzzy system in a real-time fashion.

  10. Design and Implementation of Takagi-Sugeno Fuzzy Logic Controller for Shunt Compensator

    NASA Astrophysics Data System (ADS)

    Singh, Alka; Badoni, Manoj

    2016-12-01

    This paper describes the application of Takagi-Sugeno (TS) type fuzzy logic controller to a three-phase shunt compensator in power distribution system. The shunt compensator is used for power quality improvement and has the ability to provide reactive power compensation, reduce the level of harmonics in supply currents, power factor correction and load balancing. Additionally, it can also be used to regulate voltage at the point of common coupling (PCC). The paper discusses the design of TS fuzzy logic controller and its implementation based on only four rules. The smaller number of rules makes it suitable for experimental verification as compared to Mamdani fuzzy controller. A small laboratory prototype of the system is developed and the control algorithm is verified experimentally. The TS fuzzy controller is compared with the proportional integral based industrial controller and their performance is compared under a wide variation of dynamic load changes.

  11. Stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks with mixed delays and the Wiener process based on sampled-data control

    NASA Astrophysics Data System (ADS)

    Kalpana, M.; Balasubramaniam, P.

    2013-07-01

    We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov—Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.

  12. Expected value based ranking of intuitionistic fuzzy variables

    NASA Astrophysics Data System (ADS)

    Kumar, Tanuj; Bajaj, Rakesh Kumar; Kaushik, Rajeev

    2017-07-01

    In the present paper, we introduce the idea of intuitionistic fuzzy variables by means of credibility theory. The mean value of intuitionistic fuzzy variables is obtained with the help of credibility distribution. Then, we develop a more comprehensive ranking method based on mean value of intuitionistic fuzzy variable. Also, we analyze the consistency of the propose ranking method with existing ranking methods.

  13. Fuzzy control for linear plants with uncertain output backlashes.

    PubMed

    Tao, C W

    2002-01-01

    In this correspondence, a new approach to design a fuzzy controller for systems with uncertain output backlash to have good tracking performance is presented. Without using a compensation mechanism or a backlash inverse, the fuzzy control mechanism is designed to implicitly compensate the delay effect arising from an uncertain output backlash and to make the output backlash system stable without limit cycles. Also, the proposed fuzzy controller is presented to be insensitive to the variations of the backlash and system plant parameters. Moreover, the proposed approach is extended to design a fuzzy controller for a two-input two-output (TITO) linear plant with output backlash. The effectiveness of the designed fuzzy controller is illustrated by the simulation results on linear, low-order, nonlinear plants and the experimental results on an amplifier-motor system with a gear train.

  14. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller

    ERIC Educational Resources Information Center

    Mamdani, E. H.; Assilian, S.

    1975-01-01

    This paper describes an experiment on the "linguistic" synthesis of a controller for a model industrial plant (a steam engine). Fuzzy logic is used to convert heuristic control rules stated by a human operator into an automatic control strategy. (Author)

  15. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller

    ERIC Educational Resources Information Center

    Mamdani, E. H.; Assilian, S.

    1975-01-01

    This paper describes an experiment on the "linguistic" synthesis of a controller for a model industrial plant (a steam engine). Fuzzy logic is used to convert heuristic control rules stated by a human operator into an automatic control strategy. (Author)

  16. Algebraic and Probabilistic Bases for Fuzzy Sets and the Development of Fuzzy Conditioning

    DTIC Science & Technology

    1991-08-01

    bij.ction’ relative to the base spaces . Section 4 develops operations isomorphic to fuzzy set membership operations, including cartesian products, sums...conditional events to fuzzy sets. 2. Fundamental Spaces and Bijective Mappings. Throughout the remaining paper denote the unit interval [0, 1] = {t: 0 < t S...constructs the isomorphic counterparts of the above over Flou(X). 4. Construction of Operations over Flou Spaces Isomnorphic to Those over Fuzzy Set

  17. Application of Fuzzy-Logic Controller and Neural Networks Controller in Gas Turbine Speed Control and Overheating Control and Surge Control on Transient Performance

    NASA Astrophysics Data System (ADS)

    Torghabeh, A. A.; Tousi, A. M.

    2007-08-01

    This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.

  18. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  19. Application and classification of fuzzy dynamic system and fuzzy linguistic controller with examples illustrated

    NASA Astrophysics Data System (ADS)

    Wang, Paul P.; Tyan, Ching-Yu

    1993-12-01

    This paper presents the classification of fuzzy dynamic systems and fuzzy linguistic controllers (FLC) into standard types (TYPE 1 through TYPE 7). The need, utility value, and the logic behind this classification are given. The proposed classification is the result of studying many known examples of FLC applications. The impact of this classification to new designs and to the improved performance of classical and modern control systems is an important consideration.

  20. Adaptive fuzzy logic controller with direct action type structures for InnoSAT attitude control system

    NASA Astrophysics Data System (ADS)

    Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.

    2016-10-01

    This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.

  1. Fuzzy dynamic output feedback H∞ control for continuous-time T-S fuzzy systems under imperfect premise matching.

    PubMed

    Zhao, Tao; Dian, Songyi

    2017-09-01

    This paper addresses a fuzzy dynamic output feedback H∞ control design problem for continuous-time nonlinear systems via T-S fuzzy model. The stability of the fuzzy closed-loop system which is formed by a T-S fuzzy model and a fuzzy dynamic output feedback H∞ controller connected in a closed loop is investigated with Lyapunov stability theory. The proposed fuzzy controller does not share the same membership functions and number of rules with T-S fuzzy systems, which can enhance design flexibility. A line-integral fuzzy Lyapunov function is utilized to derive the stability conditions in the form of linear matrix inequalities (LMIs). The boundary information of membership functions is considered in the stability analysis to reduce the conservativeness of the imperfect premise matching design technique. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Study on application of adaptive fuzzy control and neural network in the automatic leveling system

    NASA Astrophysics Data System (ADS)

    Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng

    2015-04-01

    This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.

  3. Control Law for Automatic Landing Using Fuzzy Logic Control

    NASA Astrophysics Data System (ADS)

    Kato, Akio; Inagaki, Yoshiki

    The effectiveness of fuzzy logic control law for automatic landing of aircraft, which cover both of control to lead aircraft from level flight at an altitude of 500m to the flight on the glide-path course near the runway and control for the aircraft to land smoothly on a runway, was studied. The control law of the automatic landing was designed to match the design goals of leading from the horizontal flight to the flight on the glide-path course quickly and smoothly and of landing smoothly on a runway. Because there is the ground effect at landing, design of control law and evaluation of control performance were done in consideration of the ground effect. As a result, it was confirmed that the design objective was achieved. Even if the characteristics of the plant changes greatly, this control law was able to maintain the control performance. Moreover, it was confirmed to be able to land safely when there was air turbulence. This paper shows that fuzzy logic control is an effective and flexible method when applied to control law for automatic landing and the design method of control law using fuzzy logic control was obtained.

  4. Fuzzy logic-based spike sorting system.

    PubMed

    Balasubramanian, Karthikeyan; Obeid, Iyad

    2011-05-15

    We present a new method for autonomous real-time spike sorting using a fuzzy logic inference engine. The engine assigns each detected event a 'spikiness index' from zero to one that quantifies the extent to which the detected event is like an ideal spike. Spikes can then be sorted by simply clustering the spikiness indices. The sorter is defined in terms of natural language rules that, once defined, are static and thus require no user intervention or calibration. The sorter was tested using extracellular recordings from three animals: a macaque, an owl monkey and a rat. Simulation results show that the fuzzy sorter performed equal to or better than the benchmark principal component analysis (PCA) based sorter. Importantly, there was no degradation in fuzzy sorter performance when the spikes were not temporally aligned prior to sorting. In contrast, PCA sorter performance dropped by 27% when sorting unaligned spikes. Since the fuzzy sorter is computationally trivial and requires no spike alignment, it is suitable for scaling into large numbers of parallel channels where computational overhead and the need for operator intervention would preclude other spike sorters.

  5. The Modeling of Fuzzy Systems Based on Lee-Oscillatory Chaotic Fuzzy Model (LoCFM)

    NASA Astrophysics Data System (ADS)

    Wong, Max H. Y.; Liu, James N. K.; Shum, Dennis T. F.; Lee, Raymond S. T.

    This paper introduces a new fuzzy membership function — LEE-oscillatory Chaotic Fuzzy Model (LoCFM). The development of this model is based on fuzzy logic and the incorporation of chaos theory — LEE Oscillator. Prototype systems are being developed for handling imprecise problems, typically involving linguistic expression and fuzzy semantic meaning. In addition, the paper also examines the mechanism of the LEE Oscillator through analyzing its structure and neural dynamics. It demonstrates the potential application of the model in future development.

  6. Adaptive Fuzzy Control for Uncertain Fractional-Order Financial Chaotic Systems Subjected to Input Saturation

    PubMed Central

    Wang, Chenhui

    2016-01-01

    In this paper, control of uncertain fractional-order financial chaotic system with input saturation and external disturbance is investigated. The unknown part of the input saturation as well as the system’s unknown nonlinear function is approximated by a fuzzy logic system. To handle the fuzzy approximation error and the estimation error of the unknown upper bound of the external disturbance, fractional-order adaptation laws are constructed. Based on fractional Lyapunov stability theorem, an adaptive fuzzy controller is designed, and the asymptotical stability can be guaranteed. Finally, simulation studies are given to indicate the effectiveness of the proposed method. PMID:27783648

  7. Adaptive Fuzzy Control for Uncertain Fractional-Order Financial Chaotic Systems Subjected to Input Saturation.

    PubMed

    Wang, Chenhui

    2016-01-01

    In this paper, control of uncertain fractional-order financial chaotic system with input saturation and external disturbance is investigated. The unknown part of the input saturation as well as the system's unknown nonlinear function is approximated by a fuzzy logic system. To handle the fuzzy approximation error and the estimation error of the unknown upper bound of the external disturbance, fractional-order adaptation laws are constructed. Based on fractional Lyapunov stability theorem, an adaptive fuzzy controller is designed, and the asymptotical stability can be guaranteed. Finally, simulation studies are given to indicate the effectiveness of the proposed method.

  8. Fuzzy Energy Management for a Catenary-Battery-Ultracapacitor based Hybrid Tramway

    NASA Astrophysics Data System (ADS)

    Jibin, Yang; Jiye, Zhang; Pengyun, Song

    2017-05-01

    In this paper, an energy management strategy (EMS) based on fuzzy logic control for a catenary-battery-ultracapacitor powered hybrid modern tramway was presented. The fuzzy logic controller for the catenary zone and catenary-less zone was respectively designed by analyzing the structure and working mode of the hybrid system, then an energy management strategy based on double fuzzy logic control was proposed to enhance the fuel economy. The hybrid modern tramway simulation model was developed based on MATLAB/Simulink environment. The simulation results show that the proposed EMS can satisfy the demand of dynamic performance of the tramway and achieve the power distribution reasonably between the each power source.

