Determining e-Portfolio Elements in Learning Process Using Fuzzy Delphi Analysis
ERIC Educational Resources Information Center
Mohamad, Syamsul Nor Azlan; Embi, Mohamad Amin; Nordin, Norazah
2015-01-01
The present article introduces the Fuzzy Delphi method results obtained in the study on determining e-Portfolio elements in learning process for art and design context. This method bases on qualified experts that assure the validity of the collected information. In particular, the confirmation of elements is based on experts' opinion and…
Application of Fuzzy Delphi in the Selection of COPD Risk Factors among Steel Industry Workers
Ismail, Halim; Ismail, Rosnah; Ismail, Noor Hassim
2017-01-01
Background: The Delphi method has been widely applied in many study areas to systematically gather experts’ input on particular topic. Recently, it has become increasingly well known in health related research. This paper applied the Fuzzy Delphi method to enhance the validation of a questionnaire pertaining chronic obstructive pulmonary disease (COPD) risk factors among metal industry workers. Materials and Methods: A detailed, predefined list of possible risk factors for COPD among metal industry workers was created through a comprehensive and exhaustive review of literature from 1995 to 2015. The COPD questionnaire were distributed among people identified as occupational, environmental, and hygiene experts. Linguistic variable using Likert scale was used by the expert to indicate their expert judgment of each item. Subsequently, the linguistic variable was converted into a triangular fuzzy number. The average score of the fuzzy number will be used to determine whether the item will be removed or retained. Results: Ten experts were involved in evaluating 26 items. The experts were in agreement with most of the items, with an average fuzzy number range between 0.429 and 0.800. Two items were removed and three items were added, leaving a total 26 items selected for the COPD risk factors questionnaire. The experts were in disagreement with each other for items F10 and F11 where most of the experts claimed that the question is too subjective and based on self-perception only. Conclusion: The fuzzy Delphi method enhanced the accuracy of the questionnaire pertaining to COPD risk factors, and decreased the length of the established tools. PMID:28638424
Application of Fuzzy Delphi in the Selection of COPD Risk Factors among Steel Industry Workers.
Dapari, Rahmat; Ismail, Halim; Ismail, Rosnah; Ismail, Noor Hassim
2017-01-01
The Delphi method has been widely applied in many study areas to systematically gather experts' input on particular topic. Recently, it has become increasingly well known in health related research. This paper applied the Fuzzy Delphi method to enhance the validation of a questionnaire pertaining chronic obstructive pulmonary disease (COPD) risk factors among metal industry workers. A detailed, predefined list of possible risk factors for COPD among metal industry workers was created through a comprehensive and exhaustive review of literature from 1995 to 2015. The COPD questionnaire were distributed among people identified as occupational, environmental, and hygiene experts. Linguistic variable using Likert scale was used by the expert to indicate their expert judgment of each item. Subsequently, the linguistic variable was converted into a triangular fuzzy number. The average score of the fuzzy number will be used to determine whether the item will be removed or retained. Ten experts were involved in evaluating 26 items. The experts were in agreement with most of the items, with an average fuzzy number range between 0.429 and 0.800. Two items were removed and three items were added, leaving a total 26 items selected for the COPD risk factors questionnaire. The experts were in disagreement with each other for items F10 and F11 where most of the experts claimed that the question is too subjective and based on self-perception only. The fuzzy Delphi method enhanced the accuracy of the questionnaire pertaining to COPD risk factors, and decreased the length of the established tools.
Fatemi, Farin; Ardalan, Ali; Aguirre, Benigno; Mansouri, Nabiollah; Mohammadfam, Iraj
2017-01-01
Introduction: Industrial chemical accidents have been increased in developing countries. Assessing the human vulnerability in the residents of industrial areas is necessary for reducing the injuries and causalities of chemical hazards. The aim of this study was to explore the key indicators for the assessment of human vulnerability in the residents living near chemical installations. Methods: The indicators were established in the present study based on the Fuzzy Delphi method (FDM) and Fuzzy Analytic Hierarchy Process (FAHP). The reliability of FDM and FAHP was calculated. The indicators of human vulnerability were explored in two sets of social and physical domains. Thirty-five relevant experts participated in this study during March-July 2015. Results: According to experts, the top three indicators of human vulnerability according to the FDM and FAHP were vulnerable groups, population density, and awareness. Detailed sub-vulnerable groups and awareness were developed based on age, chronic or severe diseases, disability, first responders, and residents, respectively. Each indicator and sub-indicator was weighted and ranked and had an acceptable consistency ratio. Conclusions: The importance of social vulnerability indicators are about 7 times more than physical vulnerability indicators. Among the extracted indicators, vulnerable groups had the highest weight and the greatest impact on human vulnerability. however, further research is needed to investigate the applicability of established indicators and generalizability of the results to other studies. Key words: Fuzzy Delphi; Fuzzy AHP; Human vulnerability; Chemical hazards PMID:28480124
Ouyang, Xiaoguang; Guo, Fen
2018-04-01
Municipal wastewater discharge is widespread and one of the sources of coastal eutrophication, and is especially uncontrolled in developing and undeveloped coastal regions. Mangrove forests are natural filters of pollutants in wastewater. There are three paradigms of mangroves for municipal wastewater treatment and the selection of the optimal one is a multi-criteria decision-making problem. Combining intuitionistic fuzzy theory, the Fuzzy Delphi Method and the fuzzy analytical hierarchical process (AHP), this study develops an intuitionistic fuzzy AHP (IFAHP) method. For the Fuzzy Delphi Method, the judgments of experts and representatives on criterion weights are made by linguistic variables and quantified by intuitionistic fuzzy theory, which is also used to weight the importance of experts and representatives. This process generates the entropy weights of criteria, which are combined with indices values and weights to rank the alternatives by the fuzzy AHP method. The IFAHP method was used to select the optimal paradigm of mangroves for treating municipal wastewater. The entropy weights were entrained by the valid evaluation of 64 experts and representatives via online survey. Natural mangroves were found to be the optimal paradigm for municipal wastewater treatment. By assigning different weights to the criteria, sensitivity analysis shows that natural mangroves remain to be the optimal paradigm under most scenarios. This study stresses the importance of mangroves for wastewater treatment. Decision-makers need to contemplate mangrove reforestation projects, especially where mangroves are highly deforested but wastewater discharge is uncontrolled. The IFAHP method is expected to be applied in other multi-criteria decision-making cases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fatemi, Farin; Ardalan, Ali; Aguirre, Benigno; Mansouri, Nabiollah; Mohammadfam, Iraj
2017-04-10
Industrial chemical accidents have been increased in developing countries. Assessing the human vulnerability in the residents of industrial areas is necessary for reducing the injuries and causalities of chemical hazards. The aim of this study was to explore the key indicators for the assessment of human vulnerability in the residents living near chemical installations. The indicators were established in the present study based on the Fuzzy Delphi method (FDM) and Fuzzy Analytic Hierarchy Process (FAHP). The reliability of FDM and FAHP was calculated. The indicators of human vulnerability were explored in two sets of social and physical domains. Thirty-five relevant experts participated in this study during March-July 2015. According to experts, the top three indicators of human vulnerability according to the FDM and FAHP were vulnerable groups, population density, and awareness. Detailed sub-vulnerable groups and awareness were developed based on age, chronic or severe diseases, disability, first responders, and residents, respectively. Each indicator and sub-indicator was weighted and ranked and had an acceptable consistency ratio. The importance of social vulnerability indicators are about 7 times more than physical vulnerability indicators. Among the extracted indicators, vulnerable groups had the highest weight and the greatest impact on human vulnerability. however, further research is needed to investigate the applicability of established indicators and generalizability of the results to other studies. Fuzzy Delphi; Fuzzy AHP; Human vulnerability; Chemical hazards.
A new web-based framework development for fuzzy multi-criteria group decision-making.
Hanine, Mohamed; Boutkhoum, Omar; Tikniouine, Abdessadek; Agouti, Tarik
2016-01-01
Fuzzy multi-criteria group decision making (FMCGDM) process is usually used when a group of decision-makers faces imprecise data or linguistic variables to solve the problems. However, this process contains many methods that require many time-consuming calculations depending on the number of criteria, alternatives and decision-makers in order to reach the optimal solution. In this study, a web-based FMCGDM framework that offers decision-makers a fast and reliable response service is proposed. The proposed framework includes commonly used tools for multi-criteria decision-making problems such as fuzzy Delphi, fuzzy AHP and fuzzy TOPSIS methods. The integration of these methods enables taking advantages of the strengths and complements each method's weakness. Finally, a case study of location selection for landfill waste in Morocco is performed to demonstrate how this framework can facilitate decision-making process. The results demonstrate that the proposed framework can successfully accomplish the goal of this study.
Project evaluation and selection using fuzzy Delphi method and zero - one goal programming
NASA Astrophysics Data System (ADS)
Alias, Suriana; Adna, Nofarziah; Arsad, Roslah; Soid, Siti Khuzaimah; Ali, Zaileha Md
2014-12-01
Project evaluation and selection is a factor affecting the impotence of board director in which is trying to maximize all the possible goals. Assessment of the problem occurred in organization plan is the first phase for decision making process. The company needs a group of expert to evaluate the problems. The Fuzzy Delphi Method (FDM) is a systematic procedure to evoke the group's opinion in order to get the best result to evaluate the project performance. This paper proposes an evaluation and selection of the best alternative project based on combination of FDM and Zero - One Goal Programming (ZOGP) formulation. ZOGP is used to solve the multi-criteria decision making for final decision part by using optimization software LINDO 6.1. An empirical example on an ongoing decision making project in Johor, Malaysia is implemented for case study.
The application of fuzzy Delphi and fuzzy inference system in supplier ranking and selection
NASA Astrophysics Data System (ADS)
Tahriri, Farzad; Mousavi, Maryam; Hozhabri Haghighi, Siamak; Zawiah Md Dawal, Siti
2014-06-01
In today's highly rival market, an effective supplier selection process is vital to the success of any manufacturing system. Selecting the appropriate supplier is always a difficult task because suppliers posses varied strengths and weaknesses that necessitate careful evaluations prior to suppliers' ranking. This is a complex process with many subjective and objective factors to consider before the benefits of supplier selection are achieved. This paper identifies six extremely critical criteria and thirteen sub-criteria based on the literature. A new methodology employing those criteria and sub-criteria is proposed for the assessment and ranking of a given set of suppliers. To handle the subjectivity of the decision maker's assessment, an integration of fuzzy Delphi with fuzzy inference system has been applied and a new ranking method is proposed for supplier selection problem. This supplier selection model enables decision makers to rank the suppliers based on three classifications including "extremely preferred", "moderately preferred", and "weakly preferred". In addition, in each classification, suppliers are put in order from highest final score to the lowest. Finally, the methodology is verified and validated through an example of a numerical test bed.
Pesticide applicators questionnaire content validation: A fuzzy delphi method.
Manakandan, S K; Rosnah, I; Mohd Ridhuan, J; Priya, R
2017-08-01
The most crucial step in forming a set of survey questionnaire is deciding the appropriate items in a construct. Retaining irrelevant items and removing important items will certainly mislead the direction of a particular study. This article demonstrates Fuzzy Delphi method as one of the scientific analysis technique to consolidate consensus agreement within a panel of experts pertaining to each item's appropriateness. This method reduces the ambiguity, diversity, and discrepancy of the opinions among the experts hence enhances the quality of the selected items. The main purpose of this study was to obtain experts' consensus on the suitability of the preselected items on the questionnaire. The panel consists of sixteen experts from the Occupational and Environmental Health Unit of Ministry of Health, Vector-borne Disease Control Unit of Ministry of Health and Occupational and Safety Health Unit of both public and private universities. A set of questionnaires related to noise and chemical exposure were compiled based on the literature search. There was a total of six constructs with 60 items in which three constructs for knowledge, attitude, and practice of noise exposure and three constructs for knowledge, attitude, and practice of chemical exposure. The validation process replicated recent Fuzzy Delphi method that using a concept of Triangular Fuzzy Numbers and Defuzzification process. A 100% response rate was obtained from all the sixteen experts with an average Likert scoring of four to five. Post FDM analysis, the first prerequisite was fulfilled with a threshold value (d) ≤ 0.2, hence all the six constructs were accepted. For the second prerequisite, three items (21%) from noise-attitude construct and four items (40%) from chemical-practice construct had expert consensus lesser than 75%, which giving rise to about 12% from the total items in the questionnaire. The third prerequisite was used to rank the items within the constructs by calculating the average fuzzy numbers. The seven items which did not fulfill the second prerequisite similarly had lower ranks during the analysis, therefore those items were discarded from the final draft. Post FDM analysis, the experts' consensus on the suitability of the pre-selected items on the questionnaire set were obtained, hence it is now ready for further construct validation process.
Identifying the critical financial ratios for stocks evaluation: A fuzzy delphi approach
NASA Astrophysics Data System (ADS)
Mokhtar, Mazura; Shuib, Adibah; Mohamad, Daud
2014-12-01
Stocks evaluation has always been an interesting and challenging problem for both researchers and practitioners. Generally, the evaluation can be made based on a set of financial ratios. Nevertheless, there are a variety of financial ratios that can be considered and if all ratios in the set are placed into the evaluation process, data collection would be more difficult and time consuming. Thus, the objective of this paper is to identify the most important financial ratios upon which to focus in order to evaluate the stock's performance. For this purpose, a survey was carried out using an approach which is based on an expert judgement, namely the Fuzzy Delphi Method (FDM). The results of this study indicated that return on equity, return on assets, net profit margin, operating profit margin, earnings per share and debt to equity are the most important ratios.
Asghari, Mehdi; Nassiri, Parvin; Monazzam, Mohammad Reza; Golbabaei, Farideh; Arabalibeik, Hossein; Shamsipour, Aliakbar; Allahverdy, Armin
2017-01-01
Heat stress as a physical harmful agent can increase the risk of health and safety problems in different workplaces such as mining. Although there are different indices to assess the heat stress imposed on workers, choosing the best index for a specific workplace is so important. Since various criteria affect an index applicability, extracting the most effective ones and determining their weights help to prioritize the existing indices and select the optimal index. In order to achieve this aim, present study compared some heat stress indices using effective methods. The viewpoints of occupational health experts and the qualitative Delphi methods were used to extract the most important criteria. Then, the weights of 11 selected criteria were determined by Fuzzy Analytic Hierarchy Process. Finally, fuzzy TOPSIS technique was applied for choosing the most suitable heat stress index. According to result, simplicity, reliability, being low cost, and comprehensiveness were the most determinative criteria for a heat stress index. Based on these criteria and their weights, the existing indices were prioritized. Eventually, wet bulb glob temperature appropriated the first priority and it was proposed as an applicable index for evaluating the heat stress at outdoor hot environments such as surface mines. The use of these strong methods allows introducing the most simple, precise, and applicable tool for evaluation the heat stress in hot environments. It seems that WBGT acts as an appropriate index for assessing the heat stress in mining activities at outdoors.
A Multi-level Fuzzy Evaluation Method for Smart Distribution Network Based on Entropy Weight
NASA Astrophysics Data System (ADS)
Li, Jianfang; Song, Xiaohui; Gao, Fei; Zhang, Yu
2017-05-01
Smart distribution network is considered as the future trend of distribution network. In order to comprehensive evaluate smart distribution construction level and give guidance to the practice of smart distribution construction, a multi-level fuzzy evaluation method based on entropy weight is proposed. Firstly, focus on both the conventional characteristics of distribution network and new characteristics of smart distribution network such as self-healing and interaction, a multi-level evaluation index system which contains power supply capability, power quality, economy, reliability and interaction is established. Then, a combination weighting method based on Delphi method and entropy weight method is put forward, which take into account not only the importance of the evaluation index in the experts’ subjective view, but also the objective and different information from the index values. Thirdly, a multi-level evaluation method based on fuzzy theory is put forward. Lastly, an example is conducted based on the statistical data of some cites’ distribution network and the evaluation method is proved effective and rational.
Identifying Mental Health Elements among Technical University Students Using Fuzzy Delphi Method
NASA Astrophysics Data System (ADS)
Pua, P. K.; Lai, C. S.; Lee, M. F.
2017-08-01
Mental health is a part of our daily life that is often experienced. As a student, mental health issue often encounters a variety of difficult challenges at the higher education institution. A student with good mental health can handle and cope the normal stress of life, capable work productivity, enhance academic performance and able to make contribute to the community. However, rapidly transformation and changing of society have been impacted on students’ mental health, and it will be deteriorated and negatively impact on students if it absence of preventive controlled. This study aimed to identify the element of mental health among the technical university students. A total of 11 experts were selected to analyze the fuzziness consensus of experts. All collected data was analyzed by using the fuzzy Delphi method and the result shows that there are 4 elements of 8 elements that fulfill the requirement consensus of experts, which threshold value is equal and less than 0.2, the percentage of the expert group is more than 75%. The four elements were depression, anxiety, stress, and fear are often experienced by technical university students. In conclusion, precocious actions have to be taken by university and counseling center, parents and non-government organization in order to mitigate the mental health problem faced by students to improve the quality lifestyle students at the university.
ERIC Educational Resources Information Center
Tee, Ying Qin; Mohamed, Anizah; Alias, Norlidah
2014-01-01
Social media sites including Facebook are increasingly accessed and integrated in the counselling and psychotherapy profession. As there is a universal escalation of mental and emotional health needs in today's society especially among young adults, Facebook as a popular social networking site for Malaysian youths could be taken advantage as a…
Criteria for the evaluation of a cloud-based hospital information system outsourcing provider.
Low, Chinyao; Hsueh Chen, Ya
2012-12-01
As cloud computing technology has proliferated rapidly worldwide, there has been a trend toward adopting cloud-based hospital information systems (CHISs). This study examines the critical criteria for selecting the CHISs outsourcing provider. The fuzzy Delphi method (FDM) is used to evaluate the primary indicator collected from 188 useable responses at a working hospital in Taiwan. Moreover, the fuzzy analytic hierarchy process (FAHP) is employed to calculate the weights of these criteria and establish a fuzzy multi-criteria model of CHISs outsourcing provider selection from 42 experts. The results indicate that the five most critical criteria related to CHISs outsourcing provider selection are (1) system function, (2) service quality, (3) integration, (4) professionalism, and (5) economics. This study may contribute to understanding how cloud-based hospital systems can reinforce content design and offer a way to compete in the field by developing more appropriate systems.
NASA Astrophysics Data System (ADS)
Saido, G. A. M.; Siraj, S.; DeWitt, D.; Al-Amedy, O. S.
2018-05-01
It is important for science students to develop higher order thinking (HOT) so that they can reason like scientists in the field. In this study, a HOT instructional model for secondary school science was developed with experts. The model would focus on reflective thinking (RT) and science process skills (SPS) among Grade 7 students. The Fuzzy Delphi Method (FDM) was employed to determine consensus among a panel of 20 experts. First, semi-structured interviews were conducted among the experts to generate the elements required for the model. Then, a questionnaire was developed using a seven-point linguistic scale based on these elements. The defuzzification value was calculated for each item, and a threshold value (d) of 0.75 was used to determine consensus for the items in the questionnaire. The alpha-cut value of >0.5 was used to select the phases and sub-phases in the model. The elements in the model were ranked to identify the sub-phases which had to be emphasised for implementation in instruction. Consensus was achieved on the phases of the HOT instructional model: engagement, investigation, explanation, conclusion and reflection. An additional 24 learning activities to encourage RT skills and SPS among students were also identified to develop HOT skills in science.
Wu, H Y; Chen, K L; Chen, Z H; Chen, Q H; Qiu, Y P; Wu, J C; Zhang, J F
2012-03-01
This research presented an evaluation for the ecological quality status (EcoQS) of three semi-enclosed coastal areas using fuzzy integrated assessment method (FIAM). With this method, the hierarchy structure was clarified by an index system of 11 indicators selected from biotic elements and physicochemical elements, and the weight vector of index system was calculated with Delphi-Analytic Hierarchy Process (AHP) procedure. Then, the FIAM was used to achieve an EcoQS assessment. As a result of assessment, most of the sampling stations demonstrated a clear gradient in EcoQS, ranging from high to poor status. Among the four statuses, high and good, owning a ratio of 55.9% and 26.5%, respectively, were two dominant statuses for three bays, especially for Sansha Bay and Luoyuan Bay. The assessment results were found consistent with the pressure information and parameters obtained at most stations. In addition, the sources of uncertainty in classification of EcoQS were also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Instability risk assessment of construction waste pile slope based on fuzzy entropy
NASA Astrophysics Data System (ADS)
Ma, Yong; Xing, Huige; Yang, Mao; Nie, Tingting
2018-05-01
Considering the nature and characteristics of construction waste piles, this paper analyzed the factors affecting the stability of the slope of construction waste piles, and established the system of the assessment indexes for the slope failure risks of construction waste piles. Based on the basic principles and methods of fuzzy mathematics, the factor set and the remark set were established. The membership grade of continuous factor indexes is determined using the "ridge row distribution" function, while that for the discrete factor indexes was determined by the Delphi Method. For the weight of factors, the subjective weight was determined by the Analytic Hierarchy Process (AHP) and objective weight by the entropy weight method. And the distance function was introduced to determine the combination coefficient. This paper established a fuzzy comprehensive assessment model of slope failure risks of construction waste piles, and assessed pile slopes in the two dimensions of hazard and vulnerability. The root mean square of the hazard assessment result and vulnerability assessment result was the final assessment result. The paper then used a certain construction waste pile slope as the example for analysis, assessed the risks of the four stages of a landfill, verified the assessment model and analyzed the slope's failure risks and preventive measures against a slide.
NASA Astrophysics Data System (ADS)
Arsad, Roslah; Nasir Abdullah, Mohammad; Alias, Suriana; Isa, Zaidi
2017-09-01
Stock evaluation has always been an interesting problem for investors. In this paper, a comparison regarding the efficiency stocks of listed companies in Bursa Malaysia were made through the application of estimation method of Data Envelopment Analysis (DEA). One of the interesting research subjects in DEA is the selection of appropriate input and output parameter. In this study, DEA was used to measure efficiency of stocks of listed companies in Bursa Malaysia in terms of the financial ratio to evaluate performance of stocks. Based on previous studies and Fuzzy Delphi Method (FDM), the most important financial ratio was selected. The results indicated that return on equity, return on assets, net profit margin, operating profit margin, earnings per share, price to earnings and debt to equity were the most important ratios. Using expert information, all the parameter were clarified as inputs and outputs. The main objectives were to identify most critical financial ratio, clarify them based on expert information and compute the relative efficiency scores of stocks as well as rank them in the construction industry and material completely. The methods of analysis using Alirezaee and Afsharian’s model were employed in this study, where the originality of Charnes, Cooper and Rhodes (CCR) with the assumption of Constant Return to Scale (CSR) still holds. This method of ranking relative efficiency of decision making units (DMUs) was value-added by the Balance Index. The interested data was made for year 2015 and the population of the research includes accepted companies in stock markets in the construction industry and material (63 companies). According to the ranking, the proposed model can rank completely for 63 companies using selected financial ratio.
Preschool Principal's Curriculum Leadership Indicators: A Taiwan Perspective
ERIC Educational Resources Information Center
Lin, Chia-Fen; Lee, John Chi-Kin
2013-01-01
The role of a principal's curriculum leadership has become an educational issue in Taiwan's early childhood education. This study represents a pioneering attempt in adopting a target school interview, fuzzy Delphi, and analytic hierarchy process for constructing preschool principal's curriculum leadership indicators. Fifteen experts and…
Identifying Professional Competencies of the Flip-Chip Packaging Engineer in Taiwan
ERIC Educational Resources Information Center
Guu, Y. H.; Lin, Kuen-Yi; Lee, Lung-Sheng
2014-01-01
This study employed a literature review, expert interviews, and a questionnaire survey to construct a set of two-tier competencies for a flip-chip packaging engineer. The fuzzy Delphi questionnaire was sent to 12 flip-chip engineering experts to identify professional competencies that a flip-chip packaging engineer must have. Four competencies,…
A new method of regional eco-environmental quality assessment and its application.
Wang, Xiaodan; Cao, Yingzi; Zhong, Xianghao; Gao, Pan
2012-01-01
Eco-environmental quality assessment (EQA) is an intricate and challenging task that must take into account numerous natural, economic, political, and social factors, which are subject to multiple conflicting criteria. In this paper, a methodological reference framework is developed for EQA that combines the fuzzy Delphi method (FDM) and fuzzy analytical hierarchy process (FAHP) with a geographic information system (GIS). The proposed method significantly improves the accuracy and reliability of evaluation results through the incorporation of fuzzy set theory. A GIS not only has the ability to store and analyze large amounts of spatial data from different sources but also provides a consistent visualization environment for displaying the input data and the results of EQA. Furthermore, unlike prior EQAs, the proposed method can support the dynamic estimation of regional eco-environmental quality by updating historical spatiotemporal data at little additional cost. A case study is presented for the western Tibetan Plateau. The study results show that worse, bad, and moderate eco-environmental quality classes comprised 16.58, 20.15, and 24.84% of the total area, respectively. Good and better eco-environmental quality classes accounted for 38.43%. This result indicates that nearly 62% of the total area is eco-environmentally vulnerable. The results verified the usefulness and feasibility of the proposed method. The EQA can also help local managers make scientifically based and effective decisions about Tibetan eco-environmental protection and land use. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Modeling an internal gear pump
NASA Astrophysics Data System (ADS)
Chen, Zongbin; Xu, Rongwu; He, Lin; Liao, Jian
2018-05-01
Considering the nature and characteristics of construction waste piles, this paper analyzed the factors affecting the stability of the slope of construction waste piles, and established the system of the assessment indexes for the slope failure risks of construction waste piles. Based on the basic principles and methods of fuzzy mathematics, the factor set and the remark set were established. The membership grade of continuous factor indexes is determined using the "ridge row distribution" function, while that for the discrete factor indexes was determined by the Delphi Method. For the weight of factors, the subjective weight was determined by the Analytic Hierarchy Process (AHP) and objective weight by the entropy weight method. And the distance function was introduced to determine the combination coefficient. This paper established a fuzzy comprehensive assessment model of slope failure risks of construction waste piles, and assessed pile slopes in the two dimensions of hazard and vulnerability. The root mean square of the hazard assessment result and vulnerability assessment result was the final assessment result. The paper then used a certain construction waste pile slope as the example for analysis, assessed the risks of the four stages of a landfill, verified the assessment model and analyzed the slope's failure risks and preventive measures against a slide.
ERIC Educational Resources Information Center
Saido, G. A. M.; Siraj, S.; DeWitt, D.; Al-Amedy, O. S.
2018-01-01
It is important for science students to develop higher order thinking (HOT) so that they can reason like scientists in the field. In this study, a HOT instructional model for secondary school science was developed with experts. The model would focus on reflective thinking (RT) and science process skills (SPS) among Grade 7 students. The Fuzzy…
ERIC Educational Resources Information Center
Rosman, Fuziah; Alias, Norlidah; Rahman, Mohd Nazri Abdul; Dewitt, Dorothy
2015-01-01
This study aims at reviewing the curriculum design by including video games in the implementation of the Malay language course at an Institute of Higher Learning. The objective of this study is to obtain expert opinion on the expected manner of implementation of video games in learning the Malay language. The Fuzzy Delphi technique (FDM) is used…
Hayati, Elyas; Majnounian, Baris; Abdi, Ehsan; Sessions, John; Makhdoum, Majid
2013-02-01
Changes in forest landscapes resulting from road construction have increased remarkably in the last few years. On the other hand, the sustainable management of forest resources can only be achieved through a well-organized road network. In order to minimize the environmental impacts of forest roads, forest road managers must design the road network efficiently and environmentally as well. Efficient planning methodologies can assist forest road managers in considering the technical, economic, and environmental factors that affect forest road planning. This paper describes a three-stage methodology using the Delphi method for selecting the important criteria, the Analytic Hierarchy Process for obtaining the relative importance of the criteria, and finally, a spatial multi-criteria evaluation in a geographic information system (GIS) environment for identifying the lowest-impact road network alternative. Results of the Delphi method revealed that ground slope, lithology, distance from stream network, distance from faults, landslide susceptibility, erosion susceptibility, geology, and soil texture are the most important criteria for forest road planning in the study area. The suitability map for road planning was then obtained by combining the fuzzy map layers of these criteria with respect to their weights. Nine road network alternatives were designed using PEGGER, an ArcView GIS extension, and finally, their values were extracted from the suitability map. Results showed that the methodology was useful for identifying road that met environmental and cost considerations. Based on this work, we suggest future work in forest road planning using multi-criteria evaluation and decision making be considered in other regions and that the road planning criteria identified in this study may be useful.
Construction safety monitoring based on the project's characteristic with fuzzy logic approach
NASA Astrophysics Data System (ADS)
Winanda, Lila Ayu Ratna; Adi, Trijoko Wahyu; Anwar, Nadjadji; Wahyuni, Febriana Santi
2017-11-01
Construction workers accident is the highest number compared with other industries and falls are the main cause of fatal and serious injuries in high rise projects. Generally, construction workers accidents are caused by unsafe act and unsafe condition that can occur separately or together, thus a safety monitoring system based on influencing factors is needed to achieve zero accident in construction industry. The dynamic characteristic in construction causes high mobility for workers while doing the task, so it requires a continuously monitoring system to detect unsafe condition and to protect workers from potential hazards. In accordance with the unique nature of project, fuzzy logic approach is one of the appropriate methods for workers safety monitoring on site. In this study, the focus of discussion is based on the characteristic of construction projects in analyzing "potential hazard" and the "protection planning" to be used in accident prevention. The data have been collected from literature review, expert opinion and institution of safety and health. This data used to determine hazard identification. Then, an application model is created using Delphi programming. The process in fuzzy is divided into fuzzification, inference and defuzzification, according to the data collection. Then, the input and final output data are given back to the expert for assessment as a validation of application model. The result of the study showed that the potential hazard of construction workers accident could be analysed based on characteristic of project and protection system on site and fuzzy logic approach can be used for construction workers accident analysis. Based on case study and the feedback assessment from expert, it showed that the application model can be used as one of the safety monitoring tools.
Resource allocation in road infrastructure using ANP priorities with ZOGP formulation-A case study
NASA Astrophysics Data System (ADS)
Alias, Suriana; Adna, Norfarziah; Soid, Siti Khuzaimah; Kardri, Mahani
2013-09-01
Road Infrastructure (RI) project evaluation and selection is concern with the allocation of scarce organizational resources. In this paper, it is suggest an improved RI project selection methodology which reflects interdependencies among evaluation criteria and candidate projects. Fuzzy Delphi Method (FDM) is use to evoking expert group opinion and also to determine a degree of interdependences relationship between the alternative projects. In order to provide a systematic approach to set priorities among multi-criteria and trade-off among objectives, Analytic Network Process (ANP) is suggested to be applied prior to Zero-One Goal Programming (ZOGP) formulation. Specifically, this paper demonstrated how to combined FDM and ANP with ZOGP through a real-world RI empirical example on an ongoing decision-making project in Johor, Malaysia.
The Delphi Method Online: Medical Expert Consensus Via the Internet
Cam, Kenneth M.; McKnight, Patrick E.; Doctor, Jason N.
2002-01-01
Delphi is an expert consensus method. The theory behind the Delphi method is that the interaction of experts may lead to a reduction in individual bias. We have developed software that carries out all aspects of the Delphi method via the Internet. The Delphi method online consists of three components: 1) authorship, 2) interactive polling, and 3) reporting/results. We hope that researchers use this tool in future medical expert systems.
Fuzzy Multicriteria Ranking of Aluminium Coating Methods
NASA Astrophysics Data System (ADS)
Batzias, A. F.
2007-12-01
This work deals with multicriteria ranking of aluminium coating methods. The alternatives used are: sulfuric acid anodization, A1; oxalic acid anodization, A2; chromic acid anodization, A3; phosphoric acid anodization, A4; integral color anodizing, A5; chemical conversion coating, A6; electrostatic powder deposition, A7. The criteria used are: cost of production, f1; environmental friendliness of production process, f2; appearance (texture), f3; reflectivity, f4; response to coloring, f5; corrosion resistance, f6; abrasion resistance, f7; fatigue resistance, f8. Five experts coming from relevant industrial units set grades to the criteria vector and the preference matrix according to a properly modified Delphi method. Sensitivity analysis of the ranked first alternative A1 against the `second best', which was A3 at low and A7 at high resolution levels proved that the solution is robust. The dependence of anodized products quality on upstream processes is presented and the impact of energy price increase on industrial cost is discussed.
[Application of Delphi method in traditional Chinese medicine clinical research].
Bi, Ying-fei; Mao, Jing-yuan
2012-03-01
In recent years, Delphi method has been widely applied in traditional Chinese medicine (TCM) clinical research. This article analyzed the present application situation of Delphi method in TCM clinical research, and discussed some problems presented in the choice of evaluation method, classification of observation indexes and selection of survey items. On the basis of present application of Delphi method, the author analyzed the method on questionnaire making, selection of experts, evaluation of observation indexes and selection of survey items. Furthermore, the author summarized the steps of application of Delphi method in TCM clinical research.
Web-based dynamic Delphi: a new survey instrument
NASA Astrophysics Data System (ADS)
Yao, JingTao; Liu, Wei-Ning
2006-04-01
We present a mathematical model for a dynamic Delphi survey method which takes advantages of Web technology. A comparative study on the performance of the conventional Delphi method and the dynamic Delphi instrument is conducted. It is suggested that a dynamic Delphi survey may form a consensus quickly. However, the result may not be robust due to the judgement leaking issues.
The use of advanced web-based survey design in Delphi research.
Helms, Christopher; Gardner, Anne; McInnes, Elizabeth
2017-12-01
A discussion of the application of metadata, paradata and embedded data in web-based survey research, using two completed Delphi surveys as examples. Metadata, paradata and embedded data use in web-based Delphi surveys has not been described in the literature. The rapid evolution and widespread use of online survey methods imply that paper-based Delphi methods will likely become obsolete. Commercially available web-based survey tools offer a convenient and affordable means of conducting Delphi research. Researchers and ethics committees may be unaware of the benefits and risks of using metadata in web-based surveys. Discussion paper. Two web-based, three-round Delphi surveys were conducted sequentially between August 2014 - January 2015 and April - May 2016. Their aims were to validate the Australian nurse practitioner metaspecialties and their respective clinical practice standards. Our discussion paper is supported by researcher experience and data obtained from conducting both web-based Delphi surveys. Researchers and ethics committees should consider the benefits and risks of metadata use in web-based survey methods. Web-based Delphi research using paradata and embedded data may introduce efficiencies that improve individual participant survey experiences and reduce attrition across iterations. Use of embedded data allows the efficient conduct of multiple simultaneous Delphi surveys across a shorter timeframe than traditional survey methods. The use of metadata, paradata and embedded data appears to improve response rates, identify bias and give possible explanation for apparent outlier responses, providing an efficient method of conducting web-based Delphi surveys. © 2017 John Wiley & Sons Ltd.
Evaluation of the preservation value and location of farm ponds in Yunlin County, Taiwan.
Chou, Wen-Wen; Lee, Soen-Han; Wu, Chen-Fa
2013-12-31
Farm ponds in Yunlin County first appeared in 1,622 and have played roles in habitation, production, the ecology, culture, and disaster reduction. Farm ponds largely disappeared with the development of urban areas and the industrial sector; thus, effective preservation of the remaining ponds is critical. The criteria to evaluate the preservation value of farm ponds is established by expert questionnaires which follow the Fuzzy Delphi Method (FDM) and Fuzzy Analytic Hierarchy Process (FAHP), and GIS, which are integrated into a spatial analysis of the remaining 481 farm ponds in Yunlin County. The results show that 28 ponds should be preserved to continue the cultural interaction between farm ponds and settlements; 36 ponds should preserved to connect coasts and streams, which are important habitats for birds; 30 ponds should be preserved to increase storage capacity, recharge groundwater, and reduce land subsidence; four ponds should be preserved as Feng-Shui ponds in front of temples in settlements or as recreation areas for local citizens; and four farms should be preserved (high priority) in agricultural production areas to support irrigation. In short, FAHP and GIS are integrated to evaluate the number and locations of farm ponds that provide water for habitation, production, the ecology, culture, and disaster reduction and maintain the overall preservation value in Yunlin County. The results could inform governmental departments when considering conservation policies.
Evaluation of the Preservation Value and Location of Farm Ponds in Yunlin County, Taiwan
Chou, Wen-Wen; Lee, Soen-Han; Wu, Chen-Fa
2013-01-01
Farm ponds in Yunlin County first appeared in 1,622 and have played roles in habitation, production, the ecology, culture, and disaster reduction. Farm ponds largely disappeared with the development of urban areas and the industrial sector; thus, effective preservation of the remaining ponds is critical. The criteria to evaluate the preservation value of farm ponds is established by expert questionnaires which follow the Fuzzy Delphi Method (FDM) and Fuzzy Analytic Hierarchy Process (FAHP), and GIS, which are integrated into a spatial analysis of the remaining 481 farm ponds in Yunlin County. The results show that 28 ponds should be preserved to continue the cultural interaction between farm ponds and settlements; 36 ponds should preserved to connect coasts and streams, which are important habitats for birds; 30 ponds should be preserved to increase storage capacity, recharge groundwater, and reduce land subsidence; four ponds should be preserved as Feng-Shui ponds in front of temples in settlements or as recreation areas for local citizens; and four farms should be preserved (high priority) in agricultural production areas to support irrigation. In short, FAHP and GIS are integrated to evaluate the number and locations of farm ponds that provide water for habitation, production, the ecology, culture, and disaster reduction and maintain the overall preservation value in Yunlin County. The results could inform governmental departments when considering conservation policies. PMID:24384776
Considerations when conducting e-Delphi research: a case study.
Toronto, Coleen
2017-06-22
Background E-Delphi is a way to access a geographically dispersed group of experts. It is similar to other Delphi methods but conducted online. E-research methodologies, such as the e-Delphi method, have yet to undergo significant critical discussion. Aim To highlight some of the challenges nurse researchers may wish to consider when using e-Delphi in their research. Discussion This paper provides details about the author's approach to conducting an e-Delphi study in which a group of health literacy nurse experts (n=41) used an online survey platform to identify and prioritise essential health literacy competencies for registered nurses. Conclusion This paper advances methodological discourse about e-Delphi by critically assessing an e-Delphi case study. The online survey platform used in this study was advantageous for the researcher and the experts: the experts could participate at any time and place where the internet was available; the researcher could efficiently access a national group of experts, track responses and analyse data in each round. Implications for practice E-Delphi studies create opportunities for nurse researchers to conduct research nationally and internationally. Before conducting an e-Delphi study, researchers should carefully consider the design and methods for collecting data, to avoid challenges that could potentially compromise the quality of the findings. Researchers are encouraged to publish details about their approaches to e-Delphi studies, to advance the state of the science.
The Delphi Method for Graduate Research
ERIC Educational Resources Information Center
Skulmoski, Gregory J.; Hartman, Francis T.; Krahn, Jennifer
2007-01-01
The Delphi method is an attractive method for graduate students completing masters and PhD level research. It is a flexible research technique that has been successfully used in our program at the University of Calgary to explore new concepts within and outside of the information systems body of knowledge. The Delphi method is an iterative process…
Using the Delphi expert consensus method in mental health research.
Jorm, Anthony F
2015-10-01
The article gives an introductory overview of the use of the Delphi expert consensus method in mental health research. It explains the rationale for using the method, examines the range of uses to which it has been put in mental health research, and describes the stages of carrying out a Delphi study using examples from the literature. To ascertain the range of uses, a systematic search was carried out in PubMed. The article also examines the implications of 'wisdom of crowds' research for how to conduct Delphi studies. The Delphi method is a systematic way of determining expert consensus that is useful for answering questions that are not amenable to experimental and epidemiological methods. The validity of the approach is supported by 'wisdom of crowds' research showing that groups can make good judgements under certain conditions. In mental health research, the Delphi method has been used for making estimations where there is incomplete evidence (e.g. What is the global prevalence of dementia?), making predictions (e.g. What types of interactions with a person who is suicidal will reduce their chance of suicide?), determining collective values (e.g. What areas of research should be given greatest priority?) and defining foundational concepts (e.g. How should we define 'relapse'?). A range of experts have been used in Delphi research, including clinicians, researchers, consumers and caregivers. The Delphi method has a wide range of potential uses in mental health research. © The Royal Australian and New Zealand College of Psychiatrists 2015.
Multicriteria Personnel Selection by the Modified Fuzzy VIKOR Method
Alguliyev, Rasim M.; Aliguliyev, Ramiz M.; Mahmudova, Rasmiyya S.
2015-01-01
Personnel evaluation is an important process in human resource management. The multicriteria nature and the presence of both qualitative and quantitative factors make it considerably more complex. In this study, a fuzzy hybrid multicriteria decision-making (MCDM) model is proposed to personnel evaluation. This model solves personnel evaluation problem in a fuzzy environment where both criteria and weights could be fuzzy sets. The triangular fuzzy numbers are used to evaluate the suitability of personnel and the approximate reasoning of linguistic values. For evaluation, we have selected five information culture criteria. The weights of the criteria were calculated using worst-case method. After that, modified fuzzy VIKOR is proposed to rank the alternatives. The outcome of this research is ranking and selecting best alternative with the help of fuzzy VIKOR and modified fuzzy VIKOR techniques. A comparative analysis of results by fuzzy VIKOR and modified fuzzy VIKOR methods is presented. Experiments showed that the proposed modified fuzzy VIKOR method has some advantages over fuzzy VIKOR method. Firstly, from a computational complexity point of view, the presented model is effective. Secondly, compared to fuzzy VIKOR method, it has high acceptable advantage compared to fuzzy VIKOR method. PMID:26516634
Solutions of interval type-2 fuzzy polynomials using a new ranking method
NASA Astrophysics Data System (ADS)
Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani
2015-10-01
A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.
Solving the interval type-2 fuzzy polynomial equation using the ranking method
NASA Astrophysics Data System (ADS)
Rahman, Nurhakimah Ab.; Abdullah, Lazim
2014-07-01
Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.
A Novel Method for Discovering Fuzzy Sequential Patterns Using the Simple Fuzzy Partition Method.
ERIC Educational Resources Information Center
Chen, Ruey-Shun; Hu, Yi-Chung
2003-01-01
Discusses sequential patterns, data mining, knowledge acquisition, and fuzzy sequential patterns described by natural language. Proposes a fuzzy data mining technique to discover fuzzy sequential patterns by using the simple partition method which allows the linguistic interpretation of each fuzzy set to be easily obtained. (Author/LRW)
Fuzzy forecasting based on fuzzy-trend logical relationship groups.
Chen, Shyi-Ming; Wang, Nai-Yi
2010-10-01
In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.
Delphi: An Overview, An Application, Some Lessons.
ERIC Educational Resources Information Center
Moore, Carl M.; Coke, James G.
This paper discusses Delphi-a method of utilizing individuals' knowledge, judgment, and opinions to address complex questions and applies the method to a community planning project in Stow, Ohio. There are four phases of any Delphi: (1) exploring the subject under discussion, with each individual contributing pertinent information, (2) reaching an…
Optimal solution of full fuzzy transportation problems using total integral ranking
NASA Astrophysics Data System (ADS)
Sam’an, M.; Farikhin; Hariyanto, S.; Surarso, B.
2018-03-01
Full fuzzy transportation problem (FFTP) is a transportation problem where transport costs, demand, supply and decision variables are expressed in form of fuzzy numbers. To solve fuzzy transportation problem, fuzzy number parameter must be converted to a crisp number called defuzzyfication method. In this new total integral ranking method with fuzzy numbers from conversion of trapezoidal fuzzy numbers to hexagonal fuzzy numbers obtained result of consistency defuzzyfication on symmetrical fuzzy hexagonal and non symmetrical type 2 numbers with fuzzy triangular numbers. To calculate of optimum solution FTP used fuzzy transportation algorithm with least cost method. From this optimum solution, it is found that use of fuzzy number form total integral ranking with index of optimism gives different optimum value. In addition, total integral ranking value using hexagonal fuzzy numbers has an optimal value better than the total integral ranking value using trapezoidal fuzzy numbers.
The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.
Narayanamoorthy, S; Kalyani, S
2015-01-01
An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.
The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem
Narayanamoorthy, S.; Kalyani, S.
2015-01-01
An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example. PMID:25810713
Exploration to Identify Professional Dispositions of School Librarians: A Delphi Study
ERIC Educational Resources Information Center
Bush, Gail; Jones, Jami L.
2010-01-01
This article reports the findings of an exploratory study to identify professional dispositions of school librarians. The authors employed the Delphi method, a qualitative research method that emphasizes expert knowledge and consensus within a particular field. The Delphi panel consisted of members of the editorial boards of nationally recognized…
Chen, Shyi-Ming; Chen, Shen-Wen
2015-03-01
In this paper, we present a new method for fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy-trend logical relationships. Firstly, the proposed method fuzzifies the historical training data of the main factor and the secondary factor into fuzzy sets, respectively, to form two-factors second-order fuzzy logical relationships. Then, it groups the obtained two-factors second-order fuzzy logical relationships into two-factors second-order fuzzy-trend logical relationship groups. Then, it calculates the probability of the "down-trend," the probability of the "equal-trend" and the probability of the "up-trend" of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group, respectively. Finally, it performs the forecasting based on the probabilities of the down-trend, the equal-trend, and the up-trend of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group. We also apply the proposed method to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and the NTD/USD exchange rates. The experimental results show that the proposed method outperforms the existing methods.
Yager’s ranking method for solving the trapezoidal fuzzy number linear programming
NASA Astrophysics Data System (ADS)
Karyati; Wutsqa, D. U.; Insani, N.
2018-03-01
In the previous research, the authors have studied the fuzzy simplex method for trapezoidal fuzzy number linear programming based on the Maleki’s ranking function. We have found some theories related to the term conditions for the optimum solution of fuzzy simplex method, the fuzzy Big-M method, the fuzzy two-phase method, and the sensitivity analysis. In this research, we study about the fuzzy simplex method based on the other ranking function. It is called Yager's ranking function. In this case, we investigate the optimum term conditions. Based on the result of research, it is found that Yager’s ranking function is not like Maleki’s ranking function. Using the Yager’s function, the simplex method cannot work as well as when using the Maleki’s function. By using the Yager’s function, the value of the subtraction of two equal fuzzy numbers is not equal to zero. This condition makes the optimum table of the fuzzy simplex table is undetected. As a result, the simplified fuzzy simplex table becomes stopped and does not reach the optimum solution.
Boulkedid, Rym; Abdoul, Hendy; Loustau, Marine; Sibony, Olivier; Alberti, Corinne
2011-01-01
Objective Delphi technique is a structured process commonly used to developed healthcare quality indicators, but there is a little recommendation for researchers who wish to use it. This study aimed 1) to describe reporting of the Delphi method to develop quality indicators, 2) to discuss specific methodological skills for quality indicators selection 3) to give guidance about this practice. Methodology and Main Finding Three electronic data bases were searched over a 30 years period (1978–2009). All articles that used the Delphi method to select quality indicators were identified. A standardized data extraction form was developed. Four domains (questionnaire preparation, expert panel, progress of the survey and Delphi results) were assessed. Of 80 included studies, quality of reporting varied significantly between items (9% for year's number of experience of the experts to 98% for the type of Delphi used). Reporting of methodological aspects needed to evaluate the reliability of the survey was insufficient: only 39% (31/80) of studies reported response rates for all rounds, 60% (48/80) that feedback was given between rounds, 77% (62/80) the method used to achieve consensus and 57% (48/80) listed quality indicators selected at the end of the survey. A modified Delphi procedure was used in 49/78 (63%) with a physical meeting of the panel members, usually between Delphi rounds. Median number of panel members was 17(Q1:11; Q3:31). In 40/70 (57%) studies, the panel included multiple stakeholders, who were healthcare professionals in 95% (38/40) of cases. Among 75 studies describing criteria to select quality indicators, 28 (37%) used validity and 17(23%) feasibility. Conclusion The use and reporting of the Delphi method for quality indicators selection need to be improved. We provide some guidance to the investigators to improve the using and reporting of the method in future surveys. PMID:21694759
Boulkedid, Rym; Abdoul, Hendy; Loustau, Marine; Sibony, Olivier; Alberti, Corinne
2011-01-01
Delphi technique is a structured process commonly used to developed healthcare quality indicators, but there is a little recommendation for researchers who wish to use it. This study aimed 1) to describe reporting of the Delphi method to develop quality indicators, 2) to discuss specific methodological skills for quality indicators selection 3) to give guidance about this practice. Three electronic data bases were searched over a 30 years period (1978-2009). All articles that used the Delphi method to select quality indicators were identified. A standardized data extraction form was developed. Four domains (questionnaire preparation, expert panel, progress of the survey and Delphi results) were assessed. Of 80 included studies, quality of reporting varied significantly between items (9% for year's number of experience of the experts to 98% for the type of Delphi used). Reporting of methodological aspects needed to evaluate the reliability of the survey was insufficient: only 39% (31/80) of studies reported response rates for all rounds, 60% (48/80) that feedback was given between rounds, 77% (62/80) the method used to achieve consensus and 57% (48/80) listed quality indicators selected at the end of the survey. A modified Delphi procedure was used in 49/78 (63%) with a physical meeting of the panel members, usually between Delphi rounds. Median number of panel members was 17(Q1:11; Q3:31). In 40/70 (57%) studies, the panel included multiple stakeholders, who were healthcare professionals in 95% (38/40) of cases. Among 75 studies describing criteria to select quality indicators, 28 (37%) used validity and 17(23%) feasibility. The use and reporting of the Delphi method for quality indicators selection need to be improved. We provide some guidance to the investigators to improve the using and reporting of the method in future surveys.
NASA Astrophysics Data System (ADS)
Ebrahimnejad, Ali
2015-08-01
There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.
Method of fuzzy inference for one class of MISO-structure systems with non-singleton inputs
NASA Astrophysics Data System (ADS)
Sinuk, V. G.; Panchenko, M. V.
2018-03-01
In fuzzy modeling, the inputs of the simulated systems can receive both crisp values and non-Singleton. Computational complexity of fuzzy inference with fuzzy non-Singleton inputs corresponds to an exponential. This paper describes a new method of inference, based on the theorem of decomposition of a multidimensional fuzzy implication and a fuzzy truth value. This method is considered for fuzzy inputs and has a polynomial complexity, which makes it possible to use it for modeling large-dimensional MISO-structure systems.
FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.
Li, Pu; Chen, Bing
2011-04-01
Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.
Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection.
Hanine, Mohamed; Boutkhoum, Omar; Tikniouine, Abdessadek; Agouti, Tarik
2016-01-01
Landfill location selection is a multi-criteria decision problem and has a strategic importance for many regions. The conventional methods for landfill location selection are insufficient in dealing with the vague or imprecise nature of linguistic assessment. To resolve this problem, fuzzy multi-criteria decision-making methods are proposed. The aim of this paper is to use fuzzy TODIM (the acronym for Interactive and Multi-criteria Decision Making in Portuguese) and the fuzzy analytic hierarchy process (AHP) methods for the selection of landfill location. The proposed methods have been applied to a landfill location selection problem in the region of Casablanca, Morocco. After determining the criteria affecting the landfill location decisions, fuzzy TODIM and fuzzy AHP methods are applied to the problem and results are presented. The comparisons of these two methods are also discussed.
Implementation of Steiner point of fuzzy set.
Liang, Jiuzhen; Wang, Dejiang
2014-01-01
This paper deals with the implementation of Steiner point of fuzzy set. Some definitions and properties of Steiner point are investigated and extended to fuzzy set. This paper focuses on establishing efficient methods to compute Steiner point of fuzzy set. Two strategies of computing Steiner point of fuzzy set are proposed. One is called linear combination of Steiner points computed by a series of crisp α-cut sets of the fuzzy set. The other is an approximate method, which is trying to find the optimal α-cut set approaching the fuzzy set. Stability analysis of Steiner point of fuzzy set is also studied. Some experiments on image processing are given, in which the two methods are applied for implementing Steiner point of fuzzy image, and both strategies show their own advantages in computing Steiner point of fuzzy set.
Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory
NASA Astrophysics Data System (ADS)
Deyi, Feng; Ichikawa, M.
1989-11-01
In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.
Using fuzzy fractal features of digital images for the material surface analisys
NASA Astrophysics Data System (ADS)
Privezentsev, D. G.; Zhiznyakov, A. L.; Astafiev, A. V.; Pugin, E. V.
2018-01-01
Edge detection is an important task in image processing. There are a lot of approaches in this area: Sobel, Canny operators and others. One of the perspective techniques in image processing is the use of fuzzy logic and fuzzy sets theory. They allow us to increase processing quality by representing information in its fuzzy form. Most of the existing fuzzy image processing methods switch to fuzzy sets on very late stages, so this leads to some useful information loss. In this paper, a novel method of edge detection based on fuzzy image representation and fuzzy pixels is proposed. With this approach, we convert the image to fuzzy form on the first step. Different approaches to this conversion are described. Several membership functions for fuzzy pixel description and requirements for their form and view are given. A novel approach to edge detection based on Sobel operator and fuzzy image representation is proposed. Experimental testing of developed method was performed on remote sensing images.
NASA Astrophysics Data System (ADS)
Indarsih, Indrati, Ch. Rini
2016-02-01
In this paper, we define variance of the fuzzy random variables through alpha level. We have a theorem that can be used to know that the variance of fuzzy random variables is a fuzzy number. We have a multi-objective linear programming (MOLP) with fuzzy random of objective function coefficients. We will solve the problem by variance approach. The approach transform the MOLP with fuzzy random of objective function coefficients into MOLP with fuzzy of objective function coefficients. By weighted methods, we have linear programming with fuzzy coefficients and we solve by simplex method for fuzzy linear programming.
Madaras-Kelly, Karl; Jones, Makoto; Remington, Richard; Hill, Nicole; Huttner, Benedikt; Samore, Matthew
2014-09-01
Development of a numerical score to measure the microbial spectrum of antibiotic regimens (spectrum score) and method to identify antibiotic de-escalation events based on application of the score. Web-based modified Delphi method. Physician and pharmacist antimicrobial stewards practicing in the United States recruited through infectious diseases-focused listservs. Three Delphi rounds investigated: organisms and antibiotics to include in the spectrum score, operationalization of rules for the score, and de-escalation measurement. A 4-point ordinal scale was used to score antibiotic susceptibility for organism-antibiotic domain pairs. Antibiotic regimen scores, which represented combined activity of antibiotics in a regimen across all organism domains, were used to compare antibiotic spectrum administered early (day 2) and later (day 4) in therapy. Changes in spectrum score were calculated and compared with Delphi participants' judgments on de-escalation with 20 antibiotic regimen vignettes and with non-Delphi steward judgments on de-escalation of 300 pneumonia regimen vignettes. Method sensitivity and specificity to predict expert de-escalation status were calculated. Twenty-four participants completed all Delphi rounds. Expert support for concepts utilized in metric development was identified. For vignettes presented in the Delphi, the sign of change in score correctly classified de-escalation in all vignettes except those involving substitution of oral antibiotics. The sensitivity and specificity of the method to identify de-escalation events as judged by non-Delphi stewards were 86.3% and 96.0%, respectively. Identification of de-escalation events based on an algorithm that measures microbial spectrum of antibiotic regimens generally agreed with steward judgments of de-escalation status.
Evolutionary Local Search of Fuzzy Rules through a novel Neuro-Fuzzy encoding method.
Carrascal, A; Manrique, D; Ríos, J; Rossi, C
2003-01-01
This paper proposes a new approach for constructing fuzzy knowledge bases using evolutionary methods. We have designed a genetic algorithm that automatically builds neuro-fuzzy architectures based on a new indirect encoding method. The neuro-fuzzy architecture represents the fuzzy knowledge base that solves a given problem; the search for this architecture takes advantage of a local search procedure that improves the chromosomes at each generation. Experiments conducted both on artificially generated and real world problems confirm the effectiveness of the proposed approach.
Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y
2014-05-01
This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Chen, Shyi-Ming; Manalu, Gandhi Maruli Tua; Pan, Jeng-Shyang; Liu, Hsiang-Chuan
2013-06-01
In this paper, we present a new method for fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization (PSO) techniques. First, we fuzzify the historical training data of the main factor and the secondary factor, respectively, to form two-factors second-order fuzzy logical relationships. Then, we group the two-factors second-order fuzzy logical relationships into two-factors second-order fuzzy-trend logical relationship groups. Then, we obtain the optimal weighting vector for each fuzzy-trend logical relationship group by using PSO techniques to perform the forecasting. We also apply the proposed method to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index and the NTD/USD exchange rates. The experimental results show that the proposed method gets better forecasting performance than the existing methods.
Combinational Reasoning of Quantitative Fuzzy Topological Relations for Simple Fuzzy Regions
Liu, Bo; Li, Dajun; Xia, Yuanping; Ruan, Jian; Xu, Lili; Wu, Huanyi
2015-01-01
In recent years, formalization and reasoning of topological relations have become a hot topic as a means to generate knowledge about the relations between spatial objects at the conceptual and geometrical levels. These mechanisms have been widely used in spatial data query, spatial data mining, evaluation of equivalence and similarity in a spatial scene, as well as for consistency assessment of the topological relations of multi-resolution spatial databases. The concept of computational fuzzy topological space is applied to simple fuzzy regions to efficiently and more accurately solve fuzzy topological relations. Thus, extending the existing research and improving upon the previous work, this paper presents a new method to describe fuzzy topological relations between simple spatial regions in Geographic Information Sciences (GIS) and Artificial Intelligence (AI). Firstly, we propose a new definition for simple fuzzy line segments and simple fuzzy regions based on the computational fuzzy topology. And then, based on the new definitions, we also propose a new combinational reasoning method to compute the topological relations between simple fuzzy regions, moreover, this study has discovered that there are (1) 23 different topological relations between a simple crisp region and a simple fuzzy region; (2) 152 different topological relations between two simple fuzzy regions. In the end, we have discussed some examples to demonstrate the validity of the new method, through comparisons with existing fuzzy models, we showed that the proposed method can compute more than the existing models, as it is more expressive than the existing fuzzy models. PMID:25775452
A fuzzy inventory model with acceptable shortage using graded mean integration value method
NASA Astrophysics Data System (ADS)
Saranya, R.; Varadarajan, R.
2018-04-01
In many inventory models uncertainty is due to fuzziness and fuzziness is the closed possible approach to reality. In this paper, we proposed a fuzzy inventory model with acceptable shortage which is completely backlogged. We fuzzily the carrying cost, backorder cost and ordering cost using Triangular and Trapezoidal fuzzy numbers to obtain the fuzzy total cost. The purpose of our study is to defuzzify the total profit function by Graded Mean Integration Value Method. Further a numerical example is also given to demonstrate the developed crisp and fuzzy models.
Experience of Delphi technique in the process of establishing consensus on core competencies.
Raghav, Pankaja Ravi; Kumar, Dewesh; Bhardwaj, Pankaj
2016-01-01
The Department of Community Medicine and Family Medicine (CMFM) has been started as a new model for imparting the components of family medicine and delivering health-care services at primary and secondary levels in all six newly established All India Institute of Medical Sciences (AIIMS), but there is no competency-based curriculum for it. The paper aims to share the experience of Delphi method in the process of developing consensus on core competencies of the new model of CMFM in AIIMS for undergraduate medical students in India. The study adopted different approaches and methods, but Delphi was the most critical method used in this research. In Delphi, the experts were contacted by e-mail and their feedback on the same was analyzed. Two rounds of Delphi were conducted in which 150 participants were contacted in Delphi-I but only 46 responded. In Delphi-II, 26 participants responded whose responses were finally considered for analysis. Three of the core competencies namely clinician, primary-care physician, and professionalism were agreed by all the participants, and the least agreement was observed in the competencies of epidemiologist and medical teacher. The experts having more experience were less consistent as responses were changed from agree to disagree in more than 15% of participants and 6% changed from disagree to agree. Within the given constraints, the final list of competencies and skills for the discipline of CMFM compiled after the Delphi process will provide a useful insight into the development of competency-based curriculum of the subject.
Systematic methods for the design of a class of fuzzy logic controllers
NASA Astrophysics Data System (ADS)
Yasin, Saad Yaser
2002-09-01
Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental data, and a conversion algorithm, to develop a fuzzy-based control algorithm. Results were similar to those obtained by recently published conventional control based studies. The influence of the fuzzy inference operators and parameters on performance and stability of the fuzzy logic controller was studied Results indicated that, the selections of certain parameters or combinations of parameters, affect greatly the performance and stability of the fuzzy controller. Diagnostic guidelines used to tune or change certain factors or parameters to improve controller performance were developed based on knowledge gained from conventional control methods and knowledge gained from the experimental and the simulation results of this study.
Transportation optimization with fuzzy trapezoidal numbers based on possibility theory.
He, Dayi; Li, Ran; Huang, Qi; Lei, Ping
2014-01-01
In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods.
Recurrent fuzzy ranking methods
NASA Astrophysics Data System (ADS)
Hajjari, Tayebeh
2012-11-01
With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.
Three decision-making aids: brainstorming, nominal group, and Delphi technique.
McMurray, A R
1994-01-01
The methods of brainstorming, Nominal Group Technique, and the Delphi technique can be important resources for nursing staff development educators who wish to expand their decision-making skills. Staff development educators may find opportunities to use these methods for such tasks as developing courses, setting departmental goals, and forecasting trends for planning purposes. Brainstorming, Nominal Group Technique, and the Delphi technique provide a structured format that helps increase the quantity and quality of participant responses.
Measuring Distance of Fuzzy Numbers by Trapezoidal Fuzzy Numbers
NASA Astrophysics Data System (ADS)
Hajjari, Tayebeh
2010-11-01
Fuzzy numbers and more generally linguistic values are approximate assessments, given by experts and accepted by decision-makers when obtaining value that is more accurate is impossible or unnecessary. Distance between two fuzzy numbers plays an important role in linguistic decision-making. It is reasonable to define a fuzzy distance between fuzzy objects. To achieve this aim, the researcher presents a new distance measure for fuzzy numbers by means of improved centroid distance method. The metric properties are also studied. The advantage is the calculation of the proposed method is far simple than previous approaches.
Kizawa, Yoshiyuki; Tsuneto, Satoru; Tamba, Kaichiro; Takamiya, Yusuke; Morita, Tatsuya; Bito, Seiji; Otaki, Junji
2012-07-01
There is currently no consensus syllabus of palliative medicine for undergraduate medical education in Japan, although the Cancer Control Act proposed in 2007 covers the dissemination of palliative care. To develop a nationwide consensus syllabus of palliative medicine for undergraduate medical education in Japan using a modified Delphi method. We adopted the following three-step method: (1) a workshop to produce the draft syllabus; (2) a survey-based provisional syllabus; (3) Delphi rounds and a panel meeting (modified Delphi method) to produce the working syllabus. Educators in charge of palliative medicine from 63% of the medical schools in Japan collaborated to develop a survey-based provisional syllabus before the Delphi rounds. A panel of 32 people was then formed for the modified Delphi rounds comprising 28 educators and experts in palliative medicine, one cancer survivor, one bereaved family member, and two medical students. The final consensus syllabus consists of 115 learning objectives across seven sections as follows: basic principles; disease process and comprehensive assessment; symptom management; psychosocial care; cultural, religious, and spiritual issues; ethical issues; and legal frameworks. Learning objectives were categorized as essential or desirable (essential: 66; desirable: 49). A consensus syllabus of palliative medicine for undergraduate medical education was developed using a clear and innovative methodology. The final consensus syllabus will be made available for further dissemination of palliative care education throughout the country.
How to use the nominal group and Delphi techniques.
McMillan, Sara S; King, Michelle; Tully, Mary P
2016-06-01
Introduction The Nominal Group Technique (NGT) and Delphi Technique are consensus methods used in research that is directed at problem-solving, idea-generation, or determining priorities. While consensus methods are commonly used in health services literature, few studies in pharmacy practice use these methods. This paper provides an overview of the NGT and Delphi technique, including the steps involved and the types of research questions best suited to each method, with examples from the pharmacy literature. Methodology The NGT entails face-to-face discussion in small groups, and provides a prompt result for researchers. The classic NGT involves four key stages: silent generation, round robin, clarification and voting (ranking). Variations have occurred in relation to generating ideas, and how 'consensus' is obtained from participants. The Delphi technique uses a multistage self-completed questionnaire with individual feedback, to determine consensus from a larger group of 'experts.' Questionnaires have been mailed, or more recently, e-mailed to participants. When to use The NGT has been used to explore consumer and stakeholder views, while the Delphi technique is commonly used to develop guidelines with health professionals. Method choice is influenced by various factors, including the research question, the perception of consensus required, and associated practicalities such as time and geography. Limitations The NGT requires participants to personally attend a meeting. This may prove difficult to organise and geography may limit attendance. The Delphi technique can take weeks or months to conclude, especially if multiple rounds are required, and may be complex for lay people to complete.
Efficient solution of a multi objective fuzzy transportation problem
NASA Astrophysics Data System (ADS)
Vidhya, V.; Ganesan, K.
2018-04-01
In this paper we present a methodology for the solution of multi-objective fuzzy transportation problem when all the cost and time coefficients are trapezoidal fuzzy numbers and the supply and demand are crisp numbers. Using a new fuzzy arithmetic on parametric form of trapezoidal fuzzy numbers and a new ranking method all efficient solutions are obtained. The proposed method is illustrated with an example.
An analysis of possible applications of fuzzy set theory to the actuarial credibility theory
NASA Technical Reports Server (NTRS)
Ostaszewski, Krzysztof; Karwowski, Waldemar
1992-01-01
In this work, we review the basic concepts of actuarial credibility theory from the point of view of introducing applications of the fuzzy set-theoretic method. We show how the concept of actuarial credibility can be modeled through the fuzzy set membership functions and how fuzzy set methods, especially fuzzy pattern recognition, can provide an alternative tool for estimating credibility.
Aviation occupant survival factors: an empirical study of the SQ006 accident.
Chang, Yu-Hern; Yang, Hui-Hua
2010-03-01
We present an empirical study of Singapore Airline (SIA) flight SQ006 to illustrate the critical factors that influence airplane occupant survivability. The Fuzzy Delphi Method was used to identify and rank the survival factors that may reduce injury and fatality in potentially survivable accidents. This is the first attempt by a group from both the public and private sectors in Taiwan to focus on cabin-safety issues related to survival factors. We designed a comprehensive survey based on our discussions with aviation safety experts. We next designed an array of important cabin-safety dimensions and then investigated and selected the critical survival factors for each dimension. Our findings reveal important cabin safety and survivability information that should provide a valuable reference for developing and evaluating aviation safety programs. We also believe that the results will be practical for designing cabin-safety education material for air travelers. Finally, the major contribution of this research is that it has identified 47 critical factors that influence accident survivability; therefore, it may encourage improvements that will promote more successful cabin-safety management. Copyright 2009 Elsevier Ltd. All rights reserved.
Consistent linguistic fuzzy preference relations method with ranking fuzzy numbers
NASA Astrophysics Data System (ADS)
Ridzuan, Siti Amnah Mohd; Mohamad, Daud; Kamis, Nor Hanimah
2014-12-01
Multi-Criteria Decision Making (MCDM) methods have been developed to help decision makers in selecting the best criteria or alternatives from the options given. One of the well known methods in MCDM is the Consistent Fuzzy Preference Relation (CFPR) method, essentially utilizes a pairwise comparison approach. This method was later improved to cater subjectivity in the data by using fuzzy set, known as the Consistent Linguistic Fuzzy Preference Relations (CLFPR). The CLFPR method uses the additive transitivity property in the evaluation of pairwise comparison matrices. However, the calculation involved is lengthy and cumbersome. To overcome this problem, a method of defuzzification was introduced by researchers. Nevertheless, the defuzzification process has a major setback where some information may lose due to the simplification process. In this paper, we propose a method of CLFPR that preserves the fuzzy numbers form throughout the process. In obtaining the desired ordering result, a method of ranking fuzzy numbers is utilized in the procedure. This improved procedure for CLFPR is implemented to a case study to verify its effectiveness. This method is useful for solving decision making problems and can be applied to many areas of applications.
Wang, Lijie; Li, Hongyi; Zhou, Qi; Lu, Renquan
2017-09-01
This paper investigates the problem of observer-based adaptive fuzzy control for a category of nonstrict feedback systems subject to both unmodeled dynamics and fuzzy dead zone. Through constructing a fuzzy state observer and introducing a center of gravity method, unmeasurable states are estimated and the fuzzy dead zone is defuzzified, respectively. By employing fuzzy logic systems to identify the unknown functions. And combining small-gain approach with adaptive backstepping control technique, a novel adaptive fuzzy output feedback control strategy is developed, which ensures that all signals involved are semi-globally uniformly bounded. Simulation results are given to demonstrate the effectiveness of the presented method.
Equipment Selection by using Fuzzy TOPSIS Method
NASA Astrophysics Data System (ADS)
Yavuz, Mahmut
2016-10-01
In this study, Fuzzy TOPSIS method was performed for the selection of open pit truck and the optimal solution of the problem was investigated. Data from Turkish Coal Enterprises was used in the application of the method. This paper explains the Fuzzy TOPSIS approaches with group decision-making application in an open pit coal mine in Turkey. An algorithm of the multi-person multi-criteria decision making with fuzzy set approach was applied an equipment selection problem. It was found that Fuzzy TOPSIS with a group decision making is a method that may help decision-makers in solving different decision-making problems in mining.
Mine safety assessment using gray relational analysis and bow tie model
2018-01-01
Mine safety assessment is a precondition for ensuring orderly and safety in production. The main purpose of this study was to prevent mine accidents more effectively by proposing a composite risk analysis model. First, the weights of the assessment indicators were determined by the revised integrated weight method, in which the objective weights were determined by a variation coefficient method and the subjective weights determined by the Delphi method. A new formula was then adopted to calculate the integrated weights based on the subjective and objective weights. Second, after the assessment indicator weights were determined, gray relational analysis was used to evaluate the safety of mine enterprises. Mine enterprise safety was ranked according to the gray relational degree, and weak links of mine safety practices identified based on gray relational analysis. Third, to validate the revised integrated weight method adopted in the process of gray relational analysis, the fuzzy evaluation method was used to the safety assessment of mine enterprises. Fourth, for first time, bow tie model was adopted to identify the causes and consequences of weak links and allow corresponding safety measures to be taken to guarantee the mine’s safe production. A case study of mine safety assessment was presented to demonstrate the effectiveness and rationality of the proposed composite risk analysis model, which can be applied to other related industries for safety evaluation. PMID:29561875
Personal Learning Environments and University Teacher Roles Explored Using Delphi
ERIC Educational Resources Information Center
Shaikh, Zaffar Ahmed; Khoja, Shakeel Ahmed
2014-01-01
This paper presents the results of research using an online Delphi method, which aimed to explore university teacher roles and readiness for learner-centred pedagogy, driven by personal learning environments (PLEs). Using a modified Policy Delphi technique, a group of researchers worked with 34 international experts who are university teachers by…
Setting Priorities for Gerontological Social Work Research: A National Delphi Study
ERIC Educational Resources Information Center
Burnette, Denise; Morrow-Howell, Nancy; Chen, Li-Mei
2003-01-01
Purpose: An increasingly important task for all disciplines involved in aging research is to identify and prioritize areas for investigation. This article reports the results of a national Delphi study on setting research priorities for gerontological social work. Design and Methods: Delphi methodology, a structured process for eliciting and…
Terminating Sequential Delphi Survey Data Collection
ERIC Educational Resources Information Center
Kalaian, Sema A.; Kasim, Rafa M.
2012-01-01
The Delphi survey technique is an iterative mail or electronic (e-mail or web-based) survey method used to obtain agreement or consensus among a group of experts in a specific field on a particular issue through a well-designed and systematic multiple sequential rounds of survey administrations. Each of the multiple rounds of the Delphi survey…
NASA Technical Reports Server (NTRS)
Abihana, Osama A.; Gonzalez, Oscar R.
1993-01-01
The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.
Si, Guangsen; Xu, Zeshui
2018-01-01
Hesitant fuzzy linguistic term set provides an effective tool to represent uncertain decision information. However, the semantics corresponding to the linguistic terms in it cannot accurately reflect the decision-makers’ subjective cognition. In general, different decision-makers’ sensitivities towards the semantics are different. Such sensitivities can be represented by the cumulative prospect theory value function. Inspired by this, we propose a linguistic scale function to transform the semantics corresponding to linguistic terms into the linguistic preference values. Furthermore, we propose the hesitant fuzzy linguistic preference utility set, based on which, the decision-makers can flexibly express their distinct semantics and obtain the decision results that are consistent with their cognition. For calculations and comparisons over the hesitant fuzzy linguistic preference utility sets, we introduce some distance measures and comparison laws. Afterwards, to apply the hesitant fuzzy linguistic preference utility sets in emergency management, we develop a method to obtain objective weights of attributes and then propose a hesitant fuzzy linguistic preference utility-TOPSIS method to select the best fire rescue plan. Finally, the validity of the proposed method is verified by some comparisons of the method with other two representative methods including the hesitant fuzzy linguistic-TOPSIS method and the hesitant fuzzy linguistic-VIKOR method. PMID:29614019
Liao, Huchang; Si, Guangsen; Xu, Zeshui; Fujita, Hamido
2018-04-03
Hesitant fuzzy linguistic term set provides an effective tool to represent uncertain decision information. However, the semantics corresponding to the linguistic terms in it cannot accurately reflect the decision-makers' subjective cognition. In general, different decision-makers' sensitivities towards the semantics are different. Such sensitivities can be represented by the cumulative prospect theory value function. Inspired by this, we propose a linguistic scale function to transform the semantics corresponding to linguistic terms into the linguistic preference values. Furthermore, we propose the hesitant fuzzy linguistic preference utility set, based on which, the decision-makers can flexibly express their distinct semantics and obtain the decision results that are consistent with their cognition. For calculations and comparisons over the hesitant fuzzy linguistic preference utility sets, we introduce some distance measures and comparison laws. Afterwards, to apply the hesitant fuzzy linguistic preference utility sets in emergency management, we develop a method to obtain objective weights of attributes and then propose a hesitant fuzzy linguistic preference utility-TOPSIS method to select the best fire rescue plan. Finally, the validity of the proposed method is verified by some comparisons of the method with other two representative methods including the hesitant fuzzy linguistic-TOPSIS method and the hesitant fuzzy linguistic-VIKOR method.
Fuzzy Hungarian Method for Solving Intuitionistic Fuzzy Travelling Salesman Problem
NASA Astrophysics Data System (ADS)
Prabakaran, K.; Ganesan, K.
2018-04-01
The travelling salesman problem is to identify the shortest route that the salesman journey all the places and return the starting place with minimum cost. We develop a fuzzy version of Hungarian algorithm for the solution of intuitionistic fuzzy travelling salesman problem using triangular intuitionistic fuzzy numbers without changing them to classical travelling salesman problem. The purposed method is easy to empathize and to implement for finding solution of intuitionistic travelling salesman problem happening in real life situations. To illustrate the proposed method numerical example are provided.
NASA Astrophysics Data System (ADS)
Ningrum, R. W.; Surarso, B.; Farikhin; Safarudin, Y. M.
2018-03-01
This paper proposes the combination of Firefly Algorithm (FA) and Chen Fuzzy Time Series Forecasting. Most of the existing fuzzy forecasting methods based on fuzzy time series use the static length of intervals. Therefore, we apply an artificial intelligence, i.e., Firefly Algorithm (FA) to set non-stationary length of intervals for each cluster on Chen Method. The method is evaluated by applying on the Jakarta Composite Index (IHSG) and compare with classical Chen Fuzzy Time Series Forecasting. Its performance verified through simulation using Matlab.
Genetic reinforcement learning through symbiotic evolution for fuzzy controller design.
Juang, C F; Lin, J Y; Lin, C T
2000-01-01
An efficient genetic reinforcement learning algorithm for designing fuzzy controllers is proposed in this paper. The genetic algorithm (GA) adopted in this paper is based upon symbiotic evolution which, when applied to fuzzy controller design, complements the local mapping property of a fuzzy rule. Using this Symbiotic-Evolution-based Fuzzy Controller (SEFC) design method, the number of control trials, as well as consumed CPU time, are considerably reduced when compared to traditional GA-based fuzzy controller design methods and other types of genetic reinforcement learning schemes. Moreover, unlike traditional fuzzy controllers, which partition the input space into a grid, SEFC partitions the input space in a flexible way, thus creating fewer fuzzy rules. In SEFC, different types of fuzzy rules whose consequent parts are singletons, fuzzy sets, or linear equations (TSK-type fuzzy rules) are allowed. Further, the free parameters (e.g., centers and widths of membership functions) and fuzzy rules are all tuned automatically. For the TSK-type fuzzy rule especially, which put the proposed learning algorithm in use, only the significant input variables are selected to participate in the consequent of a rule. The proposed SEFC design method has been applied to different simulated control problems, including the cart-pole balancing system, a magnetic levitation system, and a water bath temperature control system. The proposed SEFC has been verified to be efficient and superior from these control problems, and from comparisons with some traditional GA-based fuzzy systems.
Using a fuzzy comprehensive evaluation method to determine product usability: A test case
Zhou, Ronggang; Chan, Alan H. S.
2016-01-01
BACKGROUND: In order to take into account the inherent uncertainties during product usability evaluation, Zhou and Chan [1] proposed a comprehensive method of usability evaluation for products by combining the analytic hierarchy process (AHP) and fuzzy evaluation methods for synthesizing performance data and subjective response data. This method was designed to provide an integrated framework combining the inevitable vague judgments from the multiple stages of the product evaluation process. OBJECTIVE AND METHODS: In order to illustrate the effectiveness of the model, this study used a summative usability test case to assess the application and strength of the general fuzzy usability framework. To test the proposed fuzzy usability evaluation framework [1], a standard summative usability test was conducted to benchmark the overall usability of a specific network management software. Based on the test data, the fuzzy method was applied to incorporate both the usability scores and uncertainties involved in the multiple components of the evaluation. Then, with Monte Carlo simulation procedures, confidence intervals were used to compare the reliabilities among the fuzzy approach and two typical conventional methods combining metrics based on percentages. RESULTS AND CONCLUSIONS: This case study showed that the fuzzy evaluation technique can be applied successfully for combining summative usability testing data to achieve an overall usability quality for the network software evaluated. Greater differences of confidence interval widths between the method of averaging equally percentage and weighted evaluation method, including the method of weighted percentage averages, verified the strength of the fuzzy method. PMID:28035942
Hierarchical semi-numeric method for pairwise fuzzy group decision making.
Marimin, M; Umano, M; Hatono, I; Tamura, H
2002-01-01
Gradual improvements to a single-level semi-numeric method, i.e., linguistic labels preference representation by fuzzy sets computation for pairwise fuzzy group decision making are summarized. The method is extended to solve multiple criteria hierarchical structure pairwise fuzzy group decision-making problems. The problems are hierarchically structured into focus, criteria, and alternatives. Decision makers express their evaluations of criteria and alternatives based on each criterion by using linguistic labels. The labels are converted into and processed in triangular fuzzy numbers (TFNs). Evaluations of criteria yield relative criteria weights. Evaluations of the alternatives, based on each criterion, yield a degree of preference for each alternative or a degree of satisfaction for each preference value. By using a neat ordered weighted average (OWA) or a fuzzy weighted average operator, solutions obtained based on each criterion are aggregated into final solutions. The hierarchical semi-numeric method is suitable for solving a larger and more complex pairwise fuzzy group decision-making problem. The proposed method has been verified and applied to solve some real cases and is compared to Saaty's (1996) analytic hierarchy process (AHP) method.
Reference Materials in LIS Instruction: A Delphi Study
ERIC Educational Resources Information Center
Rabina, Debbie
2013-01-01
This paper presents the results of a Delphi study conducted over a two-month period in 2011. The purpose of the study was to identify reference sources that should be covered in basic reference courses taught in LIS programs in the United States. The Delphi method was selected for its appropriateness in soliciting expert opinions and assessing the…
ERIC Educational Resources Information Center
Manning, Kim Elise
2010-01-01
This Delphi study explored the instructional practices of community college faculty who were teaching blended or Web-assisted courses and how these practices influenced student persistence. The Delphi method provided qualitative data in the form of expert advice through consensus building on the instructional practices most likely to influence…
Career and Technical Education at a Crossroads: A Delphi Study
ERIC Educational Resources Information Center
Cutright, Michael W.
2011-01-01
Career and technical education in the United States has reached a critical juncture. A three round Delphi method was used to determine a consensus on the future events of career and technical education to better inform educational decision makers. Forty-one individual experts in the field were invited to serve as panelists for the Delphi study and…
ERIC Educational Resources Information Center
Gray, Jennifer A.; Truesdale, Jesslyn
2015-01-01
The Delphi technique was used to obtain expert panel consensus to prioritize content areas and delivery methods for developing staff grief and bereavement curriculum training in the intellectual and developmental disabilities (IDD) field. The Delphi technique was conducted with a panel of 18 experts from formal and informal disability caregiving,…
Using a fuzzy comprehensive evaluation method to determine product usability: A test case.
Zhou, Ronggang; Chan, Alan H S
2017-01-01
In order to take into account the inherent uncertainties during product usability evaluation, Zhou and Chan [1] proposed a comprehensive method of usability evaluation for products by combining the analytic hierarchy process (AHP) and fuzzy evaluation methods for synthesizing performance data and subjective response data. This method was designed to provide an integrated framework combining the inevitable vague judgments from the multiple stages of the product evaluation process. In order to illustrate the effectiveness of the model, this study used a summative usability test case to assess the application and strength of the general fuzzy usability framework. To test the proposed fuzzy usability evaluation framework [1], a standard summative usability test was conducted to benchmark the overall usability of a specific network management software. Based on the test data, the fuzzy method was applied to incorporate both the usability scores and uncertainties involved in the multiple components of the evaluation. Then, with Monte Carlo simulation procedures, confidence intervals were used to compare the reliabilities among the fuzzy approach and two typical conventional methods combining metrics based on percentages. This case study showed that the fuzzy evaluation technique can be applied successfully for combining summative usability testing data to achieve an overall usability quality for the network software evaluated. Greater differences of confidence interval widths between the method of averaging equally percentage and weighted evaluation method, including the method of weighted percentage averages, verified the strength of the fuzzy method.
Designing boosting ensemble of relational fuzzy systems.
Scherer, Rafał
2010-10-01
A method frequently used in classification systems for improving classification accuracy is to combine outputs of several classifiers. Among various types of classifiers, fuzzy ones are tempting because of using intelligible fuzzy if-then rules. In the paper we build an AdaBoost ensemble of relational neuro-fuzzy classifiers. Relational fuzzy systems bond input and output fuzzy linguistic values by a binary relation; thus, fuzzy rules have additional, comparing to traditional fuzzy systems, weights - elements of a fuzzy relation matrix. Thanks to this the system is better adjustable to data during learning. In the paper an ensemble of relational fuzzy systems is proposed. The problem is that such an ensemble contains separate rule bases which cannot be directly merged. As systems are separate, we cannot treat fuzzy rules coming from different systems as rules from the same (single) system. In the paper, the problem is addressed by a novel design of fuzzy systems constituting the ensemble, resulting in normalization of individual rule bases during learning. The method described in the paper is tested on several known benchmarks and compared with other machine learning solutions from the literature.
On the fusion of tuning parameters of fuzzy rules and neural network
NASA Astrophysics Data System (ADS)
Mamuda, Mamman; Sathasivam, Saratha
2017-08-01
Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.
Knowledge and intelligent computing system in medicine.
Pandey, Babita; Mishra, R B
2009-03-01
Knowledge-based systems (KBS) and intelligent computing systems have been used in the medical planning, diagnosis and treatment. The KBS consists of rule-based reasoning (RBR), case-based reasoning (CBR) and model-based reasoning (MBR) whereas intelligent computing method (ICM) encompasses genetic algorithm (GA), artificial neural network (ANN), fuzzy logic (FL) and others. The combination of methods in KBS such as CBR-RBR, CBR-MBR and RBR-CBR-MBR and the combination of methods in ICM is ANN-GA, fuzzy-ANN, fuzzy-GA and fuzzy-ANN-GA. The combination of methods from KBS to ICM is RBR-ANN, CBR-ANN, RBR-CBR-ANN, fuzzy-RBR, fuzzy-CBR and fuzzy-CBR-ANN. In this paper, we have made a study of different singular and combined methods (185 in number) applicable to medical domain from mid 1970s to 2008. The study is presented in tabular form, showing the methods and its salient features, processes and application areas in medical domain (diagnosis, treatment and planning). It is observed that most of the methods are used in medical diagnosis very few are used for planning and moderate number in treatment. The study and its presentation in this context would be helpful for novice researchers in the area of medical expert system.
Group decision-making approach for flood vulnerability identification using the fuzzy VIKOR method
NASA Astrophysics Data System (ADS)
Lee, G.; Jun, K. S.; Cung, E. S.
2014-09-01
This study proposes an improved group decision making (GDM) framework that combines VIKOR method with fuzzified data to quantify the spatial flood vulnerability including multi-criteria evaluation indicators. In general, GDM method is an effective tool for formulating a compromise solution that involves various decision makers since various stakeholders may have different perspectives on their flood risk/vulnerability management responses. The GDM approach is designed to achieve consensus building that reflects the viewpoints of each participant. The fuzzy VIKOR method was developed to solve multi-criteria decision making (MCDM) problems with conflicting and noncommensurable criteria. This comprising method can be used to obtain a nearly ideal solution according to all established criteria. Triangular fuzzy numbers are used to consider the uncertainty of weights and the crisp data of proxy variables. This approach can effectively propose some compromising decisions by combining the GDM method and fuzzy VIKOR method. The spatial flood vulnerability of the south Han River using the GDM approach combined with the fuzzy VIKOR method was compared with the results from general MCDM methods, such as the fuzzy TOPSIS and classical GDM methods, such as those developed by Borda, Condorcet, and Copeland. The evaluated priorities were significantly dependent on the employed decision-making method. The proposed fuzzy GDM approach can reduce the uncertainty in the data confidence and weight derivation techniques. Thus, the combination of the GDM approach with the fuzzy VIKOR method can provide robust prioritization because it actively reflects the opinions of various groups and considers uncertainty in the input data.
Comparison of Fuzzy-Based Models in Landslide Hazard Mapping
NASA Astrophysics Data System (ADS)
Mijani, N.; Neysani Samani, N.
2017-09-01
Landslide is one of the main geomorphic processes which effects on the development of prospect in mountainous areas and causes disastrous accidents. Landslide is an event which has different uncertain criteria such as altitude, slope, aspect, land use, vegetation density, precipitation, distance from the river and distance from the road network. This research aims to compare and evaluate different fuzzy-based models including Fuzzy Analytic Hierarchy Process (Fuzzy-AHP), Fuzzy Gamma and Fuzzy-OR. The main contribution of this paper reveals to the comprehensive criteria causing landslide hazard considering their uncertainties and comparison of different fuzzy-based models. The quantify of evaluation process are calculated by Density Ratio (DR) and Quality Sum (QS). The proposed methodology implemented in Sari, one of the city of Iran which has faced multiple landslide accidents in recent years due to the particular environmental conditions. The achieved results of accuracy assessment based on the quantifier strated that Fuzzy-AHP model has higher accuracy compared to other two models in landslide hazard zonation. Accuracy of zoning obtained from Fuzzy-AHP model is respectively 0.92 and 0.45 based on method Precision (P) and QS indicators. Based on obtained landslide hazard maps, Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR respectively cover 13, 26 and 35 percent of the study area with a very high risk level. Based on these findings, fuzzy-AHP model has been selected as the most appropriate method of zoning landslide in the city of Sari and the Fuzzy-gamma method with a minor difference is in the second order.
Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong
2015-01-01
In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896
Mathematical models of the simplest fuzzy PI/PD controllers with skewed input and output fuzzy sets.
Mohan, B M; Sinha, Arpita
2008-07-01
This paper unveils mathematical models for fuzzy PI/PD controllers which employ two skewed fuzzy sets for each of the two-input variables and three skewed fuzzy sets for the output variable. The basic constituents of these models are Gamma-type and L-type membership functions for each input, trapezoidal/triangular membership functions for output, intersection/algebraic product triangular norm, maximum/drastic sum triangular conorm, Mamdani minimum/Larsen product/drastic product inference method, and center of sums defuzzification method. The existing simplest fuzzy PI/PD controller structures derived via symmetrical fuzzy sets become special cases of the mathematical models revealed in this paper. Finally, a numerical example along with its simulation results are included to demonstrate the effectiveness of the simplest fuzzy PI controllers.
Expert Consensus on Characteristics of Wisdom: A Delphi Method Study
ERIC Educational Resources Information Center
Jeste, Dilip V.; Ardelt, Monika; Blazer, Dan; Kraemer, Helena C.; Vaillant, George; Meeks, Thomas W.
2010-01-01
Purpose: Wisdom has received increasing attention in empirical research in recent years, especially in gerontology and psychology, but consistent definitions of wisdom remain elusive. We sought to better characterize this concept via an expert consensus panel using a 2-phase Delphi method. Design and Methods: A survey questionnaire comprised 53…
Application of the Delphi technique in healthcare maintenance.
Njuangang, Stanley; Liyanage, Champika; Akintoye, Akintola
2017-10-09
Purpose The purpose of this paper is to examine the research design, issues and considerations in the application of the Delphi technique to identify, refine and rate the critical success factors and performance measures in maintenance-associated infections. Design/methodology/approach In-depth literature review through the application of open and axial coding were applied to formulate the interview and research questions. These were used to conduct an exploratory case study of two healthcare maintenance managers, randomly selected from two National Health Service Foundation Trusts in England. The results of exploratory case study provided the rationale for the application of the Delphi technique in this research. The different processes in the application of the Delphi technique in healthcare research are examined thoroughly. Findings This research demonstrates the need to apply and integrate different research methods to enhance the validity of the Delphi technique. The rationale for the application of the Delphi technique in this research is because some healthcare maintenance managers lack knowledge about basic infection control (IC) principles to make hospitals safe for patient care. The result of first round of the Delphi exercise is a useful contribution in its own rights. It identified a number of salient issues and differences in the opinions of the Delphi participants, noticeably between healthcare maintenance managers and members of the infection control team. It also resulted in useful suggestions and comments to improve the quality and presentation of the second- and third-round Delphi instruments. Practical implications This research provides a research methodology that can be adopted by researchers investigating new and emerging issues in the healthcare sector. As this research demonstrates, the Delphi technique is relevant in soliciting expert knowledge and opinion to identify performance measures to control maintenance-associated infections in hospitals. The methodology provided here could be applied by other researchers elsewhere to probe, investigate and generate rich information about new and emerging healthcare research topics. Originality/value The authors demonstrate how different research methods can be integrated to enhance the validity of the Delphi technique. For example, the results of an exploratory case study provided the rationale for the application of the Delphi technique investigating the key performance measures in maintenance-associated infections. The different processes involved in the application of the Delphi technique are also carefully explored and discussed in depth.
ERIC Educational Resources Information Center
So, Hyo-Jeong; Bonk, Curtis J.
2010-01-01
In this study, a Delphi method was used to identify and predict the roles of blended learning approaches in computer-supported collaborative learning (CSCL) environments. The Delphi panel consisted of experts in online learning from different geographic regions of the world. This study discusses findings related to (a) pros and cons of blended…
Group decision-making approach for flood vulnerability identification using the fuzzy VIKOR method
NASA Astrophysics Data System (ADS)
Lee, G.; Jun, K. S.; Chung, E.-S.
2015-04-01
This study proposes an improved group decision making (GDM) framework that combines the VIKOR method with data fuzzification to quantify the spatial flood vulnerability including multiple criteria. In general, GDM method is an effective tool for formulating a compromise solution that involves various decision makers since various stakeholders may have different perspectives on their flood risk/vulnerability management responses. The GDM approach is designed to achieve consensus building that reflects the viewpoints of each participant. The fuzzy VIKOR method was developed to solve multi-criteria decision making (MCDM) problems with conflicting and noncommensurable criteria. This comprising method can be used to obtain a nearly ideal solution according to all established criteria. This approach effectively can propose some compromising decisions by combining the GDM method and fuzzy VIKOR method. The spatial flood vulnerability of the southern Han River using the GDM approach combined with the fuzzy VIKOR method was compared with the spatial flood vulnerability using general MCDM methods, such as the fuzzy TOPSIS and classical GDM methods (i.e., Borda, Condorcet, and Copeland). As a result, the proposed fuzzy GDM approach can reduce the uncertainty in the data confidence and weight derivation techniques. Thus, the combination of the GDM approach with the fuzzy VIKOR method can provide robust prioritization because it actively reflects the opinions of various groups and considers uncertainty in the input data.
NASA Astrophysics Data System (ADS)
Minatour, Yasser; Bonakdari, Hossein; Zarghami, Mahdi; Bakhshi, Maryam Ali
2015-09-01
The purpose of this study was to develop a group fuzzy multi-criteria decision-making method to be applied in rating problems associated with water resources management. Thus, here Chen's group fuzzy TOPSIS method extended by a difference technique to handle uncertainties of applying a group decision making. Then, the extended group fuzzy TOPSIS method combined with a consistency check. In the presented method, initially linguistic judgments are being surveyed via a consistency checking process, and afterward these judgments are being used in the extended Chen's fuzzy TOPSIS method. Here, each expert's opinion is turned to accurate mathematical numbers and, then, to apply uncertainties, the opinions of group are turned to fuzzy numbers using three mathematical operators. The proposed method is applied to select the optimal strategy for the rural water supply of Nohoor village in north-eastern Iran, as a case study and illustrated example. Sensitivity analyses test over results and comparing results with project reality showed that proposed method offered good results for water resources projects.
Li, Chuan; Li, Lin; Zhang, Jie; Alexov, Emil
2012-01-01
The Gauss-Seidel method is a standard iterative numerical method widely used to solve a system of equations and, in general, is more efficient comparing to other iterative methods, such as the Jacobi method. However, standard implementation of the Gauss-Seidel method restricts its utilization in parallel computing due to its requirement of using updated neighboring values (i.e., in current iteration) as soon as they are available. Here we report an efficient and exact (not requiring assumptions) method to parallelize iterations and to reduce the computational time as a linear/nearly linear function of the number of CPUs. In contrast to other existing solutions, our method does not require any assumptions and is equally applicable for solving linear and nonlinear equations. This approach is implemented in the DelPhi program, which is a finite difference Poisson-Boltzmann equation solver to model electrostatics in molecular biology. This development makes the iterative procedure on obtaining the electrostatic potential distribution in the parallelized DelPhi several folds faster than that in the serial code. Further we demonstrate the advantages of the new parallelized DelPhi by computing the electrostatic potential and the corresponding energies of large supramolecular structures. PMID:22674480
A fuzzy decision analysis method for integrating ecological indicators is developed. This is a combination of a fuzzy ranking method and the Analytic Hierarchy Process (AHP). The method is capable ranking ecosystems in terms of environmental conditions and suggesting cumula...
NASA Astrophysics Data System (ADS)
Lin, Chun-Yu; Lee, Amy H. I.
2011-11-01
Green supply chain has become an important topic these days due to pollution, global warming, extreme climatic events, etc. A green product is manufactured with the goal of reducing the damage to the environment and limiting the use of energy and other resources at any stage of its life, including raw materials, manufacture, use, and disposal. Carbon footprint is a good measure of the impact that a product has on the environment, especially in climate change, in the entire lifetime of the product. Carbon footprint is directly linked to CO2 emission; thus, the reduction of CO2 emission must be considered in the product life cycle. Although more and more researchers are working on the green supply chain management in the past few years, few have incorporated CO2 emission or carbon footprint into the green supply chain system. Therefore, this research aims to propose an integrated model for facilitating the new product development (NPD) for green and low-carbon products. In this research, a systematic model based on quality function deployment (QFD) is constructed for developing green and low-carbon products in a TFT-LCD manufacturer. Literature review and interviews with experts are done first to collect the factors for developing and manufacturing green and low-carbon products. Fuzzy Delphi method (FDM) is applied next to extract the important factors, and fuzzy interpretive structural modeling (FISM) is used subsequently to understand the relationships among factors. A house of quality (HOQ) for product planning is built last. The results shall provide important information for a TFT-LCD firm in designing a new product.
Robust Takagi-Sugeno fuzzy control for fractional order hydro-turbine governing system.
Wang, Bin; Xue, Jianyi; Wu, Fengjiao; Zhu, Delan
2016-11-01
A robust fuzzy control method for fractional order hydro-turbine governing system (FOHGS) in the presence of random disturbances is investigated in this paper. Firstly, the mathematical model of FOHGS is introduced, and based on Takagi-Sugeno (T-S) fuzzy rules, the generalized T-S fuzzy model of FOHGS is presented. Secondly, based on fractional order Lyapunov stability theory, a novel T-S fuzzy control method is designed for the stability control of FOHGS. Thirdly, the relatively loose sufficient stability condition is acquired, which could be transformed into a group of linear matrix inequalities (LMIs) via Schur complement as well as the strict mathematical derivation is given. Furthermore, the control method could resist random disturbances, which shows the good robustness. Simulation results indicate the designed fractional order T-S fuzzy control scheme works well compared with the existing method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Milic, Vladimir; Kasac, Josip; Novakovic, Branko
2015-10-01
This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.
[Modified Delphi method in the constitution of school sanitation standard].
Yin, Xunqiang; Liang, Ying; Tan, Hongzhuan; Gong, Wenjie; Deng, Jing; Luo, Jiayou; Di, Xiaokang; Wu, Yue
2012-11-01
To constitute school sanitation standard using modified Delphi method, and to explore the feasibility and the predominance of Delphi method in the constitution of school sanitation standard. Two rounds of expert consultations were adopted in this study. The data were analyzed with SPSS15.0 to screen indices of school sanitation standard. Thirty-two experts accomplished the 2 rounds of consultations. The average length of expert service was (24.69 ±8.53) years. The authority coefficient was 0.729 ±0.172. The expert positive coefficient was 94.12% (32/34) in the first round and 100% (32/32) in the second round. The harmonious coefficients of importance, feasibility and rationality in the second round were 0.493 (P<0.05), 0.527 (P<0.01), and 0.535 (P<0.01), respectively, suggesting unanimous expert opinions. According to the second round of consultation, 38 indices were included in the framework. Theoretical analysis, literature review, investigation and so on are generally used in health standard constitution currently. Delphi method is a rapid, effective and feasible method in this field.
Bolin, Jocelyn H; Edwards, Julianne M; Finch, W Holmes; Cassady, Jerrell C
2014-01-01
Although traditional clustering methods (e.g., K-means) have been shown to be useful in the social sciences it is often difficult for such methods to handle situations where clusters in the population overlap or are ambiguous. Fuzzy clustering, a method already recognized in many disciplines, provides a more flexible alternative to these traditional clustering methods. Fuzzy clustering differs from other traditional clustering methods in that it allows for a case to belong to multiple clusters simultaneously. Unfortunately, fuzzy clustering techniques remain relatively unused in the social and behavioral sciences. The purpose of this paper is to introduce fuzzy clustering to these audiences who are currently relatively unfamiliar with the technique. In order to demonstrate the advantages associated with this method, cluster solutions of a common perfectionism measure were created using both fuzzy clustering and K-means clustering, and the results compared. Results of these analyses reveal that different cluster solutions are found by the two methods, and the similarity between the different clustering solutions depends on the amount of cluster overlap allowed for in fuzzy clustering.
Bolin, Jocelyn H.; Edwards, Julianne M.; Finch, W. Holmes; Cassady, Jerrell C.
2014-01-01
Although traditional clustering methods (e.g., K-means) have been shown to be useful in the social sciences it is often difficult for such methods to handle situations where clusters in the population overlap or are ambiguous. Fuzzy clustering, a method already recognized in many disciplines, provides a more flexible alternative to these traditional clustering methods. Fuzzy clustering differs from other traditional clustering methods in that it allows for a case to belong to multiple clusters simultaneously. Unfortunately, fuzzy clustering techniques remain relatively unused in the social and behavioral sciences. The purpose of this paper is to introduce fuzzy clustering to these audiences who are currently relatively unfamiliar with the technique. In order to demonstrate the advantages associated with this method, cluster solutions of a common perfectionism measure were created using both fuzzy clustering and K-means clustering, and the results compared. Results of these analyses reveal that different cluster solutions are found by the two methods, and the similarity between the different clustering solutions depends on the amount of cluster overlap allowed for in fuzzy clustering. PMID:24795683
Selection of representative embankments based on rough set - fuzzy clustering method
NASA Astrophysics Data System (ADS)
Bin, Ou; Lin, Zhi-xiang; Fu, Shu-yan; Gao, Sheng-song
2018-02-01
The premise condition of comprehensive evaluation of embankment safety is selection of representative unit embankment, on the basis of dividing the unit levee the influencing factors and classification of the unit embankment are drafted.Based on the rough set-fuzzy clustering, the influence factors of the unit embankment are measured by quantitative and qualitative indexes.Construct to fuzzy similarity matrix of standard embankment then calculate fuzzy equivalent matrix of fuzzy similarity matrix by square method. By setting the threshold of the fuzzy equivalence matrix, the unit embankment is clustered, and the representative unit embankment is selected from the classification of the embankment.
