Kumar, Mohit; Yadav, Shiv Prasad
2012-03-01
This paper addresses the fuzzy system reliability analysis using different types of intuitionistic fuzzy numbers. Till now, in the literature, to analyze the fuzzy system reliability, it is assumed that the failure rates of all components of a system follow the same type of fuzzy set or intuitionistic fuzzy set. However, in practical problems, such type of situation rarely occurs. Therefore, in the present paper, a new algorithm has been introduced to construct the membership function and non-membership function of fuzzy reliability of a system having components following different types of intuitionistic fuzzy failure rates. Functions of intuitionistic fuzzy numbers are calculated to construct the membership function and non-membership function of fuzzy reliability via non-linear programming techniques. Using the proposed algorithm, membership functions and non-membership functions of fuzzy reliability of a series system and a parallel systems are constructed. Our study generalizes the various works of the literature. Numerical examples are given to illustrate the proposed algorithm. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Design of fuzzy system by NNs and realization of adaptability
NASA Technical Reports Server (NTRS)
Takagi, Hideyuki
1993-01-01
The issue of designing and tuning fuzzy membership functions by neural networks (NN's) was started by NN-driven Fuzzy Reasoning in 1988. NN-driven fuzzy reasoning involves a NN embedded in the fuzzy system which generates membership values. In conventional fuzzy system design, the membership functions are hand-crafted by trial and error for each input variable. In contrast, NN-driven fuzzy reasoning considers several variables simultaneously and can design a multidimensional, nonlinear membership function for the entire subspace.
Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous
NASA Technical Reports Server (NTRS)
Karr, C. L.; Freeman, L. M.; Meredith, D. L.
1990-01-01
The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.
A genetic algorithms approach for altering the membership functions in fuzzy logic controllers
NASA Technical Reports Server (NTRS)
Shehadeh, Hana; Lea, Robert N.
1992-01-01
Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.
Application of genetic algorithms to tuning fuzzy control systems
NASA Technical Reports Server (NTRS)
Espy, Todd; Vombrack, Endre; Aldridge, Jack
1993-01-01
Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.
NASA Technical Reports Server (NTRS)
Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru
1991-01-01
Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.
Fast Fuzzy Arithmetic Operations
NASA Technical Reports Server (NTRS)
Hampton, Michael; Kosheleva, Olga
1997-01-01
In engineering applications of fuzzy logic, the main goal is not to simulate the way the experts really think, but to come up with a good engineering solution that would (ideally) be better than the expert's control, In such applications, it makes perfect sense to restrict ourselves to simplified approximate expressions for membership functions. If we need to perform arithmetic operations with the resulting fuzzy numbers, then we can use simple and fast algorithms that are known for operations with simple membership functions. In other applications, especially the ones that are related to humanities, simulating experts is one of the main goals. In such applications, we must use membership functions that capture every nuance of the expert's opinion; these functions are therefore complicated, and fuzzy arithmetic operations with the corresponding fuzzy numbers become a computational problem. In this paper, we design a new algorithm for performing such operations. This algorithm is applicable in the case when negative logarithms - log(u(x)) of membership functions u(x) are convex, and reduces computation time from O(n(exp 2))to O(n log(n)) (where n is the number of points x at which we know the membership functions u(x)).
NASA Technical Reports Server (NTRS)
Salazar, George A. (Inventor)
1993-01-01
This invention relates to a reconfigurable fuzzy cell comprising a digital control programmable gain operation amplifier, an analog-to-digital converter, an electrically erasable PROM, and 8-bit counter and comparator, and supporting logic configured to achieve in real-time fuzzy systems high throughput, grade-of-membership or membership-value conversion of multi-input sensor data. The invention provides a flexible multiplexing-capable configuration, implemented entirely in hardware, for effectuating S-, Z-, and PI-membership functions or combinations thereof, based upon fuzzy logic level-set theory. A membership value table storing 'knowledge data' for each of S-, Z-, and PI-functions is contained within a nonvolatile memory for storing bits of membership and parametric information in a plurality of address spaces. Based upon parametric and control signals, analog sensor data is digitized and converted into grade-of-membership data. In situ learn and recognition modes of operation are also provided.
NASA Technical Reports Server (NTRS)
Starks, Scott; Abdel-Hafeez, Saleh; Usevitch, Bryan
1997-01-01
This paper discusses the implementation of a fuzzy logic system using an ASICs design approach. The approach is based upon combining the inherent advantages of symmetric triangular membership functions and fuzzy singleton sets to obtain a novel structure for fuzzy logic system application development. The resulting structure utilizes a fuzzy static RAM to store the rule-base and the end-points of the triangular membership functions. This provides advantages over other approaches in which all sampled values of membership functions for all universes must be stored. The fuzzy coprocessor structure implements the fuzzification and defuzzification processes through a two-stage parallel pipeline architecture which is capable of executing complex fuzzy computations in less than 0.55us with an accuracy of more than 95%, thus making it suitable for a wide range of applications. Using the approach presented in this paper, a fuzzy logic rule-base can be directly downloaded via a host processor to an onchip rule-base memory with a size of 64 words. The fuzzy coprocessor's design supports up to 49 rules for seven fuzzy membership functions associated with each of the chip's two input variables. This feature allows designers to create fuzzy logic systems without the need for additional on-board memory. Finally, the paper reports on simulation studies that were conducted for several adaptive filter applications using the least mean squared adaptive algorithm for adjusting the knowledge rule-base.
Comparative Analysis of Membership Function on Mamdani Fuzzy Inference System for Decision Making
NASA Astrophysics Data System (ADS)
harliana, Putri; Rahim, Robbi
2017-12-01
Membership function is a curve that shows mapping the input data points into the value or degree of membership which has an interval between 0 and 1. One way to get membership value is through a function approach. There are some membership functions can be used on mamdani fuzzy inference system. They are triangular, trapezoid, singleton, sigmoid, Gaussian, etc. In this paper only discuss three membership functions, are triangular, trapezoid and Gaussian. These three membership functions will be compared to see the difference in parameter values and results obtained. For case study in this paper is admission of students at popular school. There are three variable can be used, they are students’ report, IQ score and parents’ income. Which will then be created if-then rules.
Fuzzy membership functions for analysis of high-resolution CT images of diffuse pulmonary diseases.
Almeida, Eliana; Rangayyan, Rangaraj M; Azevedo-Marques, Paulo M
2015-08-01
We propose the use of fuzzy membership functions to analyze images of diffuse pulmonary diseases (DPDs) based on fractal and texture features. The features were extracted from preprocessed regions of interest (ROIs) selected from high-resolution computed tomography images. The ROIs represent five different patterns of DPDs and normal lung tissue. A Gaussian mixture model (GMM) was constructed for each feature, with six Gaussians modeling the six patterns. Feature selection was performed and the GMMs of the five significant features were used. From the GMMs, fuzzy membership functions were obtained by a probability-possibility transformation and further statistical analysis was performed. An average classification accuracy of 63.5% was obtained for the six classes. For four of the six classes, the classification accuracy was superior to 65%, and the best classification accuracy was 75.5% for one class. The use of fuzzy membership functions to assist in pattern classification is an alternative to deterministic approaches to explore strategies for medical diagnosis.
Fuzzy Multi-Objective Vendor Selection Problem with Modified S-CURVE Membership Function
NASA Astrophysics Data System (ADS)
Díaz-Madroñero, Manuel; Peidro, David; Vasant, Pandian
2010-06-01
In this paper, the S-Curve membership function methodology is used in a vendor selection (VS) problem. An interactive method for solving multi-objective VS problems with fuzzy goals is developed. The proposed method attempts simultaneously to minimize the total order costs, the number of rejected items and the number of late delivered items with reference to several constraints such as meeting buyers' demand, vendors' capacity, vendors' quota flexibility, vendors' allocated budget, etc. We compare in an industrial case the performance of S-curve membership functions, representing uncertainty goals and constraints in VS problems, with linear membership functions.
Integration of Genetic Algorithms and Fuzzy Logic for Urban Growth Modeling
NASA Astrophysics Data System (ADS)
Foroutan, E.; Delavar, M. R.; Araabi, B. N.
2012-07-01
Urban growth phenomenon as a spatio-temporal continuous process is subject to spatial uncertainty. This inherent uncertainty cannot be fully addressed by the conventional methods based on the Boolean algebra. Fuzzy logic can be employed to overcome this limitation. Fuzzy logic preserves the continuity of dynamic urban growth spatially by choosing fuzzy membership functions, fuzzy rules and the fuzzification-defuzzification process. Fuzzy membership functions and fuzzy rule sets as the heart of fuzzy logic are rather subjective and dependent on the expert. However, due to lack of a definite method for determining the membership function parameters, certain optimization is needed to tune the parameters and improve the performance of the model. This paper integrates genetic algorithms and fuzzy logic as a genetic fuzzy system (GFS) for modeling dynamic urban growth. The proposed approach is applied for modeling urban growth in Tehran Metropolitan Area in Iran. Historical land use/cover data of Tehran Metropolitan Area extracted from the 1988 and 1999 Landsat ETM+ images are employed in order to simulate the urban growth. The extracted land use classes of the year 1988 include urban areas, street, vegetation areas, slope and elevation used as urban growth physical driving forces. Relative Operating Characteristic (ROC) curve as an fitness function has been used to evaluate the performance of the GFS algorithm. The optimum membership function parameter is applied for generating a suitability map for the urban growth. Comparing the suitability map and real land use map of 1999 gives the threshold value for the best suitability map which can simulate the land use map of 1999. The simulation outcomes in terms of kappa of 89.13% and overall map accuracy of 95.58% demonstrated the efficiency and reliability of the proposed model.
Grey fuzzy optimization model for water quality management of a river system
NASA Astrophysics Data System (ADS)
Karmakar, Subhankar; Mujumdar, P. P.
2006-07-01
A grey fuzzy optimization model is developed for water quality management of river system to address uncertainty involved in fixing the membership functions for different goals of Pollution Control Agency (PCA) and dischargers. The present model, Grey Fuzzy Waste Load Allocation Model (GFWLAM), has the capability to incorporate the conflicting goals of PCA and dischargers in a deterministic framework. The imprecision associated with specifying the water quality criteria and fractional removal levels are modeled in a fuzzy mathematical framework. To address the imprecision in fixing the lower and upper bounds of membership functions, the membership functions themselves are treated as fuzzy in the model and the membership parameters are expressed as interval grey numbers, a closed and bounded interval with known lower and upper bounds but unknown distribution information. The model provides flexibility for PCA and dischargers to specify their aspirations independently, as the membership parameters for different membership functions, specified for different imprecise goals are interval grey numbers in place of a deterministic real number. In the final solution optimal fractional removal levels of the pollutants are obtained in the form of interval grey numbers. This enhances the flexibility and applicability in decision-making, as the decision-maker gets a range of optimal solutions for fixing the final decision scheme considering technical and economic feasibility of the pollutant treatment levels. Application of the GFWLAM is illustrated with case study of the Tunga-Bhadra river system in India.
Fuzzy Linear Programming and its Application in Home Textile Firm
NASA Astrophysics Data System (ADS)
Vasant, P.; Ganesan, T.; Elamvazuthi, I.
2011-06-01
In this paper, new fuzzy linear programming (FLP) based methodology using a specific membership function, named as modified logistic membership function is proposed. The modified logistic membership function is first formulated and its flexibility in taking up vagueness in parameter is established by an analytical approach. The developed methodology of FLP has provided a confidence in applying to real life industrial production planning problem. This approach of solving industrial production planning problem can have feedback with the decision maker, the implementer and the analyst.
Narimani, Mohammand; Lam, H K; Dilmaghani, R; Wolfe, Charles
2011-06-01
Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S-procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.
Fuzzy Multi-Objective Transportation Planning with Modified S-Curve Membership Function
NASA Astrophysics Data System (ADS)
Peidro, D.; Vasant, P.
2009-08-01
In this paper, the S-Curve membership function methodology is used in a transportation planning decision (TPD) problem. An interactive method for solving multi-objective TPD problems with fuzzy goals, available supply and forecast demand is developed. The proposed method attempts simultaneously to minimize the total production and transportation costs and the total delivery time with reference to budget constraints and available supply, machine capacities at each source, as well as forecast demand and warehouse space constraints at each destination. We compare in an industrial case the performance of S-curve membership functions, representing uncertainty goals and constraints in TPD problems, with linear membership functions.
Boiocchi, Riccardo; Gernaey, Krist V; Sin, Gürkan
2016-10-01
A methodology is developed to systematically design the membership functions of fuzzy-logic controllers for multivariable systems. The methodology consists of a systematic derivation of the critical points of the membership functions as a function of predefined control objectives. Several constrained optimization problems corresponding to different qualitative operation states of the system are defined and solved to identify, in a consistent manner, the critical points of the membership functions for the input variables. The consistently identified critical points, together with the linguistic rules, determine the long term reachability of the control objectives by the fuzzy logic controller. The methodology is highlighted using a single-stage side-stream partial nitritation/Anammox reactor as a case study. As a result, a new fuzzy-logic controller for high and stable total nitrogen removal efficiency is designed. Rigorous simulations are carried out to evaluate and benchmark the performance of the controller. The results demonstrate that the novel control strategy is capable of rejecting the long-term influent disturbances, and can achieve a stable and high TN removal efficiency. Additionally, the controller was tested, and showed robustness, against measurement noise levels typical for wastewater sensors. A feedforward-feedback configuration using the present controller would give even better performance. In comparison, a previously developed fuzzy-logic controller using merely expert and intuitive knowledge performed worse. This proved the importance of using a systematic methodology for the derivation of the membership functions for multivariable systems. These results are promising for future applications of the controller in real full-scale plants. Furthermore, the methodology can be used as a tool to help systematically design fuzzy logic control applications for other biological processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mathematical models of the simplest fuzzy PI/PD controllers with skewed input and output fuzzy sets.
Mohan, B M; Sinha, Arpita
2008-07-01
This paper unveils mathematical models for fuzzy PI/PD controllers which employ two skewed fuzzy sets for each of the two-input variables and three skewed fuzzy sets for the output variable. The basic constituents of these models are Gamma-type and L-type membership functions for each input, trapezoidal/triangular membership functions for output, intersection/algebraic product triangular norm, maximum/drastic sum triangular conorm, Mamdani minimum/Larsen product/drastic product inference method, and center of sums defuzzification method. The existing simplest fuzzy PI/PD controller structures derived via symmetrical fuzzy sets become special cases of the mathematical models revealed in this paper. Finally, a numerical example along with its simulation results are included to demonstrate the effectiveness of the simplest fuzzy PI controllers.
A neural fuzzy controller learning by fuzzy error propagation
NASA Technical Reports Server (NTRS)
Nauck, Detlef; Kruse, Rudolf
1992-01-01
In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.
Optimal Binarization of Gray-Scaled Digital Images via Fuzzy Reasoning
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A. (Inventor); Klinko, Steven J. (Inventor)
2007-01-01
A technique for finding an optimal threshold for binarization of a gray scale image employs fuzzy reasoning. A triangular membership function is employed which is dependent on the degree to which the pixels in the image belong to either the foreground class or the background class. Use of a simplified linear fuzzy entropy factor function facilitates short execution times and use of membership values between 0.0 and 1.0 for improved accuracy. To improve accuracy further, the membership function employs lower and upper bound gray level limits that can vary from image to image and are selected to be equal to the minimum and the maximum gray levels, respectively, that are present in the image to be converted. To identify the optimal binarization threshold, an iterative process is employed in which different possible thresholds are tested and the one providing the minimum fuzzy entropy measure is selected.
Incomplete fuzzy data processing systems using artificial neural network
NASA Technical Reports Server (NTRS)
Patyra, Marek J.
1992-01-01
In this paper, the implementation of a fuzzy data processing system using an artificial neural network (ANN) is discussed. The binary representation of fuzzy data is assumed, where the universe of discourse is decartelized into n equal intervals. The value of a membership function is represented by a binary number. It is proposed that incomplete fuzzy data processing be performed in two stages. The first stage performs the 'retrieval' of incomplete fuzzy data, and the second stage performs the desired operation on the retrieval data. The method of incomplete fuzzy data retrieval is proposed based on the linear approximation of missing values of the membership function. The ANN implementation of the proposed system is presented. The system was computationally verified and showed a relatively small total error.
Fuzzy efficiency optimization of AC induction motors
NASA Technical Reports Server (NTRS)
Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff
1993-01-01
This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.
Tuning fuzzy PD and PI controllers using reinforcement learning.
Boubertakh, Hamid; Tadjine, Mohamed; Glorennec, Pierre-Yves; Labiod, Salim
2010-10-01
In this paper, we propose a new auto-tuning fuzzy PD and PI controllers using reinforcement Q-learning (QL) algorithm for SISO (single-input single-output) and TITO (two-input two-output) systems. We first, investigate the design parameters and settings of a typical class of Fuzzy PD (FPD) and Fuzzy PI (FPI) controllers: zero-order Takagi-Sugeno controllers with equidistant triangular membership functions for inputs, equidistant singleton membership functions for output, Larsen's implication method, and average sum defuzzification method. Secondly, the analytical structures of these typical fuzzy PD and PI controllers are compared to their classical counterpart PD and PI controllers. Finally, the effectiveness of the proposed method is proven through simulation examples. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Wang, S; Huang, G H
2013-03-15
Flood disasters have been extremely severe in recent decades, and they account for about one third of all natural catastrophes throughout the world. In this study, a two-stage mixed-integer fuzzy programming with interval-valued membership functions (TMFP-IMF) approach is developed for flood-diversion planning under uncertainty. TMFP-IMF integrates the fuzzy flexible programming, two-stage stochastic programming, and integer programming within a general framework. A concept of interval-valued fuzzy membership function is introduced to address complexities of system uncertainties. TMFP-IMF can not only deal with uncertainties expressed as fuzzy sets and probability distributions, but also incorporate pre-regulated water-diversion policies directly into its optimization process. TMFP-IMF is applied to a hypothetical case study of flood-diversion planning for demonstrating its applicability. Results indicate that reasonable solutions can be generated for binary and continuous variables. A variety of flood-diversion and capacity-expansion schemes can be obtained under four scenarios, which enable decision makers (DMs) to identify the most desired one based on their perceptions and attitudes towards the objective-function value and constraints. Copyright © 2013 Elsevier Ltd. All rights reserved.
Coelho, Antonio Augusto Rodrigues
2016-01-01
This paper introduces the Fuzzy Logic Hypercube Interpolator (FLHI) and demonstrates applications in control of multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) processes with Hammerstein nonlinearities. FLHI consists of a Takagi-Sugeno fuzzy inference system where membership functions act as kernel functions of an interpolator. Conjunction of membership functions in an unitary hypercube space enables multivariable interpolation of N-dimensions. Membership functions act as interpolation kernels, such that choice of membership functions determines interpolation characteristics, allowing FLHI to behave as a nearest-neighbor, linear, cubic, spline or Lanczos interpolator, to name a few. The proposed interpolator is presented as a solution to the modeling problem of static nonlinearities since it is capable of modeling both a function and its inverse function. Three study cases from literature are presented, a single-input single-output (SISO) system, a MISO and a MIMO system. Good results are obtained regarding performance metrics such as set-point tracking, control variation and robustness. Results demonstrate applicability of the proposed method in modeling Hammerstein nonlinearities and their inverse functions for implementation of an output compensator with Model Based Predictive Control (MBPC), in particular Dynamic Matrix Control (DMC). PMID:27657723
SOS based robust H(∞) fuzzy dynamic output feedback control of nonlinear networked control systems.
Chae, Seunghwan; Nguang, Sing Kiong
2014-07-01
In this paper, a methodology for designing a fuzzy dynamic output feedback controller for discrete-time nonlinear networked control systems is presented where the nonlinear plant is modelled by a Takagi-Sugeno fuzzy model and the network-induced delays by a finite state Markov process. The transition probability matrix for the Markov process is allowed to be partially known, providing a more practical consideration of the real world. Furthermore, the fuzzy controller's membership functions and premise variables are not assumed to be the same as the plant's membership functions and premise variables, that is, the proposed approach can handle the case, when the premise of the plant are not measurable or delayed. The membership functions of the plant and the controller are approximated as polynomial functions, then incorporated into the controller design. Sufficient conditions for the existence of the controller are derived in terms of sum of square inequalities, which are then solved by YALMIP. Finally, a numerical example is used to demonstrate the validity of the proposed methodology.
Sriwastava, Brijesh Kumar; Basu, Subhadip; Maulik, Ujjwal
2015-10-01
Protein-protein interaction (PPI) site prediction aids to ascertain the interface residues that participate in interaction processes. Fuzzy support vector machine (F-SVM) is proposed as an effective method to solve this problem, and we have shown that the performance of the classical SVM can be enhanced with the help of an interaction-affinity based fuzzy membership function. The performances of both SVM and F-SVM on the PPI databases of the Homo sapiens and E. coli organisms are evaluated and estimated the statistical significance of the developed method over classical SVM and other fuzzy membership-based SVM methods available in the literature. Our membership function uses the residue-level interaction affinity scores for each pair of positive and negative sequence fragments. The average AUC scores in the 10-fold cross-validation experiments are measured as 79.94% and 80.48% for the Homo sapiens and E. coli organisms respectively. On the independent test datasets, AUC scores are obtained as 76.59% and 80.17% respectively for the two organisms. In almost all cases, the developed F-SVM method improves the performances obtained by the corresponding classical SVM and the other classifiers, available in the literature.
Fuzzy Energy and Reserve Co-optimization With High Penetration of Renewable Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Cong; Botterud, Audun; Zhou, Zhi
In this study, we propose a fuzzy-based energy and reserve co-optimization model with consideration of high penetration of renewable energy. Under the assumption of a fixed uncertainty set of renewables, a two-stage robust model is proposed for clearing energy and reserves in the first stage and checking the feasibility and robustness of re-dispatches in the second stage. Fuzzy sets and their membership functions are introduced into the optimization model to represent the satisfaction degree of the variable uncertainty sets. The lower bound of the uncertainty set is expressed as fuzzy membership functions. The solutions are obtained by transforming the fuzzymore » mathematical programming formulation into traditional mixed integer linear programming problems.« less
Fuzzy Energy and Reserve Co-optimization With High Penetration of Renewable Energy
Liu, Cong; Botterud, Audun; Zhou, Zhi; ...
2016-10-21
In this study, we propose a fuzzy-based energy and reserve co-optimization model with consideration of high penetration of renewable energy. Under the assumption of a fixed uncertainty set of renewables, a two-stage robust model is proposed for clearing energy and reserves in the first stage and checking the feasibility and robustness of re-dispatches in the second stage. Fuzzy sets and their membership functions are introduced into the optimization model to represent the satisfaction degree of the variable uncertainty sets. The lower bound of the uncertainty set is expressed as fuzzy membership functions. The solutions are obtained by transforming the fuzzymore » mathematical programming formulation into traditional mixed integer linear programming problems.« less
Fuzzy Logic Controller Design for A Robot Grasping System with Different Membership Functions
NASA Astrophysics Data System (ADS)
Ahmad, Hamzah; Razali, Saifudin; Rusllim Mohamed, Mohd
2013-12-01
This paper investigates the effects of the membership function to the object grasping for a three fingered gripper system. The performance of three famously used membership functions is compared to identify their behavior in lifting a defined object shape. MATLAB Simulink and SimMechanics toolboxes are used to examine the performance. Our preliminary results proposed that the Gaussian membership function surpassed the two other membership functions; triangular and trapezoid memberships especially in the context of firmer grasping and less time consumption during operations. Therefore, Gaussian membership function could be the best solution when time consumption and firmer grasp are considered.
Variability in perceived satisfaction of reservoir management objectives
Owen, W.J.; Gates, T.K.; Flug, M.
1997-01-01
Fuzzy set theory provides a useful model to address imprecision in interpreting linguistically described objectives for reservoir management. Fuzzy membership functions can be used to represent degrees of objective satisfaction for different values of management variables. However, lack of background information, differing experiences and qualifications, and complex interactions of influencing factors can contribute to significant variability among membership functions derived from surveys of multiple experts. In the present study, probabilistic membership functions are used to model variability in experts' perceptions of satisfaction of objectives for hydropower generation, fish habitat, kayaking, rafting, and scenery preservation on the Green River through operations of Flaming Gorge Dam. Degree of variability in experts' perceptions differed among objectives but resulted in substantial uncertainty in estimation of optimal reservoir releases.
Liu, Ming; Gao, Yue; Xiao, Rui; Zhang, Bo-li
2009-01-01
This study is to analyze microcosmic significance of Chinese medicine composing principle "principal, assistant, complement and mediating guide" and it's fuzzy mathematic quantitative law. According to molecular biology and maximal membership principle, fuzzy subset and membership functions were proposed. Using in vivo experiment on the effects of SiWu Decoction and its ingredients on mice with radiation-induced blood deficiency, it is concluded that DiHuang and DangGui belonged to the principal and assistant subset, BaiShao belonged to the contrary complement subset, ChuanXiong belonged to the mediating guide subset by maximal membership principle. It is discussed that traditional Chinese medicine will be consummate medical science when its theory can be described by mathematic language.
Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation.
Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi
2016-12-16
Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency.
Performance of Geno-Fuzzy Model on rainfall-runoff predictions in claypan watersheds
USDA-ARS?s Scientific Manuscript database
Fuzzy logic provides a relatively simple approach to simulate complex hydrological systems while accounting for the uncertainty of environmental variables. The objective of this study was to develop a fuzzy inference system (FIS) with genetic algorithm (GA) optimization for membership functions (MF...
An analysis of possible applications of fuzzy set theory to the actuarial credibility theory
NASA Technical Reports Server (NTRS)
Ostaszewski, Krzysztof; Karwowski, Waldemar
1992-01-01
In this work, we review the basic concepts of actuarial credibility theory from the point of view of introducing applications of the fuzzy set-theoretic method. We show how the concept of actuarial credibility can be modeled through the fuzzy set membership functions and how fuzzy set methods, especially fuzzy pattern recognition, can provide an alternative tool for estimating credibility.
Possibilistic clustering for shape recognition
NASA Technical Reports Server (NTRS)
Keller, James M.; Krishnapuram, Raghu
1993-01-01
Clustering methods have been used extensively in computer vision and pattern recognition. Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering in that total commitment of a vector to a given class is not required at each iteration. Recently fuzzy clustering methods have shown spectacular ability to detect not only hypervolume clusters, but also clusters which are actually 'thin shells', i.e., curves and surfaces. Most analytic fuzzy clustering approaches are derived from Bezdek's Fuzzy C-Means (FCM) algorithm. The FCM uses the probabilistic constraint that the memberships of a data point across classes sum to one. This constraint was used to generate the membership update equations for an iterative algorithm. Unfortunately, the memberships resulting from FCM and its derivatives do not correspond to the intuitive concept of degree of belonging, and moreover, the algorithms have considerable trouble in noisy environments. Recently, the clustering problem was cast into the framework of possibility theory. Our approach was radically different from the existing clustering methods in that the resulting partition of the data can be interpreted as a possibilistic partition, and the membership values may be interpreted as degrees of possibility of the points belonging to the classes. An appropriate objective function whose minimum will characterize a good possibilistic partition of the data was constructed, and the membership and prototype update equations from necessary conditions for minimization of our criterion function were derived. The ability of this approach to detect linear and quartic curves in the presence of considerable noise is shown.
Possibilistic clustering for shape recognition
NASA Technical Reports Server (NTRS)
Keller, James M.; Krishnapuram, Raghu
1992-01-01
Clustering methods have been used extensively in computer vision and pattern recognition. Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering in that total commitment of a vector to a given class is not required at each iteration. Recently fuzzy clustering methods have shown spectacular ability to detect not only hypervolume clusters, but also clusters which are actually 'thin shells', i.e., curves and surfaces. Most analytic fuzzy clustering approaches are derived from Bezdek's Fuzzy C-Means (FCM) algorithm. The FCM uses the probabilistic constraint that the memberships of a data point across classes sum to one. This constraint was used to generate the membership update equations for an iterative algorithm. Unfortunately, the memberships resulting from FCM and its derivatives do not correspond to the intuitive concept of degree of belonging, and moreover, the algorithms have considerable trouble in noisy environments. Recently, we cast the clustering problem into the framework of possibility theory. Our approach was radically different from the existing clustering methods in that the resulting partition of the data can be interpreted as a possibilistic partition, and the membership values may be interpreted as degrees of possibility of the points belonging to the classes. We constructed an appropriate objective function whose minimum will characterize a good possibilistic partition of the data, and we derived the membership and prototype update equations from necessary conditions for minimization of our criterion function. In this paper, we show the ability of this approach to detect linear and quartic curves in the presence of considerable noise.
Amador-Angulo, Leticia; Mendoza, Olivia; Castro, Juan R.; Rodríguez-Díaz, Antonio; Melin, Patricia; Castillo, Oscar
2016-01-01
A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in an autonomous mobile robot. We add two types of perturbations in the model for the Generalized Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better results when compared to the original BCO. We implemented various performance indices; ITAE, IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation the parameters for the BCO algorithm. PMID:27618062
Sinha, S K; Karray, F
2002-01-01
Pipeline surface defects such as holes and cracks cause major problems for utility managers, particularly when the pipeline is buried under the ground. Manual inspection for surface defects in the pipeline has a number of drawbacks, including subjectivity, varying standards, and high costs. Automatic inspection system using image processing and artificial intelligence techniques can overcome many of these disadvantages and offer utility managers an opportunity to significantly improve quality and reduce costs. A recognition and classification of pipe cracks using images analysis and neuro-fuzzy algorithm is proposed. In the preprocessing step the scanned images of pipe are analyzed and crack features are extracted. In the classification step the neuro-fuzzy algorithm is developed that employs a fuzzy membership function and error backpropagation algorithm. The idea behind the proposed approach is that the fuzzy membership function will absorb variation of feature values and the backpropagation network, with its learning ability, will show good classification efficiency.
Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation
Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi
2016-01-01
Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency. PMID:27999261
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik YA.; Quintana, Chris; Lea, Robert
1991-01-01
Fuzzy control has been successfully applied in industrial systems. However, there is some caution in using it. The reason is that it is based on quite reasonable ideas, but each of these ideas can be implemented in several different ways, and depending on which of the implementations chosen different results are achieved. Some implementations lead to a high quality control, some of them not. And since there are no theoretical methods for choosing the implementation, the basic way to choose it now is experimental. But if one chooses a method that is good for several examples, there is no guarantee that it will work fine in all of them. Hence the caution. A theoretical basis for choosing the fuzzy control procedures is provided. In order to choose a procedure that transforms a fuzzy knowledge into a control, one needs, first, to choose a membership function for each of the fuzzy terms that the experts use, second, to choose operations of uncertainty values that corresponds to 'and' and 'or', and third, when a membership function for control is obtained, one must defuzzy it, that is, somehow generate a value of the control u that will be actually used. A general approach that will help to make all these choices is described: namely, it is proved that under reasonable assumptions membership functions should be linear or fractionally linear, defuzzification must be described by a centroid rule and describe all possible 'and' and 'or' operations. Thus, a theoretical explanation of the existing semi-heuristic choices is given and the basis for the further research on optimal fuzzy control is formulated.
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639
NASA Astrophysics Data System (ADS)
Andryani, Diyah Septi; Bustamam, Alhadi; Lestari, Dian
2017-03-01
Clustering aims to classify the different patterns into groups called clusters. In this clustering method, we use n-mers frequency to calculate the distance matrix which is considered more accurate than using the DNA alignment. The clustering results could be used to discover biologically important sub-sections and groups of genes. Many clustering methods have been developed, while hard clustering methods considered less accurate than fuzzy clustering methods, especially if it is used for outliers data. Among fuzzy clustering methods, fuzzy c-means is one the best known for its accuracy and simplicity. Fuzzy c-means clustering uses membership function variable, which refers to how likely the data could be members into a cluster. Fuzzy c-means clustering works using the principle of minimizing the objective function. Parameters of membership function in fuzzy are used as a weighting factor which is also called the fuzzier. In this study we implement hybrid clustering using fuzzy c-means and divisive algorithm which could improve the accuracy of cluster membership compare to traditional partitional approach only. In this study fuzzy c-means is used in the first step to find partition results. Furthermore divisive algorithms will run on the second step to find sub-clusters and dendogram of phylogenetic tree. To find the best number of clusters is determined using the minimum value of Davies Bouldin Index (DBI) of the cluster results. In this research, the results show that the methods introduced in this paper is better than other partitioning methods. Finally, we found 3 clusters with DBI value of 1.126628 at first step of clustering. Moreover, DBI values after implementing the second step of clustering are always producing smaller IDB values compare to the results of using first step clustering only. This condition indicates that the hybrid approach in this study produce better performance of the cluster results, in term its DBI values.
Fuzzy Neuron: Method and Hardware Realization
NASA Technical Reports Server (NTRS)
Krasowski, Michael J.; Prokop, Norman F.
2014-01-01
This innovation represents a method by which single-to-multi-input, single-to-many-output system transfer functions can be estimated from input/output data sets. This innovation can be run in the background while a system is operating under other means (e.g., through human operator effort), or may be utilized offline using data sets created from observations of the estimated system. It utilizes a set of fuzzy membership functions spanning the input space for each input variable. Linear combiners associated with combinations of input membership functions are used to create the output(s) of the estimator. Coefficients are adjusted online through the use of learning algorithms.
Desired Accuracy Estimation of Noise Function from ECG Signal by Fuzzy Approach
Vahabi, Zahra; Kermani, Saeed
2012-01-01
Unknown noise and artifacts present in medical signals with non-linear fuzzy filter will be estimated and then removed. An adaptive neuro-fuzzy interference system which has a non-linear structure presented for the noise function prediction by before Samples. This paper is about a neuro-fuzzy method to estimate unknown noise of Electrocardiogram signal. Adaptive neural combined with Fuzzy System to construct a fuzzy Predictor. For this system setting parameters such as the number of Membership Functions for each input and output, training epochs, type of MFs for each input and output, learning algorithm and etc. is determined by learning data. At the end simulated experimental results are presented for proper validation. PMID:23717810
Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths
NASA Astrophysics Data System (ADS)
Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna
2011-06-01
We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using α -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.
NASA Astrophysics Data System (ADS)
Lachhwani, Kailash; Poonia, Mahaveer Prasad
2012-08-01
In this paper, we show a procedure for solving multilevel fractional programming problems in a large hierarchical decentralized organization using fuzzy goal programming approach. In the proposed method, the tolerance membership functions for the fuzzily described numerator and denominator part of the objective functions of all levels as well as the control vectors of the higher level decision makers are respectively defined by determining individual optimal solutions of each of the level decision makers. A possible relaxation of the higher level decision is considered for avoiding decision deadlock due to the conflicting nature of objective functions. Then, fuzzy goal programming approach is used for achieving the highest degree of each of the membership goal by minimizing negative deviational variables. We also provide sensitivity analysis with variation of tolerance values on decision vectors to show how the solution is sensitive to the change of tolerance values with the help of a numerical example.
A recurrent self-organizing neural fuzzy inference network.
Juang, C F; Lin, C T
1999-01-01
A recurrent self-organizing neural fuzzy inference network (RSONFIN) is proposed in this paper. The RSONFIN is inherently a recurrent multilayered connectionist network for realizing the basic elements and functions of dynamic fuzzy inference, and may be considered to be constructed from a series of dynamic fuzzy rules. The temporal relations embedded in the network are built by adding some feedback connections representing the memory elements to a feedforward neural fuzzy network. Each weight as well as node in the RSONFIN has its own meaning and represents a special element in a fuzzy rule. There are no hidden nodes (i.e., no membership functions and fuzzy rules) initially in the RSONFIN. They are created on-line via concurrent structure identification (the construction of dynamic fuzzy if-then rules) and parameter identification (the tuning of the free parameters of membership functions). The structure learning together with the parameter learning forms a fast learning algorithm for building a small, yet powerful, dynamic neural fuzzy network. Two major characteristics of the RSONFIN can thus be seen: 1) the recurrent property of the RSONFIN makes it suitable for dealing with temporal problems and 2) no predetermination, like the number of hidden nodes, must be given, since the RSONFIN can find its optimal structure and parameters automatically and quickly. Moreover, to reduce the number of fuzzy rules generated, a flexible input partition method, the aligned clustering-based algorithm, is proposed. Various simulations on temporal problems are done and performance comparisons with some existing recurrent networks are also made. Efficiency of the RSONFIN is verified from these results.
Nonlinear rescaling of control values simplifies fuzzy control
NASA Technical Reports Server (NTRS)
Vanlangingham, H.; Tsoukkas, A.; Kreinovich, V.; Quintana, C.
1993-01-01
Traditional control theory is well-developed mainly for linear control situations. In non-linear cases there is no general method of generating a good control, so we have to rely on the ability of the experts (operators) to control them. If we want to automate their control, we must acquire their knowledge and translate it into a precise control strategy. The experts' knowledge is usually represented in non-numeric terms, namely, in terms of uncertain statements of the type 'if the obstacle is straight ahead, the distance to it is small, and the velocity of the car is medium, press the brakes hard'. Fuzzy control is a methodology that translates such statements into precise formulas for control. The necessary first step of this strategy consists of assigning membership functions to all the terms that the expert uses in his rules (in our sample phrase these words are 'small', 'medium', and 'hard'). The appropriate choice of a membership function can drastically improve the quality of a fuzzy control. In the simplest cases, we can take the functions whose domains have equally spaced endpoints. Because of that, many software packages for fuzzy control are based on this choice of membership functions. This choice is not very efficient in more complicated cases. Therefore, methods have been developed that use neural networks or generic algorithms to 'tune' membership functions. But this tuning takes lots of time (for example, several thousands iterations are typical for neural networks). In some cases there are evident physical reasons why equally space domains do not work: e.g., if the control variable u is always positive (i.e., if we control temperature in a reactor), then negative values (that are generated by equal spacing) simply make no sense. In this case it sounds reasonable to choose another scale u' = f(u) to represent u, so that equal spacing will work fine for u'. In the present paper we formulate the problem of finding the best rescaling function, solve this problem, and show (on a real-life example) that after an optimal rescaling, the un-tuned fuzzy control can be as good as the best state-of-art traditional non-linear controls.
Optimized Vertex Method and Hybrid Reliability
NASA Technical Reports Server (NTRS)
Smith, Steven A.; Krishnamurthy, T.; Mason, B. H.
2002-01-01
A method of calculating the fuzzy response of a system is presented. This method, called the Optimized Vertex Method (OVM), is based upon the vertex method but requires considerably fewer function evaluations. The method is demonstrated by calculating the response membership function of strain-energy release rate for a bonded joint with a crack. The possibility of failure of the bonded joint was determined over a range of loads. After completing the possibilistic analysis, the possibilistic (fuzzy) membership functions were transformed to probability density functions and the probability of failure of the bonded joint was calculated. This approach is called a possibility-based hybrid reliability assessment. The possibility and probability of failure are presented and compared to a Monte Carlo Simulation (MCS) of the bonded joint.
Fuzzy difference-of-Gaussian-based iris recognition method for noisy iris images
NASA Astrophysics Data System (ADS)
Kang, Byung Jun; Park, Kang Ryoung; Yoo, Jang-Hee; Moon, Kiyoung
2010-06-01
Iris recognition is used for information security with a high confidence level because it shows outstanding recognition accuracy by using human iris patterns with high degrees of freedom. However, iris recognition accuracy can be reduced by noisy iris images with optical and motion blurring. We propose a new iris recognition method based on the fuzzy difference-of-Gaussian (DOG) for noisy iris images. This study is novel in three ways compared to previous works: (1) The proposed method extracts iris feature values using the DOG method, which is robust to local variations of illumination and shows fine texture information, including various frequency components. (2) When determining iris binary codes, image noises that cause the quantization error of the feature values are reduced with the fuzzy membership function. (3) The optimal parameters of the DOG filter and the fuzzy membership function are determined in terms of iris recognition accuracy. Experimental results showed that the performance of the proposed method was better than that of previous methods for noisy iris images.
A Fuzzy Description Logic with Automatic Object Membership Measurement
NASA Astrophysics Data System (ADS)
Cai, Yi; Leung, Ho-Fung
In this paper, we propose a fuzzy description logic named f om -DL by combining the classical view in cognitive psychology and fuzzy set theory. A formal mechanism used to determine object memberships automatically in concepts is also proposed, which is lacked in previous work fuzzy description logics. In this mechanism, object membership is based on the defining properties of concept definition and properties in object description. Moreover, while previous works cannot express the qualitative measurements of an object possessing a property, we introduce two kinds of properties named N-property and L-property, which are quantitative measurements and qualitative measurements of an object possessing a property respectively. The subsumption and implication of concepts and properties are also explored in our work. We believe that it is useful to the Semantic Web community for reasoning the fuzzy membership of objects for concepts in fuzzy ontologies.
Control of motion stability of the line tracer robot using fuzzy logic and kalman filter
NASA Astrophysics Data System (ADS)
Novelan, M. S.; Tulus; Zamzami, E. M.
2018-03-01
Setting of motion and balance line tracer robot two wheels is actually a combination of a two-wheeled robot balance concept and the concept of line follower robot. The main objective of this research is to maintain the robot in an upright and can move to follow the line of the Wizard while maintaining balance. In this study the motion balance system on line tracer robot by considering the presence of a noise, so that it takes the estimator is used to mengestimasi the line tracer robot motion. The estimation is done by the method of Kalman Filter and the combination of Fuzzy logic-Fuzzy Kalman Filter called Kalman Filter, as well as optimal smooting. Based on the results of the study, the value of the output of the fuzzy results obtained from the sensor input value has been filtered before entering the calculation of the fuzzy. The results of the output of the fuzzy logic hasn’t been able to control dc motors are well balanced at the moment to be able to run. The results of the fuzzy logic by using membership function of triangular membership function or yet can control with good dc motor movement in order to be balanced
Optimization Of Mean-Semivariance-Skewness Portfolio Selection Model In Fuzzy Random Environment
NASA Astrophysics Data System (ADS)
Chatterjee, Amitava; Bhattacharyya, Rupak; Mukherjee, Supratim; Kar, Samarjit
2010-10-01
The purpose of the paper is to construct a mean-semivariance-skewness portfolio selection model in fuzzy random environment. The objective is to maximize the skewness with predefined maximum risk tolerance and minimum expected return. Here the security returns in the objectives and constraints are assumed to be fuzzy random variables in nature and then the vagueness of the fuzzy random variables in the objectives and constraints are transformed into fuzzy variables which are similar to trapezoidal numbers. The newly formed fuzzy model is then converted into a deterministic optimization model. The feasibility and effectiveness of the proposed method is verified by numerical example extracted from Bombay Stock Exchange (BSE). The exact parameters of fuzzy membership function and probability density function are obtained through fuzzy random simulating the past dates.
Fuzzy geometry, entropy, and image information
NASA Technical Reports Server (NTRS)
Pal, Sankar K.
1991-01-01
Presented here are various uncertainty measures arising from grayness ambiguity and spatial ambiguity in an image, and their possible applications as image information measures. Definitions are given of an image in the light of fuzzy set theory, and of information measures and tools relevant for processing/analysis e.g., fuzzy geometrical properties, correlation, bound functions and entropy measures. Also given is a formulation of algorithms along with management of uncertainties for segmentation and object extraction, and edge detection. The output obtained here is both fuzzy and nonfuzzy. Ambiguity in evaluation and assessment of membership function are also described.
A Review and Reappraisal of Adaptive Human-Computer Interfaces in Complex Control Systems
2006-08-01
maneuverability measures. The cost elements were expressed as fuzzy membership functions. Figure 9 shows the flowchart of the route planner. A fuzzy navigator...and updating of the user model, which contains information about three generic stereotypes ( beginner , intermediate and expert users) plus an
Determining a human cardiac pacemaker using fuzzy logic
NASA Astrophysics Data System (ADS)
Varnavsky, A. N.; Antonenco, A. V.
2017-01-01
The paper presents a possibility of estimating a human cardiac pacemaker using combined application of nonlinear integral transformation and fuzzy logic, which allows carrying out the analysis in the real-time mode. The system of fuzzy logical conclusion is proposed, membership functions and rules of fuzzy products are defined. It was shown that the ratio of the value of a truth degree of the winning rule condition to the value of a truth degree of any other rule condition is at least 3.
Structure identification in fuzzy inference using reinforcement learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1993-01-01
In our previous work on the GARIC architecture, we have shown that the system can start with surface structure of the knowledge base (i.e., the linguistic expression of the rules) and learn the deep structure (i.e., the fuzzy membership functions of the labels used in the rules) by using reinforcement learning. Assuming the surface structure, GARIC refines the fuzzy membership functions used in the consequents of the rules using a gradient descent procedure. This hybrid fuzzy logic and reinforcement learning approach can learn to balance a cart-pole system and to backup a truck to its docking location after a few trials. In this paper, we discuss how to do structure identification using reinforcement learning in fuzzy inference systems. This involves identifying both surface as well as deep structure of the knowledge base. The term set of fuzzy linguistic labels used in describing the values of each control variable must be derived. In this process, splitting a label refers to creating new labels which are more granular than the original label and merging two labels creates a more general label. Splitting and merging of labels directly transform the structure of the action selection network used in GARIC by increasing or decreasing the number of hidden layer nodes.
Khanesar, Mojtaba Ahmadieh; Kayacan, Erdal; Reyhanoglu, Mahmut; Kaynak, Okyay
2015-04-01
A novel type-2 fuzzy membership function (MF) in the form of an ellipse has recently been proposed in literature, the parameters of which that represent uncertainties are de-coupled from its parameters that determine the center and the support. This property has enabled the proposers to make an analytical comparison of the noise rejection capabilities of type-1 fuzzy logic systems with its type-2 counterparts. In this paper, a sliding mode control theory-based learning algorithm is proposed for an interval type-2 fuzzy logic system which benefits from elliptic type-2 fuzzy MFs. The learning is based on the feedback error learning method and not only the stability of the learning is proved but also the stability of the overall system is shown by adding an additional component to the control scheme to ensure robustness. In order to test the efficiency and efficacy of the proposed learning and the control algorithm, the trajectory tracking problem of a magnetic rigid spacecraft is studied. The simulations results show that the proposed control algorithm gives better performance results in terms of a smaller steady state error and a faster transient response as compared to conventional control algorithms.
Design of an iterative auto-tuning algorithm for a fuzzy PID controller
NASA Astrophysics Data System (ADS)
Saeed, Bakhtiar I.; Mehrdadi, B.
2012-05-01
Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.
Fuzzifying historical peak water levels: case study of the river Rhine at Basel
NASA Astrophysics Data System (ADS)
Salinas, Jose Luis; Kiss, Andrea; Blöschl, Günter
2016-04-01
Hydrological information comes from a variety of sources, which in some cases might be non-precise. In particular, this is an important issue for the available information on water stages during historical floods. An accurate estimation of the water level profile, together with an elevation model of the riverbed and floodplain areas is fundamental for the hydraulic reconstruction of historical flood events, allowing the back calculation of flood peak discharges, velocity and erosion fields, damages, among others. For the greatest floods during the last 1700 years, Wetter et al. (2011) reconstructed the water levels and historical discharges at different locations in the old city centre from a variety of historical sources (stone marks, official documents, paintings, etc). This work presents a model for the inherent unpreciseness of these historical water levels. This is, with the arithmetics of fuzzy numbers, described by their membership functions, in a similar fashion as the probability density function describes the uncertainty of a random variable. Additional to the in-site collected water stages from floodmarks and other documentary evidence (e.g. preserved in narratives and newspaper flood reports) are prone to be modeled in a fuzzy way. This study presents the use of fuzzy logic to transform historical information from different sources, in this case of flood water stages, into membership functions. This values might then introduced in the mathematical framework of Fuzzy Bayesian Inference to perform the statistical analyses with the rules of fuzzy numbers algebra. The results of this flood frequency analysis, as in the traditional non-fuzzy way, link discharges with exceedance probabilities or return periods. The main difference is, that the modeled discharge quantiles are not precise values, but fuzzy numbers instead, represented by their membership functions explicitly including the unpreciseness of the historical information used. Wetter, O., Pfister, C., Weingartner, R., Luterbacher, J., Reist, T., & Trösch, J. (2011) The largest floods in the High Rhine basin since 1268 assessed from documentary and instrumental evidence. Hydrol. Sci. J. 56(5), 733-758.
Predicting Protein-Protein Interaction Sites with a Novel Membership Based Fuzzy SVM Classifier.
Sriwastava, Brijesh K; Basu, Subhadip; Maulik, Ujjwal
2015-01-01
Predicting residues that participate in protein-protein interactions (PPI) helps to identify, which amino acids are located at the interface. In this paper, we show that the performance of the classical support vector machine (SVM) algorithm can further be improved with the use of a custom-designed fuzzy membership function, for the partner-specific PPI interface prediction problem. We evaluated the performances of both classical SVM and fuzzy SVM (F-SVM) on the PPI databases of three different model proteomes of Homo sapiens, Escherichia coli and Saccharomyces Cerevisiae and calculated the statistical significance of the developed F-SVM over classical SVM algorithm. We also compared our performance with the available state-of-the-art fuzzy methods in this domain and observed significant performance improvements. To predict interaction sites in protein complexes, local composition of amino acids together with their physico-chemical characteristics are used, where the F-SVM based prediction method exploits the membership function for each pair of sequence fragments. The average F-SVM performance (area under ROC curve) on the test samples in 10-fold cross validation experiment are measured as 77.07, 78.39, and 74.91 percent for the aforementioned organisms respectively. Performances on independent test sets are obtained as 72.09, 73.24 and 82.74 percent respectively. The software is available for free download from http://code.google.com/p/cmater-bioinfo.
ERIC Educational Resources Information Center
Lai, K. Robert; Lan, Chung Hsien
2006-01-01
This work presents a novel method for modeling collaborative learning as multi-issue agent negotiation using fuzzy constraints. Agent negotiation is an iterative process, through which, the proposed method aggregates student marks to reduce personal bias. In the framework, students define individual fuzzy membership functions based on their…
Enhancement of brain tumor MR images based on intuitionistic fuzzy sets
NASA Astrophysics Data System (ADS)
Deng, Wankai; Deng, He; Cheng, Lifang
2015-12-01
Brain tumor is one of the most fatal cancers, especially high-grade gliomas are among the most deadly. However, brain tumor MR images usually have the disadvantages of low resolution and contrast when compared with the optical images. Consequently, we present a novel adaptive intuitionistic fuzzy enhancement scheme by combining a nonlinear fuzzy filtering operation with fusion operators, for the enhancement of brain tumor MR images in this paper. The presented scheme consists of the following six steps: Firstly, the image is divided into several sub-images. Secondly, for each sub-image, object and background areas are separated by a simple threshold. Thirdly, respective intuitionistic fuzzy generators of object and background areas are constructed based on the modified restricted equivalence function. Fourthly, different suitable operations are performed on respective membership functions of object and background areas. Fifthly, the membership plane is inversely transformed into the image plane. Finally, an enhanced image is obtained through fusion operators. The comparison and evaluation of enhancement performance demonstrate that the presented scheme is helpful to determine the abnormal functional areas, guide the operation, judge the prognosis, and plan the radiotherapy by enhancing the fine detail of MR images.
Different Treatment Stages in Medical Diagnosis using Fuzzy Membership Matrix
NASA Astrophysics Data System (ADS)
Sundaresan, T.; Sheeja, G.; Govindarajan, A.
2018-04-01
The field of medicine is the most important and developing area of applications of fuzzy set theory. The nature of medical documentation and uncertain information gathered in the use of fuzzy triangular matrix. In this paper, procedures are presented for medical diagnosis and treatment-stages, patient and drug is constructed in fuzzy membership matrix. Examples are given to verify the proposed approach.
NASA Astrophysics Data System (ADS)
Feizizadeh, Bakhtiar; Blaschke, Thomas; Tiede, Dirk; Moghaddam, Mohammad Hossein Rezaei
2017-09-01
This article presents a method of object-based image analysis (OBIA) for landslide delineation and landslide-related change detection from multi-temporal satellite images. It uses both spatial and spectral information on landslides, through spectral analysis, shape analysis, textural measurements using a gray-level co-occurrence matrix (GLCM), and fuzzy logic membership functionality. Following an initial segmentation step, particular combinations of various information layers were investigated to generate objects. This was achieved by applying multi-resolution segmentation to IRS-1D, SPOT-5, and ALOS satellite imagery in sequential steps of feature selection and object classification, and using slope and flow direction derivatives from a digital elevation model together with topographically-oriented gray level co-occurrence matrices. Fuzzy membership values were calculated for 11 different membership functions using 20 landslide objects from a landslide training data. Six fuzzy operators were used for the final classification and the accuracies of the resulting landslide maps were compared. A Fuzzy Synthetic Evaluation (FSE) approach was adapted for validation of the results and for an accuracy assessment using the landslide inventory database. The FSE approach revealed that the AND operator performed best with an accuracy of 93.87% for 2005 and 94.74% for 2011, closely followed by the MEAN Arithmetic operator, while the OR and AND (*) operators yielded relatively low accuracies. An object-based change detection was then applied to monitor landslide-related changes that occurred in northern Iran between 2005 and 2011. Knowledge rules to detect possible landslide-related changes were developed by evaluating all possible landslide-related objects for both time steps.