  9. Fuzzy attitude control for a nanosatellite in leo orbit

    NASA Astrophysics Data System (ADS)

    Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria; Aviles, Taisir

    Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In this work, a tailored fuzzy controller is designed for a nanosatellite and is compared with a traditional Proportional Integrative Derivative (PID) controller. Both control methodologies are compared within the same specific mission. The orbit height varies along the mission from injection at around 380 km down to a 200 km height orbit, and the mission requires pointing accuracy over the whole time. Due to both the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, a robust and efficient ADCS is required. For these reasons a fuzzy logic controller is implemented as the brain of the ADCS and its performance and efficiency are compared to a traditional PID. The fuzzy controller is designed in three separated controllers, each one acting on one of the Euler angles of the satellite in an orbital frame. The fuzzy memberships are constructed taking into account the mission requirements, the physical properties of the satellite and the expected performances. Both methodologies, fuzzy and PID, are fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. Finally both methods are probed in different environments to test their characteristics. The simulations show that the fuzzy controller is much more efficient (up to 65% less power required) in single maneuvers, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. A brief mission description is depicted as well as the design process of both ADCS controllers. Finally the validation process and the results obtained during the simulations are described. Those results show that the fuzzy logic methodology is valid for small

  10. Design, modelling, implementation, and intelligent fuzzy control of a hovercraft

    NASA Astrophysics Data System (ADS)

    El-khatib, M. M.; Hussein, W. M.

    2011-05-01

    A Hovercraft is an amphibious vehicle that hovers just above the ground or water by air cushion. The concept of air cushion vehicle can be traced back to 1719. However, the practical form of hovercraft nowadays is traced back to 1955. The objective of the paper is to design, simulate and implement an autonomous model of a small hovercraft equipped with a mine detector that can travel over any terrains. A real time layered fuzzy navigator for a hovercraft in a dynamic environment is proposed. The system consists of a Takagi-Sugenotype fuzzy motion planner and a modified proportional navigation based fuzzy controller. The system philosophy is inspired by human routing when moving between obstacles based on visual information including the right and left views from which he makes his next step towards the goal in the free space. It intelligently combines two behaviours to cope with obstacle avoidance as well as approaching a goal using a proportional navigation path accounting for hovercraft kinematics. MATLAB/Simulink software tool is used to design and verify the proposed algorithm.

  11. Experimental Evaluation of Fuzzy Logic Control of a Flexible Arm Manipulator

    DTIC Science & Technology

    1993-12-09

    motor . The encoder consists of an LED source and lens which transmits collimated light from the emitter module through a metal code wheel and phase plate...information needed to run a fuzzy logic based controller . The first of the five steps is that of fuzzification. This step simply converts a input. or a...Hardware, 15 Degree Slew 32 3.6.3 Robustness To examine the performance robustness of the fuzzy logic controller , three off-design tests were accomplished

  12. Aircraft nonlinear optimal control using fuzzy gain scheduling

    NASA Astrophysics Data System (ADS)

    Nusyirwan, I. F.; Kung, Z. Y.

    2016-10-01

    Fuzzy gain scheduling is a common solution for nonlinear flight control. The highly nonlinear region of flight dynamics is determined throughout the examination of eigenvalues and the irregular pattern of root locus plots that show the nonlinear characteristic. By using the optimal control for command tracking, the pitch rate stability augmented system is constructed and the longitudinal flight control system is established. The outputs of optimal control for 21 linear systems are fed into the fuzzy gain scheduler. This research explores the capability in using both optimal control and fuzzy gain scheduling to improve the efficiency in finding the optimal control gains and to achieve Level 1 flying qualities. The numerical simulation work is carried out to determine the effectiveness and performance of the entire flight control system. The simulation results show that the fuzzy gain scheduling technique is able to perform in real time to find near optimal control law in various flying conditions.

  13. [Predicting Incidence of Hepatitis E in Chinausing Fuzzy Time Series Based on Fuzzy C-Means Clustering Analysis].

    PubMed

    Luo, Yi; Zhang, Tao; Li, Xiao-song

    2016-05-01

    To explore the application of fuzzy time series model based on fuzzy c-means clustering in forecasting monthly incidence of Hepatitis E in mainland China. Apredictive model (fuzzy time series method based on fuzzy c-means clustering) was developed using Hepatitis E incidence data in mainland China between January 2004 and July 2014. The incidence datafrom August 2014 to November 2014 were used to test the fitness of the predictive model. The forecasting results were compared with those resulted from traditional fuzzy time series models. The fuzzy time series model based on fuzzy c-means clustering had 0.001 1 mean squared error (MSE) of fitting and 6.977 5 x 10⁻⁴ MSE of forecasting, compared with 0.0017 and 0.0014 from the traditional forecasting model. The results indicate that the fuzzy time series model based on fuzzy c-means clustering has a better performance in forecasting incidence of Hepatitis E.

  14. AQM router design for TCP network via input constrained fuzzy control of time-delay affine Takagi-Sugeno fuzzy models

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Jer; Meng, Yu-Teh; Tsai, Kuo-Hui

    2012-12-01

    In this article, Takagi-Sugeno (T-S) fuzzy control theory is proposed as a key tool to design an effective active queue management (AQM) router for the transmission control protocol (TCP) networks. The probability control of packet marking in the TCP networks is characterised by an input constrained control problem in this article. By modelling the TCP network into a time-delay affine T-S fuzzy model, an input constrained fuzzy control methodology is developed in this article to serve the AQM router design. The proposed fuzzy control approach, which is developed based on the parallel distributed compensation technique, can provide smaller probability of dropping packets than previous AQM design schemes. Lastly, a numerical simulation is provided to illustrate the usefulness and effectiveness of the proposed design approach.

  15. Adaptive Fuzzy Control Design for Stochastic Nonlinear Switched Systems With Arbitrary Switchings and Unmodeled Dynamics.

    PubMed

    Li, Yongming; Sui, Shuai; Tong, Shaocheng

    2017-02-01

    This paper deals with the problem of adaptive fuzzy output feedback control for a class of stochastic nonlinear switched systems. The controlled system in this paper possesses unmeasured states, completely unknown nonlinear system functions, unmodeled dynamics, and arbitrary switchings. A state observer which does not depend on the switching signal is constructed to tackle the unmeasured states. Fuzzy logic systems are employed to identify the completely unknown nonlinear system functions. Based on the common Lyapunov stability theory and stochastic small-gain theorem, a new robust adaptive fuzzy backstepping stabilization control strategy is developed. The stability of the closed-loop system on input-state-practically stable in probability is proved. The simulation results are given to verify the efficiency of the proposed fuzzy adaptive control scheme.

  16. Full-order Luenberger observer based on fuzzy-logic control for sensorless field-oriented control of a single-sided linear induction motor.

    PubMed

    Holakooie, Mohammad Hosein; Ojaghi, Mansour; Taheri, Asghar

    2016-01-01

    This paper investigates sensorless indirect field oriented control (IFOC) of SLIM with full-order Luenberger observer. The dynamic equations of SLIM are first elaborated to draw full-order Luenberger observer with some simplifying assumption. The observer gain matrix is derived from conventional procedure so that observer poles are proportional to SLIM poles to ensure the stability of system for wide range of linear speed. The operation of observer is significantly impressed by adaptive scheme. A fuzzy logic control (FLC) is proposed as adaptive scheme to estimate linear speed using speed tuning signal. The parameters of FLC are tuned using an off-line method through chaotic optimization algorithm (COA). The performance of the proposed observer is verified by both numerical simulation and real-time hardware-in-the-loop (HIL) implementation. Moreover, a detailed comparative study among proposed and other speed observers is obtained under different operation conditions.

  17. Adaptive process control using fuzzy logic and genetic algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  18. Adaptive Process Control with Fuzzy Logic and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  19. Approach to Synchronization Control of Magnetic Bearings Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Yang, Li-Farn

    1996-01-01

    This paper presents a fuzzy-logic approach to the synthesis of synchronization control for magnetically suspended rotor system. The synchronization control enables a whirling rotor to undergo synchronous motion along the magnetic bearing axes; thereby avoiding the gyroscopic effect that degrade the stability of rotor systems when spinning at high speed. The control system features a fuzzy controller acting on the magnetic bearing device, in which the fuzzy inference system trained through fuzzy rules to minimize the differential errors between four bearing axes so that an error along one bearing axis can affect the overall control loop for the motion synchronization. Numerical simulations of synchronization control for the magnetically suspended rotor system are presented to show the effectiveness of the present approach.

  20. Automatic control of biomass gasifiers using fuzzy inference systems.

    PubMed

    Sagüés, C; García-Bacaicoa, P; Serrano, S

    2007-03-01

    A fuzzy controller for biomass gasifiers is proposed. Although fuzzy inference systems do not need models to be tuned, a plant model is proposed which has turned out very useful to prove different combinations of membership functions and rules in the proposed fuzzy control. The global control scheme is shown, including the elements to generate the set points for the process variables automatically. There, the type of biomass and its moisture content are the only data which need to be introduced to the controller by a human operator at the beginning of operation to make it work autonomously. The advantages and good performance of the fuzzy controller with the automatic generation of set points, compared to controllers utilising fixed parameters, are demonstrated.

  1. Automatic generation of fuzzy rules for the sensor-based navigation of a mobile robot

    SciTech Connect

    Pin, F.G.; Watanabe, Y.

    1994-10-01

    A system for automatic generation of fuzzy rules is proposed which is based on a new approach, called {open_quotes}Fuzzy Behaviorist,{close_quotes} and on its associated formalism for rule base development in behavior-based robot control systems. The automated generator of fuzzy rules automatically constructs the set of rules and the associated membership functions that implement reasoning schemes that have been expressed in qualitative terms. The system also checks for completeness of the rule base and independence and/or redundancy of the rules to ensure that the requirements of the formalism are satisfied. Examples of the automatic generation of fuzzy rules for cases involving suppression and/or inhibition of fuzzy behaviors are given and discussed. Experimental results obtained with the automated fuzzy rule generator applied to the domain of sensor-based navigation in a priori unknown environments using one of our autonomous test-bed robots are then presented and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using our proposed {open_quotes}Fuzzy Behaviorist{close_quotes} approach.

  2. Sensor-based navigation of a mobile robot using automatically constructed fuzzy rules

    SciTech Connect

    Watanabe, Y.; Pin, F.G.

    1993-10-01

    A system for automatic generation of fuzzy rules is proposed which is based on a new approach, called ``Fuzzy Behaviorist,`` and on its associated formalism for rule base development in behavior-based robot control systems. The automated generator of fuzzy rules automatically constructs the set of rules and the associated membership functions that implement reasoning schemes that have been expressed in qualitative terms. The system also checks for completeness of the rule base and independence and/or redundancy of the rules to ensure that the requirements of the formalism are satisfied. Examples of the automatic generation of fuzzy rules for cases involving suppression and/or inhibition of fuzzy behaviors are given and discussed. Experimental results obtained with the automated fuzzy rule generator applied to the domain of sensor-based navigation in a priori unknown environments using one of our autonomous test-bed robots are then presented and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using our proposed ``Fuzzy Behaviorist`` approach.

  3. Fuzzy case based reasoning in sports facilities unit cost estimating

    NASA Astrophysics Data System (ADS)

    Zima, Krzysztof

    2016-06-01

    This article presents an example of estimating costs in the early phase of the project using fuzzy case-based reasoning. The fragment of database containing descriptions and unit cost of sports facilities was shown. The formulas used in Case Based Reasoning method were presented, too. The article presents similarity measurement using a few formulas, including fuzzy similarity. The outcome of cost calculations based on CBR method was presented as a fuzzy number of unit cost of construction work.