Modified Levenberg-Marquardt Method for RÖSSLER Chaotic System Fuzzy Modeling Training
NASA Astrophysics Data System (ADS)
Wang, Yu-Hui; Wu, Qing-Xian; Jiang, Chang-Sheng; Xue, Ya-Li; Fang, Wei
Generally, fuzzy approximation models require some human knowledge and experience. Operator's experience is involved in the mathematics of fuzzy theory as a collection of heuristic rules. The main goal of this paper is to present a new method for identifying unknown nonlinear dynamics such as Rössler system without any human knowledge. Instead of heuristic rules, the presented method uses the input-output data pairs to identify the Rössler chaotic system. The training algorithm is a modified Levenberg-Marquardt (L-M) method, which can adjust the parameters of each linear polynomial and fuzzy membership functions on line, and do not rely on experts' experience excessively. Finally, it is applied to training Rössler chaotic system fuzzy identification. Comparing this method with the standard L-M method, the convergence speed is accelerated. The simulation results demonstrate the effectiveness of the proposed method.
The Delphi Method in Rehabilitation Counseling Research
ERIC Educational Resources Information Center
Vazquez-Ramos, Robinson; Leahy, Michael; Estrada Hernandez, Noel
2007-01-01
Rehabilitation researchers have found in the application of the Delphi method a more sophisticated way of obtaining consensus from experts in the field on certain matters. The application of this research methodology has affected and certainly advanced the body of knowledge of the rehabilitation counseling practice. However, the rehabilitation…
Forest fire risk assessment-an integrated approach based on multicriteria evaluation.
Goleiji, Elham; Hosseini, Seyed Mohsen; Khorasani, Nematollah; Monavari, Seyed Masoud
2017-11-06
The present study deals with application of the weighted linear combination method for zoning of forest fire risk in Dohezar and Sehezar region of Mazandaran province in northern Iran. In this study, the effective criteria for fires were identified by the Delphi method, and these included ecological and socioeconomic parameters. In this regard, the first step comprised of digital layers; the required data were provided from databases, related centers, and field data collected in the region. Then, the map of criteria was digitized in a geographic information system, and all criteria and indexes were normalized by fuzzy logic. After that, the geographic information system (GIS 10.3) was integrated with the Weighted Linear Combination and the Analytical Network Process, to produce zonation of the forest fire risk map in the Dohezar and Sehezar region. In order to analyze accuracy of the evaluation, the results obtained from the study were compared to records of former fire incidents in the region. This was done using the Kappa coefficient test and a receiver operating characteristic curve. The model showing estimations for forest fire risk explained that the prepared map had accuracy of 90% determined by the Kappa coefficient test and the value of 0.924 by receiver operating characteristic. These results showed that the prepared map had high accuracy and efficacy.
NASA Astrophysics Data System (ADS)
Liu, Peide; Qin, Xiyou
2017-11-01
Linguistic intuitionistic fuzzy number (LIFN) is a special intuitionistic fuzzy number which can more easily describe the vagueness existing in the real decision-making. Maclaurin symmetric mean (MSM) operator has the characteristic of considering the interrelationships among any number of input parameters. In this paper, we extended the MSM operator to the LIFNs and some extended MSM operators for LIFNs were proposed, some new decision-making methods were developed. Firstly, we introduced the definition, score function, properties and operational rules of the LIFNs. Then, we proposed some linguistic intuitionistic fuzzy MSM operators, such as linguistic intuitionistic fuzzy Maclaurin symmetric mean operator, weighted linguistic intuitionistic fuzzy Maclaurin symmetric mean (WLIFMSM) operator, linguistic intuitionistic fuzzy dual Maclaurin symmetric mean operator, weighted linguistic intuitionistic fuzzy dual Maclaurin symmetric mean (WLIFDMSM) operator. In the meantime, we studied some important properties of these operators, and developed some methods based on WLIFMSM operator and WLIFDMSM operator for multi-attribute decision-making. Finally, we use an example to demonstrate the effectiveness of the proposed methods.
Kim, Mincheol; Jang, Yong-Chul; Lee, Seunguk
2013-10-15
The management of waste electrical and electronic equipment (WEEE) or electronic waste (e-waste) has become a major issue of concern for solid waste communities due to the large volumes of waste being generated from the consumption of modern electrical and electronic products. In 2003, Korea introduced the extended producer responsibility (EPR) system to reduce the amount of electronic products to be disposed and to promote resource recovery from WEEE. The EPR currently regulates a total of 10 electrical and electronic products. This paper presents the results of the application of the Delphi method and analytical hierarchy process (AHP) modeling to the WEEE management tool in the policy-making process. Specifically, this paper focuses on the application of the Delphi-AHP technique to determine the WEEE priority to be included in the EPR system. Appropriate evaluation criteria were derived using the Delphi method to assess the potential selection and priority among electrical and electronic products that will be regulated by the EPR system. Quantitative weightings from the AHP model were calculated to identify the priorities of electrical and electronic products to be potentially regulated. After applying all the criteria using the AHP model, the results indicate that the top 10 target recycling products for the expansion of the WEEE list were found to be vacuum cleaners, electric fans, rice cookers, large freezers, microwave ovens, water purifiers, air purifiers, humidifiers, dryers, and telephones in order from the first to last. The proposed Delphi-AHP method can offer a more efficient means of selecting WEEE than subjective assessment methods that are often based on professional judgment or limited available data. By providing WEEE items to be regulated, the proposed Delphi-AHP method can eliminate uncertainty and subjective assessment and enable WEEE management policy-makers to identify the priority of potential WEEE. More generally, the work performed in this study is an example of how Delphi-AHP modeling can be used as a decision-making process tool in WEEE management. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
New similarity of triangular fuzzy number and its application.
Zhang, Xixiang; Ma, Weimin; Chen, Liping
2014-01-01
The similarity of triangular fuzzy numbers is an important metric for application of it. There exist several approaches to measure similarity of triangular fuzzy numbers. However, some of them are opt to be large. To make the similarity well distributed, a new method SIAM (Shape's Indifferent Area and Midpoint) to measure triangular fuzzy number is put forward, which takes the shape's indifferent area and midpoint of two triangular fuzzy numbers into consideration. Comparison with other similarity measurements shows the effectiveness of the proposed method. Then, it is applied to collaborative filtering recommendation to measure users' similarity. A collaborative filtering case is used to illustrate users' similarity based on cloud model and triangular fuzzy number; the result indicates that users' similarity based on triangular fuzzy number can obtain better discrimination. Finally, a simulated collaborative filtering recommendation system is developed which uses cloud model and triangular fuzzy number to express users' comprehensive evaluation on items, and result shows that the accuracy of collaborative filtering recommendation based on triangular fuzzy number is higher.
Fuzzy Sarsa with Focussed Replacing Eligibility Traces for Robust and Accurate Control
NASA Astrophysics Data System (ADS)
Kamdem, Sylvain; Ohki, Hidehiro; Sueda, Naomichi
Several methods of reinforcement learning in continuous state and action spaces that utilize fuzzy logic have been proposed in recent years. This paper introduces Fuzzy Sarsa(λ), an on-policy algorithm for fuzzy learning that relies on a novel way of computing replacing eligibility traces to accelerate the policy evaluation. It is tested against several temporal difference learning algorithms: Sarsa(λ), Fuzzy Q(λ), an earlier fuzzy version of Sarsa and an actor-critic algorithm. We perform detailed evaluations on two benchmark problems : a maze domain and the cart pole. Results of various tests highlight the strengths and weaknesses of these algorithms and show that Fuzzy Sarsa(λ) outperforms all other algorithms tested for a larger granularity of design and under noisy conditions. It is a highly competitive method of learning in realistic noisy domains where a denser fuzzy design over the state space is needed for a more precise control.
Application of fuzzy system theory in addressing the presence of uncertainties
NASA Astrophysics Data System (ADS)
Yusmye, A. Y. N.; Goh, B. Y.; Adnan, N. F.; Ariffin, A. K.
2015-02-01
In this paper, the combinations of fuzzy system theory with the finite element methods are present and discuss to deal with the uncertainties. The present of uncertainties is needed to avoid for prevent the failure of the material in engineering. There are three types of uncertainties, which are stochastic, epistemic and error uncertainties. In this paper, the epistemic uncertainties have been considered. For the epistemic uncertainty, it exists as a result of incomplete information and lack of knowledge or data. Fuzzy system theory is a non-probabilistic method, and this method is most appropriate to interpret the uncertainty compared to statistical approach when the deal with the lack of data. Fuzzy system theory contains a number of processes started from converting the crisp input to fuzzy input through fuzzification process and followed by the main process known as mapping process. The term mapping here means that the logical relationship between two or more entities. In this study, the fuzzy inputs are numerically integrated based on extension principle method. In the final stage, the defuzzification process is implemented. Defuzzification is an important process to allow the conversion of the fuzzy output to crisp outputs. Several illustrative examples are given and from the simulation, the result showed that propose the method produces more conservative results comparing with the conventional finite element method.
NASA Astrophysics Data System (ADS)
Adiga, Shreemathi; Saraswathi, A.; Praveen Prakash, A.
2018-04-01
This paper aims an interlinking approach of new Triangular Fuzzy Cognitive Maps (TrFCM) and Combined Effective Time Dependent (CETD) matrix to find the ranking of the problems of Transgenders. Section one begins with an introduction that briefly describes the scope of Triangular Fuzzy Cognitive Maps (TrFCM) and CETD Matrix. Section two provides the process of causes of problems faced by Transgenders using Fuzzy Triangular Fuzzy Cognitive Maps (TrFCM) method and performs the calculations using the collected data among the Transgender. In Section 3, the reasons for the main causes for the problems of the Transgenders. Section 4 describes the Charles Spearmans coefficients of rank correlation method by interlinking of Triangular Fuzzy Cognitive Maps (TrFCM) Method and CETD Matrix. Section 5 shows the results based on our study.
The Use of the Delphi and Other Consensus Group Methods in Medical Education Research: A Review.
Humphrey-Murto, Susan; Varpio, Lara; Wood, Timothy J; Gonsalves, Carol; Ufholz, Lee-Anne; Mascioli, Kelly; Wang, Carol; Foth, Thomas
2017-10-01
Consensus group methods, such as the Delphi method and nominal group technique (NGT), are used to synthesize expert opinions when evidence is lacking. Despite their extensive use, these methods are inconsistently applied. Their use in medical education research has not been well studied. The authors set out to describe the use of consensus methods in medical education research and to assess the reporting quality of these methods and results. Using scoping review methods, the authors searched the Medline, Embase, PsycInfo, PubMed, Scopus, and ERIC databases for 2009-2016. Full-text articles that focused on medical education and the keywords Delphi, RAND, NGT, or other consensus group methods were included. A standardized extraction form was used to collect article demographic data and features reflecting methodological rigor. Of the articles reviewed, 257 met the inclusion criteria. The Modified Delphi (105/257; 40.8%), Delphi (91/257; 35.4%), and NGT (23/257; 8.9%) methods were most often used. The most common study purpose was curriculum development or reform (68/257; 26.5%), assessment tool development (55/257; 21.4%), and defining competencies (43/257; 16.7%). The reporting quality varied, with 70.0% (180/257) of articles reporting a literature review, 27.2% (70/257) reporting what background information was provided to participants, 66.1% (170/257) describing the number of participants, 40.1% (103/257) reporting if private decisions were collected, 37.7% (97/257) reporting if formal feedback of group ratings was shared, and 43.2% (111/257) defining consensus a priori. Consensus methods are poorly standardized and inconsistently used in medical education research. Improved criteria for reporting are needed.
Intelligent neural network and fuzzy logic control of industrial and power systems
NASA Astrophysics Data System (ADS)
Kuljaca, Ognjen
The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of adaptive and neural network control systems, as well as for the analysis of the different algorithms such as elastic fuzzy systems.
ERIC Educational Resources Information Center
Fleming, Allison R.; Boeltzig-Brown, Heike; Foley, Susan M.
2015-01-01
Purpose: We describe a modified Delphi method used to select effective state vocational rehabilitation agency practices to prioritize rehabilitation services for individuals with most significant disabilities within the context of Order of Selection, an area where there is little known and published. Specifically, we describe how we applied the…
Type-2 fuzzy set extension of DEMATEL method combined with perceptual computing for decision making
NASA Astrophysics Data System (ADS)
Hosseini, Mitra Bokaei; Tarokh, Mohammad Jafar
2013-05-01
Most decision making methods used to evaluate a system or demonstrate the weak and strength points are based on fuzzy sets and evaluate the criteria with words that are modeled with fuzzy sets. The ambiguity and vagueness of the words and different perceptions of a word are not considered in these methods. For this reason, the decision making methods that consider the perceptions of decision makers are desirable. Perceptual computing is a subjective judgment method that considers that words mean different things to different people. This method models words with interval type-2 fuzzy sets that consider the uncertainty of the words. Also, there are interrelations and dependency between the decision making criteria in the real world; therefore, using decision making methods that cannot consider these relations is not feasible in some situations. The Decision-Making Trail and Evaluation Laboratory (DEMATEL) method considers the interrelations between decision making criteria. The current study used the combination of DEMATEL and perceptual computing in order to improve the decision making methods. For this reason, the fuzzy DEMATEL method was extended into type-2 fuzzy sets in order to obtain the weights of dependent criteria based on the words. The application of the proposed method is presented for knowledge management evaluation criteria.
ERIC Educational Resources Information Center
Mack, Nayo Corenus-Geneva
2011-01-01
This research study reports the findings of a Delphi study conducted to determine the essential competencies and objectives for a high school Game Art and Design course framework at the national level. The Delphi panel consisted of gaming, industry and educational experts from all over the world who were members of the International Game…
Dynamic Fuzzy Model Development for a Drum-type Boiler-turbine Plant Through GK Clustering
NASA Astrophysics Data System (ADS)
Habbi, Ahcène; Zelmat, Mimoun
2008-10-01
This paper discusses a TS fuzzy model identification method for an industrial drum-type boiler plant using the GK fuzzy clustering approach. The fuzzy model is constructed from a set of input-output data that covers a wide operating range of the physical plant. The reference data is generated using a complex first-principle-based mathematical model that describes the key dynamical properties of the boiler-turbine dynamics. The proposed fuzzy model is derived by means of fuzzy clustering method with particular attention on structure flexibility and model interpretability issues. This may provide a basement of a new way to design model based control and diagnosis mechanisms for the complex nonlinear plant.
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1992-01-01
Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.
NASA Astrophysics Data System (ADS)
Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan
2016-10-01
This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.
Zhou, Ronggang; Chan, Alan H S
2017-01-01
In order to compare existing usability data to ideal goals or to that for other products, usability practitioners have tried to develop a framework for deriving an integrated metric. However, most current usability methods with this aim rely heavily on human judgment about the various attributes of a product, but often fail to take into account of the inherent uncertainties in these judgments in the evaluation process. This paper presents a universal method of usability evaluation by combining the analytic hierarchical process (AHP) and the fuzzy evaluation method. By integrating multiple sources of uncertain information during product usability evaluation, the method proposed here aims to derive an index that is structured hierarchically in terms of the three usability components of effectiveness, efficiency, and user satisfaction of a product. With consideration of the theoretical basis of fuzzy evaluation, a two-layer comprehensive evaluation index was first constructed. After the membership functions were determined by an expert panel, the evaluation appraisals were computed by using the fuzzy comprehensive evaluation technique model to characterize fuzzy human judgments. Then with the use of AHP, the weights of usability components were elicited from these experts. Compared to traditional usability evaluation methods, the major strength of the fuzzy method is that it captures the fuzziness and uncertainties in human judgments and provides an integrated framework that combines the vague judgments from multiple stages of a product evaluation process.
Liem T. Tran; C. Gregory Knight; Robert V. O' Neill; Elizabeth R. Smith; Kurt H. Riitters; James D. Wickham
2002-01-01
A fuzzy decision analysis method for integrating ecological indicators was developed. This was a combination of a fuzzy ranking method and the analytic hierarchy process (AHP). The method was capable of ranking ecosystems in terms of environmental conditions and suggesting cumulative impacts across a large region. Using data on land cover, population, roads, streams,...
Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy
NASA Astrophysics Data System (ADS)
Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng
2018-06-01
To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.
Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques
Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh
2016-01-01
Background: Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. Methods: In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. Results: With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Conclusion: Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications. PMID:28077898
Evaluation of fuzzy inference systems using fuzzy least squares
NASA Technical Reports Server (NTRS)
Barone, Joseph M.
1992-01-01
Efforts to develop evaluation methods for fuzzy inference systems which are not based on crisp, quantitative data or processes (i.e., where the phenomenon the system is built to describe or control is inherently fuzzy) are just beginning. This paper suggests that the method of fuzzy least squares can be used to perform such evaluations. Regressing the desired outputs onto the inferred outputs can provide both global and local measures of success. The global measures have some value in an absolute sense, but they are particularly useful when competing solutions (e.g., different numbers of rules, different fuzzy input partitions) are being compared. The local measure described here can be used to identify specific areas of poor fit where special measures (e.g., the use of emphatic or suppressive rules) can be applied. Several examples are discussed which illustrate the applicability of the method as an evaluation tool.
Automatic approach to deriving fuzzy slope positions
NASA Astrophysics Data System (ADS)
Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi
2018-03-01
Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.
Zhou, Ronggang; Chan, Alan H. S.
2016-01-01
BACKGROUND: In order to compare existing usability data to ideal goals or to that for other products, usability practitioners have tried to develop a framework for deriving an integrated metric. However, most current usability methods with this aim rely heavily on human judgment about the various attributes of a product, but often fail to take into account of the inherent uncertainties in these judgments in the evaluation process. OBJECTIVE: This paper presents a universal method of usability evaluation by combining the analytic hierarchical process (AHP) and the fuzzy evaluation method. By integrating multiple sources of uncertain information during product usability evaluation, the method proposed here aims to derive an index that is structured hierarchically in terms of the three usability components of effectiveness, efficiency, and user satisfaction of a product. METHODS: With consideration of the theoretical basis of fuzzy evaluation, a two-layer comprehensive evaluation index was first constructed. After the membership functions were determined by an expert panel, the evaluation appraisals were computed by using the fuzzy comprehensive evaluation technique model to characterize fuzzy human judgments. Then with the use of AHP, the weights of usability components were elicited from these experts. RESULTS AND CONCLUSIONS: Compared to traditional usability evaluation methods, the major strength of the fuzzy method is that it captures the fuzziness and uncertainties in human judgments and provides an integrated framework that combines the vague judgments from multiple stages of a product evaluation process. PMID:28035943
ERIC Educational Resources Information Center
Navarro-Leal, Marco Aurelio; Garcia, Concepcion Nino; Saldivar, Luisa Caballero
2012-01-01
For a preliminary exploration of management models between two secondary schools, a Delphi method was used in order to identify and focus relevant topics for a larger research. A first approximation with this method proved to be a heuristic tool to focus and define some categories and guidelines of enquiry. It was found that in both of the schools…
Expert Consensus for Discharge Referral Decisions Using Online Delphi
Bowles, Kathy H.; Holmes, John H.; Naylor, Mary D.; Liberatore, Matthew; Nydick, Robert
2003-01-01
This paper describes the results of using a modified Delphi approach designed to achieve consensus from eight discharge planning experts regarding the decision to refer hospitalized older adults for post-discharge follow-up. Experts reviewed 150 cases using an online website designed to facilitate their interaction and efforts to reach agreement on the need for a referral for post-discharge care and the appropriate site for such care. In contrast to an average of eight weeks to complete just 50 cases using the traditional mail method, the first online Delphi round for 150 cases were completed in six weeks. Data provided by experts suggest that online Delphi is a time efficient and acceptable methodology for reaching group consensus. Other benefits include instant access to Delphi decision results, live knowledge of the time requirements and progress of each expert, and cost savings in postage, paper, copying, and storage of paper documents. This online Delphi methodology is highly recommended. PMID:14728143
Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation.
Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi
2016-12-16
Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency.
Li, L L; Jiang, Z; Song, W L; Ding, Y Y; Xu, J; He, N
2017-10-10
Objective: To develop a HIV infection risk assessment tool for men who have sex with men (MSM) based on Delphi method. Methods: After an exhaustive literature review, we used Delphi method to determine the specific items and relative risk scores of the assessment tool through two rounds of specialist consultation and overall consideration of the opinions and suggestions of 17 specialists. Results: The positivity coefficient through first and second round specialist consultation was 100.0 % and 94.1 % , respectively. The mean of authority coefficients ( Cr ) was 0.86. Kendall's W coefficient of the specialist consultation was 0.55 for the first round consultation (χ(2)=84.426, P <0.001) and 0.46 for the second round consultation (χ(2)=65.734, P <0.001), respectively, suggesting that the specialists had similar opinions. The final HIV infection risk assessment tool for MSM has 8 items. Conclusions: The HIV infection risk assessment tool for MSM, developed under the Delphi method, can be used in the evaluation of HIV infection risk in MSM and individualized prevention and intervention. However, the reliability and validity of this risk assessment tool need to be further evaluated.
Tuning fuzzy PD and PI controllers using reinforcement learning.
Boubertakh, Hamid; Tadjine, Mohamed; Glorennec, Pierre-Yves; Labiod, Salim
2010-10-01
In this paper, we propose a new auto-tuning fuzzy PD and PI controllers using reinforcement Q-learning (QL) algorithm for SISO (single-input single-output) and TITO (two-input two-output) systems. We first, investigate the design parameters and settings of a typical class of Fuzzy PD (FPD) and Fuzzy PI (FPI) controllers: zero-order Takagi-Sugeno controllers with equidistant triangular membership functions for inputs, equidistant singleton membership functions for output, Larsen's implication method, and average sum defuzzification method. Secondly, the analytical structures of these typical fuzzy PD and PI controllers are compared to their classical counterpart PD and PI controllers. Finally, the effectiveness of the proposed method is proven through simulation examples. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pathak, Savita; Mondal, Seema Sarkar
2010-10-01
A multi-objective inventory model of deteriorating item has been developed with Weibull rate of decay, time dependent demand, demand dependent production, time varying holding cost allowing shortages in fuzzy environments for non- integrated and integrated businesses. Here objective is to maximize the profit from different deteriorating items with space constraint. The impreciseness of inventory parameters and goals for non-integrated business has been expressed by linear membership functions. The compromised solutions are obtained by different fuzzy optimization methods. To incorporate the relative importance of the objectives, the different cardinal weights crisp/fuzzy have been assigned. The models are illustrated with numerical examples and results of models with crisp/fuzzy weights are compared. The result for the model assuming them to be integrated business is obtained by using Generalized Reduced Gradient Method (GRG). The fuzzy integrated model with imprecise inventory cost is formulated to optimize the possibility necessity measure of fuzzy goal of the objective function by using credibility measure of fuzzy event by taking fuzzy expectation. The results of crisp/fuzzy integrated model are illustrated with numerical examples and results are compared.
An overall index of environmental quality in coal mining areas and energy facilities.
Vatalis, Konstantinos I; Kaliampakos, Demetrios C
2006-12-01
An approach to measuring environmental quality and trends in coal mining and industrial areas was attempted in this work. For this purpose, the establishment of a reference scale characterizing the status of environmental quality is proposed by developing an Environmental Quality Index (EQI). The methodology involves three main components: social research, the opinion of environmental experts, and the combination of new or existing indices. A survey of public opinion was carried out to identify the main environmental problems in the region of interest. Environmental experts carried out a survey, and the weights of specific environmental problems were obtained through a fuzzy Delphi method and pairwise comparison. The weight attributed to each environmental problem was computed, using new or existing indices (subindices) in the relevant literature. The EQI comprises a combination of the subindices with their own weights. The methodology was applied to a heavily industrialized coal basin in northwestern Macedonia, Greece. The results show that the new index may be used as a reliable tool for evaluating environmental quality in different areas. In addition, the study of EQI trends on an interannual basis can provide useful information on the efficiency of environmental policies already implemented by the responsible authorities.
A hybrid learning method for constructing compact rule-based fuzzy models.
Zhao, Wanqing; Niu, Qun; Li, Kang; Irwin, George W
2013-12-01
The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature.
Application of fuzzy system theory in addressing the presence of uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusmye, A. Y. N.; Goh, B. Y.; Adnan, N. F.
In this paper, the combinations of fuzzy system theory with the finite element methods are present and discuss to deal with the uncertainties. The present of uncertainties is needed to avoid for prevent the failure of the material in engineering. There are three types of uncertainties, which are stochastic, epistemic and error uncertainties. In this paper, the epistemic uncertainties have been considered. For the epistemic uncertainty, it exists as a result of incomplete information and lack of knowledge or data. Fuzzy system theory is a non-probabilistic method, and this method is most appropriate to interpret the uncertainty compared to statisticalmore » approach when the deal with the lack of data. Fuzzy system theory contains a number of processes started from converting the crisp input to fuzzy input through fuzzification process and followed by the main process known as mapping process. The term mapping here means that the logical relationship between two or more entities. In this study, the fuzzy inputs are numerically integrated based on extension principle method. In the final stage, the defuzzification process is implemented. Defuzzification is an important process to allow the conversion of the fuzzy output to crisp outputs. Several illustrative examples are given and from the simulation, the result showed that propose the method produces more conservative results comparing with the conventional finite element method.« less
NASA Astrophysics Data System (ADS)
Sun, Guizhen; Wang, Shuanjun; Li, Yaqing; Wang, Huijun
Information poverty is a new form of poverty in information society. With the growing information-gap between urban and rural areas, information poverty is prevailing in the vast rural areas in China. It is largely restricted the new rural construction and the social harmonious development of villages and towns and must be resolved. The evaluation of rural information poverty is the premise to resolve it. In order to estimate the problem, index system of rural informatization evaluation of Hebei province was designed by means of Delphi. Then, according to the survey of farmers' information demand, AHP and FCE were used to estimate rural information poverty of Hebei province. The purpose of this study is to provide a new operational approach in evaluating or solving rural information poverty and constructing rural informatization in China.
NASA Astrophysics Data System (ADS)
Tian, Wenli; Cao, Chengxuan
2017-03-01
A generalized interval fuzzy mixed integer programming model is proposed for the multimodal freight transportation problem under uncertainty, in which the optimal mode of transport and the optimal amount of each type of freight transported through each path need to be decided. For practical purposes, three mathematical methods, i.e. the interval ranking method, fuzzy linear programming method and linear weighted summation method, are applied to obtain equivalents of constraints and parameters, and then a fuzzy expected value model is presented. A heuristic algorithm based on a greedy criterion and the linear relaxation algorithm are designed to solve the model.
A Delphi Investigation into the Research Needs in Swedish Librarianship
ERIC Educational Resources Information Center
Maceviciute, Elena; Wilson, T. D.
2009-01-01
Introduction: Reports the conduct of a national survey in Sweden to establish the desired research priorities for libraries. The research sought to establish what evidence-base is needed for evidence-based practice. Method: The Delphi method was employed to solicit opinions on the kinds of research needed by libraries of all kinds in Sweden.…
An Empirical Investigation of Entrepreneurship Intensity in Iranian State Universities
ERIC Educational Resources Information Center
Mazdeh, Mohammad Mahdavi; Razavi, Seyed-Mostafa; Hesamamiri, Roozbeh; Zahedi, Mohammad-Reza; Elahi, Behin
2013-01-01
The purpose of this study is to propose a framework to evaluate the entrepreneurship intensity (EI) of Iranian state universities. In order to determine EI, a hybrid multi-method framework consisting of Delphi, Analytic Network Process (ANP), and VIKOR is proposed. The Delphi method is used to localize and reduce the number of criteria extracted…
Idea Generation and Exploration: Benefits and Limitations of the Policy Delphi Research Method
ERIC Educational Resources Information Center
Franklin, Kathy K.; Hart, Jan K.
2007-01-01
Researchers use the policy Delphi method to explore a complex topic with little historical context that requires expert opinion to fully understand underlying issues. The benefit of this research technique is the use of experts who have more timely information than can be gleamed from extant literature. Additionally, those experts place…
NASA Astrophysics Data System (ADS)
Andryani, Diyah Septi; Bustamam, Alhadi; Lestari, Dian
2017-03-01
Clustering aims to classify the different patterns into groups called clusters. In this clustering method, we use n-mers frequency to calculate the distance matrix which is considered more accurate than using the DNA alignment. The clustering results could be used to discover biologically important sub-sections and groups of genes. Many clustering methods have been developed, while hard clustering methods considered less accurate than fuzzy clustering methods, especially if it is used for outliers data. Among fuzzy clustering methods, fuzzy c-means is one the best known for its accuracy and simplicity. Fuzzy c-means clustering uses membership function variable, which refers to how likely the data could be members into a cluster. Fuzzy c-means clustering works using the principle of minimizing the objective function. Parameters of membership function in fuzzy are used as a weighting factor which is also called the fuzzier. In this study we implement hybrid clustering using fuzzy c-means and divisive algorithm which could improve the accuracy of cluster membership compare to traditional partitional approach only. In this study fuzzy c-means is used in the first step to find partition results. Furthermore divisive algorithms will run on the second step to find sub-clusters and dendogram of phylogenetic tree. To find the best number of clusters is determined using the minimum value of Davies Bouldin Index (DBI) of the cluster results. In this research, the results show that the methods introduced in this paper is better than other partitioning methods. Finally, we found 3 clusters with DBI value of 1.126628 at first step of clustering. Moreover, DBI values after implementing the second step of clustering are always producing smaller IDB values compare to the results of using first step clustering only. This condition indicates that the hybrid approach in this study produce better performance of the cluster results, in term its DBI values.
NASA Technical Reports Server (NTRS)
Buffalano, C.; Fogleman, S.; Gielecki, M.
1976-01-01
A methodology is outlined which can be used to estimate the costs of research and development projects. The approach uses the Delphi technique a method developed by the Rand Corporation for systematically eliciting and evaluating group judgments in an objective manner. The use of the Delphi allows for the integration of expert opinion into the cost-estimating process in a consistent and rigorous fashion. This approach can also signal potential cost-problem areas. This result can be a useful tool in planning additional cost analysis or in estimating contingency funds. A Monte Carlo approach is also examined.
Fuzzy-logic based strategy for validation of multiplex methods: example with qualitative GMO assays.
Bellocchi, Gianni; Bertholet, Vincent; Hamels, Sandrine; Moens, W; Remacle, José; Van den Eede, Guy
2010-02-01
This paper illustrates the advantages that a fuzzy-based aggregation method could bring into the validation of a multiplex method for GMO detection (DualChip GMO kit, Eppendorf). Guidelines for validation of chemical, bio-chemical, pharmaceutical and genetic methods have been developed and ad hoc validation statistics are available and routinely used, for in-house and inter-laboratory testing, and decision-making. Fuzzy logic allows summarising the information obtained by independent validation statistics into one synthetic indicator of overall method performance. The microarray technology, introduced for simultaneous identification of multiple GMOs, poses specific validation issues (patterns of performance for a variety of GMOs at different concentrations). A fuzzy-based indicator for overall evaluation is illustrated in this paper, and applied to validation data for different genetically modified elements. Remarks were drawn on the analytical results. The fuzzy-logic based rules were shown to be applicable to improve interpretation of results and facilitate overall evaluation of the multiplex method.
A Novel Numerical Method for Fuzzy Boundary Value Problems
NASA Astrophysics Data System (ADS)
Can, E.; Bayrak, M. A.; Hicdurmaz
2016-05-01
In the present paper, a new numerical method is proposed for solving fuzzy differential equations which are utilized for the modeling problems in science and engineering. Fuzzy approach is selected due to its important applications on processing uncertainty or subjective information for mathematical models of physical problems. A second-order fuzzy linear boundary value problem is considered in particular due to its important applications in physics. Moreover, numerical experiments are presented to show the effectiveness of the proposed numerical method on specific physical problems such as heat conduction in an infinite plate and a fin.
Confidence-based ensemble for GBM brain tumor segmentation
NASA Astrophysics Data System (ADS)
Huo, Jing; van Rikxoort, Eva M.; Okada, Kazunori; Kim, Hyun J.; Pope, Whitney; Goldin, Jonathan; Brown, Matthew
2011-03-01
It is a challenging task to automatically segment glioblastoma multiforme (GBM) brain tumors on T1w post-contrast isotropic MR images. A semi-automated system using fuzzy connectedness has recently been developed for computing the tumor volume that reduces the cost of manual annotation. In this study, we propose a an ensemble method that combines multiple segmentation results into a final ensemble one. The method is evaluated on a dataset of 20 cases from a multi-center pharmaceutical drug trial and compared to the fuzzy connectedness method. Three individual methods were used in the framework: fuzzy connectedness, GrowCut, and voxel classification. The combination method is a confidence map averaging (CMA) method. The CMA method shows an improved ROC curve compared to the fuzzy connectedness method (p < 0.001). The CMA ensemble result is more robust compared to the three individual methods.
Multi-objective decision-making under uncertainty: Fuzzy logic methods
NASA Technical Reports Server (NTRS)
Hardy, Terry L.
1995-01-01
Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities.
Fuzzy Q-Learning for Generalization of Reinforcement Learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1996-01-01
Fuzzy Q-Learning, introduced earlier by the author, is an extension of Q-Learning into fuzzy environments. GARIC is a methodology for fuzzy reinforcement learning. In this paper, we introduce GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Q-Learning and at the local level, each agent learns and operates based on GARIC. GARIC-Q improves the speed and applicability of Fuzzy Q-Learning through generalization of input space by using fuzzy rules and bridges the gap between Q-Learning and rule based intelligent systems.
New Models for Forecasting Enrollments: Fuzzy Time Series and Neural Network Approaches.
ERIC Educational Resources Information Center
Song, Qiang; Chissom, Brad S.
Since university enrollment forecasting is very important, many different methods and models have been proposed by researchers. Two new methods for enrollment forecasting are introduced: (1) the fuzzy time series model; and (2) the artificial neural networks model. Fuzzy time series has been proposed to deal with forecasting problems within a…
Tran, Liem T; Knight, C Gregory; O'Neill, Robert V; Smith, Elizabeth R; Riitters, Kurt H; Wickham, James
2002-06-01
A fuzzy decision analysis method for integrating ecological indicators was developed. This was a combination of a fuzzy ranking method and the analytic hierarchy process (AHP). The method was capable of ranking ecosystems in terms of environmental conditions and suggesting cumulative impacts across a large region. Using data on land cover, population, roads, streams, air pollution, and topography of the Mid-Atlantic region, we were able to point out areas that were in relatively poor condition and/or vulnerable to future deterioration. The method offered an easy and comprehensive way to combine the strengths of fuzzy set theory and the AHP for ecological assessment. Furthermore, the suggested method can serve as a building block for the evaluation of environmental policies.
NASA Astrophysics Data System (ADS)
Zabolotna, Natalia I.; Radchenko, Kostiantyn O.; Karas, Oleksandr V.
2018-01-01
A fibroadenoma diagnosing of breast using statistical analysis (determination and analysis of statistical moments of the 1st-4th order) of the obtained polarization images of Jones matrix imaginary elements of the optically thin (attenuation coefficient τ <= 0,1 ) blood plasma films with further intellectual differentiation based on the method of "fuzzy" logic and discriminant analysis were proposed. The accuracy of the intellectual differentiation of blood plasma samples to the "norm" and "fibroadenoma" of breast was 82.7% by the method of linear discriminant analysis, and by the "fuzzy" logic method is 95.3%. The obtained results allow to confirm the potentially high level of reliability of the method of differentiation by "fuzzy" analysis.
Fuzzy control of small servo motors
NASA Technical Reports Server (NTRS)
Maor, Ron; Jani, Yashvant
1993-01-01
To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.
Learning and Tuning of Fuzzy Rules
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1997-01-01
In this chapter, we review some of the current techniques for learning and tuning fuzzy rules. For clarity, we refer to the process of generating rules from data as the learning problem and distinguish it from tuning an already existing set of fuzzy rules. For learning, we touch on unsupervised learning techniques such as fuzzy c-means, fuzzy decision tree systems, fuzzy genetic algorithms, and linear fuzzy rules generation methods. For tuning, we discuss Jang's ANFIS architecture, Berenji-Khedkar's GARIC architecture and its extensions in GARIC-Q. We show that the hybrid techniques capable of learning and tuning fuzzy rules, such as CART-ANFIS, RNN-FLCS, and GARIC-RB, are desirable in development of a number of future intelligent systems.
Improvements to Earthquake Location with a Fuzzy Logic Approach
NASA Astrophysics Data System (ADS)
Gökalp, Hüseyin
2018-01-01
In this study, improvements to the earthquake location method were investigated using a fuzzy logic approach proposed by Lin and Sanford (Bull Seismol Soc Am 91:82-93, 2001). The method has certain advantages compared to the inverse methods in terms of eliminating the uncertainties of arrival times and reading errors. In this study, adopting this approach, epicentral locations were determined based on the results of a fuzzy logic space concerning the uncertainties in the velocity models. To map the uncertainties in arrival times into the fuzzy logic space, a trapezoidal membership function was constructed by directly using the travel time difference between the two stations for the P- and S-arrival times instead of the P- and S-wave models to eliminate the need for obtaining information concerning the velocity structure of the study area. The results showed that this method worked most effectively when earthquakes occurred away from a network or when the arrival time data contained phase reading errors. In this study, to resolve the problems related to determining the epicentral locations of the events, a forward modeling method like the grid search technique was used by applying different logical operations (i.e., intersection, union, and their combination) with a fuzzy logic approach. The locations of the events were depended on results of fuzzy logic outputs in fuzzy logic space by searching in a gridded region. The process of location determination with the defuzzification of only the grid points with the membership value of 1 obtained by normalizing all the maximum fuzzy output values of the highest values resulted in more reliable epicentral locations for the earthquakes than the other approaches. In addition, throughout the process, the center-of-gravity method was used as a defuzzification operation.
Prediction system of hydroponic plant growth and development using algorithm Fuzzy Mamdani method
NASA Astrophysics Data System (ADS)
Sudana, I. Made; Purnawirawan, Okta; Arief, Ulfa Mediaty
2017-03-01
Hydroponics is a method of farming without soil. One of the Hydroponic plants is Watercress (Nasturtium Officinale). The development and growth process of hydroponic Watercress was influenced by levels of nutrients, acidity and temperature. The independent variables can be used as input variable system to predict the value level of plants growth and development. The prediction system is using Fuzzy Algorithm Mamdani method. This system was built to implement the function of Fuzzy Inference System (Fuzzy Inference System/FIS) as a part of the Fuzzy Logic Toolbox (FLT) by using MATLAB R2007b. FIS is a computing system that works on the principle of fuzzy reasoning which is similar to humans' reasoning. Basically FIS consists of four units which are fuzzification unit, fuzzy logic reasoning unit, base knowledge unit and defuzzification unit. In addition to know the effect of independent variables on the plants growth and development that can be visualized with the function diagram of FIS output surface that is shaped three-dimensional, and statistical tests based on the data from the prediction system using multiple linear regression method, which includes multiple linear regression analysis, T test, F test, the coefficient of determination and donations predictor that are calculated using SPSS (Statistical Product and Service Solutions) software applications.
Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation
Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi
2016-01-01
Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency. PMID:27999261
Gadamerian philosophical hermeneutics as a useful methodological framework for the Delphi technique.
Guzys, Diana; Dickson-Swift, Virginia; Kenny, Amanda; Threlkeld, Guinever
2015-01-01
In this article we aim to demonstrate how Gadamerian philosophical hermeneutics may provide a sound methodological framework for researchers using the Delphi Technique (Delphi) in studies exploring health and well-being. Reporting of the use of Delphi in health and well-being research is increasing, but less attention has been given to covering its methodological underpinnings. In Delphi, a structured anonymous conversation between participants is facilitated, via an iterative survey process. Participants are specifically selected for their knowledge and experience with the topic of interest. The purpose of structuring conversation in this manner is to cultivate collective opinion and highlight areas of disagreement, using a process that minimizes the influence of group dynamics. The underlying premise is that the opinion of a collective is more useful than that of an individual. In designing our study into health literacy, Delphi aligned well with our research focus and would enable us to capture collective views. However, we were interested in the methodology that would inform our study. As researchers, we believe that methodology provides the framework and principles for a study and is integral to research integrity. In assessing the suitability of Delphi for our research purpose, we found little information about underpinning methodology. The absence of a universally recognized or consistent methodology associated with Delphi was highlighted through a scoping review we undertook to assist us in our methodological thinking. This led us to consider alternative methodologies, which might be congruent with the key principles of Delphi. We identified Gadamerian philosophical hermeneutics as a methodology that could provide a supportive framework and principles. We suggest that this methodology may be useful in health and well-being studies utilizing the Delphi method.
Gadamerian philosophical hermeneutics as a useful methodological framework for the Delphi technique
Guzys, Diana; Dickson-Swift, Virginia; Kenny, Amanda; Threlkeld, Guinever
2015-01-01
In this article we aim to demonstrate how Gadamerian philosophical hermeneutics may provide a sound methodological framework for researchers using the Delphi Technique (Delphi) in studies exploring health and well-being. Reporting of the use of Delphi in health and well-being research is increasing, but less attention has been given to covering its methodological underpinnings. In Delphi, a structured anonymous conversation between participants is facilitated, via an iterative survey process. Participants are specifically selected for their knowledge and experience with the topic of interest. The purpose of structuring conversation in this manner is to cultivate collective opinion and highlight areas of disagreement, using a process that minimizes the influence of group dynamics. The underlying premise is that the opinion of a collective is more useful than that of an individual. In designing our study into health literacy, Delphi aligned well with our research focus and would enable us to capture collective views. However, we were interested in the methodology that would inform our study. As researchers, we believe that methodology provides the framework and principles for a study and is integral to research integrity. In assessing the suitability of Delphi for our research purpose, we found little information about underpinning methodology. The absence of a universally recognized or consistent methodology associated with Delphi was highlighted through a scoping review we undertook to assist us in our methodological thinking. This led us to consider alternative methodologies, which might be congruent with the key principles of Delphi. We identified Gadamerian philosophical hermeneutics as a methodology that could provide a supportive framework and principles. We suggest that this methodology may be useful in health and well-being studies utilizing the Delphi method. PMID:25948132
Tracking fuzzy borders using geodesic curves with application to liver segmentation on planning CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Yading, E-mail: yading.yuan@mssm.edu; Chao, Ming; Sheu, Ren-Dih
Purpose: This work aims to develop a robust and efficient method to track the fuzzy borders between liver and the abutted organs where automatic liver segmentation usually suffers, and to investigate its applications in automatic liver segmentation on noncontrast-enhanced planning computed tomography (CT) images. Methods: In order to track the fuzzy liver–chestwall and liver–heart borders where oversegmentation is often found, a starting point and an ending point were first identified on the coronal view images; the fuzzy border was then determined as a geodesic curve constructed by minimizing the gradient-weighted path length between these two points near the fuzzy border.more » The minimization of path length was numerically solved by fast-marching method. The resultant fuzzy borders were incorporated into the authors’ automatic segmentation scheme, in which the liver was initially estimated by a patient-specific adaptive thresholding and then refined by a geodesic active contour model. By using planning CT images of 15 liver patients treated with stereotactic body radiation therapy, the liver contours extracted by the proposed computerized scheme were compared with those manually delineated by a radiation oncologist. Results: The proposed automatic liver segmentation method yielded an average Dice similarity coefficient of 0.930 ± 0.015, whereas it was 0.912 ± 0.020 if the fuzzy border tracking was not used. The application of fuzzy border tracking was found to significantly improve the segmentation performance. The mean liver volume obtained by the proposed method was 1727 cm{sup 3}, whereas it was 1719 cm{sup 3} for manual-outlined volumes. The computer-generated liver volumes achieved excellent agreement with manual-outlined volumes with correlation coefficient of 0.98. Conclusions: The proposed method was shown to provide accurate segmentation for liver in the planning CT images where contrast agent is not applied. The authors’ results also clearly demonstrated that the application of tracking the fuzzy borders could significantly reduce contour leakage during active contour evolution.« less
Yin, Kedong; Yang, Benshuo; Li, Xuemei
2018-01-24
In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making.
Yin, Kedong; Yang, Benshuo
2018-01-01
In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making. PMID:29364849
NASA Astrophysics Data System (ADS)
Zhang, Kejiang; Kluck, Cheryl; Achari, Gopal
2009-11-01
A ranking system for contaminated sites based on comparative risk methodology using fuzzy Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) was developed in this article. It combines the concepts of fuzzy sets to represent uncertain site information with the PROMETHEE, a subgroup of Multi-Criteria Decision Making (MCDM) methods. Criteria are identified based on a combination of the attributes (toxicity, exposure, and receptors) associated with the potential human health and ecological risks posed by contaminated sites, chemical properties, site geology and hydrogeology and contaminant transport phenomena. Original site data are directly used avoiding the subjective assignment of scores to site attributes. When the input data are numeric and crisp the PROMETHEE method can be used. The Fuzzy PROMETHEE method is preferred when substantial uncertainties and subjectivities exist in site information. The PROMETHEE and fuzzy PROMETHEE methods are both used in this research to compare the sites. The case study shows that this methodology provides reasonable results.
NASA Astrophysics Data System (ADS)
Wu, Jianing; Yan, Shaoze; Xie, Liyang; Gao, Peng
2012-07-01
The reliability apportionment of spacecraft solar array is of significant importance for spacecraft designers in the early stage of design. However, it is difficult to use the existing methods to resolve reliability apportionment problem because of the data insufficiency and the uncertainty of the relations among the components in the mechanical system. This paper proposes a new method which combines the fuzzy comprehensive evaluation with fuzzy reasoning Petri net (FRPN) to accomplish the reliability apportionment of the solar array. The proposed method extends the previous fuzzy methods and focuses on the characteristics of the subsystems and the intrinsic associations among the components. The analysis results show that the synchronization mechanism may obtain the highest reliability value and the solar panels and hinges may get the lowest reliability before design and manufacturing. Our developed method is of practical significance for the reliability apportionment of solar array where the design information has not been clearly identified, particularly in early stage of design.
Zhang, Kejiang; Kluck, Cheryl; Achari, Gopal
2009-11-01
A ranking system for contaminated sites based on comparative risk methodology using fuzzy Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) was developed in this article. It combines the concepts of fuzzy sets to represent uncertain site information with the PROMETHEE, a subgroup of Multi-Criteria Decision Making (MCDM) methods. Criteria are identified based on a combination of the attributes (toxicity, exposure, and receptors) associated with the potential human health and ecological risks posed by contaminated sites, chemical properties, site geology and hydrogeology and contaminant transport phenomena. Original site data are directly used avoiding the subjective assignment of scores to site attributes. When the input data are numeric and crisp the PROMETHEE method can be used. The Fuzzy PROMETHEE method is preferred when substantial uncertainties and subjectivities exist in site information. The PROMETHEE and fuzzy PROMETHEE methods are both used in this research to compare the sites. The case study shows that this methodology provides reasonable results.
Consulting the oracle: ten lessons from using the Delphi technique in nursing research.
Keeney, Sinead; Hasson, Felicity; McKenna, Hugh
2006-01-01
The aim of this paper was to provide insight into the Delphi technique by outlining our personal experiences during its use over a 10-year period in a variety of applications. As a means of achieving consensus on an issue, the Delphi research method has become widely used in healthcare research generally and nursing research in particular. The literature on this technique is expanding, mainly addressing what it is and how it should be used. However, there is still much confusion and uncertainty surrounding it, particularly about issues such as modifications, consensus, anonymity, definition of experts, how 'experts' are selected and how non-respondents are pursued. This issues that arise when planning and carrying out a Delphi study include the definition of consensus; the issue of anonymity vs. quasi-anonymity for participants; how to estimate the time needed to collect the data, analyse each 'round', feed back results to participants, and gain their responses to this feedback; how to define and select the 'experts' who will be asked to participate; how to enhance response rates; and how many 'rounds' to conduct. Many challenges and questions are raised when using the Delphi technique, but there is no doubt that it is an important method for achieving consensus on issues where none previously existed. Researchers need to adapt the method to suit their particular study.
A two-phased fuzzy decision making procedure for IT supplier selection
NASA Astrophysics Data System (ADS)
Shohaimay, Fairuz; Ramli, Nazirah; Mohamed, Siti Rosiah; Mohd, Ainun Hafizah
2013-09-01
In many studies on fuzzy decision making, linguistic terms are usually represented by corresponding fixed triangular or trapezoidal fuzzy numbers. However, the fixed fuzzy numbers used in decision making process may not explain the actual respondents' opinions. Hence, a two-phased fuzzy decision making procedure is proposed. First, triangular fuzzy numbers were built based on respondents' opinions on the appropriate range (0-100) for each seven-scale linguistic terms. Then, the fuzzy numbers were integrated into fuzzy decision making model. The applicability of the proposed method is demonstrated in a case study of supplier selection in Information Technology (IT) department. The results produced via the developed fuzzy numbers were consistent with the results obtained using fixed fuzzy numbers. However, with different set of fuzzy numbers based on respondents, there is a difference in the ranking of suppliers based on criterion X1 (background of supplier). Hopefully the proposed model which incorporates fuzzy numbers based on respondents will provide a more significant meaning towards future decision making.
Fuzzy Markov random fields versus chains for multispectral image segmentation.
Salzenstein, Fabien; Collet, Christophe
2006-11-01
This paper deals with a comparison of recent statistical models based on fuzzy Markov random fields and chains for multispectral image segmentation. The fuzzy scheme takes into account discrete and continuous classes which model the imprecision of the hidden data. In this framework, we assume the dependence between bands and we express the general model for the covariance matrix. A fuzzy Markov chain model is developed in an unsupervised way. This method is compared with the fuzzy Markovian field model previously proposed by one of the authors. The segmentation task is processed with Bayesian tools, such as the well-known MPM (Mode of Posterior Marginals) criterion. Our goal is to compare the robustness and rapidity for both methods (fuzzy Markov fields versus fuzzy Markov chains). Indeed, such fuzzy-based procedures seem to be a good answer, e.g., for astronomical observations when the patterns present diffuse structures. Moreover, these approaches allow us to process missing data in one or several spectral bands which correspond to specific situations in astronomy. To validate both models, we perform and compare the segmentation on synthetic images and raw multispectral astronomical data.