Multilayer perceptron, fuzzy sets, and classification
NASA Technical Reports Server (NTRS)
Pal, Sankar K.; Mitra, Sushmita
1992-01-01
A fuzzy neural network model based on the multilayer perceptron, using the back-propagation algorithm, and capable of fuzzy classification of patterns is described. The input vector consists of membership values to linguistic properties while the output vector is defined in terms of fuzzy class membership values. This allows efficient modeling of fuzzy or uncertain patterns with appropriate weights being assigned to the backpropagated errors depending upon the membership values at the corresponding outputs. During training, the learning rate is gradually decreased in discrete steps until the network converges to a minimum error solution. The effectiveness of the algorithm is demonstrated on a speech recognition problem. The results are compared with those of the conventional MLP, the Bayes classifier, and the other related models.
A fuzzy Bayesian approach to flood frequency estimation with imprecise historical information
Kiss, Andrea; Viglione, Alberto; Viertl, Reinhard; Blöschl, Günter
2016-01-01
Abstract This paper presents a novel framework that links imprecision (through a fuzzy approach) and stochastic uncertainty (through a Bayesian approach) in estimating flood probabilities from historical flood information and systematic flood discharge data. The method exploits the linguistic characteristics of historical source material to construct membership functions, which may be wider or narrower, depending on the vagueness of the statements. The membership functions are either included in the prior distribution or the likelihood function to obtain a fuzzy version of the flood frequency curve. The viability of the approach is demonstrated by three case studies that differ in terms of their hydromorphological conditions (from an Alpine river with bedrock profile to a flat lowland river with extensive flood plains) and historical source material (including narratives, town and county meeting protocols, flood marks and damage accounts). The case studies are presented in order of increasing fuzziness (the Rhine at Basel, Switzerland; the Werra at Meiningen, Germany; and the Tisza at Szeged, Hungary). Incorporating imprecise historical information is found to reduce the range between the 5% and 95% Bayesian credibility bounds of the 100 year floods by 45% and 61% for the Rhine and Werra case studies, respectively. The strengths and limitations of the framework are discussed relative to alternative (non‐fuzzy) methods. The fuzzy Bayesian inference framework provides a flexible methodology that fits the imprecise nature of linguistic information on historical floods as available in historical written documentation. PMID:27840456
A fuzzy Bayesian approach to flood frequency estimation with imprecise historical information
NASA Astrophysics Data System (ADS)
Salinas, José Luis; Kiss, Andrea; Viglione, Alberto; Viertl, Reinhard; Blöschl, Günter
2016-09-01
This paper presents a novel framework that links imprecision (through a fuzzy approach) and stochastic uncertainty (through a Bayesian approach) in estimating flood probabilities from historical flood information and systematic flood discharge data. The method exploits the linguistic characteristics of historical source material to construct membership functions, which may be wider or narrower, depending on the vagueness of the statements. The membership functions are either included in the prior distribution or the likelihood function to obtain a fuzzy version of the flood frequency curve. The viability of the approach is demonstrated by three case studies that differ in terms of their hydromorphological conditions (from an Alpine river with bedrock profile to a flat lowland river with extensive flood plains) and historical source material (including narratives, town and county meeting protocols, flood marks and damage accounts). The case studies are presented in order of increasing fuzziness (the Rhine at Basel, Switzerland; the Werra at Meiningen, Germany; and the Tisza at Szeged, Hungary). Incorporating imprecise historical information is found to reduce the range between the 5% and 95% Bayesian credibility bounds of the 100 year floods by 45% and 61% for the Rhine and Werra case studies, respectively. The strengths and limitations of the framework are discussed relative to alternative (non-fuzzy) methods. The fuzzy Bayesian inference framework provides a flexible methodology that fits the imprecise nature of linguistic information on historical floods as available in historical written documentation.
A fuzzy Bayesian approach to flood frequency estimation with imprecise historical information.
Salinas, José Luis; Kiss, Andrea; Viglione, Alberto; Viertl, Reinhard; Blöschl, Günter
2016-09-01
This paper presents a novel framework that links imprecision (through a fuzzy approach) and stochastic uncertainty (through a Bayesian approach) in estimating flood probabilities from historical flood information and systematic flood discharge data. The method exploits the linguistic characteristics of historical source material to construct membership functions, which may be wider or narrower, depending on the vagueness of the statements. The membership functions are either included in the prior distribution or the likelihood function to obtain a fuzzy version of the flood frequency curve. The viability of the approach is demonstrated by three case studies that differ in terms of their hydromorphological conditions (from an Alpine river with bedrock profile to a flat lowland river with extensive flood plains) and historical source material (including narratives, town and county meeting protocols, flood marks and damage accounts). The case studies are presented in order of increasing fuzziness (the Rhine at Basel, Switzerland; the Werra at Meiningen, Germany; and the Tisza at Szeged, Hungary). Incorporating imprecise historical information is found to reduce the range between the 5% and 95% Bayesian credibility bounds of the 100 year floods by 45% and 61% for the Rhine and Werra case studies, respectively. The strengths and limitations of the framework are discussed relative to alternative (non-fuzzy) methods. The fuzzy Bayesian inference framework provides a flexible methodology that fits the imprecise nature of linguistic information on historical floods as available in historical written documentation.
Poverty Lines Based on Fuzzy Sets Theory and Its Application to Malaysian Data
ERIC Educational Resources Information Center
Abdullah, Lazim
2011-01-01
Defining the poverty line has been acknowledged as being highly variable by the majority of published literature. Despite long discussions and successes, poverty line has a number of problems due to its arbitrary nature. This paper proposes three measurements of poverty lines using membership functions based on fuzzy set theory. The three…
A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Garg, Devendra P.
1998-01-01
This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.
Risk analysis with a fuzzy-logic approach of a complex installation
NASA Astrophysics Data System (ADS)
Peikert, Tim; Garbe, Heyno; Potthast, Stefan
2016-09-01
This paper introduces a procedural method based on fuzzy logic to analyze systematic the risk of an electronic system in an intentional electromagnetic environment (IEME). The method analyzes the susceptibility of a complex electronic installation with respect to intentional electromagnetic interference (IEMI). It combines the advantages of well-known techniques as fault tree analysis (FTA), electromagnetic topology (EMT) and Bayesian networks (BN) and extends the techniques with an approach to handle uncertainty. This approach uses fuzzy sets, membership functions and fuzzy logic to handle the uncertainty with probability functions and linguistic terms. The linguistic terms add to the risk analysis the knowledge from experts of the investigated system or environment.
Application of fuzzy set theory for integral assessment of agricultural products quality
NASA Astrophysics Data System (ADS)
Derkanosova, N. M.; Ponomareva, I. N.; Shurshikova, G. V.; Vasilenko, O. A.
2018-05-01
The methodology of integrated assessment of quality and safety of agricultural products, approbated by the example of indicators of wheat grain in relation to the provision of consumer properties of bakery products, was developed. Determination of the level of quality of the raw ingredients will allow direct using of agricultural raw materials for food production, taking into account ongoing technology, types of products, and, respectively, rational use of resource potential of the agricultural sector. The mathematical tool of the proposed method is a fuzzy set theory. The fuzzy classifier to evaluate the properties of the grain is formed. The set of six indicators normalized by the national standard is determined; values are ordered and represented by linguistic variables with a trapeziform membership function; the rules for calculation of membership functions are presented. Specific criteria values for individual indicators in shaping the quality of the finished products are considered. For one of the samples of wheat grain values of membership; functions of the linguistic variable "level" for all indicators and the linguistic variable "level of quality" were calculated. It is established that the studied sample of grain obtains the 2 (average) level of quality. Accordingly, it can be recommended for the production of bakery products with higher requirements for the structural-mechanical properties bakery and puff pastry products hearth bread and flour confectionery products of the group of hard dough cookies and crackers
Fuzzy-Rough Nearest Neighbour Classification
NASA Astrophysics Data System (ADS)
Jensen, Richard; Cornelis, Chris
A new fuzzy-rough nearest neighbour (FRNN) classification algorithm is presented in this paper, as an alternative to Sarkar's fuzzy-rough ownership function (FRNN-O) approach. By contrast to the latter, our method uses the nearest neighbours to construct lower and upper approximations of decision classes, and classifies test instances based on their membership to these approximations. In the experimental analysis, we evaluate our approach with both classical fuzzy-rough approximations (based on an implicator and a t-norm), as well as with the recently introduced vaguely quantified rough sets. Preliminary results are very good, and in general FRNN outperforms FRNN-O, as well as the traditional fuzzy nearest neighbour (FNN) algorithm.
Dominance-based ranking functions for interval-valued intuitionistic fuzzy sets.
Chen, Liang-Hsuan; Tu, Chien-Cheng
2014-08-01
The ranking of interval-valued intuitionistic fuzzy sets (IvIFSs) is difficult since they include the interval values of membership and nonmembership. This paper proposes ranking functions for IvIFSs based on the dominance concept. The proposed ranking functions consider the degree to which an IvIFS dominates and is not dominated by other IvIFSs. Based on the bivariate framework and the dominance concept, the functions incorporate not only the boundary values of membership and nonmembership, but also the relative relations among IvIFSs in comparisons. The dominance-based ranking functions include bipolar evaluations with a parameter that allows the decision-maker to reflect his actual attitude in allocating the various kinds of dominance. The relationship for two IvIFSs that satisfy the dual couple is defined based on four proposed ranking functions. Importantly, the proposed ranking functions can achieve a full ranking for all IvIFSs. Two examples are used to demonstrate the applicability and distinctiveness of the proposed ranking functions.
NASA Astrophysics Data System (ADS)
Lin, Kyaw Kyaw; Soe, Aung Kyaw; Thu, Theint Theint
2008-10-01
This research work investigates a Self-Tuning Proportional Derivative (PD) type Fuzzy Logic Controller (STPDFLC) for a two link robot system. The proposed scheme adjusts on-line the output Scaling Factor (SF) by fuzzy rules according to the current trend of the robot. The rule base for tuning the output scaling factor is defined on the error (e) and change in error (de). The scheme is also based on the fact that the controller always tries to manipulate the process input. The rules are in the familiar if-then format. All membership functions for controller inputs (e and de) and controller output (UN) are defined on the common interval [-1,1]; whereas the membership functions for the gain updating factor (α) is defined on [0,1]. There are various methods to calculate the crisp output of the system. Center of Gravity (COG) method is used in this application due to better results it gives. Performances of the proposed STPDFLC are compared with those of their corresponding PD-type conventional Fuzzy Logic Controller (PDFLC). The proposed scheme shows a remarkably improved performance over its conventional counterpart especially under parameters variation (payload). The two-link results of analysis are simulated. These simulation results are illustrated by using MATLAB® programming.
A Genetic Algorithm and Fuzzy Logic Approach for Video Shot Boundary Detection
Thounaojam, Dalton Meitei; Khelchandra, Thongam; Singh, Kh. Manglem; Roy, Sudipta
2016-01-01
This paper proposed a shot boundary detection approach using Genetic Algorithm and Fuzzy Logic. In this, the membership functions of the fuzzy system are calculated using Genetic Algorithm by taking preobserved actual values for shot boundaries. The classification of the types of shot transitions is done by the fuzzy system. Experimental results show that the accuracy of the shot boundary detection increases with the increase in iterations or generations of the GA optimization process. The proposed system is compared to latest techniques and yields better result in terms of F1score parameter. PMID:27127500
Image Edge Extraction via Fuzzy Reasoning
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A. (Inventor); Klinko, Steve (Inventor)
2008-01-01
A computer-based technique for detecting edges in gray level digital images employs fuzzy reasoning to analyze whether each pixel in an image is likely on an edge. The image is analyzed on a pixel-by-pixel basis by analyzing gradient levels of pixels in a square window surrounding the pixel being analyzed. An edge path passing through the pixel having the greatest intensity gradient is used as input to a fuzzy membership function, which employs fuzzy singletons and inference rules to assigns a new gray level value to the pixel that is related to the pixel's edginess degree.
A new type of simplified fuzzy rule-based system
NASA Astrophysics Data System (ADS)
Angelov, Plamen; Yager, Ronald
2012-02-01
Over the last quarter of a century, two types of fuzzy rule-based (FRB) systems dominated, namely Mamdani and Takagi-Sugeno type. They use the same type of scalar fuzzy sets defined per input variable in their antecedent part which are aggregated at the inference stage by t-norms or co-norms representing logical AND/OR operations. In this paper, we propose a significantly simplified alternative to define the antecedent part of FRB systems by data Clouds and density distribution. This new type of FRB systems goes further in the conceptual and computational simplification while preserving the best features (flexibility, modularity, and human intelligibility) of its predecessors. The proposed concept offers alternative non-parametric form of the rules antecedents, which fully reflects the real data distribution and does not require any explicit aggregation operations and scalar membership functions to be imposed. Instead, it derives the fuzzy membership of a particular data sample to a Cloud by the data density distribution of the data associated with that Cloud. Contrast this to the clustering which is parametric data space decomposition/partitioning where the fuzzy membership to a cluster is measured by the distance to the cluster centre/prototype ignoring all the data that form that cluster or approximating their distribution. The proposed new approach takes into account fully and exactly the spatial distribution and similarity of all the real data by proposing an innovative and much simplified form of the antecedent part. In this paper, we provide several numerical examples aiming to illustrate the concept.
Reliability analysis of repairable systems using Petri nets and vague Lambda-Tau methodology.
Garg, Harish
2013-01-01
The main objective of the paper is to developed a methodology, named as vague Lambda-Tau, for reliability analysis of repairable systems. Petri net tool is applied to represent the asynchronous and concurrent processing of the system instead of fault tree analysis. To enhance the relevance of the reliability study, vague set theory is used for representing the failure rate and repair times instead of classical(crisp) or fuzzy set theory because vague sets are characterized by a truth membership function and false membership functions (non-membership functions) so that sum of both values is less than 1. The proposed methodology involves qualitative modeling using PN and quantitative analysis using Lambda-Tau method of solution with the basic events represented by intuitionistic fuzzy numbers of triangular membership functions. Sensitivity analysis has also been performed and the effects on system MTBF are addressed. The methodology improves the shortcomings of the existing probabilistic approaches and gives a better understanding of the system behavior through its graphical representation. The washing unit of a paper mill situated in a northern part of India, producing approximately 200 ton of paper per day, has been considered to demonstrate the proposed approach. The results may be helpful for the plant personnel for analyzing the systems' behavior and to improve their performance by adopting suitable maintenance strategies. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
FPGA implementation of neuro-fuzzy system with improved PSO learning.
Karakuzu, Cihan; Karakaya, Fuat; Çavuşlu, Mehmet Ali
2016-07-01
This paper presents the first hardware implementation of neuro-fuzzy system (NFS) with its metaheuristic learning ability on field programmable gate array (FPGA). Metaheuristic learning of NFS for all of its parameters is accomplished by using the improved particle swarm optimization (iPSO). As a second novelty, a new functional approach, which does not require any memory and multiplier usage, is proposed for the Gaussian membership functions of NFS. NFS and its learning using iPSO are implemented on Xilinx Virtex5 xc5vlx110-3ff1153 and efficiency of the proposed implementation tested on two dynamic system identification problems and licence plate detection problem as a practical application. Results indicate that proposed NFS implementation and membership function approximation is as effective as the other approaches available in the literature but requires less hardware resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hybrid neural network and fuzzy logic approaches for rendezvous and capture in space
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Castellano, Timothy
1991-01-01
The nonlinear behavior of many practical systems and unavailability of quantitative data regarding the input-output relations makes the analytical modeling of these systems very difficult. On the other hand, approximate reasoning-based controllers which do not require analytical models have demonstrated a number of successful applications such as the subway system in the city of Sendai. These applications have mainly concentrated on emulating the performance of a skilled human operator in the form of linguistic rules. However, the process of learning and tuning the control rules to achieve the desired performance remains a difficult task. Fuzzy Logic Control is based on fuzzy set theory. A fuzzy set is an extension of a crisp set. Crisp sets only allow full membership or no membership at all, whereas fuzzy sets allow partial membership. In other words, an element may partially belong to a set.
Homogenous polynomially parameter-dependent H∞ filter designs of discrete-time fuzzy systems.
Zhang, Huaguang; Xie, Xiangpeng; Tong, Shaocheng
2011-10-01
This paper proposes a novel H(∞) filtering technique for a class of discrete-time fuzzy systems. First, a novel kind of fuzzy H(∞) filter, which is homogenous polynomially parameter dependent on membership functions with an arbitrary degree, is developed to guarantee the asymptotic stability and a prescribed H(∞) performance of the filtering error system. Second, relaxed conditions for H(∞) performance analysis are proposed by using a new fuzzy Lyapunov function and the Finsler lemma with homogenous polynomial matrix Lagrange multipliers. Then, based on a new kind of slack variable technique, relaxed linear matrix inequality-based H(∞) filtering conditions are proposed. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approach.
An ANFIS-based on B2C electronic commerce transaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Juan, E-mail: linjuanliucaihong@qq.com; Liu, Chenlian, E-mail: chenglian.liu@gmail.com; Guo, Yongning, E-mail: guoyn@163.com
2014-10-06
The purpose of this study is to use an adaptive-network-based fuzzy inference system to model a fuzzy logic-based system (FIS) for supporting decision-making process in B2C electronic commerce transaction. Firstly we introduce FIS in B2C electronic commerce transaction and ANFIS. Then we use ANFIS to model FIS with different membership functions(MF). Lastly we give a conclusion.
An ANFIS-based on B2C electronic commerce transaction
NASA Astrophysics Data System (ADS)
Lin, Juan; Liu, Chenlian; Guo, Yongning
2014-10-01
The purpose of this study is to use an adaptive-network-based fuzzy inference system to model a fuzzy logic-based system (FIS) for supporting decision-making process in B2C electronic commerce transaction. Firstly we introduce FIS in B2C electronic commerce transaction and ANFIS. Then we use ANFIS to model FIS with different membership functions(MF). Lastly we give a conclusion.
Three-Dimensional Road Network by Fusion of Polarimetric and Interferometric SAR Data
NASA Technical Reports Server (NTRS)
Gamba, P.; Houshmand, B.
1998-01-01
In this paper a fuzzy classification procedure is applied to polarimetric radar measurements, and street pixels are detected. These data are successively grouped into consistent roads by means of a dynamic programming approach based on the fuzzy membership function values. Further fusion of the 2D road network extracted and 3D TOPSAR measurements provides a powerful way to analyze urban infrastructures.
A fuzzy neural network for intelligent data processing
NASA Astrophysics Data System (ADS)
Xie, Wei; Chu, Feng; Wang, Lipo; Lim, Eng Thiam
2005-03-01
In this paper, we describe an incrementally generated fuzzy neural network (FNN) for intelligent data processing. This FNN combines the features of initial fuzzy model self-generation, fast input selection, partition validation, parameter optimization and rule-base simplification. A small FNN is created from scratch -- there is no need to specify the initial network architecture, initial membership functions, or initial weights. Fuzzy IF-THEN rules are constantly combined and pruned to minimize the size of the network while maintaining accuracy; irrelevant inputs are detected and deleted, and membership functions and network weights are trained with a gradient descent algorithm, i.e., error backpropagation. Experimental studies on synthesized data sets demonstrate that the proposed Fuzzy Neural Network is able to achieve accuracy comparable to or higher than both a feedforward crisp neural network, i.e., NeuroRule, and a decision tree, i.e., C4.5, with more compact rule bases for most of the data sets used in our experiments. The FNN has achieved outstanding results for cancer classification based on microarray data. The excellent classification result for Small Round Blue Cell Tumors (SRBCTs) data set is shown. Compared with other published methods, we have used a much fewer number of genes for perfect classification, which will help researchers directly focus their attention on some specific genes and may lead to discovery of deep reasons of the development of cancers and discovery of drugs.
Abrasive slurry jet cutting model based on fuzzy relations
NASA Astrophysics Data System (ADS)
Qiang, C. H.; Guo, C. W.
2017-12-01
The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.
Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W.
2016-01-01
Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty’s 1–9 scale, this paper proposes a cross-ratio-based bipolar 0.1–0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness. PMID:27618082
Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W
2016-09-09
Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty's 1-9 scale, this paper proposes a cross-ratio-based bipolar 0.1-0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness.
NASA Astrophysics Data System (ADS)
Chang Chien, Kuang-Che; Fetita, Catalin; Brillet, Pierre-Yves; Prêteux, Françoise; Chang, Ruey-Feng
2009-02-01
Multi-detector computed tomography (MDCT) has high accuracy and specificity on volumetrically capturing serial images of the lung. It increases the capability of computerized classification for lung tissue in medical research. This paper proposes a three-dimensional (3D) automated approach based on mathematical morphology and fuzzy logic for quantifying and classifying interstitial lung diseases (ILDs) and emphysema. The proposed methodology is composed of several stages: (1) an image multi-resolution decomposition scheme based on a 3D morphological filter is used to detect and analyze the different density patterns of the lung texture. Then, (2) for each pattern in the multi-resolution decomposition, six features are computed, for which fuzzy membership functions define a probability of association with a pathology class. Finally, (3) for each pathology class, the probabilities are combined up according to the weight assigned to each membership function and two threshold values are used to decide the final class of the pattern. The proposed approach was tested on 10 MDCT cases and the classification accuracy was: emphysema: 95%, fibrosis/honeycombing: 84% and ground glass: 97%.
On Fuzzy Sets and Rough Sets from the Perspective of Indiscernibility
NASA Astrophysics Data System (ADS)
Chakraborty, Mihir K.
The category theoretic approach of Obtułowicz to Pawlak's rough sets has been reintroduced in a somewhat modified form. A generalization is rendered to this approach that has been motivated by the notion of rough membership function. Thus, a link is established between rough sets and L-fuzzy sets for some special lattices. It is shown that a notion of indistinguishability lies at the root of vagueness. This observation in turn gives a common ground to the theories of rough sets and fuzzy sets.
Full design of fuzzy controllers using genetic algorithms
NASA Technical Reports Server (NTRS)
Homaifar, Abdollah; Mccormick, ED
1992-01-01
This paper examines the applicability of genetic algorithms (GA) in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.
Full design of fuzzy controllers using genetic algorithms
NASA Technical Reports Server (NTRS)
Homaifar, Abdollah; Mccormick, ED
1992-01-01
This paper examines the applicability of genetic algorithms in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.
Membership generation using multilayer neural network
NASA Technical Reports Server (NTRS)
Kim, Jaeseok
1992-01-01
There has been intensive research in neural network applications to pattern recognition problems. Particularly, the back-propagation network has attracted many researchers because of its outstanding performance in pattern recognition applications. In this section, we describe a new method to generate membership functions from training data using a multilayer neural network. The basic idea behind the approach is as follows. The output values of a sigmoid activation function of a neuron bear remarkable resemblance to membership values. Therefore, we can regard the sigmoid activation values as the membership values in fuzzy set theory. Thus, in order to generate class membership values, we first train a suitable multilayer network using a training algorithm such as the back-propagation algorithm. After the training procedure converges, the resulting network can be treated as a membership generation network, where the inputs are feature values and the outputs are membership values in the different classes. This method allows fairly complex membership functions to be generated because the network is highly nonlinear in general. Also, it is to be noted that the membership functions are generated from a classification point of view. For pattern recognition applications, this is highly desirable, although the membership values may not be indicative of the degree of typicality of a feature value in a particular class.
Mocz, G.
1995-01-01
Fuzzy cluster analysis has been applied to the 20 amino acids by using 65 physicochemical properties as a basis for classification. The clustering products, the fuzzy sets (i.e., classical sets with associated membership functions), have provided a new measure of amino acid similarities for use in protein folding studies. This work demonstrates that fuzzy sets of simple molecular attributes, when assigned to amino acid residues in a protein's sequence, can predict the secondary structure of the sequence with reasonable accuracy. An approach is presented for discriminating standard folding states, using near-optimum information splitting in half-overlapping segments of the sequence of assigned membership functions. The method is applied to a nonredundant set of 252 proteins and yields approximately 73% matching for correctly predicted and correctly rejected residues with approximately 60% overall success rate for the correctly recognized ones in three folding states: alpha-helix, beta-strand, and coil. The most useful attributes for discriminating these states appear to be related to size, polarity, and thermodynamic factors. Van der Waals volume, apparent average thickness of surrounding molecular free volume, and a measure of dimensionless surface electron density can explain approximately 95% of prediction results. hydrogen bonding and hydrophobicity induces do not yet enable clear clustering and prediction. PMID:7549882
Intersubjective decision-making for computer-aided forging technology design
NASA Astrophysics Data System (ADS)
Kanyukov, S. I.; Konovalov, A. V.; Muizemnek, O. Yu.
2017-12-01
We propose a concept of intersubjective decision-making for problems of open-die forging technology design. The intersubjective decisions are chosen from a set of feasible decisions using the fundamentals of the decision-making theory in fuzzy environment according to the Bellman-Zadeh scheme. We consider the formalization of subjective goals and the choice of membership functions for the decisions depending on subjective goals. We study the arrangement of these functions into an intersubjective membership function. The function is constructed for a resulting decision, which is chosen from a set of feasible decisions. The choice of the final intersubjective decision is discussed. All the issues are exemplified by a specific technological problem. The considered concept of solving technological problems under conditions of fuzzy goals allows one to choose the most efficient decisions from a set of feasible ones. These decisions correspond to the stated goals. The concept allows one to reduce human participation in automated design. This concept can be used to develop algorithms and design programs for forging numerous types of forged parts.
Fuzzy Kernel k-Medoids algorithm for anomaly detection problems
NASA Astrophysics Data System (ADS)
Rustam, Z.; Talita, A. S.
2017-07-01
Intrusion Detection System (IDS) is an essential part of security systems to strengthen the security of information systems. IDS can be used to detect the abuse by intruders who try to get into the network system in order to access and utilize the available data sources in the system. There are two approaches of IDS, Misuse Detection and Anomaly Detection (behavior-based intrusion detection). Fuzzy clustering-based methods have been widely used to solve Anomaly Detection problems. Other than using fuzzy membership concept to determine the object to a cluster, other approaches as in combining fuzzy and possibilistic membership or feature-weighted based methods are also used. We propose Fuzzy Kernel k-Medoids that combining fuzzy and possibilistic membership as a powerful method to solve anomaly detection problem since on numerical experiment it is able to classify IDS benchmark data into five different classes simultaneously. We classify IDS benchmark data KDDCup'99 data set into five different classes simultaneously with the best performance was achieved by using 30 % of training data with clustering accuracy reached 90.28 percent.
Using fuzzy fractal features of digital images for the material surface analisys
NASA Astrophysics Data System (ADS)
Privezentsev, D. G.; Zhiznyakov, A. L.; Astafiev, A. V.; Pugin, E. V.
2018-01-01
Edge detection is an important task in image processing. There are a lot of approaches in this area: Sobel, Canny operators and others. One of the perspective techniques in image processing is the use of fuzzy logic and fuzzy sets theory. They allow us to increase processing quality by representing information in its fuzzy form. Most of the existing fuzzy image processing methods switch to fuzzy sets on very late stages, so this leads to some useful information loss. In this paper, a novel method of edge detection based on fuzzy image representation and fuzzy pixels is proposed. With this approach, we convert the image to fuzzy form on the first step. Different approaches to this conversion are described. Several membership functions for fuzzy pixel description and requirements for their form and view are given. A novel approach to edge detection based on Sobel operator and fuzzy image representation is proposed. Experimental testing of developed method was performed on remote sensing images.
Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions.
Zhu, Lin; Chung, Fu-Lai; Wang, Shitong
2009-06-01
The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities.
Design of fuzzy systems using neurofuzzy networks.
Figueiredo, M; Gomide, F
1999-01-01
This paper introduces a systematic approach for fuzzy system design based on a class of neural fuzzy networks built upon a general neuron model. The network structure is such that it encodes the knowledge learned in the form of if-then fuzzy rules and processes data following fuzzy reasoning principles. The technique provides a mechanism to obtain rules covering the whole input/output space as well as the membership functions (including their shapes) for each input variable. Such characteristics are of utmost importance in fuzzy systems design and application. In addition, after learning, it is very simple to extract fuzzy rules in the linguistic form. The network has universal approximation capability, a property very useful in, e.g., modeling and control applications. Here we focus on function approximation problems as a vehicle to illustrate its usefulness and to evaluate its performance. Comparisons with alternative approaches are also included. Both, nonnoisy and noisy data have been studied and considered in the computational experiments. The neural fuzzy network developed here and, consequently, the underlying approach, has shown to provide good results from the accuracy, complexity, and system design points of view.
Modeling Belt-Servomechanism by Chebyshev Functional Recurrent Neuro-Fuzzy Network
NASA Astrophysics Data System (ADS)
Huang, Yuan-Ruey; Kang, Yuan; Chu, Ming-Hui; Chang, Yeon-Pun
A novel Chebyshev functional recurrent neuro-fuzzy (CFRNF) network is developed from a combination of the Takagi-Sugeno-Kang (TSK) fuzzy model and the Chebyshev recurrent neural network (CRNN). The CFRNF network can emulate the nonlinear dynamics of a servomechanism system. The system nonlinearity is addressed by enhancing the input dimensions of the consequent parts in the fuzzy rules due to functional expansion of a Chebyshev polynomial. The back propagation algorithm is used to adjust the parameters of the antecedent membership functions as well as those of consequent functions. To verify the performance of the proposed CFRNF, the experiment of the belt servomechanism is presented in this paper. Both of identification methods of adaptive neural fuzzy inference system (ANFIS) and recurrent neural network (RNN) are also studied for modeling of the belt servomechanism. The analysis and comparison results indicate that CFRNF makes identification of complex nonlinear dynamic systems easier. It is verified that the accuracy and convergence of the CFRNF are superior to those of ANFIS and RNN by the identification results of a belt servomechanism.
NASA Astrophysics Data System (ADS)
Pathak, Savita; Mondal, Seema Sarkar
2010-10-01
A multi-objective inventory model of deteriorating item has been developed with Weibull rate of decay, time dependent demand, demand dependent production, time varying holding cost allowing shortages in fuzzy environments for non- integrated and integrated businesses. Here objective is to maximize the profit from different deteriorating items with space constraint. The impreciseness of inventory parameters and goals for non-integrated business has been expressed by linear membership functions. The compromised solutions are obtained by different fuzzy optimization methods. To incorporate the relative importance of the objectives, the different cardinal weights crisp/fuzzy have been assigned. The models are illustrated with numerical examples and results of models with crisp/fuzzy weights are compared. The result for the model assuming them to be integrated business is obtained by using Generalized Reduced Gradient Method (GRG). The fuzzy integrated model with imprecise inventory cost is formulated to optimize the possibility necessity measure of fuzzy goal of the objective function by using credibility measure of fuzzy event by taking fuzzy expectation. The results of crisp/fuzzy integrated model are illustrated with numerical examples and results are compared.
On the fusion of tuning parameters of fuzzy rules and neural network
NASA Astrophysics Data System (ADS)
Mamuda, Mamman; Sathasivam, Saratha
2017-08-01
Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.
HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.
Kim, J; Kasabov, N
1999-11-01
This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.
Fuzzy logic and image processing techniques for the interpretation of seismic data
NASA Astrophysics Data System (ADS)
Orozco-del-Castillo, M. G.; Ortiz-Alemán, C.; Urrutia-Fucugauchi, J.; Rodríguez-Castellanos, A.
2011-06-01
Since interpretation of seismic data is usually a tedious and repetitive task, the ability to do so automatically or semi-automatically has become an important objective of recent research. We believe that the vagueness and uncertainty in the interpretation process makes fuzzy logic an appropriate tool to deal with seismic data. In this work we developed a semi-automated fuzzy inference system to detect the internal architecture of a mass transport complex (MTC) in seismic images. We propose that the observed characteristics of a MTC can be expressed as fuzzy if-then rules consisting of linguistic values associated with fuzzy membership functions. The constructions of the fuzzy inference system and various image processing techniques are presented. We conclude that this is a well-suited problem for fuzzy logic since the application of the proposed methodology yields a semi-automatically interpreted MTC which closely resembles the MTC from expert manual interpretation.
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Jamshid; Mahdizadeh, Kourosh; Afshar, Abbas
2004-08-01
Application of stochastic dynamic programming (SDP) models to reservoir optimization calls for state variables discretization. As an important variable discretization of reservoir storage volume has a pronounced effect on the computational efforts. The error caused by storage volume discretization is examined by considering it as a fuzzy state variable. In this approach, the point-to-point transitions between storage volumes at the beginning and end of each period are replaced by transitions between storage intervals. This is achieved by using fuzzy arithmetic operations with fuzzy numbers. In this approach, instead of aggregating single-valued crisp numbers, the membership functions of fuzzy numbers are combined. Running a simulated model with optimal release policies derived from fuzzy and non-fuzzy SDP models shows that a fuzzy SDP with a coarse discretization scheme performs as well as a classical SDP having much finer discretized space. It is believed that this advantage in the fuzzy SDP model is due to the smooth transitions between storage intervals which benefit from soft boundaries.
A high performance, ad-hoc, fuzzy query processing system for relational databases
NASA Technical Reports Server (NTRS)
Mansfield, William H., Jr.; Fleischman, Robert M.
1992-01-01
Database queries involving imprecise or fuzzy predicates are currently an evolving area of academic and industrial research. Such queries place severe stress on the indexing and I/O subsystems of conventional database environments since they involve the search of large numbers of records. The Datacycle architecture and research prototype is a database environment that uses filtering technology to perform an efficient, exhaustive search of an entire database. It has recently been modified to include fuzzy predicates in its query processing. The approach obviates the need for complex index structures, provides unlimited query throughput, permits the use of ad-hoc fuzzy membership functions, and provides a deterministic response time largely independent of query complexity and load. This paper describes the Datacycle prototype implementation of fuzzy queries and some recent performance results.
Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions
NASA Astrophysics Data System (ADS)
Khoury, Mehdi; Liu, Honghai
This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.
Fuzzy model approach for estimating time of hospitalization due to cardiovascular diseases.
Coutinho, Karine Mayara Vieira; Rizol, Paloma Maria Silva Rocha; Nascimento, Luiz Fernando Costa; de Medeiros, Andréa Paula Peneluppi
2015-08-01
A fuzzy linguistic model based on the Mamdani method with input variables, particulate matter, sulfur dioxide, temperature and wind obtained from CETESB with two membership functions each was built to predict the average hospitalization time due to cardiovascular diseases related to exposure to air pollutants in São José dos Campos in the State of São Paulo in 2009. The output variable is the average length of hospitalization obtained from DATASUS with six membership functions. The average time given by the model was compared to actual data using lags of 0 to 4 days. This model was built using the Matlab v. 7.5 fuzzy toolbox. Its accuracy was assessed with the ROC curve. Hospitalizations with a mean time of 7.9 days (SD = 4.9) were recorded in 1119 cases. The data provided revealed a significant correlation with the actual data according to the lags of 0 to 4 days. The pollutant that showed the greatest accuracy was sulfur dioxide. This model can be used as the basis of a specialized system to assist the city health authority in assessing the risk of hospitalizations due to air pollutants.
Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology
NASA Astrophysics Data System (ADS)
Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat
2014-07-01
The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.
NASA Astrophysics Data System (ADS)
Khademi, April; Hosseinzadeh, Danoush
2014-03-01
Alzheimer's disease (AD) is the most common form of dementia in the elderly characterized by extracellular deposition of amyloid plaques (AP). Using animal models, AP loads have been manually measured from histological specimens to understand disease etiology, as well as response to treatment. Due to the manual nature of these approaches, obtaining the AP load is labourious, subjective and error prone. Automated algorithms can be designed to alleviate these challenges by objectively segmenting AP. In this paper, we focus on the development of a novel algorithm for AP segmentation based on robust preprocessing and a Type II fuzzy system. Type II fuzzy systems are much more advantageous over the traditional Type I fuzzy systems, since ambiguity in the membership function may be modeled and exploited to generate excellent segmentation results. The ambiguity in the membership function is defined as an adaptively changing parameter that is tuned based on the local contrast characteristics of the image. Using transgenic mouse brains with AP ground truth, validation studies were carried out showing a high degree of overlap and low degree of oversegmentation (0.8233 and 0.0917, respectively). The results highlight that such a framework is able to handle plaques of various types (diffuse, punctate), plaques with varying Aβ concentrations as well as intensity variation caused by treatment effects or staining variability.
Applications of fuzzy theories to multi-objective system optimization
NASA Technical Reports Server (NTRS)
Rao, S. S.; Dhingra, A. K.
1991-01-01
Most of the computer aided design techniques developed so far deal with the optimization of a single objective function over the feasible design space. However, there often exist several engineering design problems which require a simultaneous consideration of several objective functions. This work presents several techniques of multiobjective optimization. In addition, a new formulation, based on fuzzy theories, is also introduced for the solution of multiobjective system optimization problems. The fuzzy formulation is useful in dealing with systems which are described imprecisely using fuzzy terms such as, 'sufficiently large', 'very strong', or 'satisfactory'. The proposed theory translates the imprecise linguistic statements and multiple objectives into equivalent crisp mathematical statements using fuzzy logic. The effectiveness of all the methodologies and theories presented is illustrated by formulating and solving two different engineering design problems. The first one involves the flight trajectory optimization and the main rotor design of helicopters. The second one is concerned with the integrated kinematic-dynamic synthesis of planar mechanisms. The use and effectiveness of nonlinear membership functions in fuzzy formulation is also demonstrated. The numerical results indicate that the fuzzy formulation could yield results which are qualitatively different from those provided by the crisp formulation. It is felt that the fuzzy formulation will handle real life design problems on a more rational basis.
NASA Astrophysics Data System (ADS)
Vasant, Pandian; Barsoum, Nader
2008-10-01
Many engineering, science, information technology and management optimization problems can be considered as non linear programming real world problems where the all or some of the parameters and variables involved are uncertain in nature. These can only be quantified using intelligent computational techniques such as evolutionary computation and fuzzy logic. The main objective of this research paper is to solve non linear fuzzy optimization problem where the technological coefficient in the constraints involved are fuzzy numbers which was represented by logistic membership functions by using hybrid evolutionary optimization approach. To explore the applicability of the present study a numerical example is considered to determine the production planning for the decision variables and profit of the company.
WARP: Weight Associative Rule Processor. A dedicated VLSI fuzzy logic megacell
NASA Technical Reports Server (NTRS)
Pagni, A.; Poluzzi, R.; Rizzotto, G. G.
1992-01-01
During the last five years Fuzzy Logic has gained enormous popularity in the academic and industrial worlds. The success of this new methodology has led the microelectronics industry to create a new class of machines, called Fuzzy Machines, to overcome the limitations of traditional computing systems when utilized as Fuzzy Systems. This paper gives an overview of the methods by which Fuzzy Logic data structures are represented in the machines (each with its own advantages and inefficiencies). Next, the paper introduces WARP (Weight Associative Rule Processor) which is a dedicated VLSI megacell allowing the realization of a fuzzy controller suitable for a wide range of applications. WARP represents an innovative approach to VLSI Fuzzy controllers by utilizing different types of data structures for characterizing the membership functions during the various stages of the Fuzzy processing. WARP dedicated architecture has been designed in order to achieve high performance by exploiting the computational advantages offered by the different data representations.
NASA Astrophysics Data System (ADS)
Gayazova, Anna; Abdullaev, Sanjar
2014-05-01
Short-range forecasting of algal blooms in drinking water reservoirs and other waterbodies is an actual element of water treatment system. Particularly, Shershnevskoie reservoir - the source of drinking water for Chelyabinsk city (South Ural region of Russia) - is exposed to interannual, seasonal and short-range fluctuations of blue-green alga Aphanizomenon flos-aquae and other dominant species abundance, which lead to technological problems and economic costs and adversely affect the water treatment quality. Whereas the composition, intensity and the period of blooms affected not only by meteorological seasonal conditions but also by ecological specificity of waterbody, that's important to develop object-oriented forecasting, particularly, search for an optimal number of predictors for such forecasting. Thereby, firstly fuzzy logic and fuzzy artificial neural network patterns for blue-green alga Microcystis aeruginosa (M. aeruginosa) blooms prediction in nearby undrained Smolino lake were developed. These results subsequently served as the base to derive membership functions for Shernevskoie reservoir forecasting patterns. Time series with the total lenght about 138-159 days of dominant species seasonal abundance, water temperature, cloud cover, wind speed, mineralization, phosphate and nitrate concentrations were obtained through field observations held at Lake Smolino (Chelyabinsk) in the warm season of 2009 and 2011 with time resolution of 2-7 days. The cross-correlation analysis of the data revealed the potential predictors of M. aeruginosa abundance quasi-periodic oscillations: green alga Pediastrum duplex (P. duplex) abundance and mineralization for 2009, P. duplex abundance, water temperature and concentration of nitrates for 2011. According to the results of cross-correlation analysis one membership function "P. duplex abundance" and one rule linking M. aeruginosa and P. duplex abundances were set up for database of 2009. Analogically, for database of 2011 three rules, linking membership functions of temperature, P. duplex abundance, nitrate concentration and M. aeruginosa abundance were set up. Developed fuzzy logic rules were good to predict M. aeruginosa intense outbreaks. For ANN method of forecasting specially written program was used to train the fuzzy artificial neural network on number of input selected predictors' values and output predicted factor's values to set up the predictive rules and membership functions automatically. As a result, two models based on mineralization and P. duplex abundance were developed for 2009. For 2011 four patterns were developed, the best result was obtained for model based on temperature and P. duplex abundance. Developed methods of forecasting were applied to predict outbreaks of Aphanizomenon flos-aquae and M. aeruginosa abundance in Shershnevskoie reservoir. For this purpose long-term data of chemical parameters, measured once in a month, data of dominant species abundance, measured fifth in a week and data of turbidity, water color, alkalinity, pH, obtained each day, were analyzed. Based on these empirical data significant factors were determined, membership functions were set up and preliminary models for Shershnevskoie reservoir were developed. As expected, these models differ significantly from developed for Smolino lake ones and should be tested on new data sets.
A possibilistic approach to clustering
NASA Technical Reports Server (NTRS)
Krishnapuram, Raghu; Keller, James M.
1993-01-01
Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering methods in that total commitment of a vector to a given class is not required at each image pattern recognition iteration. Recently fuzzy clustering methods have shown spectacular ability to detect not only hypervolume clusters, but also clusters which are actually 'thin shells', i.e., curves and surfaces. Most analytic fuzzy clustering approaches are derived from the 'Fuzzy C-Means' (FCM) algorithm. The FCM uses the probabilistic constraint that the memberships of a data point across classes sum to one. This constraint was used to generate the membership update equations for an iterative algorithm. Recently, we cast the clustering problem into the framework of possibility theory using an approach in which the resulting partition of the data can be interpreted as a possibilistic partition, and the membership values may be interpreted as degrees of possibility of the points belonging to the classes. We show the ability of this approach to detect linear and quartic curves in the presence of considerable noise.
FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.
Li, Pu; Chen, Bing
2011-04-01
Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.
Stability margin of linear systems with parameters described by fuzzy numbers.
Husek, Petr
2011-10-01
This paper deals with the linear systems with uncertain parameters described by fuzzy numbers. The problem of determining the stability margin of those systems with linear affine dependence of the coefficients of a characteristic polynomial on system parameters is studied. Fuzzy numbers describing the system parameters are allowed to be characterized by arbitrary nonsymmetric membership functions. An elegant solution, graphical in nature, based on generalization of the Tsypkin-Polyak plot is presented. The advantage of the presented approach over the classical robust concept is demonstrated on a control of the Fiat Dedra engine model and a control of the quarter car suspension model.
Portfolios with fuzzy returns: Selection strategies based on semi-infinite programming
NASA Astrophysics Data System (ADS)
Vercher, Enriqueta
2008-08-01
This paper provides new models for portfolio selection in which the returns on securities are considered fuzzy numbers rather than random variables. The investor's problem is to find the portfolio that minimizes the risk of achieving a return that is not less than the return of a riskless asset. The corresponding optimal portfolio is derived using semi-infinite programming in a soft framework. The return on each asset and their membership functions are described using historical data. The investment risk is approximated by mean intervals which evaluate the downside risk for a given fuzzy portfolio. This approach is illustrated with a numerical example.
Improvements to Earthquake Location with a Fuzzy Logic Approach
NASA Astrophysics Data System (ADS)
Gökalp, Hüseyin
2018-01-01
In this study, improvements to the earthquake location method were investigated using a fuzzy logic approach proposed by Lin and Sanford (Bull Seismol Soc Am 91:82-93, 2001). The method has certain advantages compared to the inverse methods in terms of eliminating the uncertainties of arrival times and reading errors. In this study, adopting this approach, epicentral locations were determined based on the results of a fuzzy logic space concerning the uncertainties in the velocity models. To map the uncertainties in arrival times into the fuzzy logic space, a trapezoidal membership function was constructed by directly using the travel time difference between the two stations for the P- and S-arrival times instead of the P- and S-wave models to eliminate the need for obtaining information concerning the velocity structure of the study area. The results showed that this method worked most effectively when earthquakes occurred away from a network or when the arrival time data contained phase reading errors. In this study, to resolve the problems related to determining the epicentral locations of the events, a forward modeling method like the grid search technique was used by applying different logical operations (i.e., intersection, union, and their combination) with a fuzzy logic approach. The locations of the events were depended on results of fuzzy logic outputs in fuzzy logic space by searching in a gridded region. The process of location determination with the defuzzification of only the grid points with the membership value of 1 obtained by normalizing all the maximum fuzzy output values of the highest values resulted in more reliable epicentral locations for the earthquakes than the other approaches. In addition, throughout the process, the center-of-gravity method was used as a defuzzification operation.
Estimating the average length of hospitalization due to pneumonia: a fuzzy approach.
Nascimento, L F C; Rizol, P M S R; Peneluppi, A P
2014-08-29
Exposure to air pollutants is associated with hospitalizations due to pneumonia in children. We hypothesized the length of hospitalization due to pneumonia may be dependent on air pollutant concentrations. Therefore, we built a computational model using fuzzy logic tools to predict the mean time of hospitalization due to pneumonia in children living in São José dos Campos, SP, Brazil. The model was built with four inputs related to pollutant concentrations and effective temperature, and the output was related to the mean length of hospitalization. Each input had two membership functions and the output had four membership functions, generating 16 rules. The model was validated against real data, and a receiver operating characteristic (ROC) curve was constructed to evaluate model performance. The values predicted by the model were significantly correlated with real data. Sulfur dioxide and particulate matter significantly predicted the mean length of hospitalization in lags 0, 1, and 2. This model can contribute to the care provided to children with pneumonia.
Estimating the average length of hospitalization due to pneumonia: a fuzzy approach.
Nascimento, L F C; Rizol, P M S R; Peneluppi, A P
2014-11-01
Exposure to air pollutants is associated with hospitalizations due to pneumonia in children. We hypothesized the length of hospitalization due to pneumonia may be dependent on air pollutant concentrations. Therefore, we built a computational model using fuzzy logic tools to predict the mean time of hospitalization due to pneumonia in children living in São José dos Campos, SP, Brazil. The model was built with four inputs related to pollutant concentrations and effective temperature, and the output was related to the mean length of hospitalization. Each input had two membership functions and the output had four membership functions, generating 16 rules. The model was validated against real data, and a receiver operating characteristic (ROC) curve was constructed to evaluate model performance. The values predicted by the model were significantly correlated with real data. Sulfur dioxide and particulate matter significantly predicted the mean length of hospitalization in lags 0, 1, and 2. This model can contribute to the care provided to children with pneumonia.
ANFIS multi criteria decision making for overseas construction projects: a methodology
NASA Astrophysics Data System (ADS)
Utama, W. P.; Chan, A. P. C.; Zulherman; Zahoor, H.; Gao, R.; Jumas, D. Y.
2018-02-01
A critical part when a company targeting a foreign market is how to make a better decision in connection with potential project selection. Since different attributes of information are often incomplete, imprecise and ill-defined in overseas projects selection, the process of decision making by relying on the experiences and intuition is a risky attitude. This paper aims to demonstrate a decision support method in deciding overseas construction projects (OCPs). An Adaptive Neuro-Fuzzy Inference System (ANFIS), the amalgamation of Neural Network and Fuzzy Theory, was used as decision support tool to decide to go or not go on OCPs. Root mean square error (RMSE) and coefficient of correlation (R) were employed to identify the ANFIS system indicating an optimum and efficient result. The optimum result was obtained from ANFIS network with two input membership functions, Gaussian membership function (gaussmf) and hybrid optimization method. The result shows that ANFIS may help the decision-making process for go/not go decision in OCPs.
NASA Astrophysics Data System (ADS)
Betz, Florian; Lauermann, Magdalena; Cyffka, Bernd
2018-04-01
Riparian zones contain important ecosystems with a high biodiversity and relevant ecosystem services. From a process point of view, riparian zones are characterized by the interaction of hydrological, geomorphological and ecological processes. Consequently, their boundary is dynamic and blurred as it depends on not only the local valley morphology but also the hydrological regime. This makes a delineation of riparian zones from digital elevation data a challenging task as it should represent this blurred nature of riparian zone boundaries. While the application of high resolution topography from LIDAR and hydraulic models have become standard in many developed countries, studies and applications in remote areas still commonly rely on the freely available coarse resolution digital elevation models. In this article, we present the delineation of riparian zones from the SRTM-1 elevation model and fuzzy membership functions for the Naryn River in Kyrgyzstan having a length of approximately 700 km. We evaluate the extraction of the underlying channel network as well as the different indicator variables. The maximum user's accuracy for the delineation of riparian zones along the entire Naryn River is 82.14% reflecting the uncertainty arising from the heterogeneity of the riverscape as well as from the quality of the underlying elevation data. Despite the uncertainty, the fuzzy membership approach is considered as an appropriate method for riparian zone delineation as it reflects their dynamic, transitional character and can be used as indicator of connectivity within a riverscape.
Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y
2014-05-01
This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Turnbull, Heather; Omenzetter, Piotr
2018-03-01
vDifficulties associated with current health monitoring and inspection practices combined with harsh, often remote, operational environments of wind turbines highlight the requirement for a non-destructive evaluation system capable of remotely monitoring the current structural state of turbine blades. This research adopted a physics based structural health monitoring methodology through calibration of a finite element model using inverse techniques. A 2.36m blade from a 5kW turbine was used as an experimental specimen, with operational modal analysis techniques utilised to realize the modal properties of the system. Modelling the experimental responses as fuzzy numbers using the sub-level technique, uncertainty in the response parameters was propagated back through the model and into the updating parameters. Initially, experimental responses of the blade were obtained, with a numerical model of the blade created and updated. Deterministic updating was carried out through formulation and minimisation of a deterministic objective function using both firefly algorithm and virus optimisation algorithm. Uncertainty in experimental responses were modelled using triangular membership functions, allowing membership functions of updating parameters (Young's modulus and shear modulus) to be obtained. Firefly algorithm and virus optimisation algorithm were again utilised, however, this time in the solution of fuzzy objective functions. This enabled uncertainty associated with updating parameters to be quantified. Varying damage location and severity was simulated experimentally through addition of small masses to the structure intended to cause a structural alteration. A damaged model was created, modelling four variable magnitude nonstructural masses at predefined points and updated to provide a deterministic damage prediction and information in relation to the parameters uncertainty via fuzzy updating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peche, Roberto, E-mail: roberto.peche@ehu.es; Rodriguez, Esther, E-mail: esther.rodriguez@ehu.e
This study shows the practical application of the EIA method based on fuzzy logic proposed by the authors (Peche and Rodriguez, 2009) to a simplified case of study-the activity of a petrol station throughout its exploitation. The intensity (p{sub 1}), the extent (p{sub 2}) and the persistence (p{sub 3}) were the properties selected to describe the impacts and their respective assessment functions v-bar{sub i}=f(p-bar{sub i}) were determined. The main actions (A) and potentially affected environmental factors (F) were selected. Every impact was identified by a pair A-F and the values of the three impact properties were estimated for each ofmore » them by means of triangular fuzzy numbers. Subsequently, the fuzzy estimation of every impact was carried out, the estimation of the impact A{sub 1}-F{sub 2} (V-bar{sub 1}) being explained in detail. Every impact was simultaneously represented by its corresponding generalised confidence interval and membership function. Since the membership functions of all impacts were similar to triangular fuzzy numbers, a triangular approach (TA) was used to describe every impact. A triangular approach coefficient (TAC) was introduced to quantify the similarity of each fuzzy number and its corresponding triangular approach, where TAC (V-bar) element of (0, 1] and TAC being 1 when the fuzzy number is triangular. The TACs-ranging from 0.96 to 0.99-proved that TAs were valid in all cases. Next, the total positive and negative impacts-TV-bar{sup +} and TV-bar{sup -} were calculated and later, the fuzzy value of the total environmental impact TV-bar was determined from them. Finally, the defuzzification of TV-bar led to the punctual impact estimator TV{sup (1)} = -88.50 and its corresponding uncertainty interval [{delta}{sub l}(TV-bar),{delta}{sub r}(TV-bar)]=[6.52,6.96], which represent the total value of the EI. In conclusion, the EIA method enabled the integration of heterogeneous impacts, which exerted influence on environmental factors of a very diverse nature in very different ways, into a global impact indicator.« less
In-process and post-process measurements of drill wear for control of the drilling process
NASA Astrophysics Data System (ADS)
Liu, Tien-I.; Liu, George; Gao, Zhiyu
2011-12-01
Optical inspection was used in this research for the post-process measurements of drill wear. A precision toolmakers" microscope was used. Indirect index, cutting force, is used for in-process drill wear measurements. Using in-process measurements to estimate the drill wear for control purpose can decrease the operation cost and enhance the product quality and safety. The challenge is to correlate the in-process cutting force measurements with the post-process optical inspection of drill wear. To find the most important feature, the energy principle was used in this research. It is necessary to select only the cutting force feature which shows the highest sensitivity to drill wear. The best feature selected is the peak of torque in the drilling process. Neuro-fuzzy systems were used for correlation purposes. The Adaptive-Network-Based Fuzzy Inference System (ANFIS) can construct fuzzy rules with membership functions to generate an input-output pair. A 1x6 ANFIS architecture with product of sigmoid membership functions can in-process measure the drill wear with an error as low as 0.15%. This is extremely important for control of the drilling process. Furthermore, the measurement of drill wear was performed under different drilling conditions. This shows that ANFIS has the capability of generalization.