  4. Tuning fuzzy PD and PI controllers using reinforcement learning.

    PubMed

    Boubertakh, Hamid; Tadjine, Mohamed; Glorennec, Pierre-Yves; Labiod, Salim

    2010-10-01

    In this paper, we propose a new auto-tuning fuzzy PD and PI controllers using reinforcement Q-learning (QL) algorithm for SISO (single-input single-output) and TITO (two-input two-output) systems. We first, investigate the design parameters and settings of a typical class of Fuzzy PD (FPD) and Fuzzy PI (FPI) controllers: zero-order Takagi-Sugeno controllers with equidistant triangular membership functions for inputs, equidistant singleton membership functions for output, Larsen's implication method, and average sum defuzzification method. Secondly, the analytical structures of these typical fuzzy PD and PI controllers are compared to their classical counterpart PD and PI controllers. Finally, the effectiveness of the proposed method is proven through simulation examples.

  5. Fusion techniques of fuzzy systems and neural networks, and fuzzy systems and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Takagi, Hideyuki

    1993-12-01

    This paper overviews four combinations of fuzzy logic, neural networks and genetic algorithms: (1) neural networks to auto-design fuzzy systems, (2) employing fuzzy rule structure to construct structured neural networks, (3) genetic algorithms to auto-design fuzzy systems, and (4) a fuzzy knowledge-based system to control genetic parameter dynamically.

  6. Fuzzy control for closed-loop, patient-specific hypnosis in intraoperative patients: a simulation study.

    PubMed

    Moore, Brett L; Pyeatt, Larry D; Doufas, Anthony G

    2009-01-01

    Research has demonstrated the efficacy of closed-loop control of anesthesia using bispectral index (BIS) as the controlled variable, and the recent development of model-based, patient-adaptive systems has considerably improved anesthetic control. To further explore the use of model-based control in anesthesia, we investigated the application of fuzzy control in the delivery of patient-specific propofol-induced hypnosis. In simulated intraoperative patients, the fuzzy controller demonstrated clinically acceptable performance, suggesting that further study is warranted.

  7. Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems.

    PubMed

    Li, Yongming; Tong, Shaocheng; Li, Tieshan

    2015-01-01

    In this paper, an adaptive fuzzy decentralized output feedback control design is presented for a class of interconnected nonlinear pure-feedback systems. The considered nonlinear systems contain unknown nonlinear uncertainties and the states are not necessary to be measured directly. Fuzzy logic systems are employed to approximate the unknown nonlinear functions, and then a fuzzy state observer is designed and the estimations of the immeasurable state variables are obtained. Based on the adaptive backstepping dynamic surface control design technique, an adaptive fuzzy decentralized output feedback control scheme is developed. It is proved that all the variables of the resulting closed-loop system are semi-globally uniformly ultimately bounded, and also that the observer and tracking errors are guaranteed to converge to a small neighborhood of the origin. Some simulation results and comparisons with the existing results are provided to illustrate the effectiveness and merits of the proposed approach.

  8. Adaptive fuzzy decentralised control for stochastic nonlinear large-scale systems in pure-feedback form

    NASA Astrophysics Data System (ADS)

    Tong, Shaocheng; Xu, Yinyin; Li, Yongming

    2015-06-01

    This paper is concerned with the problem of adaptive fuzzy decentralised output-feedback control for a class of uncertain stochastic nonlinear pure-feedback large-scale systems with completely unknown functions, the mismatched interconnections and without requiring the states being available for controller design. With the help of fuzzy logic systems approximating the unknown nonlinear functions, a fuzzy state observer is designed estimating the unmeasured states. Therefore, the nonlinear filtered signals are incorporated into the backstepping recursive design, and an adaptive fuzzy decentralised output-feedback control scheme is developed. It is proved that the filter system converges to a small neighbourhood of the origin based on appropriate choice of the design parameters. Simulation studies are included illustrating the effectiveness of the proposed approach.

  9. Fuzzy Rule Suram for Control System of a Solar Energy Wood Drying Chamber

    NASA Astrophysics Data System (ADS)

    Situmorang, Zakarias; Wardoyo, Retantyo; Hartati, Sri; Eko Istiyanto, Jazi

    2009-08-01

    The paper reports used the fuzzy rule Suram for control system of a wood drying chamber with solar as source of energy. Rule suram based of fuzzy logic with variables of weather is temperature ambient and conditions of air is humidity ambient, it implemented for wood drying process. The membership function of variable of state represented in error value and change error with typical of triangle and trapezium map. Result of Analysis to reach 8 fuzzy rule to control the output system can be constructed in a number of way of weather and conditions of air. It used to minimum of the consumption of electric energy by heater. The rule suram used to stability and equilibrium of schedule of drying in chamber by control of temperature and humidity. The result of implemented of fuzzy rule suram with the modification of membership function in range [0.5, 1] represented approximate to he conditions riel.

  10. Finite-dimensional constrained fuzzy control for a class of nonlinear distributed process systems.

    PubMed

    Wu, Huai-Ning; Li, Han-Xiong

    2007-10-01

    This correspondence studies the problem of finite-dimensional constrained fuzzy control for a class of systems described by nonlinear parabolic partial differential equations (PDEs). Initially, Galerkin's method is applied to the PDE system to derive a nonlinear ordinary differential equation (ODE) system that accurately describes the dynamics of the dominant (slow) modes of the PDE system. Subsequently, a systematic modeling procedure is given to construct exactly a Takagi-Sugeno (T-S) fuzzy model for the finite-dimensional ODE system under state constraints. Then, based on the T-S fuzzy model, a sufficient condition for the existence of a stabilizing fuzzy controller is derived, which guarantees that the state constraints are satisfied and provides an upper bound on the quadratic performance function for the finite-dimensional slow system. The resulting fuzzy controllers can also guarantee the exponential stability of the closed-loop PDE system. Moreover, a local optimization algorithm based on the linear matrix inequalities is proposed to compute the feedback gain matrices of a suboptimal fuzzy controller in the sense of minimizing the quadratic performance bound. Finally, the proposed design method is applied to the control of the temperature profile of a catalytic rod.

  11. Fuzzy control system for a remote focusing microscope

    NASA Technical Reports Server (NTRS)

    Weiss, Jonathan J.; Tran, Luc P.

    1992-01-01

    Space Station Crew Health Care System procedures require the use of an on-board microscope whose slide images will be transmitted for analysis by ground-based microbiologists. Focusing of microscope slides is low on the list of crew priorities, so NASA is investigating the option of telerobotic focusing controlled by the microbiologist on the ground, using continuous video feedback. However, even at Space Station distances, the transmission time lag may disrupt the focusing process, severely limiting the number of slides that can be analyzed within a given bandwidth allocation. Substantial time could be saved if on-board automation could pre-focus each slide before transmission. The authors demonstrate the feasibility of on-board automatic focusing using a fuzzy logic ruled-based system to bring the slide image into focus. The original prototype system was produced in under two months and at low cost. Slide images are captured by a video camera, then digitized by gray-scale value. A software function calculates an index of 'sharpness' based on gray-scale contrasts. The fuzzy logic rule-based system uses feedback to set the microscope's focusing control in an attempt to maximize sharpness. The systems as currently implemented performs satisfactorily in focusing a variety of slide types at magnification levels ranging from 10 to 1000x. Although feasibility has been demonstrated, the system's performance and usability could be improved substantially in four ways: by upgrading the quality and resolution of the video imaging system (including the use of full color); by empirically defining and calibrating the index of image sharpness; by letting the overall focusing strategy vary depending on user-specified parameters; and by fine-tuning the fuzzy rules, set definitions, and procedures used.

  12. Fuzzy control system for a remote focusing microscope

    NASA Astrophysics Data System (ADS)

    Weiss, Jonathan J.; Tran, Luc P.

    1992-01-01

    Space Station Crew Health Care System procedures require the use of an on-board microscope whose slide images will be transmitted for analysis by ground-based microbiologists. Focusing of microscope slides is low on the list of crew priorities, so NASA is investigating the option of telerobotic focusing controlled by the microbiologist on the ground, using continuous video feedback. However, even at Space Station distances, the transmission time lag may disrupt the focusing process, severely limiting the number of slides that can be analyzed within a given bandwidth allocation. Substantial time could be saved if on-board automation could pre-focus each slide before transmission. The authors demonstrate the feasibility of on-board automatic focusing using a fuzzy logic ruled-based system to bring the slide image into focus. The original prototype system was produced in under two months and at low cost. Slide images are captured by a video camera, then digitized by gray-scale value. A software function calculates an index of 'sharpness' based on gray-scale contrasts. The fuzzy logic rule-based system uses feedback to set the microscope's focusing control in an attempt to maximize sharpness. The systems as currently implemented performs satisfactorily in focusing a variety of slide types at magnification levels ranging from 10 to 1000x. Although feasibility has been demonstrated, the system's performance and usability could be improved substantially in four ways: by upgrading the quality and resolution of the video imaging system (including the use of full color); by empirically defining and calibrating the index of image sharpness; by letting the overall focusing strategy vary depending on user-specified parameters; and by fine-tuning the fuzzy rules, set definitions, and procedures used.

  13. Fuzzy adaptive synchronization of uncertain chaotic systems via delayed feedback control

    NASA Astrophysics Data System (ADS)

    Zhang, Lingling; Huang, Lihong; Zhang, Zhizhou; Wang, Zengyun

    2008-09-01

    Based on the T-S fuzzy model and the delayed feedback control (DFC) scheme, this Letter presents a robust synchronization strategy for a class of chaotic system with unknown parameters and disturbances. Being the response system, the designed robust observer can adaptively track the drive system globally. The T-S fuzzy model of the 4D chaotic system (Lorenz-Stenflo) is developed as an example for illustration. Numerical simulations are shown to verify the results.

  14. Fuzzy logic for personalized healthcare and diagnostics: FuzzyApp--a fuzzy logic based allergen-protein predictor.

    PubMed

    Saravanan, Vijayakumar; Lakshmi, P T V

    2014-09-01

    The path to personalized medicine demands the use of new and customized biopharmaceutical products containing modified proteins. Hence, assessment of these products for allergenicity becomes mandatory before they are introduced as therapeutics. Despite the availability of different tools to predict the allergenicity of proteins, it remains challenging to predict the allergens and nonallergens, when they share significant sequence similarity with known nonallergens and allergens, respectively. Hence, we propose "FuzzyApp," a novel fuzzy rule based system to evaluate the quality of the query protein to be an allergen. It measures the allergenicity of the protein based on the fuzzy IF-THEN rules derived from five different modules. On various datasets, FuzzyApp outperformed other existing methods and retained balance between sensitivity and specificity, with positive Mathew's correlation coefficient. The high specificity of allergen-like putative nonallergens (APN) revealed the FuzzyApp's capability in distinguishing the APN from allergens. In addition, the error analysis and whole proteome dataset analysis suggest the efficiency and consistency of the proposed method. Further, FuzzyApp predicted the Tropomyosin from various allergenic and nonallergenic sources accurately. The web service created allows batch sequence submission, and outputs the result as readable sentences rather than values alone, which assists the user in understanding why and what features are responsible for the prediction. FuzzyApp is implemented using PERL CGI and is freely accessible at http://fuzzyapp.bicpu.edu.in/predict.php . We suggest the use of Fuzzy logic has much potential in biomarker and personalized medicine research to enhance predictive capabilities of post-genomics diagnostics.