Successful and Unsuccessful Multicultural Supervisory Behaviors: A Delphi Poll
ERIC Educational Resources Information Center
Dressel, Jeana L.; Consoli, Andres J.; Kim, Bryan S.K.; Atkinson, Donald R.
2007-01-01
Using the Delphi method, university counseling center supervisors with significant experience in multicultural supervision generated and ranked elements of successful and unsuccessful multicultural supervision. Twenty-seven of 35 successful elements and 24 of 33 unsuccessful elements involved cultural considerations. Multicultural supervision was…
Learning fuzzy information in a hybrid connectionist, symbolic model
NASA Technical Reports Server (NTRS)
Romaniuk, Steve G.; Hall, Lawrence O.
1993-01-01
An instance-based learning system is presented. SC-net is a fuzzy hybrid connectionist, symbolic learning system. It remembers some examples and makes groups of examples into exemplars. All real-valued attributes are represented as fuzzy sets. The network representation and learning method is described. To illustrate this approach to learning in fuzzy domains, an example of segmenting magnetic resonance images of the brain is discussed. Clearly, the boundaries between human tissues are ill-defined or fuzzy. Example fuzzy rules for recognition are generated. Segmentations are presented that provide results that radiologists find useful.
Improving land resource evaluation using fuzzy neural network ensembles
Xue, Yue-Ju; HU, Y.-M.; Liu, S.-G.; YANG, J.-F.; CHEN, Q.-C.; BAO, S.-T.
2007-01-01
Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource experts, and the evaluation results rely heavily on experts' experiences. In order to overcome the shortcoming, we presented a fuzzy neural network ensemble method that did not require grading the evaluation factors into categorical indexes and could evaluate land resources by using the three kinds of attribute values directly. A fuzzy back propagation neural network (BPNN), a fuzzy radial basis function neural network (RBFNN), a fuzzy BPNN ensemble, and a fuzzy RBFNN ensemble were used to evaluate the land resources in Guangdong Province. The evaluation results by using the fuzzy BPNN ensemble and the fuzzy RBFNN ensemble were much better than those by using the single fuzzy BPNN and the single fuzzy RBFNN, and the error rate of the single fuzzy RBFNN or fuzzy RBFNN ensemble was lower than that of the single fuzzy BPNN or fuzzy BPNN ensemble, respectively. By using the fuzzy neural network ensembles, the validity of land resource evaluation was improved and reliance on land evaluators' experiences was considerably reduced. ?? 2007 Soil Science Society of China.
NASA Astrophysics Data System (ADS)
Tan, J. K.; Abas, N.
2017-07-01
Complaints on issues and matters related to connection charges have been very common for electricity supply utility companies around the world including Sarawak Energy Berhad. In order to identify the areas that can be improved, a mixed method of exploratory research involving qualitative and quantitative methods have been designed and undertaken rather than a single method of survey. This will ensure a more comprehensive and detailed understanding of the issues from various target groups. The method is designed under three phases, employing Modified Delphi Technique for phase 1 through a series of stake holder engagements, online and offline survey questionnaires to be filled by internal wiring contractors for phase 2 whilst under phase 3, case studies shall be carried out on the issues identified from phase 1 and phase 2 of the study. This paper presented the findings from the Modified Delphi Technique. The findings revealed that there are areas of improvement for Sarawak Energy Berhad connection guidelines in term of differentiation of dedicated and shared assets which leads to unfairness to the connecting customers, inconsistency and non-transparent in charging. The findings of Modified Delphi Technique shall be used for implementation of phase 2 and phase 3 of the study.
Daykin, Norma; Mansfield, Louise; Payne, Annette; Kay, Tess; Meads, Catherine; D’Innocenzo, Giorgia; Burnett, Adele; Dolan, Paul; Julier, Guy; Longworth, Louise; Tomlinson, Alan; Testoni, Stefano; Victor, Christina
2016-01-01
Aims: There is a growing recognition of the ways in which culture and sport can contribute to wellbeing. A strong evidence base is needed to support innovative service development and a 3-year research programme is being undertaken to capture best evidence of wellbeing impacts and outcomes of cultural and sporting activities in order to inform UK policy and practice. This article provides an overview of methods and findings from an initial coproduction process with key stakeholders that sought to explore and agree principles and parameters of the evidence review for culture, sport and wellbeing (CSW). Methods: A two-stage DELPHI process was conducted with a purposeful sample of 57 stakeholders between August and December 2015. Participants were drawn from a range of culture and sport organisations and included commissioners and managers, policy makers, representatives of service delivery organisations (SDOs) and scholars. The DELPHI 1 questionnaire was developed from extensive consultation in July and August 2015. It explored definitions of wellbeing, the role of evidence, quality assessment, and the culture and sport populations, settings and interventions that are most likely to deliver wellbeing outcomes. Following further consultation, the results, presented as a series of ranked statements, were sent back to participants (DELPHI 2), which allowed them to reflect on and, if they wished, express agreement or disagreement with the emerging consensus. Results: A total of 40 stakeholders (70.02%) responded to the DELPHI questionnaires. DELPHI 1 mapped areas of agreement and disagreement, confirmed in DELPHI 2. The exercise drew together the key priorities for the CSW evidence review. Conclusion: The DELPHI process, in combination with face-to-face deliberation, enabled stakeholders to engage in complex discussion and express nuanced priorities while also allowing the group to come to an overall consensus and agree outcomes. The results will inform the CSW evidence review programme until its completion in March 2018. PMID:27789779
A dynamic fuzzy genetic algorithm for natural image segmentation using adaptive mean shift
NASA Astrophysics Data System (ADS)
Arfan Jaffar, M.
2017-01-01
In this paper, a colour image segmentation approach based on hybridisation of adaptive mean shift (AMS), fuzzy c-mean and genetic algorithms (GAs) is presented. Image segmentation is the perceptual faction of pixels based on some likeness measure. GA with fuzzy behaviour is adapted to maximise the fuzzy separation and minimise the global compactness among the clusters or segments in spatial fuzzy c-mean (sFCM). It adds diversity to the search process to find the global optima. A simple fusion method has been used to combine the clusters to overcome the problem of over segmentation. The results show that our technique outperforms state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Zhang, Nannan; Zhou, Kefa; Du, Xishihui
2017-04-01
Mineral prospectivity mapping (MPM) is a multi-step process that ranks promising target areas for further exploration. Fuzzy logic and fuzzy analytical hierarchy process (AHP) are knowledge-driven MPM approaches. In this study, both approaches were used for data processing, based on which MPM was performed for porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang. The results of the two methods were then compared. The two methods combined expert experience and the Studentized contrast (S(C)) values of the weights-of-evidence approach to calculate the weights of 15 layers, and these layers were then integrated by the gamma operator (γ). Through prediction-area (P-A) plot analysis, the optimal γ for fuzzy logic and fuzzy AHP was determined as 0.95 and 0.93, respectively. The thresholds corresponding to different levels of metallogenic probability were defined via concentration-area (C-A) fractal analysis. The prediction performances of the two methods were compared on this basis. The results showed that in MPM based on fuzzy logic, the area under the receiver operating characteristic (ROC) curve was 0.806 and 81.48% of the known deposits were predicted, whereas in MPM based on fuzzy AHP, the area under the ROC curve was 0.862 and 92.59% of the known deposits were predicted. Therefore, prediction based on fuzzy AHP is more accurate and can provide directions for future prospecting.
Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques.
Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh
2016-12-01
Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications.
An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream
Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.
2016-01-01
This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081
Land cover classification of Landsat 8 satellite data based on Fuzzy Logic approach
NASA Astrophysics Data System (ADS)
Taufik, Afirah; Sakinah Syed Ahmad, Sharifah
2016-06-01
The aim of this paper is to propose a method to classify the land covers of a satellite image based on fuzzy rule-based system approach. The study uses bands in Landsat 8 and other indices, such as Normalized Difference Water Index (NDWI), Normalized difference built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) as input for the fuzzy inference system. The selected three indices represent our main three classes called water, built- up land, and vegetation. The combination of the original multispectral bands and selected indices provide more information about the image. The parameter selection of fuzzy membership is performed by using a supervised method known as ANFIS (Adaptive neuro fuzzy inference system) training. The fuzzy system is tested for the classification on the land cover image that covers Klang Valley area. The results showed that the fuzzy system approach is effective and can be explored and implemented for other areas of Landsat data.
Segmentation method of eye region based on fuzzy logic system for classifying open and closed eyes
NASA Astrophysics Data System (ADS)
Kim, Ki Wan; Lee, Won Oh; Kim, Yeong Gon; Hong, Hyung Gil; Lee, Eui Chul; Park, Kang Ryoung
2015-03-01
The classification of eye openness and closure has been researched in various fields, e.g., driver drowsiness detection, physiological status analysis, and eye fatigue measurement. For a classification with high accuracy, accurate segmentation of the eye region is required. Most previous research used the segmentation method by image binarization on the basis that the eyeball is darker than skin, but the performance of this approach is frequently affected by thick eyelashes or shadows around the eye. Thus, we propose a fuzzy-based method for classifying eye openness and closure. First, the proposed method uses I and K color information from the HSI and CMYK color spaces, respectively, for eye segmentation. Second, the eye region is binarized using the fuzzy logic system based on I and K inputs, which is less affected by eyelashes and shadows around the eye. The combined image of I and K pixels is obtained through the fuzzy logic system. Third, in order to reflect the effect by all the inference values on calculating the output score of the fuzzy system, we use the revised weighted average method, where all the rectangular regions by all the inference values are considered for calculating the output score. Fourth, the classification of eye openness or closure is successfully made by the proposed fuzzy-based method with eye images of low resolution which are captured in the environment of people watching TV at a distance. By using the fuzzy logic system, our method does not require the additional procedure of training irrespective of the chosen database. Experimental results with two databases of eye images show that our method is superior to previous approaches.
Diamond, Ivan R; Grant, Robert C; Feldman, Brian M; Pencharz, Paul B; Ling, Simon C; Moore, Aideen M; Wales, Paul W
2014-04-01
To investigate how consensus is operationalized in Delphi studies and to explore the role of consensus in determining the results of these studies. Systematic review of a random sample of 100 English language Delphi studies, from two large multidisciplinary databases [ISI Web of Science (Thompson Reuters, New York, NY) and Scopus (Elsevier, Amsterdam, NL)], published between 2000 and 2009. About 98 of the Delphi studies purported to assess consensus, although a definition for consensus was only provided in 72 of the studies (64 a priori). The most common definition for consensus was percent agreement (25 studies), with 75% being the median threshold to define consensus. Although the authors concluded in 86 of the studies that consensus was achieved, consensus was only specified a priori (with a threshold value) in 42 of these studies. Achievement of consensus was related to the decision to stop the Delphi study in only 23 studies, with 70 studies terminating after a specified number of rounds. Although consensus generally is felt to be of primary importance to the Delphi process, definitions of consensus vary widely and are poorly reported. Improved criteria for reporting of methods of Delphi studies are required. Copyright © 2014 Elsevier Inc. All rights reserved.
Use of a Computer-Mediated Delphi Process to Validate a Mass Casualty Conceptual Model
CULLEY, JOAN M.
2012-01-01
Since the original work on the Delphi technique, multiple versions have been developed and used in research and industry; however, very little empirical research has been conducted that evaluates the efficacy of using online computer, Internet, and e-mail applications to facilitate a Delphi method that can be used to validate theoretical models. The purpose of this research was to develop computer, Internet, and e-mail applications to facilitate a modified Delphi technique through which experts provide validation for a proposed conceptual model that describes the information needs for a mass-casualty continuum of care. Extant literature and existing theoretical models provided the basis for model development. Two rounds of the Delphi process were needed to satisfy the criteria for consensus and/or stability related to the constructs, relationships, and indicators in the model. The majority of experts rated the online processes favorably (mean of 6.1 on a seven-point scale). Using online Internet and computer applications to facilitate a modified Delphi process offers much promise for future research involving model building or validation. The online Delphi process provided an effective methodology for identifying and describing the complex series of events and contextual factors that influence the way we respond to disasters. PMID:21076283
Use of a computer-mediated Delphi process to validate a mass casualty conceptual model.
Culley, Joan M
2011-05-01
Since the original work on the Delphi technique, multiple versions have been developed and used in research and industry; however, very little empirical research has been conducted that evaluates the efficacy of using online computer, Internet, and e-mail applications to facilitate a Delphi method that can be used to validate theoretical models. The purpose of this research was to develop computer, Internet, and e-mail applications to facilitate a modified Delphi technique through which experts provide validation for a proposed conceptual model that describes the information needs for a mass-casualty continuum of care. Extant literature and existing theoretical models provided the basis for model development. Two rounds of the Delphi process were needed to satisfy the criteria for consensus and/or stability related to the constructs, relationships, and indicators in the model. The majority of experts rated the online processes favorably (mean of 6.1 on a seven-point scale). Using online Internet and computer applications to facilitate a modified Delphi process offers much promise for future research involving model building or validation. The online Delphi process provided an effective methodology for identifying and describing the complex series of events and contextual factors that influence the way we respond to disasters.
ERIC Educational Resources Information Center
Lee, Yonghak
2009-01-01
The primary purpose of this study was to identify competencies needed by current human resource development (HRD) master's degree graduate students in Korea. The study used a quantitative method, the Delphi technique, in combination with a qualitative method consisting of a series of in-depth interviews. The Delphi technique was conducted using a…
ERIC Educational Resources Information Center
Ross, Henry H.; Edwards, Willie J.
2016-01-01
A Delphi method was used with a panel of 24 African American faculty employed at 43 predominantly white doctoral extensive universities to arrive at a group consensus on a list of concerns that African American faculty in general experienced or held. Using the Delphi method a panel of African American faculty initially worked from a list of eight…
The use of qualitative methods to inform Delphi surveys in core outcome set development.
Keeley, T; Williamson, P; Callery, P; Jones, L L; Mathers, J; Jones, J; Young, B; Calvert, M
2016-05-04
Core outcome sets (COS) help to minimise bias in trials and facilitate evidence synthesis. Delphi surveys are increasingly being used as part of a wider process to reach consensus about what outcomes should be included in a COS. Qualitative research can be used to inform the development of Delphi surveys. This is an advance in the field of COS development and one which is potentially valuable; however, little guidance exists for COS developers on how best to use qualitative methods and what the challenges are. This paper aims to provide early guidance on the potential role and contribution of qualitative research in this area. We hope the ideas we present will be challenged, critiqued and built upon by others exploring the role of qualitative research in COS development. This paper draws upon the experiences of using qualitative methods in the pre-Delphi stage of the development of three different COS. Using these studies as examples, we identify some of the ways that qualitative research might contribute to COS development, the challenges in using such methods and areas where future research is required. Qualitative research can help to identify what outcomes are important to stakeholders; facilitate understanding of why some outcomes may be more important than others, determine the scope of outcomes; identify appropriate language for use in the Delphi survey and inform comparisons between stakeholder data and other sources, such as systematic reviews. Developers need to consider a number of methodological points when using qualitative research: specifically, which stakeholders to involve, how to sample participants, which data collection methods are most appropriate, how to consider outcomes with stakeholders and how to analyse these data. A number of areas for future research are identified. Qualitative research has the potential to increase the research community's confidence in COS, although this will be dependent upon using rigorous and appropriate methodology. We have begun to identify some issues for COS developers to consider in using qualitative methods to inform the development of Delphi surveys in this article.
[Study on commercial specification of atractylodes based on Delphi method].
Wang, Hao; Chen, Li-Xiao; Huang, Lu-Qi; Zhang, Tian-Tian; Li, Ying; Zheng, Yu-Guang
2016-03-01
This research adopts "Delphi method" to evaluate atractylodes traditional traits and rank correlation. By using methods of mathematical statistics the relationship of the traditional identification indicators and atractylodes goods rank correlation was analyzed, It is found that the main characteristics affectingatractylodes commodity specifications and grades of main characters wereoil points of transaction,color of transaction,color of surface,grain of transaction,texture of transaction andspoilage. The study points out that the original "seventy-six kinds of medicinal materials commodity specification standards of atractylodes differentiate commodity specification" is not in conformity with the actual market situation, we need to formulate corresponding atractylodes medicinal products specifications and grades.This study combined with experimental results "Delphi method" and the market actual situation, proposed the new draft atractylodes commodity specifications and grades, as the new atractylodes commodity specifications and grades standards. It provides a reference and theoretical basis. Copyright© by the Chinese Pharmaceutical Association.
Luo, Yi; Zhang, Tao; Li, Xiao-song
2016-05-01
To explore the application of fuzzy time series model based on fuzzy c-means clustering in forecasting monthly incidence of Hepatitis E in mainland China. Apredictive model (fuzzy time series method based on fuzzy c-means clustering) was developed using Hepatitis E incidence data in mainland China between January 2004 and July 2014. The incidence datafrom August 2014 to November 2014 were used to test the fitness of the predictive model. The forecasting results were compared with those resulted from traditional fuzzy time series models. The fuzzy time series model based on fuzzy c-means clustering had 0.001 1 mean squared error (MSE) of fitting and 6.977 5 x 10⁻⁴ MSE of forecasting, compared with 0.0017 and 0.0014 from the traditional forecasting model. The results indicate that the fuzzy time series model based on fuzzy c-means clustering has a better performance in forecasting incidence of Hepatitis E.
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumidu Wijayasekara; Ondrej Linda; Milos Manic
Building Energy Management Systems (BEMSs) are essential components of modern buildings that utilize digital control technologies to minimize energy consumption while maintaining high levels of occupant comfort. However, BEMSs can only achieve these energy savings when properly tuned and controlled. Since indoor environment is dependent on uncertain criteria such as weather, occupancy, and thermal state, performance of BEMS can be sub-optimal at times. Unfortunately, the complexity of BEMS control mechanism, the large amount of data available and inter-relations between the data can make identifying these sub-optimal behaviors difficult. This paper proposes a novel Fuzzy Anomaly Detection and Linguistic Description (Fuzzy-ADLD)more » based method for improving the understandability of BEMS behavior for improved state-awareness. The presented method is composed of two main parts: 1) detection of anomalous BEMS behavior and 2) linguistic representation of BEMS behavior. The first part utilizes modified nearest neighbor clustering algorithm and fuzzy logic rule extraction technique to build a model of normal BEMS behavior. The second part of the presented method computes the most relevant linguistic description of the identified anomalies. The presented Fuzzy-ADLD method was applied to real-world BEMS system and compared against a traditional alarm based BEMS. In six different scenarios, the Fuzzy-ADLD method identified anomalous behavior either as fast as or faster (an hour or more), that the alarm based BEMS. In addition, the Fuzzy-ADLD method identified cases that were missed by the alarm based system, demonstrating potential for increased state-awareness of abnormal building behavior.« less
Juang, Chia-Feng; Hsu, Chia-Hung
2009-12-01
This paper proposes a new reinforcement-learning method using online rule generation and Q-value-aided ant colony optimization (ORGQACO) for fuzzy controller design. The fuzzy controller is based on an interval type-2 fuzzy system (IT2FS). The antecedent part in the designed IT2FS uses interval type-2 fuzzy sets to improve controller robustness to noise. There are initially no fuzzy rules in the IT2FS. The ORGQACO concurrently designs both the structure and parameters of an IT2FS. We propose an online interval type-2 rule generation method for the evolution of system structure and flexible partitioning of the input space. Consequent part parameters in an IT2FS are designed using Q -values and the reinforcement local-global ant colony optimization algorithm. This algorithm selects the consequent part from a set of candidate actions according to ant pheromone trails and Q-values, both of which are updated using reinforcement signals. The ORGQACO design method is applied to the following three control problems: 1) truck-backing control; 2) magnetic-levitation control; and 3) chaotic-system control. The ORGQACO is compared with other reinforcement-learning methods to verify its efficiency and effectiveness. Comparisons with type-1 fuzzy systems verify the noise robustness property of using an IT2FS.
Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith
2015-01-01
Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment.
Liu, Peide; Li, Dengfeng
2017-01-01
Muirhead mean (MM) is a well-known aggregation operator which can consider interrelationships among any number of arguments assigned by a variable vector. Besides, it is a universal operator since it can contain other general operators by assigning some special parameter values. However, the MM can only process the crisp numbers. Inspired by the MM' advantages, the aim of this paper is to extend MM to process the intuitionistic fuzzy numbers (IFNs) and then to solve the multi-attribute group decision making (MAGDM) problems. Firstly, we develop some intuitionistic fuzzy Muirhead mean (IFMM) operators by extending MM to intuitionistic fuzzy information. Then, we prove some properties and discuss some special cases with respect to the parameter vector. Moreover, we present two new methods to deal with MAGDM problems with the intuitionistic fuzzy information based on the proposed MM operators. Finally, we verify the validity and reliability of our methods by using an application example, and analyze the advantages of our methods by comparing with other existing methods.
Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI.
Kannan, S R; Ramathilagam, S; Devi, Pandiyarajan; Sathya, A
2012-02-01
Segmentation of medical images is a difficult and challenging problem due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. Many researchers have applied various techniques however fuzzy c-means (FCM) based algorithms is more effective compared to other methods. The objective of this work is to develop some robust fuzzy clustering segmentation systems for effective segmentation of DCE - breast MRI. This paper obtains the robust fuzzy clustering algorithms by incorporating kernel methods, penalty terms, tolerance of the neighborhood attraction, additional entropy term and fuzzy parameters. The initial centers are obtained using initialization algorithm to reduce the computation complexity and running time of proposed algorithms. Experimental works on breast images show that the proposed algorithms are effective to improve the similarity measurement, to handle large amount of noise, to have better results in dealing the data corrupted by noise, and other artifacts. The clustering results of proposed methods are validated using Silhouette Method.
Fuzzy observer-based control for maximum power-point tracking of a photovoltaic system
NASA Astrophysics Data System (ADS)
Allouche, M.; Dahech, K.; Chaabane, M.; Mehdi, D.
2018-04-01
This paper presents a novel fuzzy control design method for maximum power-point tracking (MPPT) via a Takagi and Sugeno (TS) fuzzy model-based approach. A knowledge-dynamic model of the PV system is first developed leading to a TS representation by a simple convex polytopic transformation. Then, based on this exact fuzzy representation, a H∞ observer-based fuzzy controller is proposed to achieve MPPT even when we consider varying climatic conditions. A specified TS reference model is designed to generate the optimum trajectory which must be tracked to ensure maximum power operation. The controller and observer gains are obtained in a one-step procedure by solving a set of linear matrix inequalities (LMIs). The proposed method has been compared with some classical MPPT techniques taking into account convergence speed and tracking accuracy. Finally, various simulation and experimental tests have been carried out to illustrate the effectiveness of the proposed TS fuzzy MPPT strategy.
Evaluation about the performance of E-government based on interval-valued intuitionistic fuzzy set.
Zhang, Shuai; Yu, Dejian; Wang, Yan; Zhang, Wenyu
2014-01-01
The evaluation is an important approach to promote the development of the E-Government. Since the rapid development of E-Government in the world, the E-Government performance evaluation has become a hot issue in the academia. In this paper, we develop a new evaluation method for the development of the E-Government based on the interval-valued intuitionistic fuzzy set which is a powerful technique in expressing the uncertainty of the real situation. First, we extend the geometric Heronian mean (GHM) operator to interval-valued intuitionistic fuzzy environment and proposed the interval-valued intuitionistic fuzzy GHM (IIFGHM) operator. Then, we investigate the relationships between the IIFGHM operator and some existing ones, such as generalized interval-valued intuitionistic fuzzy HM (GIIFHM) and interval-valued intuitionistic fuzzy weighted Bonferoni mean operator. Furthermore, we validate the effectiveness of the proposed method using a real case about the E-Government evaluation in Hangzhou City, China.
Breast mass segmentation in mammograms combining fuzzy c-means and active contours
NASA Astrophysics Data System (ADS)
Hmida, Marwa; Hamrouni, Kamel; Solaiman, Basel; Boussetta, Sana
2018-04-01
Segmentation of breast masses in mammograms is a challenging issue due to the nature of mammography and the characteristics of masses. In fact, mammographic images are poor in contrast and breast masses have various shapes and densities with fuzzy and ill-defined borders. In this paper, we propose a method based on a modified Chan-Vese active contour model for mass segmentation in mammograms. We conduct the experiment on mass Regions of Interest (ROI) extracted from the MIAS database. The proposed method consists of mainly three stages: Firstly, the ROI is preprocessed to enhance the contrast. Next, two fuzzy membership maps are generated from the preprocessed ROI based on fuzzy C-Means algorithm. These fuzzy membership maps are finally used to modify the energy of the Chan-Vese model and to perform the final segmentation. Experimental results indicate that the proposed method yields good mass segmentation results.
NASA Astrophysics Data System (ADS)
Xie, Songhua; Li, Dehua; Nie, Hui
2009-10-01
There are a large number of fuzzy concepts and fuzzy phenomena in traditional Chinese medicine, which have led to great difficulties for study of traditional Chinese medicine. In this paper, the mathematical methods are used to quantify fuzzy concepts of drugs and prescription. We put forward the process of innovation formulations and selection method in Chinese medicine based on the Possibility Construction Space Theory (PCST) and fuzzy pattern recognition. Experimental results show that the method of selecting medicines from a number of characteristics of traditional Chinese medicine is consistent with the basic theory of traditional Chinese medicine. The results also reflect the integrated effects of the innovation compound. Through the use of the innovation formulations system, we expect to provide software tools for developing new traditional Chinese medicine and to inspire traditional Chinese medicine researchers to develop novel drugs.
A Fuzzy Reasoning Design for Fault Detection and Diagnosis of a Computer-Controlled System
Ting, Y.; Lu, W.B.; Chen, C.H.; Wang, G.K.
2008-01-01
A Fuzzy Reasoning and Verification Petri Nets (FRVPNs) model is established for an error detection and diagnosis mechanism (EDDM) applied to a complex fault-tolerant PC-controlled system. The inference accuracy can be improved through the hierarchical design of a two-level fuzzy rule decision tree (FRDT) and a Petri nets (PNs) technique to transform the fuzzy rule into the FRVPNs model. Several simulation examples of the assumed failure events were carried out by using the FRVPNs and the Mamdani fuzzy method with MATLAB tools. The reasoning performance of the developed FRVPNs was verified by comparing the inference outcome to that of the Mamdani method. Both methods result in the same conclusions. Thus, the present study demonstratrates that the proposed FRVPNs model is able to achieve the purpose of reasoning, and furthermore, determining of the failure event of the monitored application program. PMID:19255619
Learning and tuning fuzzy logic controllers through reinforcements.
Berenji, H R; Khedkar, P
1992-01-01
A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Refining Linear Fuzzy Rules by Reinforcement Learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap S.; Malkani, Anil
1996-01-01
Linear fuzzy rules are increasingly being used in the development of fuzzy logic systems. Radial basis functions have also been used in the antecedents of the rules for clustering in product space which can automatically generate a set of linear fuzzy rules from an input/output data set. Manual methods are usually used in refining these rules. This paper presents a method for refining the parameters of these rules using reinforcement learning which can be applied in domains where supervised input-output data is not available and reinforcements are received only after a long sequence of actions. This is shown for a generalization of radial basis functions. The formation of fuzzy rules from data and their automatic refinement is an important step in closing the gap between the application of reinforcement learning methods in the domains where only some limited input-output data is available.
An improved advertising CTR prediction approach based on the fuzzy deep neural network
Gao, Shu; Li, Mingjiang
2018-01-01
Combining a deep neural network with fuzzy theory, this paper proposes an advertising click-through rate (CTR) prediction approach based on a fuzzy deep neural network (FDNN). In this approach, fuzzy Gaussian-Bernoulli restricted Boltzmann machine (FGBRBM) is first applied to input raw data from advertising datasets. Next, fuzzy restricted Boltzmann machine (FRBM) is used to construct the fuzzy deep belief network (FDBN) with the unsupervised method layer by layer. Finally, fuzzy logistic regression (FLR) is utilized for modeling the CTR. The experimental results show that the proposed FDNN model outperforms several baseline models in terms of both data representation capability and robustness in advertising click log datasets with noise. PMID:29727443
An improved advertising CTR prediction approach based on the fuzzy deep neural network.
Jiang, Zilong; Gao, Shu; Li, Mingjiang
2018-01-01
Combining a deep neural network with fuzzy theory, this paper proposes an advertising click-through rate (CTR) prediction approach based on a fuzzy deep neural network (FDNN). In this approach, fuzzy Gaussian-Bernoulli restricted Boltzmann machine (FGBRBM) is first applied to input raw data from advertising datasets. Next, fuzzy restricted Boltzmann machine (FRBM) is used to construct the fuzzy deep belief network (FDBN) with the unsupervised method layer by layer. Finally, fuzzy logistic regression (FLR) is utilized for modeling the CTR. The experimental results show that the proposed FDNN model outperforms several baseline models in terms of both data representation capability and robustness in advertising click log datasets with noise.
Fuzzy risk analysis of a modern γ-ray industrial irradiator.
Castiglia, F; Giardina, M
2011-06-01
Fuzzy fault tree analyses were used to investigate accident scenarios that involve radiological exposure to operators working in industrial γ-ray irradiation facilities. The HEART method, a first generation human reliability analysis method, was used to evaluate the probability of adverse human error in these analyses. This technique was modified on the basis of fuzzy set theory to more directly take into account the uncertainties in the error-promoting factors on which the methodology is based. Moreover, with regard to some identified accident scenarios, fuzzy radiological exposure risk, expressed in terms of potential annual death, was evaluated. The calculated fuzzy risks for the examined plant were determined to be well below the reference risk suggested by International Commission on Radiological Protection.
An architecture for designing fuzzy logic controllers using neural networks
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1991-01-01
Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.
Fuzzy mobile-robot positioning in intelligent spaces using wireless sensor networks.
Herrero, David; Martínez, Humberto
2011-01-01
This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using wireless sensor networks (WSNs). The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.
NASA Astrophysics Data System (ADS)
Zhao, Jingjing; Yu, Lean; Li, Lian
2017-05-01
There is often a great deal of complexity, fuzziness and uncertainties of the chemical contingency spills. In order to obtain the optimum emergency disposal technology schemes as soon as the chemical pollution accident occurs, the technique evaluation system was developed based on dynamic fuzzy GRA method, and the feasibility of the proposed methods has been tested by using a emergency phenol spill accidence occurred in highway.
A Comparison of Fuzzy Models in Similarity Assessment of Misregistered Area Class Maps
NASA Astrophysics Data System (ADS)
Brown, Scott
Spatial uncertainty refers to unknown error and vagueness in geographic data. It is relevant to land change and urban growth modelers, soil and biome scientists, geological surveyors and others, who must assess thematic maps for similarity, or categorical agreement. In this paper I build upon prior map comparison research, testing the effectiveness of similarity measures on misregistered data. Though several methods compare uncertain thematic maps, few methods have been tested on misregistration. My objective is to test five map comparison methods for sensitivity to misregistration, including sub-pixel errors in both position and rotation. Methods included four fuzzy categorical models: fuzzy kappa's model, fuzzy inference, cell aggregation, and the epsilon band. The fifth method used conventional crisp classification. I applied these methods to a case study map and simulated data in two sets: a test set with misregistration error, and a control set with equivalent uniform random error. For all five methods, I used raw accuracy or the kappa statistic to measure similarity. Rough-set epsilon bands report the most similarity increase in test maps relative to control data. Conversely, the fuzzy inference model reports a decrease in test map similarity.
Optimization Of Mean-Semivariance-Skewness Portfolio Selection Model In Fuzzy Random Environment
NASA Astrophysics Data System (ADS)
Chatterjee, Amitava; Bhattacharyya, Rupak; Mukherjee, Supratim; Kar, Samarjit
2010-10-01
The purpose of the paper is to construct a mean-semivariance-skewness portfolio selection model in fuzzy random environment. The objective is to maximize the skewness with predefined maximum risk tolerance and minimum expected return. Here the security returns in the objectives and constraints are assumed to be fuzzy random variables in nature and then the vagueness of the fuzzy random variables in the objectives and constraints are transformed into fuzzy variables which are similar to trapezoidal numbers. The newly formed fuzzy model is then converted into a deterministic optimization model. The feasibility and effectiveness of the proposed method is verified by numerical example extracted from Bombay Stock Exchange (BSE). The exact parameters of fuzzy membership function and probability density function are obtained through fuzzy random simulating the past dates.
A Z-number-based decision making procedure with ranking fuzzy numbers method
NASA Astrophysics Data System (ADS)
Mohamad, Daud; Shaharani, Saidatull Akma; Kamis, Nor Hanimah
2014-12-01
The theory of fuzzy set has been in the limelight of various applications in decision making problems due to its usefulness in portraying human perception and subjectivity. Generally, the evaluation in the decision making process is represented in the form of linguistic terms and the calculation is performed using fuzzy numbers. In 2011, Zadeh has extended this concept by presenting the idea of Z-number, a 2-tuple fuzzy numbers that describes the restriction and the reliability of the evaluation. The element of reliability in the evaluation is essential as it will affect the final result. Since this concept can still be considered as new, available methods that incorporate reliability for solving decision making problems is still scarce. In this paper, a decision making procedure based on Z-numbers is proposed. Due to the limitation of its basic properties, Z-numbers will be first transformed to fuzzy numbers for simpler calculations. A method of ranking fuzzy number is later used to prioritize the alternatives. A risk analysis problem is presented to illustrate the effectiveness of this proposed procedure.
Fuzzy Kernel k-Medoids algorithm for anomaly detection problems
NASA Astrophysics Data System (ADS)
Rustam, Z.; Talita, A. S.
2017-07-01
Intrusion Detection System (IDS) is an essential part of security systems to strengthen the security of information systems. IDS can be used to detect the abuse by intruders who try to get into the network system in order to access and utilize the available data sources in the system. There are two approaches of IDS, Misuse Detection and Anomaly Detection (behavior-based intrusion detection). Fuzzy clustering-based methods have been widely used to solve Anomaly Detection problems. Other than using fuzzy membership concept to determine the object to a cluster, other approaches as in combining fuzzy and possibilistic membership or feature-weighted based methods are also used. We propose Fuzzy Kernel k-Medoids that combining fuzzy and possibilistic membership as a powerful method to solve anomaly detection problem since on numerical experiment it is able to classify IDS benchmark data into five different classes simultaneously. We classify IDS benchmark data KDDCup'99 data set into five different classes simultaneously with the best performance was achieved by using 30 % of training data with clustering accuracy reached 90.28 percent.
Deng, Xinyang; Jiang, Wen
2017-09-12
Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model.
Deng, Xinyang
2017-01-01
Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model. PMID:28895905
NASA Astrophysics Data System (ADS)
Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.
2014-03-01
This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.
NASA Astrophysics Data System (ADS)
Kotani, Naoki; Taniguchi, Kenji
An efficient learning method using Fuzzy ART with Genetic Algorithm is proposed. The proposed method reduces the number of trials by using a policy acquired in other tasks because a reinforcement learning needs a lot of the number of trials until an agent acquires appropriate actions. Fuzzy ART is an incremental unsupervised learning algorithm in responce to arbitrary sequences of analog or binary input vectors. Our proposed method gives a policy by crossover or mutation when an agent observes unknown states. Selection controls the category proliferation problem of Fuzzy ART. The effectiveness of the proposed method was verified with the simulation of the reaching problem for the two-link robot arm. The proposed method achieves a reduction of both the number of trials and the number of states.
Systems of fuzzy equations in structural mechanics
NASA Astrophysics Data System (ADS)
Skalna, Iwona; Rama Rao, M. V.; Pownuk, Andrzej
2008-08-01
Systems of linear and nonlinear equations with fuzzy parameters are relevant to many practical problems arising in structure mechanics, electrical engineering, finance, economics and physics. In this paper three methods for solving such equations are discussed: method for outer interval solution of systems of linear equations depending linearly on interval parameters, fuzzy finite element method proposed by Rama Rao and sensitivity analysis method. The performance and advantages of presented methods are described with illustrative examples. Extended version of the present paper can be downloaded from the web page of the UTEP [I. Skalna, M.V. Rama Rao, A. Pownuk, Systems of fuzzy equations in structural mechanics, The University of Texas at El Paso, Department of Mathematical Sciences Research Reports Series,
Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle
Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.
2013-01-01
We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853
A Delphi-matrix approach to SEA and its application within the tourism sector in Taiwan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, N.-W.; Hsiao, T.-Y.; Yu, Y.-H.
Strategic Environmental Assessment (SEA) is a procedural tool and within the framework of SEA, several different types of analytical methods can be used in the assessment. However, the impact matrix used currently in Taiwan has some disadvantages. Hence, a Delphi-matrix approach to SEA is proposed here to improve the performance of Taiwan's SEA. This new approach is based on the impact matrix combination with indicators of sustainability, and then the Delphi method is employed to collect experts' opinions. In addition, the assessment of National Floriculture Park Plan and Taiwan Flora 2008 Program is taken as an example to examine thismore » new method. Although international exhibition is one of the important tourism (economic) activities, SEA is seldom about tourism sector. Finally, the Delphi-matrix approach to SEA for tourism development plan is established containing eight assessment topics and 26 corresponding categories. In summary, three major types of impacts: resources' usages, pollution emissions, and local cultures change are found. Resources' usages, such as water, electricity, and natural gas demand, are calculated on a per capita basis. Various forms of pollution resulting from this plan, such as air, water, soil, waste, and noise, are also identified.« less
Fuzzy Structures Analysis of Aircraft Panels in NASTRAN
NASA Technical Reports Server (NTRS)
Sparrow, Victor W.; Buehrle, Ralph D.
2001-01-01
This paper concerns an application of the fuzzy structures analysis (FSA) procedures of Soize to prototypical aerospace panels in MSC/NASTRAN, a large commercial finite element program. A brief introduction to the FSA procedures is first provided. The implementation of the FSA methods is then disclosed, and the method is validated by comparison to published results for the forced vibrations of a fuzzy beam. The results of the new implementation show excellent agreement to the benchmark results. The ongoing effort at NASA Langley and Penn State to apply these fuzzy structures analysis procedures to real aircraft panels is then described.
Computer Technology and Education: A Policy Delphi.
ERIC Educational Resources Information Center
Steier, Lloyd P.
Realizing the educational potential of computer technology largely depends on developing appropriate policies related to the technology. A Policy Delphi method was used to identify changes in education that are both probable and possible on account of the introduction of computers, and to explore potential patterns for arriving at a desired…
Identifying Dispositions That Matter: Reaching for Consensus Using a Delphi Study
ERIC Educational Resources Information Center
Bair, Mary Antony
2017-01-01
This article describes how one institution used the Delphi technique to identify and operationalize key professional dispositions to be addressed in its teacher education program. Participants included teacher educators, methods course instructors, and school administrators. Data collection occurred in three phases, with the results of each phase…
Using Delphi Methodology to Design Assessments of Teachers' Pedagogical Content Knowledge
ERIC Educational Resources Information Center
Manizade, Agida Gabil; Mason, Marguerite M.
2011-01-01
Descriptions of methodologies that can be used to create items for assessing teachers' "professionally situated" knowledge are lacking in mathematics education research literature. In this study, researchers described and used the Delphi method to design an instrument to measure teachers' pedagogical content knowledge. The instrument focused on a…
Assessment Leaders' Perspectives of Institutional Cultures of Assessment: A Delphi Study
ERIC Educational Resources Information Center
Fuller, Matthew; Henderson, Susan; Bustamante, Rebecca
2015-01-01
Institutional cultures of assessment are praised as beneficial to student learning. Yet, extant studies have not explored the theoretical foundations and pragmatic approaches to shaping cultures of assessment. The researchers used the Delphi method to explore 10 higher education assessment leaders' attitudes and theoretical perspectives regarding…
Single-Parent Nontraditional Students: Faculty Support within the Classroom Environment
ERIC Educational Resources Information Center
Allen-Drewry, Lisa M.
2017-01-01
Purpose: The purpose of this Delphi study was to explore single-parent nontraditional student experiences within nontraditional university classroom environments and to determine methods for providing better support within the classroom setting. Methodology: The Delphi technique was conducted through 3 survey rounds to explore ways professors and…
ERIC Educational Resources Information Center
Boyd, Barry L.
2003-01-01
A Delphi panel of 13 experts categorized 33 competencies for volunteer administration into 5 constructs: organizational leadership, systems leadership, organizational culture, personal skills, and management skills. Twelve barriers to acquiring competencies and 21 methods to address them were identified. (Contains 24 references.) (SK)
Use of the Delphi method for determining community growth goals inventory: the Nashville experience
Vishwa K. Varma
1977-01-01
The author discusses the growth-inducing pressures on Nashville, Tennessee, describes the application of the Delphi technique to develop an inventory of the community's growth goals, and suggests that the development of a list of community goals is a necessary first step toward growth management.
A Delphi Study and Initial Validation of Counselor Supervision Competencies
ERIC Educational Resources Information Center
Neuer Colburn, Anita A.; Grothaus, Tim; Hays, Danica G.; Milliken, Tammi
2016-01-01
The authors addressed the lack of supervision training standards for doctoral counseling graduates by developing and validating an initial list of supervision competencies. They used content analysis, Delphi polling, and content validity methods to generate a list, vetted by 2 different panels of supervision experts, of 33 competencies grouped…
A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System
Tang, Yongchuan; Zhou, Deyun
2016-01-01
In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method. PMID:27482707
A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System.
Tang, Yongchuan; Zhou, Deyun; Jiang, Wen
2016-01-01
In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method.
HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.
Kim, J; Kasabov, N
1999-11-01
This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.
NASA Astrophysics Data System (ADS)
Najafi, Ali; Karimpour, Mohammad Hassan; Ghaderi, Majid
2014-12-01
Using fuzzy analytical hierarchy process (AHP) technique, we propose a method for mineral prospectivity mapping (MPM) which is commonly used for exploration of mineral deposits. The fuzzy AHP is a popular technique which has been applied for multi-criteria decision-making (MCDM) problems. In this paper we used fuzzy AHP and geospatial information system (GIS) to generate prospectivity model for Iron Oxide Copper-Gold (IOCG) mineralization on the basis of its conceptual model and geo-evidence layers derived from geological, geochemical, and geophysical data in Taherabad area, eastern Iran. The FuzzyAHP was used to determine the weights belonging to each criterion. Three geoscientists knowledge on exploration of IOCG-type mineralization have been applied to assign weights to evidence layers in fuzzy AHP MPM approach. After assigning normalized weights to all evidential layers, fuzzy operator was applied to integrate weighted evidence layers. Finally for evaluating the ability of the applied approach to delineate reliable target areas, locations of known mineral deposits in the study area were used. The results demonstrate the acceptable outcomes for IOCG exploration.
Chen, Liang-Hsuan; Hsueh, Chan-Ching
2007-06-01
Fuzzy regression models are useful to investigate the relationship between explanatory and response variables with fuzzy observations. Different from previous studies, this correspondence proposes a mathematical programming method to construct a fuzzy regression model based on a distance criterion. The objective of the mathematical programming is to minimize the sum of distances between the estimated and observed responses on the X axis, such that the fuzzy regression model constructed has the minimal total estimation error in distance. Only several alpha-cuts of fuzzy observations are needed as inputs to the mathematical programming model; therefore, the applications are not restricted to triangular fuzzy numbers. Three examples, adopted in the previous studies, and a larger example, modified from the crisp case, are used to illustrate the performance of the proposed approach. The results indicate that the proposed model has better performance than those in the previous studies based on either distance criterion or Kim and Bishu's criterion. In addition, the efficiency and effectiveness for solving the larger example by the proposed model are also satisfactory.
Tang, Ming; Liao, Huchang; Li, Zongmin; Xu, Zeshui
2018-04-13
Because the natural disaster system is a very comprehensive and large system, the disaster reduction scheme must rely on risk analysis. Experts' knowledge and experiences play a critical role in disaster risk assessment. The hesitant fuzzy linguistic preference relation is an effective tool to express experts' preference information when comparing pairwise alternatives. Owing to the lack of knowledge or a heavy workload, information may be missed in the hesitant fuzzy linguistic preference relation. Thus, an incomplete hesitant fuzzy linguistic preference relation is constructed. In this paper, we firstly discuss some properties of the additive consistent hesitant fuzzy linguistic preference relation. Next, the incomplete hesitant fuzzy linguistic preference relation, the normalized hesitant fuzzy linguistic preference relation, and the acceptable hesitant fuzzy linguistic preference relation are defined. Afterwards, three procedures to estimate the missing information are proposed. The first one deals with the situation in which there are only n-1 known judgments involving all the alternatives; the second one is used to estimate the missing information of the hesitant fuzzy linguistic preference relation with more known judgments; while the third procedure is used to deal with ignorance situations in which there is at least one alternative with totally missing information. Furthermore, an algorithm for group decision making with incomplete hesitant fuzzy linguistic preference relations is given. Finally, we illustrate our model with a case study about flood disaster risk evaluation. A comparative analysis is presented to testify the advantage of our method.
Wang, Yan; Xi, Chengyu; Zhang, Shuai; Yu, Dejian; Zhang, Wenyu; Li, Yong
2014-01-01
The recent government tendering process being conducted in an electronic way is becoming an inevitable affair for numerous governmental agencies to further exploit the superiorities of conventional tendering. Thus, developing an effective web-based bid evaluation methodology so as to realize an efficient and effective government E-tendering (GeT) system is imperative. This paper firstly investigates the potentiality of employing fuzzy analytic hierarchy process (AHP) along with fuzzy gray relational analysis (GRA) for optimal selection of candidate tenderers in GeT process with consideration of a hybrid fuzzy environment with incomplete weight information. We proposed a novel hybrid fuzzy AHP-GRA (HFAHP-GRA) method that combines an extended fuzzy AHP with a modified fuzzy GRA. The extended fuzzy AHP which combines typical AHP with interval AHP is proposed to obtain the exact weight information, and the modified fuzzy GRA is applied to aggregate different types of evaluation information so as to identify the optimal candidate tenderers. Finally, a prototype system is built and validated with an illustrative example for GeT to confirm the feasibility of our approach. PMID:25057506
Wang, Yan; Xi, Chengyu; Zhang, Shuai; Yu, Dejian; Zhang, Wenyu; Li, Yong
2014-01-01
The recent government tendering process being conducted in an electronic way is becoming an inevitable affair for numerous governmental agencies to further exploit the superiorities of conventional tendering. Thus, developing an effective web-based bid evaluation methodology so as to realize an efficient and effective government E-tendering (GeT) system is imperative. This paper firstly investigates the potentiality of employing fuzzy analytic hierarchy process (AHP) along with fuzzy gray relational analysis (GRA) for optimal selection of candidate tenderers in GeT process with consideration of a hybrid fuzzy environment with incomplete weight information. We proposed a novel hybrid fuzzy AHP-GRA (HFAHP-GRA) method that combines an extended fuzzy AHP with a modified fuzzy GRA. The extended fuzzy AHP which combines typical AHP with interval AHP is proposed to obtain the exact weight information, and the modified fuzzy GRA is applied to aggregate different types of evaluation information so as to identify the optimal candidate tenderers. Finally, a prototype system is built and validated with an illustrative example for GeT to confirm the feasibility of our approach.
Health state evaluation of shield tunnel SHM using fuzzy cluster method
NASA Astrophysics Data System (ADS)
Zhou, Fa; Zhang, Wei; Sun, Ke; Shi, Bin
2015-04-01
Shield tunnel SHM is in the path of rapid development currently while massive monitoring data processing and quantitative health grading remain a real challenge, since multiple sensors belonging to different types are employed in SHM system. This paper addressed the fuzzy cluster method based on fuzzy equivalence relationship for the health evaluation of shield tunnel SHM. The method was optimized by exporting the FSV map to automatically generate the threshold value. A new holistic health score(HHS) was proposed and its effectiveness was validated by conducting a pilot test. A case study on Nanjing Yangtze River Tunnel was presented to apply this method. Three types of indicators, namely soil pressure, pore pressure and steel strain, were used to develop the evaluation set U. The clustering results were verified by analyzing the engineering geological conditions; the applicability and validity of the proposed method was also demonstrated. Besides, the advantage of multi-factor evaluation over single-factor model was discussed by using the proposed HHS. This investigation indicated the fuzzy cluster method and HHS is capable of characterizing the fuzziness of tunnel health, and it is beneficial to clarify the tunnel health evaluation uncertainties.
Chung, Eun-Sung; Kim, Yeonjoo
2014-12-15
This study proposed a robust prioritization framework to identify the priorities of treated wastewater (TWW) use locations with consideration of various uncertainties inherent in the climate change scenarios and the decision-making process. First, a fuzzy concept was applied because future forecast precipitation and their hydrological impact analysis results displayed significant variances when considering various climate change scenarios and long periods (e.g., 2010-2099). Second, various multi-criteria decision making (MCDM) techniques including weighted sum method (WSM), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and fuzzy TOPSIS were introduced to robust prioritization because different MCDM methods use different decision philosophies. Third, decision making method under complete uncertainty (DMCU) including maximin, maximax, minimax regret, Hurwicz, and equal likelihood were used to find robust final rankings. This framework is then applied to a Korean urban watershed. As a result, different rankings were obviously appeared between fuzzy TOPSIS and non-fuzzy MCDMs (e.g., WSM and TOPSIS) because the inter-annual variability in effectiveness was considered only with fuzzy TOPSIS. Then, robust prioritizations were derived based on 18 rankings from nine decadal periods of RCP4.5 and RCP8.5. For more robust rankings, five DMCU approaches using the rankings from fuzzy TOPSIS were derived. This framework combining fuzzy TOPSIS with DMCU approaches can be rendered less controversial among stakeholders under complete uncertainty of changing environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fuzzy object models for newborn brain MR image segmentation
NASA Astrophysics Data System (ADS)
Kobashi, Syoji; Udupa, Jayaram K.
2013-03-01
Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.