An Adaptive Handover Prediction Scheme for Seamless Mobility Based Wireless Networks
Safa Sadiq, Ali; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime
2014-01-01
We propose an adaptive handover prediction (AHP) scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches. PMID:25574490
An adaptive handover prediction scheme for seamless mobility based wireless networks.
Sadiq, Ali Safa; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime
2014-01-01
We propose an adaptive handover prediction (AHP) scheme for seamless mobility based wireless networks. That is, the AHP scheme incorporates fuzzy logic with AP prediction process in order to lend cognitive capability to handover decision making. Selection metrics, including received signal strength, mobile node relative direction towards the access points in the vicinity, and access point load, are collected and considered inputs of the fuzzy decision making system in order to select the best preferable AP around WLANs. The obtained handover decision which is based on the calculated quality cost using fuzzy inference system is also based on adaptable coefficients instead of fixed coefficients. In other words, the mean and the standard deviation of the normalized network prediction metrics of fuzzy inference system, which are collected from available WLANs are obtained adaptively. Accordingly, they are applied as statistical information to adjust or adapt the coefficients of membership functions. In addition, we propose an adjustable weight vector concept for input metrics in order to cope with the continuous, unpredictable variation in their membership degrees. Furthermore, handover decisions are performed in each MN independently after knowing RSS, direction toward APs, and AP load. Finally, performance evaluation of the proposed scheme shows its superiority compared with representatives of the prediction approaches.
NASA Astrophysics Data System (ADS)
Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing
2018-01-01
For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.
NASA Astrophysics Data System (ADS)
Shi, Yu-Fang; Ma, Yi-Yi; Song, Ping-Ping
2018-03-01
System Reliability Theory is a research hotspot of management science and system engineering in recent years, and construction reliability is useful for quantitative evaluation of project management level. According to reliability theory and target system of engineering project management, the defination of construction reliability appears. Based on fuzzy mathematics theory and language operator, value space of construction reliability is divided into seven fuzzy subsets and correspondingly, seven membership function and fuzzy evaluation intervals are got with the operation of language operator, which provides the basis of corresponding method and parameter for the evaluation of construction reliability. This method is proved to be scientific and reasonable for construction condition and an useful attempt for theory and method research of engineering project system reliability.
Fuzzy Rule Suram for Wood Drying
NASA Astrophysics Data System (ADS)
Situmorang, Zakarias
2017-12-01
Implemented of fuzzy rule must used a look-up table as defuzzification analysis. Look-up table is the actuator plant to doing the value of fuzzification. Rule suram based of fuzzy logic with variables of weather is temperature ambient and humidity ambient, it implemented for wood drying process. The membership function of variable of state represented in error value and change error with typical map of triangle and map of trapezium. Result of analysis to reach 4 fuzzy rule in 81 conditions to control the output system can be constructed in a number of way of weather and conditions of air. It used to minimum of the consumption of electric energy by heater. One cycle of schedule drying is a serial of condition of chamber to process as use as a wood species.
Some series of intuitionistic fuzzy interactive averaging aggregation operators.
Garg, Harish
2016-01-01
In this paper, some series of new intuitionistic fuzzy averaging aggregation operators has been presented under the intuitionistic fuzzy sets environment. For this, some shortcoming of the existing operators are firstly highlighted and then new operational law, by considering the hesitation degree between the membership functions, has been proposed to overcome these. Based on these new operation laws, some new averaging aggregation operators namely, intuitionistic fuzzy Hamacher interactive weighted averaging, ordered weighted averaging and hybrid weighted averaging operators, labeled as IFHIWA, IFHIOWA and IFHIHWA respectively has been proposed. Furthermore, some desirable properties such as idempotency, boundedness, homogeneity etc. are studied. Finally, a multi-criteria decision making method has been presented based on proposed operators for selecting the best alternative. A comparative concelebration between the proposed operators and the existing operators are investigated in detail.
NASA Astrophysics Data System (ADS)
Torghabeh, A. A.; Tousi, A. M.
2007-08-01
This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.
Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.
Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S
2016-06-01
A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.
Modified Levenberg-Marquardt Method for RÖSSLER Chaotic System Fuzzy Modeling Training
NASA Astrophysics Data System (ADS)
Wang, Yu-Hui; Wu, Qing-Xian; Jiang, Chang-Sheng; Xue, Ya-Li; Fang, Wei
Generally, fuzzy approximation models require some human knowledge and experience. Operator's experience is involved in the mathematics of fuzzy theory as a collection of heuristic rules. The main goal of this paper is to present a new method for identifying unknown nonlinear dynamics such as Rössler system without any human knowledge. Instead of heuristic rules, the presented method uses the input-output data pairs to identify the Rössler chaotic system. The training algorithm is a modified Levenberg-Marquardt (L-M) method, which can adjust the parameters of each linear polynomial and fuzzy membership functions on line, and do not rely on experts' experience excessively. Finally, it is applied to training Rössler chaotic system fuzzy identification. Comparing this method with the standard L-M method, the convergence speed is accelerated. The simulation results demonstrate the effectiveness of the proposed method.
Cloud classification from satellite data using a fuzzy sets algorithm: A polar example
NASA Technical Reports Server (NTRS)
Key, J. R.; Maslanik, J. A.; Barry, R. G.
1988-01-01
Where spatial boundaries between phenomena are diffuse, classification methods which construct mutually exclusive clusters seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each observation to all clusters, with membership values as a function of distance to the cluster center. The FCM algorithm is applied to AVHRR data for the purpose of classifying polar clouds and surfaces. Careful analysis of the fuzzy sets can provide information on which spectral channels are best suited to the classification of particular features, and can help determine likely areas of misclassification. General agreement in the resulting classes and cloud fraction was found between the FCM algorithm, a manual classification, and an unsupervised maximum likelihood classifier.
Breast mass segmentation in mammograms combining fuzzy c-means and active contours
NASA Astrophysics Data System (ADS)
Hmida, Marwa; Hamrouni, Kamel; Solaiman, Basel; Boussetta, Sana
2018-04-01
Segmentation of breast masses in mammograms is a challenging issue due to the nature of mammography and the characteristics of masses. In fact, mammographic images are poor in contrast and breast masses have various shapes and densities with fuzzy and ill-defined borders. In this paper, we propose a method based on a modified Chan-Vese active contour model for mass segmentation in mammograms. We conduct the experiment on mass Regions of Interest (ROI) extracted from the MIAS database. The proposed method consists of mainly three stages: Firstly, the ROI is preprocessed to enhance the contrast. Next, two fuzzy membership maps are generated from the preprocessed ROI based on fuzzy C-Means algorithm. These fuzzy membership maps are finally used to modify the energy of the Chan-Vese model and to perform the final segmentation. Experimental results indicate that the proposed method yields good mass segmentation results.
Type-2 fuzzy logic control of a 2-DOF helicopter (TRMS system)
NASA Astrophysics Data System (ADS)
Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel
2014-09-01
The helicopter dynamic includes nonlinearities, parametric uncertainties and is subject to unknown external disturbances. Such complicated dynamics involve designing sophisticated control algorithms that can deal with these difficulties. In this paper, a type 2 fuzzy logic PID controller is proposed for TRMS (twin rotor mimo system) control problem. Using triangular membership functions and based on a human operator experience, two controllers are designed to control the position of the yaw and the pitch angles of the TRMS. Simulation results are given to illustrate the effectiveness of the proposed control scheme.
Fuzzy set methods for object recognition in space applications
NASA Technical Reports Server (NTRS)
Keller, James M.
1992-01-01
Progress on the following tasks is reported: feature calculation; membership calculation; clustering methods (including initial experiments on pose estimation); and acquisition of images (including camera calibration information for digitization of model). The report consists of 'stand alone' sections, describing the activities in each task. We would like to highlight the fact that during this quarter, we believe that we have made a major breakthrough in the area of fuzzy clustering. We have discovered a method to remove the probabilistic constraints that the sum of the memberships across all classes must add up to 1 (as in the fuzzy c-means). A paper, describing this approach, is included.
NASA Astrophysics Data System (ADS)
Dasgupta, Arunima; Sastry, K. L. N.; Dhinwa, P. S.; Rathore, V. S.; Nathawat, M. S.
2013-08-01
Desertification risk assessment is important in order to take proper measures for its prevention. Present research intends to identify the areas under risk of desertification along with their severity in terms of degradation in natural parameters. An integrated model with fuzzy membership analysis, fuzzy rule-based inference system and geospatial techniques was adopted, including five specific natural parameters namely slope, soil pH, soil depth, soil texture and NDVI. Individual parameters were classified according to their deviation from mean. Membership of each individual values to be in a certain class was derived using the normal probability density function of that class. Thus if a single class of a single parameter is with mean μ and standard deviation σ, the values falling beyond μ + 2 σ and μ - 2 σ are not representing that class, but a transitional zone between two subsequent classes. These are the most important areas in terms of degradation, as they have the lowest probability to be in a certain class, hence highest probability to be extended or narrowed down in next or previous class respectively. Eventually, these are the values which can be easily altered, under extrogenic influences, hence are identified as risk areas. The overall desertification risk is derived by incorporating the different risk severity of each parameter using fuzzy rule-based interference system in GIS environment. Multicriteria based geo-statistics are applied to locate the areas under different severity of desertification risk. The study revealed that in Kota, various anthropogenic pressures are accelerating land deterioration, coupled with natural erosive forces. Four major sources of desertification in Kota are, namely Gully and Ravine erosion, inappropriate mining practices, growing urbanization and random deforestation.
Bi-cooperative games in bipolar fuzzy settings
NASA Astrophysics Data System (ADS)
Hazarika, Pankaj; Borkotokey, Surajit; Mesiar, Radko
2018-01-01
In this paper, we introduce the notion of a bi-cooperative game with Bipolar Fuzzy Bi-coalitions and discuss the related properties. In many decision-making situations, players show bipolar motives while cooperating among themselves. This is modelled in both crisp and fuzzy environments. Bi-cooperative games with fuzzy bi-coalitions have already been proposed under the product order of bi-coalitions where one had memberships in [0, 1]. In the present paper, we adopt the alternative ordering: ordering by monotonicity and account for players' memberships in ?, a break from the previous formulation. This simplifies the model to a great extent. The corresponding Shapley axioms are proposed. An explicit form of the Shapley value to a particular class of such games is also obtained. Our study is supplemented with an illustrative example.
Imprecise (fuzzy) information in geostatistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardossy, A.; Bogardi, I.; Kelly, W.E.
1988-05-01
A methodology based on fuzzy set theory for the utilization of imprecise data in geostatistics is presented. A common problem preventing a broader use of geostatistics has been the insufficient amount of accurate measurement data. In certain cases, additional but uncertain (soft) information is available and can be encoded as subjective probabilities, and then the soft kriging method can be applied (Journal, 1986). In other cases, a fuzzy encoding of soft information may be more realistic and simplify the numerical calculations. Imprecise (fuzzy) spatial information on the possible variogram is integrated into a single variogram which is used in amore » fuzzy kriging procedure. The overall uncertainty of prediction is represented by the estimation variance and the calculated membership function for each kriged point. The methodology is applied to the permeability prediction of a soil liner for hazardous waste containment. The available number of hard measurement data (20) was not enough for a classical geostatistical analysis. An additional 20 soft data made it possible to prepare kriged contour maps using the fuzzy geostatistical procedure.« less
Use of Fuzzy Logic Systems for Assessment of Primary Faults
NASA Astrophysics Data System (ADS)
Petrović, Ivica; Jozsa, Lajos; Baus, Zoran
2015-09-01
In electric power systems, grid elements are often subjected to very complex and demanding disturbances or dangerous operating conditions. Determining initial fault or cause of those states is a difficult task. When fault occurs, often it is an imperative to disconnect affected grid element from the grid. This paper contains an overview of possibilities for using fuzzy logic in an assessment of primary faults in the transmission grid. The tool for this task is SCADA system, which is based on information of currents, voltages, events of protection devices and status of circuit breakers in the grid. The function model described with the membership function and fuzzy logic systems will be presented in the paper. For input data, diagnostics system uses information of protection devices tripping, states of circuit breakers and measurements of currents and voltages before and after faults.
A Quantitative Method to Identify Lithology Beneath Cover
NASA Astrophysics Data System (ADS)
Gettings, M. E.
2008-12-01
Geophysical terranes (map areas of similar potential field data response) can be used in the estimation of geological map units beneath cover (bedrock, alluvium, or tectonic block). Potential field data over nearby bedrock terranes defines "candidate terranes". Geophysical anomaly dimensions, shapes, amplitudes, trends/structural grain, and fractal measures yield a vector of measures characterizing the terrane. To compare candidate terranes fields with those for covered areas, the effect of depth of cover must be taken into account. Gravity anomaly data yields depth estimates by which the aeromagnetic data of candidate terranes are then upward continued. Comparison of characteristics of the upward continued fields from the candidate terranes to those of covered areas rank the candidates. Because of signal loss in upward continuation and overlap of physical properties, the vectors of measures for the candidate terranes are usually not unique. Possibility theory offers a relatively objective and robust method that can be used to rank terrane types that includes uncertainty. The strategy is to prepare membership functions for each measure of each candidate terrane and the covered area, based on observed values and degree of knowledge, and then form the fuzzy-logical combination of these to estimate the possibility and its uncertainty for each candidate terrane. Membership functions include uncertainty by the degree of membership for various possibility values. With no other information, uncertainty is based on information content from survey specifications and geologic features dimensions. Geologic data can also be included, such as structural trends, proximity, and tectonic history. Little knowledge implies wide membership functions; perfect knowledge, a delta function. This and the combination rules in fuzzy logic yield a robust estimation method. An uncertain membership function of a characteristic contributes much less to the possibility than a precise one. The final result for each covered area is a ranked possibility function for each candidate terrane as the underlying bedrock of the covered area that honors the aeromagnetic field and the geologic constraints that have been included. An example of the application of this method is presented for an area in south central Arizona.
NASA Astrophysics Data System (ADS)
Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng
2012-12-01
This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.
Automatic two- and three-dimensional mesh generation based on fuzzy knowledge processing
NASA Astrophysics Data System (ADS)
Yagawa, G.; Yoshimura, S.; Soneda, N.; Nakao, K.
1992-09-01
This paper describes the development of a novel automatic FEM mesh generation algorithm based on the fuzzy knowledge processing technique. A number of local nodal patterns are stored in a nodal pattern database of the mesh generation system. These nodal patterns are determined a priori based on certain theories or past experience of experts of FEM analyses. For example, such human experts can determine certain nodal patterns suitable for stress concentration analyses of cracks, corners, holes and so on. Each nodal pattern possesses a membership function and a procedure of node placement according to this function. In the cases of the nodal patterns for stress concentration regions, the membership function which is utilized in the fuzzy knowledge processing has two meanings, i.e. the “closeness” of nodal location to each stress concentration field as well as “nodal density”. This is attributed to the fact that a denser nodal pattern is required near a stress concentration field. What a user has to do in a practical mesh generation process are to choose several local nodal patterns properly and to designate the maximum nodal density of each pattern. After those simple operations by the user, the system places the chosen nodal patterns automatically in an analysis domain and on its boundary, and connects them smoothly by the fuzzy knowledge processing technique. Then triangular or tetrahedral elements are generated by means of the advancing front method. The key issue of the present algorithm is an easy control of complex two- or three-dimensional nodal density distribution by means of the fuzzy knowledge processing technique. To demonstrate fundamental performances of the present algorithm, a prototype system was constructed with one of object-oriented languages, Smalltalk-80 on a 32-bit microcomputer, Macintosh II. The mesh generation of several two- and three-dimensional domains with cracks, holes and junctions was presented as examples.
A Discrete Model for Color Naming
NASA Astrophysics Data System (ADS)
Menegaz, G.; Le Troter, A.; Sequeira, J.; Boi, J. M.
2006-12-01
The ability to associate labels to colors is very natural for human beings. Though, this apparently simple task hides very complex and still unsolved problems, spreading over many different disciplines ranging from neurophysiology to psychology and imaging. In this paper, we propose a discrete model for computational color categorization and naming. Starting from the 424 color specimens of the OSA-UCS set, we propose a fuzzy partitioning of the color space. Each of the 11 basic color categories identified by Berlin and Kay is modeled as a fuzzy set whose membership function is implicitly defined by fitting the model to the results of an ad hoc psychophysical experiment (Experiment 1). Each OSA-UCS sample is represented by a feature vector whose components are the memberships to the different categories. The discrete model consists of a three-dimensional Delaunay triangulation of the CIELAB color space which associates each OSA-UCS sample to a vertex of a 3D tetrahedron. Linear interpolation is used to estimate the membership values of any other point in the color space. Model validation is performed both directly, through the comparison of the predicted membership values to the subjective counterparts, as evaluated via another psychophysical test (Experiment 2), and indirectly, through the investigation of its exploitability for image segmentation. The model has proved to be successful in both cases, providing an estimation of the membership values in good agreement with the subjective measures as well as a semantically meaningful color-based segmentation map.
Modelling Multi Hazard Mapping in Semarang City Using GIS-Fuzzy Method
NASA Astrophysics Data System (ADS)
Nugraha, A. L.; Awaluddin, M.; Sasmito, B.
2018-02-01
One important aspect of disaster mitigation planning is hazard mapping. Hazard mapping can provide spatial information on the distribution of locations that are threatened by disaster. Semarang City as the capital of Central Java Province is one of the cities with high natural disaster intensity. Frequent natural disasters Semarang city is tidal flood, floods, landslides, and droughts. Therefore, Semarang City needs spatial information by doing multi hazard mapping to support disaster mitigation planning in Semarang City. Multi Hazards map modelling can be derived from parameters such as slope maps, rainfall, land use, and soil types. This modelling is done by using GIS method with scoring and overlay technique. However, the accuracy of modelling would be better if the GIS method is combined with Fuzzy Logic techniques to provide a good classification in determining disaster threats. The Fuzzy-GIS method will build a multi hazards map of Semarang city can deliver results with good accuracy and with appropriate threat class spread so as to provide disaster information for disaster mitigation planning of Semarang city. from the multi-hazard modelling using GIS-Fuzzy can be known type of membership that has a good accuracy is the type of membership Gauss with RMSE of 0.404 the smallest of the other membership and VAF value of 72.909% of the largest of the other membership.
Train repathing in emergencies based on fuzzy linear programming.
Meng, Xuelei; Cui, Bingmou
2014-01-01
Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.
Estimating outcomes in newborn infants using fuzzy logic
Chaves, Luciano Eustáquio; Nascimento, Luiz Fernando C.
2014-01-01
OBJECTIVE: To build a linguistic model using the properties of fuzzy logic to estimate the risk of death of neonates admitted to a Neonatal Intensive Care Unit. METHODS: Computational model using fuzzy logic. The input variables of the model were birth weight, gestational age, 5th-minute Apgar score and inspired fraction of oxygen in newborn infants admitted to a Neonatal Intensive Care Unit of Taubaté, Southeast Brazil. The output variable was the risk of death, estimated as a percentage. Three membership functions related to birth weight, gestational age and 5th-minute Apgar score were built, as well as two functions related to the inspired fraction of oxygen; the risk presented five membership functions. The model was developed using the Mandani inference by means of Matlab(r) software. The model values were compared with those provided by experts and their performance was estimated by ROC curve. RESULTS: 100 newborns were included, and eight of them died. The model estimated an average possibility of death of 49.7±29.3%, and the possibility of hospital discharge was 24±17.5%. These values are different when compared by Student's t-test (p<0.001). The correlation test revealed r=0.80 and the performance of the model was 81.9%. CONCLUSIONS: This predictive, non-invasive and low cost model showed a good accuracy and can be applied in neonatal care, given the easiness of its use. PMID:25119746
Membership-degree preserving discriminant analysis with applications to face recognition.
Yang, Zhangjing; Liu, Chuancai; Huang, Pu; Qian, Jianjun
2013-01-01
In pattern recognition, feature extraction techniques have been widely employed to reduce the dimensionality of high-dimensional data. In this paper, we propose a novel feature extraction algorithm called membership-degree preserving discriminant analysis (MPDA) based on the fisher criterion and fuzzy set theory for face recognition. In the proposed algorithm, the membership degree of each sample to particular classes is firstly calculated by the fuzzy k-nearest neighbor (FKNN) algorithm to characterize the similarity between each sample and class centers, and then the membership degree is incorporated into the definition of the between-class scatter and the within-class scatter. The feature extraction criterion via maximizing the ratio of the between-class scatter to the within-class scatter is applied. Experimental results on the ORL, Yale, and FERET face databases demonstrate the effectiveness of the proposed algorithm.
Fuzzy Set Classification of Old-Growth Southern Pine
Don C. Bragg
2002-01-01
I propose the development of a fuzzy set ordination (FSO) approach to old-growth classification of southern pines. A fuzzy systems approach differs from traditional old-growth classification in that it does not require a "crisp" classification where a stand is either "old-growth" or "not old-growth", but allows for fractional membership...
Complex fuzzy soft expert sets
NASA Astrophysics Data System (ADS)
Selvachandran, Ganeshsree; Hafeed, Nisren A.; Salleh, Abdul Razak
2017-04-01
Complex fuzzy sets and its accompanying theory although at its infancy, has proven to be superior to classical type-1 fuzzy sets, due its ability in representing time-periodic problem parameters and capturing the seasonality of the fuzziness that exists in the elements of a set. These are important characteristics that are pervasive in most real world problems. However, there are two major problems that are inherent in complex fuzzy sets: it lacks a sufficient parameterization tool and it does not have a mechanism to validate the values assigned to the membership functions of the elements in a set. To overcome these problems, we propose the notion of complex fuzzy soft expert sets which is a hybrid model of complex fuzzy sets and soft expert sets. This model incorporates the advantages of complex fuzzy sets and soft sets, besides having the added advantage of allowing the users to know the opinion of all the experts in a single model without the need for any additional cumbersome operations. As such, this model effectively improves the accuracy of representation of problem parameters that are periodic in nature, besides having a higher level of computational efficiency compared to similar models in literature.
Li, Jun; Zhang, Hong; Han, Yinshan; Wang, Baodong
2016-01-01
Focusing on the diversity, complexity and uncertainty of the third-party damage accident, the failure probability of third-party damage to urban gas pipeline was evaluated on the theory of analytic hierarchy process and fuzzy mathematics. The fault tree of third-party damage containing 56 basic events was built by hazard identification of third-party damage. The fuzzy evaluation of basic event probabilities were conducted by the expert judgment method and using membership function of fuzzy set. The determination of the weight of each expert and the modification of the evaluation opinions were accomplished using the improved analytic hierarchy process, and the failure possibility of the third-party to urban gas pipeline was calculated. Taking gas pipelines of a certain large provincial capital city as an example, the risk assessment structure of the method was proved to conform to the actual situation, which provides the basis for the safety risk prevention.
Visibility enhancement of color images using Type-II fuzzy membership function
NASA Astrophysics Data System (ADS)
Singh, Harmandeep; Khehra, Baljit Singh
2018-04-01
Images taken in poor environmental conditions decrease the visibility and hidden information of digital images. Therefore, image enhancement techniques are necessary for improving the significant details of these images. An extensive review has shown that histogram-based enhancement techniques greatly suffer from over/under enhancement issues. Fuzzy-based enhancement techniques suffer from over/under saturated pixels problems. In this paper, a novel Type-II fuzzy-based image enhancement technique has been proposed for improving the visibility of images. The Type-II fuzzy logic can automatically extract the local atmospheric light and roughly eliminate the atmospheric veil in local detail enhancement. The proposed technique has been evaluated on 10 well-known weather degraded color images and is also compared with four well-known existing image enhancement techniques. The experimental results reveal that the proposed technique outperforms others regarding visible edge ratio, color gradients and number of saturated pixels.
NASA Astrophysics Data System (ADS)
Saadoud, Djouher; Hassani, Mohamed; Martin Peinado, Francisco José; Guettouche, Mohamed Saïd
2018-06-01
Wind erosion is one of the most serious environmental problems in Algeria that threatens human activities and socio-economic development. The main goal of this study is to apply a fuzzy logic approach to wind erosion sensitivity mapping in the Laghouat region, Algeria. Six causative factors, obtained by applying fuzzy membership functions to each used parameter, are considered: soil, vegetation cover, wind factor, soil dryness, land topography and land cover sensitivity. Different fuzzy operators (AND, OR, SUM, PRODUCT, and GAMMA) are applied to generate wind-erosion hazard map. Success rate curves reveal that the fuzzy gamma (γ) operator, with γ equal to 0.9, gives the best prediction accuracy with an area under curve of 85.2%. The resulting wind-erosion sensitivity map delineates the area into different zones of five relative sensitivity classes: very high, high, moderate, low and very low. The estimated result was verified by field measurements and the high statistically significant value of a chi-square test.
Fuzzy Set Methods for Object Recognition in Space Applications
NASA Technical Reports Server (NTRS)
Keller, James M. (Editor)
1992-01-01
Progress on the following four tasks is described: (1) fuzzy set based decision methodologies; (2) membership calculation; (3) clustering methods (including derivation of pose estimation parameters), and (4) acquisition of images and testing of algorithms.
An Intuitionistic Fuzzy Logic Models for Multicriteria Decision Making Under Uncertainty
NASA Astrophysics Data System (ADS)
Jana, Biswajit; Mohanty, Sachi Nandan
2017-04-01
The purpose of this paper is to enhance the applicability of the fuzzy sets for developing mathematical models for decision making under uncertainty, In general a decision making process consist of four stages, namely collection of information from various sources, compile the information, execute the information and finally take the decision/action. Only fuzzy sets theory is capable to quantifying the linguistic expression to mathematical form in complex situation. Intuitionistic fuzzy set (IFSs) which reflects the fact that the degree of non membership is not always equal to one minus degree of membership. There may be some degree of hesitation. Thus, there are some situations where IFS theory provides a more meaningful and applicable to cope with imprecise information present for solving multiple criteria decision making problem. This paper emphasis on IFSs, which is help for solving real world problem in uncertainty situation.
Gaussian membership functions are most adequate in representing uncertainty in measurements
NASA Technical Reports Server (NTRS)
Kreinovich, V.; Quintana, C.; Reznik, L.
1992-01-01
In rare situations, like fundamental physics, we perform experiments without knowing what their results will be. In the majority of real-life measurement situations, we more or less know beforehand what kind of results we will get. Of course, this is not the precise knowledge of the type 'the result will be between alpha - beta and alpha + beta,' because in this case, we would not need any measurements at all. This is usually a knowledge that is best represented in uncertain terms, like 'perhaps (or 'most likely', etc.) the measured value x is between alpha - beta and alpha + beta.' Traditional statistical methods neglect this additional knowledge and process only the measurement results. So it is desirable to be able to process this uncertain knowledge as well. A natural way to process it is by using fuzzy logic. But, there is a problem; we can use different membership functions to represent the same uncertain statements, and different functions lead to different results. What membership function do we choose? In the present paper, we show that under some reasonable assumptions, Gaussian functions mu(x) = exp(-beta(x(exp 2))) are the most adequate choice of the membership functions for representing uncertainty in measurements. This representation was efficiently used in testing jet engines to airplanes and spaceships.
Effect of defuzzification method of fuzzy modeling
NASA Astrophysics Data System (ADS)
Lapohos, Tibor; Buchal, Ralph O.
1994-10-01
Imprecision can arise in fuzzy relational modeling as a result of fuzzification, inference and defuzzification. These three sources of imprecision are difficult to separate. We have determined through numerical studies that an important source of imprecision is the defuzzification stage. This imprecision adversely affects the quality of the model output. The most widely used defuzzification algorithm is known by the name of `center of area' (COA) or `center of gravity' (COG). In this paper, we show that this algorithm not only maps the near limit values of the variables improperly but also introduces errors for middle domain values of the same variables. Furthermore, the behavior of this algorithm is a function of the shape of the reference sets. We compare the COA method to the weighted average of cluster centers (WACC) procedure in which the transformation is carried out based on the values of the cluster centers belonging to each of the reference membership functions instead of using the functions themselves. We show that this procedure is more effective and computationally much faster than the COA. The method is tested for a family of reference sets satisfying certain constraints, that is, for any support value the sum of reference membership function values equals one and the peak values of the two marginal membership functions project to the boundaries of the universe of discourse. For all the member sets of this family of reference sets the defuzzification errors do not get bigger as the linguistic variables tend to their extreme values. In addition, the more reference sets that are defined for a certain linguistic variable, the less the average defuzzification error becomes. In case of triangle shaped reference sets there is no defuzzification error at all. Finally, an alternative solution is provided that improves the performance of the COA method.
NASA Astrophysics Data System (ADS)
Ozbulut, O. E.; Mir, C.; Moroni, M. O.; Sarrazin, M.; Roschke, P. N.
2007-06-01
Two experimental test programs are conducted to collect data and simulate the dynamic behavior of CuAlBe shape memory alloy (SMA) wires. First, in order to evaluate the effect of temperature changes on superelastic SMA wires, a large number of cyclic, sinusoidal, tensile tests are performed at 1 Hz. These tests are conducted in a controlled environment at 0, 25 and 50 °C with three different strain amplitudes. Second, in order to assess the dynamic effects of the material, a series of laboratory experiments is conducted on a shake table with a scale model of a three-story structure that is stiffened with SMA wires. Data from these experiments are used to create fuzzy inference systems (FISs) that can predict hysteretic behavior of CuAlBe wire. Both fuzzy models employ a total of three input variables (strain, strain-rate, and temperature or pre-stress) and an output variable (predicted stress). Gaussian membership functions are used to fuzzify data for each of the input and output variables. Values of the initially assigned membership functions are adjusted using a neural-fuzzy procedure to more accurately predict the correct stress level in the wires. Results of the trained FISs are validated using test results from experimental records that had not been previously used in the training procedure. Finally, a set of numerical simulations is conducted to illustrate practical use of these wires in a civil engineering application. The results reveal the applicability for structural vibration control of pseudoelastic CuAlBe wire whose highly nonlinear behavior is modeled by a simple, accurate, and computationally efficient FIS.
Genetic reinforcement learning through symbiotic evolution for fuzzy controller design.
Juang, C F; Lin, J Y; Lin, C T
2000-01-01
An efficient genetic reinforcement learning algorithm for designing fuzzy controllers is proposed in this paper. The genetic algorithm (GA) adopted in this paper is based upon symbiotic evolution which, when applied to fuzzy controller design, complements the local mapping property of a fuzzy rule. Using this Symbiotic-Evolution-based Fuzzy Controller (SEFC) design method, the number of control trials, as well as consumed CPU time, are considerably reduced when compared to traditional GA-based fuzzy controller design methods and other types of genetic reinforcement learning schemes. Moreover, unlike traditional fuzzy controllers, which partition the input space into a grid, SEFC partitions the input space in a flexible way, thus creating fewer fuzzy rules. In SEFC, different types of fuzzy rules whose consequent parts are singletons, fuzzy sets, or linear equations (TSK-type fuzzy rules) are allowed. Further, the free parameters (e.g., centers and widths of membership functions) and fuzzy rules are all tuned automatically. For the TSK-type fuzzy rule especially, which put the proposed learning algorithm in use, only the significant input variables are selected to participate in the consequent of a rule. The proposed SEFC design method has been applied to different simulated control problems, including the cart-pole balancing system, a magnetic levitation system, and a water bath temperature control system. The proposed SEFC has been verified to be efficient and superior from these control problems, and from comparisons with some traditional GA-based fuzzy systems.
Kumarasabapathy, N.; Manoharan, P. S.
2015-01-01
This paper proposes a fuzzy logic based new control scheme for the Unified Power Quality Conditioner (UPQC) for minimizing the voltage sag and total harmonic distortion in the distribution system consequently to improve the power quality. UPQC is a recent power electronic module which guarantees better power quality mitigation as it has both series-active and shunt-active power filters (APFs). The fuzzy logic controller has recently attracted a great deal of attention and possesses conceptually the quality of the simplicity by tackling complex systems with vagueness and ambiguity. In this research, the fuzzy logic controller is utilized for the generation of reference signal controlling the UPQC. To enable this, a systematic approach for creating the fuzzy membership functions is carried out by using an ant colony optimization technique for optimal fuzzy logic control. An exhaustive simulation study using the MATLAB/Simulink is carried out to investigate and demonstrate the performance of the proposed fuzzy logic controller and the simulation results are compared with the PI controller in terms of its performance in improving the power quality by minimizing the voltage sag and total harmonic distortion. PMID:26504895
Dynamic fuzzy modeling of storm water infiltration in urban fractured aquifers
Hong, Y.-S.; Rosen, Michael R.; Reeves, R.R.
2002-01-01
In an urban fractured-rock aquifer in the Mt. Eden area of Auckland, New Zealand, disposal of storm water is via "soakholes" drilled directly into the top of the fractured basalt rock. The dynamic response of the groundwater level due to the storm water infiltration shows characteristics of a strongly time-varying system. A dynamic fuzzy modeling approach, which is based on multiple local models that are weighted using fuzzy membership functions, has been developed to identify and predict groundwater level fluctuations caused by storm water infiltration. The dynamic fuzzy model is initialized by the fuzzy clustering algorithm and optimized by the gradient-descent algorithm in order to effectively derive the multiple local models-each of which is associated with a locally valid model that represents the groundwater level state as a response to different intensities of rainfall events. The results have shown that even if the number of fuzzy local models derived is small, the fuzzy modeling approach developed provides good prediction results despite the highly time-varying nature of this urban fractured-rock aquifer system. Further, it allows interpretable representations of the dynamic behavior of the groundwater system due to storm water infiltration.
Empirical Bayes Approaches to Multivariate Fuzzy Partitions.
ERIC Educational Resources Information Center
Woodbury, Max A.; Manton, Kenneth G.
1991-01-01
An empirical Bayes-maximum likelihood estimation procedure is presented for the application of fuzzy partition models in describing high dimensional discrete response data. The model describes individuals in terms of partial membership in multiple latent categories that represent bounded discrete spaces. (SLD)
Peng, Ding-Hong; Wang, Tie-Dan; Gao, Chang-Yuan; Wang, Hua
2014-01-01
Interval-valued hesitant fuzzy set (IVHFS), which is the further generalization of hesitant fuzzy set, can overcome the barrier that the precise membership degrees are sometimes hard to be specified and permit the membership degrees of an element to a set to have a few different interval values. To efficiently and effectively aggregate the interval-valued hesitant fuzzy information, in this paper, we investigate the continuous hesitant fuzzy aggregation operators with the aid of continuous OWA operator; the C-HFOWA operator and C-HFOWG operator are presented and their essential properties are studied in detail. Then, we extend the C-HFOW operators to aggregate multiple interval-valued hesitant fuzzy elements and then develop the weighted C-HFOW (WC-HFOWA and WC-HFOWG) operators, the ordered weighted C-HFOW (OWC-HFOWA and OWC-HFOWG) operators, and the synergetic weighted C-HFOWA (SWC-HFOWA and SWC-HFOWG) operators; some properties are also discussed to support them. Furthermore, a SWC-HFOW operators-based approach for multicriteria decision making problem is developed. Finally, a practical example involving the evaluation of service quality of high-tech enterprises is carried out and some comparative analyses are performed to demonstrate the applicability and effectiveness of the developed approaches.
Wang, Tie-Dan; Gao, Chang-Yuan; Wang, Hua
2014-01-01
Interval-valued hesitant fuzzy set (IVHFS), which is the further generalization of hesitant fuzzy set, can overcome the barrier that the precise membership degrees are sometimes hard to be specified and permit the membership degrees of an element to a set to have a few different interval values. To efficiently and effectively aggregate the interval-valued hesitant fuzzy information, in this paper, we investigate the continuous hesitant fuzzy aggregation operators with the aid of continuous OWA operator; the C-HFOWA operator and C-HFOWG operator are presented and their essential properties are studied in detail. Then, we extend the C-HFOW operators to aggregate multiple interval-valued hesitant fuzzy elements and then develop the weighted C-HFOW (WC-HFOWA and WC-HFOWG) operators, the ordered weighted C-HFOW (OWC-HFOWA and OWC-HFOWG) operators, and the synergetic weighted C-HFOWA (SWC-HFOWA and SWC-HFOWG) operators; some properties are also discussed to support them. Furthermore, a SWC-HFOW operators-based approach for multicriteria decision making problem is developed. Finally, a practical example involving the evaluation of service quality of high-tech enterprises is carried out and some comparative analyses are performed to demonstrate the applicability and effectiveness of the developed approaches. PMID:24987747
Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions.
Abe, S
1998-01-01
In this paper, we discuss a fuzzy classifier with ellipsoidal regions that dynamically generates clusters. First, for the data belonging to a class we define a fuzzy rule with an ellipsoidal region. Namely, using the training data for each class, we calculate the center and the covariance matrix of the ellipsoidal region for the class. Then we tune the fuzzy rules, i.e., the slopes of the membership functions, successively until there is no improvement in the recognition rate of the training data. Then if the number of the data belonging to a class that are misclassified into another class exceeds a prescribed number, we define a new cluster to which those data belong and the associated fuzzy rule. Then we tune the newly defined fuzzy rules in the similar way as stated above, fixing the already obtained fuzzy rules. We iterate generation of clusters and tuning of the newly generated fuzzy rules until the number of the data belonging to a class that are misclassified into another class does not exceed the prescribed number. We evaluate our method using thyroid data, Japanese Hiragana data of vehicle license plates, and blood cell data. By dynamic cluster generation, the generalization ability of the classifier is improved and the recognition rate of the fuzzy classifier for the test data is the best among the neural network classifiers and other fuzzy classifiers if there are no discrete input variables.
Intelligent neural network and fuzzy logic control of industrial and power systems
NASA Astrophysics Data System (ADS)
Kuljaca, Ognjen
The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of adaptive and neural network control systems, as well as for the analysis of the different algorithms such as elastic fuzzy systems.
A hierarchical two-phase framework for selecting genes in cancer datasets with a neuro-fuzzy system.
Lim, Jongwoo; Wang, Bohyun; Lim, Joon S
2016-04-29
Finding the minimum number of appropriate biomarkers for specific targets such as a lung cancer has been a challenging issue in bioinformatics. We propose a hierarchical two-phase framework for selecting appropriate biomarkers that extracts candidate biomarkers from the cancer microarray datasets and then selects the minimum number of appropriate biomarkers from the extracted candidate biomarkers datasets with a specific neuro-fuzzy algorithm, which is called a neural network with weighted fuzzy membership function (NEWFM). In this context, as the first phase, the proposed framework is to extract candidate biomarkers by using a Bhattacharyya distance method that measures the similarity of two discrete probability distributions. Finally, the proposed framework is able to reduce the cost of finding biomarkers by not receiving medical supplements and improve the accuracy of the biomarkers in specific cancer target datasets.
Fuzzy robust credibility-constrained programming for environmental management and planning.
Zhang, Yimei; Hang, Guohe
2010-06-01
In this study, a fuzzy robust credibility-constrained programming (FRCCP) is developed and applied to the planning for waste management systems. It incorporates the concepts of credibility-based chance-constrained programming and robust programming within an optimization framework. The developed method can reflect uncertainties presented as possibility-density by fuzzy-membership functions. Fuzzy credibility constraints are transformed to the crisp equivalents with different credibility levels, and ordinary fuzzy inclusion constraints are determined by their robust deterministic constraints by setting a-cut levels. The FRCCP method can provide different system costs under different credibility levels (lambda). From the results of sensitivity analyses, the operation cost of the landfill is a critical parameter. For the management, any factors that would induce cost fluctuation during landfilling operation would deserve serious observation and analysis. By FRCCP, useful solutions can be obtained to provide decision-making support for long-term planning of solid waste management systems. It could be further enhanced through incorporating methods of inexact analysis into its framework. It can also be applied to other environmental management problems.
Online intelligent controllers for an enzyme recovery plant: design methodology and performance.
Leite, M S; Fujiki, T L; Silva, F V; Fileti, A M F
2010-12-27
This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity.
NASA Astrophysics Data System (ADS)
Kiso, Atsushi; Seki, Hirokazu
This paper describes a method for discriminating of the human forearm motions based on the myoelectric signals using an adaptive fuzzy inference system. In conventional studies, the neural network is often used to estimate motion intention by the myoelectric signals and realizes the high discrimination precision. On the other hand, this study uses the fuzzy inference for a human forearm motion discrimination based on the myoelectric signals. This study designs the membership function and the fuzzy rules using the average value and the standard deviation of the root mean square of the myoelectric potential for every channel of each motion. In addition, the characteristics of the myoelectric potential gradually change as a result of the muscle fatigue. Therefore, the motion discrimination should be performed by taking muscle fatigue into consideration. This study proposes a method to redesign the fuzzy inference system such that dynamic change of the myoelectric potential because of the muscle fatigue will be taken into account. Some experiments carried out using a myoelectric hand simulator show the effectiveness of the proposed motion discrimination method.
Online Intelligent Controllers for an Enzyme Recovery Plant: Design Methodology and Performance
Leite, M. S.; Fujiki, T. L.; Silva, F. V.; Fileti, A. M. F.
2010-01-01
This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity. PMID:21234106
Fuzzy rule based estimation of agricultural diffuse pollution concentration in streams.
Singh, Raj Mohan
2008-04-01
Outflow from the agricultural fields carries diffuse pollutants like nutrients, pesticides, herbicides etc. and transports the pollutants into the nearby streams. It is a matter of serious concern for water managers and environmental researchers. The application of chemicals in the agricultural fields, and transport of these chemicals into streams are uncertain that cause complexity in reliable stream quality predictions. The chemical characteristics of applied chemical, percentage of area under the chemical application etc. are some of the main inputs that cause pollution concentration as output in streams. Each of these inputs and outputs may contain measurement errors. Fuzzy rule based model based on fuzzy sets suits to address uncertainties in inputs by incorporating overlapping membership functions for each of inputs even for limited data availability situations. In this study, the property of fuzzy sets to address the uncertainty in input-output relationship is utilized to obtain the estimate of concentrations of a herbicide, atrazine, in a stream. The data of White river basin, a part of the Mississippi river system, is used for developing the fuzzy rule based models. The performance of the developed methodology is found encouraging.
High dimensional model representation method for fuzzy structural dynamics
NASA Astrophysics Data System (ADS)
Adhikari, S.; Chowdhury, R.; Friswell, M. I.
2011-03-01
Uncertainty propagation in multi-parameter complex structures possess significant computational challenges. This paper investigates the possibility of using the High Dimensional Model Representation (HDMR) approach when uncertain system parameters are modeled using fuzzy variables. In particular, the application of HDMR is proposed for fuzzy finite element analysis of linear dynamical systems. The HDMR expansion is an efficient formulation for high-dimensional mapping in complex systems if the higher order variable correlations are weak, thereby permitting the input-output relationship behavior to be captured by the terms of low-order. The computational effort to determine the expansion functions using the α-cut method scales polynomically with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is first illustrated for multi-parameter nonlinear mathematical test functions with fuzzy variables. The method is then integrated with a commercial finite element software (ADINA). Modal analysis of a simplified aircraft wing with fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations. It is shown that using the proposed HDMR approach, the number of finite element function calls can be reduced without significantly compromising the accuracy.
Two-stage fuzzy-stochastic robust programming: a hybrid model for regional air quality management.
Li, Yongping; Huang, Guo H; Veawab, Amornvadee; Nie, Xianghui; Liu, Lei
2006-08-01
In this study, a hybrid two-stage fuzzy-stochastic robust programming (TFSRP) model is developed and applied to the planning of an air-quality management system. As an extension of existing fuzzy-robust programming and two-stage stochastic programming methods, the TFSRP can explicitly address complexities and uncertainties of the study system without unrealistic simplifications. Uncertain parameters can be expressed as probability density and/or fuzzy membership functions, such that robustness of the optimization efforts can be enhanced. Moreover, economic penalties as corrective measures against any infeasibilities arising from the uncertainties are taken into account. This method can, thus, provide a linkage to predefined policies determined by authorities that have to be respected when a modeling effort is undertaken. In its solution algorithm, the fuzzy decision space can be delimited through specification of the uncertainties using dimensional enlargement of the original fuzzy constraints. The developed model is applied to a case study of regional air quality management. The results indicate that reasonable solutions have been obtained. The solutions can be used for further generating pollution-mitigation alternatives with minimized system costs and for providing a more solid support for sound environmental decisions.
Garg, Harish
2013-03-01
The main objective of the present paper is to propose a methodology for analyzing the behavior of the complex repairable industrial systems. In real-life situations, it is difficult to find the most optimal design policies for MTBF (mean time between failures), MTTR (mean time to repair) and related costs by utilizing available resources and uncertain data. For this, the availability-cost optimization model has been constructed for determining the optimal design parameters for improving the system design efficiency. The uncertainties in the data related to each component of the system are estimated with the help of fuzzy and statistical methodology in the form of the triangular fuzzy numbers. Using these data, the various reliability parameters, which affects the system performance, are obtained in the form of the fuzzy membership function by the proposed confidence interval based fuzzy Lambda-Tau (CIBFLT) methodology. The computed results by CIBFLT are compared with the existing fuzzy Lambda-Tau methodology. Sensitivity analysis on the system MTBF has also been addressed. The methodology has been illustrated through a case study of washing unit, the main part of the paper industry. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Change detection of bitemporal multispectral images based on FCM and D-S theory
NASA Astrophysics Data System (ADS)
Shi, Aiye; Gao, Guirong; Shen, Shaohong
2016-12-01
In this paper, we propose a change detection method of bitemporal multispectral images based on the D-S theory and fuzzy c-means (FCM) algorithm. Firstly, the uncertainty and certainty regions are determined by thresholding method applied to the magnitudes of difference image (MDI) and spectral angle information (SAI) of bitemporal images. Secondly, the FCM algorithm is applied to the MDI and SAI in the uncertainty region, respectively. Then, the basic probability assignment (BPA) functions of changed and unchanged classes are obtained by the fuzzy membership values from the FCM algorithm. In addition, the optimal value of fuzzy exponent of FCM is adaptively determined by conflict degree between the MDI and SAI in uncertainty region. Finally, the D-S theory is applied to obtain the new fuzzy partition matrix for uncertainty region and further the change map is obtained. Experiments on bitemporal Landsat TM images and bitemporal SPOT images validate that the proposed method is effective.
Li, Jun; Zhang, Hong; Han, Yinshan; Wang, Baodong
2016-01-01
Focusing on the diversity, complexity and uncertainty of the third-party damage accident, the failure probability of third-party damage to urban gas pipeline was evaluated on the theory of analytic hierarchy process and fuzzy mathematics. The fault tree of third-party damage containing 56 basic events was built by hazard identification of third-party damage. The fuzzy evaluation of basic event probabilities were conducted by the expert judgment method and using membership function of fuzzy set. The determination of the weight of each expert and the modification of the evaluation opinions were accomplished using the improved analytic hierarchy process, and the failure possibility of the third-party to urban gas pipeline was calculated. Taking gas pipelines of a certain large provincial capital city as an example, the risk assessment structure of the method was proved to conform to the actual situation, which provides the basis for the safety risk prevention. PMID:27875545
Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm
NASA Technical Reports Server (NTRS)
Mitra, Sunanda; Pemmaraju, Surya
1992-01-01
Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.
Fuzzy parametric uncertainty analysis of linear dynamical systems: A surrogate modeling approach
NASA Astrophysics Data System (ADS)
Chowdhury, R.; Adhikari, S.
2012-10-01
Uncertainty propagation engineering systems possess significant computational challenges. This paper explores the possibility of using correlated function expansion based metamodelling approach when uncertain system parameters are modeled using Fuzzy variables. In particular, the application of High-Dimensional Model Representation (HDMR) is proposed for fuzzy finite element analysis of dynamical systems. The HDMR expansion is a set of quantitative model assessment and analysis tools for capturing high-dimensional input-output system behavior based on a hierarchy of functions of increasing dimensions. The input variables may be either finite-dimensional (i.e., a vector of parameters chosen from the Euclidean space RM) or may be infinite-dimensional as in the function space CM[0,1]. The computational effort to determine the expansion functions using the alpha cut method scales polynomially with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is integrated with a commercial Finite Element software. Modal analysis of a simplified aircraft wing with Fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations.
Fuzzy support vector machine for microarray imbalanced data classification
NASA Astrophysics Data System (ADS)
Ladayya, Faroh; Purnami, Santi Wulan; Irhamah
2017-11-01
DNA microarrays are data containing gene expression with small sample sizes and high number of features. Furthermore, imbalanced classes is a common problem in microarray data. This occurs when a dataset is dominated by a class which have significantly more instances than the other minority classes. Therefore, it is needed a classification method that solve the problem of high dimensional and imbalanced data. Support Vector Machine (SVM) is one of the classification methods that is capable of handling large or small samples, nonlinear, high dimensional, over learning and local minimum issues. SVM has been widely applied to DNA microarray data classification and it has been shown that SVM provides the best performance among other machine learning methods. However, imbalanced data will be a problem because SVM treats all samples in the same importance thus the results is bias for minority class. To overcome the imbalanced data, Fuzzy SVM (FSVM) is proposed. This method apply a fuzzy membership to each input point and reformulate the SVM such that different input points provide different contributions to the classifier. The minority classes have large fuzzy membership so FSVM can pay more attention to the samples with larger fuzzy membership. Given DNA microarray data is a high dimensional data with a very large number of features, it is necessary to do feature selection first using Fast Correlation based Filter (FCBF). In this study will be analyzed by SVM, FSVM and both methods by applying FCBF and get the classification performance of them. Based on the overall results, FSVM on selected features has the best classification performance compared to SVM.
Zhang, Fan; Zhang, Xinhong
2011-01-01
Most of classification, quality evaluation or grading of the flue-cured tobacco leaves are manually operated, which relies on the judgmental experience of experts, and inevitably limited by personal, physical and environmental factors. The classification and the quality evaluation are therefore subjective and experientially based. In this paper, an automatic classification method of tobacco leaves based on the digital image processing and the fuzzy sets theory is presented. A grading system based on image processing techniques was developed for automatically inspecting and grading flue-cured tobacco leaves. This system uses machine vision for the extraction and analysis of color, size, shape and surface texture. Fuzzy comprehensive evaluation provides a high level of confidence in decision making based on the fuzzy logic. The neural network is used to estimate and forecast the membership function of the features of tobacco leaves in the fuzzy sets. The experimental results of the two-level fuzzy comprehensive evaluation (FCE) show that the accuracy rate of classification is about 94% for the trained tobacco leaves, and the accuracy rate of the non-trained tobacco leaves is about 72%. We believe that the fuzzy comprehensive evaluation is a viable way for the automatic classification and quality evaluation of the tobacco leaves. PMID:22163744
Navigating a Mobile Robot Across Terrain Using Fuzzy Logic
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Howard, Ayanna; Bon, Bruce
2003-01-01
A strategy for autonomous navigation of a robotic vehicle across hazardous terrain involves the use of a measure of traversability of terrain within a fuzzy-logic conceptual framework. This navigation strategy requires no a priori information about the environment. Fuzzy logic was selected as a basic element of this strategy because it provides a formal methodology for representing and implementing a human driver s heuristic knowledge and operational experience. Within a fuzzy-logic framework, the attributes of human reasoning and decision- making can be formulated by simple IF (antecedent), THEN (consequent) rules coupled with easily understandable and natural linguistic representations. The linguistic values in the rule antecedents convey the imprecision associated with measurements taken by sensors onboard a mobile robot, while the linguistic values in the rule consequents represent the vagueness inherent in the reasoning processes to generate the control actions. The operational strategies of the human expert driver can be transferred, via fuzzy logic, to a robot-navigation strategy in the form of a set of simple conditional statements composed of linguistic variables. These linguistic variables are defined by fuzzy sets in accordance with user-defined membership functions. The main advantages of a fuzzy navigation strategy lie in the ability to extract heuristic rules from human experience and to obviate the need for an analytical model of the robot navigation process.
Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia
NASA Astrophysics Data System (ADS)
Karimi, Sepideh; Kisi, Ozgur; Shiri, Jalal; Makarynskyy, Oleg
2013-03-01
Accurate predictions of sea level with different forecast horizons are important for coastal and ocean engineering applications, as well as in land drainage and reclamation studies. The methodology of tidal harmonic analysis, which is generally used for obtaining a mathematical description of the tides, is data demanding requiring processing of tidal observation collected over several years. In the present study, hourly sea levels for Darwin Harbor, Australia were predicted using two different, data driven techniques, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Multi linear regression (MLR) technique was used for selecting the optimal input combinations (lag times) of hourly sea level. The input combination comprises current sea level as well as five previous level values found to be optimal. For the ANFIS models, five different membership functions namely triangular, trapezoidal, generalized bell, Gaussian and two Gaussian membership function were tested and employed for predicting sea level for the next 1 h, 24 h, 48 h and 72 h. The used ANN models were trained using three different algorithms, namely, Levenberg-Marquardt, conjugate gradient and gradient descent. Predictions of optimal ANFIS and ANN models were compared with those of the optimal auto-regressive moving average (ARMA) models. The coefficient of determination, root mean square error and variance account statistics were used as comparison criteria. The obtained results indicated that triangular membership function was optimal for predictions with the ANFIS models while adaptive learning rate and Levenberg-Marquardt were most suitable for training the ANN models. Consequently, ANFIS and ANN models gave similar forecasts and performed better than the developed for the same purpose ARMA models for all the prediction intervals.