  15. Vibration suppression control of smart piezoelectric rotating truss structure by parallel neuro-fuzzy control with genetic algorithm tuning

    NASA Astrophysics Data System (ADS)

    Lin, J.; Zheng, Y. B.

    2012-07-01

    The main goal of this paper is to develop a novel approach for vibration control on a piezoelectric rotating truss structure. This study will analyze the dynamics and control of a flexible structure system with multiple degrees of freedom, represented in this research as a clamped-free-free-free truss type plate rotated by motors. The controller has two separate feedback loops for tracking and damping, and the vibration suppression controller is independent of position tracking control. In addition to stabilizing the actual system, the proposed proportional-derivative (PD) control, based on genetic algorithm (GA) to seek the primary optimal control gain, must supplement a fuzzy control law to ensure a stable nonlinear system. This is done by using an intelligent fuzzy controller based on adaptive neuro-fuzzy inference system (ANFIS) with GA tuning to increase the efficiency of fuzzy control. The PD controller, in its assisting role, easily stabilized the linear system. The fuzzy controller rule base was then constructed based on PD performance-related knowledge. Experimental validation for such a structure demonstrates the effectiveness of the proposed controller. The broad range of problems discussed in this research will be found useful in civil, mechanical, and aerospace engineering, for flexible structures with multiple degree-of-freedom motion.

  16. Fuzzy compensated computed torque control of a manipulator

    NASA Astrophysics Data System (ADS)

    Ficici, Seniz; Sawan, Edwin M.; Bahr, Behnam

    1996-12-01

    A great deal of research has been done in fuzzy logic control (FLC) and its applications since Mamdani's pioneering papers in 1974 and 1977. FLC has also been applied to manipulator control which is a very challenging nonlinear control problem. Both classical and advanced robot controllers have problems because of high nonlinearity or uncertainties in robot dynamics. FLC, as an alternate, suffer from lack of analytical methods for design, tuning and stability analysis. A nonlinear controller which is robust in the presence of modeling errors and disturbances is presented in this paper. A computed torque controller can be designed based on an approximate model and FLC can be used to minimize the tracking error due to modeling errors and disturbance. Since the approximate model of the system reduces the overall nonlinearity, FLC works with very simple rules and it is easy to tune.

  17. Design and implementation of a new fuzzy PID controller for networked control systems.

    PubMed

    Fadaei, A; Salahshoor, K

    2008-10-01

    This paper presents a practical network platform to design and implement a networked-based cascade control system linking a Smar Foundation Fieldbus (FF) controller (DFI-302) and a Siemens programmable logic controller (PLC-S7-315-2DP) through Industrial Ethernet to a laboratory pilot plant. In the presented network configuration, the Smar OPC tag browser and Siemens WinCC OPC Channel provide the communicating interface between the two controllers. The paper investigates the performance of a PID controller implemented in two different possible configurations of FF function block (FB) and networked control system (NCS) via a remote Siemens PLC. In the FB control system implementation, the desired set-point is provided by the Siemens Human-Machine Interface (HMI) software (i.e, WinCC) via an Ethernet Modbus link. While, in the NCS implementation, the cascade loop is realized in remote Siemens PLC station and the final element set-point is sent to the Smar FF station via Ethernet bus. A new fuzzy PID control strategy is then proposed to improve the control performances of the networked-based control systems due to an induced transmission delay degradation effect. The proposed strategy utilizes an innovative idea based on sectionalizing the error signal of the step response into three different functional zones. The supporting philosophy behind these three functional zones is to decompose the desired control objectives in terms of rising time, settling time and steady-state error measures maintained by an appropriate PID-type controller in each zone. Then, fuzzy membership factors are defined to configure the control signal on the basis of the fuzzy weighted PID outputs of all three zones. The obtained results illustrate the effectiveness of the proposed fuzzy PID control scheme in improving the performances of the implemented NCS for different transportation delays.

  18. Adaptive Robust Online Constructive Fuzzy Control of a Complex Surface Vehicle System.

    PubMed

    Wang, Ning; Er, Meng Joo; Sun, Jing-Chao; Liu, Yan-Cheng

    2016-07-01

    In this paper, a novel adaptive robust online constructive fuzzy control (AR-OCFC) scheme, employing an online constructive fuzzy approximator (OCFA), to deal with tracking surface vehicles with uncertainties and unknown disturbances is proposed. Significant contributions of this paper are as follows: 1) unlike previous self-organizing fuzzy neural networks, the OCFA employs decoupled distance measure to dynamically allocate discriminable and sparse fuzzy sets in each dimension and is able to parsimoniously self-construct high interpretable T-S fuzzy rules; 2) an OCFA-based dominant adaptive controller (DAC) is designed by employing the improved projection-based adaptive laws derived from the Lyapunov synthesis which can guarantee reasonable fuzzy partitions; 3) closed-loop system stability and robustness are ensured by stable cancelation and decoupled adaptive compensation, respectively, thereby contributing to an auxiliary robust controller (ARC); and 4) global asymptotic closed-loop system can be guaranteed by AR-OCFC consisting of DAC and ARC and all signals are bounded. Simulation studies and comprehensive comparisons with state-of-the-arts fixed- and dynamic-structure adaptive control schemes demonstrate superior performance of the AR-OCFC in terms of tracking and approximation accuracy.

  19. An intelligent robotic system based on a fuzzy approach

    SciTech Connect

    Fukuda, Toshio; Kubota, Naoyuki

    1999-09-01

    This paper deals with a fuzzy-based intelligent robotic system that requires various capabilities normally associated with intelligence. It acquires skills and knowledge through interaction with a dynamic environment. Recently, subsumption architectures, behavior-based artificial intelligence, and behavioral engineering for robotic systems have been discussed as new technologies for intelligent robotic systems. This paper proposes a robotic system with structured intelligence. The authors focus on a mobile robotic system with a fuzzy controller and propose a sensory network that allows the robot to perceive its environment. An evolutionary approach improves the robot's performance. Furthermore, the authors discuss the effectiveness of the proposed method through computer simulations of collision avoidance and path-planning problems.

  20. A fuzzy MCDM framework based on fuzzy measure and fuzzy integral for agile supplier evaluation

    NASA Astrophysics Data System (ADS)

    Dursun, Mehtap

    2017-06-01

    Supply chains need to be agile in order to response quickly to the changes in today's competitive environment. The success of an agile supply chain depends on the firm's ability to select the most appropriate suppliers. This study proposes a multi-criteria decision making technique for conducting an analysis based on multi-level hierarchical structure and fuzzy logic for the evaluation of agile suppliers. The ideal and anti-ideal solutions are taken into consideration simultaneously in the developed approach. The proposed decision approach enables the decision-makers to use linguistic terms, and thus, reduce their cognitive burden in the evaluation process. Furthermore, a hierarchy of evaluation criteria and their related sub-criteria is employed in the presented approach in order to conduct a more effective analysis.

  1. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor

    NASA Astrophysics Data System (ADS)

    Wang, Yannian; Wu, Peizhi; Liu, Chengtao

    2017-09-01

    To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.

  2. Neuro-fuzzy controller to navigate an unmanned vehicle.

    PubMed

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

  3. Design of a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological damper

    NASA Astrophysics Data System (ADS)

    Phu, Do Xuan; Shah, Kruti; Choi, Seung-Bok

    2014-06-01

    This paper presents a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological (MR) fluid damper in order to validate the effectiveness of the control performance. An interval type 2 fuzzy model is built, and then combined with modified adaptive control to achieve the desired damping force. In the formulation of the new adaptive controller, an enhanced iterative algorithm is integrated with the fuzzy model to decrease the time of calculation (D Wu 2013 IEEE Trans. Fuzzy Syst. 21 80-99) and the control algorithm is synthesized based on the {{H}^{\\infty }} tracking technique. In addition, for the verification of good control performance of the proposed controller, a cylindrical MR damper which can be applied to the vibration control of a washing machine is designed and manufactured. For the operating fluid, a recently developed plate-like particle-based MR fluid is used instead of a conventional MR fluid featuring spherical particles. To highlight the control performance of the proposed controller, two existing adaptive fuzzy control algorithms proposed by other researchers are adopted and altered for a comparative study. It is demonstrated from both simulation and experiment that the proposed new adaptive controller shows better performance of damping force control in terms of response time and tracking accuracy than the existing approaches.

  4. A fuzzy logic controller for an autonomous mobile robot

    NASA Technical Reports Server (NTRS)

    Yen, John; Pfluger, Nathan

    1993-01-01

    The ability of a mobile robot system to plan and move intelligently in a dynamic system is needed if robots are to be useful in areas other than controlled environments. An example of a use for this system is to control an autonomous mobile robot in a space station, or other isolated area where it is hard or impossible for human life to exist for long periods of time (e.g., Mars). The system would allow the robot to be programmed to carry out the duties normally accomplished by a human being. Some of the duties that could be accomplished include operating instruments, transporting objects, and maintenance of the environment. The main focus of our early work has been on developing a fuzzy controller that takes a path and adapts it to a given environment. The robot only uses information gathered from the sensors, but retains the ability to avoid dynamically placed obstacles near and along the path. Our fuzzy logic controller is based on the following algorithm: (1) determine the desired direction of travel; (2) determine the allowed direction of travel; and (3) combine the desired and allowed directions in order to determine a direciton that is both desired and allowed. The desired direction of travel is determined by projecting ahead to a point along the path that is closer to the goal. This gives a local direction of travel for the robot and helps to avoid obstacles.

  5. A fuzzy logic controller for an autonomous mobile robot

    NASA Technical Reports Server (NTRS)

    Yen, John; Pfluger, Nathan

    1993-01-01

    The ability of a mobile robot system to plan and move intelligently in a dynamic system is needed if robots are to be useful in areas other than controlled environments. An example of a use for this system is to control an autonomous mobile robot in a space station, or other isolated area where it is hard or impossible for human life to exist for long periods of time (e.g., Mars). The system would allow the robot to be programmed to carry out the duties normally accomplished by a human being. Some of the duties that could be accomplished include operating instruments, transporting objects, and maintenance of the environment. The main focus of our early work has been on developing a fuzzy controller that takes a path and adapts it to a given environment. The robot only uses information gathered from the sensors, but retains the ability to avoid dynamically placed obstacles near and along the path. Our fuzzy logic controller is based on the following algorithm: (1) determine the desired direction of travel; (2) determine the allowed direction of travel; and (3) combine the desired and allowed directions in order to determine a direciton that is both desired and allowed. The desired direction of travel is determined by projecting ahead to a point along the path that is closer to the goal. This gives a local direction of travel for the robot and helps to avoid obstacles.