NASA Astrophysics Data System (ADS)
Swanson, Steven Roy
The objective of the dissertation is to improve state estimation performance, as compared to a Kalman filter, when non-constant, or changing, biases exist in the measurement data. The state estimation performance increase will come from the use of a fuzzy model to determine the position and velocity gains of a state estimator. A method is proposed for incorporating heuristic knowledge into a state estimator through the use of a fuzzy model. This method consists of using a fuzzy model to determine the gains of the state estimator, converting the heuristic knowledge into the fuzzy model, and then optimizing the fuzzy model with a genetic algorithm. This method is applied to the problem of state estimation of a cascaded global positioning system (GPS)/inertial reference unit (IRU) navigation system. The GPS position data contains two major sources for position bias. The first bias is due to satellite errors and the second is due to the time delay or lag from when the GPS position is calculated until it is used in the state estimator. When a change in the bias of the measurement data occurs, a state estimator will converge on the new measurement data solution. This will introduce errors into a Kalman filter's estimated state velocities, which in turn will cause a position overshoot as it converges. By using a fuzzy model to determine the gains of a state estimator, the velocity errors and their associated deficiencies can be reduced.
NASA Astrophysics Data System (ADS)
Zheng, Jinde; Pan, Haiyang; Cheng, Junsheng
2017-02-01
To timely detect the incipient failure of rolling bearing and find out the accurate fault location, a novel rolling bearing fault diagnosis method is proposed based on the composite multiscale fuzzy entropy (CMFE) and ensemble support vector machines (ESVMs). Fuzzy entropy (FuzzyEn), as an improvement of sample entropy (SampEn), is a new nonlinear method for measuring the complexity of time series. Since FuzzyEn (or SampEn) in single scale can not reflect the complexity effectively, multiscale fuzzy entropy (MFE) is developed by defining the FuzzyEns of coarse-grained time series, which represents the system dynamics in different scales. However, the MFE values will be affected by the data length, especially when the data are not long enough. By combining information of multiple coarse-grained time series in the same scale, the CMFE algorithm is proposed in this paper to enhance MFE, as well as FuzzyEn. Compared with MFE, with the increasing of scale factor, CMFE obtains much more stable and consistent values for a short-term time series. In this paper CMFE is employed to measure the complexity of vibration signals of rolling bearings and is applied to extract the nonlinear features hidden in the vibration signals. Also the physically meanings of CMFE being suitable for rolling bearing fault diagnosis are explored. Based on these, to fulfill an automatic fault diagnosis, the ensemble SVMs based multi-classifier is constructed for the intelligent classification of fault features. Finally, the proposed fault diagnosis method of rolling bearing is applied to experimental data analysis and the results indicate that the proposed method could effectively distinguish different fault categories and severities of rolling bearings.
Design of sewage treatment system by applying fuzzy adaptive PID controller
NASA Astrophysics Data System (ADS)
Jin, Liang-Ping; Li, Hong-Chan
2013-03-01
In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.
Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith
2015-01-01
Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment. PMID:26368541
NASA Astrophysics Data System (ADS)
Wu, Bing-Fei; Ma, Li-Shan; Perng, Jau-Woei
This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.
Estimation of power lithium-ion battery SOC based on fuzzy optimal decision
NASA Astrophysics Data System (ADS)
He, Dongmei; Hou, Enguang; Qiao, Xin; Liu, Guangmin
2018-06-01
In order to improve vehicle performance and safety, need to accurately estimate the power lithium battery state of charge (SOC), analyzing the common SOC estimation methods, according to the characteristics open circuit voltage and Kalman filter algorithm, using T - S fuzzy model, established a lithium battery SOC estimation method based on the fuzzy optimal decision. Simulation results show that the battery model accuracy can be improved.
Jünger, Saskia; Payne, Sheila A; Brine, Jenny; Radbruch, Lukas; Brearley, Sarah G
2017-09-01
The Delphi technique is widely used for the development of guidance in palliative care, having impact on decisions with relevance for patient care. To systematically examine the application of the Delphi technique for the development of best practice guidelines in palliative care. A methodological systematic review was undertaken using the databases PubMed, CINAHL, Web of Science, Academic Search Complete and EMBASE. Original articles (English language) were included when reporting on empirical studies that had used the Delphi technique to develop guidance for good clinical practice in palliative care. Data extraction included a quality appraisal on the rigour in conduct of the studies and the quality of reporting. A total of 30 empirical studies (1997-2015) were considered for full-text analysis. Considerable differences were identified regarding the rigour of the design and the reporting of essential process and outcome parameters. Furthermore, discrepancies regarding the use of terms for describing the method were observed, for example, concerning the understanding of a 'round' or a 'modified Delphi study'. Substantial variation was found concerning the quality of the study conduct and the transparency of reporting of Delphi studies used for the development of best practice guidance in palliative care. Since credibility of the resulting recommendations depends on the rigorous use of the Delphi technique, there is a need for consistency and quality both in the conduct and reporting of studies. To allow a critical appraisal of the methodology and the resulting guidance, a reporting standard for Conducting and REporting of DElphi Studies (CREDES) is proposed.
2015-12-17
healthcare management and have not focused on assessing leadership among student physicians. A systematic review of 80 Delphi method studies by...medical students ( Research Question 1), to create a leadership assessment instrument based on those important components ( Research Question 2), and... research question 2 (RQ2) saw the creation of a three page assessment instrument to assess medical leadership in student physicians. Based on critical
Cutting Force Predication Based on Integration of Symmetric Fuzzy Number and Finite Element Method
Wang, Zhanli; Hu, Yanjuan; Wang, Yao; Dong, Chao; Pang, Zaixiang
2014-01-01
In the process of turning, pointing at the uncertain phenomenon of cutting which is caused by the disturbance of random factors, for determining the uncertain scope of cutting force, the integrated symmetric fuzzy number and the finite element method (FEM) are used in the prediction of cutting force. The method used symmetric fuzzy number to establish fuzzy function between cutting force and three factors and obtained the uncertain interval of cutting force by linear programming. At the same time, the change curve of cutting force with time was directly simulated by using thermal-mechanical coupling FEM; also the nonuniform stress field and temperature distribution of workpiece, tool, and chip under the action of thermal-mechanical coupling were simulated. The experimental result shows that the method is effective for the uncertain prediction of cutting force. PMID:24790556
QoE collaborative evaluation method based on fuzzy clustering heuristic algorithm.
Bao, Ying; Lei, Weimin; Zhang, Wei; Zhan, Yuzhuo
2016-01-01
At present, to realize or improve the quality of experience (QoE) is a major goal for network media transmission service, and QoE evaluation is the basis for adjusting the transmission control mechanism. Therefore, a kind of QoE collaborative evaluation method based on fuzzy clustering heuristic algorithm is proposed in this paper, which is concentrated on service score calculation at the server side. The server side collects network transmission quality of service (QoS) parameter, node location data, and user expectation value from client feedback information. Then it manages the historical data in database through the "big data" process mode, and predicts user score according to heuristic rules. On this basis, it completes fuzzy clustering analysis, and generates service QoE score and management message, which will be finally fed back to clients. Besides, this paper mainly discussed service evaluation generative rules, heuristic evaluation rules and fuzzy clustering analysis methods, and presents service-based QoE evaluation processes. The simulation experiments have verified the effectiveness of QoE collaborative evaluation method based on fuzzy clustering heuristic rules.
A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield
NASA Astrophysics Data System (ADS)
Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan
2018-04-01
In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.
A Fuzzy Computing Model for Identifying Polarity of Chinese Sentiment Words
Huang, Yongfeng; Wu, Xian; Li, Xing
2015-01-01
With the spurt of online user-generated contents on web, sentiment analysis has become a very active research issue in data mining and natural language processing. As the most important indicator of sentiment, sentiment words which convey positive and negative polarity are quite instrumental for sentiment analysis. However, most of the existing methods for identifying polarity of sentiment words only consider the positive and negative polarity by the Cantor set, and no attention is paid to the fuzziness of the polarity intensity of sentiment words. In order to improve the performance, we propose a fuzzy computing model to identify the polarity of Chinese sentiment words in this paper. There are three major contributions in this paper. Firstly, we propose a method to compute polarity intensity of sentiment morphemes and sentiment words. Secondly, we construct a fuzzy sentiment classifier and propose two different methods to compute the parameter of the fuzzy classifier. Thirdly, we conduct extensive experiments on four sentiment words datasets and three review datasets, and the experimental results indicate that our model performs better than the state-of-the-art methods. PMID:26106409
Determination System Of Food Vouchers For the Poor Based On Fuzzy C-Means Method
NASA Astrophysics Data System (ADS)
Anamisa, D. R.; Yusuf, M.; Syakur, M. A.
2018-01-01
Food vouchers are government programs to tackle the poverty of rural communities. This program aims to help the poor group in getting enough food and nutrients from carbohydrates. There are several factors that influence to receive the food voucher, such as: job, monthly income, Taxes, electricity bill, size of house, number of family member, education certificate and amount of rice consumption every week. In the execution for the distribution of vouchers is often a lot of problems, such as: the distribution of food vouchers has been misdirected and someone who receives is still subjective. Some of the solutions to decision making have not been done. The research aims to calculating the change of each partition matrix and each cluster using Fuzzy C-Means method. Hopefully this research makes contribution by providing higher result using Fuzzy C-Means comparing to other method for this case study. In this research, decision making is done by using Fuzzy C-Means method. The Fuzzy C-Means method is a clustering method that has an organized and scattered cluster structure with regular patterns on two-dimensional datasets. Furthermore, Fuzzy C-Means method used for calculates the change of each partition matrix. Each cluster will be sorted by the proximity of the data element to the centroid of the cluster to get the ranking. Various trials were conducted for grouping and ranking of proposed data that received food vouchers based on the quota of each village. This testing by Fuzzy C-Means method, is developed and abled for determining the recipient of the food voucher with satisfaction results. Fulfillment of the recipient of the food voucher is 80% to 90% and this testing using data of 115 Family Card from 6 Villages. The quality of success affected, has been using the number of iteration factors is 20 and the number of clusters is 3
Future Directions for Business Education: A Delphi Study
ERIC Educational Resources Information Center
Kesten, Cyril A.; Lambrecht, Judith J.
2010-01-01
Purpose: The purpose of this study was to synthesize perceptions from the field about current issues and to propose future directions for the field of business education. Method: A modified three-stage Delphi study was carried out with business educators who attended national conferences and/or belonged to national professional organizations.…
Helping Competencies of Student Affairs Professionals: A Delphi Study
ERIC Educational Resources Information Center
Reynolds, Amy L.
2011-01-01
The purpose of this study was to gather student affairs professionals' perceptions of the knowledge and skills needed to effectively help students. Using the Delphi method, 159 entry-level and mid-level student affairs administrators from institutions across the United States were surveyed regarding their perceptions of the helping skills they use…
ERIC Educational Resources Information Center
Manley, R. Adam
2013-01-01
This article highlights a rarely utilized but effective technique for identifying intended and unintended consequences of past or current policy or policy change. The author guides the reader through the process of identifying potential participants, contacting participants, developing the policy Delphi instrument, and analyzing the findings by…
ERIC Educational Resources Information Center
Santos Román, Leslie M.; Estrada-Hernández, Noel
2017-01-01
Purpose: To explore and identify attitudes, knowledge, and skills rehabilitation practitioners in the private sector need when working with Hispanic/Latino immigrant injured workers. Methods: This study employed a 3-round Delphi study to obtain a consensus of 8 rehabilitation practitioners who had experience and expertise working with…
The Stammering Information Programme: A Delphi Study
ERIC Educational Resources Information Center
Berquez, Ali E.; Cook, Frances M.; Millard, Sharon K.; Jarvis, Effie
2011-01-01
Purpose: To find out what information children, parents and education staff feel would be important to know to support a child who stutters in the educational environment, in order to develop appropriate resources. Method: A Delphi study was carried out to seek the opinions of experts about the information to include. A structured six stage…
a New Model for Fuzzy Personalized Route Planning Using Fuzzy Linguistic Preference Relation
NASA Astrophysics Data System (ADS)
Nadi, S.; Houshyaripour, A. H.
2017-09-01
This paper proposes a new model for personalized route planning under uncertain condition. Personalized routing, involves different sources of uncertainty. These uncertainties can be raised from user's ambiguity about their preferences, imprecise criteria values and modelling process. The proposed model uses Fuzzy Linguistic Preference Relation Analytical Hierarchical Process (FLPRAHP) to analyse user's preferences under uncertainty. Routing is a multi-criteria task especially in transportation networks, where the users wish to optimize their routes based on different criteria. However, due to the lake of knowledge about the preferences of different users and uncertainties available in the criteria values, we propose a new personalized fuzzy routing method based on the fuzzy ranking using center of gravity. The model employed FLPRAHP method to aggregate uncertain criteria values regarding uncertain user's preferences while improve consistency with least possible comparisons. An illustrative example presents the effectiveness and capability of the proposed model to calculate best personalize route under fuzziness and uncertainty.
Evaluation about the Performance of E-Government Based on Interval-Valued Intuitionistic Fuzzy Set
Zhang, Shuai; Wang, Yan
2014-01-01
The evaluation is an important approach to promote the development of the E-Government. Since the rapid development of E-Government in the world, the E-Government performance evaluation has become a hot issue in the academia. In this paper, we develop a new evaluation method for the development of the E-Government based on the interval-valued intuitionistic fuzzy set which is a powerful technique in expressing the uncertainty of the real situation. First, we extend the geometric Heronian mean (GHM) operator to interval-valued intuitionistic fuzzy environment and proposed the interval-valued intuitionistic fuzzy GHM (IIFGHM) operator. Then, we investigate the relationships between the IIFGHM operator and some existing ones, such as generalized interval-valued intuitionistic fuzzy HM (GIIFHM) and interval-valued intuitionistic fuzzy weighted Bonferoni mean operator. Furthermore, we validate the effectiveness of the proposed method using a real case about the E-Government evaluation in Hangzhou City, China. PMID:24707196
The weakest t-norm based intuitionistic fuzzy fault-tree analysis to evaluate system reliability.
Kumar, Mohit; Yadav, Shiv Prasad
2012-07-01
In this paper, a new approach of intuitionistic fuzzy fault-tree analysis is proposed to evaluate system reliability and to find the most critical system component that affects the system reliability. Here weakest t-norm based intuitionistic fuzzy fault tree analysis is presented to calculate fault interval of system components from integrating expert's knowledge and experience in terms of providing the possibility of failure of bottom events. It applies fault-tree analysis, α-cut of intuitionistic fuzzy set and T(ω) (the weakest t-norm) based arithmetic operations on triangular intuitionistic fuzzy sets to obtain fault interval and reliability interval of the system. This paper also modifies Tanaka et al.'s fuzzy fault-tree definition. In numerical verification, a malfunction of weapon system "automatic gun" is presented as a numerical example. The result of the proposed method is compared with the listing approaches of reliability analysis methods. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Multi-objective decision-making under uncertainty: Fuzzy logic methods
NASA Technical Reports Server (NTRS)
Hardy, Terry L.
1994-01-01
Selecting the best option among alternatives is often a difficult process. This process becomes even more difficult when the evaluation criteria are vague or qualitative, and when the objectives vary in importance and scope. Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities.
Revenue Risk Modelling and Assessment on BOT Highway Project
NASA Astrophysics Data System (ADS)
Novianti, T.; Setyawan, H. Y.
2018-01-01
The infrastructure project which is considered as a public-private partnership approach under BOT (Build-Operate-Transfer) arrangement, such as a highway, is risky. Therefore, assessment on risk factors is essential as the project have a concession period and is influenced by macroeconomic factors and consensus period. In this study, pre-construction risks of a highway were examined by using a Delphi method to create a space for offline expert discussions; a fault tree analysis to map intuition of experts and to create a model from the underlying risk events; a fuzzy logic to interpret the linguistic data of risk models. The loss of revenue for risk tariff, traffic volume, force majeure, and income were then measured. The results showed that the loss of revenue caused by the risk tariff was 10.5% of the normal total revenue. The loss of revenue caused by the risk of traffic volume was 21.0% of total revenue. The loss of revenue caused by the force majeure was 12.2% of the normal income. The loss of income caused by the non-revenue events was 6.9% of the normal revenue. It was also found that the volume of traffic was the major risk of a highway project because it related to customer preferences.
Fuzzy MCDM Technique for Planning the Environment Watershed
NASA Astrophysics Data System (ADS)
Chen, Yi-Chun; Lien, Hui-Pang; Tzeng, Gwo-Hshiung; Yang, Lung-Shih; Yen, Leon
In the real word, the decision making problems are very vague and uncertain in a number of ways. The most criteria have interdependent and interactive features so they cannot be evaluated by conventional measures method. Such as the feasibility, thus, to approximate the human subjective evaluation process, it would be more suitable to apply a fuzzy method in environment-watershed plan topic. This paper describes the design of a fuzzy decision support system in multi-criteria analysis approach for selecting the best plan alternatives or strategies in environmentwatershed. The Fuzzy Analytic Hierarchy Process (FAHP) method is used to determine the preference weightings of criteria for decision makers by subjective perception. A questionnaire was used to find out from three related groups comprising fifteen experts. Subjectivity and vagueness analysis is dealt with the criteria and alternatives for selection process and simulation results by using fuzzy numbers with linguistic terms. Incorporated the decision makers’ attitude towards preference, overall performance value of each alternative can be obtained based on the concept of Fuzzy Multiple Criteria Decision Making (FMCDM). This research also gives an example of evaluating consisting of five alternatives, solicited from a environmentwatershed plan works in Taiwan, is illustrated to demonstrate the effectiveness and usefulness of the proposed approach.
Gene regulatory network identification from the yeast cell cycle based on a neuro-fuzzy system.
Wang, B H; Lim, J W; Lim, J S
2016-08-30
Many studies exist for reconstructing gene regulatory networks (GRNs). In this paper, we propose a method based on an advanced neuro-fuzzy system, for gene regulatory network reconstruction from microarray time-series data. This approach uses a neural network with a weighted fuzzy function to model the relationships between genes. Fuzzy rules, which determine the regulators of genes, are very simplified through this method. Additionally, a regulator selection procedure is proposed, which extracts the exact dynamic relationship between genes, using the information obtained from the weighted fuzzy function. Time-series related features are extracted from the original data to employ the characteristics of temporal data that are useful for accurate GRN reconstruction. The microarray dataset of the yeast cell cycle was used for our study. We measured the mean squared prediction error for the efficiency of the proposed approach and evaluated the accuracy in terms of precision, sensitivity, and F-score. The proposed method outperformed the other existing approaches.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions
NASA Astrophysics Data System (ADS)
Tsaur, Ruey-Chyn
2015-02-01
In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.
NASA Astrophysics Data System (ADS)
Malekmohammadi, Bahram; Ramezani Mehrian, Majid; Jafari, Hamid Reza
2012-11-01
One of the most important water-resources management strategies for arid lands is managed aquifer recharge (MAR). In establishing a MAR scheme, site selection is the prime prerequisite that can be assisted by geographic information system (GIS) tools. One of the most important uncertainties in the site-selection process using GIS is finite ranges or intervals resulting from data classification. In order to reduce these uncertainties, a novel method has been developed involving the integration of multi-criteria decision making (MCDM), GIS, and a fuzzy inference system (FIS). The Shemil-Ashkara plain in the Hormozgan Province of Iran was selected as the case study; slope, geology, groundwater depth, potential for runoff, land use, and groundwater electrical conductivity have been considered as site-selection factors. By defining fuzzy membership functions for the input layers and the output layer, and by constructing fuzzy rules, a FIS has been developed. Comparison of the results produced by the proposed method and the traditional simple additive weighted (SAW) method shows that the proposed method yields more precise results. In conclusion, fuzzy-set theory can be an effective method to overcome associated uncertainties in classification of geographic information data.
Balki, Mrinalini; Hoppe, David; Monks, David; Cooke, Mary Ellen; Sharples, Lynn; Windrim, Rory
2017-06-01
The objective of this study was to develop a new interdisciplinary teamwork scale, the Perinatal Emergency: Team Response Assessment (PETRA), for the management of obstetric crises, through consensus agreement of obstetric caregivers. This prospective study was performed using expert consensus, based on a Delphi method. The study investigators developed a new PETRA tool, specifically related to obstetric crisis management, based on the existing literature and discussions among themselves. The scale was distributed to a selected panel of experts in the field for the Delphi process. After each round of Delphi, every component of the scale was analyzed quantitatively by the percentage of agreement ratings and each comment reviewed by the blinded investigators. The assessment scale was then modified, with components of less than 80% agreement removed from the scale. The process was repeated on three occasions to reach a consensus and final PETRA scale. Fourteen of 24 invited experts participated in the Delphi process. The original PETRA scale included six categories and 48 items, one global scale item, and a 3-point rubric for rating. The overall percentage agreement by experts in the first, second, and third rounds was 95.0%, 93.2%, and 98.5%, respectively. The final scale after the third round of Delphi consisted of the following seven categories: shared mental model, communication, situational awareness, leadership, followership, workload management, and positive/effective behaviours and attitudes. There were 34 individual items within these categories, each with a 5-point rating rubric (1 = unacceptable to 5 = perfect). Using a structured Delphi method, we established the face and content validity of this assessment scale that focuses on important aspects of interdisciplinary teamwork in the management of obstetric crises. Copyright © 2017 The Society of Obstetricians and Gynaecologists of Canada/La Société des obstétriciens et gynécologues du Canada. Published by Elsevier Inc. All rights reserved.
Fuzzy rule-based image segmentation in dynamic MR images of the liver
NASA Astrophysics Data System (ADS)
Kobashi, Syoji; Hata, Yutaka; Tokimoto, Yasuhiro; Ishikawa, Makato
2000-06-01
This paper presents a fuzzy rule-based region growing method for segmenting two-dimensional (2-D) and three-dimensional (3- D) magnetic resonance (MR) images. The method is an extension of the conventional region growing method. The proposed method evaluates the growing criteria by using fuzzy inference techniques. The use of the fuzzy if-then rules is appropriate for describing the knowledge of the legions on the MR images. To evaluate the performance of the proposed method, it was applied to artificially generated images. In comparison with the conventional method, the proposed method shows high robustness for noisy images. The method then applied for segmenting the dynamic MR images of the liver. The dynamic MR imaging has been used for diagnosis of hepatocellular carcinoma (HCC), portal hypertension, and so on. Segmenting the liver, portal vein (PV), and inferior vena cava (IVC) can give useful description for the diagnosis, and is a basis work of a pres-surgery planning system and a virtual endoscope. To apply the proposed method, fuzzy if-then rules are derived from the time-density curve of ROIs. In the experimental results, the 2-D reconstructed and 3-D rendered images of the segmented liver, PV, and IVC are shown. The evaluation by a physician shows that the generated images are comparable to the hepatic anatomy, and they would be useful to understanding, diagnosis, and pre-surgery planning.
Turner, S; Ollerhead, E; Cook, A
2017-10-09
In the funding of health research and public health research it is vital that research questions posed are important and that funded research meets a research need or a gap in evidence. Many methods are used in the identification of research priorities, however, these can be resource intensive, costly and logistically challenging. Identifying such research priorities can be particularly challenging for complex public health problems as there is a need to consult a number of experts across disciplines and with a range of expertise. This study investigated the use of Delphi-like survey methods in identifying important research priorities relating to health inequalities and framing tractable research questions for topic areas identified. The study was conducted in two phases, both using Delphi-like survey methods. Firstly, public health professionals with an interest in health inequalities were asked to identify research priorities. Secondly academic researchers were asked to frame tractable research questions relating to the priorities identified. These research priorities identified using Delphi-like survey methods were subsequently compared to those identified using different methods. A total of 52 public health professionals and 21 academics across the United Kingdom agreed to take part. The response rates were high, from public health professionals across three survey rounds (69%, 50% and 40%) and from academics across one round (52%), indicating that participants were receptive to the method and motivated to respond. The themes identified as encompassing the most important research priorities were mental health, healthy environment and health behaviours. Within these themes, the topic areas that emerged most strongly included community interventions for prevention of mental health problems and the food and alcohol environment. Some responses received from academic researchers were (as requested) in the form of tractable research questions, whereas others contributed further potential topic areas instead. Delphi-like survey methods are practical and productive as a means of obtaining opinions from a wide number of relevant experts identifying potential priority topic areas for research; however, this method is less appropriate for framing tractable research questions.
Fuzzy logic-based flight control system design
NASA Astrophysics Data System (ADS)
Nho, Kyungmoon
The application of fuzzy logic to aircraft motion control is studied in this dissertation. The self-tuning fuzzy techniques are developed by changing input scaling factors to obtain a robust fuzzy controller over a wide range of operating conditions and nonlinearities for a nonlinear aircraft model. It is demonstrated that the properly adjusted input scaling factors can meet the required performance and robustness in a fuzzy controller. For a simple demonstration of the easy design and control capability of a fuzzy controller, a proportional-derivative (PD) fuzzy control system is compared to the conventional controller for a simple dynamical system. This thesis also describes the design principles and stability analysis of fuzzy control systems by considering the key features of a fuzzy control system including the fuzzification, rule-base and defuzzification. The wing-rock motion of slender delta wings, a linear aircraft model and the six degree of freedom nonlinear aircraft dynamics are considered to illustrate several self-tuning methods employing change in input scaling factors. Finally, this dissertation is concluded with numerical simulation of glide-slope capture in windshear demonstrating the robustness of the fuzzy logic based flight control system.
Competitive Facility Location with Fuzzy Random Demands
NASA Astrophysics Data System (ADS)
Uno, Takeshi; Katagiri, Hideki; Kato, Kosuke
2010-10-01
This paper proposes a new location problem of competitive facilities, e.g. shops, with uncertainty and vagueness including demands for the facilities in a plane. By representing the demands for facilities as fuzzy random variables, the location problem can be formulated as a fuzzy random programming problem. For solving the fuzzy random programming problem, first the α-level sets for fuzzy numbers are used for transforming it to a stochastic programming problem, and secondly, by using their expectations and variances, it can be reformulated to a deterministic programming problem. After showing that one of their optimal solutions can be found by solving 0-1 programming problems, their solution method is proposed by improving the tabu search algorithm with strategic oscillation. The efficiency of the proposed method is shown by applying it to numerical examples of the facility location problems.
Modelling of the automatic stabilization system of the aircraft course by a fuzzy logic method
NASA Astrophysics Data System (ADS)
Mamonova, T.; Syryamkin, V.; Vasilyeva, T.
2016-04-01
The problem of the present paper concerns the development of a fuzzy model of the system of an aircraft course stabilization. In this work modelling of the aircraft course stabilization system with the application of fuzzy logic is specified. Thus the authors have used the data taken for an ordinary passenger plane. As a result of the study the stabilization system models were realised in the environment of Matlab package Simulink on the basis of the PID-regulator and fuzzy logic. The authors of the paper have shown that the use of the method of artificial intelligence allows reducing the time of regulation to 1, which is 50 times faster than the time when standard receptions of the management theory are used. This fact demonstrates a positive influence of the use of fuzzy regulation.
Michalak, Erin E; Suto, Melinda J; Barnes, Steven J; Hou, Sharon; Lapsley, Sara; Scott, Mike W; Murray, Greg; Austin, Jehannine; Elliott, Nusha Balram; Berk, Lesley; Crest Bd
2016-12-01
Self-management represents an important complement to psychosocial treatments for bipolar disorder (BD), but research is limited. Specifically, little is known about self-management approaches for elevated mood states; this study investigated self-management strategies for: (1) maintaining balance in mood, and (2) stopping progression into hypomania/mania. To identify the common components of BD self-management, Delphi Consensus Consultation methods were combined with a Community-Based Participatory Research (CBPR) approach across five study phases: (1) Qualitative dataset content analysis; (2) Academic/grey literature reviews; (3) Content analysis; (4) Two Delphi rounds (rating strategies on a 5-point Likert scale, Very Unhelpful-Very Helpful), and; (5) Quantitative analysis and interpretation. Participants were people with BD and healthcare providers. Phases 1 and 2 identified 262 and 3940 candidate strategies, respectively; 3709 were discarded as duplicates/unintelligible. The remaining 493 were assessed via Delphi methods in Phase 4: 101 people with BD and 52 healthcare providers participated in Round 1; 83 of the BD panel (82%) and 43 of the healthcare provider panel (83%) participated in Round 2-exploratory factor analysis (EFA) was conducted on Round 2 results. EFA was underpowered and sample was not ethnically diverse, limiting generalizability. High concordance was observed in ratings of strategy effectiveness between the two panels. Future research could usefully investigate the provisional discovery here of underlying factors which link individual strategies. For example, 'maintaining hope' underpinned strategies for maintaining balance, and 'decreasing use of stimulants' underpinned strategies to interrupt hypo/manic ascent. There is merit in combining CBPR and Delphi methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Desired Accuracy Estimation of Noise Function from ECG Signal by Fuzzy Approach
Vahabi, Zahra; Kermani, Saeed
2012-01-01
Unknown noise and artifacts present in medical signals with non-linear fuzzy filter will be estimated and then removed. An adaptive neuro-fuzzy interference system which has a non-linear structure presented for the noise function prediction by before Samples. This paper is about a neuro-fuzzy method to estimate unknown noise of Electrocardiogram signal. Adaptive neural combined with Fuzzy System to construct a fuzzy Predictor. For this system setting parameters such as the number of Membership Functions for each input and output, training epochs, type of MFs for each input and output, learning algorithm and etc. is determined by learning data. At the end simulated experimental results are presented for proper validation. PMID:23717810
NASA Astrophysics Data System (ADS)
Alam Khan, Najeeb; Razzaq, Oyoon Abdul
2016-03-01
In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.
NASA Astrophysics Data System (ADS)
Shi, Yu-Fang; Ma, Yi-Yi; Song, Ping-Ping
2018-03-01
System Reliability Theory is a research hotspot of management science and system engineering in recent years, and construction reliability is useful for quantitative evaluation of project management level. According to reliability theory and target system of engineering project management, the defination of construction reliability appears. Based on fuzzy mathematics theory and language operator, value space of construction reliability is divided into seven fuzzy subsets and correspondingly, seven membership function and fuzzy evaluation intervals are got with the operation of language operator, which provides the basis of corresponding method and parameter for the evaluation of construction reliability. This method is proved to be scientific and reasonable for construction condition and an useful attempt for theory and method research of engineering project system reliability.
Fuzzy difference-of-Gaussian-based iris recognition method for noisy iris images
NASA Astrophysics Data System (ADS)
Kang, Byung Jun; Park, Kang Ryoung; Yoo, Jang-Hee; Moon, Kiyoung
2010-06-01
Iris recognition is used for information security with a high confidence level because it shows outstanding recognition accuracy by using human iris patterns with high degrees of freedom. However, iris recognition accuracy can be reduced by noisy iris images with optical and motion blurring. We propose a new iris recognition method based on the fuzzy difference-of-Gaussian (DOG) for noisy iris images. This study is novel in three ways compared to previous works: (1) The proposed method extracts iris feature values using the DOG method, which is robust to local variations of illumination and shows fine texture information, including various frequency components. (2) When determining iris binary codes, image noises that cause the quantization error of the feature values are reduced with the fuzzy membership function. (3) The optimal parameters of the DOG filter and the fuzzy membership function are determined in terms of iris recognition accuracy. Experimental results showed that the performance of the proposed method was better than that of previous methods for noisy iris images.
Development of the Assessment Items of Debris Flow Using the Delphi Method
NASA Astrophysics Data System (ADS)
Byun, Yosep; Seong, Joohyun; Kim, Mingi; Park, Kyunghan; Yoon, Hyungkoo
2016-04-01
In recent years in Korea, Typhoon and the localized extreme rainfall caused by the abnormal climate has increased. Accordingly, debris flow is becoming one of the most dangerous natural disaster. This study aimed to develop the assessment items which can be used for conducting damage investigation of debris flow. Delphi method was applied to classify the realms of assessment items. As a result, 29 assessment items which can be classified into 6 groups were determined.
A Delphi forecast of technology in education
NASA Technical Reports Server (NTRS)
Robinson, B. E.
1973-01-01
The results are reported of a Delphi forecast of the utilization and social impacts of large-scale educational telecommunications technology. The focus is on both forecasting methodology and educational technology. The various methods of forecasting used by futurists are analyzed from the perspective of the most appropriate method for a prognosticator of educational technology, and review and critical analysis are presented of previous forecasts and studies. Graphic responses, summarized comments, and a scenario of education in 1990 are presented.
An approach to solve replacement problems under intuitionistic fuzzy nature
NASA Astrophysics Data System (ADS)
Balaganesan, M.; Ganesan, K.
2018-04-01
Due to impreciseness to solve the day to day problems the researchers use fuzzy sets in their discussions of the replacement problems. The aim of this paper is to solve the replacement theory problems with triangular intuitionistic fuzzy numbers. An effective methodology based on fuzziness index and location index is proposed to determine the optimal solution of the replacement problem. A numerical example is illustrated to validate the proposed method.
Neuro-fuzzy controller to navigate an unmanned vehicle.
Selma, Boumediene; Chouraqui, Samira
2013-12-01
A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).
NASA Astrophysics Data System (ADS)
Sdao, F.; Lioi, D. S.; Pascale, S.; Caniani, D.; Mancini, I. M.
2013-02-01
The complete assessment of landslide susceptibility needs uniformly distributed detailed information on the territory. This information, which is related to the temporal occurrence of landslide phenomena and their causes, is often fragmented and heterogeneous. The present study evaluates the landslide susceptibility map of the Natural Archaeological Park of Matera (Southern Italy) (Sassi and area Rupestrian Churches sites). The assessment of the degree of "spatial hazard" or "susceptibility" was carried out by the spatial prediction regardless of the return time of the events. The evaluation model for the susceptibility presented in this paper is very focused on the use of innovative techniques of artificial intelligence such as Neural Network, Fuzzy Logic and Neuro-fuzzy Network. The method described in this paper is a novel technique based on a neuro-fuzzy system. It is able to train data like neural network and it is able to shape and control uncertain and complex systems like a fuzzy system. This methodology allows us to derive susceptibility maps of the study area. These data are obtained from thematic maps representing the parameters responsible for the instability of the slopes. The parameters used in the analysis are: plan curvature, elevation (DEM), angle and aspect of the slope, lithology, fracture density, kinematic hazard index of planar and wedge sliding and toppling. Moreover, this method is characterized by the network training which uses a training matrix, consisting of input and output training data, which determine the landslide susceptibility. The neuro-fuzzy method was integrated to a sensitivity analysis in order to overcome the uncertainty linked to the used membership functions. The method was compared to the landslide inventory map and was validated by applying three methods: a ROC (Receiver Operating Characteristic) analysis, a confusion matrix and a SCAI method. The developed neuro-fuzzy method showed a good performance in the determination of the landslide susceptibility map.
Using a Delphi process to establish consensus on emergency medicine clerkship competencies.
Penciner, Rick; Langhan, Trevor; Lee, Richard; McEwen, Jill; Woods, Robert A; Bandiera, Glen
2011-01-01
Currently, there is no consensus on the core competencies required for emergency medicine (EM) clerkships in Canada. Existing EM curricula have been developed through informal consensus or local efforts. The Delphi process has been used extensively as a means for establishing consensus. The purpose of this project was to define core competencies for EM clerkships in Canada, to validate a Delphi process in the context of national curriculum development, and to demonstrate the adoption of the CanMEDS physician competency paradigm in the undergraduate medical education realm. Using a modified Delphi process, we developed a consensus amongst a panel of expert emergency physicians from across Canada utilizing the CanMEDS 2005 Physician Competency Framework. Thirty experts from nine different medical schools across Canada participated on the panel. The initial list consisted of 152 competencies organized in the seven domains of the CanMEDS 2005 Physician Competency Framework. After the second round of the Delphi process, the list of competencies was reduced to 62 (59% reduction). This study demonstrated that a modified Delphi process can result in a strong consensus around a realistic number of core competencies for EM clerkships. We propose that such a method could be used by other medical specialties and health professions to develop rotation-specific core competencies.
Application of Delphi expert panel in joint venture projects
NASA Astrophysics Data System (ADS)
Adnan, H.; Rosman, M. R.; Rashid, Z. Z. Ahmad; Mohamad Yusuwan, N.; Bakhary, N. A.
2018-02-01
This study was conducted with the aim to identify the application of the Delphi Technique in validating findings obtained from questionnaire surveys and interviews done in- depth on the subject of joint venture projects in Malaysia. The Delphi technique aims to achieve a consensus of opinion amongst expert panellist that were selected on the primary factors in JV projects. To achieve research objectives, a progressive series of questions was designed where a selected panel of expert to confirm and validate the final findings. The rationale, benefits, limitations and recommendations for the use of Delphi were given in this study. From the literature review done, twenty-one factors were identified as critical factors to the making any joint venture project successful. Detail information from contractors were obtained by using the questionnaire survey method and forty-three in-depth interviews were carried out. Trust between partners, mutual understanding, partner selection criteria, agreement of contract, objective compatibility, conflict, and commitment were confirmed by the Delphi panel to be the critical success factors besides another fourteen factors which were found to be the Failure Reduction Criteria. Delphi techniques has proven to successfully assist in recognising the main factors and would be beneficial in supplementing the success of joint venture arrangements application for construction projects in Malaysia.
Epistemic uncertainty propagation in energy flows between structural vibrating systems
NASA Astrophysics Data System (ADS)
Xu, Menghui; Du, Xiaoping; Qiu, Zhiping; Wang, Chong
2016-03-01
A dimension-wise method for predicting fuzzy energy flows between structural vibrating systems coupled by joints with epistemic uncertainties is established. Based on its Legendre polynomial approximation at α=0, both the minimum and maximum point vectors of the energy flow of interest are calculated dimension by dimension within the space spanned by the interval parameters determined by fuzzy those at α=0 and the resulted interval bounds are used to assemble the concerned fuzzy energy flows. Besides the proposed method, vertex method as well as two current methods is also applied. Comparisons among results by different methods are accomplished by two numerical examples and the accuracy of all methods is simultaneously verified by Monte Carlo simulation.
Fuzzy Set Methods for Object Recognition in Space Applications
NASA Technical Reports Server (NTRS)
Keller, James M. (Editor)
1992-01-01
Progress on the following four tasks is described: (1) fuzzy set based decision methodologies; (2) membership calculation; (3) clustering methods (including derivation of pose estimation parameters), and (4) acquisition of images and testing of algorithms.
USDA-ARS?s Scientific Manuscript database
Zoning of agricultural fields is an important task for utilization of precision farming technology. One method for the definition of zones with different levels of productivity is based on fuzzy indicator model. Fuzzy indicator model for identification of zones with different levels of productivit...
2017-01-01
Purpose This study aimed to investigate current issues and areas for improvement in the Korean Dental Hygienist National Licensing Examination (KDHNLE) through an expert Delphi survey. Methods A Delphi survey was conducted from May through August 2016 in Korea. This Delphi survey included 20 persons representing the field of dental hygiene (7 groups from various dental hygiene-related organizations). The Delphi survey was administered through e-mail as 3 rounds of questionnaire surveys regarding the issues facing the KDHNLE and potential solutions to those challenges. The primary Delphi survey was an open questionnaire. In each round, subjects’ responses were categorized according to the detailed themes of their responses. The minimum value of the content validity ratio of the survey results was determined by the number of panels participating in the Delphi survey. Results Issues facing the KDHNLE were identified from the results of the Delphi survey. The following 4 items had an average importance score of 4.0 or higher and were considered as important by over 85% of the panels: the failure of the practical test to reflect actual clinical settings, the focus of the practical test on dental scaling, the gap between the items evaluated on the national examination and actual practical work, and insufficiency in strengthening the expertise of licensed dental hygienists. The following items were suggested for improvement: more rigorous rater training, adjustment of the difficulty of the licensing examination, the introduction of a specialized dental hygienist system, and more rigorous refresher training for licensed dental hygienists. Conclusion Based on the above results, the KDHNLE should be improved according to the core competencies of dental hygienists, including on-site clinical practice experience. PMID:28900069
Wang, Chunyong; Li, Qingguo; Zhou, Xiaoqiang; Yang, Tian
2014-01-01
We investigate the multiple attribute decision-making (MADM) problems with hesitant triangular fuzzy information. Firstly, definition and some operational laws of hesitant triangular fuzzy elements are introduced. Then, we develop some hesitant triangular fuzzy aggregation operators based on Bonferroni means and discuss their basic properties. Some existing operators can be viewed as their special cases. Next, we apply the proposed operators to deal with multiple attribute decision-making problems under hesitant triangular fuzzy environment. Finally, an illustrative example is given to show the developed method and demonstrate its practicality and effectiveness.
Fuzzy model-based fault detection and diagnosis for a pilot heat exchanger
NASA Astrophysics Data System (ADS)
Habbi, Hacene; Kidouche, Madjid; Kinnaert, Michel; Zelmat, Mimoun
2011-04-01
This article addresses the design and real-time implementation of a fuzzy model-based fault detection and diagnosis (FDD) system for a pilot co-current heat exchanger. The design method is based on a three-step procedure which involves the identification of data-driven fuzzy rule-based models, the design of a fuzzy residual generator and the evaluation of the residuals for fault diagnosis using statistical tests. The fuzzy FDD mechanism has been implemented and validated on the real co-current heat exchanger, and has been proven to be efficient in detecting and isolating process, sensor and actuator faults.
Zhou, Xiaoqiang; Yang, Tian
2014-01-01
We investigate the multiple attribute decision-making (MADM) problems with hesitant triangular fuzzy information. Firstly, definition and some operational laws of hesitant triangular fuzzy elements are introduced. Then, we develop some hesitant triangular fuzzy aggregation operators based on Bonferroni means and discuss their basic properties. Some existing operators can be viewed as their special cases. Next, we apply the proposed operators to deal with multiple attribute decision-making problems under hesitant triangular fuzzy environment. Finally, an illustrative example is given to show the developed method and demonstrate its practicality and effectiveness. PMID:25140338
Refining fuzzy logic controllers with machine learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1994-01-01
In this paper, we describe the GARIC (Generalized Approximate Reasoning-Based Intelligent Control) architecture, which learns from its past performance and modifies the labels in the fuzzy rules to improve performance. It uses fuzzy reinforcement learning which is a hybrid method of fuzzy logic and reinforcement learning. This technology can simplify and automate the application of fuzzy logic control to a variety of systems. GARIC has been applied in simulation studies of the Space Shuttle rendezvous and docking experiments. It has the potential of being applied in other aerospace systems as well as in consumer products such as appliances, cameras, and cars.
Gijsbers, H J H; Lauret, G J; van Hofwegen, A; van Dockum, T A; Teijink, J A W; Hendriks, H J M
2016-06-01
The aim of the study was to develop quality indicators (QIs) for physiotherapy management of patients with intermittent claudication (IC) in the Netherlands. As part of an international six-step method to develop QIs, an online survey Delphi-procedure was completed. After two Delphi-rounds a validation round was performed. Twenty-six experts were recruited to participate in this study. Twenty-four experts completed two Delphi-rounds. A third round was conducted inviting 1200 qualified and registered physiotherapists of the Dutch integrated care network 'Claudicationet' to validate a draft set of quality indicators. Out of 83 potential QIs in the Dutch physiotherapy guideline on 'Intermittent claudication', consensus among the experts selected nine indicators. All nine quality indicators were validated by 300 physiotherapists. A final set of nine indicators was derived from (1) a Dutch evidence-based physiotherapy guideline, (2) an expert Delphi procedure and (3) a validation by 300 physiotherapists. This set of indicators should be validated in clinical practice. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Pythagorean fuzzy analytic hierarchy process to multi-criteria decision making
NASA Astrophysics Data System (ADS)
Mohd, Wan Rosanisah Wan; Abdullah, Lazim
2017-11-01
A numerous approaches have been proposed in the literature to determine the criteria of weight. The weight of criteria is very significant in the process of decision making. One of the outstanding approaches that used to determine weight of criteria is analytic hierarchy process (AHP). This method involves decision makers (DMs) to evaluate the decision to form the pair-wise comparison between criteria and alternatives. In classical AHP, the linguistic variable of pairwise comparison is presented in terms of crisp value. However, this method is not appropriate to present the real situation of the problems because it involved the uncertainty in linguistic judgment. For this reason, AHP has been extended by incorporating the Pythagorean fuzzy sets. In addition, no one has found in the literature proposed how to determine the weight of criteria using AHP under Pythagorean fuzzy sets. In order to solve the MCDM problem, the Pythagorean fuzzy analytic hierarchy process is proposed to determine the criteria weight of the evaluation criteria. Using the linguistic variables, pairwise comparison for evaluation criteria are made to the weights of criteria using Pythagorean fuzzy numbers (PFNs). The proposed method is implemented in the evaluation problem in order to demonstrate its applicability. This study shows that the proposed method provides us with a useful way and a new direction in solving MCDM problems with Pythagorean fuzzy context.
A Delphi Investigation into Future Trends in E-Learning in Israel
ERIC Educational Resources Information Center
Aharony, Noa; Bronstein, Jenny
2014-01-01
The purpose of this study is to investigate the views and opinions of e-learning experts regarding future trends in the e-learning arena. The Delphi technique was chosen as a method of study. This technique is an efficient and effective group communication process designed to systematically elicit judgments from experts in their selected area of…
Views and Dreams: A Delphi Investigation into Library 2.0 Applications
ERIC Educational Resources Information Center
Bronstein, Jenny; Aharony, Noa
2009-01-01
The study's purpose was to investigate the views and opinions of librarians about the implementation of Web 2.0 technologies into library operations and services. The Delphi technique was chosen as the method of inquiry in this study, in which a group of panelists graded the desirability and probability of a list of statements. Thirty-nine…
ERIC Educational Resources Information Center
Miller, Jane K.; Repinski, Shelby L.; Hayes, Kathryn N.; Bliss, Frederick A.; Trexler, Cary J.
2011-01-01
A broad-based survey using the Delphi method was conducted to garner current information from private sector stakeholders and build consensus opinions supporting key ideas for enhancing plant breeder education and training. This study asked respondents to suggest and rate topics and content they deemed most important to plant breeding graduate…
ERIC Educational Resources Information Center
Johnston, Lynette M.; Wiedmann, Martin; Orta-Ramirez, Alicia; Oliver, Haley F.; Nightingale, Kendra K.; Moore, Christina M.; Stevenson, Clinton D.; Jaykus, Lee-Ann
2014-01-01
Identification of core competencies for undergraduates in food safety is critical to assure courses and curricula are appropriate in maintaining a well-qualified food safety workforce. The purpose of this study was to identify and refine core competencies relevant to postsecondary food safety education using a modified Delphi method. Twenty-nine…
ERIC Educational Resources Information Center
Kramer, Barry S.; Walker, Andrew E.; Brill, Jennifer M.
2007-01-01
This study explores the barriers associated with teachers implementing information and communication technology-assisted collaborative project-based learning (ICTCPrjBL) as a classroom teaching methodology with students. We used a Web-based Delphi method to engage experienced educators in anonymous consensus building consisting of three rounds of…
ERIC Educational Resources Information Center
Franklin, Edward A.
2011-01-01
In this study the Delphi technique has been used to develop a list of educational competencies for preparing secondary agricultural education instructors to effectively manage their school greenhouse facilities. The use of specialized facilities in agricultural education requires appropriate preparation of agricultural education teachers. The…
A Delphi Study on Technology Enhanced Learning (TEL) Applied on Computer Science (CS) Skills
ERIC Educational Resources Information Center
Porta, Marcela; Mas-Machuca, Marta; Martinez-Costa, Carme; Maillet, Katherine
2012-01-01
Technology Enhanced Learning (TEL) is a new pedagogical domain aiming to study the usage of information and communication technologies to support teaching and learning. The following study investigated how this domain is used to increase technical skills in Computer Science (CS). A Delphi method was applied, using three-rounds of online survey…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... the Office of Management and Budget (OMB). You may submit comments by the following methods: Email... required to have electronic Internet access to register in the Delphi eInvoicing system. Grantees will be.... The identities of system users must be verified prior to receiving access to the Delphi eInvoicing...
Identifying Threshold Concepts for Information Literacy: A Delphi Study
ERIC Educational Resources Information Center
Townsend, Lori; Hofer, Amy R.; Hanick, Silvia Lin; Brunetti, Korey
2016-01-01
This study used the Delphi method to engage expert practitioners on the topic of threshold concepts--core ideas and processes in a discipline that students need to grasp in order to progress in their learning, but that are often unspoken or unrecognized by expert practitioners--for information literacy. A panel of experts considered two questions:…
Emerging Issues in the Utilization of Weblogs in Higher Education Classrooms
ERIC Educational Resources Information Center
Ayao-ao, Shirley
2014-01-01
This paper examines the emerging issues in the utilization of weblogs in Philippine higher education and how these issues affect the performance of students. This study used a modified Delphi method. The Delphi panel consisted of 12 experts in the integration of technology, particularly blogs, in their teaching. The study yielded the following…
Trends that FCS Education Should Address: A Delphi Study Reveals Top 16
ERIC Educational Resources Information Center
Alexander, Karen L.; Davis, Kimberlee
2011-01-01
This study used the Delphi method to identify trends of importance to family and consumer sciences (FCS) education. A panel of 21 FCS education experts identified 16 trends and evaluated them by importance, desirability, feasibility, and confidence in validity of the trend. Nutrition appeared as a top priority, followed by consumer economics. The…
Delphi in Criminal Justice Policy: A Case Study on Judgmental Forecasting
ERIC Educational Resources Information Center
Loyens, Kim; Maesschalck, Jeroen; Bouckaert, Geert
2011-01-01
This article provides an in-depth case study analysis of a pilot project organized by the section "Strategic Analysis" of the Belgian Federal Police. Using the Delphi method, which is a judgmental forecasting technique, a panel of experts was questioned about future developments of crime, based on their expertise in criminal or social…
Research Priorities for YouTube and Video-Sharing Technologies: A Delphi Study
ERIC Educational Resources Information Center
Snelson, Chareen; Rice, Kerry; Wyzard, Constance
2012-01-01
Online video-sharing services, particularly YouTube, have gained an audience of billions of users including educators and scholars. While the academic literature provides some evidence that YouTube has been studied and written about, little is known about priorities for YouTube research. The study employed the Delphi method to obtain a consensus…
The Essential Components of Coach Training for Mental Health Professionals: A Delphi Study
ERIC Educational Resources Information Center
Moriarity, Marlene Therese
2010-01-01
Purpose. The purpose of this study was to discover how coach training experts define coaching and what they would identify to be the essential components of a coach training program for mental health professionals. Methods. A panel of nine experts, through an iterative Delphi process of responding to three rounds of questionnaires, provided…
ERIC Educational Resources Information Center
Jones, Susan M.