NASA Astrophysics Data System (ADS)
Pei, Lidan; Jin, Feifei; Ni, Zhiwei; Chen, Huayou; Tao, Zhifu
2017-10-01
As a new preference structure, the intuitionistic fuzzy linguistic preference relation (IFLPR) was recently introduced to efficiently deal with situations in which the membership and non-membership are represented as linguistic terms. In this paper, we study the issues of additive consistency and the derivation of the intuitionistic fuzzy weight vector of an IFLPR. First, the new concepts of order consistency, additive consistency and weak transitivity for IFLPRs are introduced, and followed by a discussion of the characterisation about additive consistent IFLPRs. Then, a parameterised transformation approach is investigated to convert the normalised intuitionistic fuzzy weight vector into additive consistent IFLPRs. After that, a linear optimisation model is established to derive the normalised intuitionistic fuzzy weights for IFLPRs, and a consistency index is defined to measure the deviation degree between an IFLPR and its additive consistent IFLPR. Furthermore, we develop an automatic iterative decision-making method to improve the IFLPRs with unacceptable additive consistency until the adjusted IFLPRs are acceptable additive consistent, and it helps the decision-maker to obtain the reasonable and reliable decision-making results. Finally, an illustrative example is provided to demonstrate the validity and applicability of the proposed method.
Interval Analysis Approach to Prototype the Robust Control of the Laboratory Overhead Crane
NASA Astrophysics Data System (ADS)
Smoczek, J.; Szpytko, J.; Hyla, P.
2014-07-01
The paper describes the software-hardware equipment and control-measurement solutions elaborated to prototype the laboratory scaled overhead crane control system. The novelty approach to crane dynamic system modelling and fuzzy robust control scheme design is presented. The iterative procedure for designing a fuzzy scheduling control scheme is developed based on the interval analysis of discrete-time closed-loop system characteristic polynomial coefficients in the presence of rope length and mass of a payload variation to select the minimum set of operating points corresponding to the midpoints of membership functions at which the linear controllers are determined through desired poles assignment. The experimental results obtained on the laboratory stand are presented.
Akintola, Olayiwola Akin; Sangodoyin, Abimbola Yisau; Agunbiade, Foluso Oyedotun
2018-05-24
We present a modelling concept for evaluating the impacts of anthropogenic activities suspected to be from gas flaring on the quality of the atmosphere using domestic roof-harvested rainwater (DRHRW) as indicator. We analysed seven metals (Cu, Cd, Pb, Zn, Fe, Ca, and Mg) and six water quality parameters (acidity, PO 4 3- , SO 4 2- , NO 3 - , Cl - , and pH). These were used as input parameters in 12 sampling points from gas-flaring environments (Port Harcourt, Nigeria) using Ibadan as reference. We formulated the results of these input parameters into membership function fuzzy matrices based on four degrees of impact: extremely high, high, medium, and low, using regulatory limits as criteria. We generated indices that classified the degree of anthropogenic activity impact on the sites from the product membership function matrices and weight matrices, with investigated (gas-flaring) environment as between medium and high impact compared to those from reference (residential) environment that was classified as between low and medium impact. Major contaminants of concern found in the harvested rainwater were Pb and Cd. There is also the urgent need to stop gas-flaring activities in Port Harcourt area in particular and Niger Delta region of Nigeria in general, so as to minimise the untold health hazard that people living in the area are currently faced with. The fuzzy methodology presented has also indicated that the water cannot safely support potable uses and should not be consumed without purification due to the impact of anthropogenic activities in the area but may be useful for other domestic purposes.
Receptive field optimisation and supervision of a fuzzy spiking neural network.
Glackin, Cornelius; Maguire, Liam; McDaid, Liam; Sayers, Heather
2011-04-01
This paper presents a supervised training algorithm that implements fuzzy reasoning on a spiking neural network. Neuron selectivity is facilitated using receptive fields that enable individual neurons to be responsive to certain spike train firing rates and behave in a similar manner as fuzzy membership functions. The connectivity of the hidden and output layers in the fuzzy spiking neural network (FSNN) is representative of a fuzzy rule base. Fuzzy C-Means clustering is utilised to produce clusters that represent the antecedent part of the fuzzy rule base that aid classification of the feature data. Suitable cluster widths are determined using two strategies; subjective thresholding and evolutionary thresholding respectively. The former technique typically results in compact solutions in terms of the number of neurons, and is shown to be particularly suited to small data sets. In the latter technique a pool of cluster candidates is generated using Fuzzy C-Means clustering and then a genetic algorithm is employed to select the most suitable clusters and to specify cluster widths. In both scenarios, the network is supervised but learning only occurs locally as in the biological case. The advantages and disadvantages of the network topology for the Fisher Iris and Wisconsin Breast Cancer benchmark classification tasks are demonstrated and directions of current and future work are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
An optimal general type-2 fuzzy controller for Urban Traffic Network.
Khooban, Mohammad Hassan; Vafamand, Navid; Liaghat, Alireza; Dragicevic, Tomislav
2017-01-01
Urban traffic network model is illustrated by state-charts and object-diagram. However, they have limitations to show the behavioral perspective of the Traffic Information flow. Consequently, a state space model is used to calculate the half-value waiting time of vehicles. In this study, a combination of the general type-2 fuzzy logic sets and the Modified Backtracking Search Algorithm (MBSA) techniques are used in order to control the traffic signal scheduling and phase succession so as to guarantee a smooth flow of traffic with the least wait times and average queue length. The parameters of input and output membership functions are optimized simultaneously by the novel heuristic algorithm MBSA. A comparison is made between the achieved results with those of optimal and conventional type-1 fuzzy logic controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Fuzzy support vector machines for adaptive Morse code recognition.
Yang, Cheng-Hong; Jin, Li-Cheng; Chuang, Li-Yeh
2006-11-01
Morse code is now being harnessed for use in rehabilitation applications of augmentative-alternative communication and assistive technology, facilitating mobility, environmental control and adapted worksite access. In this paper, Morse code is selected as a communication adaptive device for persons who suffer from muscle atrophy, cerebral palsy or other severe handicaps. A stable typing rate is strictly required for Morse code to be effective as a communication tool. Therefore, an adaptive automatic recognition method with a high recognition rate is needed. The proposed system uses both fuzzy support vector machines and the variable-degree variable-step-size least-mean-square algorithm to achieve these objectives. We apply fuzzy memberships to each point, and provide different contributions to the decision learning function for support vector machines. Statistical analyses demonstrated that the proposed method elicited a higher recognition rate than other algorithms in the literature.
Genetic algorithms in adaptive fuzzy control
NASA Technical Reports Server (NTRS)
Karr, C. Lucas; Harper, Tony R.
1992-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.
Classification of Stellar Spectra with Fuzzy Minimum Within-Class Support Vector Machine
NASA Astrophysics Data System (ADS)
Zhong-bao, Liu; Wen-ai, Song; Jing, Zhang; Wen-juan, Zhao
2017-06-01
Classification is one of the important tasks in astronomy, especially in spectra analysis. Support Vector Machine (SVM) is a typical classification method, which is widely used in spectra classification. Although it performs well in practice, its classification accuracies can not be greatly improved because of two limitations. One is it does not take the distribution of the classes into consideration. The other is it is sensitive to noise. In order to solve the above problems, inspired by the maximization of the Fisher's Discriminant Analysis (FDA) and the SVM separability constraints, fuzzy minimum within-class support vector machine (FMWSVM) is proposed in this paper. In FMWSVM, the distribution of the classes is reflected by the within-class scatter in FDA and the fuzzy membership function is introduced to decrease the influence of the noise. The comparative experiments with SVM on the SDSS datasets verify the effectiveness of the proposed classifier FMWSVM.
Fuzzy approaches to supplier selection problem
NASA Astrophysics Data System (ADS)
Ozkok, Beyza Ahlatcioglu; Kocken, Hale Gonce
2013-09-01
Supplier selection problem is a multi-criteria decision making problem which includes both qualitative and quantitative factors. In the selection process many criteria may conflict with each other, therefore decision-making process becomes complicated. In this study, we handled the supplier selection problem under uncertainty. In this context; we used minimum criterion, arithmetic mean criterion, regret criterion, optimistic criterion, geometric mean and harmonic mean. The membership functions created with the help of the characteristics of used criteria, and we tried to provide consistent supplier selection decisions by using these memberships for evaluating alternative suppliers. During the analysis, no need to use expert opinion is a strong aspect of the methodology used in the decision-making.
A method for determining customer requirement weights based on TFMF and TLR
NASA Astrophysics Data System (ADS)
Ai, Qingsong; Shu, Ting; Liu, Quan; Zhou, Zude; Xiao, Zheng
2013-11-01
'Customer requirements' (CRs) management plays an important role in enterprise systems (ESs) by processing customer-focused information. Quality function deployment (QFD) is one of the main CRs analysis methods. Because CR weights are crucial for the input of QFD, we developed a method for determining CR weights based on trapezoidal fuzzy membership function (TFMF) and 2-tuple linguistic representation (TLR). To improve the accuracy of CR weights, we propose to apply TFMF to describe CR weights so that they can be appropriately represented. Because the fuzzy logic is not capable of aggregating information without loss, TLR model is adopted as well. We first describe the basic concepts of TFMF and TLR and then introduce an approach to compute CR weights. Finally, an example is provided to explain and verify the proposed method.
NASA Astrophysics Data System (ADS)
Malekmohammadi, Bahram; Ramezani Mehrian, Majid; Jafari, Hamid Reza
2012-11-01
One of the most important water-resources management strategies for arid lands is managed aquifer recharge (MAR). In establishing a MAR scheme, site selection is the prime prerequisite that can be assisted by geographic information system (GIS) tools. One of the most important uncertainties in the site-selection process using GIS is finite ranges or intervals resulting from data classification. In order to reduce these uncertainties, a novel method has been developed involving the integration of multi-criteria decision making (MCDM), GIS, and a fuzzy inference system (FIS). The Shemil-Ashkara plain in the Hormozgan Province of Iran was selected as the case study; slope, geology, groundwater depth, potential for runoff, land use, and groundwater electrical conductivity have been considered as site-selection factors. By defining fuzzy membership functions for the input layers and the output layer, and by constructing fuzzy rules, a FIS has been developed. Comparison of the results produced by the proposed method and the traditional simple additive weighted (SAW) method shows that the proposed method yields more precise results. In conclusion, fuzzy-set theory can be an effective method to overcome associated uncertainties in classification of geographic information data.
Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests
NASA Technical Reports Server (NTRS)
Douglas, Freddie; Bourgeois, Edit Kaminsky
2005-01-01
The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).
A fuzzy automated object classification by infrared laser camera
NASA Astrophysics Data System (ADS)
Kanazawa, Seigo; Taniguchi, Kazuhiko; Asari, Kazunari; Kuramoto, Kei; Kobashi, Syoji; Hata, Yutaka
2011-06-01
Home security in night is very important, and the system that watches a person's movements is useful in the security. This paper describes a classification system of adult, child and the other object from distance distribution measured by an infrared laser camera. This camera radiates near infrared waves and receives reflected ones. Then, it converts the time of flight into distance distribution. Our method consists of 4 steps. First, we do background subtraction and noise rejection in the distance distribution. Second, we do fuzzy clustering in the distance distribution, and form several clusters. Third, we extract features such as the height, thickness, aspect ratio, area ratio of the cluster. Then, we make fuzzy if-then rules from knowledge of adult, child and the other object so as to classify the cluster to one of adult, child and the other object. Here, we made the fuzzy membership function with respect to each features. Finally, we classify the clusters to one with the highest fuzzy degree among adult, child and the other object. In our experiment, we set up the camera in room and tested three cases. The method successfully classified them in real time processing.
Fuzzy multiobjective models for optimal operation of a hydropower system
NASA Astrophysics Data System (ADS)
Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.
2013-06-01
Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.
A Different Web-Based Geocoding Service Using Fuzzy Techniques
NASA Astrophysics Data System (ADS)
Pahlavani, P.; Abbaspour, R. A.; Zare Zadiny, A.
2015-12-01
Geocoding - the process of finding position based on descriptive data such as address or postal code - is considered as one of the most commonly used spatial analyses. Many online map providers such as Google Maps, Bing Maps and Yahoo Maps present geocoding as one of their basic capabilities. Despite the diversity of geocoding services, users usually face some limitations when they use available online geocoding services. In existing geocoding services, proximity and nearness concept is not modelled appropriately as well as these services search address only by address matching based on descriptive data. In addition there are also some limitations in display searching results. Resolving these limitations can enhance efficiency of the existing geocoding services. This paper proposes the idea of integrating fuzzy technique with geocoding process to resolve these limitations. In order to implement the proposed method, a web-based system is designed. In proposed method, nearness to places is defined by fuzzy membership functions and multiple fuzzy distance maps are created. Then these fuzzy distance maps are integrated using fuzzy overlay technique for obtain the results. Proposed methods provides different capabilities for users such as ability to search multi-part addresses, searching places based on their location, non-point representation of results as well as displaying search results based on their priority.
Regional Management of an Aquifer for Mining Under Fuzzy Environmental Objectives
NASA Astrophysics Data System (ADS)
BogáRdi, IstváN.; BáRdossy, AndráS.; Duckstein, Lucien
1983-12-01
A methodology is developed for the dynamic multiobjective management of a multipurpose regional aquifer. In a case study of bauxite mining in Western Hungary, ore deposits are often under the piezometric level of a karstic aquifer, while this same aquifer also provides recharge flows for thermal springs. N + 1 objectives are to be minimized, the first one being total discounted cost of control by dewatering or grouting; the other N objectives consist of the flow of thermal springs at N control points. However, there is no agreement among experts as to a set of numerical values that would constitute a "sound environment"; for this reason a fuzzy set analysis is used, and the N environmental objectives are combined into a single fuzzy membership function. The constraints include ore availability, various capacities, and the state transition function that describes the behavior of both piezometric head and underground flow. The model is linearized and solved as a biobjective dynamic program by using multiobjective compromise programming. A numerical example with N = 2 appears to lead to realistic control policies. Extension of the model to the nonlinear case is discussed.
Moshtagh-Khorasani, Majid; Akbarzadeh-T, Mohammad-R; Jahangiri, Nader; Khoobdel, Mehdi
2009-01-01
BACKGROUND: Aphasia diagnosis is particularly challenging due to the linguistic uncertainty and vagueness, inconsistencies in the definition of aphasic syndromes, large number of measurements with imprecision, natural diversity and subjectivity in test objects as well as in opinions of experts who diagnose the disease. METHODS: Fuzzy probability is proposed here as the basic framework for handling the uncertainties in medical diagnosis and particularly aphasia diagnosis. To efficiently construct this fuzzy probabilistic mapping, statistical analysis is performed that constructs input membership functions as well as determines an effective set of input features. RESULTS: Considering the high sensitivity of performance measures to different distribution of testing/training sets, a statistical t-test of significance is applied to compare fuzzy approach results with NN results as well as author's earlier work using fuzzy logic. The proposed fuzzy probability estimator approach clearly provides better diagnosis for both classes of data sets. Specifically, for the first and second type of fuzzy probability classifiers, i.e. spontaneous speech and comprehensive model, P-values are 2.24E-08 and 0.0059, respectively, strongly rejecting the null hypothesis. CONCLUSIONS: The technique is applied and compared on both comprehensive and spontaneous speech test data for diagnosis of four Aphasia types: Anomic, Broca, Global and Wernicke. Statistical analysis confirms that the proposed approach can significantly improve accuracy using fewer Aphasia features. PMID:21772867
Peng, Chen; Ma, Shaodong; Xie, Xiangpeng
2017-02-07
This paper addresses the problem of an event-triggered non-parallel distribution compensation (PDC) control for networked Takagi-Sugeno (T-S) fuzzy systems, under consideration of the limited data transmission bandwidth and the imperfect premise matching membership functions. First, a unified event-triggered T-S fuzzy model is provided, in which: 1) a fuzzy observer with the imperfect premise matching is constructed to estimate the unmeasurable states of the studied system; 2) a fuzzy controller is designed following the same premise as the observer; and 3) an output-based event-triggering transmission scheme is designed to economize the restricted network resources. Different from the traditional PDC method, the synchronous premise between the fuzzy observer and the T-S fuzzy system are no longer needed in this paper. Second, by use of Lyapunov theory, a stability criterion and a stabilization condition are obtained for ensuring asymptotically stable of the studied system. On account of the imperfect premise matching conditions are well considered in the derivation of the above criteria, less conservation can be expected to enhance the design flexibility. Compared with some existing emulation-based methods, the controller gains are no longer required to be known a priori. Finally, the availability of proposed non-PDC design scheme is illustrated by the backing-up control of a truck-trailer system.
Zhou, Ronggang; Chan, Alan H S
2017-01-01
In order to compare existing usability data to ideal goals or to that for other products, usability practitioners have tried to develop a framework for deriving an integrated metric. However, most current usability methods with this aim rely heavily on human judgment about the various attributes of a product, but often fail to take into account of the inherent uncertainties in these judgments in the evaluation process. This paper presents a universal method of usability evaluation by combining the analytic hierarchical process (AHP) and the fuzzy evaluation method. By integrating multiple sources of uncertain information during product usability evaluation, the method proposed here aims to derive an index that is structured hierarchically in terms of the three usability components of effectiveness, efficiency, and user satisfaction of a product. With consideration of the theoretical basis of fuzzy evaluation, a two-layer comprehensive evaluation index was first constructed. After the membership functions were determined by an expert panel, the evaluation appraisals were computed by using the fuzzy comprehensive evaluation technique model to characterize fuzzy human judgments. Then with the use of AHP, the weights of usability components were elicited from these experts. Compared to traditional usability evaluation methods, the major strength of the fuzzy method is that it captures the fuzziness and uncertainties in human judgments and provides an integrated framework that combines the vague judgments from multiple stages of a product evaluation process.
NASA Astrophysics Data System (ADS)
Altin, Necmi
2018-05-01
An interval type-2 fuzzy logic controller-based maximum power point tracking algorithm and direct current-direct current (DC-DC) converter topology are proposed for photovoltaic (PV) systems. The proposed maximum power point tracking algorithm is designed based on an interval type-2 fuzzy logic controller that has an ability to handle uncertainties. The change in PV power and the change in PV voltage are determined as inputs of the proposed controller, while the change in duty cycle is determined as the output of the controller. Seven interval type-2 fuzzy sets are determined and used as membership functions for input and output variables. The quadratic boost converter provides high voltage step-up ability without any reduction in performance and stability of the system. The performance of the proposed system is validated through MATLAB/Simulink simulations. It is seen that the proposed system provides high maximum power point tracking speed and accuracy even for fast changing atmospheric conditions and high voltage step-up requirements.
NASA Astrophysics Data System (ADS)
Sedelnikov, A. V.
2018-05-01
Assessment of parameters of rotary motion of the small spacecraft around its center of mass and of microaccelerations using measurements of current from silicon photocells is carried out. At the same time there is a problem of interpretation of ambiguous telemetric data. Current from two opposite sides of the small spacecraft is significant. The mean of removal of such uncertainty is considered. It is based on an fuzzy set. As membership function it is offered to use a normality condition of the direction cosines. The example of uncertainty removal for a prototype of the Aist small spacecraft is given. The offered approach can significantly increase the accuracy of microaccelerations estimate when using measurements of current from silicon photocells.
Binarization of Gray-Scaled Digital Images Via Fuzzy Reasoning
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A.; Klinko, Steve; Voska, Ned (Technical Monitor)
2002-01-01
A new fast-computational technique based on fuzzy entropy measure has been developed to find an optimal binary image threshold. In this method, the image pixel membership functions are dependent on the threshold value and reflect the distribution of pixel values in two classes; thus, this technique minimizes the classification error. This new method is compared with two of the best-known threshold selection techniques, Otsu and Huang-Wang. The performance of the proposed method supersedes the performance of Huang- Wang and Otsu methods when the image consists of textured background and poor printing quality. The three methods perform well but yield different binarization approaches if the background and foreground of the image have well-separated gray-level ranges.
Binarization of Gray-Scaled Digital Images Via Fuzzy Reasoning
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A.; Klinko, Steve; Voska, Ned (Technical Monitor)
2002-01-01
A new fast-computational technique based on fuzzy entropy measure has been developed to find an optimal binary image threshold. In this method, the image pixel membership functions are dependent on the threshold value and reflect the distribution of pixel values in two classes; thus, this technique minimizes the classification error. This new method is compared with two of the best-known threshold selection techniques, Otsu and Huang-Wang. The performance of the proposed method supersedes the performance of Huang-Wang and Otsu methods when the image consists of textured background and poor printing quality. The three methods perform well but yield different binarization approaches if the background and foreground of the image have well-separated gray-level ranges.
An object recognition method based on fuzzy theory and BP networks
NASA Astrophysics Data System (ADS)
Wu, Chuan; Zhu, Ming; Yang, Dong
2006-01-01
It is difficult to choose eigenvectors when neural network recognizes object. It is possible that the different object eigenvectors is similar or the same object eigenvectors is different under scaling, shifting, rotation if eigenvectors can not be chosen appropriately. In order to solve this problem, the image is edged, the membership function is reconstructed and a new threshold segmentation method based on fuzzy theory is proposed to get the binary image. Moment invariant of binary image is extracted and normalized. Some time moment invariant is too small to calculate effectively so logarithm of moment invariant is taken as input eigenvectors of BP network. The experimental results demonstrate that the proposed approach could recognize the object effectively, correctly and quickly.
Using a Fuzzy Light Sensor to Improve the Efficiency of Solar Panels
NASA Astrophysics Data System (ADS)
Suryono; Suseno, Jatmiko Endro; Sulistiati, Ainie Khuriati Riza; Prahara, Tahan
2018-02-01
Solar panel efficiency can be increased by improving the quality of photovoltaic material, the effectiveness of electronic circuit, and the light source tracking model. This research is aimed at improving the quality of solar panels by tracking light source using a fuzzy logic sensor. A fuzzy light sensor property is obtained from two LDR (light dependent resistor) light sensors installed in parallel to each other and is given a light separator in between them. Both sensors are mounted on a solar panel. Sensor output is acquired using a 12 bit ADC from an ATSAM3XE microcontroller and is then sent to a computer using WIFI radio. A PID (Proportional-Integral-Derivative) control algorithm is used to manage the position of the solar panel in line with the input given by the fuzzy light sensor. This control mechanism works based on the margin of fuzzy membership from both sensors that is used to move a motor DC that in turn moves the solar panel. Experimental results show a characteristically symmetrical fuzzy membership of both sensors with a reflected correlation of R=0.9981 after gains from both sensors are arranged with a program. Upon being tested in the field, this system was capable of improving the performance of solar panels in gaining power compared to their original fixed position. The discrepancy was evident when the angle of incoming sunlight approached both 0° and 180°. Further calculations of data acquired by the fuzzy light sensor show increased solar panel power efficiency by up to 5.6%.
Forest fire autonomous decision system based on fuzzy logic
NASA Astrophysics Data System (ADS)
Lei, Z.; Lu, Jianhua
2010-11-01
The proposed system integrates GPS / pseudolite / IMU and thermal camera in order to autonomously process the graphs by identification, extraction, tracking of forest fire or hot spots. The airborne detection platform, the graph-based algorithms and the signal processing frame are analyzed detailed; especially the rules of the decision function are expressed in terms of fuzzy logic, which is an appropriate method to express imprecise knowledge. The membership function and weights of the rules are fixed through a supervised learning process. The perception system in this paper is based on a network of sensorial stations and central stations. The sensorial stations collect data including infrared and visual images and meteorological information. The central stations exchange data to perform distributed analysis. The experiment results show that working procedure of detection system is reasonable and can accurately output the detection alarm and the computation of infrared oscillations.
An Analytical Framework for Soft and Hard Data Fusion: A Dempster-Shafer Belief Theoretic Approach
2012-08-01
fusion. Therefore, we provide a detailed discussion on uncertain data types, their origins and three uncertainty pro- cessing formalisms that are popular...suitable membership functions corresponding to the fuzzy sets. 3.2.3 DS Theory The DS belief theory, originally proposed by Dempster, can be thought of as... originated and various imperfections of the source. Uncertainty handling formalisms provide techniques for modeling and working with these uncertain data types
Samec, Pavel; Caha, Jan; Zapletal, Miloš; Tuček, Pavel; Cudlín, Pavel; Kučera, Miloš
2017-12-01
Forest decline is either caused by damage or else by vulnerability due to unfavourable growth conditions or due to unnatural silvicultural systems. Here, we assess forest decline in the Czech Republic (Central Europe) using fuzzy functions, fuzzy sets and fuzzy rating of ecosystem properties over a 1×1km grid. The model was divided into fuzzy functions of the abiotic predictors of growth conditions (F pred including temperature, precipitation, acid deposition, soil data and relative site insolation) and forest biomass receptors (F rec including remote sensing data, density and volume of aboveground biomass, and surface humus chemical data). Fuzzy functions were designed at the limits of unfavourable, undetermined or favourable effects on the forest ecosystem health status. Fuzzy sets were distinguished through similarity in a particular membership of the properties at the limits of the forest status margins. Fuzzy rating was obtained from the least difference of F pred -F rec . Unfavourable F pred within unfavourable F rec indicated chronic damage, favourable F pred within unfavourable F rec indicated acute damage, and unfavourable F pred within favourable F rec indicated vulnerability. The model in the 1×1km grid was validated through spatial intersection with a point field of uniform forest stands. Favourable status was characterised by soil base saturation (BS)>50%, BCC/Al>1, C org >1%, MgO>6g/kg, and nitrogen deposition<1200mol(H + )/ha·year. Vulnerable forests had BS humus 46-60%, BCC/Al 9-20 and NDVI≈0.42. Chronic forest damage occurs in areas with low temperatures, high nitrogen deposition, and low soil BS and C org levels. In the Czech Republic, 10% of forests were considered non-damaged and 77% vulnerable, with damage considered acute in 7% of forests and chronic in 5%. The fuzzy model used suggests that improvement in forest health will depend on decreasing environmental load and restoration concordance between growth conditions and tree species composition. Copyright © 2017 Elsevier B.V. All rights reserved.
Gear Damage Detection Using Oil Debris Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2001-01-01
The purpose of this paper was to verify, when using an oil debris sensor, that accumulated mass predicts gear pitting damage and to identify a method to set threshold limits for damaged gears. Oil debris data was collected from 8 experiments with no damage and 8 with pitting damage in the NASA Glenn Spur Gear Fatigue Rig. Oil debris feature analysis was performed on this data. Video images of damage progression were also collected from 6 of the experiments with pitting damage. During each test, data from an oil debris sensor was monitored and recorded for the occurrence of pitting damage. The data measured from the oil debris sensor during experiments with damage and with no damage was used to identify membership functions to build a simple fuzzy logic model. Using fuzzy logic techniques and the oil debris data, threshold limits were defined that discriminate between stages of pitting wear. Results indicate accumulated mass combined with fuzzy logic analysis techniques is a good predictor of pitting damage on spur gears.
Komal
2018-05-01
Nowadays power consumption is increasing day-by-day. To fulfill failure free power requirement, planning and implementation of an effective and reliable power management system is essential. Phasor measurement unit(PMU) is one of the key device in wide area measurement and control systems. The reliable performance of PMU assures failure free power supply for any power system. So, the purpose of the present study is to analyse the reliability of a PMU used for controllability and observability of power systems utilizing available uncertain data. In this paper, a generalized fuzzy lambda-tau (GFLT) technique has been proposed for this purpose. In GFLT, system components' uncertain failure and repair rates are fuzzified using fuzzy numbers having different shapes such as triangular, normal, cauchy, sharp gamma and trapezoidal. To select a suitable fuzzy number for quantifying data uncertainty, system experts' opinion have been considered. The GFLT technique applies fault tree, lambda-tau method, fuzzified data using different membership functions, alpha-cut based fuzzy arithmetic operations to compute some important reliability indices. Furthermore, in this study ranking of critical components of the system using RAM-Index and sensitivity analysis have also been performed. The developed technique may be helpful to improve system performance significantly and can be applied to analyse fuzzy reliability of other engineering systems. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Zhou, Ronggang; Chan, Alan H. S.
2016-01-01
BACKGROUND: In order to compare existing usability data to ideal goals or to that for other products, usability practitioners have tried to develop a framework for deriving an integrated metric. However, most current usability methods with this aim rely heavily on human judgment about the various attributes of a product, but often fail to take into account of the inherent uncertainties in these judgments in the evaluation process. OBJECTIVE: This paper presents a universal method of usability evaluation by combining the analytic hierarchical process (AHP) and the fuzzy evaluation method. By integrating multiple sources of uncertain information during product usability evaluation, the method proposed here aims to derive an index that is structured hierarchically in terms of the three usability components of effectiveness, efficiency, and user satisfaction of a product. METHODS: With consideration of the theoretical basis of fuzzy evaluation, a two-layer comprehensive evaluation index was first constructed. After the membership functions were determined by an expert panel, the evaluation appraisals were computed by using the fuzzy comprehensive evaluation technique model to characterize fuzzy human judgments. Then with the use of AHP, the weights of usability components were elicited from these experts. RESULTS AND CONCLUSIONS: Compared to traditional usability evaluation methods, the major strength of the fuzzy method is that it captures the fuzziness and uncertainties in human judgments and provides an integrated framework that combines the vague judgments from multiple stages of a product evaluation process. PMID:28035943
Real-time qualitative reasoning for telerobotic systems
NASA Technical Reports Server (NTRS)
Pin, Eancois G.
1993-01-01
This paper discusses the sensor-based telerobotic driving of a car in a-priori unknown environments using 'human-like' reasoning schemes implemented on custom-designed VLSI fuzzy inferencing boards. These boards use the Fuzzy Set theoretic framework to allow very vast (30 kHz) processing of full sets of information that are expressed in qualitative form using membership functions. The sensor-based and fuzzy inferencing system was incorporated on an outdoor test-bed platform to investigate two control modes for driving a car on the basis of very sparse and imprecise range data. In the first mode, the car navigates fully autonomously to a goal specified by the operator, while in the second mode, the system acts as a telerobotic driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right, speed up, slow down, stop, or back up depending on the obstacles perceived by the sensors. Indoor and outdoor experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Sample results are presented that illustrate the feasibility of developing autonomous navigation modules and robust, safety-enhancing driver's aids for telerobotic systems using the new fuzzy inferencing VLSI hardware and 'human-like' reasoning schemes.
A hierarchical fuzzy rule-based approach to aphasia diagnosis.
Akbarzadeh-T, Mohammad-R; Moshtagh-Khorasani, Majid
2007-10-01
Aphasia diagnosis is a particularly challenging medical diagnostic task due to the linguistic uncertainty and vagueness, inconsistencies in the definition of aphasic syndromes, large number of measurements with imprecision, natural diversity and subjectivity in test objects as well as in opinions of experts who diagnose the disease. To efficiently address this diagnostic process, a hierarchical fuzzy rule-based structure is proposed here that considers the effect of different features of aphasia by statistical analysis in its construction. This approach can be efficient for diagnosis of aphasia and possibly other medical diagnostic applications due to its fuzzy and hierarchical reasoning construction. Initially, the symptoms of the disease which each consists of different features are analyzed statistically. The measured statistical parameters from the training set are then used to define membership functions and the fuzzy rules. The resulting two-layered fuzzy rule-based system is then compared with a back propagating feed-forward neural network for diagnosis of four Aphasia types: Anomic, Broca, Global and Wernicke. In order to reduce the number of required inputs, the technique is applied and compared on both comprehensive and spontaneous speech tests. Statistical t-test analysis confirms that the proposed approach uses fewer Aphasia features while also presenting a significant improvement in terms of accuracy.
Hybrid fuzzy cluster ensemble framework for tumor clustering from biomolecular data.
Yu, Zhiwen; Chen, Hantao; You, Jane; Han, Guoqiang; Li, Le
2013-01-01
Cancer class discovery using biomolecular data is one of the most important tasks for cancer diagnosis and treatment. Tumor clustering from gene expression data provides a new way to perform cancer class discovery. Most of the existing research works adopt single-clustering algorithms to perform tumor clustering is from biomolecular data that lack robustness, stability, and accuracy. To further improve the performance of tumor clustering from biomolecular data, we introduce the fuzzy theory into the cluster ensemble framework for tumor clustering from biomolecular data, and propose four kinds of hybrid fuzzy cluster ensemble frameworks (HFCEF), named as HFCEF-I, HFCEF-II, HFCEF-III, and HFCEF-IV, respectively, to identify samples that belong to different types of cancers. The difference between HFCEF-I and HFCEF-II is that they adopt different ensemble generator approaches to generate a set of fuzzy matrices in the ensemble. Specifically, HFCEF-I applies the affinity propagation algorithm (AP) to perform clustering on the sample dimension and generates a set of fuzzy matrices in the ensemble based on the fuzzy membership function and base samples selected by AP. HFCEF-II adopts AP to perform clustering on the attribute dimension, generates a set of subspaces, and obtains a set of fuzzy matrices in the ensemble by performing fuzzy c-means on subspaces. Compared with HFCEF-I and HFCEF-II, HFCEF-III and HFCEF-IV consider the characteristics of HFCEF-I and HFCEF-II. HFCEF-III combines HFCEF-I and HFCEF-II in a serial way, while HFCEF-IV integrates HFCEF-I and HFCEF-II in a concurrent way. HFCEFs adopt suitable consensus functions, such as the fuzzy c-means algorithm or the normalized cut algorithm (Ncut), to summarize generated fuzzy matrices, and obtain the final results. The experiments on real data sets from UCI machine learning repository and cancer gene expression profiles illustrate that 1) the proposed hybrid fuzzy cluster ensemble frameworks work well on real data sets, especially biomolecular data, and 2) the proposed approaches are able to provide more robust, stable, and accurate results when compared with the state-of-the-art single clustering algorithms and traditional cluster ensemble approaches.
NASA Astrophysics Data System (ADS)
Zhang, Xiaodong; Huang, Guo H.
2011-12-01
Groundwater pollution has gathered more and more attention in the past decades. Conducting an assessment of groundwater contamination risk is desired to provide sound bases for supporting risk-based management decisions. Therefore, the objective of this study is to develop an integrated fuzzy stochastic approach to evaluate risks of BTEX-contaminated groundwater under multiple uncertainties. It consists of an integrated interval fuzzy subsurface modeling system (IIFMS) and an integrated fuzzy second-order stochastic risk assessment (IFSOSRA) model. The IIFMS is developed based on factorial design, interval analysis, and fuzzy sets approach to predict contaminant concentrations under hybrid uncertainties. Two input parameters (longitudinal dispersivity and porosity) are considered to be uncertain with known fuzzy membership functions, and intrinsic permeability is considered to be an interval number with unknown distribution information. A factorial design is conducted to evaluate interactive effects of the three uncertain factors on the modeling outputs through the developed IIFMS. The IFSOSRA model can systematically quantify variability and uncertainty, as well as their hybrids, presented as fuzzy, stochastic and second-order stochastic parameters in health risk assessment. The developed approach haw been applied to the management of a real-world petroleum-contaminated site within a western Canada context. The results indicate that multiple uncertainties, under a combination of information with various data-quality levels, can be effectively addressed to provide supports in identifying proper remedial efforts. A unique contribution of this research is the development of an integrated fuzzy stochastic approach for handling various forms of uncertainties associated with simulation and risk assessment efforts.
Cooperative fuzzy games approach to setting target levels of ECs in quality function deployment.
Yang, Zhihui; Chen, Yizeng; Yin, Yunqiang
2014-01-01
Quality function deployment (QFD) can provide a means of translating customer requirements (CRs) into engineering characteristics (ECs) for each stage of product development and production. The main objective of QFD-based product planning is to determine the target levels of ECs for a new product or service. QFD is a breakthrough tool which can effectively reduce the gap between CRs and a new product/service. Even though there are conflicts among some ECs, the objective of developing new product is to maximize the overall customer satisfaction. Therefore, there may be room for cooperation among ECs. A cooperative game framework combined with fuzzy set theory is developed to determine the target levels of the ECs in QFD. The key to develop the model is the formulation of the bargaining function. In the proposed methodology, the players are viewed as the membership functions of ECs to formulate the bargaining function. The solution for the proposed model is Pareto-optimal. An illustrated example is cited to demonstrate the application and performance of the proposed approach.
Cooperative Fuzzy Games Approach to Setting Target Levels of ECs in Quality Function Deployment
Yang, Zhihui; Chen, Yizeng; Yin, Yunqiang
2014-01-01
Quality function deployment (QFD) can provide a means of translating customer requirements (CRs) into engineering characteristics (ECs) for each stage of product development and production. The main objective of QFD-based product planning is to determine the target levels of ECs for a new product or service. QFD is a breakthrough tool which can effectively reduce the gap between CRs and a new product/service. Even though there are conflicts among some ECs, the objective of developing new product is to maximize the overall customer satisfaction. Therefore, there may be room for cooperation among ECs. A cooperative game framework combined with fuzzy set theory is developed to determine the target levels of the ECs in QFD. The key to develop the model is the formulation of the bargaining function. In the proposed methodology, the players are viewed as the membership functions of ECs to formulate the bargaining function. The solution for the proposed model is Pareto-optimal. An illustrated example is cited to demonstrate the application and performance of the proposed approach. PMID:25097884
Vadiati, M; Asghari-Moghaddam, A; Nakhaei, M; Adamowski, J; Akbarzadeh, A H
2016-12-15
Due to inherent uncertainties in measurement and analysis, groundwater quality assessment is a difficult task. Artificial intelligence techniques, specifically fuzzy inference systems, have proven useful in evaluating groundwater quality in uncertain and complex hydrogeological systems. In the present study, a Mamdani fuzzy-logic-based decision-making approach was developed to assess groundwater quality based on relevant indices. In an effort to develop a set of new hybrid fuzzy indices for groundwater quality assessment, a Mamdani fuzzy inference model was developed with widely-accepted groundwater quality indices: the Groundwater Quality Index (GQI), the Water Quality Index (WQI), and the Ground Water Quality Index (GWQI). In an effort to present generalized hybrid fuzzy indices a significant effort was made to employ well-known groundwater quality index acceptability ranges as fuzzy model output ranges rather than employing expert knowledge in the fuzzification of output parameters. The proposed approach was evaluated for its ability to assess the drinking water quality of 49 samples collected seasonally from groundwater resources in Iran's Sarab Plain during 2013-2014. Input membership functions were defined as "desirable", "acceptable" and "unacceptable" based on expert knowledge and the standard and permissible limits prescribed by the World Health Organization. Output data were categorized into multiple categories based on the GQI (5 categories), WQI (5 categories), and GWQI (3 categories). Given the potential of fuzzy models to minimize uncertainties, hybrid fuzzy-based indices produce significantly more accurate assessments of groundwater quality than traditional indices. The developed models' accuracy was assessed and a comparison of the performance indices demonstrated the Fuzzy Groundwater Quality Index model to be more accurate than both the Fuzzy Water Quality Index and Fuzzy Ground Water Quality Index models. This suggests that the new hybrid fuzzy indices developed in this research are reliable and flexible when used in groundwater quality assessment for drinking purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hong, X; Harris, C J
2000-01-01
This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bézier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bézier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bézier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bézier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.
Fuzzy Analytic Hierarchy Process-based Chinese Resident Best Fitness Behavior Method Research.
Wang, Dapeng; Zhang, Lan
2015-01-01
With explosive development in Chinese economy and science and technology, people's pursuit of health becomes more and more intense, therefore Chinese resident sports fitness activities have been rapidly developed. However, different fitness events popularity degrees and effects on body energy consumption are different, so bases on this, the paper researches on fitness behaviors and gets Chinese residents sports fitness behaviors exercise guide, which provides guidance for propelling to national fitness plan's implementation and improving Chinese resident fitness scientization. The paper starts from the perspective of energy consumption, it mainly adopts experience method, determines Chinese resident favorite sports fitness event energy consumption through observing all kinds of fitness behaviors energy consumption, and applies fuzzy analytic hierarchy process to make evaluation on bicycle riding, shadowboxing practicing, swimming, rope skipping, jogging, running, aerobics these seven fitness events. By calculating fuzzy rate model's membership and comparing their sizes, it gets fitness behaviors that are more helpful for resident health, more effective and popular. Finally, it gets conclusions that swimming is a best exercise mode and its membership is the highest. Besides, the memberships of running, rope skipping and shadowboxing practicing are also relative higher. It should go in for bodybuilding by synthesizing above several kinds of fitness events according to different physical conditions; different living conditions so that can better achieve the purpose of fitness exercises.
Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Akhavan, P.; Karimi, M.; Pahlavani, P.
2014-10-01
Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL) created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.
Badawi, A M; Derbala, A S; Youssef, A M
1999-08-01
Computerized ultrasound tissue characterization has become an objective means for diagnosis of liver diseases. It is difficult to differentiate diffuse liver diseases, namely cirrhotic and fatty liver by visual inspection from the ultrasound images. The visual criteria for differentiating diffused diseases are rather confusing and highly dependent upon the sonographer's experience. This often causes a bias effects in the diagnostic procedure and limits its objectivity and reproducibility. Computerized tissue characterization to assist quantitatively the sonographer for the accurate differentiation and to minimize the degree of risk is thus justified. Fuzzy logic has emerged as one of the most active area in classification. In this paper, we present an approach that employs Fuzzy reasoning techniques to automatically differentiate diffuse liver diseases using numerical quantitative features measured from the ultrasound images. Fuzzy rules were generated from over 140 cases consisting of normal, fatty, and cirrhotic livers. The input to the fuzzy system is an eight dimensional vector of feature values: the mean gray level (MGL), the percentile 10%, the contrast (CON), the angular second moment (ASM), the entropy (ENT), the correlation (COR), the attenuation (ATTEN) and the speckle separation. The output of the fuzzy system is one of the three categories: cirrhosis, fatty or normal. The steps done for differentiating the pathologies are data acquisition and feature extraction, dividing the input spaces of the measured quantitative data into fuzzy sets. Based on the expert knowledge, the fuzzy rules are generated and applied using the fuzzy inference procedures to determine the pathology. Different membership functions are developed for the input spaces. This approach has resulted in very good sensitivities and specificity for classifying diffused liver pathologies. This classification technique can be used in the diagnostic process, together with the history information, laboratory, clinical and pathological examinations.
Improved image retrieval based on fuzzy colour feature vector
NASA Astrophysics Data System (ADS)
Ben-Ahmeida, Ahlam M.; Ben Sasi, Ahmed Y.
2013-03-01
One of Image indexing techniques is the Content-Based Image Retrieval which is an efficient way for retrieving images from the image database automatically based on their visual contents such as colour, texture, and shape. In this paper will be discuss how using content-based image retrieval (CBIR) method by colour feature extraction and similarity checking. By dividing the query image and all images in the database into pieces and extract the features of each part separately and comparing the corresponding portions in order to increase the accuracy in the retrieval. The proposed approach is based on the use of fuzzy sets, to overcome the problem of curse of dimensionality. The contribution of colour of each pixel is associated to all the bins in the histogram using fuzzy-set membership functions. As a result, the Fuzzy Colour Histogram (FCH), outperformed the Conventional Colour Histogram (CCH) in image retrieving, due to its speedy results, where were images represented as signatures that took less size of memory, depending on the number of divisions. The results also showed that FCH is less sensitive and more robust to brightness changes than the CCH with better retrieval recall values.
A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping
NASA Astrophysics Data System (ADS)
Feizizadeh, Bakhtiar; Shadman Roodposhti, Majid; Jankowski, Piotr; Blaschke, Thomas
2014-12-01
Landslide susceptibility mapping (LSM) is making increasing use of GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) methods. We have developed a new multi-criteria decision analysis (MCDA) method for LSM and applied it to the Izeh River basin in south-western Iran. Our method is based on fuzzy membership functions (FMFs) derived from GIS analysis. It makes use of nine causal landslide factors identified by local landslide experts. Fuzzy set theory was first integrated with an analytical hierarchy process (AHP) in order to use pairwise comparisons to compare LSM criteria for ranking purposes. FMFs were then applied in order to determine the criteria weights to be used in the development of a landslide susceptibility map. Finally, a landslide inventory database was used to validate the LSM map by comparing it with known landslides within the study area. Results indicated that the integration of fuzzy set theory with AHP produced significantly improved accuracies and a high level of reliability in the resulting landslide susceptibility map. Approximately 53% of known landslides within our study area fell within zones classified as having "very high susceptibility", with the further 31% falling into zones classified as having "high susceptibility".
A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping
Feizizadeh, Bakhtiar; Shadman Roodposhti, Majid; Jankowski, Piotr; Blaschke, Thomas
2014-01-01
Landslide susceptibility mapping (LSM) is making increasing use of GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) methods. We have developed a new multi-criteria decision analysis (MCDA) method for LSM and applied it to the Izeh River basin in south-western Iran. Our method is based on fuzzy membership functions (FMFs) derived from GIS analysis. It makes use of nine causal landslide factors identified by local landslide experts. Fuzzy set theory was first integrated with an analytical hierarchy process (AHP) in order to use pairwise comparisons to compare LSM criteria for ranking purposes. FMFs were then applied in order to determine the criteria weights to be used in the development of a landslide susceptibility map. Finally, a landslide inventory database was used to validate the LSM map by comparing it with known landslides within the study area. Results indicated that the integration of fuzzy set theory with AHP produced significantly improved accuracies and a high level of reliability in the resulting landslide susceptibility map. Approximately 53% of known landslides within our study area fell within zones classified as having “very high susceptibility”, with the further 31% falling into zones classified as having “high susceptibility”. PMID:26089577
NASA Astrophysics Data System (ADS)
Pan, Wei; Wang, Xianjia; Zhong, Yong-guang; Yu, Lean; Jie, Cao; Ran, Lun; Qiao, Han; Wang, Shouyang; Xu, Xianhao
2012-06-01
Data communication service has an important influence on e-commerce. The key challenge for the users is, ultimately, to select a suitable provider. However, in this article, we do not focus on this aspect but the viewpoint and decision-making of providers for order allocation and pricing policy when orders exceed service capacity. It is a multiple criteria decision-making problem such as profit and cancellation ratio. Meanwhile, we know realistic situations in which much of the input information is uncertain. Thus, it becomes very complex in a real-life environment. In this situation, fuzzy sets theory is the best tool for solving this problem. Our fuzzy model is formulated in such a way as to simultaneously consider the imprecision of information, price sensitive demand, stochastic variables, cancellation fee and the general membership function. For solving the problem, a new fuzzy programming is developed. Finally, a numerical example is presented to illustrate the proposed method. The results show that it is effective for determining the suitable order set and pricing policy of provider in data communication service with different quality of service (QoS) levels.
A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping.
Feizizadeh, Bakhtiar; Shadman Roodposhti, Majid; Jankowski, Piotr; Blaschke, Thomas
2014-12-01
Landslide susceptibility mapping (LSM) is making increasing use of GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) methods. We have developed a new multi-criteria decision analysis (MCDA) method for LSM and applied it to the Izeh River basin in south-western Iran. Our method is based on fuzzy membership functions (FMFs) derived from GIS analysis. It makes use of nine causal landslide factors identified by local landslide experts. Fuzzy set theory was first integrated with an analytical hierarchy process (AHP) in order to use pairwise comparisons to compare LSM criteria for ranking purposes. FMFs were then applied in order to determine the criteria weights to be used in the development of a landslide susceptibility map. Finally, a landslide inventory database was used to validate the LSM map by comparing it with known landslides within the study area. Results indicated that the integration of fuzzy set theory with AHP produced significantly improved accuracies and a high level of reliability in the resulting landslide susceptibility map. Approximately 53% of known landslides within our study area fell within zones classified as having "very high susceptibility", with the further 31% falling into zones classified as having "high susceptibility".
Fuzzy – PI controller to control the velocity parameter of Induction Motor
NASA Astrophysics Data System (ADS)
Malathy, R.; Balaji, V.
2018-04-01
The major application of Induction motor includes the usage of the same in industries because of its high robustness, reliability, low cost, highefficiency and good self-starting capability. Even though it has the above mentioned advantages, it also have some limitations: (1) the standard motor is not a true constant-speed machine, itsfull-load slip varies less than 1 % (in high-horsepower motors).And (2) it is not inherently capable of providing variable-speedoperation. In order to solve the above mentioned problem smart motor controls and variable speed controllers are used. Motor applications involve non linearity features, which can be controlled by Fuzzy logic controller as it is capable of handling those features with high efficiency and it act similar to human operator. This paper presents individuality of the plant modelling. The fuzzy logic controller (FLC)trusts on a set of linguistic if-then rules, a rule-based Mamdani for closed loop Induction Motor model. Themotor model is designed and membership functions are chosenaccording to the parameters of the motor model. Simulation results contains non linearity in induction motor model. A conventional PI controller iscompared practically to fuzzy logic controller using Simulink.
NASA Astrophysics Data System (ADS)
Wu, Z.; Luo, Z.; Zhang, Y.; Guo, F.; He, L.
2018-04-01
A Modulation Transfer Function (MTF)-based fuzzy comprehensive evaluation method was proposed in this paper for the purpose of evaluating high-resolution satellite image quality. To establish the factor set, two MTF features and seven radiant features were extracted from the knife-edge region of image patch, which included Nyquist, MTF0.5, entropy, peak signal to noise ratio (PSNR), average difference, edge intensity, average gradient, contrast and ground spatial distance (GSD). After analyzing the statistical distribution of above features, a fuzzy evaluation threshold table and fuzzy evaluation membership functions was established. The experiments for comprehensive quality assessment of different natural and artificial objects was done with GF2 image patches. The results showed that the calibration field image has the highest quality scores. The water image has closest image quality to the calibration field, quality of building image is a little poor than water image, but much higher than farmland image. In order to test the influence of different features on quality evaluation, the experiment with different weights were tested on GF2 and SPOT7 images. The results showed that different weights correspond different evaluating effectiveness. In the case of setting up the weights of edge features and GSD, the image quality of GF2 is better than SPOT7. However, when setting MTF and PSNR as main factor, the image quality of SPOT7 is better than GF2.
Determining Fuzzy Membership for Sentiment Classification: A Three-Layer Sentiment Propagation Model
Zhao, Chuanjun; Wang, Suge; Li, Deyu
2016-01-01
Enormous quantities of review documents exist in forums, blogs, twitter accounts, and shopping web sites. Analysis of the sentiment information hidden in these review documents is very useful for consumers and manufacturers. The sentiment orientation and sentiment intensity of a review can be described in more detail by using a sentiment score than by using bipolar sentiment polarity. Existing methods for calculating review sentiment scores frequently use a sentiment lexicon or the locations of features in a sentence, a paragraph, and a document. In order to achieve more accurate sentiment scores of review documents, a three-layer sentiment propagation model (TLSPM) is proposed that uses three kinds of interrelations, those among documents, topics, and words. First, we use nine relationship pairwise matrices between documents, topics, and words. In TLSPM, we suppose that sentiment neighbors tend to have the same sentiment polarity and similar sentiment intensity in the sentiment propagation network. Then, we implement the sentiment propagation processes among the documents, topics, and words in turn. Finally, we can obtain the steady sentiment scores of documents by a continuous iteration process. Intuition might suggest that documents with strong sentiment intensity make larger contributions to classification than those with weak sentiment intensity. Therefore, we use the fuzzy membership of documents obtained by TLSPM as the weight of the text to train a fuzzy support vector machine model (FSVM). As compared with a support vector machine (SVM) and four other fuzzy membership determination methods, the results show that FSVM trained with TLSPM can enhance the effectiveness of sentiment classification. In addition, FSVM trained with TLSPM can reduce the mean square error (MSE) on seven sentiment rating prediction data sets. PMID:27846225
Adaptive fuzzy leader clustering of complex data sets in pattern recognition
NASA Technical Reports Server (NTRS)
Newton, Scott C.; Pemmaraju, Surya; Mitra, Sunanda
1992-01-01
A modular, unsupervised neural network architecture for clustering and classification of complex data sets is presented. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system that learns on-line in a stable and efficient manner. The initial classification is performed in two stages: a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from fuzzy C-means system equations for the centroids and the membership values. The AFLC algorithm is applied to the Anderson Iris data and laser-luminescent fingerprint image data. It is concluded that the AFLC algorithm successfully classifies features extracted from real data, discrete or continuous.
NASA Astrophysics Data System (ADS)
Dalkilic, Turkan Erbay; Apaydin, Aysen
2009-11-01
In a regression analysis, it is assumed that the observations come from a single class in a data cluster and the simple functional relationship between the dependent and independent variables can be expressed using the general model; Y=f(X)+[epsilon]. However; a data cluster may consist of a combination of observations that have different distributions that are derived from different clusters. When faced with issues of estimating a regression model for fuzzy inputs that have been derived from different distributions, this regression model has been termed the [`]switching regression model' and it is expressed with . Here li indicates the class number of each independent variable and p is indicative of the number of independent variables [J.R. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transaction on Systems, Man and Cybernetics 23 (3) (1993) 665-685; M. Michel, Fuzzy clustering and switching regression models using ambiguity and distance rejects, Fuzzy Sets and Systems 122 (2001) 363-399; E.Q. Richard, A new approach to estimating switching regressions, Journal of the American Statistical Association 67 (338) (1972) 306-310]. In this study, adaptive networks have been used to construct a model that has been formed by gathering obtained models. There are methods that suggest the class numbers of independent variables heuristically. Alternatively, in defining the optimal class number of independent variables, the use of suggested validity criterion for fuzzy clustering has been aimed. In the case that independent variables have an exponential distribution, an algorithm has been suggested for defining the unknown parameter of the switching regression model and for obtaining the estimated values after obtaining an optimal membership function, which is suitable for exponential distribution.