  6. Intelligent Process Abnormal Patterns Recognition and Diagnosis Based on Fuzzy Logic.

    PubMed

    Hou, Shi-Wang; Feng, Shunxiao; Wang, Hui

    2016-01-01

    Locating the assignable causes by use of the abnormal patterns of control chart is a widely used technology for manufacturing quality control. If there are uncertainties about the occurrence degree of abnormal patterns, the diagnosis process is impossible to be carried out. Considering four common abnormal control chart patterns, this paper proposed a characteristic numbers based recognition method point by point to quantify the occurrence degree of abnormal patterns under uncertain conditions and a fuzzy inference system based on fuzzy logic to calculate the contribution degree of assignable causes with fuzzy abnormal patterns. Application case results show that the proposed approach can give a ranked causes list under fuzzy control chart abnormal patterns and support the abnormity eliminating.

  7. Intelligent Process Abnormal Patterns Recognition and Diagnosis Based on Fuzzy Logic

    PubMed Central

    Feng, Shunxiao; Wang, Hui

    2016-01-01

    Locating the assignable causes by use of the abnormal patterns of control chart is a widely used technology for manufacturing quality control. If there are uncertainties about the occurrence degree of abnormal patterns, the diagnosis process is impossible to be carried out. Considering four common abnormal control chart patterns, this paper proposed a characteristic numbers based recognition method point by point to quantify the occurrence degree of abnormal patterns under uncertain conditions and a fuzzy inference system based on fuzzy logic to calculate the contribution degree of assignable causes with fuzzy abnormal patterns. Application case results show that the proposed approach can give a ranked causes list under fuzzy control chart abnormal patterns and support the abnormity eliminating. PMID:28058046

  8. The Fuzzy Logic of MicroRNA Regulation: A Key to Control Cell Complexity

    PubMed Central

    Ripoli, Andrea; Rainaldi, Giuseppe; Rizzo, Milena; Mercatanti, Alberto; Pitto, Letizia

    2010-01-01

    Genomic and clinical evidence suggest a major role of microRNAs (miRNAs) in the regulatory mechanisms of gene expression, with a clear impact on development and physiology; miRNAs are a class of endogenous 22-25 nt single-stranded RNA molecules, that negatively regulate gene expression post-transcriptionally, by imperfect base pairing with the 3’ UTR of the corresponding mRNA target. Because of this imperfection, each miRNA can bind multiple targets, and multiple miRNAs can bind the same mRNA target; although digital, the miRNAs control mechanism is characterized by an imprecise action, naturally understandable in the theoretical framework of fuzzy logic. A major practical application of fuzzy logic is represented by the design and the realization of efficient and robust control systems, even when the processes to be controlled show chaotic, deterministic as well unpredictable, behaviours. The vagueness of miRNA action, when considered together with the controlled and chaotic gene expression, is a hint of a cellular fuzzy control system. As a demonstration of the possibility and the effectiveness of miRNA based fuzzy mechanism, a fuzzy cognitive map -a mathematical formalism combining neural network and fuzzy logic- has been developed to study the apoptosis/proliferation control performed by the miRNA-17-92 cluster/E2F1/cMYC circuitry. When experimentally demonstrated, the concept of fuzzy control could modify the way we analyse and model gene expression, with a possible impact on the way we imagine and design therapeutic intervention based on miRNA silencing. PMID:21286312

  9. Study on adaptive PID algorithm of hydraulic turbine governing system based on fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Tang, Liangbao; Bao, Jumin

    2006-11-01

    The conventional hydraulic turbine governing system can't automatically modulate PID parameters according to the dynamic process of the system, the generator speed is unstable and the mains frequency fluctuation results in. To solve the above problem, the fuzzy neural network (FNN) and the adaptive control are combined to design an adaptive PID algorithm based on the fuzzy neural network which can effectively control the hydraulic turbine governing system. Finally, the improved mathematic model is simulated. The simulation results are compared with the conventional hydraulic turbine's. Thus the validity and superiority of the fuzzy neural network PID algorithm have been proved. The simulation results show that the algorithm not only retains the functions of fuzzy control, but also provides the ability to approach to the non-linear system. Also the dynamic process of the system can be reflected more precisely and the on-line adaptive control is implemented. The algorithm is superior to other methods in response and control effect.

  10. A fuzzy self-tuning PI controller for HVDC links

    SciTech Connect

    Routray, A.; Dash, P.K.; Panda, S.K.

    1996-09-01

    This paper introduces a fuzzy logic-based tuning of the controller parameters for the rectifier side current regulator and inverter side gamma controller in a high voltage direct current (HVDC) system. A typical point-to-point system has been taken with the detailed representation of converters, transmission links transformers, and filters. The current error and its derivative and the gamma error and its derivative are used as the principal signals to adjust the proportional and integral gains of the rectifier pole controller and the inverter gamma controller, respectively, for the optimum system performance under various normal and abnormal conditions. Finally, a comparative study has been performed with and without tuning, to prove the superiority of the proposed scheme.

  11. Computation of Parametric Adaptive Fuzzy Controller for Wood Drying System

    NASA Astrophysics Data System (ADS)

    Situmorang, Zakarias; Wardoyo, Retantyo; Hartati, Sri; Istiyanto, Jazi Eko

    2009-08-01

    The paper reports the computation of parametric adaptive fuzzy controller for used to wood drying system. Parametric of adaptive fuzzy controller is control period system. Control period system is how long time need to hoist of temperature drying or humidity drying if the actuator in on-conditions. The parametric is implemented for control system of wood drying process at prototype chamber with solar is source of energy. The actuator of system is heater, damper and sprayer. From result of measurement, that data were doing to analysis statistic to have the parametric. Whenever the parametric want to implemented with mechanism adaptive. Membership Functions of variable control of system to became something is difficult to have effect to temperature and humidity drying. The result of implemented of adaptive fuzzy control is described in graphic typical. The control system is able to adapt change of humidity drying in system schedule of wood drying system.

  12. Intelligent control of PV system on the basis of the fuzzy recurrent neuronet*

    NASA Astrophysics Data System (ADS)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    This paper presents the fuzzy recurrent neuronet for PV system’s control. Based on the PV system’s state, the fuzzy recurrent neural net tracks the maximum power point under random perturbations. The validity and advantages of the proposed intelligent control of PV system are demonstrated by numerical simulations. The simulation results show that the proposed intelligent control of PV system achieves real-time control speed and competitive performance, as compared to a classical control scheme on the basis of the perturbation & observation algorithm.

  13. An Integrated Approach of Fuzzy Linguistic Preference Based AHP and Fuzzy COPRAS for Machine Tool Evaluation

    PubMed Central

    Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith

    2015-01-01

    Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment. PMID:26368541

  14. An Integrated Approach of Fuzzy Linguistic Preference Based AHP and Fuzzy COPRAS for Machine Tool Evaluation.

    PubMed

    Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith

    2015-01-01

    Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment.

  15. Design of Fuzzy Functional Observer-Controller via Higher Order Derivatives of Lyapunov Function for Nonlinear Systems.

    PubMed

    Liu, Chuang; Lam, Hak-Keung; Fernando, Tyrone; Iu, Herbert Ho-Ching

    2016-05-02

    In this paper, we investigate the stability of Takagi-Sugeno fuzzy-model-based (FMB) functional observer-control system. When system states are not measurable for state-feedback control, a fuzzy functional observer is designed to directly estimate the control input instead of the system states. Although the fuzzy functional observer can reduce the order of the observer, it leads to a number of observer gains to be determined. Therefore, a new form of fuzzy functional observer is proposed to facilitate the stability analysis such that the observer gains can be numerically obtained and the stability can be guaranteed simultaneously. The proposed form is also in favor of applying separation principle to separately design the fuzzy controller and the fuzzy functional observer. To design the fuzzy controller with the consideration of system stability, higher order derivatives of Lyapunov function (HODLF) are employed to reduce the conservativeness of stability conditions. The HODLF generalizes the commonly used first-order derivative. By exploiting the properties of membership functions and the dynamics of the FMB control system, convex and relaxed stability conditions can be derived. Simulation examples are provided to show the relaxation of the proposed stability conditions and the feasibility of designed fuzzy functional observer-controller.

  16. Design of Fuzzy Functional Observer-Controller via Higher Order Derivatives of Lyapunov Function for Nonlinear Systems.

    PubMed

    Liu, Chuang; Lam, Hak-Keung; Fernando, Tyrone; Iu, Herbert Ho-Ching

    2016-05-02

    In this paper, we investigate the stability of Takagi-Sugeno fuzzy-model-based (FMB) functional observer-control system. When system states are not measurable for state-feedback control, a fuzzy functional observer is designed to directly estimate the control input instead of the system states. Although the fuzzy functional observer can reduce the order of the observer, it leads to a number of observer gains to be determined. Therefore, a new form of fuzzy functional observer is proposed to facilitate the stability analysis such that the observer gains can be numerically obtained and the stability can be guaranteed simultaneously. The proposed form is also in favor of applying separation principle to separately design the fuzzy controller and the fuzzy functional observer. To design the fuzzy controller with the consideration of system stability, higher order derivatives of Lyapunov function (HODLF) are employed to reduce the conservativeness of stability conditions. The HODLF generalizes the commonly used first-order derivative. By exploiting the properties of membership functions and the dynamics of the FMB control system, convex and relaxed stability conditions can be derived. Simulation examples are provided to show the relaxation of the proposed stability conditions and the feasibility of designed fuzzy functional observer-controller.

  17. Mathematical models of the simplest fuzzy PI/PD controllers with skewed input and output fuzzy sets.

    PubMed

    Mohan, B M; Sinha, Arpita

    2008-07-01

    This paper unveils mathematical models for fuzzy PI/PD controllers which employ two skewed fuzzy sets for each of the two-input variables and three skewed fuzzy sets for the output variable. The basic constituents of these models are Gamma-type and L-type membership functions for each input, trapezoidal/triangular membership functions for output, intersection/algebraic product triangular norm, maximum/drastic sum triangular conorm, Mamdani minimum/Larsen product/drastic product inference method, and center of sums defuzzification method. The existing simplest fuzzy PI/PD controller structures derived via symmetrical fuzzy sets become special cases of the mathematical models revealed in this paper. Finally, a numerical example along with its simulation results are included to demonstrate the effectiveness of the simplest fuzzy PI controllers.

  18. A Fuzzy Permutation Method for False Discovery Rate Control.

    PubMed

    Yang, Ya-Hui; Lin, Wan-Yu; Lee, Wen-Chung

    2016-06-22

    Biomedical researchers often encounter the large-p-small-n situations-a great number of variables are measured/recorded for only a few subjects. The authors propose a fuzzy permutation method to address the multiple testing problem for small sample size studies. The method introduces fuzziness into standard permutation analysis to produce randomized p-values, which are then converted into q-values for false discovery rate controls. Simple algebra shows that the fuzzy permutation method is at least as powerful as the standard permutation method under any alternative. Monte-Carlo simulations show that the proposed method has desirable statistical properties whether the study variables are normally or non-normally distributed. A real dataset is analyzed to illustrate its use. The proposed fuzzy permutation method is recommended for use in the large-p-small-n settings.

  19. Composite Adaptive Fuzzy Output Feedback Control Design for Uncertain Nonlinear Strict-Feedback Systems With Input Saturation.