2011-01-01
The purpose of the mixed-method Delphi study is to identify the financial leadership competencies considered most important in operating public higher education institutions. The current study also determined whether differences existed in the perceptions of participants' age, level of education, years of service as a president, the number of…
The Semiconductor Industry and Emerging Technologies: A Study Using a Modified Delphi Method
ERIC Educational Resources Information Center
Jordan, Edgar A.
2010-01-01
The purpose of this qualitative descriptive study was to determine what leaders in the semiconductor industry thought the future of computing would look like and what emerging materials showed the most promise to overcome the current theoretical limit of 10 nanometers for silicon dioxide. The researcher used a modified Delphi technique in two…
Risk analysis with a fuzzy-logic approach of a complex installation
NASA Astrophysics Data System (ADS)
Peikert, Tim; Garbe, Heyno; Potthast, Stefan
2016-09-01
This paper introduces a procedural method based on fuzzy logic to analyze systematic the risk of an electronic system in an intentional electromagnetic environment (IEME). The method analyzes the susceptibility of a complex electronic installation with respect to intentional electromagnetic interference (IEMI). It combines the advantages of well-known techniques as fault tree analysis (FTA), electromagnetic topology (EMT) and Bayesian networks (BN) and extends the techniques with an approach to handle uncertainty. This approach uses fuzzy sets, membership functions and fuzzy logic to handle the uncertainty with probability functions and linguistic terms. The linguistic terms add to the risk analysis the knowledge from experts of the investigated system or environment.
Study on application of adaptive fuzzy control and neural network in the automatic leveling system
NASA Astrophysics Data System (ADS)
Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng
2015-04-01
This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.
Fuzzy-probabilistic model for risk assessment of radioactive material railway transportation.
Avramenko, M; Bolyatko, V; Kosterev, V
2005-01-01
Transportation of radioactive materials is obviously accompanied by a certain risk. A model for risk assessment of emergency situations and terrorist attacks may be useful for choosing possible routes and for comparing the various defence strategies. In particular, risk assessment is crucial for safe transportation of excess weapons-grade plutonium arising from the removal of plutonium from military employment. A fuzzy-probabilistic model for risk assessment of railway transportation has been developed taking into account the different natures of risk-affecting parameters (probabilistic and not probabilistic but fuzzy). Fuzzy set theory methods as well as standard methods of probability theory have been used for quantitative risk assessment. Information-preserving transformations are applied to realise the correct aggregation of probabilistic and fuzzy parameters. Estimations have also been made of the inhalation doses resulting from possible accidents during plutonium transportation. The obtained data show the scale of possible consequences that may arise from plutonium transportation accidents.
Cost-Sharing of Ecological Construction Based on Trapezoidal Intuitionistic Fuzzy Cooperative Games.
Liu, Jiacai; Zhao, Wenjian
2016-11-08
There exist some fuzziness and uncertainty in the process of ecological construction. The aim of this paper is to develop a direct and an effective simplified method for obtaining the cost-sharing scheme when some interested parties form a cooperative coalition to improve the ecological environment of Min River together. Firstly, we propose the solution concept of the least square prenucleolus of cooperative games with coalition values expressed by trapezoidal intuitionistic fuzzy numbers. Then, based on the square of the distance in the numerical value between two trapezoidal intuitionistic fuzzy numbers, we establish a corresponding quadratic programming model to obtain the least square prenucleolus, which can effectively avoid the information distortion and uncertainty enlargement brought about by the subtraction of trapezoidal intuitionistic fuzzy numbers. Finally, we give a numerical example about the cost-sharing of ecological construction in Fujian Province in China to show the validity, applicability, and advantages of the proposed model and method.
Verification of a Quality Management Theory: Using a Delphi Study
Mosadeghrad, Ali Mohammad
2013-01-01
Background: A model of quality management called Strategic Collaborative Quality Management (SCQM) model was developed based on the quality management literature review, the findings of a survey on quality management assessment in healthcare organisations, semi-structured interviews with healthcare stakeholders, and a Delphi study on healthcare quality management experts. The purpose of this study was to verify the SCQM model. Methods: The proposed model was further developed using feedback from thirty quality management experts using a Delphi method. Further, a guidebook for its implementation was prepared including a road map and performance measurement. Results: The research led to the development of a context-specific model of quality management for healthcare organisations and a series of guidelines for its implementation. Conclusion: A proper model of quality management should be developed and implemented properly in healthcare organisations to achieve business excellence. PMID:24596883
NASA Astrophysics Data System (ADS)
Masudin, I.; Saputro, T. E.
2016-02-01
In today's technology, electronic trading transaction via internet has been utilized properly with rapid growth. This paper intends to evaluate related to B2C e-commerce website in order to find out the one which meets the usability factors better than another. The influential factors to B2C e-commerce website are determined for two big retailer websites. The factors are investigated based on the consideration of several studies and conformed to the website characteristics. The evaluation is conducted by using different methods namely fuzzy AHP and hierarchical fuzzy TOPSIS so that the final evaluation can be compared. Fuzzy triangular number is adopted to deal with imprecise judgment under fuzzy environment.
Fetal ECG extraction via Type-2 adaptive neuro-fuzzy inference systems.
Ahmadieh, Hajar; Asl, Babak Mohammadzadeh
2017-04-01
We proposed a noninvasive method for separating the fetal ECG (FECG) from maternal ECG (MECG) by using Type-2 adaptive neuro-fuzzy inference systems. The method can extract FECG components from abdominal signal by using one abdominal channel, including maternal and fetal cardiac signals and other environmental noise signals, and one chest channel. The proposed algorithm detects the nonlinear dynamics of the mother's body. So, the components of the MECG are estimated from the abdominal signal. By subtracting estimated mother cardiac signal from abdominal signal, fetal cardiac signal can be extracted. This algorithm was applied on synthetic ECG signals generated based on the models developed by McSharry et al. and Behar et al. and also on DaISy real database. In environments with high uncertainty, our method performs better than the Type-1 fuzzy method. Specifically, in evaluation of the algorithm with the synthetic data based on McSharry model, for input signals with SNR of -5dB, the SNR of the extracted FECG was improved by 38.38% in comparison with the Type-1 fuzzy method. Also, the results show that increasing the uncertainty or decreasing the input SNR leads to increasing the percentage of the improvement in SNR of the extracted FECG. For instance, when the SNR of the input signal decreases to -30dB, our proposed algorithm improves the SNR of the extracted FECG by 71.06% with respect to the Type-1 fuzzy method. The same results were obtained on synthetic data based on Behar model. Our results on real database reflect the success of the proposed method to separate the maternal and fetal heart signals even if their waves overlap in time. Moreover, the proposed algorithm was applied to the simulated fetal ECG with ectopic beats and achieved good results in separating FECG from MECG. The results show the superiority of the proposed Type-2 neuro-fuzzy inference method over the Type-1 neuro-fuzzy inference and the polynomial networks methods, which is due to its capability to capture the nonlinearities of the model better. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chai, Runqi; Savvaris, Al; Tsourdos, Antonios
2016-06-01
In this paper, a fuzzy physical programming (FPP) method has been introduced for solving multi-objective Space Manoeuvre Vehicles (SMV) skip trajectory optimization problem based on hp-adaptive pseudospectral methods. The dynamic model of SMV is elaborated and then, by employing hp-adaptive pseudospectral methods, the problem has been transformed to nonlinear programming (NLP) problem. According to the mission requirements, the solutions were calculated for each single-objective scenario. To get a compromised solution for each target, the fuzzy physical programming (FPP) model is proposed. The preference function is established with considering the fuzzy factor of the system such that a proper compromised trajectory can be acquired. In addition, the NSGA-II is tested to obtain the Pareto-optimal solution set and verify the Pareto optimality of the FPP solution. Simulation results indicate that the proposed method is effective and feasible in terms of dealing with the multi-objective skip trajectory optimization for the SMV.
Integration of Genetic Algorithms and Fuzzy Logic for Urban Growth Modeling
NASA Astrophysics Data System (ADS)
Foroutan, E.; Delavar, M. R.; Araabi, B. N.
2012-07-01
Urban growth phenomenon as a spatio-temporal continuous process is subject to spatial uncertainty. This inherent uncertainty cannot be fully addressed by the conventional methods based on the Boolean algebra. Fuzzy logic can be employed to overcome this limitation. Fuzzy logic preserves the continuity of dynamic urban growth spatially by choosing fuzzy membership functions, fuzzy rules and the fuzzification-defuzzification process. Fuzzy membership functions and fuzzy rule sets as the heart of fuzzy logic are rather subjective and dependent on the expert. However, due to lack of a definite method for determining the membership function parameters, certain optimization is needed to tune the parameters and improve the performance of the model. This paper integrates genetic algorithms and fuzzy logic as a genetic fuzzy system (GFS) for modeling dynamic urban growth. The proposed approach is applied for modeling urban growth in Tehran Metropolitan Area in Iran. Historical land use/cover data of Tehran Metropolitan Area extracted from the 1988 and 1999 Landsat ETM+ images are employed in order to simulate the urban growth. The extracted land use classes of the year 1988 include urban areas, street, vegetation areas, slope and elevation used as urban growth physical driving forces. Relative Operating Characteristic (ROC) curve as an fitness function has been used to evaluate the performance of the GFS algorithm. The optimum membership function parameter is applied for generating a suitability map for the urban growth. Comparing the suitability map and real land use map of 1999 gives the threshold value for the best suitability map which can simulate the land use map of 1999. The simulation outcomes in terms of kappa of 89.13% and overall map accuracy of 95.58% demonstrated the efficiency and reliability of the proposed model.
NASA Astrophysics Data System (ADS)
Alizadeh, Mohammad Reza; Nikoo, Mohammad Reza; Rakhshandehroo, Gholam Reza
2017-08-01
Sustainable management of water resources necessitates close attention to social, economic and environmental aspects such as water quality and quantity concerns and potential conflicts. This study presents a new fuzzy-based multi-objective compromise methodology to determine the socio-optimal and sustainable policies for hydro-environmental management of groundwater resources, which simultaneously considers the conflicts and negotiation of involved stakeholders, uncertainties in decision makers' preferences, existing uncertainties in the groundwater parameters and groundwater quality and quantity issues. The fuzzy multi-objective simulation-optimization model is developed based on qualitative and quantitative groundwater simulation model (MODFLOW and MT3D), multi-objective optimization model (NSGA-II), Monte Carlo analysis and Fuzzy Transformation Method (FTM). Best compromise solutions (best management policies) on trade-off curves are determined using four different Fuzzy Social Choice (FSC) methods. Finally, a unanimity fallback bargaining method is utilized to suggest the most preferred FSC method. Kavar-Maharloo aquifer system in Fars, Iran, as a typical multi-stakeholder multi-objective real-world problem is considered to verify the proposed methodology. Results showed an effective performance of the framework for determining the most sustainable allocation policy in groundwater resource management.
Wu, Jia-ting; Wang, Jian-qiang; Wang, Jing; Zhang, Hong-yu; Chen, Xiao-hong
2014-01-01
Based on linguistic term sets and hesitant fuzzy sets, the concept of hesitant fuzzy linguistic sets was introduced. The focus of this paper is the multicriteria decision-making (MCDM) problems in which the criteria are in different priority levels and the criteria values take the form of hesitant fuzzy linguistic numbers (HFLNs). A new approach to solving these problems is proposed, which is based on the generalized prioritized aggregation operator of HFLNs. Firstly, the new operations and comparison method for HFLNs are provided and some linguistic scale functions are applied. Subsequently, two prioritized aggregation operators and a generalized prioritized aggregation operator of HFLNs are developed and applied to MCDM problems. Finally, an illustrative example is given to illustrate the effectiveness and feasibility of the proposed method, which are then compared to the existing approach.
Method study on fuzzy-PID adaptive control of electric-hydraulic hitch system
NASA Astrophysics Data System (ADS)
Li, Mingsheng; Wang, Liubu; Liu, Jian; Ye, Jin
2017-03-01
In this paper, fuzzy-PID adaptive control method is applied to the control of tractor electric-hydraulic hitch system. According to the characteristics of the system, a fuzzy-PID adaptive controller is designed and the electric-hydraulic hitch system model is established. Traction control and position control performance simulation are carried out with the common PID control method. A field test rig was set up to test the electric-hydraulic hitch system. The test results showed that, after the fuzzy-PID adaptive control is adopted, when the tillage depth steps from 0.1m to 0.3m, the system transition process time is 4s, without overshoot, and when the tractive force steps from 3000N to 7000N, the system transition process time is 5s, the system overshoot is 25%.
High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets
NASA Astrophysics Data System (ADS)
Chen, Tai-Liang; Cheng, Ching-Hsue; Teoh, Hia-Jong
2008-02-01
Stock investors usually make their short-term investment decisions according to recent stock information such as the late market news, technical analysis reports, and price fluctuations. To reflect these short-term factors which impact stock price, this paper proposes a comprehensive fuzzy time-series, which factors linear relationships between recent periods of stock prices and fuzzy logical relationships (nonlinear relationships) mined from time-series into forecasting processes. In empirical analysis, the TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) and HSI (Heng Seng Index) are employed as experimental datasets, and four recent fuzzy time-series models, Chen’s (1996), Yu’s (2005), Cheng’s (2006) and Chen’s (2007), are used as comparison models. Besides, to compare with conventional statistic method, the method of least squares is utilized to estimate the auto-regressive models of the testing periods within the databases. From analysis results, the performance comparisons indicate that the multi-period adaptation model, proposed in this paper, can effectively improve the forecasting performance of conventional fuzzy time-series models which only factor fuzzy logical relationships in forecasting processes. From the empirical study, the traditional statistic method and the proposed model both reveal that stock price patterns in the Taiwan stock and Hong Kong stock markets are short-term.
A Different Web-Based Geocoding Service Using Fuzzy Techniques
NASA Astrophysics Data System (ADS)
Pahlavani, P.; Abbaspour, R. A.; Zare Zadiny, A.
2015-12-01
Geocoding - the process of finding position based on descriptive data such as address or postal code - is considered as one of the most commonly used spatial analyses. Many online map providers such as Google Maps, Bing Maps and Yahoo Maps present geocoding as one of their basic capabilities. Despite the diversity of geocoding services, users usually face some limitations when they use available online geocoding services. In existing geocoding services, proximity and nearness concept is not modelled appropriately as well as these services search address only by address matching based on descriptive data. In addition there are also some limitations in display searching results. Resolving these limitations can enhance efficiency of the existing geocoding services. This paper proposes the idea of integrating fuzzy technique with geocoding process to resolve these limitations. In order to implement the proposed method, a web-based system is designed. In proposed method, nearness to places is defined by fuzzy membership functions and multiple fuzzy distance maps are created. Then these fuzzy distance maps are integrated using fuzzy overlay technique for obtain the results. Proposed methods provides different capabilities for users such as ability to search multi-part addresses, searching places based on their location, non-point representation of results as well as displaying search results based on their priority.
Decomposition of Fuzzy Soft Sets with Finite Value Spaces
Jun, Young Bae
2014-01-01
The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter. PMID:24558342
Decomposition of fuzzy soft sets with finite value spaces.
Feng, Feng; Fujita, Hamido; Jun, Young Bae; Khan, Madad
2014-01-01
The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter.
Programmable fuzzy associative memory processor
NASA Astrophysics Data System (ADS)
Shao, Lan; Liu, Liren; Li, Guoqiang
1996-02-01
An optical system based on the method of spatial area-coding and multiple image scheme is proposed for fuzzy associative memory processing. Fuzzy maximum operation is accomplished by a ferroelectric liquid crystal PROM instead of a computer-based approach. A relative subsethood is introduced here to be used as a criterion for the recall evaluation.
Application of Fuzzy Reasoning for Filtering and Enhancement of Ultrasonic Images
NASA Technical Reports Server (NTRS)
Sacha, J. P.; Cios, K. J.; Roth, D. J.; Berke, L.; Vary, A.
1994-01-01
This paper presents a new type of an adaptive fuzzy operator for detection of isolated abnormalities, and enhancement of raw ultrasonic images. Fuzzy sets used in decision rules are defined for each image based on empirical statistics of the color intensities. Examples of the method are also presented in the paper.
Fuzzy control of power converters based on quasilinear modelling
NASA Astrophysics Data System (ADS)
Li, C. K.; Lee, W. L.; Chou, Y. W.
1995-03-01
Unlike feedback control by the fuzzy PID method, a new fuzzy control algorithm based on quasilinear modelling of the DC-DC converter is proposed. Investigation is carried out using a buck-boost converter. Simulation results demonstrated that the converter can be regulated with improved performance even when subjected to input disturbance and load variation.
On the Normed Space of Equivalence Classes of Fuzzy Numbers
Lu, Chongxia; Zhang, Wei
2013-01-01
We study the norm induced by the supremum metric on the space of fuzzy numbers. And then we propose a method for constructing a norm on the quotient space of fuzzy numbers. This norm is very natural and works well with the induced metric on the quotient space. PMID:24072984
Performance Degradation Assessment of Rolling Element Bearings using Improved Fuzzy Entropy
NASA Astrophysics Data System (ADS)
Zhu, Keheng; Jiang, Xiaohui; Chen, Liang; Li, Haolin
2017-10-01
Rolling element bearings are an important unit in the rotating machines, and their performance degradation assessment is the basis of condition-based maintenance. Targeting the non-linear dynamic characteristics of faulty signals of rolling element bearings, a bearing performance degradation assessment approach based on improved fuzzy entropy (FuzzyEn) is proposed in this paper. FuzzyEn has less dependence on data length and achieves more freedom of parameter selection and more robustness to noise. However, it neglects the global trend of the signal when calculating similarity degree of two vectors, and thus cannot reflect the running state of the rolling element bearings accurately. Based on this consideration, the algorithm of FuzzyEn is improved in this paper and the improved FuzzyEn is utilized as an indicator for bearing performance degradation evaluation. The vibration data from run-to-failure test of rolling element bearings are used to validate the proposed method. The experimental results demonstrate that, compared with the traditional kurtosis and root mean square, the proposed method can detect the incipient fault in advance and can reflect the whole performance degradation process more clearly.
Group Decision Making Based on Heronian Aggregation Operators of Intuitionistic Fuzzy Numbers.
Liu, Peide; Chen, Shyi-Ming
2017-09-01
Archimedean t -conorm and t -norm provide the general operational rules for intuitionistic fuzzy numbers (IFNs). The aggregation operators based on them can generalize most of the existing aggregation operators. At the same time, the Heronian mean (HM) has a significant advantage of considering interrelationships between the attributes. Therefore, it is very necessary to extend the HM based on IFNs and to construct intuitionistic fuzzy HM operators based on the Archimedean t -conorm and t -norm. In this paper, we first discuss intuitionistic fuzzy operational rules based on the Archimedean t -conorm and t -norm. Then, we propose the intuitionistic fuzzy Archimedean Heronian aggregation (IFAHA) operator and the intuitionistic fuzzy weight Archimedean Heronian aggregation (IFWAHA) operator. We also further discuss some properties and some special cases of these new operators. Moreover, we also propose a new multiple attribute group decision making (MAGDM) method based on the proposed IFAHA operator and the proposed IFWAHA operator. Finally, we use an illustrative example to show the MAGDM processes and to illustrate the effectiveness of the developed method.
A pertinent approach to solve nonlinear fuzzy integro-differential equations.
Narayanamoorthy, S; Sathiyapriya, S P
2016-01-01
Fuzzy integro-differential equations is one of the important parts of fuzzy analysis theory that holds theoretical as well as applicable values in analytical dynamics and so an appropriate computational algorithm to solve them is in essence. In this article, we use parametric forms of fuzzy numbers and suggest an applicable approach for solving nonlinear fuzzy integro-differential equations using homotopy perturbation method. A clear and detailed description of the proposed method is provided. Our main objective is to illustrate that the construction of appropriate convex homotopy in a proper way leads to highly accurate solutions with less computational work. The efficiency of the approximation technique is expressed via stability and convergence analysis so as to guarantee the efficiency and performance of the methodology. Numerical examples are demonstrated to verify the convergence and it reveals the validity of the presented numerical technique. Numerical results are tabulated and examined by comparing the obtained approximate solutions with the known exact solutions. Graphical representations of the exact and acquired approximate fuzzy solutions clarify the accuracy of the approach.
Assessment of critical thinking: a Delphi study.
Paul, Sheila A
2014-11-01
Nurse educators are responsible for preparing nurses who critically analyze patient information and provide meaningful interventions in today's complex health care system. By using the Delphi research method, this study, utilized the specialized and experiential knowledge of Certified Nurse Educators. This original Delphi research study asked Certified Nurse Educators how to assess the critical-thinking ability of nursing students in the clinical setting. The results showed that nurse educators need time, during the clinical experience, to accurately assess each individual nursing student. This study demonstrated the need for extended student clinical time, and a variety of clinical learning assessment tools. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fuzzy simulation in concurrent engineering
NASA Technical Reports Server (NTRS)
Kraslawski, A.; Nystrom, L.
1992-01-01
Concurrent engineering is becoming a very important practice in manufacturing. A problem in concurrent engineering is the uncertainty associated with the values of the input variables and operating conditions. The problem discussed in this paper concerns the simulation of processes where the raw materials and the operational parameters possess fuzzy characteristics. The processing of fuzzy input information is performed by the vertex method and the commercial simulation packages POLYMATH and GEMS. The examples are presented to illustrate the usefulness of the method in the simulation of chemical engineering processes.
WARP: Weight Associative Rule Processor. A dedicated VLSI fuzzy logic megacell
NASA Technical Reports Server (NTRS)
Pagni, A.; Poluzzi, R.; Rizzotto, G. G.
1992-01-01
During the last five years Fuzzy Logic has gained enormous popularity in the academic and industrial worlds. The success of this new methodology has led the microelectronics industry to create a new class of machines, called Fuzzy Machines, to overcome the limitations of traditional computing systems when utilized as Fuzzy Systems. This paper gives an overview of the methods by which Fuzzy Logic data structures are represented in the machines (each with its own advantages and inefficiencies). Next, the paper introduces WARP (Weight Associative Rule Processor) which is a dedicated VLSI megacell allowing the realization of a fuzzy controller suitable for a wide range of applications. WARP represents an innovative approach to VLSI Fuzzy controllers by utilizing different types of data structures for characterizing the membership functions during the various stages of the Fuzzy processing. WARP dedicated architecture has been designed in order to achieve high performance by exploiting the computational advantages offered by the different data representations.
Stock and option portfolio using fuzzy logic approach
NASA Astrophysics Data System (ADS)
Sumarti, Novriana; Wahyudi, Nanang
2014-03-01
Fuzzy Logic in decision-making process has been widely implemented in various problems in industries. It is the theory of imprecision and uncertainty that was not based on probability theory. Fuzzy Logic adds values of degree between absolute true and absolute false. It starts with and builds on a set of human language rules supplied by the user. The fuzzy systems convert these rules to their mathematical equivalents. This could simplify the job of the system designer and the computer, and results in much more accurate representations of the way systems behave in the real world. In this paper we examine the decision making process of stock and option trading by the usage of MACD (Moving Average Convergence Divergence) technical analysis and Option Pricing with Fuzzy Logic approach. MACD technical analysis is for the prediction of the trends of underlying stock prices, such as bearish (going downward), bullish (going upward), and sideways. By using Fuzzy C-Means technique and Mamdani Fuzzy Inference System, we define the decision output where the value of MACD is high then decision is "Strong Sell", and the value of MACD is Low then the decision is "Strong Buy". We also implement the fuzzification of the Black-Scholes option-pricing formula. The stock and options methods are implemented on a portfolio of one stock and its options. Even though the values of input data, such as interest rates, stock price and its volatility, cannot be obtain accurately, these fuzzy methods can give a belief degree of the calculated the Black-Scholes formula so we can make the decision on option trading. The results show the good capability of the methods in the prediction of stock price trends. The performance of the simulated portfolio for a particular period of time also shows good return.
Eco-tourism Education Effectiveness Indicator System Research for Macau SAR in Practice
NASA Astrophysics Data System (ADS)
Ge, Mei
2018-01-01
The study of education in Ecotourism is one of the many important focuses among the field of Ecotourism; and the evaluation of Ecotourism education effectiveness in Ecotourism is a key topic in it. The result of this study can be very useful in the development of Ecotourism education. In addition, affect greatly in its improvement in the future. The Delphi method had been used in this study to establish a valid indicator system of evaluation in Ecotourism education; then followed by the analytic hierarchy process (AHP) with 11 paired-comparison matrices being constructed. Weights of these evaluation indicators were then determined by using Matlab 7.1. Throughout, data was obtained by doing sampling surveys, and the fuzzy comprehensive evaluation method was used to calculate the validity of Ecotourism education, where validity was classified into different levels. As the result, the evaluation model of the education effectiveness in Ecotourism was constructed. The Macau Special Administrative Region (Macau SAR) was chosen in this case for the empirical stage. Data of ecological knowledge, ecological cultural level, ecological consciousness, ecological ethics and ecological behaviors of tourists, who had entered and exited Macau SAR, was collected and analyzed in SPSS. Differences and impact of these indicators were studied to conclude the effect of its education in Ecotourism of this region. In addition, the results of education effectiveness in Ecotourism were also compared among different population subgroups and observations were given accordingly.
Fuzzy robust credibility-constrained programming for environmental management and planning.
Zhang, Yimei; Hang, Guohe
2010-06-01
In this study, a fuzzy robust credibility-constrained programming (FRCCP) is developed and applied to the planning for waste management systems. It incorporates the concepts of credibility-based chance-constrained programming and robust programming within an optimization framework. The developed method can reflect uncertainties presented as possibility-density by fuzzy-membership functions. Fuzzy credibility constraints are transformed to the crisp equivalents with different credibility levels, and ordinary fuzzy inclusion constraints are determined by their robust deterministic constraints by setting a-cut levels. The FRCCP method can provide different system costs under different credibility levels (lambda). From the results of sensitivity analyses, the operation cost of the landfill is a critical parameter. For the management, any factors that would induce cost fluctuation during landfilling operation would deserve serious observation and analysis. By FRCCP, useful solutions can be obtained to provide decision-making support for long-term planning of solid waste management systems. It could be further enhanced through incorporating methods of inexact analysis into its framework. It can also be applied to other environmental management problems.
NASA Astrophysics Data System (ADS)
Kiso, Atsushi; Seki, Hirokazu
This paper describes a method for discriminating of the human forearm motions based on the myoelectric signals using an adaptive fuzzy inference system. In conventional studies, the neural network is often used to estimate motion intention by the myoelectric signals and realizes the high discrimination precision. On the other hand, this study uses the fuzzy inference for a human forearm motion discrimination based on the myoelectric signals. This study designs the membership function and the fuzzy rules using the average value and the standard deviation of the root mean square of the myoelectric potential for every channel of each motion. In addition, the characteristics of the myoelectric potential gradually change as a result of the muscle fatigue. Therefore, the motion discrimination should be performed by taking muscle fatigue into consideration. This study proposes a method to redesign the fuzzy inference system such that dynamic change of the myoelectric potential because of the muscle fatigue will be taken into account. Some experiments carried out using a myoelectric hand simulator show the effectiveness of the proposed motion discrimination method.
NASA Astrophysics Data System (ADS)
Holmukhe, R. M.; Dhumale, Mrs. Sunita; Chaudhari, Mr. P. S.; Kulkarni, Mr. P. P.
2010-10-01
Load forecasting is very essential to the operation of Electricity companies. It enhances the energy efficient and reliable operation of power system. Forecasting of load demand data forms an important component in planning generation schedules in a power system. The purpose of this paper is to identify issues and better method for load foecasting. In this paper we focus on fuzzy logic system based short term load forecasting. It serves as overview of the state of the art in the intelligent techniques employed for load forecasting in power system planning and reliability. Literature review has been conducted and fuzzy logic method has been summarized to highlight advantages and disadvantages of this technique. The proposed technique for implementing fuzzy logic based forecasting is by Identification of the specific day and by using maximum and minimum temperature for that day and finally listing the maximum temperature and peak load for that day. The results show that Load forecasting where there are considerable changes in temperature parameter is better dealt with Fuzzy Logic system method as compared to other short term forecasting techniques.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Fuzzy logic particle tracking velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1993-01-01
Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.
Fuzzy Logic Approaches to Multi-Objective Decision-Making in Aerospace Applications
NASA Technical Reports Server (NTRS)
Hardy, Terry L.
1994-01-01
Fuzzy logic allows for the quantitative representation of multi-objective decision-making problems which have vague or fuzzy objectives and parameters. As such, fuzzy logic approaches are well-suited to situations where alternatives must be assessed by using criteria that are subjective and of unequal importance. This paper presents an overview of fuzzy logic and provides sample applications from the aerospace industry. Applications include an evaluation of vendor proposals, an analysis of future space vehicle options, and the selection of a future space propulsion system. On the basis of the results provided in this study, fuzzy logic provides a unique perspective on the decision-making process, allowing the evaluator to assess the degree to which each option meets the evaluation criteria. Future decision-making should take full advantage of fuzzy logic methods to complement existing approaches in the selection of alternatives.
Aquifer water abundance evaluation using a fuzzy- comprehensive weighting method
NASA Astrophysics Data System (ADS)
Wei, Z.
2016-08-01
Aquifer water abundance evaluation is a highly relevant issue that has been researched for many years. Despite prior research, problems with the conventional evaluation method remain. This paper establishes an aquifer water abundance evaluation method that combines fuzzy evaluation with a comprehensive weighting method to overcome both the subjectivity and lack of conformity in determining weight by pure data analysis alone. First, this paper introduces the principle of a fuzzy-comprehensive weighting method. Second, the example of well field no. 3 (of a coalfield) is used to illustrate the method's process. The evaluation results show that this method is can more suitably meet the real requirements of aquifer water abundance assessment, leading to more precise and accurate evaluations. Ultimately, this paper provides a new method for aquifer water abundance evaluation.
Using the Delphi method to develop nursing-sensitive quality indicators for the NICU.
Chen, Lin; Huang, Li-Hua; Xing, Mei-Yuan; Feng, Zhi-Xian; Shao, Le-Wen; Zhang, Mei-Yun; Shao, Rong-Ya
2017-02-01
To develop nursing-sensitive quality indicators consistent with current medical practices in Chinese neonatal intensive care units. The development of nursing-sensitive quality indicators has become a top priority in nursing management. To the best of our knowledge, there has been no objective, scientific and sensitive evaluation of the quality of neonatal intensive care unit nursing in China. A modified Delphi technique was used to seek opinions from experts about what should be used and prioritised as indicators of quality care in neonatal intensive care unit nursing. Based on a literature review, we identified 21 indicators of nursing-sensitive quality in the neonatal intensive care unit. Our group of 11 consultants chose 13 indicators to be discussed using the Delphi method. In October and November 2014, 39 neonatal intensive care unit experts in 18 tertiary hospitals spread across six provinces participated in two rounds of Delphi panels. Of the 13 indicators discussed, 11 were identified as indicators of nursing-sensitive quality in the neonatal intensive care unit: rate of nosocomial infections, rate of accidental endotracheal extubation, rate of errors in medication administration, rate of treatment for pain, rate of peripheral venous extravasation, rate of compliance with handwashing techniques, incidence of pressure ulcers, incidence of noise, the bed-to-care ratio, the proportion of nurses with greater than five years neonatal intensive care unit experience and incidence of retinopathy. The 11 neonatal intensive care unit nursing-sensitive indicators identified by the Delphi method integrated with basic Chinese practices provide a basis for nursing management and the monitoring of nursing quality. This study identified nursing-sensitive quality indicators for neonatal intensive care unit care that are suitable for current clinical practice in China. © 2016 John Wiley & Sons Ltd.
Twomey, Michèle; Wallis, Lee A; Myers, Jonathan E
2014-07-01
To evaluate the construct of triage acuity as measured by the South African Triage Scale (SATS) against a set of reference vignettes. A modified Delphi method was used to develop a set of reference vignettes. Delphi participants completed a 2-round consensus-building process, and independently assigned triage acuity ratings to 100 written vignettes unaware of the ratings given by others. Triage acuity ratings were summarised for all vignettes, and only those that reached 80% consensus during round 2 were included in the reference set. Triage ratings for the reference vignettes given by two independent experts using the SATS were compared with the ratings given by the international Delphi panel. Measures of sensitivity, specificity, associated percentages for over-triage/under-triage were used to evaluate the construct of triage acuity (as measured by the SATS) by examining the association between the ratings by the two experts and the international panel. On completion of the Delphi process, 42 of the 100 vignettes reached 80% consensus on their acuity rating and made up the reference set. On average, over all acuity levels, sensitivity was 74% (CI 64% to 82%), specificity 92% (CI 87% to 94%), under-triage occurred 14% (CI 8% to 23%) and over-triage 12% (CI 8% to 23%) of the time. The results of this study provide an alternative to evaluating triage scales against the construct of acuity as measured with the SATS. This method of using 80% consensus vignettes may, however, systematically bias the validity estimate towards better performance. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamadameen, Abdulqader Othman; Zainuddin, Zaitul Marlizawati
This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.
Mamdani Fuzzy System for Indoor Autonomous Mobile Robot
NASA Astrophysics Data System (ADS)
Khan, M. K. A. Ahamed; Rashid, Razif; Elamvazuthi, I.
2011-06-01
Several control algorithms for autonomous mobile robot navigation have been proposed in the literature. Recently, the employment of non-analytical methods of computing such as fuzzy logic, evolutionary computation, and neural networks has demonstrated the utility and potential of these paradigms for intelligent control of mobile robot navigation. In this paper, Mamdani fuzzy system for an autonomous mobile robot is developed. The paper begins with the discussion on the conventional controller and then followed by the description of fuzzy logic controller in detail.
Fuzzy variable impedance control based on stiffness identification for human-robot cooperation
NASA Astrophysics Data System (ADS)
Mao, Dachao; Yang, Wenlong; Du, Zhijiang
2017-06-01
This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.
Fuzzy model-based servo and model following control for nonlinear systems.
Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O
2009-12-01
This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.
Fuzzy feature selection based on interval type-2 fuzzy sets
NASA Astrophysics Data System (ADS)
Cherif, Sahar; Baklouti, Nesrine; Alimi, Adel; Snasel, Vaclav
2017-03-01
When dealing with real world data; noise, complexity, dimensionality, uncertainty and irrelevance can lead to low performance and insignificant judgment. Fuzzy logic is a powerful tool for controlling conflicting attributes which can have similar effects and close meanings. In this paper, an interval type-2 fuzzy feature selection is presented as a new approach for removing irrelevant features and reducing complexity. We demonstrate how can Feature Selection be joined with Interval Type-2 Fuzzy Logic for keeping significant features and hence reducing time complexity. The proposed method is compared with some other approaches. The results show that the number of attributes is proportionally small.
Fuzzy-Rough Nearest Neighbour Classification
NASA Astrophysics Data System (ADS)
Jensen, Richard; Cornelis, Chris
A new fuzzy-rough nearest neighbour (FRNN) classification algorithm is presented in this paper, as an alternative to Sarkar's fuzzy-rough ownership function (FRNN-O) approach. By contrast to the latter, our method uses the nearest neighbours to construct lower and upper approximations of decision classes, and classifies test instances based on their membership to these approximations. In the experimental analysis, we evaluate our approach with both classical fuzzy-rough approximations (based on an implicator and a t-norm), as well as with the recently introduced vaguely quantified rough sets. Preliminary results are very good, and in general FRNN outperforms FRNN-O, as well as the traditional fuzzy nearest neighbour (FNN) algorithm.
ERIC Educational Resources Information Center
Bishop, Dorothy V. M.; Snowling, Margaret J.; Thompson, Paul A.; Greenhalgh, Trisha
2017-01-01
Background: Lack of agreement about criteria and terminology for children's language problems affects access to services as well as hindering research and practice. We report the second phase of a study using an online Delphi method to address these issues. In the first phase, we focused on criteria for language disorder. Here we consider…
ERIC Educational Resources Information Center
Castilleja Gray, Beatrice
2016-01-01
Purpose: The purpose of this qualitative study was to identify and describe the most important factors that motivate or deter teachers in deciding to take on the informal or formal role of teacher-leader in Riverside County elementary school districts. Methodology: Endemic of a Delphi method, the instruments used within this study collected data…
ERIC Educational Resources Information Center
Davies, Emma; Martin, Jilly; Foxcroft, David
2016-01-01
Purpose: The purpose of this paper is to report on the use of the Delphi method to gain expert feedback on the identification of behaviour change techniques (BCTs) and development of a novel intervention to reduce adolescent alcohol misuse, based on the Prototype Willingness Model (PWM) of health risk behaviour. Design/methodology/approach: Four…
Developing a tool for the preparation of GMP audit of pharmaceutical contract manufacturer.
Linna, Anu; Korhonen, Mirka; Mannermaa, Jukka-Pekka; Airaksinen, Marja; Juppo, Anne Mari
2008-06-01
Outsourcing is rapidly growing in the pharmaceutical industry. When the manufacturing activities are outsourced, control of the product's quality has to be maintained. One way to confirm contract manufacturer's GMP (Good Manufacturing Practice) compliance is auditing. Audits can be supported for instance by using GMP questionnaires. The objective of this study was to develop a tool for the audit preparation of pharmaceutical contract manufacturers and to validate its contents by using Delphi method. At this phase of the study the tool was developed for non-sterile finished product contract manufacturers. A modified Delphi method was used with expert panel consisting of 14 experts from pharmaceutical industry, authorities and university. The content validity of the developed tool was assessed by a Delphi questionnaire round. The response rate in Delphi questionnaire round was 86%. The tool consisted of 103 quality items, from which 90 (87%) achieved the pre-defined agreement rate level (75%). Thirteen quality items which did not achieve the pre-defined agreement rate were excluded from the tool. The expert panel suggested only minor changes to the tool. The results show that the content validity of the developed audit preparation tool was good.
[Construction of a physiological aging scale for healthy people based on a modified Delphi method].
Long, Yao; Zhou, Xuan; Deng, Pengfei; Liao, Xiong; Wu, Lei; Zhou, Jianming; Huang, Helang
2016-04-01
To build a physiological aging scale for healthy people. We collected age-related physiologic items through literature screening and expert interview. Two rounds of Delphi were implemented. The importance, feasibility and the degree of authority for the physiological index system were graded. Using analytic hierarchy process, we determined the weight of dimensions and items. Using Delphy mothod, 17 physiological and other professional experts offered the results as follow: coefficient of expert authorities Cr was 0.86±0.03, coordination coefficients for the first and second round were 0.264(χ2=229.691, P<0.001) and 0.293(χ2=228.474,P<0.001), respectively. The consistency was good. The aging scale for healthy people included 3 dimensions, namely physical form, feeling movement and functional status. Each dimension had 8 items. The weight coefficients for the 3 dimensions were 0.54, 0.16, and 0.30, respectively. The Cronbach's α coefficient of the scale was 0.893, the reliability was 0.796, and the variance of the common factor was 58.17%. The improved Delphi method or physiological aging scale is satisfied, which can provide reference for the evaluation of aging.
Defining the role of a forensic hospital registered nurse using the Delphi method.
Newman, Claire; Patterson, Karen; Eason, Michelle; Short, Ben
2016-11-01
A Delphi survey was undertaken to refine the position description of a registered nurse working in a forensic hospital, in New South Wales, Australia. Prior to commencing operation in 2008, position descriptions were developed from a review of legislation, as well as policies and procedures used by existing forensic mental health services in Australia. With an established workforce and an evolving model of care, a review of the initial registered nurse position description was required. An online Delphi survey was undertaken. Eight executive (88.9%) and 12 (58.3%) senior nursing staff participated in the first survey round. A total of four survey rounds were completed. At the final round, there was consensus (70%) that the revised position description was either very or somewhat suitable. There were a total of nine statements, from 31 originally produced in round 1, that did not reach consensus. The Delphi survey enabled a process for refining the Forensic Hospital registered nurse position description. Methods that facilitate executive and senior nursing staff consensus in the development and review of position descriptions should be considered in nursing management. © 2016 John Wiley & Sons Ltd.
Anatomical Society core regional anatomy syllabus for undergraduate medicine: the Delphi process.
Smith, C F; Finn, G M; Stewart, J; McHanwell, S
2016-01-01
A modified Delphi method was employed to seek consensus when revising the UK and Ireland's core syllabus for regional anatomy in undergraduate medicine. A Delphi panel was constructed involving 'expert' (individuals with at least 5 years' experience in teaching medical students anatomy at the level required for graduation). The panel (n = 39) was selected and nominated by members of Council and/or the Education Committee of the Anatomical Society and included a range of specialists including surgeons, radiologists and anatomists. The experts were asked in two stages to 'accept', 'reject' or 'modify' (first stage only) each learning outcome. A third stage, which was not part of the Delphi method, then allowed the original authors of the syllabus to make changes either to correct any anatomical errors or to make minor syntax changes. From the original syllabus of 182 learning outcomes, removing the neuroanatomy component (163), 23 learning outcomes (15%) remained unchanged, seven learning outcomes were removed and two new learning outcomes added. The remaining 133 learning outcomes were modified. All learning outcomes on the new core syllabus achieved over 90% acceptance by the panel. © 2015 Anatomical Society.
Blackwood, Bronagh; Ringrow, Suzanne; Clarke, Mike; Marshall, John; Rose, Louise; Williamson, Paula; McAuley, Danny
2015-08-20
Among clinical trials of interventions that aim to modify time spent on mechanical ventilation for critically ill patients there is considerable inconsistency in chosen outcomes and how they are measured. The Core Outcomes in Ventilation Trials (COVenT) study aims to develop a set of core outcomes for use in future ventilation trials in mechanically ventilated adults and children. We will use a mixed methods approach that incorporates a randomised trial nested within a Delphi study and a consensus meeting. Additionally, we will conduct an observational cohort study to evaluate uptake of the core outcome set in published studies at 5 and 10 years following core outcome set publication. The three-round online Delphi study will use a list of outcomes that have been reported previously in a review of ventilation trials. The Delphi panel will include a range of stakeholder groups including patient support groups. The panel will be randomised to one of three feedback methods to assess the impact of the feedback mechanism on subsequent ranking of outcomes. A final consensus meeting will be held with stakeholder representatives to review outcomes. The COVenT study aims to develop a core outcome set for ventilation trials in critical care, explore the best Delphi feedback mechanism for achieving consensus and determine if participation increases use of the core outcome set in the long term.
van Vliet, Daphne C R; van der Meij, Eva; Bouwsma, Esther V A; Vonk Noordegraaf, Antonie; van den Heuvel, Baukje; Meijerink, Wilhelmus J H J; van Baal, W Marchien; Huirne, Judith A F; Anema, Johannes R
2016-12-01
Evidence-based information on the resumption of daily activities following uncomplicated abdominal surgery is scarce and not yet standardized in medical guidelines. As a consequence, convalescence recommendations are generally not provided after surgery, leading to patients' insecurity, needlessly delayed recovery and prolonged sick leave. The aim of this study was to generate consensus-based multidisciplinary convalescence recommendations, including advice on return to work, applicable for both patients and physicians. Using a modified Delphi method among a multidisciplinary panel of 13 experts consisting of surgeons, occupational physicians and general practitioners, detailed recommendations were developed for graded resumption of 34 activities after uncomplicated laparoscopic cholecystectomy, laparoscopic and open appendectomy, laparoscopic and open colectomy and laparoscopic and open inguinal hernia repair. A sample of occupational physicians, general practitioners and surgeons assessed the recommendations on feasibility in daily practice. The response of this group of care providers was discussed with the experts in the final Delphi questionnaire round. Out of initially 56 activities, the expert panel selected 34 relevant activities for which convalescence recommendations were developed. After four Delphi rounds, consensus was reached for all of the 34 activities for all the surgical procedures. A sample of occupational physicians, general practitioners and surgeons regarded the recommendations as feasible in daily practice. Multidisciplinary convalescence recommendations regarding uncomplicated laparoscopic cholecystectomy, appendectomy (laparoscopic, open), colectomy (laparoscopic, open) and inguinal hernia repair (laparoscopic, open) were developed by a modified Delphi procedure. Further research is required to evaluate whether these recommendations are realistic and effective in daily practice.
Standardizing hysteroscopy teaching: development of a curriculum using the Delphi method.
Neveu, Marie-Emmanuelle; Debras, Elodie; Niro, Julien; Fernandez, Hervé; Panel, Pierre
2017-12-01
Hysteroscopy is performed often and in many indications but is challenging to learn. Hands-on training in live patients faces ethical, legal, and economic obstacles. Virtual reality simulation may hold promise as a hysteroscopy training tool. No validated curriculum specific in hysteroscopy exists. The aim of this study was to develop a hysteroscopy curriculum, using the Delphi method to identify skill requirements. Based on a literature review using the key words "curriculum," "simulation," and "hysteroscopy," we identified five technical and non-technical areas in which skills were required. Twenty hysteroscopy experts from different French hospital departments participated in Delphi rounds to select items in these five areas. The rounds were to be continued until 80-100% agreement was obtained for at least 60% of items. A curriculum was built based on the selected items and was evaluated in residents. From November 2014 to April 2015, 18 of 20 invited experts participated in three Delphi rounds. Of the 51 items selected during the first round, only 25 (49%) had 80-100% agreement during the second round, and a third round was therefore conducted. During this last round, 80-100% agreement was achieved for 31 (61%) items, which were used to create the curriculum. All 14 residents tested felt that a simulator training session was acceptable and helped them to improve their skills. We describe a simulation-based hysteroscopy curriculum focusing on skill requirements identified by a Delphi procedure. Its development allows standardization of training programs offered to residents.
Designing a Standardized Laparoscopy Curriculum for Gynecology Residents: A Delphi Approach
Shore, Eliane M.; Lefebvre, Guylaine G.; Husslein, Heinrich; Bjerrum, Flemming; Sorensen, Jette Led; Grantcharov, Teodor P.
2015-01-01
Background Evidence suggests that simulation leads to improved operative skill, shorter operating room time, and better patient outcomes. Currently, no standardized laparoscopy curriculum exists for gynecology residents. Objective To design a structured laparoscopy curriculum for gynecology residents using Delphi consensus methodology. Methods This study began with Delphi methodology to determine expert consensus on the components of a gynecology laparoscopic skills curriculum. We generated a list of cognitive content, technical skills, and nontechnical skills for training in laparoscopic surgery, and asked 39 experts in gynecologic education to rate the items on a Likert scale (1–5) for inclusion in the curriculum. Consensus was predefined as Cronbach α of ≥ 0.80. We then conducted another Delphi survey with 9 experienced users of laparoscopic virtual reality simulators to delineate relevant curricular tasks. Finally, a cross-sectional design defined benchmark scores for all identified tasks, with 10 experienced gynecologic surgeons performing the identified tasks at basic, intermediate, and advanced levels. Results Consensus (Cronbach α = 0.85) was achieved in the first round of the curriculum Delphi, and after 2 rounds (Cronbach α = 0.80) in the virtual reality curriculum Delphi. Consensus was reached for cognitive, technical, and nontechnical skills as well as for 6 virtual reality tasks. Median time and economy of movement scores defined benchmarks for all tasks. Conclusions This study used Delphi consensus to develop a comprehensive curriculum for teaching gynecologic laparoscopy. The curriculum conforms to current educational standards of proficiency-based training, and is suggested as a standard in residency programs. PMID:26221434
Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian; Huliraj, N; Revadi, S S
2016-07-01
Monitoring respiration is important in several medical applications. One such application is respiratory rate monitoring in patients with sleep apnoea. The respiratory rate in patients with sleep apnoea disorder is irregular compared with the controls. Respiratory phase detection is required for a proper monitoring of respiration in patients with sleep apnoea. To develop a model to detect the respiratory phases present in the pulmonary acoustic signals and to evaluate the performance of the model in detecting the respiratory phases. Normalised averaged power spectral density for each frame and change in normalised averaged power spectral density between the adjacent frames were fuzzified and fuzzy rules were formulated. The fuzzy inference system (FIS) was developed with both Mamdani and Sugeno methods. To evaluate the performance of both Mamdani and Sugeno methods, correlation coefficient and root mean square error (RMSE) were calculated. In the correlation coefficient analysis in evaluating the fuzzy model using Mamdani and Sugeno method, the strength of the correlation was found to be r = 0.9892 and r = 0.9964, respectively. The RMSE for Mamdani and Sugeno methods are RMSE = 0.0853 and RMSE = 0.0817, respectively. The correlation coefficient and the RMSE of the proposed fuzzy models in detecting the respiratory phases reveals that Sugeno method performs better compared with the Mamdani method. © 2014 John Wiley & Sons Ltd.
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639
Fuzzy architecture assessment for critical infrastructure resilience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, George
2012-12-01
This paper presents an approach for the selection of alternative architectures in a connected infrastructure system to increase resilience of the overall infrastructure system. The paper begins with a description of resilience and critical infrastructure, then summarizes existing approaches to resilience, and presents a fuzzy-rule based method of selecting among alternative infrastructure architectures. This methodology includes considerations which are most important when deciding on an approach to resilience. The paper concludes with a proposed approach which builds on existing resilience architecting methods by integrating key system aspects using fuzzy memberships and fuzzy rule sets. This novel approach aids the systemsmore » architect in considering resilience for the evaluation of architectures for adoption into the final system architecture.« less
Incomplete fuzzy data processing systems using artificial neural network
NASA Technical Reports Server (NTRS)
Patyra, Marek J.
1992-01-01
In this paper, the implementation of a fuzzy data processing system using an artificial neural network (ANN) is discussed. The binary representation of fuzzy data is assumed, where the universe of discourse is decartelized into n equal intervals. The value of a membership function is represented by a binary number. It is proposed that incomplete fuzzy data processing be performed in two stages. The first stage performs the 'retrieval' of incomplete fuzzy data, and the second stage performs the desired operation on the retrieval data. The method of incomplete fuzzy data retrieval is proposed based on the linear approximation of missing values of the membership function. The ANN implementation of the proposed system is presented. The system was computationally verified and showed a relatively small total error.
[Identification of the scope of practice for dental nurses with Delphi method].
Li, Yu-Hong; Lu, Yue-Cen; Huang, Yao; Ruan, Hong; Wu, Zheng-Yi
2016-10-01
To identify the practice scope of dental nurses under the new situations. The draft of scope of practice for dental nurses was based on theoretical analysis, literature review and consultation of advisory panel, and the final scope of practice for dental nurses was established by using the Delphi method. Statistical analysis was implemented using coefficient of variation, Kendall W with SPSS 17.0 software package. Thirty experts were consulted twice by using the Delphi method. The effective rates of two rounds of questionnaire were 100% and 73.3%, respectively. The authority coefficient was 0.837, and the P value of expert coordination coefficients W was less than 0.05. There were totally 116 suggestions from the experts, and 96 were accepted. The scope of practice for dental nurses was finally established, including 4 primary indexes and 25 secondary indexes. The scope of practice for dental nurses under the new situations is established in China through scientific methods. It is favorable for position management of dental nurses and may promote the development of nurse specialists in dental clinic.