Xue, Mianqiang; Zhou, Liang; Kojima, Naoya; Dos Muchangos, Leticia Sarmento; Machimura, Takashi; Tokai, Akihiro
2018-05-01
Increasing manufacture and usage of chemicals have not been matched by the increase in our understanding of their risks. Pollutant release and transfer register (PRTR) is becoming a popular measure for collecting chemical data and enhancing the public right to know. However, these data are usually in high dimensionality which restricts their wider use. The present study partitions Japanese PRTR chemicals into five fuzzy clusters by fuzzy c-mean clustering (FCM) to explore the implicit information. Each chemical with membership degrees belongs to each cluster. Cluster I features high releases from non-listed industries and the household sector and high environmental toxicity. Cluster II is characterized by high reported releases and transfers from 24 listed industries above the threshold, mutagenicity, and high environmental toxicity. Chemicals in cluster III have characteristics of high releases from non-listed industries and low toxicity. Cluster IV is characterized by high reported releases and transfers from 24 listed industries above the threshold and extremely high environmental toxicity. Cluster V is characterized by low releases yet mutagenicity and high carcinogenicity. Chemicals with the highest membership degree were identified as representatives for each cluster. For the highest membership degree, half of the chemicals have a value higher than 0.74. If we look at both the highest and the second highest membership degrees simultaneously, about 94% of the chemicals have a value higher than 0.5. FCM can serve as an approach to uncover the implicit information of highly complex chemical dataset, which subsequently supports the strategy development for efficient and effective chemical management. Copyright © 2017 Elsevier B.V. All rights reserved.
Modelling Of Anticipated Damage Ratio On Breakwaters Using Fuzzy Logic
NASA Astrophysics Data System (ADS)
Mercan, D. E.; Yagci, O.; Kabdasli, S.
2003-04-01
In breakwater design the determination of armour unit weight is especially important in terms of the structure's life. In a typical experimental breakwater stability study, different wave series composed of different wave heights; wave period and wave steepness characteristics are applied in order to investigate performance the structure. Using a classical approach, a regression equation is generated for damage ratio as a function of characteristic wave height. The parameters wave period and wave steepness are not considered. In this study, differing from the classical approach using a fuzzy logic, a relationship between damage ratio as a function of mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s) was further generated. The system's inputs were mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s). For fuzzification all input variables were divided into three fuzzy subsets, their membership functions were defined using method developed by Mandani (Mandani, 1974) and the rules were written. While for defuzzification the centroid method was used. In order to calibrate and test the generated models an experimental study was conducted. The experiments were performed in a wave flume (24 m long, 1.0 m wide and 1.0 m high) using 20 different irregular wave series (P-M spectrum). Throughout the study, the water depth was 0.6 m and the breakwater cross-sectional slope was 1V/2H. In the armour layer, a type of artificial armour unit known as antifer cubes were used. The results of the established fuzzy logic model and regression equation model was compared with experimental data and it was determined that the established fuzzy logic model gave a more accurate prediction of the damage ratio on this type of breakwater. References Mandani, E.H., "Application of Fuzzy Algorithms for Control of Simple Dynamic Plant", Proc. IEE, vol. 121, no. 12, December 1974.
A Fuzzy Goal Programming for a Multi-Depot Distribution Problem
NASA Astrophysics Data System (ADS)
Nunkaew, Wuttinan; Phruksaphanrat, Busaba
2010-10-01
A fuzzy goal programming model for solving a Multi-Depot Distribution Problem (MDDP) is proposed in this research. This effective proposed model is applied for solving in the first step of Assignment First-Routing Second (AFRS) approach. Practically, a basic transportation model is firstly chosen to solve this kind of problem in the assignment step. After that the Vehicle Routing Problem (VRP) model is used to compute the delivery cost in the routing step. However, in the basic transportation model, only depot to customer relationship is concerned. In addition, the consideration of customer to customer relationship should also be considered since this relationship exists in the routing step. Both considerations of relationships are solved using Preemptive Fuzzy Goal Programming (P-FGP). The first fuzzy goal is set by a total transportation cost and the second fuzzy goal is set by a satisfactory level of the overall independence value. A case study is used for describing the effectiveness of the proposed model. Results from the proposed model are compared with the basic transportation model that has previously been used in this company. The proposed model can reduce the actual delivery cost in the routing step owing to the better result in the assignment step. Defining fuzzy goals by membership functions are more realistic than crisps. Furthermore, flexibility to adjust goals and an acceptable satisfactory level for decision maker can also be increased and the optimal solution can be obtained.
Land cover classification of Landsat 8 satellite data based on Fuzzy Logic approach
NASA Astrophysics Data System (ADS)
Taufik, Afirah; Sakinah Syed Ahmad, Sharifah
2016-06-01
The aim of this paper is to propose a method to classify the land covers of a satellite image based on fuzzy rule-based system approach. The study uses bands in Landsat 8 and other indices, such as Normalized Difference Water Index (NDWI), Normalized difference built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) as input for the fuzzy inference system. The selected three indices represent our main three classes called water, built- up land, and vegetation. The combination of the original multispectral bands and selected indices provide more information about the image. The parameter selection of fuzzy membership is performed by using a supervised method known as ANFIS (Adaptive neuro fuzzy inference system) training. The fuzzy system is tested for the classification on the land cover image that covers Klang Valley area. The results showed that the fuzzy system approach is effective and can be explored and implemented for other areas of Landsat data.
Assessment of Uncertainties Related to Seismic Hazard Using Fuzzy Analysis
NASA Astrophysics Data System (ADS)
Jorjiashvili, N.; Yokoi, T.; Javakhishvili, Z.
2013-05-01
Seismic hazard analysis in last few decades has been become very important issue. Recently, new technologies and available data have been improved that helped many scientists to understand where and why earthquakes happen, physics of earthquakes, etc. They have begun to understand the role of uncertainty in Seismic hazard analysis. However, there is still significant problem how to handle existing uncertainty. The same lack of information causes difficulties to quantify uncertainty accurately. Usually attenuation curves are obtained in statistical way: regression analysis. Statistical and probabilistic analysis show overlapped results for the site coefficients. This overlapping takes place not only at the border between two neighboring classes, but also among more than three classes. Although the analysis starts from classifying sites using the geological terms, these site coefficients are not classified at all. In the present study, this problem is solved using Fuzzy set theory. Using membership functions the ambiguities at the border between neighboring classes can be avoided. Fuzzy set theory is performed for southern California by conventional way. In this study standard deviations that show variations between each site class obtained by Fuzzy set theory and classical way are compared. Results on this analysis show that when we have insufficient data for hazard assessment site classification based on Fuzzy set theory shows values of standard deviations less than obtained by classical way which is direct proof of less uncertainty.
Xie, Hong-Bo; Huang, Hu; Wu, Jianhua; Liu, Lei
2015-02-01
We present a multiclass fuzzy relevance vector machine (FRVM) learning mechanism and evaluate its performance to classify multiple hand motions using surface electromyographic (sEMG) signals. The relevance vector machine (RVM) is a sparse Bayesian kernel method which avoids some limitations of the support vector machine (SVM). However, RVM still suffers the difficulty of possible unclassifiable regions in multiclass problems. We propose two fuzzy membership function-based FRVM algorithms to solve such problems, based on experiments conducted on seven healthy subjects and two amputees with six hand motions. Two feature sets, namely, AR model coefficients and room mean square value (AR-RMS), and wavelet transform (WT) features, are extracted from the recorded sEMG signals. Fuzzy support vector machine (FSVM) analysis was also conducted for wide comparison in terms of accuracy, sparsity, training and testing time, as well as the effect of training sample sizes. FRVM yielded comparable classification accuracy with dramatically fewer support vectors in comparison with FSVM. Furthermore, the processing delay of FRVM was much less than that of FSVM, whilst training time of FSVM much faster than FRVM. The results indicate that FRVM classifier trained using sufficient samples can achieve comparable generalization capability as FSVM with significant sparsity in multi-channel sEMG classification, which is more suitable for sEMG-based real-time control applications.
Fuzzy architecture assessment for critical infrastructure resilience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, George
2012-12-01
This paper presents an approach for the selection of alternative architectures in a connected infrastructure system to increase resilience of the overall infrastructure system. The paper begins with a description of resilience and critical infrastructure, then summarizes existing approaches to resilience, and presents a fuzzy-rule based method of selecting among alternative infrastructure architectures. This methodology includes considerations which are most important when deciding on an approach to resilience. The paper concludes with a proposed approach which builds on existing resilience architecting methods by integrating key system aspects using fuzzy memberships and fuzzy rule sets. This novel approach aids the systemsmore » architect in considering resilience for the evaluation of architectures for adoption into the final system architecture.« less
DFP: a Bioconductor package for fuzzy profile identification and gene reduction of microarray data
Glez-Peña, Daniel; Álvarez, Rodrigo; Díaz, Fernando; Fdez-Riverola, Florentino
2009-01-01
Background Expression profiling assays done by using DNA microarray technology generate enormous data sets that are not amenable to simple analysis. The greatest challenge in maximizing the use of this huge amount of data is to develop algorithms to interpret and interconnect results from different genes under different conditions. In this context, fuzzy logic can provide a systematic and unbiased way to both (i) find biologically significant insights relating to meaningful genes, thereby removing the need for expert knowledge in preliminary steps of microarray data analyses and (ii) reduce the cost and complexity of later applied machine learning techniques being able to achieve interpretable models. Results DFP is a new Bioconductor R package that implements a method for discretizing and selecting differentially expressed genes based on the application of fuzzy logic. DFP takes advantage of fuzzy membership functions to assign linguistic labels to gene expression levels. The technique builds a reduced set of relevant genes (FP, Fuzzy Pattern) able to summarize and represent each underlying class (pathology). A last step constructs a biased set of genes (DFP, Discriminant Fuzzy Pattern) by intersecting existing fuzzy patterns in order to detect discriminative elements. In addition, the software provides new functions and visualisation tools that summarize achieved results and aid in the interpretation of differentially expressed genes from multiple microarray experiments. Conclusion DFP integrates with other packages of the Bioconductor project, uses common data structures and is accompanied by ample documentation. It has the advantage that its parameters are highly configurable, facilitating the discovery of biologically relevant connections between sets of genes belonging to different pathologies. This information makes it possible to automatically filter irrelevant genes thereby reducing the large volume of data supplied by microarray experiments. Based on these contributions GENECBR, a successful tool for cancer diagnosis using microarray datasets, has recently been released. PMID:19178723
DFP: a Bioconductor package for fuzzy profile identification and gene reduction of microarray data.
Glez-Peña, Daniel; Alvarez, Rodrigo; Díaz, Fernando; Fdez-Riverola, Florentino
2009-01-29
Expression profiling assays done by using DNA microarray technology generate enormous data sets that are not amenable to simple analysis. The greatest challenge in maximizing the use of this huge amount of data is to develop algorithms to interpret and interconnect results from different genes under different conditions. In this context, fuzzy logic can provide a systematic and unbiased way to both (i) find biologically significant insights relating to meaningful genes, thereby removing the need for expert knowledge in preliminary steps of microarray data analyses and (ii) reduce the cost and complexity of later applied machine learning techniques being able to achieve interpretable models. DFP is a new Bioconductor R package that implements a method for discretizing and selecting differentially expressed genes based on the application of fuzzy logic. DFP takes advantage of fuzzy membership functions to assign linguistic labels to gene expression levels. The technique builds a reduced set of relevant genes (FP, Fuzzy Pattern) able to summarize and represent each underlying class (pathology). A last step constructs a biased set of genes (DFP, Discriminant Fuzzy Pattern) by intersecting existing fuzzy patterns in order to detect discriminative elements. In addition, the software provides new functions and visualisation tools that summarize achieved results and aid in the interpretation of differentially expressed genes from multiple microarray experiments. DFP integrates with other packages of the Bioconductor project, uses common data structures and is accompanied by ample documentation. It has the advantage that its parameters are highly configurable, facilitating the discovery of biologically relevant connections between sets of genes belonging to different pathologies. This information makes it possible to automatically filter irrelevant genes thereby reducing the large volume of data supplied by microarray experiments. Based on these contributions GENECBR, a successful tool for cancer diagnosis using microarray datasets, has recently been released.
Systematic methods for the design of a class of fuzzy logic controllers
NASA Astrophysics Data System (ADS)
Yasin, Saad Yaser
2002-09-01
Fuzzy logic control, a relatively new branch of control, can be used effectively whenever conventional control techniques become inapplicable or impractical. Various attempts have been made to create a generalized fuzzy control system and to formulate an analytically based fuzzy control law. In this study, two methods, the left and right parameterization method and the normalized spline-base membership function method, were utilized for formulating analytical fuzzy control laws in important practical control applications. The first model was used to design an idle speed controller, while the second was used to control an inverted control problem. The results of both showed that a fuzzy logic control system based on the developed models could be used effectively to control highly nonlinear and complex systems. This study also investigated the application of fuzzy control in areas not fully utilizing fuzzy logic control. Three important practical applications pertaining to the automotive industries were studied. The first automotive-related application was the idle speed of spark ignition engines, using two fuzzy control methods: (1) left and right parameterization, and (2) fuzzy clustering techniques and experimental data. The simulation and experimental results showed that a conventional controller-like performance fuzzy controller could be designed based only on experimental data and intuitive knowledge of the system. In the second application, the automotive cruise control problem, a fuzzy control model was developed using parameters adaptive Proportional plus Integral plus Derivative (PID)-type fuzzy logic controller. Results were comparable to those using linearized conventional PID and linear quadratic regulator (LQR) controllers and, in certain cases and conditions, the developed controller outperformed the conventional PID and LQR controllers. The third application involved the air/fuel ratio control problem, using fuzzy clustering techniques, experimental data, and a conversion algorithm, to develop a fuzzy-based control algorithm. Results were similar to those obtained by recently published conventional control based studies. The influence of the fuzzy inference operators and parameters on performance and stability of the fuzzy logic controller was studied Results indicated that, the selections of certain parameters or combinations of parameters, affect greatly the performance and stability of the fuzzy controller. Diagnostic guidelines used to tune or change certain factors or parameters to improve controller performance were developed based on knowledge gained from conventional control methods and knowledge gained from the experimental and the simulation results of this study.
NASA Astrophysics Data System (ADS)
Jeyaram, A.; Kesari, S.; Bajpai, A.; Bhunia, G. S.; Krishna Murthy, Y. V. N.
2012-07-01
Visceral Leishmaniasis (VL) commonly known as Kala-azar is one of the most neglected tropical disease affecting approximately 200 million poorest populations 'at risk in 109 districts of three endemic countries namely Bangladesh, India and Nepal at different levels. This tropical disease is caused by the protozoan parasite Leishmania donovani and transmitted by female Phlebotomus argentipes sand flies. The analysis of disease dynamics indicate the periodicity at seasonal and inter-annual temporal scale which forms the basis for development of advanced early warning system. Study area of highly endemic Vaishali district, Bihar, India has been taken for model development. A Systematic study of geo-environmental parameters derived from satellite data in conjunction with ground intelligence enabled modelling of infectious disease and risk villages. High resolution Indian satellites data of IRS LISS IV (multi-spectral) and Cartosat-1 (Pan) have been used for studying environmentally risk parameters viz. peri-domestic vegetation, dwelling condition, wetland ecosystem, cropping pattern, Normalised Difference Vegetation Index (NDVI), detailed land use etc towards risk assessment. Univariate analysis of the relationship between vector density and various land cover categories and climatic variables suggested that all the variables are significantly correlated. Using the significantly correlated variables with vector density, a seasonal multivariate regression model has been carried out incorporating geo-environmental parameters, climate variables and seasonal time series disease parameters. Linear and non-linear models have been applied for periodicity and interannual temporal scale to predict Man-hour-density (MHD) and 'out-of-fit' data set used for validating the model with reasonable accuracy. To improve the MHD predictive approach, fuzzy model has also been incorporated in GIS environment combining spatial geo-environmental and climatic variables using fuzzy membership logic. Based on the perceived importance of the geoenvironmental parameters assigned by epidemiology expert, combined fuzzy membership has been calculated. The combined fuzzy membership indicate the predictive measure of vector density in each village. A γ factor has been introduced to have increasing effect in the higher side and decreasing effect in the lower side which facilitated for prioritisation of the villages. This approach is not only to predict vector density but also to prioritise the villages for effective control measures. A software package for modelling the risk villages integrating multivariate regression and fuzzy membership analysis models have been developed to estimate MHD (vector density) as part of the early warning system.
Instability risk assessment of construction waste pile slope based on fuzzy entropy
NASA Astrophysics Data System (ADS)
Ma, Yong; Xing, Huige; Yang, Mao; Nie, Tingting
2018-05-01
Considering the nature and characteristics of construction waste piles, this paper analyzed the factors affecting the stability of the slope of construction waste piles, and established the system of the assessment indexes for the slope failure risks of construction waste piles. Based on the basic principles and methods of fuzzy mathematics, the factor set and the remark set were established. The membership grade of continuous factor indexes is determined using the "ridge row distribution" function, while that for the discrete factor indexes was determined by the Delphi Method. For the weight of factors, the subjective weight was determined by the Analytic Hierarchy Process (AHP) and objective weight by the entropy weight method. And the distance function was introduced to determine the combination coefficient. This paper established a fuzzy comprehensive assessment model of slope failure risks of construction waste piles, and assessed pile slopes in the two dimensions of hazard and vulnerability. The root mean square of the hazard assessment result and vulnerability assessment result was the final assessment result. The paper then used a certain construction waste pile slope as the example for analysis, assessed the risks of the four stages of a landfill, verified the assessment model and analyzed the slope's failure risks and preventive measures against a slide.
FUZZY COMPUTATIONAL MODELS TO EVALUATE THE EFFECTS OF AIR POLLUTION ON CHILDREN.
David, Gleise Silva; Rizol, Paloma Maria Silva Rocha; Nascimento, Luiz Fernando Costa
2018-01-01
To build a fuzzy computational model to estimate the number of hospitalizations of children aged up to 10 years due to respiratory conditions based on pollutants and climatic factors in the city of São José do Rio Preto, Brazil. A computational model was constructed using the fuzzy logic. The model has 4 inputs, each with 2 membership functions generating 16 rules, and the output with 5 pertinence functions, based on the Mamdani's method, to estimate the association between the pollutants and the number of hospitalizations. Data from hospitalizations, from 2011-2013, were obtained in DATASUS - and the pollutants Particulate Matter (PM10) and Nitrogen Dioxide (NO2), wind speed and temperature were obtained by the Environmental Company of São Paulo State (Cetesb). A total of 1,161 children were hospitalized in the period and the mean of pollutants was 36 and 51 µg/m3 - PM10 and NO2, respectively. The best values of the Pearson correlation (0.34) and accuracy measured by the Receiver Operating Characteristic (ROC) curve (NO2 - 96.7% and PM10 - 90.4%) were for hospitalizations on the same day of exposure. The model was effective in predicting the number of hospitalizations of children and could be used as a tool in the hospital management of the studied region.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.
Finger-Vein Image Enhancement Using a Fuzzy-Based Fusion Method with Gabor and Retinex Filtering
Shin, Kwang Yong; Park, Young Ho; Nguyen, Dat Tien; Park, Kang Ryoung
2014-01-01
Because of the advantages of finger-vein recognition systems such as live detection and usage as bio-cryptography systems, they can be used to authenticate individual people. However, images of finger-vein patterns are typically unclear because of light scattering by the skin, optical blurring, and motion blurring, which can degrade the performance of finger-vein recognition systems. In response to these issues, a new enhancement method for finger-vein images is proposed. Our method is novel compared with previous approaches in four respects. First, the local and global features of the vein lines of an input image are amplified using Gabor filters in four directions and Retinex filtering, respectively. Second, the means and standard deviations in the local windows of the images produced after Gabor and Retinex filtering are used as inputs for the fuzzy rule and fuzzy membership function, respectively. Third, the optimal weights required to combine the two Gabor and Retinex filtered images are determined using a defuzzification method. Fourth, the use of a fuzzy-based method means that image enhancement does not require additional training data to determine the optimal weights. Experimental results using two finger-vein databases showed that the proposed method enhanced the accuracy of finger-vein recognition compared with previous methods. PMID:24549251
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783
A novel fuzzy approach for automatic Brunnstrom stage classification using surface electromyography.
Liparulo, Luca; Zhang, Zhe; Panella, Massimo; Gu, Xudong; Fang, Qiang
2017-08-01
Clinical assessment plays a major role in post-stroke rehabilitation programs for evaluating impairment level and tracking recovery progress. Conventionally, this process is manually performed by clinicians using chart-based ordinal scales which can be both subjective and inefficient. In this paper, a novel approach based on fuzzy logic is proposed which automatically evaluates stroke patients' impairment level using single-channel surface electromyography (sEMG) signals and generates objective classification results based on the widely used Brunnstrom stages of recovery. The correlation between stroke-induced motor impairment and sEMG features on both time and frequency domain is investigated, and a specifically designed fuzzy kernel classifier based on geometrically unconstrained membership function is introduced in the study to tackle the challenges in discriminating data classes with complex separating surfaces. Experiments using sEMG data collected from stroke patients have been carried out to examine the validity and feasibility of the proposed method. In order to ensure the generalization capability of the classifier, a cross-validation test has been performed. The results, verified using the evaluation decisions provided by an expert panel, have reached a rate of success of the 92.47%. The proposed fuzzy classifier is also compared with other pattern recognition techniques to demonstrate its superior performance in this application.
NASA Astrophysics Data System (ADS)
Pradhan, Biswajeet; Lee, Saro; Buchroithner, Manfred
Landslides are the most common natural hazards in Malaysia. Preparation of landslide suscep-tibility maps is important for engineering geologists and geomorphologists. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. In this study, a new attempt is tried to produce landslide susceptibility map of a part of Cameron Valley of Malaysia. This paper develops an adaptive neuro-fuzzy inference system (ANFIS) based on a geographic information system (GIS) environment for landslide susceptibility mapping. To ob-tain the neuro-fuzzy relations for producing the landslide susceptibility map, landslide locations were identified from interpretation of aerial photographs and high resolution satellite images, field surveys and historical inventory reports. Landslide conditioning factors such as slope, plan curvature, distance to drainage lines, soil texture, lithology, and distance to lineament were extracted from topographic, soil, and lineament maps. Landslide susceptible areas were analyzed by the ANFIS model and mapped using the conditioning factors. Furthermore, we applied various membership functions (MFs) and fuzzy relations to produce landslide suscep-tibility maps. The prediction performance of the susceptibility map is checked by considering actual landslides in the study area. Results show that, triangular, trapezoidal, and polynomial MFs were the best individual MFs for modelling landslide susceptibility maps (86
NASA Astrophysics Data System (ADS)
Iisaka, Joji; Sakurai-Amano, Takako
1994-08-01
This paper describes an integrated approach to terrain feature detection and several methods to estimate spatial information from SAR (synthetic aperture radar) imagery. Spatial information of image features as well as spatial association are key elements in terrain feature detection. After applying a small feature preserving despeckling operation, spatial information such as edginess, texture (smoothness), region-likeliness and line-likeness of objects, target sizes, and target shapes were estimated. Then a trapezoid shape fuzzy membership function was assigned to each spatial feature attribute. Fuzzy classification logic was employed to detect terrain features. Terrain features such as urban areas, mountain ridges, lakes and other water bodies as well as vegetated areas were successfully identified from a sub-image of a JERS-1 SAR image. In the course of shape analysis, a quantitative method was developed to classify spatial patterns by expanding a spatial pattern through the use of a series of pattern primitives.
NASA Astrophysics Data System (ADS)
Trianto, Andriantama Budi; Hadi, I. M.; Liong, The Houw; Purqon, Acep
2015-09-01
Indonesian economical development is growing well. It has effect for their invesment in Banks and the stock market. In this study, we perform prediction for the three blue chips of Indonesian bank i.e. BCA, BNI, and MANDIRI by using the method of Adaptive Neuro-Fuzzy Inference System (ANFIS) with Takagi-Sugeno rules and Generalized bell (Gbell) as the membership function. Our results show that ANFIS perform good prediction with RMSE for BCA of 27, BNI of 5.29, and MANDIRI of 13.41, respectively. Furthermore, we develop an active strategy to gain more benefit. We compare between passive strategy versus active strategy. Our results shows that for the passive strategy gains 13 million rupiah, while for the active strategy gains 47 million rupiah in one year. The active investment strategy significantly shows gaining multiple benefit than the passive one.
Boegl, Karl; Adlassnig, Klaus-Peter; Hayashi, Yoichi; Rothenfluh, Thomas E; Leitich, Harald
2004-01-01
This paper describes the fuzzy knowledge representation framework of the medical computer consultation system MedFrame/CADIAG-IV as well as the specific knowledge acquisition techniques that have been developed to support the definition of knowledge concepts and inference rules. As in its predecessor system CADIAG-II, fuzzy medical knowledge bases are used to model the uncertainty and the vagueness of medical concepts and fuzzy logic reasoning mechanisms provide the basic inference processes. The elicitation and acquisition of medical knowledge from domain experts has often been described as the most difficult and time-consuming task in knowledge-based system development in medicine. It comes as no surprise that this is even more so when unfamiliar representations like fuzzy membership functions are to be acquired. From previous projects we have learned that a user-centered approach is mandatory in complex and ill-defined knowledge domains such as internal medicine. This paper describes the knowledge acquisition framework that has been developed in order to make easier and more accessible the three main tasks of: (a) defining medical concepts; (b) providing appropriate interpretations for patient data; and (c) constructing inferential knowledge in a fuzzy knowledge representation framework. Special emphasis is laid on the motivations for some system design and data modeling decisions. The theoretical framework has been implemented in a software package, the Knowledge Base Builder Toolkit. The conception and the design of this system reflect the need for a user-centered, intuitive, and easy-to-handle tool. First results gained from pilot studies have shown that our approach can be successfully implemented in the context of a complex fuzzy theoretical framework. As a result, this critical aspect of knowledge-based system development can be accomplished more easily.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, F.G.
Sensor-based operation of autonomous robots in unstructured and/or outdoor environments has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. An approach. which we have named the {open_quotes}Fuzzy Behaviorist Approach{close_quotes} (FBA) is proposed in an attempt to remedy some of these difficulties. This approach is based on the representation of the system`s uncertainties using Fuzzy Set Theory-basedmore » approximations and on the representation of the reasoning and control schemes as sets of elemental behaviors. Using the FBA, a formalism for rule base development and an automated generator of fuzzy rules have been developed. This automated system can automatically construct the set of membership functions corresponding to fuzzy behaviors. Once these have been expressed in qualitative terms by the user. The system also checks for completeness of the rule base and for non-redundancy of the rules (which has traditionally been a major hurdle in rule base development). Two major conceptual features, the suppression and inhibition mechanisms which allow to express a dominance between behaviors are discussed in detail. Some experimental results obtained with the automated fuzzy, rule generator applied to the domain of sensor-based navigation in aprion unknown environments. using one of our autonomous test-bed robots as well as a real car in outdoor environments, are then reviewed and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using the {open_quotes}Fuzzy Behaviorist{close_quotes} concepts.« less
Fuzzy rule-based forecast of meteorological drought in western Niger
NASA Astrophysics Data System (ADS)
Abdourahamane, Zakari Seybou; Acar, Reşat
2018-01-01
Understanding the causes of rainfall anomalies in the West African Sahel to effectively predict drought events remains a challenge. The physical mechanisms that influence precipitation in this region are complex, uncertain, and imprecise in nature. Fuzzy logic techniques are renowned to be highly efficient in modeling such dynamics. This paper attempts to forecast meteorological drought in Western Niger using fuzzy rule-based modeling techniques. The 3-month scale standardized precipitation index (SPI-3) of four rainfall stations was used as predictand. Monthly data of southern oscillation index (SOI), South Atlantic sea surface temperature (SST), relative humidity (RH), and Atlantic sea level pressure (SLP), sourced from the National Oceanic and Atmosphere Administration (NOAA), were used as predictors. Fuzzy rules and membership functions were generated using fuzzy c-means clustering approach, expert decision, and literature review. For a minimum lead time of 1 month, the model has a coefficient of determination R 2 between 0.80 and 0.88, mean square error (MSE) below 0.17, and Nash-Sutcliffe efficiency (NSE) ranging between 0.79 and 0.87. The empirical frequency distributions of the predicted and the observed drought classes are equal at the 99% of confidence level based on two-sample t test. Results also revealed the discrepancy in the influence of SOI and SLP on drought occurrence at the four stations while the effect of SST and RH are space independent, being both significantly correlated (at α < 0.05 level) to the SPI-3. Moreover, the implemented fuzzy model compared to decision tree-based forecast model shows better forecast skills.
Turkdogan-Aydinol, F Ilter; Yetilmezsoy, Kaan
2010-10-15
A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R(V)), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (+/-3)% and an average volumetric TCOD removal rate of 6.87 (+/-3.93) kg TCOD(removed)/m(3)-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98. 2010 Elsevier B.V. All rights reserved.
Experimental Verification of Electric Drive Technologies Based on Artificial Intelligence Tools
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed; Ricketts, Daniel; Kotaru, Raj; Thomas, Robert; Noga, Donald F. (Technical Monitor); Kankam, Mark D. (Technical Monitor)
2000-01-01
In this report, a fully integrated prototype of a flight servo control system is successfully developed and implemented using brushless dc motors. The control system is developed by the fuzzy logic theory, and implemented with a multilayer neural network. First, a neural network-based architecture is introduced for fuzzy logic control. The characteristic rules and their membership functions of fuzzy systems are represented as the processing nodes in the neural network structure. The network structure and the parameter learning are performed simultaneously and online in the fuzzy-neural network system. The structure learning is based on the partition of input space. The parameter learning is based on the supervised gradient decent method, using a delta adaptation law. Using experimental setup, the performance of the proposed control system is evaluated under various operating conditions. Test results are presented and discussed in the report. The proposed learning control system has several advantages, namely, simple structure and learning capability, robustness and high tracking performance and few nodes at hidden layers. In comparison with the PI controller, the proposed fuzzy-neural network system can yield a better dynamic performance with shorter settling time, and without overshoot. Experimental results have shown that the proposed control system is adaptive and robust in responding to a wide range of operating conditions. In summary, the goal of this study is to design and implement-advanced servosystems to actuate control surfaces for flight vehicles, namely, aircraft and helicopters, missiles and interceptors, and mini- and micro-air vehicles.
Automatic approach to deriving fuzzy slope positions
NASA Astrophysics Data System (ADS)
Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi
2018-03-01
Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.
Modified fuzzy c-means applied to a Bragg grating-based spectral imager for material clustering
NASA Astrophysics Data System (ADS)
Rodríguez, Aida; Nieves, Juan Luis; Valero, Eva; Garrote, Estíbaliz; Hernández-Andrés, Javier; Romero, Javier
2012-01-01
We have modified the Fuzzy C-Means algorithm for an application related to segmentation of hyperspectral images. Classical fuzzy c-means algorithm uses Euclidean distance for computing sample membership to each cluster. We have introduced a different distance metric, Spectral Similarity Value (SSV), in order to have a more convenient similarity measure for reflectance information. SSV distance metric considers both magnitude difference (by the use of Euclidean distance) and spectral shape (by the use of Pearson correlation). Experiments confirmed that the introduction of this metric improves the quality of hyperspectral image segmentation, creating spectrally more dense clusters and increasing the number of correctly classified pixels.
Outline of a new approach to the analysis of complex systems and decision processes.
NASA Technical Reports Server (NTRS)
Zadeh, L. A.
1973-01-01
Development of a conceptual framework for dealing with systems which are too complex or too ill-defined to admit of precise quantitative analysis. The approach outlined is based on the premise that the key elements in human thinking are not numbers, but labels of fuzzy sets - i.e., classes of objects in which the transition from membership to nonmembership is gradual rather than abrupt. The approach in question has three main distinguishing features - namely, the use of so-called 'linguistic' variables in place of or in addition to numerical variables, the characterization of simple relations between variables by conditional fuzzy statements, and the characterization of complex relations by fuzzy algorithms.
Nonlinear system identification based on Takagi-Sugeno fuzzy modeling and unscented Kalman filter.
Vafamand, Navid; Arefi, Mohammad Mehdi; Khayatian, Alireza
2018-03-01
This paper proposes two novel Kalman-based learning algorithms for an online Takagi-Sugeno (TS) fuzzy model identification. The proposed approaches are designed based on the unscented Kalman filter (UKF) and the concept of dual estimation. Contrary to the extended Kalman filter (EKF) which utilizes derivatives of nonlinear functions, the UKF employs the unscented transformation. Consequently, non-differentiable membership functions can be considered in the structure of the TS models. This makes the proposed algorithms to be applicable for the online parameter calculation of wider classes of TS models compared to the recently published papers concerning the same issue. Furthermore, because of the great capability of the UKF in handling severe nonlinear dynamics, the proposed approaches can effectively approximate the nonlinear systems. Finally, numerical and practical examples are provided to show the advantages of the proposed approaches. Simulation results reveal the effectiveness of the proposed methods and performance improvement based on the root mean square (RMS) of the estimation error compared to the existing results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Analysis of hyperspectral fluorescence images for poultry skin tumor inspection
NASA Astrophysics Data System (ADS)
Kong, Seong G.; Chen, Yud-Ren; Kim, Intaek; Kim, Moon S.
2004-02-01
We present a hyperspectral fluorescence imaging system with a fuzzy inference scheme for detecting skin tumors on poultry carcasses. Hyperspectral images reveal spatial and spectral information useful for finding pathological lesions or contaminants on agricultural products. Skin tumors are not obvious because the visual signature appears as a shape distortion rather than a discoloration. Fluorescence imaging allows the visualization of poultry skin tumors more easily than reflectance. The hyperspectral image samples obtained for this poultry tumor inspection contain 65 spectral bands of fluorescence in the visible region of the spectrum at wavelengths ranging from 425 to 711 nm. The large amount of hyperspectral image data is compressed by use of a discrete wavelet transform in the spatial domain. Principal-component analysis provides an effective compressed representation of the spectral signal of each pixel in the spectral domain. A small number of significant features are extracted from two major spectral peaks of relative fluorescence intensity that have been identified as meaningful spectral bands for detecting tumors. A fuzzy inference scheme that uses a small number of fuzzy rules and Gaussian membership functions successfully detects skin tumors on poultry carcasses. Spatial-filtering techniques are used to significantly reduce false positives.
Understanding neurodynamical systems via Fuzzy Symbolic Dynamics.
Dobosz, Krzysztof; Duch, Włodzisław
2010-05-01
Neurodynamical systems are characterized by a large number of signal streams, measuring activity of individual neurons, local field potentials, aggregated electrical (EEG) or magnetic potentials (MEG), oxygen use (fMRI) or activity of simulated neurons. Various basis set decomposition techniques are used to analyze such signals, trying to discover components that carry meaningful information, but these techniques tell us little about the global activity of the whole system. A novel technique called Fuzzy Symbolic Dynamics (FSD) is introduced to help in understanding of the multidimensional dynamical system's behavior. It is based on a fuzzy partitioning of the signal space that defines a non-linear mapping of the system's trajectory to the low-dimensional space of membership function activations. This allows for visualization of the trajectory showing various aspects of observed signals that may be difficult to discover looking at individual components, or to notice otherwise. FSD mapping can be applied to raw signals, transformed signals (for example, ICA components), or to signals defined in the time-frequency domain. To illustrate the method two FSD visualizations are presented: a model system with artificial radial oscillatory sources, and the output layer (50 neurons) of Respiratory Rhythm Generator (RRG) composed of 300 spiking neurons. 2009 Elsevier Ltd. All rights reserved.
Fuzzy Nonlinear Proximal Support Vector Machine for Land Extraction Based on Remote Sensing Image
Zhong, Xiaomei; Li, Jianping; Dou, Huacheng; Deng, Shijun; Wang, Guofei; Jiang, Yu; Wang, Yongjie; Zhou, Zebing; Wang, Li; Yan, Fei
2013-01-01
Currently, remote sensing technologies were widely employed in the dynamic monitoring of the land. This paper presented an algorithm named fuzzy nonlinear proximal support vector machine (FNPSVM) by basing on ETM+ remote sensing image. This algorithm is applied to extract various types of lands of the city Da’an in northern China. Two multi-category strategies, namely “one-against-one” and “one-against-rest” for this algorithm were described in detail and then compared. A fuzzy membership function was presented to reduce the effects of noises or outliers on the data samples. The approaches of feature extraction, feature selection, and several key parameter settings were also given. Numerous experiments were carried out to evaluate its performances including various accuracies (overall accuracies and kappa coefficient), stability, training speed, and classification speed. The FNPSVM classifier was compared to the other three classifiers including the maximum likelihood classifier (MLC), back propagation neural network (BPN), and the proximal support vector machine (PSVM) under different training conditions. The impacts of the selection of training samples, testing samples and features on the four classifiers were also evaluated in these experiments. PMID:23936016
A case study on Measurement of Degree of Performance of an Industry by using Lean Score Technique
NASA Astrophysics Data System (ADS)
Srinivasa Rao, P.; Niraj, Malay
2016-09-01
Lean manufacturing concept is becoming a very important strategy for both academicians and practitioners in the recent times, and Japanese are using this practice for more than a decade. In this present scenario, this paper describes an innovative approach for lean performance evaluation by using fuzzy membership functions before and after implementing lean manufacturing techniques and formulating a model to establish the lean score through the lean attributes by eliminating major losses. It shows a systematic lean performance measurement by producing a final integrated unit less-score.
NASA Astrophysics Data System (ADS)
Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Yue, Wencong; Tan, Qian
2018-02-01
In this research, an export coefficient based inexact fuzzy bi-level multi-objective programming (EC-IFBLMOP) model was developed through integrating export coefficient model (ECM), interval parameter programming (IPP) and fuzzy parameter programming (FPP) within a bi-level multi-objective programming framework. The proposed EC-IFBLMOP model can effectively deal with the multiple uncertainties expressed as discrete intervals and fuzzy membership functions. Also, the complexities in agricultural systems, such as the cooperation and gaming relationship between the decision makers at different levels, can be fully considered in the model. The developed model was then applied to identify the optimal land use patterns and BMP implementing levels for agricultural nonpoint source (NPS) pollution management in a subcatchment in the upper stream watershed of the Miyun Reservoir in north China. The results of the model showed that the desired optimal land use patterns and implementing levels of best management of practices (BMPs) would be obtained. It is the gaming result between the upper- and lower-level decision makers, when the allowable discharge amounts of NPS pollutants were limited. Moreover, results corresponding to different decision scenarios could provide a set of decision alternatives for the upper- and lower-level decision makers to identify the most appropriate management strategy. The model has a good applicability and can be effectively utilized for agricultural NPS pollution management.
Hammad, Mohanad M; Elshenawy, Ahmed K; El Singaby, M I
2017-01-01
In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment.
Elshenawy, Ahmed K.; El Singaby, M.I.
2017-01-01
In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment. PMID:28683071
Finger vein identification using fuzzy-based k-nearest centroid neighbor classifier
NASA Astrophysics Data System (ADS)
Rosdi, Bakhtiar Affendi; Jaafar, Haryati; Ramli, Dzati Athiar
2015-02-01
In this paper, a new approach for personal identification using finger vein image is presented. Finger vein is an emerging type of biometrics that attracts attention of researchers in biometrics area. As compared to other biometric traits such as face, fingerprint and iris, finger vein is more secured and hard to counterfeit since the features are inside the human body. So far, most of the researchers focus on how to extract robust features from the captured vein images. Not much research was conducted on the classification of the extracted features. In this paper, a new classifier called fuzzy-based k-nearest centroid neighbor (FkNCN) is applied to classify the finger vein image. The proposed FkNCN employs a surrounding rule to obtain the k-nearest centroid neighbors based on the spatial distributions of the training images and their distance to the test image. Then, the fuzzy membership function is utilized to assign the test image to the class which is frequently represented by the k-nearest centroid neighbors. Experimental evaluation using our own database which was collected from 492 fingers shows that the proposed FkNCN has better performance than the k-nearest neighbor, k-nearest-centroid neighbor and fuzzy-based-k-nearest neighbor classifiers. This shows that the proposed classifier is able to identify the finger vein image effectively.
Fuzzy modelling and efficiency in health care systems.
Ozok, Ahmet F
2012-01-01
American Medical Institute reports that each year, because of the medical error, minimum fifty thousand people are dead. For a safety and quality medical system, it is important that information systems are used in health care systems. Health information applications help us to reduce the human error and to support patient care systems. Recently, it is reported that medical information systems applications have also some negative effect on all medical integral elements. The cost of health care information systems is about 4.6% of the total cost. In this paper, it is tried a risk determination model according to principles of fuzzy logic. The improvement of health care systems has become a very popular topic in Turkey recent years. Using necessary information system; it became possible to care patients in a safer way. However, using the necessary HIS tools to manage of administrative and clinical processes at hospitals became more important than before. For example; clinical work flows and communication among pharmacists, nurses and physicians are still not enough investigated. We use fuzzy modeling as a research strategy and developed sum fuzzy membership functions to minimize human error. In application in Turkey the results are significantly related with each other. Besides, the sign differences in health care information systems strongly effects of risk magnitude. The obtained results are discussed and some comments are added.
Real-time seam tracking control system based on line laser visions
NASA Astrophysics Data System (ADS)
Zou, Yanbiao; Wang, Yanbo; Zhou, Weilin; Chen, Xiangzhi
2018-07-01
A set of six-degree-of-freedom robotic welding automatic tracking platform was designed in this study to realize the real-time tracking of weld seams. Moreover, the feature point tracking method and the adaptive fuzzy control algorithm in the welding process were studied and analyzed. A laser vision sensor and its measuring principle were designed and studied, respectively. Before welding, the initial coordinate values of the feature points were obtained using morphological methods. After welding, the target tracking method based on Gaussian kernel was used to extract the real-time feature points of the weld. An adaptive fuzzy controller was designed to input the deviation value of the feature points and the change rate of the deviation into the controller. The quantization factors, scale factor, and weight function were adjusted in real time. The input and output domains, fuzzy rules, and membership functions were constantly updated to generate a series of smooth bias robot voltage. Three groups of experiments were conducted on different types of curve welds in a strong arc and splash noise environment using the welding current of 120 A short-circuit Metal Active Gas (MAG) Arc Welding. The tracking error was less than 0.32 mm and the sensor's metrical frequency can be up to 20 Hz. The end of the torch run smooth during welding. Weld trajectory can be tracked accurately, thereby satisfying the requirements of welding applications.
NASA Astrophysics Data System (ADS)
van den Dool, G.
2017-11-01
This study (van den Dool, 2017) is a proof of concept for a global predictive wildfire model, in which the temporal-spatial characteristics of wildfires are placed in a Geographical Information System (GIS), and the risk analysis is based on data-driven fuzzy logic functions. The data sources used in this model are available as global datasets, but subdivided into three pilot areas: North America (California/Nevada), Europe (Spain), and Asia (Mongolia), and are downscaled to the highest resolution (3-arc second). The GIS is constructed around three themes: topography, fuel availability and climate. From the topographical data, six derived sub-themes are created and converted to a fuzzy membership based on the catchment area statistics. The fuel availability score is a composite of four data layers: land cover, wood loads, biomass, biovolumes. As input for the climatological sub-model reanalysed daily averaged, weather-related data is used, which is accumulated to a global weekly time-window (to account for the uncertainty within the climatological model) and forms the temporal component of the model. The final product is a wildfire risk score (from 0 to 1) by week, representing the average wildfire risk in an area. To compute the potential wildfire risk the sub-models are combined usinga Multi-Criteria Approach, and the model results are validated against the area under the Receiver Operating Characteristic curve.
Ye, Jun
2016-01-01
An interval neutrosophic set (INS) is a subclass of a neutrosophic set and a generalization of an interval-valued intuitionistic fuzzy set, and then the characteristics of INS are independently described by the interval numbers of its truth-membership, indeterminacy-membership, and falsity-membership degrees. However, the exponential parameters (weights) of all the existing exponential operational laws of INSs and the corresponding exponential aggregation operators are crisp values in interval neutrosophic decision making problems. As a supplement, this paper firstly introduces new exponential operational laws of INSs, where the bases are crisp values or interval numbers and the exponents are interval neutrosophic numbers (INNs), which are basic elements in INSs. Then, we propose an interval neutrosophic weighted exponential aggregation (INWEA) operator and a dual interval neutrosophic weighted exponential aggregation (DINWEA) operator based on these exponential operational laws and introduce comparative methods based on cosine measure functions for INNs and dual INNs. Further, we develop decision-making methods based on the INWEA and DINWEA operators. Finally, a practical example on the selecting problem of global suppliers is provided to illustrate the applicability and rationality of the proposed methods.
Zhang, Jian-Hua; Xia, Jia-Jun; Garibaldi, Jonathan M; Groumpos, Petros P; Wang, Ru-Bin
2017-06-01
In human-machine (HM) hybrid control systems, human operator and machine cooperate to achieve the control objectives. To enhance the overall HM system performance, the discrete manual control task-load by the operator must be dynamically allocated in accordance with continuous-time fluctuation of psychophysiological functional status of the operator, so-called operator functional state (OFS). The behavior of the HM system is hybrid in nature due to the co-existence of discrete task-load (control) variable and continuous operator performance (system output) variable. Petri net is an effective tool for modeling discrete event systems, but for hybrid system involving discrete dynamics, generally Petri net model has to be extended. Instead of using different tools to represent continuous and discrete components of a hybrid system, this paper proposed a method of fuzzy inference Petri nets (FIPN) to represent the HM hybrid system comprising a Mamdani-type fuzzy model of OFS and a logical switching controller in a unified framework, in which the task-load level is dynamically reallocated between the operator and machine based on the model-predicted OFS. Furthermore, this paper used a multi-model approach to predict the operator performance based on three electroencephalographic (EEG) input variables (features) via the Wang-Mendel (WM) fuzzy modeling method. The membership function parameters of fuzzy OFS model for each experimental participant were optimized using artificial bee colony (ABC) evolutionary algorithm. Three performance indices, RMSE, MRE, and EPR, were computed to evaluate the overall modeling accuracy. Experiment data from six participants are analyzed. The results show that the proposed method (FIPN with adaptive task allocation) yields lower breakdown rate (from 14.8% to 3.27%) and higher human performance (from 90.30% to 91.99%). The simulation results of the FIPN-based adaptive HM (AHM) system on six experimental participants demonstrate that the FIPN framework provides an effective way to model and regulate/optimize the OFS in HM hybrid systems composed of continuous-time OFS model and discrete-event switching controller. Copyright © 2017 Elsevier B.V. All rights reserved.
Neuro-fuzzy model for estimating race and gender from geometric distances of human face across pose
NASA Astrophysics Data System (ADS)
Nanaa, K.; Rahman, M. N. A.; Rizon, M.; Mohamad, F. S.; Mamat, M.
2018-03-01
Classifying human face based on race and gender is a vital process in face recognition. It contributes to an index database and eases 3D synthesis of the human face. Identifying race and gender based on intrinsic factor is problematic, which is more fitting to utilizing nonlinear model for estimating process. In this paper, we aim to estimate race and gender in varied head pose. For this purpose, we collect dataset from PICS and CAS-PEAL databases, detect the landmarks and rotate them to the frontal pose. After geometric distances are calculated, all of distance values will be normalized. Implementation is carried out by using Neural Network Model and Fuzzy Logic Model. These models are combined by using Adaptive Neuro-Fuzzy Model. The experimental results showed that the optimization of address fuzzy membership. Model gives a better assessment rate and found that estimating race contributing to a more accurate gender assessment.
A novel, fuzzy-based air quality index (FAQI) for air quality assessment
NASA Astrophysics Data System (ADS)
Sowlat, Mohammad Hossein; Gharibi, Hamed; Yunesian, Masud; Tayefeh Mahmoudi, Maryam; Lotfi, Saeedeh
2011-04-01
The ever increasing level of air pollution in most areas of the world has led to development of a variety of air quality indices for estimation of health effects of air pollution, though the indices have their own limitations such as high levels of subjectivity. Present study, therefore, aimed at developing a novel, fuzzy-based air quality index (FAQI ) to handle such limitations. The index developed by present study is based on fuzzy logic that is considered as one of the most common computational methods of artificial intelligence. In addition to criteria air pollutants (i.e. CO, SO 2, PM 10, O 3, NO 2), benzene, toluene, ethylbenzene, xylene, and 1,3-butadiene were also taken into account in the index proposed, because of their considerable health effects. Different weighting factors were then assigned to each pollutant according to its priority. Trapezoidal membership functions were employed for classifications and the final index consisted of 72 inference rules. To assess the performance of the index, a case study was carried out employing air quality data at five different sampling stations in Tehran, Iran, from January 2008 to December 2009, results of which were then compared to the results obtained from USEPA air quality index (AQI). According to the results from present study, fuzzy-based air quality index is a comprehensive tool for classification of air quality and tends to produce accurate results. Therefore, it can be considered useful, reliable, and suitable for consideration by local authorities in air quality assessment and management schemes. Fuzzy-based air quality index (FAQI).
NASA Astrophysics Data System (ADS)
Tien Bui, Dieu; Pradhan, Biswajeet; Lofman, Owe; Revhaug, Inge; Dick, Oystein B.
2012-08-01
The objective of this study is to investigate a potential application of the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the Geographic Information System (GIS) as a relatively new approach for landslide susceptibility mapping in the Hoa Binh province of Vietnam. Firstly, a landslide inventory map with a total of 118 landslide locations was constructed from various sources. Then the landslide inventory was randomly split into a testing dataset 70% (82 landslide locations) for training the models and the remaining 30% (36 landslides locations) was used for validation purpose. Ten landslide conditioning factors such as slope, aspect, curvature, lithology, land use, soil type, rainfall, distance to roads, distance to rivers, and distance to faults were considered in the analysis. The hybrid learning algorithm and six different membership functions (Gaussmf, Gauss2mf, Gbellmf, Sigmf, Dsigmf, Psigmf) were applied to generate the landslide susceptibility maps. The validation dataset, which was not considered in the ANFIS modeling process, was used to validate the landslide susceptibility maps using the prediction rate method. The validation results showed that the area under the curve (AUC) for six ANFIS models vary from 0.739 to 0.848. It indicates that the prediction capability depends on the membership functions used in the ANFIS. The models with Sigmf (0.848) and Gaussmf (0.825) have shown the highest prediction capability. The results of this study show that landslide susceptibility mapping in the Hoa Binh province of Vietnam using the ANFIS approach is viable. As far as the performance of the ANFIS approach is concerned, the results appeared to be quite satisfactory, the zones determined on the map being zones of relative susceptibility.
NASA Astrophysics Data System (ADS)
Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.
2016-11-01
All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.
A new method based on Dempster-Shafer theory and fuzzy c-means for brain MRI segmentation
NASA Astrophysics Data System (ADS)
Liu, Jie; Lu, Xi; Li, Yunpeng; Chen, Xiaowu; Deng, Yong
2015-10-01
In this paper, a new method is proposed to decrease sensitiveness to motion noise and uncertainty in magnetic resonance imaging (MRI) segmentation especially when only one brain image is available. The method is approached with considering spatial neighborhood information by fusing the information of pixels with their neighbors with Dempster-Shafer (DS) theory. The basic probability assignment (BPA) of each single hypothesis is obtained from the membership function of applying fuzzy c-means (FCM) clustering to the gray levels of the MRI. Then multiple hypotheses are generated according to the single hypothesis. Then we update the objective pixel’s BPA by fusing the BPA of the objective pixel and those of its neighbors to get the final result. Some examples in MRI segmentation are demonstrated at the end of the paper, in which our method is compared with some previous methods. The results show that the proposed method is more effective than other methods in motion-blurred MRI segmentation.
NASA Astrophysics Data System (ADS)
Sugio, Tetsuya; Yamamoto, Masayoshi; Funabiki, Shigeyuki
The use of an SMES (Superconducting Magnetic Energy Storage) for smoothing power fluctuations in a railway substation has been discussed. This paper proposes a smoothing control method based on fuzzy reasoning for reducing the SMES capacity at substations along high-speed railways. The proposed smoothing control method comprises three countermeasures for reduction of the SMES capacity. The first countermeasure involves modification of rule 1 for smoothing out the fluctuating electric power to its average value. The other countermeasures involve the modification of the central value of the stored energy control in the SMES and revision of the membership function in rule 2 for reduction of the SMES capacity. The SMES capacity in the proposed smoothing control method is reduced by 49.5% when compared to that in the nonrevised control method. It is confirmed by computer simulations that the proposed control method is suitable for smoothing out power fluctuations in substations along high-speed railways and for reducing the SMES capacity.