    PubMed

    Li, Yongming; Tong, Shaocheng; Li, Tieshan

    2015-10-01

    In this paper, a composite adaptive fuzzy output-feedback control approach is proposed for a class of single-input and single-output strict-feedback nonlinear systems with unmeasured states and input saturation. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the designed fuzzy state observer, a serial-parallel estimation model is established. Based on adaptive backstepping dynamic surface control technique and utilizing the prediction error between the system states observer model and the serial-parallel estimation model, a new fuzzy controller with the composite parameters adaptive laws are developed. It is proved that all the signals of the closed-loop system are bounded and the system output can follow the given bounded reference signal. A numerical example and simulation comparisons with previous control methods are provided to show the effectiveness of the proposed approach.

  20. Design of sewage treatment system by applying fuzzy adaptive PID controller

    NASA Astrophysics Data System (ADS)

    Jin, Liang-Ping; Li, Hong-Chan

    2013-03-01

    In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.

  1. Lower Motor Control Modeled by Neuron With Fuzzy Synapses

    DTIC Science & Technology

    2007-11-02

    seen in parkinsonism , chorea, cerebellar disorders, and spasticity. In most cases, muscles work in opposing pairs: one muscle opens or extends a joint...performances of predictor schemes based on neurons with fuzzy synapses of order P = 3 in tremor prediction applications. The rules of these particular...Chelaru, A. Kandel, I. Tofan, M. Irimia, “Fuzzy methods in tremor assessment, prediction, and rehabilitation”, Artificial Intelligence in Medicine

  2. Neuro-Fuzzy Control of a Robotic Manipulator

    NASA Astrophysics Data System (ADS)

    Gierlak, P.; Muszyńska, M.; Żylski, W.

    2014-08-01

    In this paper, to solve the problem of control of a robotic manipulator's movement with holonomical constraints, an intelligent control system was used. This system is understood as a hybrid controller, being a combination of fuzzy logic and an artificial neural network. The purpose of the neuro-fuzzy system is the approximation of the nonlinearity of the robotic manipulator's dynamic to generate a compensatory control. The control system is designed in such a way as to permit modification of its properties under different operating conditions of the two-link manipulator

  3. A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Garg, Devendra P.

    1998-01-01

    This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.

  4. Controlling Discrete Time T-S Fuzzy Chaotic Systems via Adaptive Adjustment

    NASA Astrophysics Data System (ADS)

    Nian, Yibei; Zheng, Yongai

    In order to overcome typical drawbacks of the OGY control, i.e. the long waiting time for control to be applied and the accessible turning system parameter in advance, this paper presents a new chaos control method based on Takagi- Sugeno (T-S) fuzzy model and adaptive adjustment. This method represents a chaotic system by linear models in different state space regions based on T-S fuzzy model and then stabilize the linear models in different state space regions by the adaptive adjustment mechanism. An example for the Henon map is given to demonstrate the effectiveness of the proposed method.

  5. Fuzzy Control Hardware for Segmented Mirror Phasing Algorithm

    NASA Technical Reports Server (NTRS)

    Roth, Elizabeth

    1999-01-01

    This paper presents a possible implementation of a control model developed to phase a system of segmented mirrors, with a PAMELA configuration, using analog fuzzy hardware. Presently, the model is designed for piston control only, but with the foresight that the parameters of tip and tilt will be integrated eventually. The proposed controller uses analog circuits to exhibit a voltage-mode singleton fuzzifier, a mixed-mode inference engine, and a current-mode defuzzifier. The inference engine exhibits multiplication circuits that perform the algebraic product composition through the use of operational transconductance amplifiers rather than the typical min-max circuits. Additionally, the knowledge base, containing exemplar data gained a priori through simulation, interacts via a digital interface.

  6. A Genetic Algorithm Optimised Fuzzy Logic Controller for Automatic Generation Control for Single Area System

    NASA Astrophysics Data System (ADS)

    Saini, J. S.; Jain, V.

    2015-03-01

    This paper presents a genetic algorithm (GA)-based design and optimization of fuzzy logic controller (FLC) for automatic generation control (AGC) for a single area. FLCs are characterized by a set of parameters, which are optimized using GA to improve their performance. The design of input and output membership functions (mfs) of an FLC is carried out by automatically tuning (off-line) the parameters of the membership functions. Tuning is based on maximization of a comprehensive fitness function constructed as inverse of a weighted average of three performance indices, i.e., integral square deviation (ISD), the integral of square of the frequency deviation and peak overshoot (Mp), and settling time (ts). The GA-optimized FLC (GAFLC) shows better performance as compared to a conventional proportional integral (PI) and a hand-designed fuzzy logic controller not only for a standard system (displaying frequency deviations) but also under parametric and load disturbances.

  7. Fuzzy-based HAZOP study for process industry.

    PubMed

    Ahn, Junkeon; Chang, Daejun

    2016-11-05

    This study proposed a fuzzy-based HAZOP for analyzing process hazards. Fuzzy theory was used to express uncertain states. This theory was found to be a useful approach to overcome the inherent uncertainty in HAZOP analyses. Fuzzy logic sharply contrasted with classical logic and provided diverse risk values according to its membership degree. Appropriate process parameters and guidewords were selected to describe the frequency and consequence of an accident. Fuzzy modeling calculated risks based on the relationship between the variables of an accident. The modeling was based on the mean expected value, trapezoidal fuzzy number, IF-THEN rules, and the center of gravity method. A cryogenic LNG (liquefied natural gas) testing facility was the objective process for the fuzzy-based and conventional HAZOPs. The most significant index is the frequency to determine risks. The comparison results showed that the fuzzy-based HAZOP provides better sophisticated risks than the conventional HAZOP. The fuzzy risk matrix presents the significance of risks, negligible risks, and necessity of risk reduction.

  8. Operator functional state estimation based on EEG-data-driven fuzzy model.

    PubMed

    Zhang, Jianhua; Yin, Zhong; Yang, Shaozeng; Wang, Rubin

    2016-10-01

    This paper proposed a max-min-entropy-based fuzzy partition method for fuzzy model based estimation of human operator functional state (OFS). The optimal number of fuzzy partitions for each I/O variable of fuzzy model is determined by using the entropy criterion. The fuzzy models were constructed by using Wang-Mendel method. The OFS estimation results showed the practical usefulness of the proposed fuzzy modeling approach.

  9. Fuzzy Backstepping Torque Control Of Passive Torque Simulator With Algebraic Parameters Adaptation

    NASA Astrophysics Data System (ADS)

    Ullah, Nasim; Wang, Shaoping; Wang, Xingjian

    2015-07-01

    This work presents fuzzy backstepping control techniques applied to the load simulator for good tracking performance in presence of extra torque, and nonlinear friction effects. Assuming that the parameters of the system are uncertain and bounded, Algebraic parameters adaptation algorithm is used to adopt the unknown parameters. The effect of transient fuzzy estimation error on parameters adaptation algorithm is analyzed and the fuzzy estimation error is further compensated using saturation function based adaptive control law working in parallel with the actual system to improve the transient performance of closed loop system. The saturation function based adaptive control term is large in the transient time and settles to an optimal lower value in the steady state for which the closed loop system remains stable. The simulation results verify the validity of the proposed control method applied to the complex aerodynamics passive load simulator.

  10. PI and fuzzy logic controllers for shunt Active Power Filter--a report.

    PubMed

    P, Karuppanan; Mahapatra, Kamala Kanta

    2012-01-01

    This paper presents a shunt Active Power Filter (APF) for power quality improvements in terms of harmonics and reactive power compensation in the distribution network. The compensation process is based only on source current extraction that reduces the number of sensors as well as its complexity. A Proportional Integral (PI) or Fuzzy Logic Controller (FLC) is used to extract the required reference current from the distorted line-current, and this controls the DC-side capacitor voltage of the inverter. The shunt APF is implemented with PWM-current controlled Voltage Source Inverter (VSI) and the switching patterns are generated through a novel Adaptive-Fuzzy Hysteresis Current Controller (A-F-HCC). The proposed adaptive-fuzzy-HCC is compared with fixed-HCC and adaptive-HCC techniques and the superior features of this novel approach are established. The FLC based shunt APF system is validated through extensive simulation for diode-rectifier/R-L loads.

  11. Composite fuzzy sliding mode control of nonlinear singularly perturbed systems.

    PubMed

    Nagarale, Ravindrakumar M; Patre, B M

    2014-05-01

    This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller.

  12. An architecture for designing fuzzy logic controllers using neural networks

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

  13. Autonomous vehicle motion control, approximate maps, and fuzzy logic

    NASA Technical Reports Server (NTRS)

    Ruspini, Enrique H.

    1993-01-01

    Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.

  14. Application of genetic algorithms to tuning fuzzy control systems

    NASA Technical Reports Server (NTRS)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  15. Autonomous vehicle motion control, approximate maps, and fuzzy logic

    NASA Technical Reports Server (NTRS)

    Ruspini, Enrique H.

    1993-01-01

    Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.

  16. Fuzzy regulator design for wind turbine yaw control.

    PubMed

    Theodoropoulos, Stefanos; Kandris, Dionisis; Samarakou, Maria; Koulouras, Grigorios

    2014-01-01

    This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness.

  17. Fuzzy Control of Flexible-Link Manipulators: A Review

    NASA Technical Reports Server (NTRS)

    Akbarzadeh-T, M.-R.; Quintana, S.; Jamshidi, M.

    1998-01-01

    Several recent research efforts are reviewed here which have applied fuzzy logic in control of flexible-link manipulators. A flexible robot is a distributed parameter system represented by complex nonlinear dynamics, its actuator and the control parameters are non-colocated, and lastly, unstructured/unknown parameters play a significant role in model dynamics of a flexible robot operating in the real world. As a result, control of flexible robots is considered a promising area for application of intelligent control methodologies such as fuzzy logic, genetic algorithms, and neural networks.

  18. Fuzzy Control of Flexible-Link Manipulators: A Review

    NASA Technical Reports Server (NTRS)

    Akbarzadeh-T, M.-R.; Quintana, S.; Jamshidi, M.

    1998-01-01

    Several recent research efforts are reviewed here which have applied fuzzy logic in control of flexible-link manipulators. A flexible robot is a distributed parameter system represented by complex nonlinear dynamics, its actuator and the control parameters are non-colocated, and lastly, unstructured/unknown parameters play a significant role in model dynamics of a flexible robot operating in the real world. As a result, control of flexible robots is considered a promising area for application of intelligent control methodologies such as fuzzy logic, genetic algorithms, and neural networks.

  19. Fuzzy Regulator Design for Wind Turbine Yaw Control

    PubMed Central

    Koulouras, Grigorios

    2014-01-01

    This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness. PMID:24693237

  20. Adaptive fuzzy predictive sliding control of uncertain nonlinear systems with bound-known input delay.

    PubMed

    Khazaee, Mostafa; Markazi, Amir H D; Omidi, Ehsan

    2015-11-01

    In this paper, a new Adaptive Fuzzy Predictive Sliding Mode Control (AFP-SMC) is presented for nonlinear systems with uncertain dynamics and unknown input delay. The control unit consists of a fuzzy inference system to approximate the ideal linearization control, together with a switching strategy to compensate for the estimation errors. Also, an adaptive fuzzy predictor is used to estimate the future values of the system states to compensate for the time delay. The adaptation laws are used to tune the controller and predictor parameters, which guarantee the stability based on a Lyapunov-Krasovskii functional. To evaluate the method effectiveness, the simulation and experiment on an overhead crane system are presented. According to the obtained results, AFP-SMC can effectively control the uncertain nonlinear systems, subject to input delays of known bound. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints.