The Accuracy Of Fuzzy Sugeno Method With Antropometry On Determination Natural Patient Status
NASA Astrophysics Data System (ADS)
Syahputra, Dinur; Tulus; Sawaluddin
2017-12-01
Anthropometry is one of the processes that can be used to assess nutritional status. In general anthropometry is defined as body size in terms of nutrition, then anthropometry is reviewed from various age levels and nutritional levels. Nutritional status is a description of the balance between nutritional intake with the needs of the body individually. Fuzzy logic is a logic that has a vagueness between right and wrong or between 0 and 1. Sugeno method is used because in the process of calculating nutritional status so far is still done by anthropometry. Currently information technology is growing in any aspect, one of them in the aspect of calculation with data taken from anthropometry. In this case the calculation can use the Fuzzy Sugeno Method, in order to know the great accuracy obtained. Then the results obtained using fuzzy sugeno integrated with anthropometry has an accuracy of 81.48%.
Scheduling of flow shop problems on 3 machines in fuzzy environment with double transport facility
NASA Astrophysics Data System (ADS)
Sathish, Shakeela; Ganesan, K.
2016-06-01
Flow shop scheduling is a decision making problem in production and manufacturing field which has a significant impact on the performance of an organization. When the machines on which jobs are to be processed are placed at different places, the transportation time plays a significant role in production. Further two different transport agents where 1st takes the job from 1st machine to 2nd machine and then returns back to the first machine and the 2nd takes the job from 2nd machine to 3rd machine and then returns back to the 2nd machine are also considered. We propose a method to minimize the total make span; without converting the fuzzy processing time to classical numbers by using a new type of fuzzy arithmetic and a fuzzy ranking method. A numerical example is provided to explain the proposed method.
Use of the Delphi method in resolving complex water resources issues
Taylor, J.G.; Ryder, S.D.
2003-01-01
The tri-state river basins, shared by Georgia, Alabama, and Florida, are being modeled by the U.S. Fish and Wildlife Service and the U.S. Army Corps of Engineers to help facilitate agreement in an acrimonious water dispute among these different state governments. Modeling of such basin reservoir operations requires parallel understanding of several river system components: hydropower production, flood control, municipal and industrial water use, navigation, and reservoir fisheries requirements. The Delphi method, using repetitive surveying of experts, was applied to determine fisheries' water and lake-level requirements on 25 reservoirs in these interstate basins. The Delphi technique allowed the needs and requirements of fish populations to be brought into the modeling effort on equal footing with other water supply and demand components. When the subject matter is concisely defined and limited, this technique can rapidly assess expert opinion on any natural resource issue, and even move expert opinion toward greater agreement.
NASA Astrophysics Data System (ADS)
Ngastiti, P. T. B.; Surarso, Bayu; Sutimin
2018-05-01
Transportation issue of the distribution problem such as the commodity or goods from the supply tothe demmand is to minimize the transportation costs. Fuzzy transportation problem is an issue in which the transport costs, supply and demand are in the form of fuzzy quantities. Inthe case study at CV. Bintang Anugerah Elektrik, a company engages in the manufacture of gensets that has more than one distributors. We use the methods of zero point and zero suffix to investigate the transportation minimum cost. In implementing both methods, we use robust ranking techniques for the defuzzification process. The studyresult show that the iteration of zero suffix method is less than that of zero point method.
Dynamic Trajectory Extraction from Stereo Vision Using Fuzzy Clustering
NASA Astrophysics Data System (ADS)
Onishi, Masaki; Yoda, Ikushi
In recent years, many human tracking researches have been proposed in order to analyze human dynamic trajectory. These researches are general technology applicable to various fields, such as customer purchase analysis in a shopping environment and safety control in a (railroad) crossing. In this paper, we present a new approach for tracking human positions by stereo image. We use the framework of two-stepped clustering with k-means method and fuzzy clustering to detect human regions. In the initial clustering, k-means method makes middle clusters from objective features extracted by stereo vision at high speed. In the last clustering, c-means fuzzy method cluster middle clusters based on attributes into human regions. Our proposed method can be correctly clustered by expressing ambiguity using fuzzy clustering, even when many people are close to each other. The validity of our technique was evaluated with the experiment of trajectories extraction of doctors and nurses in an emergency room of a hospital.
Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system.
El-Bardini, Mohammad; El-Nagar, Ahmad M
2014-05-01
In this paper, the interval type-2 fuzzy proportional-integral-derivative controller (IT2F-PID) is proposed for controlling an inverted pendulum on a cart system with an uncertain model. The proposed controller is designed using a new method of type-reduction that we have proposed, which is called the simplified type-reduction method. The proposed IT2F-PID controller is able to handle the effect of structure uncertainties due to the structure of the interval type-2 fuzzy logic system (IT2-FLS). The results of the proposed IT2F-PID controller using a new method of type-reduction are compared with the other proposed IT2F-PID controller using the uncertainty bound method and the type-1 fuzzy PID controller (T1F-PID). The simulation and practical results show that the performance of the proposed controller is significantly improved compared with the T1F-PID controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Integration of QFD, AHP, and LPP methods in supplier development problems under uncertainty
NASA Astrophysics Data System (ADS)
Shad, Zahra; Roghanian, Emad; Mojibian, Fatemeh
2014-04-01
Quality function deployment (QFD) is a customer-driven approach, widely used to develop or process new product to maximize customer satisfaction. Last researches used linear physical programming (LPP) procedure to optimize QFD; however, QFD issue involved uncertainties, or fuzziness, which requires taking them into account for more realistic study. In this paper, a set of fuzzy data is used to address linguistic values parameterized by triangular fuzzy numbers. Proposed integrated approach including analytic hierarchy process (AHP), QFD, and LPP to maximize overall customer satisfaction under uncertain conditions and apply them in the supplier development problem. The fuzzy AHP approach is adopted as a powerful method to obtain the relationship between the customer requirements and engineering characteristics (ECs) to construct house of quality in QFD method. LPP is used to obtain the optimal achievement level of the ECs and subsequently the customer satisfaction level under different degrees of uncertainty. The effectiveness of proposed method will be illustrated by an example.
Creation and Delphi-method refinement of pediatric disaster triage simulations.
Cicero, Mark X; Brown, Linda; Overly, Frank; Yarzebski, Jorge; Meckler, Garth; Fuchs, Susan; Tomassoni, Anthony; Aghababian, Richard; Chung, Sarita; Garrett, Andrew; Fagbuyi, Daniel; Adelgais, Kathleen; Goldman, Ran; Parker, James; Auerbach, Marc; Riera, Antonio; Cone, David; Baum, Carl R
2014-01-01
There is a need for rigorously designed pediatric disaster triage (PDT) training simulations for paramedics. First, we sought to design three multiple patient incidents for EMS provider training simulations. Our second objective was to determine the appropriate interventions and triage level for each victim in each of the simulations and develop evaluation instruments for each simulation. The final objective was to ensure that each simulation and evaluation tool was free of bias toward any specific PDT strategy. We created mixed-methods disaster simulation scenarios with pediatric victims: a school shooting, a school bus crash, and a multiple-victim house fire. Standardized patients, high-fidelity manikins, and low-fidelity manikins were used to portray the victims. Each simulation had similar acuity of injuries and 10 victims. Examples include children with special health-care needs, gunshot wounds, and smoke inhalation. Checklist-based evaluation tools and behaviorally anchored global assessments of function were created for each simulation. Eight physicians and paramedics from areas with differing PDT strategies were recruited as Subject Matter Experts (SMEs) for a modified Delphi iterative critique of the simulations and evaluation tools. The modified Delphi was managed with an online survey tool. The SMEs provided an expected triage category for each patient. The target for modified Delphi consensus was ≥85%. Using Likert scales and free text, the SMEs assessed the validity of the simulations, including instances of bias toward a specific PDT strategy, clarity of learning objectives, and the correlation of the evaluation tools to the learning objectives and scenarios. After two rounds of the modified Delphi, consensus for expected triage level was >85% for 28 of 30 victims, with the remaining two achieving >85% consensus after three Delphi iterations. To achieve consensus, we amended 11 instances of bias toward a specific PDT strategy and corrected 10 instances of noncorrelation between evaluations and simulation. The modified Delphi process, used to derive novel PDT simulation and evaluation tools, yielded a high degree of consensus among the SMEs, and eliminated biases toward specific PDT strategies in the evaluations. The simulations and evaluation tools may now be tested for reliability and validity as part of a prehospital PDT curriculum.
Design of a self-adaptive fuzzy PID controller for piezoelectric ceramics micro-displacement system
NASA Astrophysics Data System (ADS)
Zhang, Shuang; Zhong, Yuning; Xu, Zhongbao
2008-12-01
In order to improve control precision of the piezoelectric ceramics (PZT) micro-displacement system, a self-adaptive fuzzy Proportional Integration Differential (PID) controller is designed based on the traditional digital PID controller combining with fuzzy control. The arithmetic gives a fuzzy control rule table with the fuzzy control rule and fuzzy reasoning, through this table, the PID parameters can be adjusted online in real time control. Furthermore, the automatic selective control is achieved according to the change of the error. The controller combines the good dynamic capability of the fuzzy control and the high stable precision of the PID control, adopts the method of using fuzzy control and PID control in different segments of time. In the initial and middle stage of the transition process of system, that is, when the error is larger than the value, fuzzy control is used to adjust control variable. It makes full use of the fast response of the fuzzy control. And when the error is smaller than the value, the system is about to be in the steady state, PID control is adopted to eliminate static error. The problems of PZT existing in the field of precise positioning are overcome. The results of the experiments prove that the project is correct and practicable.
Train repathing in emergencies based on fuzzy linear programming.
Meng, Xuelei; Cui, Bingmou
2014-01-01
Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.
Fuzzy set methods for object recognition in space applications
NASA Technical Reports Server (NTRS)
Keller, James M.
1992-01-01
Progress on the following tasks is reported: feature calculation; membership calculation; clustering methods (including initial experiments on pose estimation); and acquisition of images (including camera calibration information for digitization of model). The report consists of 'stand alone' sections, describing the activities in each task. We would like to highlight the fact that during this quarter, we believe that we have made a major breakthrough in the area of fuzzy clustering. We have discovered a method to remove the probabilistic constraints that the sum of the memberships across all classes must add up to 1 (as in the fuzzy c-means). A paper, describing this approach, is included.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
.../Electronic Architecture, a Subsidiary of Delphi Corporation, Including On-Site Leased Workers From Bartech... Assistance on December 8th, 2009, applicable to workers of Delphi Packard Electrical/Electronic Architecture... location of Delphi Packard Electrical/Electronic Architecture, a subsidiary of Delphi Corporation. The...
Reflections of Tomorrow: Lifelong Learning and the Public Library (A Delphi Study). Excerpts.
ERIC Educational Resources Information Center
Weingand, Darlene E.
This study focuses on the question of whether the public library can or will be one of the non-formal providers of lifelong learning in Minnesota, and uses the Delphi method to discover in what way the public library as it is perceived by various publics could become an active participant in this dimension of the educational process. Five groups…
ERIC Educational Resources Information Center
Zunker, Norma D.; Pearce, Daniel L.
2012-01-01
The first part of this study explored the significant works pertaining to the understanding of reading comprehension using a Modified Delphi Method. A panel of reading comprehension experts identified 19 works they considered to be significant to the understanding of reading comprehension. The panel of experts identified the reasons they…
Guo, Lu; Wang, Ping; Sun, Ranran; Yang, Chengwen; Zhang, Ning; Guo, Yu; Feng, Yuanming
2018-02-19
The diffusion and perfusion magnetic resonance (MR) images can provide functional information about tumour and enable more sensitive detection of the tumour extent. We aimed to develop a fuzzy feature fusion method for auto-segmentation of gliomas in radiotherapy planning using multi-parametric functional MR images including apparent diffusion coefficient (ADC), fractional anisotropy (FA) and relative cerebral blood volume (rCBV). For each functional modality, one histogram-based fuzzy model was created to transform image volume into a fuzzy feature space. Based on the fuzzy fusion result of the three fuzzy feature spaces, regions with high possibility belonging to tumour were generated automatically. The auto-segmentations of tumour in structural MR images were added in final auto-segmented gross tumour volume (GTV). For evaluation, one radiation oncologist delineated GTVs for nine patients with all modalities. Comparisons between manually delineated and auto-segmented GTVs showed that, the mean volume difference was 8.69% (±5.62%); the mean Dice's similarity coefficient (DSC) was 0.88 (±0.02); the mean sensitivity and specificity of auto-segmentation was 0.87 (±0.04) and 0.98 (±0.01) respectively. High accuracy and efficiency can be achieved with the new method, which shows potential of utilizing functional multi-parametric MR images for target definition in precision radiation treatment planning for patients with gliomas.
NASA Astrophysics Data System (ADS)
Anisimov, D. N.; Dang, Thai Son; Banerjee, Santo; Mai, The Anh
2017-07-01
In this paper, an intelligent system use fuzzy-PD controller based on relation models is developed for a two-wheeled self-balancing robot. Scaling factors of the fuzzy-PD controller are optimized by a Cross-Entropy optimization method. A linear Quadratic Regulator is designed to bring a comparison with the fuzzy-PD controller by control quality parameters. The controllers are ported and run on STM32F4 Discovery Kit based on the real-time operating system. The experimental results indicate that the proposed fuzzy-PD controller runs exactly on embedded system and has desired performance in term of fast response, good balance and stabilize.
Defect inspection in hot slab surface: multi-source CCD imaging based fuzzy-rough sets method
NASA Astrophysics Data System (ADS)
Zhao, Liming; Zhang, Yi; Xu, Xiaodong; Xiao, Hong; Huang, Chao
2016-09-01
To provide an accurate surface defects inspection method and make the automation of robust image region of interests(ROI) delineation strategy a reality in production line, a multi-source CCD imaging based fuzzy-rough sets method is proposed for hot slab surface quality assessment. The applicability of the presented method and the devised system are mainly tied to the surface quality inspection for strip, billet and slab surface etcetera. In this work we take into account the complementary advantages in two common machine vision (MV) systems(line array CCD traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging)), and through establishing the model of fuzzy-rough sets in the detection system the seeds for relative fuzzy connectedness(RFC) delineation for ROI can placed adaptively, which introduces the upper and lower approximation sets for RIO definition, and by which the boundary region can be delineated by RFC region competitive classification mechanism. For the first time, a Multi-source CCD imaging based fuzzy-rough sets strategy is attempted for CC-slab surface defects inspection that allows an automatic way of AI algorithms and powerful ROI delineation strategies to be applied to the MV inspection field.
Development of fuzzy air quality index using soft computing approach.
Mandal, T; Gorai, A K; Pathak, G
2012-10-01
Proper assessment of air quality status in an atmosphere based on limited observations is an essential task for meeting the goals of environmental management. A number of classification methods are available for estimating the changing status of air quality. However, a discrepancy frequently arises from the quality criteria of air employed and vagueness or fuzziness embedded in the decision making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies like air quality index when describing integrated air quality conditions with respect to various pollutants parameters and time of exposure. In recent years, the fuzzy logic-based methods have demonstrated to be appropriated to address uncertainty and subjectivity in environmental issues. In the present study, a methodology based on fuzzy inference systems (FIS) to assess air quality is proposed. This paper presents a comparative study to assess status of air quality using fuzzy logic technique and that of conventional technique. The findings clearly indicate that the FIS may successfully harmonize inherent discrepancies and interpret complex conditions.
Fan, Yurui; Huang, Guohe; Veawab, Amornvadee
2012-01-01
In this study, a generalized fuzzy linear programming (GFLP) method was developed to deal with uncertainties expressed as fuzzy sets that exist in the constraints and objective function. A stepwise interactive algorithm (SIA) was advanced to solve GFLP model and generate solutions expressed as fuzzy sets. To demonstrate its application, the developed GFLP method was applied to a regional sulfur dioxide (SO2) control planning model to identify effective SO2 mitigation polices with a minimized system performance cost under uncertainty. The results were obtained to represent the amount of SO2 allocated to different control measures from different sources. Compared with the conventional interval-parameter linear programming (ILP) approach, the solutions obtained through GFLP were expressed as fuzzy sets, which can provide intervals for the decision variables and objective function, as well as related possibilities. Therefore, the decision makers can make a tradeoff between model stability and the plausibility based on solutions obtained through GFLP and then identify desired policies for SO2-emission control under uncertainty.
Nie, Xianghui; Huang, Guo H; Li, Yongping
2009-11-01
This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.
Cost-Sharing of Ecological Construction Based on Trapezoidal Intuitionistic Fuzzy Cooperative Games
Liu, Jiacai; Zhao, Wenjian
2016-01-01
There exist some fuzziness and uncertainty in the process of ecological construction. The aim of this paper is to develop a direct and an effective simplified method for obtaining the cost-sharing scheme when some interested parties form a cooperative coalition to improve the ecological environment of Min River together. Firstly, we propose the solution concept of the least square prenucleolus of cooperative games with coalition values expressed by trapezoidal intuitionistic fuzzy numbers. Then, based on the square of the distance in the numerical value between two trapezoidal intuitionistic fuzzy numbers, we establish a corresponding quadratic programming model to obtain the least square prenucleolus, which can effectively avoid the information distortion and uncertainty enlargement brought about by the subtraction of trapezoidal intuitionistic fuzzy numbers. Finally, we give a numerical example about the cost-sharing of ecological construction in Fujian Province in China to show the validity, applicability, and advantages of the proposed model and method. PMID:27834830
Fuzzy Finite-Time Command Filtered Control of Nonlinear Systems With Input Saturation.
Yu, Jinpeng; Zhao, Lin; Yu, Haisheng; Lin, Chong; Dong, Wenjie
2017-08-22
This paper considers the fuzzy finite-time tracking control problem for a class of nonlinear systems with input saturation. A novel fuzzy finite-time command filtered backstepping approach is proposed by introducing the fuzzy finite-time command filter, designing the new virtual control signals and the modified error compensation signals. The proposed approach not only holds the advantages of the conventional command-filtered backstepping control, but also guarantees the finite-time convergence. A practical example is included to show the effectiveness of the proposed method.
Fuzzy neural network methodology applied to medical diagnosis
NASA Technical Reports Server (NTRS)
Gorzalczany, Marian B.; Deutsch-Mcleish, Mary
1992-01-01
This paper presents a technique for building expert systems that combines the fuzzy-set approach with artificial neural network structures. This technique can effectively deal with two types of medical knowledge: a nonfuzzy one and a fuzzy one which usually contributes to the process of medical diagnosis. Nonfuzzy numerical data is obtained from medical tests. Fuzzy linguistic rules describing the diagnosis process are provided by a human expert. The proposed method has been successfully applied in veterinary medicine as a support system in the diagnosis of canine liver diseases.
[Application of fuzzy mathematics on modifying taste of oral solution of traditional Chinese drug].
Wang, Youjie; Feng, Yi; Zhang, Bo
2009-01-01
To apply Fuzzy mathematical methods to choose the best taste modifying prescription of oral solution of traditional Chinese drug. Jin-Fukang oral solution was used as a model drug. The oral solution was prepared in different taste modifying prescriptions, whose tastes were evaluated by the fuzzy quality synthetic evaluation system. Compound-sweeteners with Sucralose and Erythritol was the best choice. Fuzzy integrated evaluation can be used to evaluate the taste of traditional Chinese medicinal pharmaceuticals, which overcame the artificial factors and achieve more objective conclusion.
Fuzzy compromise: An effective way to solve hierarchical design problems
NASA Technical Reports Server (NTRS)
Allen, J. K.; Krishnamachari, R. S.; Masetta, J.; Pearce, D.; Rigby, D.; Mistree, F.
1990-01-01
In this paper, we present a method for modeling design problems using a compromise decision support problem (DSP) incorporating the principles embodied in fuzzy set theory. Specifically, the fuzzy compromise decision support problem is used to study hierarchical design problems. This approach has the advantage that although the system modeled has an element of uncertainty associated with it, the solution obtained is crisp and precise. The efficacy of incorporating fuzzy sets into the solution process is discussed in the context of results obtained for a portal frame.
Research on assessment methods for urban public transport development in China.
Zou, Linghong; Dai, Hongna; Yao, Enjian; Jiang, Tian; Guo, Hongwei
2014-01-01
In recent years, with the rapid increase in urban population, the urban travel demands in Chinese cities have been increasing dramatically. As a result, developing comprehensive urban transport systems becomes an inevitable choice to meet the growing urban travel demands. In urban transport systems, public transport plays the leading role to promote sustainable urban development. This paper aims to establish an assessment index system for the development level of urban public transport consisting of a target layer, a criterion layer, and an index layer. Review on existing literature shows that methods used in evaluating urban public transport structure are dominantly qualitative. To overcome this shortcoming, fuzzy mathematics method is used for describing qualitative issues quantitatively, and AHP (analytic hierarchy process) is used to quantify expert's subjective judgment. The assessment model is established based on the fuzzy AHP. The weight of each index is determined through the AHP and the degree of membership of each index through the fuzzy assessment method to obtain the fuzzy synthetic assessment matrix. Finally, a case study is conducted to verify the rationality and practicability of the assessment system and the proposed assessment method.
A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals
Castañón–Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo
2015-01-01
The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi–Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information. PMID:26633417
A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals.
Castañón-Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo
2015-12-02
The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi-Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information.
NASA Astrophysics Data System (ADS)
RazaviToosi, S. L.; Samani, J. M. V.
2016-03-01
Watersheds are considered as hydrological units. Their other important aspects such as economic, social and environmental functions play crucial roles in sustainable development. The objective of this work is to develop methodologies to prioritize watersheds by considering different development strategies in environmental, social and economic sectors. This ranking could play a significant role in management to assign the most critical watersheds where by employing water management strategies, best condition changes are expected to be accomplished. Due to complex relations among different criteria, two new hybrid fuzzy ANP (Analytical Network Process) algorithms, fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and fuzzy max-min set methods are used to provide more flexible and accurate decision model. Five watersheds in Iran named Oroomeyeh, Atrak, Sefidrood, Namak and Zayandehrood are considered as alternatives. Based on long term development goals, 38 water management strategies are defined as subcriteria in 10 clusters. The main advantage of the proposed methods is its ability to overcome uncertainty. This task is accomplished by using fuzzy numbers in all steps of the algorithms. To validate the proposed method, the final results were compared with those obtained from the ANP algorithm and the Spearman rank correlation coefficient is applied to find the similarity in the different ranking methods. Finally, the sensitivity analysis was conducted to investigate the influence of cluster weights on the final ranking.
Two-stage fuzzy-stochastic robust programming: a hybrid model for regional air quality management.
Li, Yongping; Huang, Guo H; Veawab, Amornvadee; Nie, Xianghui; Liu, Lei
2006-08-01
In this study, a hybrid two-stage fuzzy-stochastic robust programming (TFSRP) model is developed and applied to the planning of an air-quality management system. As an extension of existing fuzzy-robust programming and two-stage stochastic programming methods, the TFSRP can explicitly address complexities and uncertainties of the study system without unrealistic simplifications. Uncertain parameters can be expressed as probability density and/or fuzzy membership functions, such that robustness of the optimization efforts can be enhanced. Moreover, economic penalties as corrective measures against any infeasibilities arising from the uncertainties are taken into account. This method can, thus, provide a linkage to predefined policies determined by authorities that have to be respected when a modeling effort is undertaken. In its solution algorithm, the fuzzy decision space can be delimited through specification of the uncertainties using dimensional enlargement of the original fuzzy constraints. The developed model is applied to a case study of regional air quality management. The results indicate that reasonable solutions have been obtained. The solutions can be used for further generating pollution-mitigation alternatives with minimized system costs and for providing a more solid support for sound environmental decisions.
Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm
NASA Astrophysics Data System (ADS)
Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung
2016-07-01
In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.
NASA Astrophysics Data System (ADS)
Shankar Kumar, Ravi; Goswami, A.
2015-06-01
The article scrutinises the learning effect of the unit production time on optimal lot size for the uncertain and imprecise imperfect production process, wherein shortages are permissible and partially backlogged. Contextually, we contemplate the fuzzy chance of production process shifting from an 'in-control' state to an 'out-of-control' state and re-work facility of imperfect quality of produced items. The elapsed time until the process shifts is considered as a fuzzy random variable, and consequently, fuzzy random total cost per unit time is derived. Fuzzy expectation and signed distance method are used to transform the fuzzy random cost function into an equivalent crisp function. The results are illustrated with the help of numerical example. Finally, sensitivity analysis of the optimal solution with respect to major parameters is carried out.
Daykin, Norma; Mansfield, Louise; Payne, Annette; Kay, Tess; Meads, Catherine; D'Innocenzo, Giorgia; Burnett, Adele; Dolan, Paul; Julier, Guy; Longworth, Louise; Tomlinson, Alan; Testoni, Stefano; Victor, Christina
2017-09-01
There is a growing recognition of the ways in which culture and sport can contribute to wellbeing. A strong evidence base is needed to support innovative service development and a 3-year research programme is being undertaken to capture best evidence of wellbeing impacts and outcomes of cultural and sporting activities in order to inform UK policy and practice. This article provides an overview of methods and findings from an initial coproduction process with key stakeholders that sought to explore and agree principles and parameters of the evidence review for culture, sport and wellbeing (CSW). A two-stage DELPHI process was conducted with a purposeful sample of 57 stakeholders between August and December 2015. Participants were drawn from a range of culture and sport organisations and included commissioners and managers, policy makers, representatives of service delivery organisations (SDOs) and scholars. The DELPHI 1 questionnaire was developed from extensive consultation in July and August 2015. It explored definitions of wellbeing, the role of evidence, quality assessment, and the culture and sport populations, settings and interventions that are most likely to deliver wellbeing outcomes. Following further consultation, the results, presented as a series of ranked statements, were sent back to participants (DELPHI 2), which allowed them to reflect on and, if they wished, express agreement or disagreement with the emerging consensus. A total of 40 stakeholders (70.02%) responded to the DELPHI questionnaires. DELPHI 1 mapped areas of agreement and disagreement, confirmed in DELPHI 2. The exercise drew together the key priorities for the CSW evidence review. The DELPHI process, in combination with face-to-face deliberation, enabled stakeholders to engage in complex discussion and express nuanced priorities while also allowing the group to come to an overall consensus and agree outcomes. The results will inform the CSW evidence review programme until its completion in March 2018.
Extracting TSK-type Neuro-Fuzzy model using the Hunting search algorithm
NASA Astrophysics Data System (ADS)
Bouzaida, Sana; Sakly, Anis; M'Sahli, Faouzi
2014-01-01
This paper proposes a Takagi-Sugeno-Kang (TSK) type Neuro-Fuzzy model tuned by a novel metaheuristic optimization algorithm called Hunting Search (HuS). The HuS algorithm is derived based on a model of group hunting of animals such as lions, wolves, and dolphins when looking for a prey. In this study, the structure and parameters of the fuzzy model are encoded into a particle. Thus, the optimal structure and parameters are achieved simultaneously. The proposed method was demonstrated through modeling and control problems, and the results have been compared with other optimization techniques. The comparisons indicate that the proposed method represents a powerful search approach and an effective optimization technique as it can extract the accurate TSK fuzzy model with an appropriate number of rules.
Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W.
2016-01-01
Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty’s 1–9 scale, this paper proposes a cross-ratio-based bipolar 0.1–0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness. PMID:27618082
Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W
2016-09-09
Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty's 1-9 scale, this paper proposes a cross-ratio-based bipolar 0.1-0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness.
Hesitant Fuzzy Thermodynamic Method for Emergency Decision Making Based on Prospect Theory.
Ren, Peijia; Xu, Zeshui; Hao, Zhinan
2017-09-01
Due to the timeliness of emergency response and much unknown information in emergency situations, this paper proposes a method to deal with the emergency decision making, which can comprehensively reflect the emergency decision making process. By utilizing the hesitant fuzzy elements to represent the fuzziness of the objects and the hesitant thought of the experts, this paper introduces the negative exponential function into the prospect theory so as to portray the psychological behaviors of the experts, which transforms the hesitant fuzzy decision matrix into the hesitant fuzzy prospect decision matrix (HFPDM) according to the expectation-levels. Then, this paper applies the energy and the entropy in thermodynamics to take the quantity and the quality of the decision values into account, and defines the thermodynamic decision making parameters based on the HFPDM. Accordingly, a whole procedure for emergency decision making is conducted. What is more, some experiments are designed to demonstrate and improve the validation of the emergency decision making procedure. Last but not the least, this paper makes a case study about the emergency decision making in the firing and exploding at Port Group in Tianjin Binhai New Area, which manifests the effectiveness and practicability of the proposed method.
NASA Astrophysics Data System (ADS)
Pei, Lidan; Jin, Feifei; Ni, Zhiwei; Chen, Huayou; Tao, Zhifu
2017-10-01
As a new preference structure, the intuitionistic fuzzy linguistic preference relation (IFLPR) was recently introduced to efficiently deal with situations in which the membership and non-membership are represented as linguistic terms. In this paper, we study the issues of additive consistency and the derivation of the intuitionistic fuzzy weight vector of an IFLPR. First, the new concepts of order consistency, additive consistency and weak transitivity for IFLPRs are introduced, and followed by a discussion of the characterisation about additive consistent IFLPRs. Then, a parameterised transformation approach is investigated to convert the normalised intuitionistic fuzzy weight vector into additive consistent IFLPRs. After that, a linear optimisation model is established to derive the normalised intuitionistic fuzzy weights for IFLPRs, and a consistency index is defined to measure the deviation degree between an IFLPR and its additive consistent IFLPR. Furthermore, we develop an automatic iterative decision-making method to improve the IFLPRs with unacceptable additive consistency until the adjusted IFLPRs are acceptable additive consistent, and it helps the decision-maker to obtain the reasonable and reliable decision-making results. Finally, an illustrative example is provided to demonstrate the validity and applicability of the proposed method.
Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin
2016-01-01
With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability. PMID:27618053
Peng, Chen; Ma, Shaodong; Xie, Xiangpeng
2017-02-07
This paper addresses the problem of an event-triggered non-parallel distribution compensation (PDC) control for networked Takagi-Sugeno (T-S) fuzzy systems, under consideration of the limited data transmission bandwidth and the imperfect premise matching membership functions. First, a unified event-triggered T-S fuzzy model is provided, in which: 1) a fuzzy observer with the imperfect premise matching is constructed to estimate the unmeasurable states of the studied system; 2) a fuzzy controller is designed following the same premise as the observer; and 3) an output-based event-triggering transmission scheme is designed to economize the restricted network resources. Different from the traditional PDC method, the synchronous premise between the fuzzy observer and the T-S fuzzy system are no longer needed in this paper. Second, by use of Lyapunov theory, a stability criterion and a stabilization condition are obtained for ensuring asymptotically stable of the studied system. On account of the imperfect premise matching conditions are well considered in the derivation of the above criteria, less conservation can be expected to enhance the design flexibility. Compared with some existing emulation-based methods, the controller gains are no longer required to be known a priori. Finally, the availability of proposed non-PDC design scheme is illustrated by the backing-up control of a truck-trailer system.
Specification and Verification of Medical Monitoring System Using Petri-nets.
Majma, Negar; Babamir, Seyed Morteza
2014-07-01
To monitor the patient behavior, data are collected from patient's body by a medical monitoring device so as to calculate the output using embedded software. Incorrect calculations may endanger the patient's life if the software fails to meet the patient's requirements. Accordingly, the veracity of the software behavior is a matter of concern in the medicine; moreover, the data collected from the patient's body are fuzzy. Some methods have already dealt with monitoring the medical monitoring devices; however, model based monitoring fuzzy computations of such devices have been addressed less. The present paper aims to present synthesizing a fuzzy Petri-net (FPN) model to verify behavior of a sample medical monitoring device called continuous infusion insulin (INS) because Petri-net (PN) is one of the formal and visual methods to verify the software's behavior. The device is worn by the diabetic patients and then the software calculates the INS dose and makes a decision for injection. The input and output of the infusion INS software are not crisp in the real world; therefore, we present them in fuzzy variables. Afterwards, we use FPN instead of clear PN to model the fuzzy variables. The paper follows three steps to synthesize an FPN to deal with verification of the infusion INS device: (1) Definition of fuzzy variables, (2) definition of fuzzy rules and (3) design of the FPN model to verify the software behavior.
Hancerliogullari, Gulsah; Hancerliogullari, Kadir Oymen; Koksalmis, Emrah
2017-01-23
Determining the most suitable anesthesia method for circumcision surgery plays a fundamental role in pediatric surgery. This study is aimed to present pediatric surgeons' perspective on the relative importance of the criteria for selecting anesthesia method for circumcision surgery by utilizing the multi-criteria decision making methods. Fuzzy set theory offers a useful tool for transforming linguistic terms into numerical assessments. Since the evaluation of anesthesia methods requires linguistic terms, we utilize the fuzzy Analytic Hierarchy Process (AHP) and fuzzy Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Both mathematical decision-making methods are originated from individual judgements for qualitative factors utilizing the pair-wise comparison matrix. Our model uses four main criteria, eight sub-criteria as well as three alternatives. To assess the relative priorities, an online questionnaire was completed by three experts, pediatric surgeons, who had experience with circumcision surgery. Discussion of the results with the experts indicates that time-related factors are the most important criteria, followed by psychology, convenience and duration. Moreover, general anesthesia with penile block for circumcision surgery is the preferred choice of anesthesia compared to general anesthesia without penile block, which has a greater priority compared to local anesthesia under the discussed main-criteria and sub-criteria. The results presented in this study highlight the need to integrate surgeons' criteria into the decision making process for selecting anesthesia methods. This is the first study in which multi-criteria decision making tools, specifically fuzzy AHP and fuzzy TOPSIS, are used to evaluate anesthesia methods for a pediatric surgical procedure.
Fuzzy time-series based on Fibonacci sequence for stock price forecasting
NASA Astrophysics Data System (ADS)
Chen, Tai-Liang; Cheng, Ching-Hsue; Jong Teoh, Hia
2007-07-01
Time-series models have been utilized to make reasonably accurate predictions in the areas of stock price movements, academic enrollments, weather, etc. For promoting the forecasting performance of fuzzy time-series models, this paper proposes a new model, which incorporates the concept of the Fibonacci sequence, the framework of Song and Chissom's model and the weighted method of Yu's model. This paper employs a 5-year period TSMC (Taiwan Semiconductor Manufacturing Company) stock price data and a 13-year period of TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) stock index data as experimental datasets. By comparing our forecasting performances with Chen's (Forecasting enrollments based on fuzzy time-series. Fuzzy Sets Syst. 81 (1996) 311-319), Yu's (Weighted fuzzy time-series models for TAIEX forecasting. Physica A 349 (2004) 609-624) and Huarng's (The application of neural networks to forecast fuzzy time series. Physica A 336 (2006) 481-491) models, we conclude that the proposed model surpasses in accuracy these conventional fuzzy time-series models.
Iliyasu, Abdullah M; Fatichah, Chastine
2017-12-19
A quantum hybrid (QH) intelligent approach that blends the adaptive search capability of the quantum-behaved particle swarm optimisation (QPSO) method with the intuitionistic rationality of traditional fuzzy k -nearest neighbours (Fuzzy k -NN) algorithm (known simply as the Q-Fuzzy approach) is proposed for efficient feature selection and classification of cells in cervical smeared (CS) images. From an initial multitude of 17 features describing the geometry, colour, and texture of the CS images, the QPSO stage of our proposed technique is used to select the best subset features (i.e., global best particles) that represent a pruned down collection of seven features. Using a dataset of almost 1000 images, performance evaluation of our proposed Q-Fuzzy approach assesses the impact of our feature selection on classification accuracy by way of three experimental scenarios that are compared alongside two other approaches: the All-features (i.e., classification without prior feature selection) and another hybrid technique combining the standard PSO algorithm with the Fuzzy k -NN technique (P-Fuzzy approach). In the first and second scenarios, we further divided the assessment criteria in terms of classification accuracy based on the choice of best features and those in terms of the different categories of the cervical cells. In the third scenario, we introduced new QH hybrid techniques, i.e., QPSO combined with other supervised learning methods, and compared the classification accuracy alongside our proposed Q-Fuzzy approach. Furthermore, we employed statistical approaches to establish qualitative agreement with regards to the feature selection in the experimental scenarios 1 and 3. The synergy between the QPSO and Fuzzy k -NN in the proposed Q-Fuzzy approach improves classification accuracy as manifest in the reduction in number cell features, which is crucial for effective cervical cancer detection and diagnosis.
Salaffi, F; Ciapetti, A; Sarzi Puttini, P; Atzeni, F; Iannuccelli, C; Di Franco, M; Cazzola, M; Bazzichi, L
2012-03-19
Fibromyalgia (FM) is a complex syndrome that, in Italy, affects at least 2% of the adult population. It is characterized by chronic widespread musculoskeletal pain often accompanied by multiple other symptoms. The aim of this study was to identify a set of clinical domains for FM considered relevant by both clinicians and patients using a consensus process. Consensus was achieved using the Delphi method based on questionnaires and systematic, controlled opinion feedback. The Delphi exercise involved a panel of 252 rheumatologists and 86 patients with FM as defined by the American College of Rheumatology criteria. All of the patients and clinicians were asked to rank the relative different domains of FM in order of priority. The content validity index (CVI) was used to establish the percentage agreement. The importance of each item was ranked on a 0-3 Likert scale. The frequency, mean relevance scores, and frequency importance product were also calculated. The Delphi exercise showed that the domains ranked highest by patients were similar to those of the clinicians, with the exception of tender point intensity (considered relevant by the clinicians but not by the patients) and environmental sensitivity (considered important by the patients but not by the clinicians). A final 8-item model was developed which was considered to demonstrate adequate validity. The Delphi exercises identified and ranked relevant key clinical domains that need to be assessed in FM research. On the basis of these results, a new patient-reported composite outcome index can be developed and used in clinical trials.
Mansouri, Mohammad; Teshnehlab, Mohammad; Aliyari Shoorehdeli, Mahdi
2015-05-01
In this paper, a novel adaptive hierarchical fuzzy control system based on the variable structure control is developed for a class of SISO canonical nonlinear systems in the presence of bounded disturbances. It is assumed that nonlinear functions of the systems be completely unknown. Switching surfaces are incorporated into the hierarchical fuzzy control scheme to ensure the system stability. A fuzzy soft switching system decides the operation area of the hierarchical fuzzy control and variable structure control systems. All the nonlinearly appeared parameters of conclusion parts of fuzzy blocks located in different layers of the hierarchical fuzzy control system are adjusted through adaptation laws deduced from the defined Lyapunov function. The proposed hierarchical fuzzy control system reduces the number of rules and consequently the number of tunable parameters with respect to the ordinary fuzzy control system. Global boundedness of the overall adaptive system and the desired precision are achieved using the proposed adaptive control system. In this study, an adaptive hierarchical fuzzy system is used for two objectives; it can be as a function approximator or a control system based on an intelligent-classic approach. Three theorems are proven to investigate the stability of the nonlinear dynamic systems. The important point about the proposed theorems is that they can be applied not only to hierarchical fuzzy controllers with different structures of hierarchical fuzzy controller, but also to ordinary fuzzy controllers. Therefore, the proposed algorithm is more general. To show the effectiveness of the proposed method four systems (two mechanical, one mathematical and one chaotic) are considered in simulations. Simulation results demonstrate the validity, efficiency and feasibility of the proposed approach to control of nonlinear dynamic systems. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Evaluate E-loyalty of sales website: a Fuzzy mathematics method
NASA Astrophysics Data System (ADS)
Yi, Ying; Liu, Zhen-Yu; Xiong, Ying-Zi
The study about online consumer loyalty is limited, but how to evaluate the customers' E-loyalty to a sales website is always a noticeable question. By using some methods of fuzzy mathematics, we provide a more accurate way to evaluate E-loyalty of sales website. Moreover, this method can differentiate level and degree of each factor that influences E-loyalty.
A Comparison of Neural Networks and Fuzzy Logic Methods for Process Modeling
NASA Technical Reports Server (NTRS)
Cios, Krzysztof J.; Sala, Dorel M.; Berke, Laszlo
1996-01-01
The goal of this work was to analyze the potential of neural networks and fuzzy logic methods to develop approximate response surfaces as process modeling, that is for mapping of input into output. Structural response was chosen as an example. Each of the many methods surveyed are explained and the results are presented. Future research directions are also discussed.
Deshpande, Aniruddha M.; Shiffman, Richard N.
2003-01-01
We designed an application to allow respondents to rate components of clinical guidelines on the Internet. Twenty-three invited experts completed the rating followed by a satisfaction survey using a 5-level Likert scale. The experts felt that Web data entry was convenient, acceptable and easily accessible. We conclude that Web-based Delphi rating for consensus development is a convenient and acceptable alternative to the traditional paper-based method. PMID:14728333
Summary of Research 1997, Department of Mechanical Engineering.
1999-01-01
Maintenance for Diesel Engines 49 Control Architectures and Non-Linear Controllers for Unmanned Underwater Vehicles 38 Creep of Fiber Reinforced Metal...Technology Demonstration (ATD) 50 Development of Delphi Visual Performance Model 25 Diffraction Methods for the Accurate Measurement of Structure Factors...literature. If this could be done, a U.S. version of ORACLE (to be called DELPHI ) could be developed and used. The result has been the development of a
Metadata-driven Delphi rating on the Internet.
Deshpande, Aniruddha M; Shiffman, Richard N; Nadkarni, Prakash M
2005-01-01
Paper-based data collection and analysis for consensus development is inefficient and error-prone. Computerized techniques that could improve efficiency, however, have been criticized as costly, inconvenient and difficult to use. We designed and implemented a metadata-driven Web-based Delphi rating and analysis tool, employing the flexible entity-attribute-value schema to create generic, reusable software. The software can be applied to various domains by altering the metadata; the programming code remains intact. This approach greatly reduces the marginal cost of re-using the software. We implemented our software to prepare for the Conference on Guidelines Standardization. Twenty-three invited experts completed the first round of the Delphi rating on the Web. For each participant, the software generated individualized reports that described the median rating and the disagreement index (calculated from the Interpercentile Range Adjusted for Symmetry) as defined by the RAND/UCLA Appropriateness Method. We evaluated the software with a satisfaction survey using a five-level Likert scale. The panelists felt that Web data entry was convenient (median 4, interquartile range [IQR] 4.0-5.0), acceptable (median 4.5, IQR 4.0-5.0) and easily accessible (median 5, IQR 4.0-5.0). We conclude that Web-based Delphi rating for consensus development is a convenient and acceptable alternative to the traditional paper-based method.
Tabrizi, Jafar-Sadegh; Farahbakhsh, Mostafa; Shahgoli, Javad; Rahbar, Mohammad Reza; Naghavi-Behzad, Mohammad; Ahadi, Hamid-Reza; Azami-Aghdash, Saber
2015-10-01
Excellence and quality models are comprehensive methods for improving the quality of healthcare. The aim of this study was to design excellence and quality model for training centers of primary health care using Delphi method. In this study, Delphi method was used. First, comprehensive information were collected using literature review. In extracted references, 39 models were identified from 34 countries and related sub-criteria and standards were extracted from 34 models (from primary 39 models). Then primary pattern including 8 criteria, 55 sub-criteria, and 236 standards was developed as a Delphi questionnaire and evaluated in four stages by 9 specialists of health care system in Tabriz and 50 specialists from all around the country. Designed primary model (8 criteria, 55 sub-criteria, and 236 standards) were concluded with 8 criteria, 45 sub-criteria, and 192 standards after 4 stages of evaluations by specialists. Major criteria of the model are leadership, strategic and operational planning, resource management, information analysis, human resources management, process management, costumer results, and functional results, where the top score was assigned as 1000 by specialists. Functional results had the maximum score of 195 whereas planning had the minimum score of 60. Furthermore the most and the least sub-criteria was for leadership with 10 sub-criteria and strategic planning with 3 sub-criteria, respectively. The model that introduced in this research has been designed following 34 reference models of the world. This model could provide a proper frame for managers of health system in improving quality.
NASA Astrophysics Data System (ADS)
Liu, Xiaojia; An, Haizhong; Wang, Lijun; Guan, Qing
2017-09-01
The moving average strategy is a technical indicator that can generate trading signals to assist investment. While the trading signals tell the traders timing to buy or sell, the moving average cannot tell the trading volume, which is a crucial factor for investment. This paper proposes a fuzzy moving average strategy, in which the fuzzy logic rule is used to determine the strength of trading signals, i.e., the trading volume. To compose one fuzzy logic rule, we use four types of moving averages, the length of the moving average period, the fuzzy extent, and the recommend value. Ten fuzzy logic rules form a fuzzy set, which generates a rating level that decides the trading volume. In this process, we apply genetic algorithms to identify an optimal fuzzy logic rule set and utilize crude oil futures prices from the New York Mercantile Exchange (NYMEX) as the experiment data. Each experiment is repeated for 20 times. The results show that firstly the fuzzy moving average strategy can obtain a more stable rate of return than the moving average strategies. Secondly, holding amounts series is highly sensitive to price series. Thirdly, simple moving average methods are more efficient. Lastly, the fuzzy extents of extremely low, high, and very high are more popular. These results are helpful in investment decisions.
Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions.
Abe, S
1998-01-01
In this paper, we discuss a fuzzy classifier with ellipsoidal regions that dynamically generates clusters. First, for the data belonging to a class we define a fuzzy rule with an ellipsoidal region. Namely, using the training data for each class, we calculate the center and the covariance matrix of the ellipsoidal region for the class. Then we tune the fuzzy rules, i.e., the slopes of the membership functions, successively until there is no improvement in the recognition rate of the training data. Then if the number of the data belonging to a class that are misclassified into another class exceeds a prescribed number, we define a new cluster to which those data belong and the associated fuzzy rule. Then we tune the newly defined fuzzy rules in the similar way as stated above, fixing the already obtained fuzzy rules. We iterate generation of clusters and tuning of the newly generated fuzzy rules until the number of the data belonging to a class that are misclassified into another class does not exceed the prescribed number. We evaluate our method using thyroid data, Japanese Hiragana data of vehicle license plates, and blood cell data. By dynamic cluster generation, the generalization ability of the classifier is improved and the recognition rate of the fuzzy classifier for the test data is the best among the neural network classifiers and other fuzzy classifiers if there are no discrete input variables.
Comments on "The multisynapse neural network and its application to fuzzy clustering".
Yu, Jian; Hao, Pengwei
2005-05-01
In the above-mentioned paper, Wei and Fahn proposed a neural architecture, the multisynapse neural network, to solve constrained optimization problems including high-order, logarithmic, and sinusoidal forms, etc. As one of its main applications, a fuzzy bidirectional associative clustering network (FBACN) was proposed for fuzzy-partition clustering according to the objective-functional method. The connection between the objective-functional-based fuzzy c-partition algorithms and FBACN is the Lagrange multiplier approach. Unfortunately, the Lagrange multiplier approach was incorrectly applied so that FBACN does not equivalently minimize its corresponding constrained objective-function. Additionally, Wei and Fahn adopted traditional definition of fuzzy c-partition, which is not satisfied by FBACN. Therefore, FBACN can not solve constrained optimization problems, either.
Fuzzy Logic-Based Filter for Removing Additive and Impulsive Noise from Color Images
NASA Astrophysics Data System (ADS)
Zhu, Yuhong; Li, Hongyang; Jiang, Huageng
2017-12-01
This paper presents an efficient filter method based on fuzzy logics for adaptively removing additive and impulsive noise from color images. The proposed filter comprises two parts including noise detection and noise removal filtering. In the detection part, the fuzzy peer group concept is applied to determine what type of noise is added to each pixel of the corrupted image. In the filter part, the impulse noise is deducted by the vector median filter in the CIELAB color space and an optimal fuzzy filter is introduced to reduce the Gaussian noise, while they can work together to remove the mixed Gaussian-impulse noise from color images. Experimental results on several color images proves the efficacy of the proposed fuzzy filter.
Intelligent Process Abnormal Patterns Recognition and Diagnosis Based on Fuzzy Logic.
Hou, Shi-Wang; Feng, Shunxiao; Wang, Hui
2016-01-01
Locating the assignable causes by use of the abnormal patterns of control chart is a widely used technology for manufacturing quality control. If there are uncertainties about the occurrence degree of abnormal patterns, the diagnosis process is impossible to be carried out. Considering four common abnormal control chart patterns, this paper proposed a characteristic numbers based recognition method point by point to quantify the occurrence degree of abnormal patterns under uncertain conditions and a fuzzy inference system based on fuzzy logic to calculate the contribution degree of assignable causes with fuzzy abnormal patterns. Application case results show that the proposed approach can give a ranked causes list under fuzzy control chart abnormal patterns and support the abnormity eliminating.
NASA Astrophysics Data System (ADS)
Shao, Yuxiang; Chen, Qing; Wei, Zhenhua
Logistics distribution center location evaluation is a dynamic, fuzzy, open and complicated nonlinear system, which makes it difficult to evaluate the distribution center location by the traditional analysis method. The paper proposes a distribution center location evaluation system which uses the fuzzy neural network combined with the genetic algorithm. In this model, the neural network is adopted to construct the fuzzy system. By using the genetic algorithm, the parameters of the neural network are optimized and trained so as to improve the fuzzy system’s abilities of self-study and self-adaptation. At last, the sampled data are trained and tested by Matlab software. The simulation results indicate that the proposed identification model has very small errors.
Advanced Interval Type-2 Fuzzy Sliding Mode Control for Robot Manipulator.
Hwang, Ji-Hwan; Kang, Young-Chang; Park, Jong-Wook; Kim, Dong W
2017-01-01
In this paper, advanced interval type-2 fuzzy sliding mode control (AIT2FSMC) for robot manipulator is proposed. The proposed AIT2FSMC is a combination of interval type-2 fuzzy system and sliding mode control. For resembling a feedback linearization (FL) control law, interval type-2 fuzzy system is designed. For compensating the approximation error between the FL control law and interval type-2 fuzzy system, sliding mode controller is designed, respectively. The tuning algorithms are derived in the sense of Lyapunov stability theorem. Two-link rigid robot manipulator with nonlinearity is used to test and the simulation results are presented to show the effectiveness of the proposed method that can control unknown system well.