NASA Astrophysics Data System (ADS)
Hsieh, Bieng-Zih; Lewis, Charles; Lin, Zsay-Shing
2005-04-01
The purpose of this study is to construct a fuzzy lithology system from well logs to identify formation lithology of a groundwater aquifer system in order to better apply conventional well logging interpretation in hydro-geologic studies because well log responses of aquifers are sometimes different from those of conventional oil and gas reservoirs. The input variables for this system are the gamma-ray log reading, the separation between the spherically focused resistivity and the deep very-enhanced resistivity curves, and the borehole compensated sonic log reading. The output variable is groundwater formation lithology. All linguistic variables are based on five linguistic terms with a trapezoidal membership function. In this study, 50 data sets are clustered into 40 training sets and 10 testing sets for constructing the fuzzy lithology system and validating the ability of system prediction, respectively. The rule-based database containing 12 fuzzy lithology rules is developed from the training data sets, and the rule strength is weighted. A Madani inference system and the bisector of area defuzzification method are used for fuzzy inference and defuzzification. The success of training performance and the prediction ability were both 90%, with the calculated correlation of training and testing equal to 0.925 and 0.928, respectively. Well logs and core data from a clastic aquifer (depths 100-198 m) in the Shui-Lin area of west-central Taiwan are used for testing the system's construction. Comparison of results from core analysis, well logging and the fuzzy lithology system indicates that even though the well logging method can easily define a permeable sand formation, distinguishing between silts and sands and determining grain size variation in sands is more subjective. These shortcomings can be improved by a fuzzy lithology system that is able to yield more objective decisions than some conventional methods of log interpretation.
NASA Astrophysics Data System (ADS)
Sdao, F.; Lioi, D. S.; Pascale, S.; Caniani, D.; Mancini, I. M.
2013-02-01
The complete assessment of landslide susceptibility needs uniformly distributed detailed information on the territory. This information, which is related to the temporal occurrence of landslide phenomena and their causes, is often fragmented and heterogeneous. The present study evaluates the landslide susceptibility map of the Natural Archaeological Park of Matera (Southern Italy) (Sassi and area Rupestrian Churches sites). The assessment of the degree of "spatial hazard" or "susceptibility" was carried out by the spatial prediction regardless of the return time of the events. The evaluation model for the susceptibility presented in this paper is very focused on the use of innovative techniques of artificial intelligence such as Neural Network, Fuzzy Logic and Neuro-fuzzy Network. The method described in this paper is a novel technique based on a neuro-fuzzy system. It is able to train data like neural network and it is able to shape and control uncertain and complex systems like a fuzzy system. This methodology allows us to derive susceptibility maps of the study area. These data are obtained from thematic maps representing the parameters responsible for the instability of the slopes. The parameters used in the analysis are: plan curvature, elevation (DEM), angle and aspect of the slope, lithology, fracture density, kinematic hazard index of planar and wedge sliding and toppling. Moreover, this method is characterized by the network training which uses a training matrix, consisting of input and output training data, which determine the landslide susceptibility. The neuro-fuzzy method was integrated to a sensitivity analysis in order to overcome the uncertainty linked to the used membership functions. The method was compared to the landslide inventory map and was validated by applying three methods: a ROC (Receiver Operating Characteristic) analysis, a confusion matrix and a SCAI method. The developed neuro-fuzzy method showed a good performance in the determination of the landslide susceptibility map.
Fuzzy similarity measures for ultrasound tissue characterization
NASA Astrophysics Data System (ADS)
Emara, Salem M.; Badawi, Ahmed M.; Youssef, Abou-Bakr M.
1995-03-01
Computerized ultrasound tissue characterization has become an objective means for diagnosis of diseases. It is difficult to differentiate diffuse liver diseases, namely cirrhotic and fatty liver from a normal one, by visual inspection from the ultrasound images. The visual criteria for differentiating diffused diseases is rather confusing and highly dependent upon the sonographer's experience. The need for computerized tissue characterization is thus justified to quantitatively assist the sonographer for accurate differentiation and to minimize the degree of risk from erroneous interpretation. In this paper we used the fuzzy similarity measure as an approximate reasoning technique to find the maximum degree of matching between an unknown case defined by a feature vector and a family of prototypes (knowledge base). The feature vector used for the matching process contains 8 quantitative parameters (textural, acoustical, and speckle parameters) extracted from the ultrasound image. The steps done to match an unknown case with the family of prototypes (cirr, fatty, normal) are: Choosing the membership functions for each parameter, then obtaining the fuzzification matrix for the unknown case and the family of prototypes, then by the linguistic evaluation of two fuzzy quantities we obtain the similarity matrix, then by a simple aggregation method and the fuzzy integrals we obtain the degree of similarity. Finally, we find that the similarity measure results are comparable to the neural network classification techniques and it can be used in medical diagnosis to determine the pathology of the liver and to monitor the extent of the disease.
NASA Astrophysics Data System (ADS)
Yu, Haiyan; Fan, Jiulun
2017-12-01
Local thresholding methods for uneven lighting image segmentation always have the limitations that they are very sensitive to noise injection and that the performance relies largely upon the choice of the initial window size. This paper proposes a novel algorithm for segmenting uneven lighting images with strong noise injection based on non-local spatial information and intuitionistic fuzzy theory. We regard an image as a gray wave in three-dimensional space, which is composed of many peaks and troughs, and these peaks and troughs can divide the image into many local sub-regions in different directions. Our algorithm computes the relative characteristic of each pixel located in the corresponding sub-region based on fuzzy membership function and uses it to replace its absolute characteristic (its gray level) to reduce the influence of uneven light on image segmentation. At the same time, the non-local adaptive spatial constraints of pixels are introduced to avoid noise interference with the search of local sub-regions and the computation of local characteristics. Moreover, edge information is also taken into account to avoid false peak and trough labeling. Finally, a global method based on intuitionistic fuzzy entropy is employed on the wave transformation image to obtain the segmented result. Experiments on several test images show that the proposed method has excellent capability of decreasing the influence of uneven illumination on images and noise injection and behaves more robustly than several classical global and local thresholding methods.
Determining factors influencing survival of breast cancer by fuzzy logistic regression model.
Nikbakht, Roya; Bahrampour, Abbas
2017-01-01
Fuzzy logistic regression model can be used for determining influential factors of disease. This study explores the important factors of actual predictive survival factors of breast cancer's patients. We used breast cancer data which collected by cancer registry of Kerman University of Medical Sciences during the period of 2000-2007. The variables such as morphology, grade, age, and treatments (surgery, radiotherapy, and chemotherapy) were applied in the fuzzy logistic regression model. Performance of model was determined in terms of mean degree of membership (MDM). The study results showed that almost 41% of patients were in neoplasm and malignant group and more than two-third of them were still alive after 5-year follow-up. Based on the fuzzy logistic model, the most important factors influencing survival were chemotherapy, morphology, and radiotherapy, respectively. Furthermore, the MDM criteria show that the fuzzy logistic regression have a good fit on the data (MDM = 0.86). Fuzzy logistic regression model showed that chemotherapy is more important than radiotherapy in survival of patients with breast cancer. In addition, another ability of this model is calculating possibilistic odds of survival in cancer patients. The results of this study can be applied in clinical research. Furthermore, there are few studies which applied the fuzzy logistic models. Furthermore, we recommend using this model in various research areas.
Adaptive fuzzy system for 3-D vision
NASA Technical Reports Server (NTRS)
Mitra, Sunanda
1993-01-01
An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.
Efficient fuzzy C-means architecture for image segmentation.
Li, Hui-Ya; Hwang, Wen-Jyi; Chang, Chia-Yen
2011-01-01
This paper presents a novel VLSI architecture for image segmentation. The architecture is based on the fuzzy c-means algorithm with spatial constraint for reducing the misclassification rate. In the architecture, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. In addition, an efficient pipelined circuit is used for the updating process for accelerating the computational speed. Experimental results show that the the proposed circuit is an effective alternative for real-time image segmentation with low area cost and low misclassification rate.
Design of fuzzy cognitive maps using neural networks for predicting chaotic time series.
Song, H J; Miao, C Y; Shen, Z Q; Roel, W; Maja, D H; Francky, C
2010-12-01
As a powerful paradigm for knowledge representation and a simulation mechanism applicable to numerous research and application fields, Fuzzy Cognitive Maps (FCMs) have attracted a great deal of attention from various research communities. However, the traditional FCMs do not provide efficient methods to determine the states of the investigated system and to quantify causalities which are the very foundation of the FCM theory. Therefore in many cases, constructing FCMs for complex causal systems greatly depends on expert knowledge. The manually developed models have a substantial shortcoming due to model subjectivity and difficulties with accessing its reliability. In this paper, we propose a fuzzy neural network to enhance the learning ability of FCMs so that the automatic determination of membership functions and quantification of causalities can be incorporated with the inference mechanism of conventional FCMs. In this manner, FCM models of the investigated systems can be automatically constructed from data, and therefore are independent of the experts. Furthermore, we employ mutual subsethood to define and describe the causalities in FCMs. It provides more explicit interpretation for causalities in FCMs and makes the inference process easier to understand. To validate the performance, the proposed approach is tested in predicting chaotic time series. The simulation studies show the effectiveness of the proposed approach. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fetita, C.; Chang-Chien, K. C.; Brillet, P. Y.; Pr"teux, F.; Chang, R. F.
2012-03-01
Our study aims at developing a computer-aided diagnosis (CAD) system for fully automatic detection and classification of pathological lung parenchyma patterns in idiopathic interstitial pneumonias (IIP) and emphysema using multi-detector computed tomography (MDCT). The proposed CAD system is based on three-dimensional (3-D) mathematical morphology, texture and fuzzy logic analysis, and can be divided into four stages: (1) a multi-resolution decomposition scheme based on a 3-D morphological filter was exploited to discriminate the lung region patterns at different analysis scales. (2) An additional spatial lung partitioning based on the lung tissue texture was introduced to reinforce the spatial separation between patterns extracted at the same resolution level in the decomposition pyramid. Then, (3) a hierarchic tree structure was exploited to describe the relationship between patterns at different resolution levels, and for each pattern, six fuzzy membership functions were established for assigning a probability of association with a normal tissue or a pathological target. Finally, (4) a decision step exploiting the fuzzy-logic assignments selects the target class of each lung pattern among the following categories: normal (N), emphysema (EM), fibrosis/honeycombing (FHC), and ground glass (GDG). According to a preliminary evaluation on an extended database, the proposed method can overcome the drawbacks of a previously developed approach and achieve higher sensitivity and specificity.
Study on a Biometric Authentication Model based on ECG using a Fuzzy Neural Network
NASA Astrophysics Data System (ADS)
Kim, Ho J.; Lim, Joon S.
2018-03-01
Traditional authentication methods use numbers or graphic passwords and thus involve the risk of loss or theft. Various studies are underway regarding biometric authentication because it uses the unique biometric data of a human being. Biometric authentication technology using ECG from biometric data involves signals that record electrical stimuli from the heart. It is difficult to manipulate and is advantageous in that it enables unrestrained measurements from sensors that are attached to the skin. This study is on biometric authentication methods using the neural network with weighted fuzzy membership functions (NEWFM). In the biometric authentication process, normalization and the ensemble average is applied during preprocessing, characteristics are extracted using Haar-wavelets, and a registration process called “training” is performed in the fuzzy neural network. In the experiment, biometric authentication was performed on 73 subjects in the Physionet Database. 10-40 ECG waveforms were tested for use in the registration process, and 15 ECG waveforms were deemed the appropriate number for registering ECG waveforms. 1 ECG waveforms were used during the authentication stage to conduct the biometric authentication test. Upon testing the proposed biometric authentication method based on 73 subjects from the Physionet Database, the TAR was 98.32% and FAR was 5.84%.
Modeling an internal gear pump
NASA Astrophysics Data System (ADS)
Chen, Zongbin; Xu, Rongwu; He, Lin; Liao, Jian
2018-05-01
Considering the nature and characteristics of construction waste piles, this paper analyzed the factors affecting the stability of the slope of construction waste piles, and established the system of the assessment indexes for the slope failure risks of construction waste piles. Based on the basic principles and methods of fuzzy mathematics, the factor set and the remark set were established. The membership grade of continuous factor indexes is determined using the "ridge row distribution" function, while that for the discrete factor indexes was determined by the Delphi Method. For the weight of factors, the subjective weight was determined by the Analytic Hierarchy Process (AHP) and objective weight by the entropy weight method. And the distance function was introduced to determine the combination coefficient. This paper established a fuzzy comprehensive assessment model of slope failure risks of construction waste piles, and assessed pile slopes in the two dimensions of hazard and vulnerability. The root mean square of the hazard assessment result and vulnerability assessment result was the final assessment result. The paper then used a certain construction waste pile slope as the example for analysis, assessed the risks of the four stages of a landfill, verified the assessment model and analyzed the slope's failure risks and preventive measures against a slide.
A GIS-based fuzzy classification for mapping the agricultural soils for N-fertilizers use.
Assimakopoulos, J H; Kalivas, D P; Kollias, V J
2003-06-20
Special attention should be paid to the choice of the proper N-fertilizer, in order to avoid a further acidification and degradation of acid soils and at the same time to improve nitrogen use efficiency and to limit the nitrate pollution of the ground waters. Therefore, the risk of leaching of the fertilizer and of the acidification of the soils must be considered prior to any N-fertilizer application. The application of N-fertilizers to the soil requires a good knowledge of the soil-fertilizer relationship, which those who are planning the fertilization policy and/or applying it might not have. In this study, a fuzzy classification methodology is presented for mapping the agricultural soils according to the kind and the rate of application of N-fertilizer that should be used. The values of pH, clay, sand and carbonates soil variables are estimated at each point of an area by applying geostatistical techniques. Using the pH values three fuzzy sets: "no-risk-acidification"; "low-risk-acidification"; and "high-risk-acidification" are produced and the memberships of each point to the three sets are estimated. Additionally, from the clay and sand values the membership grade to the fuzzy set "risk-of-leaching" is calculated. The parameters and their values, which are used for the construction of the fuzzy sets, are based on the literature, the existing knowledge and the experimentation, of the soil-fertilizer relationships and provide a consistent mechanism for mapping the soils according to the type of N-fertilizers that should be applied and the rate of applications. The maps produced can easily be interpreted and used by non-experts in the application of the fertilization policy at national, local and farm level. The methodology is presented through a case study using data from the Amfilochia area, west Greece.
Optimal mapping of site-specific multivariate soil properties.
Burrough, P A; Swindell, J
1997-01-01
This paper demonstrates how geostatistics and fuzzy k-means classification can be used together to improve our practical understanding of crop yield-site response. Two aspects of soil are important for precision farming: (a) sensible classes for a given crop, and (b) their spatial variation. Local site classifications are more sensitive than general taxonomies and can be provided by the method of fuzzy k-means to transform a multivariate data set with i attributes measured at n sites into k overlapping classes; each site has a membership value mk for each class in the range 0-1. Soil variation is of interest when conditions vary over patches manageable by agricultural machinery. The spatial variation of each of the k classes can be analysed by computing the variograms of mk over the n sites. Memberships for each of the k classes can be mapped by ordinary kriging. Areas of class dominance and the transition zones between them can be identified by an inter-class confusion index; reducing the zones to boundaries gives crisp maps of dominant soil groups that can be used to guide precision farming equipment. Automation of the procedure is straightforward given sufficient data. Time variations in soil properties can be automatically incorporated in the computation of membership values. The procedures are illustrated with multi-year crop yield data collected from a 5 ha demonstration field at the Royal Agricultural College in Cirencester, UK.
Learning fuzzy logic control system
NASA Technical Reports Server (NTRS)
Lung, Leung Kam
1994-01-01
The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the D.C. motor. Furthermore, the LFLC has better performance in rise time, settling time and steady state error than to the conventional PI controller. This abstract accurately represents the content of the candidate's thesis. I recommend its publication.
Aguilar-González, Myrna E; Luna-González, Antonio; Aguirre, Alonso; Zavala-Norzagaray, Alan A; Mundo-Ocampo, Manuel; González-Ocampo, Héctor A
2014-01-01
In this study, 10% of all registered fishermen in the coastal towns of Navachiste in Sinaloa, in northwestern Mexico, answered a survey designed to collect data on their perceptions of the following topics: the impact of turtle meat consumption; human health; bycatch; illegal turtle fishing; the illegal sea turtle market; the local economy; pollution; environmental education; the success of protective legislation; and sea turtle-based ecotourism. Perceptions were analyzed using the fuzzy logic method through classification into 5 fuzzy membership sets: VL, very low; L, low; M, moderate; H, high; VH, very high. The 9 topics generated decision areas upon applying fuzzy inference that revealed the membership level of the answers in each fuzzy set. The economic potential of sea turtle-based ecotourism and the economic profitability of the illegal turtle meat market were perceived as VL. Conservation legislation was perceived as H, although inefficiently applied due to corruption. Ecotourism and impacts on sea turtles were perceived as VL, because they were deemed unprofitable activities at the individual and community levels. Environmental education was perceived as L, because it centers on nesting, hatching and releasing turtles and is directed at elementary and middle-school students. While fishers perceive a serious negative impact of fishing activities on sea turtles in the San Ignacio-Navachiste-Macapule area, they do not see themselves individually as part of the problem. Achieving sea turtle conservation in this region requires: suitable ecotourism infrastructure, government investments in promotion, and studies to estimate the minimum number of tourists needed to assure profitability. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
Fuzzy Classification of Ocean Color Satellite Data for Bio-optical Algorithm Constituent Retrievals
NASA Technical Reports Server (NTRS)
Campbell, Janet W.
1998-01-01
The ocean has been traditionally viewed as a 2 class system. Morel and Prieur (1977) classified ocean water according to the dominant absorbent particle suspended in the water column. Case 1 is described as having a high concentration of phytoplankton (and detritus) relative to other particles. Conversely, case 2 is described as having inorganic particles such as suspended sediments in high concentrations. Little work has gone into the problem of mixing bio-optical models for these different water types. An approach is put forth here to blend bio-optical algorithms based on a fuzzy classification scheme. This scheme involves two procedures. First, a clustering procedure identifies classes and builds class statistics from in-situ optical measurements. Next, a classification procedure assigns satellite pixels partial memberships to these classes based on their ocean color reflectance signature. These membership assignments can be used as the basis for a weighting retrievals from class-specific bio-optical algorithms. This technique is demonstrated with in-situ optical measurements and an image from the SeaWiFS ocean color satellite.
An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination.
Lin, Chin-Teng; Pal, Nikhil R; Wu, Shang-Lin; Liu, Yu-Ting; Lin, Yang-Yin
2015-07-01
We propose an integrated mechanism for discarding derogatory features and extraction of fuzzy rules based on an interval type-2 neural fuzzy system (NFS)-in fact, it is a more general scheme that can discard bad features, irrelevant antecedent clauses, and even irrelevant rules. High-dimensional input variable and a large number of rules not only enhance the computational complexity of NFSs but also reduce their interpretability. Therefore, a mechanism for simultaneous extraction of fuzzy rules and reducing the impact of (or eliminating) the inferior features is necessary. The proposed approach, namely an interval type-2 Neural Fuzzy System for online System Identification and Feature Elimination (IT2NFS-SIFE), uses type-2 fuzzy sets to model uncertainties associated with information and data in designing the knowledge base. The consequent part of the IT2NFS-SIFE is of Takagi-Sugeno-Kang type with interval weights. The IT2NFS-SIFE possesses a self-evolving property that can automatically generate fuzzy rules. The poor features can be discarded through the concept of a membership modulator. The antecedent and modulator weights are learned using a gradient descent algorithm. The consequent part weights are tuned via the rule-ordered Kalman filter algorithm to enhance learning effectiveness. Simulation results show that IT2NFS-SIFE not only simplifies the system architecture by eliminating derogatory/irrelevant antecedent clauses, rules, and features but also maintains excellent performance.
Volumetric ambient occlusion for real-time rendering and games.
Szirmay-Kalos, L; Umenhoffer, T; Toth, B; Szecsi, L; Sbert, M
2010-01-01
This new algorithm, based on GPUs, can compute ambient occlusion to inexpensively approximate global-illumination effects in real-time systems and games. The first step in deriving this algorithm is to examine how ambient occlusion relates to the physically founded rendering equation. The correspondence stems from a fuzzy membership function that defines what constitutes nearby occlusions. The next step is to develop a method to calculate ambient occlusion in real time without precomputation. The algorithm is based on a novel interpretation of ambient occlusion that measures the relative volume of the visible part of the surface's tangent sphere. The new formula's integrand has low variation and thus can be estimated accurately with a few samples.
Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping
NASA Astrophysics Data System (ADS)
Yousefi, Mahyar; Carranza, Emmanuel John M.
2015-01-01
Complexities of geological processes portrayed as certain feature in a map (e.g., faults) are natural sources of uncertainties in decision-making for exploration of mineral deposits. Besides natural sources of uncertainties, knowledge-driven (e.g., fuzzy logic) mineral prospectivity mapping (MPM) is also plagued and incurs further uncertainty in subjective judgment of analyst when there is no reliable proven value of evidential scores corresponding to relative importance of geological features that can directly be measured. In this regard, analysts apply expert opinion to assess relative importance of spatial evidences as meaningful decision support. This paper aims for fuzzification of continuous spatial data used as proxy evidence to facilitate and to support fuzzy MPM to generate exploration target areas for further examination of undiscovered deposits. In addition, this paper proposes to adapt the concept of expected value to further improve fuzzy logic MPM because the analysis of uncertain variables can be presented in terms of their expected value. The proposed modified expected value approach to MPM is not only a multi-criteria approach but it also treats uncertainty of geological processes a depicted by maps or spatial data in term of biased weighting more realistically in comparison with classified evidential maps because fuzzy membership scores are defined continuously whereby, for example, there is no need to categorize distances from evidential features to proximity classes using arbitrary intervals. The proposed continuous weighting approach and then integrating the weighted evidence layers by using modified expected value function, described in this paper can be used efficiently in either greenfields or brownfields.
Aydi, Abdelwaheb; Abichou, Tarek; Nasr, Imen Hamdi; Louati, Mourad; Zairi, Moncef
2016-01-01
This paper presents a geographic information system-based multi-criteria site selection tool of an olive mill wastewater (OMW) disposal site in Sidi Bouzid Region, Tunisia. The multi-criteria decision framework integrates ten constraints and six factors that relate to environmental and economic concerns, and builds a hierarchy model for OMW disposal site suitability. The methodology is used for preliminary assessment of the most suitable OMW disposal sites by combining fuzzy set theory and analytic hierarchy process (AHP). The fuzzy set theory is used to standardize factors using different fuzzy membership functions while the AHP is used to establish the relative importance of the criteria. The AHP makes pairwise comparisons of relative importance between hierarchy elements grouped by both environmental and economic decision criteria. The OMW disposal site suitability is achieved by applying a weighted linear combination that uses a comparison matrix to aggregate different importance scenarios associated with environmental and economic objectives. Three different scenarios generated by different weights applied to the two objectives. The scenario (a) assigns a weight of 0.75 to the environmental and 0.25 to the economic objective, scenario (b) has equal weights, and scenario (c) features weights of 0.25 and 0.75 for environmental and economic objectives, respectively. The results from this study assign the least suitable OMW disposal site of 2.5 % when environmental and economic objectives are rated equally, while a more suitable OMW disposal site of 1.0 % is generated when the economic objective is rated higher.
A trainable decisions-in decision-out (DEI-DEO) fusion system
NASA Astrophysics Data System (ADS)
Dasarathy, Belur V.
1998-03-01
Most of the decision fusion systems proposed hitherto in the literature for multiple data source (sensor) environments operate on the basis of pre-defined fusion logic, be they crisp (deterministic), probabilistic, or fuzzy in nature, with no specific learning phase. The fusion systems that are trainable, i.e., ones that have a learning phase, mostly operate in the features-in-decision-out mode, which essentially reduces the fusion process functionally to a pattern classification task in the joint feature space. In this study, a trainable decisions-in-decision-out fusion system is described which estimates a fuzzy membership distribution spread across the different decision choices based on the performance of the different decision processors (sensors) corresponding to each training sample (object) which is associated with a specific ground truth (true decision). Based on a multi-decision space histogram analysis of the performance of the different processors over the entire training data set, a look-up table associating each cell of the histogram with a specific true decision is generated which forms the basis for the operational phase. In the operational phase, for each set of decision inputs, a pointer to the look-up table learnt previously is generated from which a fused decision is derived. This methodology, although primarily designed for fusing crisp decisions from the multiple decision sources, can be adapted for fusion of fuzzy decisions as well if such are the inputs from these sources. Examples, which illustrate the benefits and limitations of the crisp and fuzzy versions of the trainable fusion systems, are also included.
Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar
2014-11-01
Drilling of bone is a common procedure in orthopedic surgery to produce hole for screw insertion to fixate the fracture devices and implants. The increase in temperature during such a procedure increases the chances of thermal invasion of bone which can cause thermal osteonecrosis resulting in the increase of healing time or reduction in the stability and strength of the fixation. Therefore, drilling of bone with minimum temperature is a major challenge for orthopedic fracture treatment. This investigation discusses the use of fuzzy logic and Taguchi methodology for predicting and minimizing the temperature produced during bone drilling. The drilling experiments have been conducted on bovine bone using Taguchi's L25 experimental design. A fuzzy model is developed for predicting the temperature during orthopedic drilling as a function of the drilling process parameters (point angle, helix angle, feed rate and cutting speed). Optimum bone drilling process parameters for minimizing the temperature are determined using Taguchi method. The effect of individual cutting parameters on the temperature produced is evaluated using analysis of variance. The fuzzy model using triangular and trapezoidal membership predicts the temperature within a maximum error of ±7%. Taguchi analysis of the obtained results determined the optimal drilling conditions for minimizing the temperature as A3B5C1.The developed system will simplify the tedious task of modeling and determination of the optimal process parameters to minimize the bone drilling temperature. It will reduce the risk of thermal osteonecrosis and can be very effective for the online condition monitoring of the process. © IMechE 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrasekhar Potluri,; Madhavi Anugolu; Marco P. Schoen
2013-08-01
In this work, an array of three surface Electrography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy,more » the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusionbased approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.« less
NASA Astrophysics Data System (ADS)
Gorsevski, Pece V.; Jankowski, Piotr
2010-08-01
The Kalman recursive algorithm has been very widely used for integrating navigation sensor data to achieve optimal system performances. This paper explores the use of the Kalman filter to extend the aggregation of spatial multi-criteria evaluation (MCE) and to find optimal solutions with respect to a decision strategy space where a possible decision rule falls. The approach was tested in a case study in the Clearwater National Forest in central Idaho, using existing landslide datasets from roaded and roadless areas and terrain attributes. In this approach, fuzzy membership functions were used to standardize terrain attributes and develop criteria, while the aggregation of the criteria was achieved by the use of a Kalman filter. The approach presented here offers advantages over the classical MCE theory because the final solution includes both the aggregated solution and the areas of uncertainty expressed in terms of standard deviation. A comparison of this methodology with similar approaches suggested that this approach is promising for predicting landslide susceptibility and further application as a spatial decision support system.
A Hybrid Fuzzy Model for Lean Product Development Performance Measurement
NASA Astrophysics Data System (ADS)
Osezua Aikhuele, Daniel; Mohd Turan, Faiz
2016-02-01
In the effort for manufacturing companies to meet up with the emerging consumer demands for mass customized products, many are turning to the application of lean in their product development process, and this is gradually moving from being a competitive advantage to a necessity. However, due to lack of clear understanding of the lean performance measurements, many of these companies are unable to implement and fully integrated the lean principle into their product development process. Extensive literature shows that only few studies have focus systematically on the lean product development performance (LPDP) evaluation. In order to fill this gap, the study therefore proposed a novel hybrid model based on Fuzzy Reasoning Approach (FRA), and the extension of Fuzzy-AHP and Fuzzy-TOPSIS methods for the assessment of the LPDP. Unlike the existing methods, the model considers the importance weight of each of the decision makers (Experts) since the performance criteria/attributes are required to be rated, and these experts have different level of expertise. The rating is done using a new fuzzy Likert rating scale (membership-scale) which is designed such that it can address problems resulting from information lost/distortion due to closed-form scaling and the ordinal nature of the existing Likert scale.
Lee, Hwa-Young; Kang, Minah
2015-01-01
This paper aims to investigate whether good governance of a recipient country is a necessary condition and what combinations of factors including governance factor are sufficient for low prevalence of HIV/AIDS in HIV/AIDS aid recipient countries during the period of 2002-2010. For this, Fuzzy-set Qualitative Comparative Analysis (QCA) was used. Nine potential attributes for a causal configuration for low HIV/AIDS prevalence were identified through a review of previous studies. For each factor, full membership, full non-membership, and crossover point were specified using both author's knowledge and statistical information of the variables. Calibration and conversion to a fuzzy-set score were conducted using Fs/QCA 2.0 and probabilistic tests for necessary and sufficiency were performed by STATA 11. The result suggested that governance is the necessary condition for low prevalence of HIV/AIDS in a recipient country. From sufficiency test, two pathways were resulted. The low level of governance can lead to low level of HIV/AIDS prevalence when it is combined with other favorable factors, especially, low economic inequality, high economic development and high health expenditure. However, strengthening governance is a more practical measure to keep low prevalence of HIV/AIDS because it is hard to achieve both economic development and economic quality. This study highlights that a comprehensive policy measure is the key for achieving low prevalence of HIV/AIDS in recipient country. PMID:26617451
Lee, Hwa-Young; Yang, Bong-Min; Kang, Minah
2015-11-01
This paper aims to investigate whether good governance of a recipient country is a necessary condition and what combinations of factors including governance factor are sufficient for low prevalence of HIV/AIDS in HIV/AIDS aid recipient countries during the period of 2002-2010. For this, Fuzzy-set Qualitative Comparative Analysis (QCA) was used. Nine potential attributes for a causal configuration for low HIV/AIDS prevalence were identified through a review of previous studies. For each factor, full membership, full non-membership, and crossover point were specified using both author's knowledge and statistical information of the variables. Calibration and conversion to a fuzzy-set score were conducted using Fs/QCA 2.0 and probabilistic tests for necessary and sufficiency were performed by STATA 11. The result suggested that governance is the necessary condition for low prevalence of HIV/AIDS in a recipient country. From sufficiency test, two pathways were resulted. The low level of governance can lead to low level of HIV/AIDS prevalence when it is combined with other favorable factors, especially, low economic inequality, high economic development and high health expenditure. However, strengthening governance is a more practical measure to keep low prevalence of HIV/AIDS because it is hard to achieve both economic development and economic quality. This study highlights that a comprehensive policy measure is the key for achieving low prevalence of HIV/AIDS in recipient country.
Unsupervised fuzzy segmentation of 3D magnetic resonance brain images
NASA Astrophysics Data System (ADS)
Velthuizen, Robert P.; Hall, Lawrence O.; Clarke, Laurence P.; Bensaid, Amine M.; Arrington, J. A.; Silbiger, Martin L.
1993-07-01
Unsupervised fuzzy methods are proposed for segmentation of 3D Magnetic Resonance images of the brain. Fuzzy c-means (FCM) has shown promising results for segmentation of single slices. FCM has been investigated for volume segmentations, both by combining results of single slices and by segmenting the full volume. Different strategies and initializations have been tried. In particular, two approaches have been used: (1) a method by which, iteratively, the furthest sample is split off to form a new cluster center, and (2) the traditional FCM in which the membership grade matrix is initialized in some way. Results have been compared with volume segmentations by k-means and with two supervised methods, k-nearest neighbors and region growing. Results of individual segmentations are presented as well as comparisons on the application of the different methods to a number of tumor patient data sets.
Fuzzy-logic detection and probability of hail exploiting short-range X-band weather radar
NASA Astrophysics Data System (ADS)
Capozzi, Vincenzo; Picciotti, Errico; Mazzarella, Vincenzo; Marzano, Frank Silvio; Budillon, Giorgio
2018-03-01
This work proposes a new method for hail precipitation detection and probability, based on single-polarization X-band radar measurements. Using a dataset consisting of reflectivity volumes, ground truth observations and atmospheric sounding data, a probability of hail index, which provides a simple estimate of the hail potential, has been trained and adapted within Naples metropolitan environment study area. The probability of hail has been calculated starting by four different hail detection methods. The first two, based on (1) reflectivity data and temperature measurements and (2) on vertically-integrated liquid density product, respectively, have been selected from the available literature. The other two techniques are based on combined criteria of the above mentioned methods: the first one (3) is based on the linear discriminant analysis, whereas the other one (4) relies on the fuzzy-logic approach. The latter is an innovative criterion based on a fuzzyfication step performed through ramp membership functions. The performances of the four methods have been tested using an independent dataset: the results highlight that the fuzzy-oriented combined method performs slightly better in terms of false alarm ratio, critical success index and area under the relative operating characteristic. An example of application of the proposed hail detection and probability products is also presented for a relevant hail event, occurred on 21 July 2014.
A fast algorithm to compute precise type-2 centroids for real-time control applications.
Chakraborty, Sumantra; Konar, Amit; Ralescu, Anca; Pal, Nikhil R
2015-02-01
An interval type-2 fuzzy set (IT2 FS) is characterized by its upper and lower membership functions containing all possible embedded fuzzy sets, which together is referred to as the footprint of uncertainty (FOU). The FOU results in a span of uncertainty measured in the defuzzified space and is determined by the positional difference of the centroids of all the embedded fuzzy sets taken together. This paper provides a closed-form formula to evaluate the span of uncertainty of an IT2 FS. The closed-form formula offers a precise measurement of the degree of uncertainty in an IT2 FS with a runtime complexity less than that of the classical iterative Karnik-Mendel algorithm and other formulations employing the iterative Newton-Raphson algorithm. This paper also demonstrates a real-time control application using the proposed closed-form formula of centroids with reduced root mean square error and computational overhead than those of the existing methods. Computer simulations for this real-time control application indicate that parallel realization of the IT2 defuzzification outperforms its competitors with respect to maximum overshoot even at high sampling rates. Furthermore, in the presence of measurement noise in system (plant) states, the proposed IT2 FS based scheme outperforms its type-1 counterpart with respect to peak overshoot and root mean square error in plant response.
MEMD-enhanced multivariate fuzzy entropy for the evaluation of complexity in biomedical signals.
Azami, Hamed; Smith, Keith; Escudero, Javier
2016-08-01
Multivariate multiscale entropy (mvMSE) has been proposed as a combination of the coarse-graining process and multivariate sample entropy (mvSE) to quantify the irregularity of multivariate signals. However, both the coarse-graining process and mvSE may not be reliable for short signals. Although the coarse-graining process can be replaced with multivariate empirical mode decomposition (MEMD), the relative instability of mvSE for short signals remains a problem. Here, we address this issue by proposing the multivariate fuzzy entropy (mvFE) with a new fuzzy membership function. The results using white Gaussian noise show that the mvFE leads to more reliable and stable results, especially for short signals, in comparison with mvSE. Accordingly, we propose MEMD-enhanced mvFE to quantify the complexity of signals. The characteristics of brain regions influenced by partial epilepsy are investigated by focal and non-focal electroencephalogram (EEG) time series. In this sense, the proposed MEMD-enhanced mvFE and mvSE are employed to discriminate focal EEG signals from non-focal ones. The results demonstrate the MEMD-enhanced mvFE values have a smaller coefficient of variation in comparison with those obtained by the MEMD-enhanced mvSE, even for long signals. The results also show that the MEMD-enhanced mvFE has better performance to quantify focal and non-focal signals compared with multivariate multiscale permutation entropy.
Segmentation of pomegranate MR images using spatial fuzzy c-means (SFCM) algorithm
NASA Astrophysics Data System (ADS)
Moradi, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.
2011-10-01
Segmentation is one of the fundamental issues of image processing and machine vision. It plays a prominent role in a variety of image processing applications. In this paper, one of the most important applications of image processing in MRI segmentation of pomegranate is explored. Pomegranate is a fruit with pharmacological properties such as being anti-viral and anti-cancer. Having a high quality product in hand would be critical factor in its marketing. The internal quality of the product is comprehensively important in the sorting process. The determination of qualitative features cannot be manually made. Therefore, the segmentation of the internal structures of the fruit needs to be performed as accurately as possible in presence of noise. Fuzzy c-means (FCM) algorithm is noise-sensitive and pixels with noise are classified inversely. As a solution, in this paper, the spatial FCM algorithm in pomegranate MR images' segmentation is proposed. The algorithm is performed with setting the spatial neighborhood information in FCM and modification of fuzzy membership function for each class. The segmentation algorithm results on the original and the corrupted Pomegranate MR images by Gaussian, Salt Pepper and Speckle noises show that the SFCM algorithm operates much more significantly than FCM algorithm. Also, after diverse steps of qualitative and quantitative analysis, we have concluded that the SFCM algorithm with 5×5 window size is better than the other windows.
An intelligent knowledge mining model for kidney cancer using rough set theory.
Durai, M A Saleem; Acharjya, D P; Kannan, A; Iyengar, N Ch Sriman Narayana
2012-01-01
Medical diagnosis processes vary in the degree to which they attempt to deal with different complicating aspects of diagnosis such as relative importance of symptoms, varied symptom pattern and the relation between diseases themselves. Rough set approach has two major advantages over the other methods. First, it can handle different types of data such as categorical, numerical etc. Secondly, it does not make any assumption like probability distribution function in stochastic modeling or membership grade function in fuzzy set theory. It involves pattern recognition through logical computational rules rather than approximating them through smooth mathematical functional forms. In this paper we use rough set theory as a data mining tool to derive useful patterns and rules for kidney cancer faulty diagnosis. In particular, the historical data of twenty five research hospitals and medical college is used for validation and the results show the practical viability of the proposed approach.
Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS
Kuai, Moshen; Cheng, Gang; Li, Yong
2018-01-01
For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively. PMID:29510569
Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS.
Kuai, Moshen; Cheng, Gang; Pang, Yusong; Li, Yong
2018-03-05
For planetary gear has the characteristics of small volume, light weight and large transmission ratio, it is widely used in high speed and high power mechanical system. Poor working conditions result in frequent failures of planetary gear. A method is proposed for diagnosing faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS) in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual components by CEEMDAN. Since the IMF contains the main characteristic information of planetary gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault features. The permutation entropies of each IMF component are defined as the input of ANFIS, and its parameters and membership functions are adaptively adjusted according to training samples. Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one missing tooth is relatively high. The recognition rates of different fault gears based on the method can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault diagnosis effectively.
Selection of entropy-measure parameters for knowledge discovery in heart rate variability data
2014-01-01
Background Heart rate variability is the variation of the time interval between consecutive heartbeats. Entropy is a commonly used tool to describe the regularity of data sets. Entropy functions are defined using multiple parameters, the selection of which is controversial and depends on the intended purpose. This study describes the results of tests conducted to support parameter selection, towards the goal of enabling further biomarker discovery. Methods This study deals with approximate, sample, fuzzy, and fuzzy measure entropies. All data were obtained from PhysioNet, a free-access, on-line archive of physiological signals, and represent various medical conditions. Five tests were defined and conducted to examine the influence of: varying the threshold value r (as multiples of the sample standard deviation σ, or the entropy-maximizing rChon), the data length N, the weighting factors n for fuzzy and fuzzy measure entropies, and the thresholds rF and rL for fuzzy measure entropy. The results were tested for normality using Lilliefors' composite goodness-of-fit test. Consequently, the p-value was calculated with either a two sample t-test or a Wilcoxon rank sum test. Results The first test shows a cross-over of entropy values with regard to a change of r. Thus, a clear statement that a higher entropy corresponds to a high irregularity is not possible, but is rather an indicator of differences in regularity. N should be at least 200 data points for r = 0.2 σ and should even exceed a length of 1000 for r = rChon. The results for the weighting parameters n for the fuzzy membership function show different behavior when coupled with different r values, therefore the weighting parameters have been chosen independently for the different threshold values. The tests concerning rF and rL showed that there is no optimal choice, but r = rF = rL is reasonable with r = rChon or r = 0.2σ. Conclusions Some of the tests showed a dependency of the test significance on the data at hand. Nevertheless, as the medical conditions are unknown beforehand, compromises had to be made. Optimal parameter combinations are suggested for the methods considered. Yet, due to the high number of potential parameter combinations, further investigations of entropy for heart rate variability data will be necessary. PMID:25078574
Selection of entropy-measure parameters for knowledge discovery in heart rate variability data.
Mayer, Christopher C; Bachler, Martin; Hörtenhuber, Matthias; Stocker, Christof; Holzinger, Andreas; Wassertheurer, Siegfried
2014-01-01
Heart rate variability is the variation of the time interval between consecutive heartbeats. Entropy is a commonly used tool to describe the regularity of data sets. Entropy functions are defined using multiple parameters, the selection of which is controversial and depends on the intended purpose. This study describes the results of tests conducted to support parameter selection, towards the goal of enabling further biomarker discovery. This study deals with approximate, sample, fuzzy, and fuzzy measure entropies. All data were obtained from PhysioNet, a free-access, on-line archive of physiological signals, and represent various medical conditions. Five tests were defined and conducted to examine the influence of: varying the threshold value r (as multiples of the sample standard deviation σ, or the entropy-maximizing rChon), the data length N, the weighting factors n for fuzzy and fuzzy measure entropies, and the thresholds rF and rL for fuzzy measure entropy. The results were tested for normality using Lilliefors' composite goodness-of-fit test. Consequently, the p-value was calculated with either a two sample t-test or a Wilcoxon rank sum test. The first test shows a cross-over of entropy values with regard to a change of r. Thus, a clear statement that a higher entropy corresponds to a high irregularity is not possible, but is rather an indicator of differences in regularity. N should be at least 200 data points for r = 0.2 σ and should even exceed a length of 1000 for r = rChon. The results for the weighting parameters n for the fuzzy membership function show different behavior when coupled with different r values, therefore the weighting parameters have been chosen independently for the different threshold values. The tests concerning rF and rL showed that there is no optimal choice, but r = rF = rL is reasonable with r = rChon or r = 0.2σ. Some of the tests showed a dependency of the test significance on the data at hand. Nevertheless, as the medical conditions are unknown beforehand, compromises had to be made. Optimal parameter combinations are suggested for the methods considered. Yet, due to the high number of potential parameter combinations, further investigations of entropy for heart rate variability data will be necessary.
A mathematical model of neuro-fuzzy approximation in image classification
NASA Astrophysics Data System (ADS)
Gopalan, Sasi; Pinto, Linu; Sheela, C.; Arun Kumar M., N.
2016-06-01
Image digitization and explosion of World Wide Web has made traditional search for image, an inefficient method for retrieval of required grassland image data from large database. For a given input query image Content-Based Image Retrieval (CBIR) system retrieves the similar images from a large database. Advances in technology has increased the use of grassland image data in diverse areas such has agriculture, art galleries, education, industry etc. In all the above mentioned diverse areas it is necessary to retrieve grassland image data efficiently from a large database to perform an assigned task and to make a suitable decision. A CBIR system based on grassland image properties and it uses the aid of a feed-forward back propagation neural network for an effective image retrieval is proposed in this paper. Fuzzy Memberships plays an important role in the input space of the proposed system which leads to a combined neural fuzzy approximation in image classification. The CBIR system with mathematical model in the proposed work gives more clarity about fuzzy-neuro approximation and the convergence of the image features in a grassland image.
Research on assessment methods for urban public transport development in China.
Zou, Linghong; Dai, Hongna; Yao, Enjian; Jiang, Tian; Guo, Hongwei
2014-01-01
In recent years, with the rapid increase in urban population, the urban travel demands in Chinese cities have been increasing dramatically. As a result, developing comprehensive urban transport systems becomes an inevitable choice to meet the growing urban travel demands. In urban transport systems, public transport plays the leading role to promote sustainable urban development. This paper aims to establish an assessment index system for the development level of urban public transport consisting of a target layer, a criterion layer, and an index layer. Review on existing literature shows that methods used in evaluating urban public transport structure are dominantly qualitative. To overcome this shortcoming, fuzzy mathematics method is used for describing qualitative issues quantitatively, and AHP (analytic hierarchy process) is used to quantify expert's subjective judgment. The assessment model is established based on the fuzzy AHP. The weight of each index is determined through the AHP and the degree of membership of each index through the fuzzy assessment method to obtain the fuzzy synthetic assessment matrix. Finally, a case study is conducted to verify the rationality and practicability of the assessment system and the proposed assessment method.
Application of Fracture Distribution Prediction Model in Xihu Depression of East China Sea
NASA Astrophysics Data System (ADS)
Yan, Weifeng; Duan, Feifei; Zhang, Le; Li, Ming
2018-02-01
There are different responses on each of logging data with the changes of formation characteristics and outliers caused by the existence of fractures. For this reason, the development of fractures in formation can be characterized by the fine analysis of logging curves. The well logs such as resistivity, sonic transit time, density, neutron porosity and gamma ray, which are classified as conventional well logs, are more sensitive to formation fractures. In view of traditional fracture prediction model, using the simple weighted average of different logging data to calculate the comprehensive fracture index, are more susceptible to subjective factors and exist a large deviation, a statistical method is introduced accordingly. Combining with responses of conventional logging data on the development of formation fracture, a prediction model based on membership function is established, and its essence is to analyse logging data with fuzzy mathematics theory. The fracture prediction results in a well formation in NX block of Xihu depression through two models are compared with that of imaging logging, which shows that the accuracy of fracture prediction model based on membership function is better than that of traditional model. Furthermore, the prediction results are highly consistent with imaging logs and can reflect the development of cracks much better. It can provide a reference for engineering practice.
Multiobject relative fuzzy connectedness and its implications in image segmentation
NASA Astrophysics Data System (ADS)
Udupa, Jayaram K.; Saha, Punam K.
2001-07-01
The notion of fuzzy connectedness captures the idea of hanging-togetherness of image elements in an object by assigning a strength of connectedness to every possible path between every possible pair of image elements. This concept leads to powerful image segmentation algorithms based on dynamic programming whose effectiveness has been demonstrated on 1000s of images in a variety of applications. In a previous framework, we introduced the notion of relative fuzzy connectedness for separating a foreground object from a background object. In this framework, an image element c is considered to belong to that among these two objects with respect to whose reference image element c has the higher strength of connectedness. In fuzzy connectedness, a local fuzzy reflation called affinity is used on the image domain. This relation was required for theoretical reasons to be of fixed form in the previous framework. In the present paper, we generalize relative connectedness to multiple objects, allowing all objects (of importance) to compete among themselves to grab membership of image elements based on their relative strength of connectedness to reference elements. We also allow affinity to be tailored to the individual objects. We present a theoretical and algorithmic framework and demonstrate that the objects defined are independent of the reference elements chosen as long as they are not in the fuzzy boundary between objects. Examples from medical imaging are presented to illustrate visually the effectiveness of multiple object relative fuzzy connectedness. A quantitative evaluation based on 160 mathematical phantom images demonstrates objectively the effectiveness of relative fuzzy connectedness with object- tailored affinity relation.
Research on Bounded Rationality of Fuzzy Choice Functions
Wu, Xinlin; Zhao, Yong
2014-01-01
The rationality of a fuzzy choice function is a hot research topic in the study of fuzzy choice functions. In this paper, two common fuzzy sets are studied and analyzed in the framework of the Banerjee choice function. The complete rationality and bounded rationality of fuzzy choice functions are defined based on the two fuzzy sets. An assumption is presented to study the fuzzy choice function, and especially the fuzzy choice function with bounded rationality is studied combined with some rationality conditions. Results show that the fuzzy choice function with bounded rationality also satisfies some important rationality conditions, but not vice versa. The research gives supplements to the investigation in the framework of the Banerjee choice function. PMID:24782677
Research on bounded rationality of fuzzy choice functions.
Wu, Xinlin; Zhao, Yong
2014-01-01
The rationality of a fuzzy choice function is a hot research topic in the study of fuzzy choice functions. In this paper, two common fuzzy sets are studied and analyzed in the framework of the Banerjee choice function. The complete rationality and bounded rationality of fuzzy choice functions are defined based on the two fuzzy sets. An assumption is presented to study the fuzzy choice function, and especially the fuzzy choice function with bounded rationality is studied combined with some rationality conditions. Results show that the fuzzy choice function with bounded rationality also satisfies some important rationality conditions, but not vice versa. The research gives supplements to the investigation in the framework of the Banerjee choice function.
Liu, Hui; Zhang, Cai-Ming; Su, Zhi-Yuan; Wang, Kai; Deng, Kai
2015-01-01
The key problem of computer-aided diagnosis (CAD) of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO) pulmonary nodules than other typical algorithms.
Event-Triggered Fault Detection of Nonlinear Networked Systems.
Li, Hongyi; Chen, Ziran; Wu, Ligang; Lam, Hak-Keung; Du, Haiping
2017-04-01
This paper investigates the problem of fault detection for nonlinear discrete-time networked systems under an event-triggered scheme. A polynomial fuzzy fault detection filter is designed to generate a residual signal and detect faults in the system. A novel polynomial event-triggered scheme is proposed to determine the transmission of the signal. A fault detection filter is designed to guarantee that the residual system is asymptotically stable and satisfies the desired performance. Polynomial approximated membership functions obtained by Taylor series are employed for filtering analysis. Furthermore, sufficient conditions are represented in terms of sum of squares (SOSs) and can be solved by SOS tools in MATLAB environment. A numerical example is provided to demonstrate the effectiveness of the proposed results.
A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation
NASA Astrophysics Data System (ADS)
Tahmasebi, Pejman; Hezarkhani, Ardeshir
2012-05-01
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.
Wu, Chunsheng; Liu, Gaohuan; Huang, Chong; Liu, Qingsheng; Guan, Xudong
2018-04-25
The Yellow River Delta (YRD), located in Yellow River estuary, is characterized by rich ecological system types, and provides habitats or migration stations for wild birds, all of which makes the delta an ecological barrier or ecotone for inland areas. Nevertheless, the abundant natural resources of YRD have brought huge challenges to the area, and frequent human activities and natural disasters have damaged the ecological systems seriously, and certain ecological functions have been threatened. Therefore, it is necessary to determine the status of the ecological environment based on scientific methods, which can provide scientifically robust data for the managers or stakeholders to adopt timely ecological protection measures. The aim of this study was to obtain the spatial distribution of the ecological vulnerability (EV) in YRD based on 21 indicators selected from underwater status, soil condition, land use, landform, vegetation cover, meteorological conditions, ocean influence, and social economy. In addition, the fuzzy analytic hierarchy process (FAHP) method was used to obtain the weights of the selected indicators, and a fuzzy logic model was constructed to obtain the result. The result showed that the spatial distribution of the EV grades was regular, while the fuzzy membership of EV decreased gradually from the coastline to inland area, especially around the river crossing, where it had the lowest EV. Along the coastline, the dikes had an obviously protective effect for the inner area, while the EV was higher in the area where no dikes were built. This result also showed that the soil condition and groundwater status were highly related to the EV spatially, with the correlation coefficients −0.55 and −0.74 respectively, and human activities had exerted considerable pressure on the ecological environment.
Automatic detection of osteoporosis based on hybrid genetic swarm fuzzy classifier approaches
Kavitha, Muthu Subash; Ganesh Kumar, Pugalendhi; Park, Soon-Yong; Huh, Kyung-Hoe; Heo, Min-Suk; Kurita, Takio; Asano, Akira; An, Seo-Yong
2016-01-01
Objectives: This study proposed a new automated screening system based on a hybrid genetic swarm fuzzy (GSF) classifier using digital dental panoramic radiographs to diagnose females with a low bone mineral density (BMD) or osteoporosis. Methods: The geometrical attributes of both the mandibular cortical bone and trabecular bone were acquired using previously developed software. Designing an automated system for osteoporosis screening involved partitioning of the input attributes to generate an initial membership function (MF) and a rule set (RS), classification using a fuzzy inference system and optimization of the generated MF and RS using the genetic swarm algorithm. Fivefold cross-validation (5-FCV) was used to estimate the classification accuracy of the hybrid GSF classifier. The performance of the hybrid GSF classifier has been further compared with that of individual genetic algorithm and particle swarm optimization fuzzy classifiers. Results: Proposed hybrid GSF classifier in identifying low BMD or osteoporosis at the lumbar spine and femoral neck BMD was evaluated. The sensitivity, specificity and accuracy of the hybrid GSF with optimized MF and RS in identifying females with a low BMD were 95.3%, 94.7% and 96.01%, respectively, at the lumbar spine and 99.1%, 98.4% and 98.9%, respectively, at the femoral neck BMD. The diagnostic performance of the proposed system with femoral neck BMD was 0.986 with a confidence interval of 0.942–0.998. The highest mean accuracy using 5-FCV was 97.9% with femoral neck BMD. Conclusions: The combination of high accuracy along with its interpretation ability makes this proposed automatic system using hybrid GSF classifier capable of identifying a large proportion of undetected low BMD or osteoporosis at its early stage. PMID:27186991
A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation
Tahmasebi, Pejman; Hezarkhani, Ardeshir
2012-01-01
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called “Coactive Neuro-Fuzzy Inference System” (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) – as a well-known technique to solve the complex optimization problems – is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS–GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS–GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems. PMID:25540468
Zhang, Yan; Zhong, Ming
2013-01-01
Groundwater contamination is a serious threat to water supply. Risk assessment of groundwater contamination is an effective way to protect the safety of groundwater resource. Groundwater is a complex and fuzzy system with many uncertainties, which is impacted by different geological and hydrological factors. In order to deal with the uncertainty in the risk assessment of groundwater contamination, we propose an approach with analysis hierarchy process and fuzzy comprehensive evaluation integrated together. Firstly, the risk factors of groundwater contamination are identified by the sources-pathway-receptor-consequence method, and a corresponding index system of risk assessment based on DRASTIC model is established. Due to the complexity in the process of transitions between the possible pollution risks and the uncertainties of factors, the method of analysis hierarchy process is applied to determine the weights of each factor, and the fuzzy sets theory is adopted to calculate the membership degrees of each factor. Finally, a case study is presented to illustrate and test this methodology. It is concluded that the proposed approach integrates the advantages of both analysis hierarchy process and fuzzy comprehensive evaluation, which provides a more flexible and reliable way to deal with the linguistic uncertainty and mechanism uncertainty in groundwater contamination without losing important information. PMID:24453883
Two-Way Regularized Fuzzy Clustering of Multiple Correspondence Analysis.