    PubMed

    Wang, Huanqing; Chen, Bing; Liu, Xiaoping; Liu, Kefu; Lin, Chong

    2013-12-01

    This paper is concerned with the problem of adaptive fuzzy tracking control for a class of pure-feedback stochastic nonlinear systems with input saturation. To overcome the design difficulty from nondifferential saturation nonlinearity, a smooth nonlinear function of the control input signal is first introduced to approximate the saturation function; then, an adaptive fuzzy tracking controller based on the mean-value theorem is constructed by using backstepping technique. The proposed adaptive fuzzy controller guarantees that all signals in the closed-loop system are bounded in probability and the system output eventually converges to a small neighborhood of the desired reference signal in the sense of mean quartic value. Simulation results further illustrate the effectiveness of the proposed control scheme.

  2. Adaptive fuzzy switched control design for uncertain nonholonomic systems with input nonsmooth constraint

    NASA Astrophysics Data System (ADS)

    Li, Yongming; Tong, Shaocheng

    2016-10-01

    In this paper, a fuzzy adaptive switched control approach is proposed for a class of uncertain nonholonomic chained systems with input nonsmooth constraint. In the control design, an auxiliary dynamic system is designed to address the input nonsmooth constraint, and an adaptive switched control strategy is constructed to overcome the uncontrollability problem associated with x0(t0) = 0. By using fuzzy logic systems to tackle unknown nonlinear functions, a fuzzy adaptive control approach is explored based on the adaptive backstepping technique. By constructing the combination approximation technique and using Young's inequality scaling technique, the number of the online learning parameters is reduced to n and the 'explosion of complexity' problem is avoid. It is proved that the proposed method can guarantee that all variables of the closed-loop system converge to a small neighbourhood of zero. Two simulation examples are provided to illustrate the effectiveness of the proposed control approach.

  3. Distributed Proportional-spatial Derivative control of nonlinear parabolic systems via fuzzy PDE modeling approach.

    PubMed

    Wang, Jun-Wei; Wu, Huai-Ning; Li, Han-Xiong

    2012-06-01

    In this paper, a distributed fuzzy control design based on Proportional-spatial Derivative (P-sD) is proposed for the exponential stabilization of a class of nonlinear spatially distributed systems described by parabolic partial differential equations (PDEs). Initially, a Takagi-Sugeno (T-S) fuzzy parabolic PDE model is proposed to accurately represent the nonlinear parabolic PDE system. Then, based on the T-S fuzzy PDE model, a novel distributed fuzzy P-sD state feedback controller is developed by combining the PDE theory and the Lyapunov technique, such that the closed-loop PDE system is exponentially stable with a given decay rate. The sufficient condition on the existence of an exponentially stabilizing fuzzy controller is given in terms of a set of spatial differential linear matrix inequalities (SDLMIs). A recursive algorithm based on the finite-difference approximation and the linear matrix inequality (LMI) techniques is also provided to solve these SDLMIs. Finally, the developed design methodology is successfully applied to the feedback control of the Fitz-Hugh-Nagumo equation.

  4. Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships.

    PubMed

    Chen, Shyi-Ming; Chen, Shen-Wen

    2015-03-01

    In this paper, we present a new method for fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy-trend logical relationships. Firstly, the proposed method fuzzifies the historical training data of the main factor and the secondary factor into fuzzy sets, respectively, to form two-factors second-order fuzzy logical relationships. Then, it groups the obtained two-factors second-order fuzzy logical relationships into two-factors second-order fuzzy-trend logical relationship groups. Then, it calculates the probability of the "down-trend," the probability of the "equal-trend" and the probability of the "up-trend" of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group, respectively. Finally, it performs the forecasting based on the probabilities of the down-trend, the equal-trend, and the up-trend of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group. We also apply the proposed method to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and the NTD/USD exchange rates. The experimental results show that the proposed method outperforms the existing methods.

  5. Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition.

    PubMed

    González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel

    2016-10-31

    In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented.

  6. Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition

    PubMed Central

    González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel

    2016-01-01

    In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented. PMID:27809229

  7. Fuzzy Logic Based Autonomous Parallel Parking System with Kalman Filtering

    NASA Astrophysics Data System (ADS)

    Panomruttanarug, Benjamas; Higuchi, Kohji

    This paper presents an emulation of fuzzy logic control schemes for an autonomous parallel parking system in a backward maneuver. There are four infrared sensors sending the distance data to a microcontroller for generating an obstacle-free parking path. Two of them mounted on the front and rear wheels on the parking side are used as the inputs to the fuzzy rules to calculate a proper steering angle while backing. The other two attached to the front and rear ends serve for avoiding collision with other cars along the parking space. At the end of parking processes, the vehicle will be in line with other parked cars and positioned in the middle of the free space. Fuzzy rules are designed based upon a wall following process. Performance of the infrared sensors is improved using Kalman filtering. The design method needs extra information from ultrasonic sensors. Starting from modeling the ultrasonic sensor in 1-D state space forms, one makes use of the infrared sensor as a measurement to update the predicted values. Experimental results demonstrate the effectiveness of sensor improvement.

  8. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    NASA Astrophysics Data System (ADS)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  9. Sinusoidal rotatory chair system by an auto-tuning fuzzy PID controller

    SciTech Connect

    Park, H.A.; Cha, I.S.; Baek, H.L.

    1995-12-31

    This paper presents DC servo motor speed control characteristics by fuzzy logic controller and considers position following control response with controller. A sinusoidal rotatory chair system using an auto tuning fuzzy PID control was designed to evaluate the vestibular function. Then the system is investigated for the effects of change by the fuzziness of fuzzy variable. If this system is supported by a channel, it is considered for application in industry of multi joint robot and precision parallel driving.

  10. Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control

    NASA Astrophysics Data System (ADS)

    Wang, Li-Ming; Tang, Yong-Guang; Chai, Yong-Quan; Wu, Feng

    2014-10-01

    An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional-order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can be adaptively adjusted according to the external disturbances. Based on the Lyapunov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simulations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.

  11. Train repathing in emergencies based on fuzzy linear programming.

    PubMed

    Meng, Xuelei; Cui, Bingmou

    2014-01-01

    Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.

  12. Train Repathing in Emergencies Based on Fuzzy Linear Programming

    PubMed Central

    Cui, Bingmou

    2014-01-01

    Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm. PMID:25121128

  13. Asynchronous Dissipative Control for Fuzzy Markov Jump Systems.

    PubMed

    Wu, Zheng-Guang; Dong, Shanling; Su, Hongye; Li, Chuandong

    2017-08-25

    The problem of asynchronous dissipative control is investigated for Takagi-Sugeno fuzzy systems with Markov jump in this paper. Hidden Markov model is introduced to represent the nonsynchronization between the designed controller and the original system. By the fuzzy-basis-dependent and mode-dependent Lyapunov function, a sufficient condition is achieved such that the resulting closed-loop system is stochastically stable with a strictly (Q, S, R)-α-dissipative performance. The controller parameter is derived by applying MATLAB to solve a set of linear matrix inequalities. Finally, we present two examples to confirm the validity and correctness of our developed approach.

  14. Full design of fuzzy controllers using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah; Mccormick, ED

    1992-01-01

    This paper examines the applicability of genetic algorithms (GA) in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.

  15. Full design of fuzzy controllers using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah; Mccormick, ED

    1992-01-01

    This paper examines the applicability of genetic algorithms in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.

  16. Fuzzy-logic-based resource allocation for isolated and multiple platforms

    NASA Astrophysics Data System (ADS)

    Smith, James F., III; Rhyne, Robert D., II

    2000-08-01

    Modern naval battle forces generally include many different platforms each with its own sensors, radar, ESM, and communications. The sharing of information measured by local sensors via communication links across the battle group should allow for optimal or near optimal decision. The survival of the battle group or members of the group depends on the automatic real-time allocation of various resources. A fuzzy logic algorithm has been developed that automatically allocates electronic attack resources in real- time. The particular approach to fuzzy logic that is used is the fuzzy decision tree, a generalization of the standard artificial intelligence technique of decision trees. The controller must be able to make decisions based on rules provided by experts. The fuzzy logic approach allows the direct incorporation of expertise forming a fuzzy linguistic description, i.e. a formal representation of the system in terms of fuzzy if-then rules. Genetic algorithm based optimization is conducted to determine the form of the membership functions for the fuzzy root concepts. The isolated platform and multi platform resource manager models are discussed as well as the underlying multi-platform communication model. The resource manager is shown to exhibit excellent performance under many demanding scenarios.

  17. A genetic-based neuro-fuzzy approach for prediction of solar activity

    NASA Astrophysics Data System (ADS)

    Attia, Abdel-Fattah A.; Abdel-Hamid, Rabab H.; Quassim, Maha

    2004-09-01

    This paper presents an application of the neuro-fuzzy modeling to analyze the time series of solar activity, as measured through the relative Wolf number. The neuro-fuzzy structure will be optimized based on the linear adapted genetic algorithm with controlling population size (LAGA-POP). First, the dimension of the time series characteristic attractor is obtained based on the smallest Regularity Criterion (RC) and the neuro-fuzzy modeling. Second, after describing the neuro-fuzzy structure and optimizing its parameters based on LAGA-POP, the performance of the present approach in forecasting yearly sunspot numbers is favorably compared to that of other published methods. Finally, the comparison predictions for the remaining part of the 22nd and the whole 23rd cycle of solar activity are presented.

  18. Design of an iterative auto-tuning algorithm for a fuzzy PID controller

    NASA Astrophysics Data System (ADS)

    Saeed, Bakhtiar I.; Mehrdadi, B.

    2012-05-01

    Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.

  19. Fuzzy Logic Controller for Low Temperature Application

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Gonzalez, A.; Barmatz, M.

    1996-01-01

    The most common temperature controller used in low temperature experiments is the proportional-integral-derivative (PID) controller due to its simplicity and robustness. However, the performance of temperature regulation using the PID controller depends on initial parameter setup, which often requires operator's expert knowledge on the system. In this paper, we present a computer-assisted temperature controller based on the well known.

  20. FEM Optimization of Spin Forming Using a Fuzzy Control Algorithm

    NASA Astrophysics Data System (ADS)

    Yoshihara, S.; Ray, P.; MacDonald, B. J.; Koyama, H.; Kawahara, M.

    2004-06-01

    Finite element (FE) simulation of the manufacturing of a conical nosing such as a pressure vessel from circular tubes, using the spin forming method, was performed on the commercially available software package, ANSYS/LS-DYNA3D. The finite element method (FEM) provides a powerful tool for evaluating the potential to form the pressure vessel with proposed modifications to the process. The use of fuzzy logic inference as a control system to achieve the designed shape of the pressure vessel was investigated using the FEM. The path of the roller as a process parameter was decided by the fuzzy inference control algorithm from information of the result of deformation of each element respectively. The fuzzy control algorithm investigated was validated from the results of the production process time and the deformed shape using FE simulation.

  1. Using fuzzy logic to integrate neural networks and knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Yen, John

    1991-01-01

    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.

  2. Data-driven modeling and predictive control for boiler-turbine unit using fuzzy clustering and subspace methods.

    PubMed

    Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y

    2014-05-01

    This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach.