NASA Astrophysics Data System (ADS)
Irvanizam, I.
2018-03-01
Some scholarships have been routinely offered by Ministry of Research, Technology and Higher Education of the Republic of Indonesia for students at Syiah Kuala University. In reality, the scholarship selection process is becoming subjective and highly complex problem. Multi-Attribute Decision Making (MADM) techniques can be a solution in order to solve scholarship selection problem. In this study, we demonstrated the application of a fuzzy TOPSIS as an MADM technique by using a numerical example in order to calculate a triangular fuzzy number for the fuzzy data onto a normalized weight. We then use this normalized value to construct the normalized fuzzy decision matrix. We finally use the fuzzy TOPSIS to rank alternatives in descending order based on the relative closeness to the ideal solution. The result in terms of final ranking shows slightly different from the previous work.
Bidargaddi, Niranjan P; Chetty, Madhu; Kamruzzaman, Joarder
2008-06-01
Profile hidden Markov models (HMMs) based on classical HMMs have been widely applied for protein sequence identification. The formulation of the forward and backward variables in profile HMMs is made under statistical independence assumption of the probability theory. We propose a fuzzy profile HMM to overcome the limitations of that assumption and to achieve an improved alignment for protein sequences belonging to a given family. The proposed model fuzzifies the forward and backward variables by incorporating Sugeno fuzzy measures and Choquet integrals, thus further extends the generalized HMM. Based on the fuzzified forward and backward variables, we propose a fuzzy Baum-Welch parameter estimation algorithm for profiles. The strong correlations and the sequence preference involved in the protein structures make this fuzzy architecture based model as a suitable candidate for building profiles of a given family, since the fuzzy set can handle uncertainties better than classical methods.
Computer vision for general purpose visual inspection: a fuzzy logic approach
NASA Astrophysics Data System (ADS)
Chen, Y. H.
In automatic visual industrial inspection, computer vision systems have been widely used. Such systems are often application specific, and therefore require domain knowledge in order to have a successful implementation. Since visual inspection can be viewed as a decision making process, it is argued that the integration of fuzzy logic analysis and computer vision systems provides a practical approach to general purpose visual inspection applications. This paper describes the development of an integrated fuzzy-rule-based automatic visual inspection system. Domain knowledge about a particular application is represented as a set of fuzzy rules. From the status of predefined fuzzy variables, the set of fuzzy rules are defuzzified to give the inspection results. A practical application where IC marks (often in the forms of English characters and a company logo) inspection is demonstrated, which shows a more consistent result as compared to a conventional thresholding method.
The development of ethical guidelines for nurses' collegiality using the Delphi method.
Kangasniemi, Mari; Arala, Katariina; Becker, Eve; Suutarla, Anna; Haapa, Toni; Korhonen, Anne
2017-08-01
Nurses' collegiality is topical because patient care is complicated, requiring shared knowledge and working methods. Nurses' collaboration has been supported by a number of different working models, but there has been less focus on ethics. This study aimed to develop nurses' collegiality guidelines using the Delphi method. Two online panels of Finnish experts, with 35 and 40 members, used the four-step Delphi method in December 2013 and January 2014. They reformulated the items of nurses' collegiality identified by the literature and rated based on validity and importance. Content analysis and descriptive statistical methods were used to analyze the data, and the nurses' collegiality guidelines were formulated. Ethical considerations: Organizational approval was received, and an informed consent was obtained from all participants. Information about the voluntary nature of participation was provided. During the first Delphi panel round, a number of items were reformulated and added, resulting in 32 reformulated items. As a result of the second round, 8 of the 32 items scored an agreement rate of more than 75%, with the most rated item being collegiality means that professionals respect each other. The item with second highest rating was collegiality has a common objective: what is best for patients, followed by the third highest which was professional ethics is the basis of collegiality. Nurses' collegiality and its content are well recognized in clinical practice but seldom studied. Collegiality can be supported by guidelines, and nurses working in clinical practice, together with teachers and managers, have shared responsibilities to support and develop it. More research in different nursing environments is needed to improve understanding of the content and practice of nursing collegiality.
Kojima, Motohiro; Shimazaki, Hideyuki; Iwaya, Keiichi; Kage, Masayoshi; Akiba, Jun; Ohkura, Yasuo; Horiguchi, Shinichiro; Shomori, Kohei; Kushima, Ryoji; Ajioka, Yoichi; Nomura, Shogo; Ochiai, Atsushi
2013-01-01
Aims The goal of this study is to create an objective pathological diagnostic system for blood and lymphatic vessel invasion (BLI). Methods 1450 surgically resected colorectal cancer specimens from eight hospitals were reviewed. Our first step was to compare the current practice of pathology assessment among eight hospitals. Then, H&E stained slides with or without histochemical/immunohistochemical staining were assessed by eight pathologists and concordance of BLI diagnosis was checked. In addition, histological findings associated with BLI having good concordance were reviewed. Based on these results, framework for developing diagnostic criterion was developed, using the Delphi method. The new criterion was evaluated using 40 colorectal cancer specimens. Results Frequency of BLI diagnoses, number of blocks obtained and stained for assessment of BLI varied among eight hospitals. Concordance was low for BLI diagnosis and was not any better when histochemical/immunohistochemical staining was provided. All histological findings associated with BLI from H&E staining were poor in agreement. However, observation of elastica-stained internal elastic membrane covering more than half of the circumference surrounding the tumour cluster as well as the presence of D2-40-stained endothelial cells covering more than half of the circumference surrounding the tumour cluster showed high concordance. Based on this observation, we developed a framework for pathological diagnostic criterion, using the Delphi method. This criterion was found to be useful in improving concordance of BLI diagnosis. Conclusions A framework for pathological diagnostic criterion was developed by reviewing concordance and using the Delphi method. The criterion developed may serve as the basis for creating a standardised procedure for pathological diagnosis. PMID:23592799
Classification of Children Intelligence with Fuzzy Logic Method
NASA Astrophysics Data System (ADS)
Syahminan; ika Hidayati, Permata
2018-04-01
Intelligence of children s An Important Thing To Know The Parents Early on. Typing Can be done With a Child’s intelligence Grouping Dominant Characteristics Of each Type of Intelligence. To Make it easier for Parents in Determining The type of Children’s intelligence And How to Overcome them, for It Created A Classification System Intelligence Grouping Children By Using Fuzzy logic method For determination Of a Child’s degree of intelligence type. From the analysis We concluded that The presence of Intelligence Classification systems Pendulum Children With Fuzzy Logic Method Of determining The type of The Child’s intelligence Can be Done in a way That is easier And The results More accurate Conclusions Than Manual tests.
Detecting Edges in Images by Use of Fuzzy Reasoning
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Klinko, Steve
2003-01-01
A method of processing digital image data to detect edges includes the use of fuzzy reasoning. The method is completely adaptive and does not require any advance knowledge of an image. During initial processing of image data at a low level of abstraction, the nature of the data is indeterminate. Fuzzy reasoning is used in the present method because it affords an ability to construct useful abstractions from approximate, incomplete, and otherwise imperfect sets of data. Humans are able to make some sense of even unfamiliar objects that have imperfect high-level representations. It appears that to perceive unfamiliar objects or to perceive familiar objects in imperfect images, humans apply heuristic algorithms to understand the images
Approximation abilities of neuro-fuzzy networks
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2010-01-01
The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.
Chen, Lixun; Jiang, Ling; Shen, Aizong; Wei, Wei
2016-09-01
The frequently low quality of submitted spontaneous reports is of an increasing concern; to our knowledge, no validated instrument exists for assessing case reports' quality comprehensively enough. This work was conducted to develop such a quality instrument for assessing the spontaneous reports of adverse drug reaction (ADR)/adverse drug event (ADE) in China. Initial evaluation indicators were generated using systematic and literature data analysis. Final indicators and their weights were identified using Delphi method. The final quality instrument was developed by adopting the synthetic scoring method. A consensus was reached after four rounds of Delphi survey. The developed quality instrument consisted of 6 first-rank indicators, 18 second-rank indicators, and 115 third-rank indicators, and each rank indicator has been weighted. It evaluates the quality of spontaneous reports of ADR/ADE comprehensively and quantitatively on six parameters: authenticity, duplication, regulatory, completeness, vigilance level, and reporting time frame. The developed instrument was tested with good reliability and validity, which can be used to comprehensively and quantitatively assess the submitted spontaneous reports of ADR/ADE in China.
Detection of Failure in Asynchronous Motor Using Soft Computing Method
NASA Astrophysics Data System (ADS)
Vinoth Kumar, K.; Sony, Kevin; Achenkunju John, Alan; Kuriakose, Anto; John, Ano P.
2018-04-01
This paper investigates the stator short winding failure of asynchronous motor also their effects on motor current spectrums. A fuzzy logic approach i.e., model based technique possibly will help to detect the asynchronous motor failure. Actually, fuzzy logic similar to humanoid intelligent methods besides expected linguistic empowering inferences through vague statistics. The dynamic model is technologically advanced for asynchronous motor by means of fuzzy logic classifier towards investigate the stator inter turn failure in addition open phase failure. A hardware implementation was carried out with LabVIEW for the online-monitoring of faults.
Command Filtering-Based Fuzzy Control for Nonlinear Systems With Saturation Input.
Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Lin, Chong
2017-09-01
In this paper, command filtering-based fuzzy control is designed for uncertain multi-input multioutput (MIMO) nonlinear systems with saturation nonlinearity input. First, the command filtering method is employed to deal with the explosion of complexity caused by the derivative of virtual controllers. Then, fuzzy logic systems are utilized to approximate the nonlinear functions of MIMO systems. Furthermore, error compensation mechanism is introduced to overcome the drawback of the dynamics surface approach. The developed method will guarantee all signals of the systems are bounded. The effectiveness and advantages of the theoretic result are obtained by a simulation example.
Wang, Zi-yun; Liu, Yong-quan; Wang, Hong-bo; Zheng, Yang; Wu, Qi; Yang, Xia; Wu, Yong-wei; Zhao, Yi-ming
2009-04-01
By means of Delphi method and expert panel consultations, to choose suitable indicators and improve the score table for classifying the hygienic condition of hotels so that it can be widely used at nationwide. A two-round Delphi consultation was held to choose suitable indicators among 78 experts from 18 provinces, municipalities and autonomous regions. The suitable indicators were selected according to the importance recognized by experts. The average length of service in public health of the experts was (21.08 +/- 5.78) years and the average coefficient of experts' authorities C(r) was 0.89 +/- 0.07. The response rates of the two-round consultation were 98.72% (77/78) and 100.00% (77/77). The average feedback time were (8.49 +/- 4.48) d, (5.86 +/- 2.28) d, and the difference between two rounds was statistically significant (t = 4.60, P < 0.01). Kendall's coefficient were 0.26 (chi(2) = 723.63, P < 0.01), 0.32 (chi(2) = 635.65, P < 0.01) and opinions among experts became consistent. The score table for the hygienic quantifying and classification of hotels was composed of three first-class indicators (hygienic management, hygienic facilities and hygienic practices) and 36 second-class indicators. The weight coefficients of the three first-class indicators were 0.35, 0.34, 0.31. Delphi method might be used in a large-scale consultation among experts and be propitious to improve the score table for the hygienic quantifying and classification.
Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.
Fei, Juntao; Zhu, Yunkai
2017-01-01
In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.
Li, Zhao-Liang
2018-01-01
Few studies have examined hyperspectral remote-sensing image classification with type-II fuzzy sets. This paper addresses image classification based on a hyperspectral remote-sensing technique using an improved interval type-II fuzzy c-means (IT2FCM*) approach. In this study, in contrast to other traditional fuzzy c-means-based approaches, the IT2FCM* algorithm considers the ranking of interval numbers and the spectral uncertainty. The classification results based on a hyperspectral dataset using the FCM, IT2FCM, and the proposed improved IT2FCM* algorithms show that the IT2FCM* method plays the best performance according to the clustering accuracy. In this paper, in order to validate and demonstrate the separability of the IT2FCM*, four type-I fuzzy validity indexes are employed, and a comparative analysis of these fuzzy validity indexes also applied in FCM and IT2FCM methods are made. These four indexes are also applied into different spatial and spectral resolution datasets to analyze the effects of spectral and spatial scaling factors on the separability of FCM, IT2FCM, and IT2FCM* methods. The results of these validity indexes from the hyperspectral datasets show that the improved IT2FCM* algorithm have the best values among these three algorithms in general. The results demonstrate that the IT2FCM* exhibits good performance in hyperspectral remote-sensing image classification because of its ability to handle hyperspectral uncertainty. PMID:29373548
Habitat suitability index curves for paddlefish, developed by the delphi technique
Crance, John H.
1987-01-01
A Delphi exercise conducted with a panel of 11 experts on paddlefish (Polyodon spathula) and an evaluator resulted in 14 riverine habitat suitability index curves associating various life stages or activities of paddlefish with four variables: velocity, depth, substrate type, and temperature. The panel reached a consensus on six of the curves and eight to 10 panelists agreed on the others. Several panelists reported that they found the Delphi exercise to be a good learning experience, and they believed the technique is an appropriate interim method for developing suitability index curves when available data are inadequate for more conventional statistical analyses. Documentation of good paddlefish spawning habitat was the data need most commonly identified by the panelists.
Empirical research in service engineering based on AHP and fuzzy methods
NASA Astrophysics Data System (ADS)
Zhang, Yanrui; Cao, Wenfu; Zhang, Lina
2015-12-01
Recent years, management consulting industry has been rapidly developing worldwide. Taking a big management consulting company as research object, this paper established an index system of service quality of consulting, based on customer satisfaction survey, evaluated service quality of the consulting company by AHP and fuzzy comprehensive evaluation methods.
ERIC Educational Resources Information Center
Lai, K. Robert; Lan, Chung Hsien
2006-01-01
This work presents a novel method for modeling collaborative learning as multi-issue agent negotiation using fuzzy constraints. Agent negotiation is an iterative process, through which, the proposed method aggregates student marks to reduce personal bias. In the framework, students define individual fuzzy membership functions based on their…
Improving the Method of Roof Fall Susceptibility Assessment based on Fuzzy Approach
NASA Astrophysics Data System (ADS)
Ghasemi, Ebrahim; Ataei, Mohammad; Shahriar, Kourosh
2017-03-01
Retreat mining is always accompanied by a great amount of accidents and most of them are due to roof fall. Therefore, development of methodologies to evaluate the roof fall susceptibility (RFS) seems essential. Ghasemi et al. (2012) proposed a systematic methodology to assess the roof fall risk during retreat mining based on risk assessment classic approach. The main defect of this method is ignorance of subjective uncertainties due to linguistic input value of some factors, low resolution, fixed weighting, sharp class boundaries, etc. To remove this defection and improve the mentioned method, in this paper, a novel methodology is presented to assess the RFS using fuzzy approach. The application of fuzzy approach provides an effective tool to handle the subjective uncertainties. Furthermore, fuzzy analytical hierarchy process (AHP) is used to structure and prioritize various risk factors and sub-factors during development of this method. This methodology is applied to identify the susceptibility of roof fall occurrence in main panel of Tabas Central Mine (TCM), Iran. The results indicate that this methodology is effective and efficient in assessing RFS.
The Satellite Clock Bias Prediction Method Based on Takagi-Sugeno Fuzzy Neural Network
NASA Astrophysics Data System (ADS)
Cai, C. L.; Yu, H. G.; Wei, Z. C.; Pan, J. D.
2017-05-01
The continuous improvement of the prediction accuracy of Satellite Clock Bias (SCB) is the key problem of precision navigation. In order to improve the precision of SCB prediction and better reflect the change characteristics of SCB, this paper proposes an SCB prediction method based on the Takagi-Sugeno fuzzy neural network. Firstly, the SCB values are pre-treated based on their characteristics. Then, an accurate Takagi-Sugeno fuzzy neural network model is established based on the preprocessed data to predict SCB. This paper uses the precise SCB data with different sampling intervals provided by IGS (International Global Navigation Satellite System Service) to realize the short-time prediction experiment, and the results are compared with the ARIMA (Auto-Regressive Integrated Moving Average) model, GM(1,1) model, and the quadratic polynomial model. The results show that the Takagi-Sugeno fuzzy neural network model is feasible and effective for the SCB short-time prediction experiment, and performs well for different types of clocks. The prediction results for the proposed method are better than the conventional methods obviously.
A Granular Self-Organizing Map for Clustering and Gene Selection in Microarray Data.
Ray, Shubhra Sankar; Ganivada, Avatharam; Pal, Sankar K
2016-09-01
A new granular self-organizing map (GSOM) is developed by integrating the concept of a fuzzy rough set with the SOM. While training the GSOM, the weights of a winning neuron and the neighborhood neurons are updated through a modified learning procedure. The neighborhood is newly defined using the fuzzy rough sets. The clusters (granules) evolved by the GSOM are presented to a decision table as its decision classes. Based on the decision table, a method of gene selection is developed. The effectiveness of the GSOM is shown in both clustering samples and developing an unsupervised fuzzy rough feature selection (UFRFS) method for gene selection in microarray data. While the superior results of the GSOM, as compared with the related clustering methods, are provided in terms of β -index, DB-index, Dunn-index, and fuzzy rough entropy, the genes selected by the UFRFS are not only better in terms of classification accuracy and a feature evaluation index, but also statistically more significant than the related unsupervised methods. The C-codes of the GSOM and UFRFS are available online at http://avatharamg.webs.com/software-code.
Change detection of bitemporal multispectral images based on FCM and D-S theory
NASA Astrophysics Data System (ADS)
Shi, Aiye; Gao, Guirong; Shen, Shaohong
2016-12-01
In this paper, we propose a change detection method of bitemporal multispectral images based on the D-S theory and fuzzy c-means (FCM) algorithm. Firstly, the uncertainty and certainty regions are determined by thresholding method applied to the magnitudes of difference image (MDI) and spectral angle information (SAI) of bitemporal images. Secondly, the FCM algorithm is applied to the MDI and SAI in the uncertainty region, respectively. Then, the basic probability assignment (BPA) functions of changed and unchanged classes are obtained by the fuzzy membership values from the FCM algorithm. In addition, the optimal value of fuzzy exponent of FCM is adaptively determined by conflict degree between the MDI and SAI in uncertainty region. Finally, the D-S theory is applied to obtain the new fuzzy partition matrix for uncertainty region and further the change map is obtained. Experiments on bitemporal Landsat TM images and bitemporal SPOT images validate that the proposed method is effective.
NASA Astrophysics Data System (ADS)
Al-Qudaimi, Abdullah; Kumar, Amit
2018-05-01
Recently, Abdullah and Najib (International Journal of Sustainable Energy 35(4): 360-377, 2016) proposed an intuitionistic fuzzy analytic hierarchy process to deal with uncertainty in decision-making and applied it to establish preference in the sustainable energy planning decision-making of Malaysia. This work may attract the researchers of other countries to choose energy technology for their countries. However, after a deep study of the published paper (International Journal of Sustainable Energy 35(4): 362-377, 2016), it is noticed that the expression used by Abdullah and Najib in Step 6 of their proposed method for evaluating the intuitionistic fuzzy entropy of each aggregate of each row of intuitionistic fuzzy matrix is not valid. Therefore, it is not genuine to use the method proposed by Abdullah and Najib for solving real-life problems. The aim of this paper was to suggest the required necessary modifications for resolving the flaws of the Abdullah and Najib method.
[Ecological risk assessment of sediment pollution based on triangular fuzzy number].
Zhou, Xiao-Wei; Wang, Li-Ping; Zheng, Bing-Hui
2008-11-01
Based on the characteristics of random and fuzziness, and the shortage and imprecision of datum information of water environmental system, environment background value of sediments and concentration of pollution is calculated by means of triangle fuzzy number and fuzzy risk assessment model of the potential ecological risk index is established. Using this method heavy metal pollution and ecological risk in the Yangtze Estuary and its adjacent waters were analyzed. The result shows that the environment of the foundation of the study area is subject to varying degrees of pollution. The pollution extents are correspondingly Cu, Hg, Zn, Pb, As, Cd. RI by that method and the Hakanson ecological risk method is in similar trend. RI of the estuary, turbidity maximum zone and Hangzhou bay is greater than that at outside of the estuary and sea area nearby Zhousan, and the potential ecological risk rate increases one. The assessment result is good in the validation based on the corresponding period macrobenthic community parameters.
Uzoka, Faith-Michael Emeka; Obot, Okure; Barker, Ken; Osuji, J
2011-07-01
The task of medical diagnosis is a complex one, considering the level vagueness and uncertainty management, especially when the disease has multiple symptoms. A number of researchers have utilized the fuzzy-analytic hierarchy process (fuzzy-AHP) methodology in handling imprecise data in medical diagnosis and therapy. The fuzzy logic is able to handle vagueness and unstructuredness in decision making, while the AHP has the ability to carry out pairwise comparison of decision elements in order to determine their importance in the decision process. This study attempts to do a case comparison of the fuzzy and AHP methods in the development of medical diagnosis system, which involves basic symptoms elicitation and analysis. The results of the study indicate a non-statistically significant relative superiority of the fuzzy technology over the AHP technology. Data collected from 30 malaria patients were used to diagnose using AHP and fuzzy logic independent of one another. The results were compared and found to covary strongly. It was also discovered from the results of fuzzy logic diagnosis covary a little bit more strongly to the conventional diagnosis results than that of AHP. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
DIET@NET: Best Practice Guidelines for dietary assessment in health research.
Cade, Janet E; Warthon-Medina, Marisol; Albar, Salwa; Alwan, Nisreen A; Ness, Andrew; Roe, Mark; Wark, Petra A; Greathead, Katharine; Burley, Victoria J; Finglas, Paul; Johnson, Laura; Page, Polly; Roberts, Katharine; Steer, Toni; Hooson, Jozef; Greenwood, Darren C; Robinson, Sian
2017-11-15
Dietary assessment is complex, and strategies to select the most appropriate dietary assessment tool (DAT) in epidemiological research are needed. The DIETary Assessment Tool NETwork (DIET@NET) aimed to establish expert consensus on Best Practice Guidelines (BPGs) for dietary assessment using self-report. The BPGs were developed using the Delphi technique. Two Delphi rounds were conducted. A total of 131 experts were invited, and of these 65 accepted, with 48 completing Delphi round I and 51 completing Delphi round II. In all, a total of 57 experts from North America, Europe, Asia and Australia commented on the 47 suggested guidelines. Forty-three guidelines were generated, grouped into the following four stages: Stage I. Define what is to be measured in terms of dietary intake (what? who? and when?); Stage II. Investigate different types of DATs; Stage III. Evaluate existing tools to select the most appropriate DAT by evaluating published validation studies; Stage IV. Think through the implementation of the chosen DAT and consider sources of potential biases. The Delphi technique consolidated expert views on best practice in assessing dietary intake. The BPGs provide a valuable guide for health researchers to choose the most appropriate dietary assessment method for their studies. These guidelines will be accessible through the Nutritools website, www.nutritools.org .
NASA Astrophysics Data System (ADS)
Bagheri Tolabi, Hajar; Hosseini, Rahil; Shakarami, Mahmoud Reza
2016-06-01
This article presents a novel hybrid optimization approach for a nonlinear controller of a distribution static compensator (DSTATCOM). The DSTATCOM is connected to a distribution system with the distributed generation units. The nonlinear control is based on partial feedback linearization. Two proportional-integral-derivative (PID) controllers regulate the voltage and track the output in this control system. In the conventional scheme, the trial-and-error method is used to determine the PID controller coefficients. This article uses a combination of a fuzzy system, simulated annealing (SA) and intelligent water drops (IWD) algorithms to optimize the parameters of the controllers. The obtained results reveal that the response of the optimized controlled system is effectively improved by finding a high-quality solution. The results confirm that using the tuning method based on the fuzzy-SA-IWD can significantly decrease the settling and rising times, the maximum overshoot and the steady-state error of the voltage step response of the DSTATCOM. The proposed hybrid tuning method for the partial feedback linearizing (PFL) controller achieved better regulation of the direct current voltage for the capacitor within the DSTATCOM. Furthermore, in the event of a fault the proposed controller tuned by the fuzzy-SA-IWD method showed better performance than the conventional controller or the PFL controller without optimization by the fuzzy-SA-IWD method with regard to both fault duration and clearing times.
Fuzzy multiobjective models for optimal operation of a hydropower system
NASA Astrophysics Data System (ADS)
Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.
2013-06-01
Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.
Multi-Criteria Decision-Making Methods and Their Applications for Human Resources
NASA Astrophysics Data System (ADS)
D'Urso, M. G.; Masi, D.
2015-05-01
Both within the formation field and the labor market Multi-Criteria Decision Methods (MCDM) provide a significant support to the management of human resources in which the best choice among several alternatives can be very complex. This contribution addresses fuzzy logic in multi-criteria decision techniques since they have several applications in the management of human resources with the advantage of ruling out mistakes due to the subjectivity of the person in charge of making a choice. Evaluating educational achievements as well as the professional profile of a technician more suitable for a job in a firm, industry or a professional office are valuable examples of fuzzy logic. For all of the previous issues subjectivity is a fundamental aspect so that fuzzy logic, due to the very meaning of the word fuzzy, should be the preferred choice. However, this is not sufficient to justify its use; fuzzy technique has to make the system of evaluation and choice more effective and objective. The methodological structure of the multi-criteria fuzzy criterion is hierarchic and allows one to select the best alternatives in all those cases in which several alternatives are possible; thus, the optimal choice can be achieved by analyzing the different scopes of each criterion and sub-criterion as well as the relevant weights.
A new neuro-fuzzy training algorithm for identifying dynamic characteristics of smart dampers
NASA Astrophysics Data System (ADS)
Dzung Nguyen, Sy; Choi, Seung-Bok
2012-08-01
This paper proposes a new algorithm, named establishing neuro-fuzzy system (ENFS), to identify dynamic characteristics of smart dampers such as magnetorheological (MR) and electrorheological (ER) dampers. In the ENFS, data clustering is performed based on the proposed algorithm named partitioning data space (PDS). Firstly, the PDS builds data clusters in joint input-output data space with appropriate constraints. The role of these constraints is to create reasonable data distribution in clusters. The ENFS then uses these clusters to perform the following tasks. Firstly, the fuzzy sets expressing characteristics of data clusters are established. The structure of the fuzzy sets is adjusted to be suitable for features of the data set. Secondly, an appropriate structure of neuro-fuzzy (NF) expressed by an optimal number of labeled data clusters and the fuzzy-set groups is determined. After the ENFS is introduced, its effectiveness is evaluated by a prediction-error-comparative work between the proposed method and some other methods in identifying numerical data sets such as ‘daily data of stock A’, or in identifying a function. The ENFS is then applied to identify damping force characteristics of the smart dampers. In order to evaluate the effectiveness of the ENFS in identifying the damping forces of the smart dampers, the prediction errors are presented by comparing with experimental results.
Automatic rule generation for high-level vision
NASA Technical Reports Server (NTRS)
Rhee, Frank Chung-Hoon; Krishnapuram, Raghu
1992-01-01
A new fuzzy set based technique that was developed for decision making is discussed. It is a method to generate fuzzy decision rules automatically for image analysis. This paper proposes a method to generate rule-based approaches to solve problems such as autonomous navigation and image understanding automatically from training data. The proposed method is also capable of filtering out irrelevant features and criteria from the rules.
Improving the care of older persons in Australian prisons using the Policy Delphi method.
Patterson, Karen; Newman, Claire; Doona, Katherine
2016-09-01
There are currently no internationally recognised and approved processes relating to the care of older persons with dementia in prison. This research aimed to develop tools and procedures related to managing the care of, including the identification and assessment of, older persons with dementia who are imprisoned in New South Wales, Australia. A modified approach to the Policy Delphi method, using both surveys and facilitated discussion groups, enabled experts to come together to discuss improving the quality of care provision for older persons with dementia in prison and achieve research aims. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Rahmanita, E.; Widyaningrum, V. T.; Kustiyahningsih, Y.; Purnama, J.
2018-04-01
SMEs have a very important role in the development of the economy in Indonesia. SMEs assist the government in terms of creating new jobs and can support household income. The number of SMEs in Madura and the number of measurement indicators in the SME mapping so that it requires a method.This research uses Fuzzy Analytic Network Process (FANP) method for performance measurement SME. The FANP method can handle data that contains uncertainty. There is consistency index in determining decisions. Performance measurement in this study is based on a perspective of the Balanced Scorecard. This research approach integrated internal business perspective, learning, and growth perspective and fuzzy Analytic Network Process (FANP). The results of this research areframework a priority weighting of assessment indicators SME.
Fuzzy Regression Prediction and Application Based on Multi-Dimensional Factors of Freight Volume
NASA Astrophysics Data System (ADS)
Xiao, Mengting; Li, Cheng
2018-01-01
Based on the reality of the development of air cargo, the multi-dimensional fuzzy regression method is used to determine the influencing factors, and the three most important influencing factors of GDP, total fixed assets investment and regular flight route mileage are determined. The system’s viewpoints and analogy methods, the use of fuzzy numbers and multiple regression methods to predict the civil aviation cargo volume. In comparison with the 13th Five-Year Plan for China’s Civil Aviation Development (2016-2020), it is proved that this method can effectively improve the accuracy of forecasting and reduce the risk of forecasting. It is proved that this model predicts civil aviation freight volume of the feasibility, has a high practical significance and practical operation.
Finger-Vein Image Enhancement Using a Fuzzy-Based Fusion Method with Gabor and Retinex Filtering
Shin, Kwang Yong; Park, Young Ho; Nguyen, Dat Tien; Park, Kang Ryoung
2014-01-01
Because of the advantages of finger-vein recognition systems such as live detection and usage as bio-cryptography systems, they can be used to authenticate individual people. However, images of finger-vein patterns are typically unclear because of light scattering by the skin, optical blurring, and motion blurring, which can degrade the performance of finger-vein recognition systems. In response to these issues, a new enhancement method for finger-vein images is proposed. Our method is novel compared with previous approaches in four respects. First, the local and global features of the vein lines of an input image are amplified using Gabor filters in four directions and Retinex filtering, respectively. Second, the means and standard deviations in the local windows of the images produced after Gabor and Retinex filtering are used as inputs for the fuzzy rule and fuzzy membership function, respectively. Third, the optimal weights required to combine the two Gabor and Retinex filtered images are determined using a defuzzification method. Fourth, the use of a fuzzy-based method means that image enhancement does not require additional training data to determine the optimal weights. Experimental results using two finger-vein databases showed that the proposed method enhanced the accuracy of finger-vein recognition compared with previous methods. PMID:24549251
NASA Astrophysics Data System (ADS)
Luo, Junhui; Wu, Chao; Liu, Xianlin; Mi, Decai; Zeng, Fuquan; Zeng, Yongjun
2018-01-01
At present, the prediction of soft foundation settlement mostly use the exponential curve and hyperbola deferred approximation method, and the correlation between the results is poor. However, the application of neural network in this area has some limitations, and none of the models used in the existing cases adopted the TS fuzzy neural network of which calculation combines the characteristics of fuzzy system and neural network to realize the mutual compatibility methods. At the same time, the developed and optimized calculation program is convenient for engineering designers. Taking the prediction and analysis of soft foundation settlement of gully soft soil in granite area of Guangxi Guihe road as an example, the fuzzy neural network model is established and verified to explore the applicability. The TS fuzzy neural network is used to construct the prediction model of settlement and deformation, and the corresponding time response function is established to calculate and analyze the settlement of soft foundation. The results show that the prediction of short-term settlement of the model is accurate and the final settlement prediction result has certain engineering reference value.
NASA Astrophysics Data System (ADS)
Jin, Juliang; Li, Lei; Wang, Wensheng; Zhang, Ming
2006-10-01
The optimal selection of schemes of water transportation projects is a process of choosing a relatively optimal scheme from a number of schemes of water transportation programming and management projects, which is of importance in both theory and practice in water resource systems engineering. In order to achieve consistency and eliminate the dimensions of fuzzy qualitative and fuzzy quantitative evaluation indexes, to determine the weights of the indexes objectively, and to increase the differences among the comprehensive evaluation index values of water transportation project schemes, a projection pursuit method, named FPRM-PP for short, was developed in this work for selecting the optimal water transportation project scheme based on the fuzzy preference relation matrix. The research results show that FPRM-PP is intuitive and practical, the correction range of the fuzzy preference relation matrix
Research on Assessment Methods for Urban Public Transport Development in China
Zou, Linghong; Guo, Hongwei
2014-01-01
In recent years, with the rapid increase in urban population, the urban travel demands in Chinese cities have been increasing dramatically. As a result, developing comprehensive urban transport systems becomes an inevitable choice to meet the growing urban travel demands. In urban transport systems, public transport plays the leading role to promote sustainable urban development. This paper aims to establish an assessment index system for the development level of urban public transport consisting of a target layer, a criterion layer, and an index layer. Review on existing literature shows that methods used in evaluating urban public transport structure are dominantly qualitative. To overcome this shortcoming, fuzzy mathematics method is used for describing qualitative issues quantitatively, and AHP (analytic hierarchy process) is used to quantify expert's subjective judgment. The assessment model is established based on the fuzzy AHP. The weight of each index is determined through the AHP and the degree of membership of each index through the fuzzy assessment method to obtain the fuzzy synthetic assessment matrix. Finally, a case study is conducted to verify the rationality and practicability of the assessment system and the proposed assessment method. PMID:25530756
NASA Astrophysics Data System (ADS)
Smoczek, Jaroslaw
2015-10-01
The paper deals with the problem of reducing the residual vibration and limiting the transient oscillations of a flexible and underactuated system with respect to the variation of operating conditions. The comparative study of generalized predictive control (GPC) and fuzzy scheduling scheme developed based on the P1-TS fuzzy theory, local pole placement method and interval analysis of closed-loop system polynomial coefficients is addressed to the problem of flexible crane control. The two alternatives of a GPC-based method are proposed that enable to realize this technique either with or without a sensor of payload deflection. The first control technique is based on the recursive least squares (RLS) method applied to on-line estimate the parameters of a linear parameter varying (LPV) model of a crane dynamic system. The second GPC-based approach is based on a payload deflection feedback estimated using a pendulum model with the parameters interpolated using the P1-TS fuzzy system. Feasibility and applicability of the developed methods were confirmed through experimental verification performed on a laboratory scaled overhead crane.
NASA Astrophysics Data System (ADS)
Tazik, E.; Jahantab, Z.; Bakhtiari, M.; Rezaei, A.; Kazem Alavipanah, S.
2014-10-01
Landslides are among the most important natural hazards that lead to modification of the environment. Therefore, studying of this phenomenon is so important in many areas. Because of the climate conditions, geologic, and geomorphologic characteristics of the region, the purpose of this study was landslide hazard assessment using Fuzzy Logic, frequency ratio and Analytical Hierarchy Process method in Dozein basin, Iran. At first, landslides occurred in Dozein basin were identified using aerial photos and field studies. The influenced landslide parameters that were used in this study including slope, aspect, elevation, lithology, precipitation, land cover, distance from fault, distance from road and distance from river were obtained from different sources and maps. Using these factors and the identified landslide, the fuzzy membership values were calculated by frequency ratio. Then to account for the importance of each of the factors in the landslide susceptibility, weights of each factor were determined based on questionnaire and AHP method. Finally, fuzzy map of each factor was multiplied to its weight that obtained using AHP method. At the end, for computing prediction accuracy, the produced map was verified by comparing to existing landslide locations. These results indicate that the combining the three methods Fuzzy Logic, Frequency Ratio and Analytical Hierarchy Process method are relatively good estimators of landslide susceptibility in the study area. According to landslide susceptibility map about 51% of the occurred landslide fall into the high and very high susceptibility zones of the landslide susceptibility map, but approximately 26 % of them indeed located in the low and very low susceptibility zones.
Haines, Sara; Baker, Tricia
2013-01-01
Purpose/Background: To develop a consensus on the critical constructs necessary to be included in a physical performance assessment checklist (PPAC) to assess an athlete's ability for return to sport following a lower extremity injury. Methods: The study used a 3‐round Delphi method to finalize the PPAI originally developed by a panel of experts. Fourteen Delphi representative sample participants were randomly derived from the authors of peer‐reviewed publications of lower extremity injuries. Nine participants completed all 3 rounds. Results: Throughout the 3 rounds, the 10 initial constructs were modified and revised to produce the finalized PPAC consisting of 12 constructs necessary to consider for an athlete's return to sport after a lower extremity injury. Conclusions: This instrument can be used as a checklist to advocate for prospective batteries of physical performance tests to incorporate the elements identified by this study. Level of Evidence: 5 PMID:23439809
Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale
Diao, Yuzhu; Hu, Aqin
2018-01-01
Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation. PMID:29498699
Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale.
Li, Qingsheng; Diao, Yuzhu; Gong, Zaiwu; Hu, Aqin
2018-03-02
Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation.
TRStalker: an efficient heuristic for finding fuzzy tandem repeats.
Pellegrini, Marco; Renda, M Elena; Vecchio, Alessio
2010-06-15
Genomes in higher eukaryotic organisms contain a substantial amount of repeated sequences. Tandem Repeats (TRs) constitute a large class of repetitive sequences that are originated via phenomena such as replication slippage and are characterized by close spatial contiguity. They play an important role in several molecular regulatory mechanisms, and also in several diseases (e.g. in the group of trinucleotide repeat disorders). While for TRs with a low or medium level of divergence the current methods are rather effective, the problem of detecting TRs with higher divergence (fuzzy TRs) is still open. The detection of fuzzy TRs is propaedeutic to enriching our view of their role in regulatory mechanisms and diseases. Fuzzy TRs are also important as tools to shed light on the evolutionary history of the genome, where higher divergence correlates with more remote duplication events. We have developed an algorithm (christened TRStalker) with the aim of detecting efficiently TRs that are hard to detect because of their inherent fuzziness, due to high levels of base substitutions, insertions and deletions. To attain this goal, we developed heuristics to solve a Steiner version of the problem for which the fuzziness is measured with respect to a motif string not necessarily present in the input string. This problem is akin to the 'generalized median string' that is known to be an NP-hard problem. Experiments with both synthetic and biological sequences demonstrate that our method performs better than current state of the art for fuzzy TRs and that the fuzzy TRs of the type we detect are indeed present in important biological sequences. TRStalker will be integrated in the web-based TRs Discovery Service (TReaDS) at bioalgo.iit.cnr.it. Supplementary data are available at Bioinformatics online.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
.../Electronic Architecture, a Subsidiary of Delphi Corporation, Including On-Site Leased Workers From Bartech... Assistance on December 8, 2009, applicable to workers of Delphi Packard Electrical/Electronic Architecture, a.../Electronic Architecture, a subsidiary of Delphi Corporation, including on-site leased [[Page 28656
Fuzzy Neural Networks for Decision Support in Negotiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakas, D. P.; Vlachos, D. S.; Simos, T. E.
There is a large number of parameters which one can take into account when building a negotiation model. These parameters in general are uncertain, thus leading to models which represents them with fuzzy sets. On the other hand, the nature of these parameters makes them very difficult to model them with precise values. During negotiation, these parameters play an important role by altering the outcomes or changing the state of the negotiators. One reasonable way to model this procedure is to accept fuzzy relations (from theory or experience). The action of these relations to fuzzy sets, produce new fuzzy setsmore » which describe now the new state of the system or the modified parameters. But, in the majority of these situations, the relations are multidimensional, leading to complicated models and exponentially increasing computational time. In this paper a solution to this problem is presented. The use of fuzzy neural networks is shown that it can substitute the use of fuzzy relations with comparable results. Finally a simple simulation is carried in order to test the new method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Man Gyun; Oh, Seungrohk
A neuro-fuzzy inference system combined with the wavelet denoising, principal component analysis (PCA), and sequential probability ratio test (SPRT) methods has been developed to monitor the relevant sensor using the information of other sensors. The parameters of the neuro-fuzzy inference system that estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce themore » time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system, and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors.« less
Li, Jia; Wang, Deming; Huang, Zonghou
2017-01-01
Coal dust explosions (CDE) are one of the main threats to the occupational safety of coal miners. Aiming to identify and assess the risk of CDE, this paper proposes a novel method of fuzzy fault tree analysis combined with the Visual Basic (VB) program. In this methodology, various potential causes of the CDE are identified and a CDE fault tree is constructed. To overcome drawbacks from the lack of exact probability data for the basic events, fuzzy set theory is employed and the probability data of each basic event is treated as intuitionistic trapezoidal fuzzy numbers. In addition, a new approach for calculating the weighting of each expert is also introduced in this paper to reduce the error during the expert elicitation process. Specifically, an in-depth quantitative analysis of the fuzzy fault tree, such as the importance measure of the basic events and the cut sets, and the CDE occurrence probability is given to assess the explosion risk and acquire more details of the CDE. The VB program is applied to simplify the analysis process. A case study and analysis is provided to illustrate the effectiveness of this proposed method, and some suggestions are given to take preventive measures in advance and avoid CDE accidents. PMID:28793348
Chien, Yi-Hsing; Wang, Wei-Yen; Leu, Yih-Guang; Lee, Tsu-Tian
2011-04-01
This paper proposes a novel method of online modeling and control via the Takagi-Sugeno (T-S) fuzzy-neural model for a class of uncertain nonlinear systems with some kinds of outputs. Although studies about adaptive T-S fuzzy-neural controllers have been made on some nonaffine nonlinear systems, little is known about the more complicated uncertain nonlinear systems. Because the nonlinear functions of the systems are uncertain, traditional T-S fuzzy control methods can model and control them only with great difficulty, if at all. Instead of modeling these uncertain functions directly, we propose that a T-S fuzzy-neural model approximates a so-called virtual linearized system (VLS) of the system, which includes modeling errors and external disturbances. We also propose an online identification algorithm for the VLS and put significant emphasis on robust tracking controller design using an adaptive scheme for the uncertain systems. Moreover, the stability of the closed-loop systems is proven by using strictly positive real Lyapunov theory. The proposed overall scheme guarantees that the outputs of the closed-loop systems asymptotically track the desired output trajectories. To illustrate the effectiveness and applicability of the proposed method, simulation results are given in this paper.
Wang, Hetang; Li, Jia; Wang, Deming; Huang, Zonghou
2017-01-01
Coal dust explosions (CDE) are one of the main threats to the occupational safety of coal miners. Aiming to identify and assess the risk of CDE, this paper proposes a novel method of fuzzy fault tree analysis combined with the Visual Basic (VB) program. In this methodology, various potential causes of the CDE are identified and a CDE fault tree is constructed. To overcome drawbacks from the lack of exact probability data for the basic events, fuzzy set theory is employed and the probability data of each basic event is treated as intuitionistic trapezoidal fuzzy numbers. In addition, a new approach for calculating the weighting of each expert is also introduced in this paper to reduce the error during the expert elicitation process. Specifically, an in-depth quantitative analysis of the fuzzy fault tree, such as the importance measure of the basic events and the cut sets, and the CDE occurrence probability is given to assess the explosion risk and acquire more details of the CDE. The VB program is applied to simplify the analysis process. A case study and analysis is provided to illustrate the effectiveness of this proposed method, and some suggestions are given to take preventive measures in advance and avoid CDE accidents.
Fuzzy attitude control of solar sail via linear matrix inequalities
NASA Astrophysics Data System (ADS)
Baculi, Joshua; Ayoubi, Mohammad A.
2017-09-01
This study presents a fuzzy tracking controller based on the Takagi-Sugeno (T-S) fuzzy model of the solar sail. First, the T-S fuzzy model is constructed by linearizing the existing nonlinear equations of motion of the solar sail. Then, the T-S fuzzy model is used to derive the state feedback controller gains for the Twin Parallel Distributed Compensation (TPDC) technique. The TPDC tracks and stabilizes the attitude of the solar sail to any desired state in the presence of parameter uncertainties and external disturbances while satisfying actuator constraints. The performance of the TPDC is compared to a PID controller that is tuned using the Ziegler-Nichols method. Numerical simulation shows the TPDC outperforms the PID controller when stabilizing the solar sail to a desired state.
Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions
NASA Astrophysics Data System (ADS)
Khoury, Mehdi; Liu, Honghai
This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.
Youth injury prevention in Canada: use of the Delphi method to develop recommendations.
Pike, Ian; Piedt, Shannon; Davison, Colleen M; Russell, Kelly; Macpherson, Alison K; Pickett, William
2015-12-22
The Health Behaviour in School-aged Children Survey is one of very few cross-national health surveys that includes information on injury occurrence and prevention within adolescent populations. A collaboration to develop a Canadian youth injury report using these data resulted in, Injury among Young Canadians: A national study of contextual determinants. The objective of this study was to develop specific evidence-based, policy-oriented recommendations arising from the national report, using a modified-Delphi process with a panel of expert stakeholders. Eight injury prevention experts and a 3-person youth advisory team associated with a Canadian injury prevention organization (Parachute Canada) reviewed, edited and commented on report recommendations through a three-stage iterative modified-Delphi process. From an initial list of 27 draft recommendations, the modified-Delphi process resulted in a final list of 19 specific recommendations, worded to resonate with the group(s) responsible to lead or take the recommended action. Two recommendations were rated as "extremely important" or "very important" by 100 % of the expert panel, two were deleted, a further two recommendations were deleted but the content included as text in the report, and four were merged with other existing recommendations. The modified-Delphi process was an appropriate method to achieve agreement on 19 specific evidence-based, policy-oriented recommendations to complement the national youth injury report. In providing their input, it is noted that the injury stakeholders each acted as individual experts, unattached to any organizational position or policy. These recommendations will require multidisciplinary collaborations in order to support the proposed policy development, additional research, programming and clear decision-making for youth injury prevention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKone, Thomas E.; Deshpande, Ashok W.
2004-06-14
In modeling complex environmental problems, we often fail to make precise statements about inputs and outcome. In this case the fuzzy logic method native to the human mind provides a useful way to get at these problems. Fuzzy logic represents a significant change in both the approach to and outcome of environmental evaluations. Risk assessment is currently based on the implicit premise that probability theory provides the necessary and sufficient tools for dealing with uncertainty and variability. The key advantage of fuzzy methods is the way they reflect the human mind in its remarkable ability to store and process informationmore » which is consistently imprecise, uncertain, and resistant to classification. Our case study illustrates the ability of fuzzy logic to integrate statistical measurements with imprecise health goals. But we submit that fuzzy logic and probability theory are complementary and not competitive. In the world of soft computing, fuzzy logic has been widely used and has often been the ''smart'' behind smart machines. But it will require more effort and case studies to establish its niche in risk assessment or other types of impact assessment. Although we often hear complaints about ''bright lines,'' could we adapt to a system that relaxes these lines to fuzzy gradations? Would decision makers and the public accept expressions of water or air quality goals in linguistic terms with computed degrees of certainty? Resistance is likely. In many regions, such as the US and European Union, it is likely that both decision makers and members of the public are more comfortable with our current system in which government agencies avoid confronting uncertainties by setting guidelines that are crisp and often fail to communicate uncertainty. But some day perhaps a more comprehensive approach that includes exposure surveys, toxicological data, epidemiological studies coupled with fuzzy modeling will go a long way in resolving some of the conflict, divisiveness, and controversy in the current regulatory paradigm.« less
Bank, Ilana; Cheng, Adam; McLeod, Peter; Bhanji, Farhan
2015-11-01
By the end of residency training, pediatric emergency medicine (PEM) residents are expected to have developed the confidence and abilities required to manage acutely ill children. Acquisition of competence requires exposure and/or supplemental formal education for critical and noncritical medical clinical presentations. Simulation can provide experiential learning and can improve trainees' knowledge, skills, and attitudes. The primary objective of this project was to identify the content for a simulation-based national curriculum for PEM training. We recruited participants for the Delphi study by contacting current PEM program directors and immediate past program directors as well as simulation experts at all of the Canadian PEM fellowship sites. We determined the appropriate core content for the Delphi study by combining the PEM core content requirements of the Royal College of Physicians and Surgeons of Canada (RCPSC) and the American Board of Pediatrics (ABP). Using the Delphi method, we achieved consensus amongst the national group of PEM and simulation experts. The participants completed a three-round Delphi (using a four-point Likert scale). Response rates for the Delphi were 85% for the first round and 77% for second and third rounds. From the initial 224 topics, 53 were eliminated (scored <2). Eighty-five topics scored between 2 and 3, and 87 scored between 3 and 4. The 48 topics, which were scored between 3.5 and 4.0, were labeled as "key curriculum topics." We have iteratively identified a consensus for the content of a national simulation-based curriculum.
Li, Jun; Zhang, Hong; Han, Yinshan; Wang, Baodong
2016-01-01
Focusing on the diversity, complexity and uncertainty of the third-party damage accident, the failure probability of third-party damage to urban gas pipeline was evaluated on the theory of analytic hierarchy process and fuzzy mathematics. The fault tree of third-party damage containing 56 basic events was built by hazard identification of third-party damage. The fuzzy evaluation of basic event probabilities were conducted by the expert judgment method and using membership function of fuzzy set. The determination of the weight of each expert and the modification of the evaluation opinions were accomplished using the improved analytic hierarchy process, and the failure possibility of the third-party to urban gas pipeline was calculated. Taking gas pipelines of a certain large provincial capital city as an example, the risk assessment structure of the method was proved to conform to the actual situation, which provides the basis for the safety risk prevention.
The stock-flow model of spatial data infrastructure development refined by fuzzy logic.
Abdolmajidi, Ehsan; Harrie, Lars; Mansourian, Ali
2016-01-01
The system dynamics technique has been demonstrated to be a proper method by which to model and simulate the development of spatial data infrastructures (SDI). An SDI is a collaborative effort to manage and share spatial data at different political and administrative levels. It is comprised of various dynamically interacting quantitative and qualitative (linguistic) variables. To incorporate linguistic variables and their joint effects in an SDI-development model more effectively, we suggest employing fuzzy logic. Not all fuzzy models are able to model the dynamic behavior of SDIs properly. Therefore, this paper aims to investigate different fuzzy models and their suitability for modeling SDIs. To that end, two inference and two defuzzification methods were used for the fuzzification of the joint effect of two variables in an existing SDI model. The results show that the Average-Average inference and Center of Area defuzzification can better model the dynamics of SDI development.
Composite fuzzy sliding mode control of nonlinear singularly perturbed systems.
Nagarale, Ravindrakumar M; Patre, B M
2014-05-01
This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.