Kim, Sunmee; Choi, Ji Yeh; Hwang, Heungsun
2017-01-01
Multiple correspondence analysis (MCA) is a useful tool for investigating the interrelationships among dummy-coded categorical variables. MCA has been combined with clustering methods to examine whether there exist heterogeneous subclusters of a population, which exhibit cluster-level heterogeneity. These combined approaches aim to classify either observations only (one-way clustering of MCA) or both observations and variable categories (two-way clustering of MCA). The latter approach is favored because its solutions are easier to interpret by providing explicitly which subgroup of observations is associated with which subset of variable categories. Nonetheless, the two-way approach has been built on hard classification that assumes observations and/or variable categories to belong to only one cluster. To relax this assumption, we propose two-way fuzzy clustering of MCA. Specifically, we combine MCA with fuzzy k-means simultaneously to classify a subgroup of observations and a subset of variable categories into a common cluster, while allowing both observations and variable categories to belong partially to multiple clusters. Importantly, we adopt regularized fuzzy k-means, thereby enabling us to decide the degree of fuzziness in cluster memberships automatically. We evaluate the performance of the proposed approach through the analysis of simulated and real data, in comparison with existing two-way clustering approaches.
Shale gas wastewater management under uncertainty.
Zhang, Xiaodong; Sun, Alexander Y; Duncan, Ian J
2016-01-01
This work presents an optimization framework for evaluating different wastewater treatment/disposal options for water management during hydraulic fracturing (HF) operations. This framework takes into account both cost-effectiveness and system uncertainty. HF has enabled rapid development of shale gas resources. However, wastewater management has been one of the most contentious and widely publicized issues in shale gas production. The flowback and produced water (known as FP water) generated by HF may pose a serious risk to the surrounding environment and public health because this wastewater usually contains many toxic chemicals and high levels of total dissolved solids (TDS). Various treatment/disposal options are available for FP water management, such as underground injection, hazardous wastewater treatment plants, and/or reuse. In order to cost-effectively plan FP water management practices, including allocating FP water to different options and planning treatment facility capacity expansion, an optimization model named UO-FPW is developed in this study. The UO-FPW model can handle the uncertain information expressed in the form of fuzzy membership functions and probability density functions in the modeling parameters. The UO-FPW model is applied to a representative hypothetical case study to demonstrate its applicability in practice. The modeling results reflect the tradeoffs between economic objective (i.e., minimizing total-system cost) and system reliability (i.e., risk of violating fuzzy and/or random constraints, and meeting FP water treatment/disposal requirements). Using the developed optimization model, decision makers can make and adjust appropriate FP water management strategies through refining the values of feasibility degrees for fuzzy constraints and the probability levels for random constraints if the solutions are not satisfactory. The optimization model can be easily integrated into decision support systems for shale oil/gas lifecycle management. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xia, Xintao; Wang, Zhongyu
2008-10-01
For some methods of stability analysis of a system using statistics, it is difficult to resolve the problems of unknown probability distribution and small sample. Therefore, a novel method is proposed in this paper to resolve these problems. This method is independent of probability distribution, and is useful for small sample systems. After rearrangement of the original data series, the order difference and two polynomial membership functions are introduced to estimate the true value, the lower bound and the supper bound of the system using fuzzy-set theory. Then empirical distribution function is investigated to ensure confidence level above 95%, and the degree of similarity is presented to evaluate stability of the system. Cases of computer simulation investigate stable systems with various probability distribution, unstable systems with linear systematic errors and periodic systematic errors and some mixed systems. The method of analysis for systematic stability is approved.
Fuzzy attitude control for a nanosatellite in leo orbit
NASA Astrophysics Data System (ADS)
Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria; Aviles, Taisir
Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In this work, a tailored fuzzy controller is designed for a nanosatellite and is compared with a traditional Proportional Integrative Derivative (PID) controller. Both control methodologies are compared within the same specific mission. The orbit height varies along the mission from injection at around 380 km down to a 200 km height orbit, and the mission requires pointing accuracy over the whole time. Due to both the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, a robust and efficient ADCS is required. For these reasons a fuzzy logic controller is implemented as the brain of the ADCS and its performance and efficiency are compared to a traditional PID. The fuzzy controller is designed in three separated controllers, each one acting on one of the Euler angles of the satellite in an orbital frame. The fuzzy memberships are constructed taking into account the mission requirements, the physical properties of the satellite and the expected performances. Both methodologies, fuzzy and PID, are fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. Finally both methods are probed in different environments to test their characteristics. The simulations show that the fuzzy controller is much more efficient (up to 65% less power required) in single maneuvers, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. A brief mission description is depicted as well as the design process of both ADCS controllers. Finally the validation process and the results obtained during the simulations are described. Those results show that the fuzzy logic methodology is valid for small satellites' missions benefiting from a well-developed artificial intelligence theory.
Optimizing structure of complex technical system by heterogeneous vector criterion in interval form
NASA Astrophysics Data System (ADS)
Lysenko, A. V.; Kochegarov, I. I.; Yurkov, N. K.; Grishko, A. K.
2018-05-01
The article examines the methods of development and multi-criteria choice of the preferred structural variant of the complex technical system at the early stages of its life cycle in the absence of sufficient knowledge of parameters and variables for optimizing this structure. The suggested methods takes into consideration the various fuzzy input data connected with the heterogeneous quality criteria of the designed system and the parameters set by their variation range. The suggested approach is based on the complex use of methods of interval analysis, fuzzy sets theory, and the decision-making theory. As a result, the method for normalizing heterogeneous quality criteria has been developed on the basis of establishing preference relations in the interval form. The method of building preferential relations in the interval form on the basis of the vector of heterogeneous quality criteria suggest the use of membership functions instead of the coefficients considering the criteria value. The former show the degree of proximity of the realization of the designed system to the efficient or Pareto optimal variants. The study analyzes the example of choosing the optimal variant for the complex system using heterogeneous quality criteria.
MRI segmentation using dialectical optimization.
dos Santos, Wellington P; de Assis, Francisco M; de Souza, Ricardo E
2009-01-01
Biology, Psychology and Social Sciences are intrinsically connected to the very roots of the development of algorithms and methods in Computational Intelligence, as it is easily seen in approaches like genetic algorithms, evolutionary programming and particle swarm optimization. In this work we propose a new optimization method based on dialectics using fuzzy membership functions to model the influence of interactions between integrating poles in the status of each pole. Poles are the basic units composing dialectical systems. In order to validate our proposal we designed a segmentation method based on the optimization of k-means using dialectics for the segmentation of MR images. As a case study we used 181 MR synthetic multispectral images composed by proton density, T(1)- and T(2)-weighted synthetic brain images of 181 slices with 1 mm, resolution of 1 mm(3), for a normal brain and a noiseless MR tomographic system without field inhomogeneities, amounting a total of 543 images, generated by the simulator BrainWeb [2]. Our principal target here is comparing our proposal to k-means, fuzzy c-means, and Kohonen's self-organized maps, concerning the quantization error, we proved that our method can improved results obtained using k-means.
Shafizadeh-Moghadam, Hossein; Tayyebi, Amin; Helbich, Marco
2017-06-01
Transition index maps (TIMs) are key products in urban growth simulation models. However, their operationalization is still conflicting. Our aim was to compare the prediction accuracy of three TIM-based spatially explicit land cover change (LCC) models in the mega city of Mumbai, India. These LCC models include two data-driven approaches, namely artificial neural networks (ANNs) and weight of evidence (WOE), and one knowledge-based approach which integrates an analytical hierarchical process with fuzzy membership functions (FAHP). Using the relative operating characteristics (ROC), the performance of these three LCC models were evaluated. The results showed 85%, 75%, and 73% accuracy for the ANN, FAHP, and WOE. The ANN was clearly superior compared to the other LCC models when simulating urban growth for the year 2010; hence, ANN was used to predict urban growth for 2020 and 2030. Projected urban growth maps were assessed using statistical measures, including figure of merit, average spatial distance deviation, producer accuracy, and overall accuracy. Based on our findings, we recomend ANNs as an and accurate method for simulating future patterns of urban growth.
Xie, Qiuju; Ni, Ji-Qin; Su, Zhongbin
2017-10-15
In confined swine buildings, temperature, humidity, and air quality are all important for animal health and productivity. However, the current swine building environmental control is only based on temperature; and evaluation and control methods based on multiple environmental factors are needed. In this paper, fuzzy comprehensive evaluation (FCE) theory was adopted for multi-factor assessment of environmental quality in two commercial swine buildings using real measurement data. An assessment index system and membership functions were established; and predetermined weights were given using analytic hierarchy process (AHP) combined with knowledge of experts. The results show that multi-factors such as temperature, humidity, and concentrations of ammonia (NH 3 ), carbon dioxide (CO 2 ), and hydrogen sulfide (H 2 S) can be successfully integrated in FCE for swine building environment assessment. The FCE method has a high correlation coefficient of 0.737 compared with the method of single-factor evaluation (SFE). The FCE method can significantly increase the sensitivity and perform an effective and integrative assessment. It can be used as part of environmental controlling and warning systems for swine building environment management to improve swine production and welfare. Copyright © 2017 Elsevier B.V. All rights reserved.
Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm.
Khushaba, Rami N; Kodagoda, Sarath; Lal, Sara; Dissanayake, Gamini
2011-01-01
Driver drowsiness and loss of vigilance are a major cause of road accidents. Monitoring physiological signals while driving provides the possibility of detecting and warning of drowsiness and fatigue. The aim of this paper is to maximize the amount of drowsiness-related information extracted from a set of electroencephalogram (EEG), electrooculogram (EOG), and electrocardiogram (ECG) signals during a simulation driving test. Specifically, we develop an efficient fuzzy mutual-information (MI)- based wavelet packet transform (FMIWPT) feature-extraction method for classifying the driver drowsiness state into one of predefined drowsiness levels. The proposed method estimates the required MI using a novel approach based on fuzzy memberships providing an accurate-information content-estimation measure. The quality of the extracted features was assessed on datasets collected from 31 drivers on a simulation test. The experimental results proved the significance of FMIWPT in extracting features that highly correlate with the different drowsiness levels achieving a classification accuracy of 95%-- 97% on an average across all subjects.
Research on Assessment Methods for Urban Public Transport Development in China
Zou, Linghong; Guo, Hongwei
2014-01-01
In recent years, with the rapid increase in urban population, the urban travel demands in Chinese cities have been increasing dramatically. As a result, developing comprehensive urban transport systems becomes an inevitable choice to meet the growing urban travel demands. In urban transport systems, public transport plays the leading role to promote sustainable urban development. This paper aims to establish an assessment index system for the development level of urban public transport consisting of a target layer, a criterion layer, and an index layer. Review on existing literature shows that methods used in evaluating urban public transport structure are dominantly qualitative. To overcome this shortcoming, fuzzy mathematics method is used for describing qualitative issues quantitatively, and AHP (analytic hierarchy process) is used to quantify expert's subjective judgment. The assessment model is established based on the fuzzy AHP. The weight of each index is determined through the AHP and the degree of membership of each index through the fuzzy assessment method to obtain the fuzzy synthetic assessment matrix. Finally, a case study is conducted to verify the rationality and practicability of the assessment system and the proposed assessment method. PMID:25530756
Qin, Jiahu; Fu, Weiming; Gao, Huijun; Zheng, Wei Xing
2016-03-03
This paper is concerned with developing a distributed k-means algorithm and a distributed fuzzy c-means algorithm for wireless sensor networks (WSNs) where each node is equipped with sensors. The underlying topology of the WSN is supposed to be strongly connected. The consensus algorithm in multiagent consensus theory is utilized to exchange the measurement information of the sensors in WSN. To obtain a faster convergence speed as well as a higher possibility of having the global optimum, a distributed k-means++ algorithm is first proposed to find the initial centroids before executing the distributed k-means algorithm and the distributed fuzzy c-means algorithm. The proposed distributed k-means algorithm is capable of partitioning the data observed by the nodes into measure-dependent groups which have small in-group and large out-group distances, while the proposed distributed fuzzy c-means algorithm is capable of partitioning the data observed by the nodes into different measure-dependent groups with degrees of membership values ranging from 0 to 1. Simulation results show that the proposed distributed algorithms can achieve almost the same results as that given by the centralized clustering algorithms.
Collaborative filtering recommendation model based on fuzzy clustering algorithm
NASA Astrophysics Data System (ADS)
Yang, Ye; Zhang, Yunhua
2018-05-01
As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.
Cocoa bean quality assessment by using hyperspectral images and fuzzy logic techniques
NASA Astrophysics Data System (ADS)
Soto, Juan; Granda, Guillermo; Prieto, Flavio; Ipanaque, William; Machacuay, Jorge
2015-04-01
Nowadays, cocoa bean exportation from Piura-Peru is having a positive international market response due to their inherent high quality. Nevertheless, when using subjective techniques for quality assessment, such as the cut test, a wastefulness of grains is generated, additional to a restriction in the selection as well as improvement approaches in earlier stages for optimizing the quality. Thus, in an attempt to standardize the internal features analyzed by the cut test, for instance, crack formation and internal color changes during the fermentation, this research is submitted as an approach which aims to make use of hyperspectral images, with the purpose of having a quick and accurate analysis. Hyperspectral cube size was reduced by using Principal Component Analysis (PCA). The image generated by principal component PC1 provides enough information to clearly distinguish the internal cracks of the cocoa bean, since the zones where these cracks are, have a negative correlation with PC1. The features taken were processed through a fuzzy block, which is able to describe the cocoa bean quality. Three membership functions were defined in the output: unfermented, partly fermented and well fermented, by using trapezoidal-shaped and triangular-shaped functions. A total of twelve rules were propounded. Furthermore, the bisector method was chosen for the defuzzification. Begin the abstract two lines below author names and addresses.
NASA Astrophysics Data System (ADS)
Indarsih, Indrati, Ch. Rini
2016-02-01
In this paper, we define variance of the fuzzy random variables through alpha level. We have a theorem that can be used to know that the variance of fuzzy random variables is a fuzzy number. We have a multi-objective linear programming (MOLP) with fuzzy random of objective function coefficients. We will solve the problem by variance approach. The approach transform the MOLP with fuzzy random of objective function coefficients into MOLP with fuzzy of objective function coefficients. By weighted methods, we have linear programming with fuzzy coefficients and we solve by simplex method for fuzzy linear programming.
Wang, Zhuo; Camino, Acner; Zhang, Miao; Wang, Jie; Hwang, Thomas S.; Wilson, David J.; Huang, David; Li, Dengwang; Jia, Yali
2017-01-01
Diabetic retinopathy is a pathology where microvascular circulation abnormalities ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. Here, we developed a method that automatically detects photoreceptor disruption in mild diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined membership function to assign a defect severity level on each pixel and generate a probability map of defect category affiliation. A novel scheme of unsupervised clustering optimization allows accurate detection of the affected area. The achieved accuracy, sensitivity and specificity were about 90% on a population of thirteen diseased subjects. This method shows potential for accurate and fast detection of early biomarkers in diabetic retinopathy evolution. PMID:29296475
Liu, Hui; Zhang, Cai-Ming; Su, Zhi-Yuan; Wang, Kai; Deng, Kai
2015-01-01
The key problem of computer-aided diagnosis (CAD) of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO) pulmonary nodules than other typical algorithms. PMID:25945120
Wang, Zhuo; Camino, Acner; Zhang, Miao; Wang, Jie; Hwang, Thomas S; Wilson, David J; Huang, David; Li, Dengwang; Jia, Yali
2017-12-01
Diabetic retinopathy is a pathology where microvascular circulation abnormalities ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. Here, we developed a method that automatically detects photoreceptor disruption in mild diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined membership function to assign a defect severity level on each pixel and generate a probability map of defect category affiliation. A novel scheme of unsupervised clustering optimization allows accurate detection of the affected area. The achieved accuracy, sensitivity and specificity were about 90% on a population of thirteen diseased subjects. This method shows potential for accurate and fast detection of early biomarkers in diabetic retinopathy evolution.
Yager’s ranking method for solving the trapezoidal fuzzy number linear programming
NASA Astrophysics Data System (ADS)
Karyati; Wutsqa, D. U.; Insani, N.
2018-03-01
In the previous research, the authors have studied the fuzzy simplex method for trapezoidal fuzzy number linear programming based on the Maleki’s ranking function. We have found some theories related to the term conditions for the optimum solution of fuzzy simplex method, the fuzzy Big-M method, the fuzzy two-phase method, and the sensitivity analysis. In this research, we study about the fuzzy simplex method based on the other ranking function. It is called Yager's ranking function. In this case, we investigate the optimum term conditions. Based on the result of research, it is found that Yager’s ranking function is not like Maleki’s ranking function. Using the Yager’s function, the simplex method cannot work as well as when using the Maleki’s function. By using the Yager’s function, the value of the subtraction of two equal fuzzy numbers is not equal to zero. This condition makes the optimum table of the fuzzy simplex table is undetected. As a result, the simplified fuzzy simplex table becomes stopped and does not reach the optimum solution.
NASA Astrophysics Data System (ADS)
Purbandini, Taufik
2016-03-01
Surabaya is a metropolitan city in Indonesia. When the visitor has an interest in Surabaya for several days, then the visitor was looking for lodging that is closest to the interests of making it more efficient and practical. It was not a waste of time for the businessman because of congestion and so we need full information about the hotel as an inn during a stay in Surabaya began name, address of the hotel, the hotel's website, the distance from the hotel to the destination until the display of the map along the route with the help of Google Maps. This system was designed using fuzzy logic which aims to assist the user in making decisions. Design of hotel search and selection system was done through four stages. The first phase was the collection of data and as the factors that influence the decision-making along with the limit values of these factors. Factors that influence covers a distance of the hotel, the price of hotel rooms, and hotel reviews. The second stage was the processing of data and information by creating membership functions. The third stage was the analysis of systems with fuzzy logic. The steps were performed in systems analysis, namely fuzzification, inference using Mamdani, and defuzzification. The last stage was the design and construction of the system. Designing the system using use case diagrams and activity diagram to describe any process that occurs. Development system includes system implementation and evaluation systems. Implementation of mobile with Android-based system so that these applications were user friendly.
A Complex Systems Model Approach to Quantified Mineral Resource Appraisal
Gettings, M.E.; Bultman, M.W.; Fisher, F.S.
2004-01-01
For federal and state land management agencies, mineral resource appraisal has evolved from value-based to outcome-based procedures wherein the consequences of resource development are compared with those of other management options. Complex systems modeling is proposed as a general framework in which to build models that can evaluate outcomes. Three frequently used methods of mineral resource appraisal (subjective probabilistic estimates, weights of evidence modeling, and fuzzy logic modeling) are discussed to obtain insight into methods of incorporating complexity into mineral resource appraisal models. Fuzzy logic and weights of evidence are most easily utilized in complex systems models. A fundamental product of new appraisals is the production of reusable, accessible databases and methodologies so that appraisals can easily be repeated with new or refined data. The data are representations of complex systems and must be so regarded if all of their information content is to be utilized. The proposed generalized model framework is applicable to mineral assessment and other geoscience problems. We begin with a (fuzzy) cognitive map using (+1,0,-1) values for the links and evaluate the map for various scenarios to obtain a ranking of the importance of various links. Fieldwork and modeling studies identify important links and help identify unanticipated links. Next, the links are given membership functions in accordance with the data. Finally, processes are associated with the links; ideally, the controlling physical and chemical events and equations are found for each link. After calibration and testing, this complex systems model is used for predictions under various scenarios.
Extraction of Coastlines with Fuzzy Approach Using SENTINEL-1 SAR Image
NASA Astrophysics Data System (ADS)
Demir, N.; Kaynarca, M.; Oy, S.
2016-06-01
Coastlines are important features for water resources, sea products, energy resources etc. Coastlines are changed dynamically, thus automated methods are necessary for analysing and detecting the changes along the coastlines. In this study, Sentinel-1 C band SAR image has been used to extract the coastline with fuzzy logic approach. The used SAR image has VH polarisation and 10x10m. spatial resolution, covers 57 sqkm area from the south-east of Puerto-Rico. Additionally, radiometric calibration is applied to reduce atmospheric and orbit error, and speckle filter is used to reduce the noise. Then the image is terrain-corrected using SRTM digital surface model. Classification of SAR image is a challenging task since SAR and optical sensors have very different properties. Even between different bands of the SAR sensors, the images look very different. So, the classification of SAR image is difficult with the traditional unsupervised methods. In this study, a fuzzy approach has been applied to distinguish the coastal pixels than the land surface pixels. The standard deviation and the mean, median values are calculated to use as parameters in fuzzy approach. The Mean-standard-deviation (MS) Large membership function is used because the large amounts of land and ocean pixels dominate the SAR image with large mean and standard deviation values. The pixel values are multiplied with 1000 to easify the calculations. The mean is calculated as 23 and the standard deviation is calculated as 12 for the whole image. The multiplier parameters are selected as a: 0.58, b: 0.05 to maximize the land surface membership. The result is evaluated using airborne LIDAR data, only for the areas where LIDAR dataset is available and secondly manually digitized coastline. The laser points which are below 0,5 m are classified as the ocean points. The 3D alpha-shapes algorithm is used to detect the coastline points from LIDAR data. Minimum distances are calculated between the LIDAR points of coastline with the extracted coastline. The statistics of the distances are calculated as following; the mean is 5.82m, standard deviation is 5.83m and the median value is 4.08 m. Secondly, the extracted coastline is also evaluated with manually created lines on SAR image. Both lines are converted to dense points with 1 m interval. Then the closest distances are calculated between the points from extracted coastline and manually created coastline. The mean is 5.23m, standard deviation is 4.52m. and the median value is 4.13m for the calculated distances. The evaluation values are within the accuracy of used SAR data for both quality assessment approaches.
Development of an evolutionary fuzzy expert system for estimating future behavior of stock price
NASA Astrophysics Data System (ADS)
Mehmanpazir, Farhad; Asadi, Shahrokh
2017-03-01
The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a "data mining-based evolutionary fuzzy expert system" (DEFES) approach to estimate the behavior of stock price. This tool is developed in seven-stage architecture. Data mining is used in three stages to reduce the complexity of the whole data space. The first stage, noise filtering, is used to make our raw data clean and smooth. Variable selection is second stage; we use stepwise regression analysis to choose the key variables been considered in the model. In the third stage, K-means is used to divide the data into sub-populations to decrease the effects of noise and rebate complexity of the patterns. At next stage, extraction of Mamdani type fuzzy rule-based system will be carried out for each cluster by means of genetic algorithm and evolutionary strategy. In the fifth stage, we use binary genetic algorithm to rule filtering to remove the redundant rules in order to solve over learning phenomenon. In the sixth stage, we utilize the genetic tuning process to slightly adjust the shape of the membership functions. Last stage is the testing performance of tool and adjusts parameters. This is the first study on using an approximate fuzzy rule base system and evolutionary strategy with the ability of extracting the whole knowledge base of fuzzy expert system for stock price forecasting problems. The superiority and applicability of DEFES are shown for International Business Machines Corporation and compared the outcome with the results of the other methods. Results with MAPE metric and Wilcoxon signed ranks test indicate that DEFES provides more accuracy and outperforms all previous methods, so it can be considered as a superior tool for stock price forecasting problems.
Fuzzy logic modeling of bioaccumulation pattern of metals in coastal biota of Ondo State, Nigeria.
Agunbiade, Foluso O; Olu-Owolabi, Bamidele I; Adebowale, Kayode O
2012-01-01
The accumulation patterns of ten metals in tissues of plant, Eichornia crassipes, and fishes, Hydrocynus forskahlii and Oreochromis mossambicus, were modeled with simple fuzzy classification (SFC) to assess toxic effects of anthropogenic activities on the coastal biota. The plant sample was separated into root, stem, and leaves and the fishes into bones, internal tissues, and muscles. They were analyzed for As, Cd, Cr, Cu, Ni, Pb, V, Fe, Mn, and Zn after wet oxidation of their dried samples. The results were converted into membership functions of five accumulation classes and aggregated with SFC. The classification results showed that there was no metal accumulation in the plant parts while the fishes were classified into low accumulation category. The internal tissues of the fishes had higher metal accumulation than the other parts. Generally, Fe and Mn had highest concentrations in the biota but are natural to the area and may not constitute significant risk. Cr had the highest transfer and accumulation from the coastal water into the aquatic lives and may be indicative of risk prone system being a toxic metal. Metal contaminations in the zone had not significantly accumulated in the biota making them less prone to risk associated with metal accumulation.
A novel topology control approach to maintain the node degree in dynamic wireless sensor networks.
Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana
2014-03-07
Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power.
JANE, A new information retrieval system for the Radiation Shielding Information Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trubey, D.K.
A new information storage and retrieval system has been developed for the Radiation Shielding Information Center (RSIC) at Oak Ridge National Laboratory to replace mainframe systems that have become obsolete. The database contains citations and abstracts of literature which were selected by RSIC analysts and indexed with terms from a controlled vocabulary. The database, begun in 1963, has been maintained continuously since that time. The new system, called JANE, incorporates automatic indexing techniques and on-line retrieval using the RSIC Data General Eclipse MV/4000 minicomputer, Automatic indexing and retrieval techniques based on fuzzy-set theory allow the presentation of results in ordermore » of Retrieval Status Value. The fuzzy-set membership function depends on term frequency in the titles and abstracts and on Term Discrimination Values which indicate the resolving power of the individual terms. These values are determined by the Cover Coefficient method. The use of a commercial database base to store and retrieve the indexing information permits rapid retrieval of the stored documents. Comparisons of the new and presently-used systems for actual searches of the literature indicate that it is practical to replace the mainframe systems with a minicomputer system similar to the present version of JANE. 18 refs., 10 figs.« less
NASA Technical Reports Server (NTRS)
Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.
2015-01-01
Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.
Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping
NASA Astrophysics Data System (ADS)
Park, Inhye; Choi, Jaewon; Jin Lee, Moung; Lee, Saro
2012-11-01
We constructed hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok City, Korea, using an adaptive neuro-fuzzy inference system (ANFIS) and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, and ground subsidence maps. An attribute database was also constructed from field investigations and reports on existing ground subsidence areas at the study site. Five major factors causing ground subsidence were extracted: (1) depth of drift; (2) distance from drift; (3) slope gradient; (4) geology; and (5) land use. The adaptive ANFIS model with different types of membership functions (MFs) was then applied for ground subsidence hazard mapping in the study area. Two ground subsidence hazard maps were prepared using the different MFs. Finally, the resulting ground subsidence hazard maps were validated using the ground subsidence test data which were not used for training the ANFIS. The validation results showed 95.12% accuracy using the generalized bell-shaped MF model and 94.94% accuracy using the Sigmoidal2 MF model. These accuracy results show that an ANFIS can be an effective tool in ground subsidence hazard mapping. Analysis of ground subsidence with the ANFIS model suggests that quantitative analysis of ground subsidence near AUCMs is possible.
Lam, H K; Leung, Frank H F
2007-10-01
This correspondence presents the stability analysis and performance design of the continuous-time fuzzy-model-based control systems. The idea of the nonparallel-distributed-compensation (non-PDC) control laws is extended to the continuous-time fuzzy-model-based control systems. A nonlinear controller with non-PDC control laws is proposed to stabilize the continuous-time nonlinear systems in Takagi-Sugeno's form. To produce the stability-analysis result, a parameter-dependent Lyapunov function (PDLF) is employed. However, two difficulties are usually encountered: 1) the time-derivative terms produced by the PDLF will complicate the stability analysis and 2) the stability conditions are not in the form of linear-matrix inequalities (LMIs) that aid the design of feedback gains. To tackle the first difficulty, the time-derivative terms are represented by some weighted-sum terms in some existing approaches, which will increase the number of stability conditions significantly. In view of the second difficulty, some positive-definitive terms are added in order to cast the stability conditions into LMIs. In this correspondence, the favorable properties of the membership functions and nonlinear control laws, which allow the introduction of some free matrices, are employed to alleviate the two difficulties while retaining the favorable properties of PDLF-based approach. LMI-based stability conditions are derived to ensure the system stability. Furthermore, based on a common scalar performance index, LMI-based performance conditions are derived to guarantee the system performance. Simulation examples are given to illustrate the effectiveness of the proposed approach.
Applications of Some Artificial Intelligence Methods to Satellite Soundings
NASA Technical Reports Server (NTRS)
Munteanu, M. J.; Jakubowicz, O.
1985-01-01
Hard clustering of temperature profiles and regression temperature retrievals were used to refine the method using the probabilities of membership of each pattern vector in each of the clusters derived with discriminant analysis. In hard clustering the maximum probability is taken and the corresponding cluster as the correct cluster are considered discarding the rest of the probabilities. In fuzzy partitioned clustering these probabilities are kept and the final regression retrieval is a weighted regression retrieval of several clusters. This method was used in the clustering of brightness temperatures where the purpose was to predict tropopause height. A further refinement is the division of temperature profiles into three major regions for classification purposes. The results are summarized in the tables total r.m.s. errors are displayed. An approach based on fuzzy logic which is intimately related to artificial intelligence methods is recommended.
A proposal of fuzzy connective with learning function and its application to fuzzy retrieval system
NASA Technical Reports Server (NTRS)
Hayashi, Isao; Naito, Eiichi; Ozawa, Jun; Wakami, Noboru
1993-01-01
A new fuzzy connective and a structure of network constructed by fuzzy connectives are proposed to overcome a drawback of conventional fuzzy retrieval systems. This network represents a retrieval query and the fuzzy connectives in networks have a learning function to adjust its parameters by data from a database and outputs of a user. The fuzzy retrieval systems employing this network are also constructed. Users can retrieve results even with a query whose attributes do not exist in a database schema and can get satisfactory results for variety of thinkings by learning function.
Gorsevski, Pece V; Donevska, Katerina R; Mitrovski, Cvetko D; Frizado, Joseph P
2012-02-01
This paper presents a GIS-based multi-criteria decision analysis approach for evaluating the suitability for landfill site selection in the Polog Region, Macedonia. The multi-criteria decision framework considers environmental and economic factors which are standardized by fuzzy membership functions and combined by integration of analytical hierarchy process (AHP) and ordered weighted average (OWA) techniques. The AHP is used for the elicitation of attribute weights while the OWA operator function is used to generate a wide range of decision alternatives for addressing uncertainty associated with interaction between multiple criteria. The usefulness of the approach is illustrated by different OWA scenarios that report landfill suitability on a scale between 0 and 1. The OWA scenarios are intended to quantify the level of risk taking (i.e., optimistic, pessimistic, and neutral) and to facilitate a better understanding of patterns that emerge from decision alternatives involved in the decision making process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Design of double fuzzy clustering-driven context neural networks.
Kim, Eun-Hu; Oh, Sung-Kwun; Pedrycz, Witold
2018-08-01
In this study, we introduce a novel category of double fuzzy clustering-driven context neural networks (DFCCNNs). The study is focused on the development of advanced design methodologies for redesigning the structure of conventional fuzzy clustering-based neural networks. The conventional fuzzy clustering-based neural networks typically focus on dividing the input space into several local spaces (implied by clusters). In contrast, the proposed DFCCNNs take into account two distinct local spaces called context and cluster spaces, respectively. Cluster space refers to the local space positioned in the input space whereas context space concerns a local space formed in the output space. Through partitioning the output space into several local spaces, each context space is used as the desired (target) local output to construct local models. To complete this, the proposed network includes a new context layer for reasoning about context space in the output space. In this sense, Fuzzy C-Means (FCM) clustering is useful to form local spaces in both input and output spaces. The first one is used in order to form clusters and train weights positioned between the input and hidden layer, whereas the other one is applied to the output space to form context spaces. The key features of the proposed DFCCNNs can be enumerated as follows: (i) the parameters between the input layer and hidden layer are built through FCM clustering. The connections (weights) are specified as constant terms being in fact the centers of the clusters. The membership functions (represented through the partition matrix) produced by the FCM are used as activation functions located at the hidden layer of the "conventional" neural networks. (ii) Following the hidden layer, a context layer is formed to approximate the context space of the output variable and each node in context layer means individual local model. The outputs of the context layer are specified as a combination of both weights formed as linear function and the outputs of the hidden layer. The weights are updated using the least square estimation (LSE)-based method. (iii) At the output layer, the outputs of context layer are decoded to produce the corresponding numeric output. At this time, the weighted average is used and the weights are also adjusted with the use of the LSE scheme. From the viewpoint of performance improvement, the proposed design methodologies are discussed and experimented with the aid of benchmark machine learning datasets. Through the experiments, it is shown that the generalization abilities of the proposed DFCCNNs are better than those of the conventional FCNNs reported in the literature. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tseng, Chris; Gupta, Pramod; Schumann, Johann
2006-01-01
The Cooper-Harper rating of Aircraft Handling Qualities has been adopted as a standard for measuring the performance of aircraft since it was introduced in 1966. Aircraft performance, ability to control the aircraft, and the degree of pilot compensation needed are three major key factors used in deciding the aircraft handling qualities in the Cooper- Harper rating. We formulate the Cooper-Harper rating scheme as a fuzzy rule-based system and use it to analyze the effectiveness of the aircraft controller. The automatic estimate of the system-level handling quality provides valuable up-to-date information for diagnostics and vehicle health management. Analyzing the performance of a controller requires a set of concise design requirements and performance criteria. Ir, the case of control systems fm a piloted aircraft, generally applicable quantitative design criteria are difficult to obtain. The reason for this is that the ultimate evaluation of a human-operated control system is necessarily subjective and, with aircraft, the pilot evaluates the aircraft in different ways depending on the type of the aircraft and the phase of flight. In most aerospace applications (e.g., for flight control systems), performance assessment is carried out in terms of handling qualities. Handling qualities may be defined as those dynamic and static properties of a vehicle that permit the pilot to fully exploit its performance in a variety of missions and roles. Traditionally, handling quality is measured using the Cooper-Harper rating and done subjectively by the human pilot. In this work, we have formulated the rules of the Cooper-Harper rating scheme as fuzzy rules with performance, control, and compensation as the antecedents, and pilot rating as the consequent. Appropriate direct measurements on the controller are related to the fuzzy Cooper-Harper rating system: a stability measurement like the rate of change of the cost function can be used as an indicator if the aircraft is under control; the tracking error is a good measurement for performance needed in the rating scheme. Finally, the change of the control amount or the output of a confidence tool, which has been developed by the authors, can be used as an indication of pilot compensation. We use a number of known aircraft flight scenarios with known pilot ratings to calibrate our fuzzy membership functions. These include normal flight conditions and situations in which partial or complete failure of tail, aileron, engine, or throttle occurs.
Automated cloud classification with a fuzzy logic expert system
NASA Technical Reports Server (NTRS)
Tovinkere, Vasanth; Baum, Bryan A.
1993-01-01
An unresolved problem in current cloud retrieval algorithms concerns the analysis of scenes containing overlapping cloud layers. Cloud parameterizations are very important both in global climate models and in studies of the Earth's radiation budget. Most cloud retrieval schemes, such as the bispectral method used by the International Satellite Cloud Climatology Project (ISCCP), have no way of determining whether overlapping cloud layers exist in any group of satellite pixels. One promising method uses fuzzy logic to determine whether mixed cloud and/or surface types exist within a group of pixels, such as cirrus, land, and water, or cirrus and stratus. When two or more class types are present, fuzzy logic uses membership values to assign the group of pixels partially to the different class types. The strength of fuzzy logic lies in its ability to work with patterns that may include more than one class, facilitating greater information extraction from satellite radiometric data. The development of the fuzzy logic rule-based expert system involves training the fuzzy classifier with spectral and textural features calculated from accurately labeled 32x32 regions of Advanced Very High Resolution Radiometer (AVHRR) 1.1-km data. The spectral data consists of AVHRR channels 1 (0.55-0.68 mu m), 2 (0.725-1.1 mu m), 3 (3.55-3.93 mu m), 4 (10.5-11.5 mu m), and 5 (11.5-12.5 mu m), which include visible, near-infrared, and infrared window regions. The textural features are based on the gray level difference vector (GLDV) method. A sophisticated new interactive visual image Classification System (IVICS) is used to label samples chosen from scenes collected during the FIRE IFO II. The training samples are chosen from predefined classes, chosen to be ocean, land, unbroken stratiform, broken stratiform, and cirrus. The November 28, 1991 NOAA overpasses contain complex multilevel cloud situations ideal for training and validating the fuzzy logic expert system.
NASA Astrophysics Data System (ADS)
Tazik, E.; Jahantab, Z.; Bakhtiari, M.; Rezaei, A.; Kazem Alavipanah, S.
2014-10-01
Landslides are among the most important natural hazards that lead to modification of the environment. Therefore, studying of this phenomenon is so important in many areas. Because of the climate conditions, geologic, and geomorphologic characteristics of the region, the purpose of this study was landslide hazard assessment using Fuzzy Logic, frequency ratio and Analytical Hierarchy Process method in Dozein basin, Iran. At first, landslides occurred in Dozein basin were identified using aerial photos and field studies. The influenced landslide parameters that were used in this study including slope, aspect, elevation, lithology, precipitation, land cover, distance from fault, distance from road and distance from river were obtained from different sources and maps. Using these factors and the identified landslide, the fuzzy membership values were calculated by frequency ratio. Then to account for the importance of each of the factors in the landslide susceptibility, weights of each factor were determined based on questionnaire and AHP method. Finally, fuzzy map of each factor was multiplied to its weight that obtained using AHP method. At the end, for computing prediction accuracy, the produced map was verified by comparing to existing landslide locations. These results indicate that the combining the three methods Fuzzy Logic, Frequency Ratio and Analytical Hierarchy Process method are relatively good estimators of landslide susceptibility in the study area. According to landslide susceptibility map about 51% of the occurred landslide fall into the high and very high susceptibility zones of the landslide susceptibility map, but approximately 26 % of them indeed located in the low and very low susceptibility zones.
NASA Astrophysics Data System (ADS)
Bruylants, Gilles; Bartik, Kristin; Reisse, Jacques
2010-04-01
Many scientists, including one of the authors of the present paper, have devoted time to try to find a definition for life (Bersini and Reisse 2007). It is clear that a consensus will never be reached but, more importantly, it seems that the issue itself could be without major interest. It is indeed impossible to define a “natural” frontier between non-living and living systems and therefore also impossible to define dichotomic criteria which could be used in order to classify systems in one of these two classes (living or non-living). Fuzzy logic provides a natural way to deal with problems where class membership lacks sharply defined criteria. It also offers the possibility to avoid losing time with unnecessary controversies such as deciding whether a virus is, or is not, a living system.
Bruylants, Gilles; Bartik, Kristin; Reisse, Jacques
2010-04-01
Many scientists, including one of the authors of the present paper, have devoted time to try to find a definition for life (Bersini and Reisse 2007). It is clear that a consensus will never be reached but, more importantly, it seems that the issue itself could be without major interest. It is indeed impossible to define a "natural" frontier between non-living and living systems and therefore also impossible to define dichotomic criteria which could be used in order to classify systems in one of these two classes (living or non-living). Fuzzy logic provides a natural way to deal with problems where class membership lacks sharply defined criteria. It also offers the possibility to avoid losing time with unnecessary controversies such as deciding whether a virus is, or is not, a living system.
Inhomogeneity compensation for MR brain image segmentation using a multi-stage FCM-based approach.
Szilágyi, László; Szilágyi, Sándor M; Dávid, László; Benyó, Zoltán
2008-01-01
Intensity inhomogeneity or intensity non-uniformity (INU) is an undesired phenomenon that represents the main obstacle for MR image segmentation and registration methods. Various techniques have been proposed to eliminate or compensate the INU, most of which are embedded into clustering algorithms. This paper proposes a multiple stage fuzzy c-means (FCM) based algorithm for the estimation and compensation of the slowly varying additive or multiplicative noise, supported by a pre-filtering technique for Gaussian and impulse noise elimination. The slowly varying behavior of the bias or gain field is assured by a smoothening filter that performs a context dependent averaging, based on a morphological criterion. The experiments using 2-D synthetic phantoms and real MR images show, that the proposed method provides accurate segmentation. The produced segmentation and fuzzy membership values can serve as excellent support for 3-D registration and segmentation techniques.
Urban Growth Modeling Using Anfis Algorithm: a Case Study for Sanandaj City, Iran
NASA Astrophysics Data System (ADS)
Mohammady, S.; Delavar, M. R.; Pijanowski, B. C.
2013-10-01
Global urban population has increased from 22.9% in 1985 to 47% in 2010. In spite of the tendency for urbanization worldwide, only about 2% of Earth's land surface is covered by cities. Urban population in Iran is increasing due to social and economic development. The proportion of the population living in Iran urban areas has consistently increased from about 31% in 1956 to 68.4% in 2006. Migration of the rural population to cities and population growth in cities have caused many problems, such as irregular growth of cities, improper placement of infrastructure and urban services. Air and environmental pollution, resource degradation and insufficient infrastructure, are the results of poor urban planning that have negative impact on the environment or livelihoods of people living in cities. These issues are a consequence of improper land use planning. Models have been employed to assist in our understanding of relations between land use and its subsequent effects. Different models for urban growth modeling have been developed. Methods from computational intelligence have made great contributions in all specific application domains and hybrid algorithms research as a part of them has become a big trend in computational intelligence. Artificial Neural Network (ANN) has the capability to deal with imprecise data by training, while fuzzy logic can deal with the uncertainty of human cognition. ANN learns from scratch by adjusting the interconnections between layers and Fuzzy Inference Systems (FIS) is a popular computing framework based on the concept of fuzzy set theory, fuzzy logic, and fuzzy reasoning. Fuzzy logic has many advantages such as flexibility and at the other sides, one of the biggest problems in fuzzy logic application is the location and shape and of membership function for each fuzzy variable which is generally being solved by trial and error method. In contrast, numerical computation and learning are the advantages of neural network, however, it is not easy to obtain the optimal structure. Since, in this type of fuzzy logic, neural network has been used, therefore, by using a learning algorithm the parameters have been changed until reach the optimal solution. Adaptive Neuro Fuzzy Inference System (ANFIS) computing due to ability to understand nonlinear structures is a popular framework for solving complex problems. Fusion of ANN and FIS has attracted the growing interest of researchers in various scientific and engineering areas due to the growing need of adaptive intelligent systems to solve the real world problems. In this research, an ANFIS method has been developed for modeling land use change and interpreting the relationship between the drivers of urbanization. Our study area is the city of Sanandaj located in the west of Iran. Landsat images acquired in 2000 and 2006 have been used for model development and calibration. The parameters used in this study include distance to major roads, distance to residential regions, elevation, number of urban pixels in a 3 by 3 neighborhood and distance to green space. Percent Correct Match (PCM) and Figure of Merit were used to assess model goodness of fit were 93.77% and 64.30%, respectively.
Optimization with Fuzzy Data via Evolutionary Algorithms
NASA Astrophysics Data System (ADS)
Kosiński, Witold
2010-09-01
Order fuzzy numbers (OFN) that make possible to deal with fuzzy inputs quantitatively, exactly in the same way as with real numbers, have been recently defined by the author and his 2 coworkers. The set of OFN forms a normed space and is a partially ordered ring. The case when the numbers are presented in the form of step functions, with finite resolution, simplifies all operations and the representation of defuzzification functionals. A general optimization problem with fuzzy data is formulated. Its fitness function attains fuzzy values. Since the adjoint space to the space of OFN is finite dimensional, a convex combination of all linear defuzzification functionals may be used to introduce a total order and a real-valued fitness function. Genetic operations on individuals representing fuzzy data are defined.
Fuzzy Emotional Semantic Analysis and Automated Annotation of Scene Images
Cao, Jianfang; Chen, Lichao
2015-01-01
With the advances in electronic and imaging techniques, the production of digital images has rapidly increased, and the extraction and automated annotation of emotional semantics implied by images have become issues that must be urgently addressed. To better simulate human subjectivity and ambiguity for understanding scene images, the current study proposes an emotional semantic annotation method for scene images based on fuzzy set theory. A fuzzy membership degree was calculated to describe the emotional degree of a scene image and was implemented using the Adaboost algorithm and a back-propagation (BP) neural network. The automated annotation method was trained and tested using scene images from the SUN Database. The annotation results were then compared with those based on artificial annotation. Our method showed an annotation accuracy rate of 91.2% for basic emotional values and 82.4% after extended emotional values were added, which correspond to increases of 5.5% and 8.9%, respectively, compared with the results from using a single BP neural network algorithm. Furthermore, the retrieval accuracy rate based on our method reached approximately 89%. This study attempts to lay a solid foundation for the automated emotional semantic annotation of more types of images and therefore is of practical significance. PMID:25838818
Fuzzy connected object definition in images with respect to co-objects
NASA Astrophysics Data System (ADS)
Udupa, Jayaram K.; Saha, Punam K.; Lotufo, Roberto A.
1999-05-01
Tangible solutions to practical image segmentation are vital to ensure progress in many applications of medical imaging. Toward this goal, we previously proposed a theory and algorithms for fuzzy connected object definition in n- dimensional images. Their effectiveness has been demonstrated in several applications including multiple sclerosis lesion detection/delineation, MR Angiography, and craniofacial imaging. The purpose of this work is to extend the earlier theory and algorithms to fuzzy connected object definition that considers all relevant objects in the image simultaneously. In the previous theory, delineation of the final object from the fuzzy connectivity scene required the selection of a threshold that specifies the weakest `hanging-togetherness' of image elements relative to each other in the object. Selection of such a threshold was not trivial and has been an active research area. In the proposed method of relative fuzzy connectivity, instead of defining an object on its own based on the strength of connectedness, all co-objects of importance that are present in the image are also considered and the objects are let to compete among themselves in having image elements as their members. In this competition, every pair of elements in the image will have a strength of connectedness in each object. The object in which this strength is highest will claim membership of the elements. This approach to fuzzy object definition using a relative strength of connectedness eliminates the need for a threshold of strength of connectedness that was part of the previous definition. It seems to be more natural since it relies on the fact that an object gets defined in an image by the presence of other objects that coexist in the image. All specified objects are defined simultaneously in this approach. The concept of iterative relative fuzzy connectivity has also been introduced. Robustness of relative fuzzy objects with respect to selection of reference image elements has been established. The effectiveness of the proposed method has been demonstrated using a patient's 3D contrast enhanced MR angiogram and a 2D phantom scene.
Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Xue, Yusheng
2016-03-01
This paper deals with the problem of control synthesis of discrete-time Takagi-Sugeno fuzzy systems by employing a novel multiinstant homogenous polynomial approach. A new multiinstant fuzzy control scheme and a new class of fuzzy Lyapunov functions, which are homogenous polynomially parameter-dependent on both the current-time normalized fuzzy weighting functions and the past-time normalized fuzzy weighting functions, are proposed for implementing the object of relaxed control synthesis. Then, relaxed stabilization conditions are derived with less conservatism than existing ones. Furthermore, the relaxation quality of obtained stabilization conditions is further ameliorated by developing an efficient slack variable approach, which presents a multipolynomial dependence on the normalized fuzzy weighting functions at the current and past instants of time. Two simulation examples are given to demonstrate the effectiveness and benefits of the results developed in this paper.
NASA Astrophysics Data System (ADS)
Fedulova, E. A.; Akulov, A. O.; Rada, A. O.; Alabina, T. A.; Savina, Ju Ju
2018-01-01
The article examines the possibilities of using unmanned aerial vehicles as the best available technologies in the field of agriculture and mining. The object of the study is the use of unmanned aerial vehicles as the best available technology. The main areas of application of this technology are identified: agro technical operations, aerial photography of mining operations. The technology of unmanned aerial vehicles is compared with the technologies of ground agricultural machinery. The research methodology includes an expert evaluation of the unmanned aerial vehicle technology belonging to the class of the best available technologies by the criteria: the level of environmental impact, resource saving, the use of low-waste, non-waste processes, the existence of at least two objects, economic efficiency. Expert evaluations were processed using the apparatus of fuzzy sets, which make it possible to construct membership functions. This allowed us to prove that the technology of unmanned aerial vehicles belongs to a fuzzy set of the best available technologies. The results of the research show that the use of unmanned aerial vehicles provides a saving of resources, especially non-renewable combustible minerals, reduces emissions and discharges of pollutants into the atmosphere, and also reduces soil erosion. Unmanned aerial vehicles should be included in the national directories of the best available technologies for the mining industry and agriculture.
A Novel Topology Control Approach to Maintain the Node Degree in Dynamic Wireless Sensor Networks
Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana
2014-01-01
Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power. PMID:24608008
Fuzzy multicriteria disposal method and site selection for municipal solid waste.
Ekmekçioğlu, Mehmet; Kaya, Tolga; Kahraman, Cengiz
2010-01-01
The use of fuzzy multiple criteria analysis (MCA) in solid waste management has the advantage of rendering subjective and implicit decision making more objective and analytical, with its ability to accommodate both quantitative and qualitative data. In this paper a modified fuzzy TOPSIS methodology is proposed for the selection of appropriate disposal method and site for municipal solid waste (MSW). Our method is superior to existing methods since it has capability of representing vague qualitative data and presenting all possible results with different degrees of membership. In the first stage of the proposed methodology, a set of criteria of cost, reliability, feasibility, pollution and emission levels, waste and energy recovery is optimized to determine the best MSW disposal method. Landfilling, composting, conventional incineration, and refuse-derived fuel (RDF) combustion are the alternatives considered. The weights of the selection criteria are determined by fuzzy pairwise comparison matrices of Analytic Hierarchy Process (AHP). It is found that RDF combustion is the best disposal method alternative for Istanbul. In the second stage, the same methodology is used to determine the optimum RDF combustion plant location using adjacent land use, climate, road access and cost as the criteria. The results of this study illustrate the importance of the weights on the various factors in deciding the optimized location, with the best site located in Catalca. A sensitivity analysis is also conducted to monitor how sensitive our model is to changes in the various criteria weights. 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kusumawati, Rosita; Subekti, Retno
2017-04-01
Fuzzy bi-objective linear programming (FBOLP) model is bi-objective linear programming model in fuzzy number set where the coefficients of the equations are fuzzy number. This model is proposed to solve portfolio selection problem which generate an asset portfolio with the lowest risk and the highest expected return. FBOLP model with normal fuzzy numbers for risk and expected return of stocks is transformed into linear programming (LP) model using magnitude ranking function.
NASA Technical Reports Server (NTRS)
Kosko, Bart
1991-01-01
Mappings between fuzzy cubes are discussed. This level of abstraction provides a surprising and fruitful alternative to the propositional and predicate-calculas reasoning techniques used in expert systems. It allows one to reason with sets instead of propositions. Discussed here are fuzzy and neural function estimators, neural vs. fuzzy representation of structured knowledge, fuzzy vector-matrix multiplication, and fuzzy associative memory (FAM) system architecture.
Zhang, Bing; Song, Xianfang; Zhang, Yinghua; Han, Dongmei; Tang, Changyuan; Yu, Yilei; Ma, Ying
2012-05-15
Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Songnen plain is one of the grain bases in China, as well as one of the three major distribution regions of soda saline-alkali soil in the world. To assess the water quality, surface water and groundwater were sampled and analyzed by fuzzy membership analysis and multivariate statistics. The surface water were gather into class I, IV and V, while groundwater were grouped as class I, II, III and V by fuzzy membership analysis. The water samples were grouped into four categories according to irrigation water quality assessment diagrams of USDA. Most water samples distributed in category C1-S1, C2-S2 and C3-S3. Three groups were generated from hierarchical cluster analysis. Four principal components were extracted from principal component analysis. The indicators to water quality assessment were Na, HCO(3), NO(3), Fe, Mn and EC from principal component analysis. We conclude that surface water and shallow groundwater are suitable for irrigation, the reservoir and deep groundwater in upstream are the resources for drinking. The water for drinking should remove of the naturally occurring ions of Fe and Mn. The control of sodium and salinity hazard is required for irrigation. The integrated management of surface water and groundwater for drinking and irrigation is to solve the water issues. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Villéger, Alice; Ouchchane, Lemlih; Lemaire, Jean-Jacques; Boire, Jean-Yves
2007-03-01
Symptoms of neurodegenerative pathologies such as Parkinson's disease can be relieved through Deep Brain Stimulation. This neurosurgical technique relies on high precision positioning of electrodes in specific areas of the basal ganglia and the thalamus. These subcortical anatomical targets must be located at pre-operative stage, from a set of MRI acquired under stereotactic conditions. In order to assist surgical planning, we designed a semi-automated image analysis process for extracting anatomical areas of interest. Complementary information, provided by both patient's data and expert knowledge, is represented as fuzzy membership maps, which are then fused by means of suitable possibilistic operators in order to achieve the segmentation of targets. More specifically, theoretical prior knowledge on brain anatomy is modelled within a 'virtual atlas' organised as a spatial graph: a list of vertices linked by edges, where each vertex represents an anatomical structure of interest and contains relevant information such as tissue composition, whereas each edge represents a spatial relationship between two structures, such as their relative directions. The model is built using heterogeneous sources of information such as qualitative descriptions from the expert, or quantitative information from prelabelled images. For each patient, tissue membership maps are extracted from MR data through a classification step. Prior model and patient's data are then matched by using a research algorithm (or 'strategy') which simultaneously computes an estimation of the location of every structures. The method was tested on 10 clinical images, with promising results. Location and segmentation results were statistically assessed, opening perspectives for enhancements.
NASA Astrophysics Data System (ADS)
Kumar, V.; Nayagum, D.; Thornton, S.; Banwart, S.; Schuhmacher2, M.; Lerner, D.