  3. Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems

    NASA Technical Reports Server (NTRS)

    Esogbue, Augustine O.

    1998-01-01

    The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of

  4. Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay.

    PubMed

    Pan, Indranil; Das, Saptarshi; Gupta, Amitava

    2011-01-01

    An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers.

  5. Fuzzy-control for improved nitrogen removal and energy saving in WWT-plants with pre-denitrification.

    PubMed

    Meyer, U; Pöpel, H J

    2003-01-01

    In the last few years, numerous studies were carried out, dealing with the application of fuzzy-logic to improve the control of the activated sludge process. In this paper, fuzzy-logic based control strategies for wastewater treatment plants with pre-denitrification are presented that should lead to better effluent quality and, in parallel, to a reduction of energy consumption. Extensive experimental investigations on a large scale pilot plant as well as simulation studies (ASM1 with SIMBA) were carried out in order to design, evaluate and compare different fuzzy-controllers with each other and with comparable conventional control systems. The fuzzy-controllers were designed as high-level controllers that determine the DO-setpoints in the aerated zones and the ratio between aerated and non-aerated zones. Conventional PI-controllers were used to maintain the DO-concentration at the set-point levels. The ammonia and nitrate concentration in the effluent and the ammonia load in the influent were considered as input variables for the different fuzzy-controllers. Compared to the operation with fixed nitrification/denitrification zones and constant DO concentrations, the required air-flow could be reduced up to 24% by using fuzzy-logic based control strategies. In comparison with a more advanced conventional control strategy (relay controller with two thresholds and the NH4-N concentration in the effluent as single control variable) a reduction of air-flow-rate up to 14% could be achieved. At the same time, NH4-N peaks in the effluent that are normally caused by peak flow conditions could be reduced significantly. The large scale experiments show that the fuzzy-controllers can be easily implemented in modern control and supervision systems and that the control characteristics can be followed and modified during operation. It therefore can be expected that the developed fuzzy-control systems will be accepted by the operating personnel in wastewater treatment plants.

  6. A fuzzy rule base system for object-based feature extraction and classification

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoying; Paswaters, Scott

    2007-04-01

    In this paper, we present a fuzzy rule base system for object-based feature extraction and classification on remote sensing imagery. First, the object primitives are generated from the segmentation step. Object primitives are defined as individual regions with a set of attributes computed on the regions. The attributes computed include spectral, texture and shape measurements. Crisp rules are very intuitive to the users. They are usually represented as "GT (greater than)", "LT (less than)" and "IB (In Between)" with numerical values. The features can be manually generated by querying on the attributes using these crisp rules and monitoring the resulting selected object primitives. However, the attributes of different features are usually overlapping. The information is inexact and not suitable for traditional digital on/off decisions. Here a fuzzy rule base system is built to better model the uncertainty inherent in the data and vague human knowledge. Rather than representing attributes in linguistic terms like "Small", "Medium", "Large", we proposed a new method for automatic fuzzification of the traditional crisp concepts "GT", "LT" and "IB". Two sets of membership functions are defined to model those concepts. One is based on the piecewise linear functions, the other is based on S-type membership functions. A novel concept "fuzzy tolerance" is proposed to control the degree of fuzziness of each rule. The experimental results on classification and extracting features such as water, buildings, trees, fields and urban areas have shown that this newly designed fuzzy rule base system is intuitive and allows users to easily generate fuzzy rules.

  7. Adaptive Fuzzy Output Feedback Control for Switched Nonlinear Systems With Unmodeled Dynamics.

    PubMed

    Tong, Shaocheng; Li, Yongming

    2017-02-01

    This paper investigates a robust adaptive fuzzy control stabilization problem for a class of uncertain nonlinear systems with arbitrary switching signals that use an observer-based output feedback scheme. The considered switched nonlinear systems possess the unstructured uncertainties, unmodeled dynamics, and without requiring the states being available for measurement. A state observer which is independent of switching signals is designed to solve the problem of unmeasured states. Fuzzy logic systems are used to identify unknown lumped nonlinear functions so that the problem of unstructured uncertainties can be solved. By combining adaptive backstepping design principle and small-gain approach, a novel robust adaptive fuzzy output feedback stabilization control approach is developed. The stability of the closed-loop system is proved via the common Lyapunov function theory and small-gain theorem. Finally, the simulation results are given to demonstrate the validity and performance of the proposed control strategy.

  8. Fuzzy modeling and predictive control of superheater steam temperature for power plant.

    PubMed

    Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y

    2015-05-01

    This paper develops a stable fuzzy model predictive controller (SFMPC) to solve the superheater steam temperature (SST) control problem in a power plant. First, a data-driven Takagi-Sugeno (TS) fuzzy model is developed to approximate the behavior of the SST control system using the subspace identification (SID) method. Then, an SFMPC for output regulation is designed based on the TS-fuzzy model to regulate the SST while guaranteeing the input-to-state stability under the input constraints. The effect of modeling mismatches and unknown plant behavior variations are overcome by the use of a disturbance term and steady-state target calculator (SSTC). Simulation results for a 600 MW power plant show that an offset-free tracking of SST can be achieved over a wide range of load variation. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Neuro-Fuzzy Control for Pneumatic Servo System

    NASA Astrophysics Data System (ADS)

    Shibata, Satoru; Jindai, Mitsuru; Yamamoto, Tomonori; Shimizu, Akira

    A learning method for acquiring the appropriate fuzzy rules using error back propagation to improve the control performance of the pneumatic servo system is presented in this paper. In the proposed method, two criteria are defined and are adjusted so as to minimize them using error back propagation. These criteria are defined on the fuzzy rules, that is, shapes of membership functions of antecedent clause and real values of consequent clause in the fuzzy controller. Two differentiating coefficients of the plant, used in error back propagation with respect to those criteria, are estimated by the newly established neural network. Moreover, sigmoid function is introduced for the connection of the neural network to compensate for the effect of non-linearity of the system. The method was applied to an existent vertical type pneumatic servo system and proved its effectiveness for practical use.

  10. Fuzzy control of nitrogen removal in predenitrification process using ORP.

    PubMed

    Peng, Y; Ma, Y; Wang, S; Wang, X

    2005-01-01

    In order to meet increasingly stringent discharge standards, new applications and control strategies for the sustainable removal of nitrogen from wastewater have to be implemented. In the past years, numerous studies have been carried out dealing with the application of fuzzy logic to improve the control of the activated sludge process. In this paper, fuzzy control strategies of predenitrification systems are presented that could lead to better effluent quality and, in parallel, to a reduction of chemicals consumption. Extensive experimental investigations on lab scale plant studies have shown that there was excellent correlation between nitrate concentration and ORP value at the end of the anoxic zone. Results indicated that ORP could be used as an on-line fuzzy control parameter of nitrate recirculation and external carbon addition. The optimal value of ORP to control nitrate recirculation and external carbon addition was - 86 +/- 2 mV and - 90 +/- 2 mV, respectively. The results obtained with real wastewater also showed the good performance and stability of the fuzzy controllers independently from external disturbances. The integrated control structure of nitrate recirculation and external carbon addition in the predenitrification system is also presented.

  11. Study of defuzzification methods of fuzzy logic controller for speed control of a DC motor

    SciTech Connect

    Rao, D.H.; Saraf, S.S.

    1995-12-31

    A typical Fuzzy Logic Controller (FLC) has the following components: fuzzification, knowledge base, decision making and defuzzification. Various defuzzification techniques have been proposed in the literature. The efficacy of a FLC depends very much on the defuzzification process. This is so because the overall performance of the system under control is determined by the controlling signal (the defuzzified output of the FLC) the system receives. The aim of this paper is to evaluate qualitatively the performance of the different defuzzification techniques as applied to speed control of a DC motor.

  12. Control of a flexible beam using fuzzy logic

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1991-01-01

    The goal of this project, funded under the NASA Summer Faculty Fellowship program, was to evaluate control methods utilizing fuzzy logic for applicability to control of flexible structures. This was done by applying these methods to control of the Control Structures Interaction Suitcase Demonstrator developed at Marshall Space Flight Center. The CSI Suitcase Demonstrator is a flexible beam, mounted at one end with springs and bearing, and with a single actuator capable of rotating the beam about a pin at the fixed end. The control objective is to return the tip of the free end to a zero error position (from a nonzero initial condition). It is neither completely controllable nor completely observable. Fuzzy logic control was demonstrated to successfully control the system and to exhibit desirable robustness properties compared to conventional control.

  13. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOEpatents

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  14. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    SciTech Connect

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  15. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    SciTech Connect

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  16. Fuzzy logic based ELF magnetic field estimation in substations.

    PubMed

    Kosalay, Ilhan

    2008-01-01

    This paper examines estimation of the extremely low frequency magnetic fields (MF) in the power substation. First, the results of the previous relevant research studies and the MF measurements in a sample power substation are presented. Then, a fuzzy logic model based on the geometric definitions in order to estimate the MF distribution is explained. Visual software, which has a three-dimensional screening unit, based on the fuzzy logic technique, has been developed.

  17. Fuzzy based risk register for construction project risk assessment

    NASA Astrophysics Data System (ADS)

    Kuchta, Dorota; Ptaszyńska, Ewa

    2017-07-01

    The paper contains fuzzy based risk register used to identify risks which appear in construction projects and to assess their attributes. Risk is considered here as a possible event with negative consequences for the project [4]. We use different risk attributes in the proposed risk register. Values of risk attributes are generated by using fuzzy numbers. Specific risk attributes have different importance for project managers of construction projects. To compare specific risk attributes we use methods of fuzzy numbers ranking. The main strengths of the proposed concept in managing construction projects are also presented in the paper.

  18. A New Fuzzy System Based on Rectangular Pyramid

    PubMed Central

    Jiang, Mingzuo; Yuan, Xuehai; Li, Hongxing; Wang, Jiaxia

    2015-01-01

    A new fuzzy system is proposed in this paper. The novelty of the proposed system is mainly in the compound of the antecedents, which is based on the proposed rectangular pyramid membership function instead of t-norm. It is proved that the system is capable of approximating any continuous function of two variables to arbitrary degree on a compact domain. Moreover, this paper provides one sufficient condition of approximating function so that the new fuzzy system can approximate any continuous function of two variables with bounded partial derivatives. Finally, simulation examples are given to show how the proposed fuzzy system can be effectively used for function approximation. PMID:25874253

  19. Fuzzy Logic Controller for Small Satellites Navigation

    DTIC Science & Technology

    2005-07-13

    autonomously the transition between the operational modes (acquisition, normal, safe , wheels desaturation), based on the attitude and orbital states...weights and particularly it provides for the satellite attitude control in Acquisition, Normal and Safe operative mode . The satellite control is...images without scheduling in advance - independence from ground commands in selecting operational modes - autonomous wheels desaturation

  20. Workshop on Fuzzy Control Systems and Space Station Applications

    NASA Technical Reports Server (NTRS)

    Aisawa, E. K. (Compiler); Faltisco, R. M. (Compiler)

    1990-01-01

    The Workshop on Fuzzy Control Systems and Space Station Applications was held on 14-15 Nov. 1990. The workshop was co-sponsored by McDonnell Douglas Space Systems Company and NASA Ames Research Center. Proceedings of the workshop are presented.