2006-12-01
Characterization of uncertainty associated with groundwater quality models is often of critical importance, as for example in cases where environmental models are employed in risk assessment. Insufficient data, inherent variability and estimation errors of environmental model parameters introduce uncertainty into model predictions. However, uncertainty analysis using conventional methods such as standard Monte Carlo sampling (MCS) may not be efficient, or even suitable, for complex, computationally demanding models and involving different nature of parametric variability and uncertainty. General MCS or variant of MCS such as Latin Hypercube Sampling (LHS) assumes variability and uncertainty as a single random entity and the generated samples are treated as crisp assuming vagueness as randomness. Also when the models are used as purely predictive tools, uncertainty and variability lead to the need for assessment of the plausible range of model outputs. An improved systematic variability and uncertainty analysis can provide insight into the level of confidence in model estimates, and can aid in assessing how various possible model estimates should be weighed. The present study aims to introduce, Fuzzy Latin Hypercube Sampling (FLHS), a hybrid approach of incorporating cognitive and noncognitive uncertainties. The noncognitive uncertainty such as physical randomness, statistical uncertainty due to limited information, etc can be described by its own probability density function (PDF); whereas the cognitive uncertainty such estimation error etc can be described by the membership function for its fuzziness and confidence interval by ?-cuts. An important property of this theory is its ability to merge inexact generated data of LHS approach to increase the quality of information. The FLHS technique ensures that the entire range of each variable is sampled with proper incorporation of uncertainty and variability. A fuzzified statistical summary of the model results will produce indices of sensitivity and uncertainty that relate the effects of heterogeneity and uncertainty of input variables to model predictions. The feasibility of the method is validated to assess uncertainty propagation of parameter values for estimation of the contamination level of a drinking water supply well due to transport of dissolved phenolics from a contaminated site in the UK.
Guthke, Reinhard; Möller, Ulrich; Hoffmann, Martin; Thies, Frank; Töpfer, Susanne
2005-04-15
The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Reinhard.Guthke@hki-jena.de.
Implementation of Mamdani Fuzzy Method in Employee Promotion System
NASA Astrophysics Data System (ADS)
Zulfikar, W. B.; Jumadi; Prasetyo, P. K.; Ramdhani, M. A.
2018-01-01
Nowadays, employees are big assets to an institution. Every employee has a different educational background, degree, work skill, attitude and ethic that affect the performance. An institution including government institution implements a promotion system in order to improve the performance of the employees. Pangandaran Tourism, Industry, Trade, and SME Department is one of government agency that implements a promotion system to discover employees who deserve to get promotion. However, there are some practical deficiencies in the promotion system, one of which is the subjectivity issue. This work proposed a classification model that could minimize the subjectivity issue in employee promotion system. This paper reported a classification employee based on their eligibility for promotion. The degree of membership was decided using Mamdani Fuzzy based on determinant factors of the performance of employees. In the evaluation phase, this model had an accuracy of 91.4%. It goes to show that this model may minimize the subjectivity issue in the promotion system, especially at Pangandaran Tourism, Industry, Trade, and SME Department.
NASA Astrophysics Data System (ADS)
Tognetti, Eduardo S.; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.
2015-01-01
The problem of state feedback control design for discrete-time Takagi-Sugeno (TS) (T-S) fuzzy systems is investigated in this paper. A Lyapunov function, which is quadratic in the state and presents a multi-polynomial dependence on the fuzzy weighting functions at the current and past instants of time, is proposed.This function contains, as particular cases, other previous Lyapunov functions already used in the literature, being able to provide less conservative conditions of control design for TS fuzzy systems. The structure of the proposed Lyapunov function also motivates the design of a new stabilising compensator for Takagi-Sugeno fuzzy systems. The main novelty of the proposed state feedback control law is that the gain is composed of matrices with multi-polynomial dependence on the fuzzy weighting functions at a set of past instants of time, including the current one. The conditions for the existence of a stabilising state feedback control law that minimises an upper bound to the ? or ? norms are given in terms of linear matrix inequalities. Numerical examples show that the approach can be less conservative and more efficient than other methods available in the literature.
The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.
Narayanamoorthy, S; Kalyani, S
2015-01-01
An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.
Computer Modelling and Simulation of Solar PV Array Characteristics
NASA Astrophysics Data System (ADS)
Gautam, Nalin Kumar
2003-02-01
The main objective of my PhD research work was to study the behaviour of inter-connected solar photovoltaic (PV) arrays. The approach involved the construction of mathematical models to investigate different types of research problems related to the energy yield, fault tolerance, efficiency and optimal sizing of inter-connected solar PV array systems. My research work can be divided into four different types of research problems: 1. Modeling of inter-connected solar PV array systems to investigate their electrical behavior, 2. Modeling of different inter-connected solar PV array networks to predict their expected operational lifetimes, 3. Modeling solar radiation estimation and its variability, and 4. Modeling of a coupled system to estimate the size of PV array and battery-bank in the stand-alone inter-connected solar PV system where the solar PV system depends on a system providing solar radiant energy. The successful application of mathematics to the above-m entioned problems entailed three phases: 1. The formulation of the problem in a mathematical form using numerical, optimization, probabilistic and statistical methods / techniques, 2. The translation of mathematical models using C++ to simulate them on a computer, and 3. The interpretation of the results to see how closely they correlated with the real data. Array is the most cost-intensive component of the solar PV system. Since the electrical performances as well as life properties of an array are highly sensitive to field conditions, different characteristics of the arrays, such as energy yield, operational lifetime, collector orientation, and optimal sizing were investigated in order to improve their efficiency, fault-tolerance and reliability. Three solar cell interconnection configurations in the array - series-parallel, total-cross-tied, and bridge-linked, were considered. The electrical characteristics of these configurations were investigated to find out one that is comparatively less susceptible to the mismatches due to manufacturer's tolerances in cell characteristics, shadowing, soiling and aging of solar cells. The current-voltage curves and the values of energy yield characterized by maximum-power points and fill factors for these arrays were also obtained. Two different mathematical models, one for smaller size arrays and the other for the larger size arrays, were developed. The first model takes account of the partial differential equations with boundary value conditions, whereas the second one involves the simple linear programming concept. Based on the initial information on the values of short-circuit current and open-circuit voltage of thirty-six single-crystalline silicon solar cells provided by a manufacturer, the values of these parameters for up to 14,400 solar cells were generated randomly. Thus, the investigations were done for three different cases of array sizes, i.e., (6 x 6), (36 x 8) and (720 x 20), for each configuration. The operational lifetimes of different interconnected solar PV arrays and the improvement in their life properties through different interconnection and modularized configurations were investigated using a reliability-index model. Under normal conditions, the efficiency of a solar cell degrades in an exponential manner, and its operational life above a lowest admissible efficiency may be considered as the upper bound of its lifetime. Under field conditions, the solar cell may fail any time due to environmental stresses, or it may function up to the end of its expected lifetime. In view of this, the lifetime of a solar cell in an array was represented by an exponentially distributed random variable. At any instant of time t, this random variable was considered to have two states: (i) the cell functioned till time t, or (ii) the cell failed within time t. It was considered that the functioning of the solar cell included its operation at an efficiency decaying with time under normal conditions. It was assumed that the lifetime of a solar cell had lack of memory or aging property, which meant that no matter how long (say, t) the cell had been operational, the probability that it would last an additional time ?t was independent of t. The operational life of the solar cell above a lowest admissible efficiency was considered as the upper bound of its expected lifetime. The value of the upper bound on the expected life of solar cell was evaluated using the information provided by the manufacturers of the single-crystalline silicon solar cells. Then on the basis of these lifetimes, the expected operational lifetimes of the array systems were obtained. Since the investigations of the effects of collector orientation on the performance of an array require the continuous values of global solar radiation on a surface, a method to estimate the global solar radiation on a surface (horizontal or tilted) was also proposed. The cloudiness index was defined as the fraction of extraterrestrial radiation that reached the earth's surface when the sky above the location of interest was obscured by the cloud cover. The cloud cover at the location of interest during any time interval of a day was assumed to follow the fuzzy random phenomenon. The cloudiness index, therefore, was considered as a fuzzy random variable that accounted for the cloud cover at the location of interest during any time interval of a day. This variable was assumed to depend on four other fuzzy random variables that, respectively, accounted for the cloud cover corresponding to the 1) type of cloud group, 2) climatic region, 3) season with most of the precipitation, and 4) type of precipitation at the location of interest during any time interval. All possible types of cloud covers were categorized into five types of cloud groups. Each cloud group was considered to be a fuzzy subset. In this model, the cloud cover at the location of interest during a time interval was considered to be the clouds that obscure the sky above the location. The cloud covers, with all possible types of clouds having transmissivities corresponding to values in the membership range of a fuzzy subset (i.e., a type of cloud group), were considered to be the membership elements of that fuzzy subset. The transmissivities of different types of cloud covers in a cloud group corresponded to the values in the membership range of that cloud group. Predicate logic (i.e., if---then---, else---, conditions) was used to set the relationship between all the fuzzy random variables. The values of the above-mentioned fuzzy random variables were evaluated to provide the value of cloudiness index for each time interval at the location of interest. For each case of the fuzzy random variable, heuristic approach was used to identify subjectively the range ([a, b], where a and b were real numbers with in [0, 1] such that a
Healthiness of Survival and Quality of Death Among Oldest Old in China Using Fuzzy Sets
Gu, Danan; Zeng, Yi
2012-01-01
Objectives To investigate healthiness of survival and quality of death among oldest-old Chinese. Methods Grade of Membership (GoM) method is applied to fulfill our goals using a nationwide longitudinal survey in China. Results GoM method generates six pure types/profiles for healthiness of survival and five profiles/types for quality of death. The authors combine these 11 profiles into 4 groups. On average, a Chinese oldest old from 1998 to 2000 had 48% probability of experiencing healthy survival, with 30% experiencing unhealthy survival, 11% having nonsuffering death, and 11% having suffering death. Similar memberships of dying with nonsuffering conditions are found across ages among the decedents. Men have a higher probability of being in healthy survival and nonsuffering death as compared to women. Marriage, high social connections, nonsmoking, and regular exercise are important contributors to healthy survival and quality of death. Discussion It is possible to live to ages 100 and beyond without much suffering. PMID:22992893
A Gompertz population model with Allee effect and fuzzy initial values
NASA Astrophysics Data System (ADS)
Amarti, Zenia; Nurkholipah, Nenden Siti; Anggriani, Nursanti; Supriatna, Asep K.
2018-03-01
Growth and population dynamics models are important tools used in preparing a good management for society to predict the future of population or species. This has been done by various known methods, one among them is by developing a mathematical model that describes population growth. Models are usually formed into differential equations or systems of differential equations, depending on the complexity of the underlying properties of the population. One example of biological complexity is Allee effect. It is a phenomenon showing a high correlation between very small population size and the mean individual fitness of the population. In this paper the population growth model used is the Gompertz equation model by considering the Allee effect on the population. We explore the properties of the solution to the model numerically using the Runge-Kutta method. Further exploration is done via fuzzy theoretical approach to accommodate uncertainty of the initial values of the model. It is known that an initial value greater than the Allee threshold will cause the solution rises towards carrying capacity asymptotically. However, an initial value smaller than the Allee threshold will cause the solution decreases towards zero asymptotically, which means the population is eventually extinct. Numerical solutions show that modeling uncertain initial value of the critical point A (the Allee threshold) with a crisp initial value could cause the extinction of population of a certain possibilistic degree, depending on the predetermined membership function of the initial value.
An Improvement To The k-Nearest Neighbor Classifier For ECG Database
NASA Astrophysics Data System (ADS)
Jaafar, Haryati; Hidayah Ramli, Nur; Nasir, Aimi Salihah Abdul
2018-03-01
The k nearest neighbor (kNN) is a non-parametric classifier and has been widely used for pattern classification. However, in practice, the performance of kNN often tends to fail due to the lack of information on how the samples are distributed among them. Moreover, kNN is no longer optimal when the training samples are limited. Another problem observed in kNN is regarding the weighting issues in assigning the class label before classification. Thus, to solve these limitations, a new classifier called Mahalanobis fuzzy k-nearest centroid neighbor (MFkNCN) is proposed in this study. Here, a Mahalanobis distance is applied to avoid the imbalance of samples distribition. Then, a surrounding rule is employed to obtain the nearest centroid neighbor based on the distributions of training samples and its distance to the query point. Consequently, the fuzzy membership function is employed to assign the query point to the class label which is frequently represented by the nearest centroid neighbor Experimental studies from electrocardiogram (ECG) signal is applied in this study. The classification performances are evaluated in two experimental steps i.e. different values of k and different sizes of feature dimensions. Subsequently, a comparative study of kNN, kNCN, FkNN and MFkCNN classifier is conducted to evaluate the performances of the proposed classifier. The results show that the performance of MFkNCN consistently exceeds the kNN, kNCN and FkNN with the best classification rates of 96.5%.
The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem
Narayanamoorthy, S.; Kalyani, S.
2015-01-01
An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example. PMID:25810713
Mansouri, Mohammad; Teshnehlab, Mohammad; Aliyari Shoorehdeli, Mahdi
2015-05-01
In this paper, a novel adaptive hierarchical fuzzy control system based on the variable structure control is developed for a class of SISO canonical nonlinear systems in the presence of bounded disturbances. It is assumed that nonlinear functions of the systems be completely unknown. Switching surfaces are incorporated into the hierarchical fuzzy control scheme to ensure the system stability. A fuzzy soft switching system decides the operation area of the hierarchical fuzzy control and variable structure control systems. All the nonlinearly appeared parameters of conclusion parts of fuzzy blocks located in different layers of the hierarchical fuzzy control system are adjusted through adaptation laws deduced from the defined Lyapunov function. The proposed hierarchical fuzzy control system reduces the number of rules and consequently the number of tunable parameters with respect to the ordinary fuzzy control system. Global boundedness of the overall adaptive system and the desired precision are achieved using the proposed adaptive control system. In this study, an adaptive hierarchical fuzzy system is used for two objectives; it can be as a function approximator or a control system based on an intelligent-classic approach. Three theorems are proven to investigate the stability of the nonlinear dynamic systems. The important point about the proposed theorems is that they can be applied not only to hierarchical fuzzy controllers with different structures of hierarchical fuzzy controller, but also to ordinary fuzzy controllers. Therefore, the proposed algorithm is more general. To show the effectiveness of the proposed method four systems (two mechanical, one mathematical and one chaotic) are considered in simulations. Simulation results demonstrate the validity, efficiency and feasibility of the proposed approach to control of nonlinear dynamic systems. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Topuz, Emel; van Gestel, Cornelis A M
2016-01-01
The usage of Engineered Nanoparticles (ENPs) in consumer products is relatively new and there is a need to conduct environmental risk assessment (ERA) to evaluate their impacts on the environment. However, alternative approaches are required for ERA of ENPs because of the huge gap in data and knowledge compared to conventional pollutants and their unique properties that make it difficult to apply existing approaches. This study aims to propose an ERA approach for ENPs by integrating Analytical Hierarchy Process (AHP) and fuzzy inference models which provide a systematic evaluation of risk factors and reducing uncertainty about the data and information, respectively. Risk is assumed to be the combination of occurrence likelihood, exposure potential and toxic effects in the environment. A hierarchy was established to evaluate the sub factors of these components. Evaluation was made with fuzzy numbers to reduce uncertainty and incorporate the expert judgements. Overall score of each component was combined with fuzzy inference rules by using expert judgements. Proposed approach reports the risk class and its membership degree such as Minor (0.7). Therefore, results are precise and helpful to determine the risk management strategies. Moreover, priority weights calculated by comparing the risk factors based on their importance for the risk enable users to understand which factor is effective on the risk. Proposed approach was applied for Ag (two nanoparticles with different coating) and TiO2 nanoparticles for different case studies. Results verified the proposed benefits of the approach. Copyright © 2016 Elsevier Ltd. All rights reserved.
Arregui, María C; Sánchez, Daniel; Althaus, Rafael; Scotta, Roberto R; Bertolaccini, Isabel
2010-07-01
The introduction of transgenic soybean (Glycine max, L.) varieties resistant to glyphosate (GR soybeans) has rapidly expanded in Argentina, increasing pesticide use where only grasslands were previously cultivated. The authors compared an estimate of environmental risk for different crops and active ingredients using the IPEST index, which is based on a fuzzy-logic expert system. For IPEST calculations, four modules are defined, one reflecting the rate of application, the other three reflecting the risk for groundwater, surface water and air. The input variables are pesticide properties, site-specific conditions and characteristics of the pesticide application. The expert system calculates the value of modules according to the degree of membership of the input variables to the fuzzy subsets F (favourable) and U (unfavourable), and they can be aggregated following sets of decision rules. IPEST integrated values of >or= 7 reflect low environmental risk, and values of < 7 reflect high risk. Alfalfa, soybean and wheat showed IPEST values over 7 (low risk), while maize had the lowest IPEST values (high risk). Comparing active ingredients applied in annual and perennial crops, atrazine and acetochlor gave the highest risks of environmental contamination, and they are mainly used in maize. Groundwater was the most affected compartment. Fuzzy logic provided an easy tool combining different environmental components with pesticide properties to give a simple and accessible risk assessment. These findings provide information about active ingredients that should be replaced in order to protect water and air from pesticide contamination. Copyright (c) 2010 Society of Chemical Industry.
Lv, Ying; Huang, Guohe; Sun, Wei
2013-01-01
A scenario-based interval two-phase fuzzy programming (SITF) method was developed for water resources planning in a wetland ecosystem. The SITF approach incorporates two-phase fuzzy programming, interval mathematical programming, and scenario analysis within a general framework. It can tackle fuzzy and interval uncertainties in terms of cost coefficients, resources availabilities, water demands, hydrological conditions and other parameters within a multi-source supply and multi-sector consumption context. The SITF method has the advantage in effectively improving the membership degrees of the system objective and all fuzzy constraints, so that both higher satisfactory grade of the objective and more efficient utilization of system resources can be guaranteed. Under the systematic consideration of water demands by the ecosystem, the SITF method was successfully applied to Baiyangdian Lake, which is the largest wetland in North China. Multi-source supplies (including the inter-basin water sources of Yuecheng Reservoir and Yellow River), and multiple water users (including agricultural, industrial and domestic sectors) were taken into account. The results indicated that, the SITF approach would generate useful solutions to identify long-term water allocation and transfer schemes under multiple economic, environmental, ecological, and system-security targets. It can address a comparative analysis for the system satisfactory degrees of decisions under various policy scenarios. Moreover, it is of significance to quantify the relationship between hydrological change and human activities, such that a scheme on ecologically sustainable water supply to Baiyangdian Lake can be achieved. Copyright © 2012 Elsevier B.V. All rights reserved.
Uncertainty Modeling of Pollutant Transport in Atmosphere and Aquatic Route Using Soft Computing
NASA Astrophysics Data System (ADS)
Datta, D.
2010-10-01
Hazardous radionuclides are released as pollutants in the atmospheric and aquatic environment (ATAQE) during the normal operation of nuclear power plants. Atmospheric and aquatic dispersion models are routinely used to assess the impact of release of radionuclide from any nuclear facility or hazardous chemicals from any chemical plant on the ATAQE. Effect of the exposure from the hazardous nuclides or chemicals is measured in terms of risk. Uncertainty modeling is an integral part of the risk assessment. The paper focuses the uncertainty modeling of the pollutant transport in atmospheric and aquatic environment using soft computing. Soft computing is addressed due to the lack of information on the parameters that represent the corresponding models. Soft-computing in this domain basically addresses the usage of fuzzy set theory to explore the uncertainty of the model parameters and such type of uncertainty is called as epistemic uncertainty. Each uncertain input parameters of the model is described by a triangular membership function.
Manipulating Tabu List to Handle Machine Breakdowns in Job Shop Scheduling Problems
NASA Astrophysics Data System (ADS)
Nababan, Erna Budhiarti; SalimSitompul, Opim
2011-06-01
Machine breakdowns in a production schedule may occur on a random basis that make the well-known hard combinatorial problem of Job Shop Scheduling Problems (JSSP) becomes more complex. One of popular techniques used to solve the combinatorial problems is Tabu Search. In this technique, moves that will be not allowed to be revisited are retained in a tabu list in order to avoid in gaining solutions that have been obtained previously. In this paper, we propose an algorithm to employ a second tabu list to keep broken machines, in addition to the tabu list that keeps the moves. The period of how long the broken machines will be kept on the list is categorized using fuzzy membership function. Our technique are tested to the benchmark data of JSSP available on the OR library. From the experiment, we found that our algorithm is promising to help a decision maker to face the event of machine breakdowns.
Interactive classification and content-based retrieval of tissue images
NASA Astrophysics Data System (ADS)
Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof
2002-11-01
We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.
Comments on "The multisynapse neural network and its application to fuzzy clustering".
Yu, Jian; Hao, Pengwei
2005-05-01
In the above-mentioned paper, Wei and Fahn proposed a neural architecture, the multisynapse neural network, to solve constrained optimization problems including high-order, logarithmic, and sinusoidal forms, etc. As one of its main applications, a fuzzy bidirectional associative clustering network (FBACN) was proposed for fuzzy-partition clustering according to the objective-functional method. The connection between the objective-functional-based fuzzy c-partition algorithms and FBACN is the Lagrange multiplier approach. Unfortunately, the Lagrange multiplier approach was incorrectly applied so that FBACN does not equivalently minimize its corresponding constrained objective-function. Additionally, Wei and Fahn adopted traditional definition of fuzzy c-partition, which is not satisfied by FBACN. Therefore, FBACN can not solve constrained optimization problems, either.
Landslide susceptibility mapping using a neuro-fuzzy
NASA Astrophysics Data System (ADS)
Lee, S.; Choi, J.; Oh, H.
2009-12-01
This paper develops and applied an adaptive neuro-fuzzy inference system (ANFIS) based on a geographic information system (GIS) environment using landslide-related factors and location for landslide susceptibility mapping. A neuro-fuzzy system is based on a fuzzy system that is trained by a learning algorithm derived from the neural network theory. The learning procedure operates on local information, and causes only local modifications in the underlying fuzzy system. The study area, Boun, suffered much damage following heavy rain in 1998 and was selected as a suitable site for the evaluation of the frequency and distribution of landslides. Boun is located in the central part of Korea. Landslide-related factors such as slope, soil texture, wood type, lithology, and density of lineament were extracted from topographic, soil, forest, and lineament maps. Landslide locations were identified from interpretation of aerial photographs and field surveys. Landslide-susceptible areas were analyzed by the ANFIS method and mapped using occurrence factors. In particular, we applied various membership functions (MFs) and analysis results were verified using the landslide location data. The predictive maps using triangular, trapezoidal, and polynomial MFs were the best individual MFs for modeling landslide susceptibility maps (84.96% accuracy), proving that ANFIS could be very effective in modeling landslide susceptibility mapping. Various MFs were used in this study, and after verification, the difference in accuracy according to the MFs was small, between 84.81% and 84.96%. The difference was just 0.15% and therefore the choice of MFs was not important in the study. Also, compared with the likelihood ratio model, which showed 84.94%, the accuracy was similar. Thus, the ANFIS could be applied to other study areas with different data and other study methods such as cross-validation. The developed ANFIS learns the if-then rules between landslide-related factors and landslide location for generalization and prediction. It is easy to understand and interpret, therefore it is a good choice for modeling landslide susceptibility mapping, which are also of great help for planners and engineers in selecting highly susceptible areas for further detail surveys and suitable locations to implement development. Although they may be less useful at the site-specific scale, where local geological and geographic heterogeneities may prevail, the results herein may be used as basic data to assist slope management and land use planning. For the method to be more generally applied, more landslide data are needed and more case studies should be conducted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Tianzhou; Rassias, John Michael; Xu Wanxin
2010-09-15
We establish some stability results concerning the general mixed additive-cubic functional equation in non-Archimedean fuzzy normed spaces. In addition, we establish some results of approximately general mixed additive-cubic mappings in non-Archimedean fuzzy normed spaces. The results improve and extend some recent results.
A fuzzy inventory model with acceptable shortage using graded mean integration value method
NASA Astrophysics Data System (ADS)
Saranya, R.; Varadarajan, R.
2018-04-01
In many inventory models uncertainty is due to fuzziness and fuzziness is the closed possible approach to reality. In this paper, we proposed a fuzzy inventory model with acceptable shortage which is completely backlogged. We fuzzily the carrying cost, backorder cost and ordering cost using Triangular and Trapezoidal fuzzy numbers to obtain the fuzzy total cost. The purpose of our study is to defuzzify the total profit function by Graded Mean Integration Value Method. Further a numerical example is also given to demonstrate the developed crisp and fuzzy models.
Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy
NASA Astrophysics Data System (ADS)
Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng
2018-06-01
To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.
NASA Astrophysics Data System (ADS)
Kritikos, Theodosios; Robinson, Tom R.; Davies, Tim R. H.
2015-04-01
Currently, regional coseismic landslide hazard analyses require comprehensive historical landslide inventories as well as detailed geotechnical data. Consequently, such analyses have not been possible where these data are not available. A new approach is proposed herein to assess coseismic landslide hazard at regional scale for specific earthquake scenarios in areas without historical landslide inventories. The proposed model employs fuzzy logic and geographic information systems to establish relationships between causative factors and coseismic slope failures in regions with well-documented and substantially complete coseismic landslide inventories. These relationships are then utilized to estimate the relative probability of landslide occurrence in regions with neither historical landslide inventories nor detailed geotechnical data. Statistical analyses of inventories from the 1994 Northridge and 2008 Wenchuan earthquakes reveal that shaking intensity, topography, and distance from active faults and streams are the main controls on the spatial distribution of coseismic landslides. Average fuzzy memberships for each factor are developed and aggregated to model the relative coseismic landslide hazard for both earthquakes. The predictive capabilities of the models are assessed and show good-to-excellent model performance for both events. These memberships are then applied to the 1999 Chi-Chi earthquake, using only a digital elevation model, active fault map, and isoseismal data, replicating prediction of a future event in a region lacking historic inventories and/or geotechnical data. This similarly results in excellent model performance, demonstrating the model's predictive potential and confirming it can be meaningfully applied in regions where previous methods could not. For such regions, this method may enable a greater ability to analyze coseismic landslide hazard from specific earthquake scenarios, allowing for mitigation measures and emergency response plans to be better informed of earthquake-related hazards.
NASA Astrophysics Data System (ADS)
Ward, W. O. C.; Wilkinson, P. B.; Chambers, J. E.; Oxby, L. S.; Bai, L.
2014-04-01
A novel method for the effective identification of bedrock subsurface elevation from electrical resistivity tomography images is described. Identifying subsurface boundaries in the topographic data can be difficult due to smoothness constraints used in inversion, so a statistical population-based approach is used that extends previous work in calculating isoresistivity surfaces. The analysis framework involves a procedure for guiding a clustering approach based on the fuzzy c-means algorithm. An approximation of resistivity distributions, found using kernel density estimation, was utilized as a means of guiding the cluster centroids used to classify data. A fuzzy method was chosen over hard clustering due to uncertainty in hard edges in the topography data, and a measure of clustering uncertainty was identified based on the reciprocal of cluster membership. The algorithm was validated using a direct comparison of known observed bedrock depths at two 3-D survey sites, using real-time GPS information of exposed bedrock by quarrying on one site, and borehole logs at the other. Results show similarly accurate detection as a leading isosurface estimation method, and the proposed algorithm requires significantly less user input and prior site knowledge. Furthermore, the method is effectively dimension-independent and will scale to data of increased spatial dimensions without a significant effect on the runtime. A discussion on the results by automated versus supervised analysis is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekmekcioglu, Mehmet, E-mail: meceng3584@yahoo.co; Kaya, Tolga; Kahraman, Cengiz
The use of fuzzy multiple criteria analysis (MCA) in solid waste management has the advantage of rendering subjective and implicit decision making more objective and analytical, with its ability to accommodate both quantitative and qualitative data. In this paper a modified fuzzy TOPSIS methodology is proposed for the selection of appropriate disposal method and site for municipal solid waste (MSW). Our method is superior to existing methods since it has capability of representing vague qualitative data and presenting all possible results with different degrees of membership. In the first stage of the proposed methodology, a set of criteria of cost,more » reliability, feasibility, pollution and emission levels, waste and energy recovery is optimized to determine the best MSW disposal method. Landfilling, composting, conventional incineration, and refuse-derived fuel (RDF) combustion are the alternatives considered. The weights of the selection criteria are determined by fuzzy pairwise comparison matrices of Analytic Hierarchy Process (AHP). It is found that RDF combustion is the best disposal method alternative for Istanbul. In the second stage, the same methodology is used to determine the optimum RDF combustion plant location using adjacent land use, climate, road access and cost as the criteria. The results of this study illustrate the importance of the weights on the various factors in deciding the optimized location, with the best site located in Catalca. A sensitivity analysis is also conducted to monitor how sensitive our model is to changes in the various criteria weights.« less
Soft context clustering for F0 modeling in HMM-based speech synthesis
NASA Astrophysics Data System (ADS)
Khorram, Soheil; Sameti, Hossein; King, Simon
2015-12-01
This paper proposes the use of a new binary decision tree, which we call a soft decision tree, to improve generalization performance compared to the conventional `hard' decision tree method that is used to cluster context-dependent model parameters in statistical parametric speech synthesis. We apply the method to improve the modeling of fundamental frequency, which is an important factor in synthesizing natural-sounding high-quality speech. Conventionally, hard decision tree-clustered hidden Markov models (HMMs) are used, in which each model parameter is assigned to a single leaf node. However, this `divide-and-conquer' approach leads to data sparsity, with the consequence that it suffers from poor generalization, meaning that it is unable to accurately predict parameters for models of unseen contexts: the hard decision tree is a weak function approximator. To alleviate this, we propose the soft decision tree, which is a binary decision tree with soft decisions at the internal nodes. In this soft clustering method, internal nodes select both their children with certain membership degrees; therefore, each node can be viewed as a fuzzy set with a context-dependent membership function. The soft decision tree improves model generalization and provides a superior function approximator because it is able to assign each context to several overlapped leaves. In order to use such a soft decision tree to predict the parameters of the HMM output probability distribution, we derive the smoothest (maximum entropy) distribution which captures all partial first-order moments and a global second-order moment of the training samples. Employing such a soft decision tree architecture with maximum entropy distributions, a novel speech synthesis system is trained using maximum likelihood (ML) parameter re-estimation and synthesis is achieved via maximum output probability parameter generation. In addition, a soft decision tree construction algorithm optimizing a log-likelihood measure is developed. Both subjective and objective evaluations were conducted and indicate a considerable improvement over the conventional method.
NASA Astrophysics Data System (ADS)
Metternicht, Graciela; Blanco, Paula; del Valle, Hector; Laterra, Pedro; Hardtke, Leonardo; Bouza, Pablo
2015-04-01
Wildlife is part of the Patagonian rangelands sheep farming environment, with the potential of providing extra revenue to livestock owners. As sheep farming became less profitable, farmers and ranchers could focus on sustainable wildlife harvesting. It has been argued that sustainable wildlife harvesting is ecologically one of the most rational forms of land use because of its potential to provide multiple products of high value, while reducing pressure on ecosystems. The guanaco (Lama guanicoe) is the most conspicuous wild ungulate of Patagonia. Guanaco ?bre, meat, pelts and hides are economically valuable and have the potential to be used within the present Patagonian context of production systems. Guanaco populations in South America, including Patagonia, have experienced a sustained decline. Causes for this decline are related to habitat alteration, competition for forage with sheep, and lack of reasonable management plans to develop livelihoods for ranchers. In this study we propose an approach to explicitly determinate optimal stocking rates based on trade-offs between guanaco density and livestock grazing intensity on rangelands. The focus of our research is on finding optimal sheep stocking rates at paddock level, to ensure the highest production outputs while: a) meeting requirements of sustainable conservation of guanacos over their minimum viable population; b) maximizing soil carbon sequestration, and c) minimizing soil erosion. In this way, determination of optimal stocking rate in rangelands becomes a multi-objective optimization problem that can be addressed using a Fuzzy Multi-Objective Linear Programming (MOLP) approach. Basically, this approach converts multi-objective problems into single-objective optimizations, by introducing a set of objective weights. Objectives are represented using fuzzy set theory and fuzzy memberships, enabling each objective function to adopt a value between 0 and 1. Each objective function indicates the satisfaction of the decision maker towards the respective objective. Fuzzy logic is closer to intuitive thinking used by decision makers, making it a user-friendly approach for them to select alternatives. The proposed approach was applied in a study area of approximately 40,000 hectares in semiarid Patagonian rangelands where extensive, continuous sheep grazing for wool production is the main land use. Multi- and hyper-spectral data were combined with ancillary data within a GIS environment, and used to derive maps of forage production, guanacos density, soil organic carbon and soil erosion. Different scenarios, with different objectives weights were evaluated. Results showed that under scenario 1, where livestock production is predicted to have the highest values, guanaco numbers decrease substantially as well as soil carbon sequestration, and soil erosion exhibit the highest values. On the other hand, when guanaco population is prioritized, livestock production has the lowest value. A compromise alternative resulted from a scenario where variables are assigned same weight; under this condition, high livestock production is predicted, while conservation of guanaco population is sustainable, carbon sequestration is maximized and soil erosion minimized.
Can Moral Hazard Be Resolved by Common-Knowledge in S4n-Knowledge?
NASA Astrophysics Data System (ADS)
Matsuhisa, Takashi
This article investigates the relationship between common-knowledge and agreement in multi-agent system, and to apply the agreement result by common-knowledge to the principal-agent model under non-partition information. We treat the two problems: (1) how we capture the fact that the agents agree on an event or they get consensus on it from epistemic point of view, and (2) how the agreement theorem will be able to make progress to settle a moral hazard problem in the principal-agents model under non-partition information. We shall propose a solution program for the moral hazard in the principal-agents model under non-partition information by common-knowledge. Let us start that the agents have the knowledge structure induced from a reflexive and transitive relation associated with the multi-modal logic S4n. Each agent obtains the membership value of an event under his/her private information, so he/she considers the event as fuzzy set. Specifically consider the situation that the agents commonly know all membership values of the other agents. In this circumstance we shall show the agreement theorem that consensus on the membership values among all agents can still be guaranteed. Furthermore, under certain assumptions we shall show that the moral hazard can be resolved in the principal-agent model when all the expected marginal costs are common-knowledge among the principal and agents.
Li, Fei; Qiu, Zhenzhen; Zhang, Jingdong; Liu, Chaoyang; Cai, Ying; Xiao, Minsi
2017-09-04
Previous studies revealed that Honghu Lake was polluted by trace elements due to anthropogenic activities. This study investigated the spatial distribution of trace elements in Honghu Lake, and identified the major pollutants and control areas based on the fuzzy health risk assessment at screening level. The mean total content of trace elements in surface water decreased in the order of Zn (18.04 μg/L) > Pb (3.42 μg/L) > Cu (3.09 μg/L) > Cr (1.63 μg/L) > As (0.99 μg/L) > Cd (0.14 μg/L), within limits of Drinking Water Guidelines. The results of fuzzy health risk assessment indicated that there was no obvious non-carcinogenic risk to human health, while carcinogenic risk was observed in descending order of As > Cr > Cd > Pb. As was regarded to have the highest carcinogenic risk among selected trace elements because it generally accounted for 64% of integrated carcinogenic risk. Potential carcinogenic risk of trace elements in each sampling site was approximately at medium risk level (10 -5 to 10 -4 ). The areas in the south (S4, S13, and S16) and northeast (S8, S18, and S19) of Honghu Lake were regarded as the risk priority control areas. However, the corresponding maximum memberships of integrated carcinogenic risk in S1, S3, S10-S13, S15, and S18 were of relatively low credibility (50-60%), and may mislead the decision-makers in identifying the risk priority areas. Results of fuzzy assessment presented the subordinate grade and corresponding reliability of risk, and provided more full-scale results for decision-makers, which made up for the deficiency of certainty assessment to a certain extent.
Qiu, Zhenzhen; Zhang, Jingdong; Liu, Chaoyang; Cai, Ying; Xiao, Minsi
2017-01-01
Previous studies revealed that Honghu Lake was polluted by trace elements due to anthropogenic activities. This study investigated the spatial distribution of trace elements in Honghu Lake, and identified the major pollutants and control areas based on the fuzzy health risk assessment at screening level. The mean total content of trace elements in surface water decreased in the order of Zn (18.04 μg/L) > Pb (3.42 μg/L) > Cu (3.09 μg/L) > Cr (1.63 μg/L) > As (0.99 μg/L) > Cd (0.14 μg/L), within limits of Drinking Water Guidelines. The results of fuzzy health risk assessment indicated that there was no obvious non-carcinogenic risk to human health, while carcinogenic risk was observed in descending order of As > Cr > Cd > Pb. As was regarded to have the highest carcinogenic risk among selected trace elements because it generally accounted for 64% of integrated carcinogenic risk. Potential carcinogenic risk of trace elements in each sampling site was approximately at medium risk level (10−5 to 10−4). The areas in the south (S4, S13, and S16) and northeast (S8, S18, and S19) of Honghu Lake were regarded as the risk priority control areas. However, the corresponding maximum memberships of integrated carcinogenic risk in S1, S3, S10–S13, S15, and S18 were of relatively low credibility (50–60%), and may mislead the decision-makers in identifying the risk priority areas. Results of fuzzy assessment presented the subordinate grade and corresponding reliability of risk, and provided more full-scale results for decision-makers, which made up for the deficiency of certainty assessment to a certain extent. PMID:28869576
NASA Astrophysics Data System (ADS)
Shankar Kumar, Ravi; Goswami, A.
2015-06-01
The article scrutinises the learning effect of the unit production time on optimal lot size for the uncertain and imprecise imperfect production process, wherein shortages are permissible and partially backlogged. Contextually, we contemplate the fuzzy chance of production process shifting from an 'in-control' state to an 'out-of-control' state and re-work facility of imperfect quality of produced items. The elapsed time until the process shifts is considered as a fuzzy random variable, and consequently, fuzzy random total cost per unit time is derived. Fuzzy expectation and signed distance method are used to transform the fuzzy random cost function into an equivalent crisp function. The results are illustrated with the help of numerical example. Finally, sensitivity analysis of the optimal solution with respect to major parameters is carried out.
Wang, Lijie; Li, Hongyi; Zhou, Qi; Lu, Renquan
2017-09-01
This paper investigates the problem of observer-based adaptive fuzzy control for a category of nonstrict feedback systems subject to both unmodeled dynamics and fuzzy dead zone. Through constructing a fuzzy state observer and introducing a center of gravity method, unmeasurable states are estimated and the fuzzy dead zone is defuzzified, respectively. By employing fuzzy logic systems to identify the unknown functions. And combining small-gain approach with adaptive backstepping control technique, a novel adaptive fuzzy output feedback control strategy is developed, which ensures that all signals involved are semi-globally uniformly bounded. Simulation results are given to demonstrate the effectiveness of the presented method.
Fuzzy logic in control systems: Fuzzy logic controller. I, II
NASA Technical Reports Server (NTRS)
Lee, Chuen Chien
1990-01-01
Recent advances in the theory and applications of fuzzy-logic controllers (FLCs) are examined in an analytical review. The fundamental principles of fuzzy sets and fuzzy logic are recalled; the basic FLC components (fuzzification and defuzzification interfaces, knowledge base, and decision-making logic) are described; and the advantages of FLCs for incorporating expert knowledge into a control system are indicated. Particular attention is given to fuzzy implication functions, the interpretation of sentence connectives (and, also), compositional operators, and inference mechanisms. Applications discussed include the FLC-guided automobile developed by Sugeno and Nishida (1985), FLC hardware systems, FLCs for subway trains and ship-loading cranes, fuzzy-logic chips, and fuzzy computers.
Solid waste forecasting using modified ANFIS modeling.
Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; K N A, Maulud
2015-10-01
Solid waste prediction is crucial for sustainable solid waste management. Usually, accurate waste generation record is challenge in developing countries which complicates the modelling process. Solid waste generation is related to demographic, economic, and social factors. However, these factors are highly varied due to population and economy growths. The objective of this research is to determine the most influencing demographic and economic factors that affect solid waste generation using systematic approach, and then develop a model to forecast solid waste generation using a modified Adaptive Neural Inference System (MANFIS). The model evaluation was performed using Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and the coefficient of determination (R²). The results show that the best input variables are people age groups 0-14, 15-64, and people above 65 years, and the best model structure is 3 triangular fuzzy membership functions and 27 fuzzy rules. The model has been validated using testing data and the resulted training RMSE, MAE and R² were 0.2678, 0.045 and 0.99, respectively, while for testing phase RMSE =3.986, MAE = 0.673 and R² = 0.98. To date, a few attempts have been made to predict the annual solid waste generation in developing countries. This paper presents modeling of annual solid waste generation using Modified ANFIS, it is a systematic approach to search for the most influencing factors and then modify the ANFIS structure to simplify the model. The proposed method can be used to forecast the waste generation in such developing countries where accurate reliable data is not always available. Moreover, annual solid waste prediction is essential for sustainable planning.
Environmental impact assessment of coal power plants in operation
NASA Astrophysics Data System (ADS)
Bartan, Ayfer; Kucukali, Serhat; Ar, Irfan
2017-11-01
Coal power plants constitute an important component of the energy mix in many countries. However, coal power plants can cause several environmental risks such as: climate change and biodiversity loss. In this study, a tool has been proposed to calculate the environmental impact of a coal-fired thermal power plant in operation by using multi-criteria scoring and fuzzy logic method. We take into account the following environmental parameters in our tool: CO, SO2, NOx, particulate matter, fly ash, bottom ash, the cooling water intake impact on aquatic biota, and the thermal pollution. In the proposed tool, the boundaries of the fuzzy logic membership functions were established taking into account the threshold values of the environmental parameters which were defined in the environmental legislation. Scoring of these environmental parameters were done with the statistical analysis of the environmental monitoring data of the power plant and by using the documented evidences that were obtained during the site visits. The proposed method estimates each environmental impact factor level separately and then aggregates them by calculating the Environmental Impact Score (EIS). The proposed method uses environmental monitoring data and documented evidence instead of using simulation models. The proposed method has been applied to the 4 coal-fired power plants that have been operation in Turkey. The Environmental Impact Score was obtained for each power plant and their environmental performances were compared. It is expected that those environmental impact assessments will contribute to the decision-making process for environmental investments to those plants. The main advantage of the proposed method is its flexibility and ease of use.
NASA Astrophysics Data System (ADS)
You, Youngjun; Rhee, Key-Pyo; Ahn, Kyoungsoo
2013-06-01
In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.
NASA Astrophysics Data System (ADS)
Oh, Hyun-Joo; Pradhan, Biswajeet
2011-09-01
This paper presents landslide-susceptibility mapping using an adaptive neuro-fuzzy inference system (ANFIS) using a geographic information system (GIS) environment. In the first stage, landslide locations from the study area were identified by interpreting aerial photographs and supported by an extensive field survey. In the second stage, landslide-related conditioning factors such as altitude, slope angle, plan curvature, distance to drainage, distance to road, soil texture and stream power index (SPI) were extracted from the topographic and soil maps. Then, landslide-susceptible areas were analyzed by the ANFIS approach and mapped using landslide-conditioning factors. In particular, various membership functions (MFs) were applied for the landslide-susceptibility mapping and their results were compared with the field-verified landslide locations. Additionally, the receiver operating characteristics (ROC) curve for all landslide susceptibility maps were drawn and the areas under curve values were calculated. The ROC curve technique is based on the plotting of model sensitivity — true positive fraction values calculated for different threshold values, versus model specificity — true negative fraction values, on a graph. Landslide test locations that were not used during the ANFIS modeling purpose were used to validate the landslide susceptibility maps. The validation results revealed that the susceptibility maps constructed by the ANFIS predictive models using triangular, trapezoidal, generalized bell and polynomial MFs produced reasonable results (84.39%), which can be used for preliminary land-use planning. Finally, the authors concluded that ANFIS is a very useful and an effective tool in regional landslide susceptibility assessment.
Photorefractive optical fuzzy-logic processor based on grating degeneracy
NASA Astrophysics Data System (ADS)
Wu, Weishu; Yang, Changxi; Campbell, Scott; Yeh, Pochi
1995-04-01
A novel optical fuzzy-logic processor using light-induced gratings in photorefractive crystals is proposed and demonstrated. By exploiting grating degeneracy, one can easily implement parallel fuzzy-logic functions in disjunctive normal form.
Fuzzy Adaptive Decentralized Optimal Control for Strict Feedback Nonlinear Large-Scale Systems.
Sun, Kangkang; Sui, Shuai; Tong, Shaocheng
2018-04-01
This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.
NASA Technical Reports Server (NTRS)
Sultan, Labib; Janabi, Talib
1992-01-01
This paper analyses the internal operation of fuzzy logic controllers as referenced to the human cognitive tasks of control and decision making. Two goals are targeted. The first goal focuses on the cognitive interpretation of the mechanisms employed in the current design of fuzzy logic controllers. This analysis helps to create a ground to explore the potential of enhancing the functional intelligence of fuzzy controllers. The second goal is to outline the features of a new class of fuzzy controllers, the Clearness Transformation Fuzzy Logic Controller (CT-FLC), whereby some new concepts are advanced to qualify fuzzy controllers as 'cognitive devices' rather than 'expert system devices'. The operation of the CT-FLC, as a fuzzy pattern processing controller, is explored, simulated, and evaluated.
Research on intelligent algorithm of electro - hydraulic servo control system
NASA Astrophysics Data System (ADS)
Wang, Yannian; Zhao, Yuhui; Liu, Chengtao
2017-09-01
In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.
NASA Astrophysics Data System (ADS)
Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan
2016-10-01
This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.
Approximation abilities of neuro-fuzzy networks
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2010-01-01
The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.
Improving land resource evaluation using fuzzy neural network ensembles
Xue, Yue-Ju; HU, Y.-M.; Liu, S.-G.; YANG, J.-F.; CHEN, Q.-C.; BAO, S.-T.
2007-01-01
Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource experts, and the evaluation results rely heavily on experts' experiences. In order to overcome the shortcoming, we presented a fuzzy neural network ensemble method that did not require grading the evaluation factors into categorical indexes and could evaluate land resources by using the three kinds of attribute values directly. A fuzzy back propagation neural network (BPNN), a fuzzy radial basis function neural network (RBFNN), a fuzzy BPNN ensemble, and a fuzzy RBFNN ensemble were used to evaluate the land resources in Guangdong Province. The evaluation results by using the fuzzy BPNN ensemble and the fuzzy RBFNN ensemble were much better than those by using the single fuzzy BPNN and the single fuzzy RBFNN, and the error rate of the single fuzzy RBFNN or fuzzy RBFNN ensemble was lower than that of the single fuzzy BPNN or fuzzy BPNN ensemble, respectively. By using the fuzzy neural network ensembles, the validity of land resource evaluation was improved and reliance on land evaluators' experiences was considerably reduced. ?? 2007 Soil Science Society of China.
Decomposed fuzzy systems and their application in direct adaptive fuzzy control.
Hsueh, Yao-Chu; Su, Shun-Feng; Chen, Ming-Chang
2014-10-01
In this paper, a novel fuzzy structure termed as the decomposed fuzzy system (DFS) is proposed to act as the fuzzy approximator for adaptive fuzzy control systems. The proposed structure is to decompose each fuzzy variable into layers of fuzzy systems, and each layer is to characterize one traditional fuzzy set. Similar to forming fuzzy rules in traditional fuzzy systems, layers from different variables form the so-called component fuzzy systems. DFS is proposed to provide more adjustable parameters to facilitate possible adaptation in fuzzy rules, but without introducing a learning burden. It is because those component fuzzy systems are independent so that it can facilitate minimum distribution learning effects among component fuzzy systems. It can be seen from our experiments that even when the rule number increases, the learning time in terms of cycles is still almost constant. It can also be found that the function approximation capability and learning efficiency of the DFS are much better than that of the traditional fuzzy systems when employed in adaptive fuzzy control systems. Besides, in order to further reduce the computational burden, a simplified DFS is proposed in this paper to satisfy possible real time constraints required in many applications. From our simulation results, it can be seen that the simplified DFS can perform fairly with a more concise decomposition structure.
Li, Yongming; Sui, Shuai; Tong, Shaocheng
2017-02-01
This paper deals with the problem of adaptive fuzzy output feedback control for a class of stochastic nonlinear switched systems. The controlled system in this paper possesses unmeasured states, completely unknown nonlinear system functions, unmodeled dynamics, and arbitrary switchings. A state observer which does not depend on the switching signal is constructed to tackle the unmeasured states. Fuzzy logic systems are employed to identify the completely unknown nonlinear system functions. Based on the common Lyapunov stability theory and stochastic small-gain theorem, a new robust adaptive fuzzy backstepping stabilization control strategy is developed. The stability of the closed-loop system on input-state-practically stable in probability is proved. The simulation results are given to verify the efficiency of the proposed fuzzy adaptive control scheme.
Simha, H V Vikram; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Kumar, P Arun; Manimala, K
2016-06-01
Moisture sorption isotherms of spray-dried milk-foxtail millet powder were determined at 10, 25 and 40 °C. Sorption data was fitted using classical and soft-computing approaches. The isotherms were of type II, and equilibrium moisture content (EMC) was temperature dependent. The BET monolayer moisture content decreased from 3.30 to 2.67 % as temperature increased from 10 to 40 °C. Amongst the classical models, Ferro-Fontan gave the best fit of EMC-aw data. However, the Sugeno-type adaptive neuro-fuzzy inference system (ANFIS) with generalized bell-shaped membership function performed better than artificial neural network and classical models with RMSE as low as 0.0099. The isosteric heat of sorption decreased from 150.32 kJ mol(-1) at 1 % moisture content to 44.11 kJ mol(-1) at 15 % moisture. The enthalpy-entropy compensation theory was validated, and the isokinetic and harmonic mean temperatures were determined as 333.1 and 297.5 K, respectively.
Detection of nicotine content impact in tobacco manufacturing using computational intelligence.
Begic Fazlic, Lejla; Avdagic, Zikrija
2011-01-01
A study is presented for the detection of nicotine impact in different cigarette type, using recorded data and Computational Intelligence techniques. Recorded puffs are processed using Continuous Wavelet Transform and used to extract time-frequency features for normal and abnormal puffs conditions. The wavelet energy distributions are used as inputs to classifiers based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Genetic Algorithms (GAs). The number and the parameters of Membership Functions are used in ANFIS along with the features from wavelet energy distributionare selected using GAs, maximising the diagnosis success. GA with ANFIS (GANFIS) are trained with a subset of data with known nicotine conditions. The trained GANFIS are tested using the other set of data (testing data). A classical method by High-Performance Liquid Chromatography is also introduced to solve this problem, respectively. The results as well as the performances of these two approaches are compared. A combination of these two algorithms is also suggested to improve the efficiency of this solution procedure. Computational results show that this combined algorithm is promising.
Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm.
Beloufa, Fayssal; Chikh, M A
2013-10-01
In this study, diagnosis of diabetes disease, which is one of the most important diseases, is conducted with artificial intelligence techniques. We have proposed a novel Artificial Bee Colony (ABC) algorithm in which a mutation operator is added to an Artificial Bee Colony for improving its performance. When the current best solution cannot be updated, a blended crossover operator (BLX-α) of genetic algorithm is applied, in order to enhance the diversity of ABC, without compromising with the solution quality. This modified version of ABC is used as a new tool to create and optimize automatically the membership functions and rules base directly from data. We take the diabetes dataset used in our work from the UCI machine learning repository. The performances of the proposed method are evaluated through classification rate, sensitivity and specificity values using 10-fold cross-validation method. The obtained classification rate of our method is 84.21% and it is very promising when compared with the previous research in the literature for the same problem. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Data mining for multiagent rules, strategies, and fuzzy decision tree structure
NASA Astrophysics Data System (ADS)
Smith, James F., III; Rhyne, Robert D., II; Fisher, Kristin
2002-03-01
A fuzzy logic based resource manager (RM) has been developed that automatically allocates electronic attack resources in real-time over many dissimilar platforms. Two different data mining algorithms have been developed to determine rules, strategies, and fuzzy decision tree structure. The first data mining algorithm uses a genetic algorithm as a data mining function and is called from an electronic game. The game allows a human expert to play against the resource manager in a simulated battlespace with each of the defending platforms being exclusively directed by the fuzzy resource manager and the attacking platforms being controlled by the human expert or operating autonomously under their own logic. This approach automates the data mining problem. The game automatically creates a database reflecting the domain expert's knowledge. It calls a data mining function, a genetic algorithm, for data mining of the database as required and allows easy evaluation of the information mined in the second step. The criterion for re- optimization is discussed as well as experimental results. Then a second data mining algorithm that uses a genetic program as a data mining function is introduced to automatically discover fuzzy decision tree structures. Finally, a fuzzy decision tree generated through this process is discussed.
Further studies on stability analysis of nonlinear Roesser-type two-dimensional systems
NASA Astrophysics Data System (ADS)
Dai, Xiao-Lin
2014-04-01
This paper is concerned with further relaxations of the stability analysis of nonlinear Roesser-type two-dimensional (2D) systems in the Takagi-Sugeno fuzzy form. To achieve the goal, a novel slack matrix variable technique, which is homogenous polynomially parameter-dependent on the normalized fuzzy weighting functions with arbitrary degree, is developed and the algebraic properties of the normalized fuzzy weighting functions are collected into a set of augmented matrices. Consequently, more information about the normalized fuzzy weighting functions is involved and the relaxation quality of the stability analysis is significantly improved. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed result.
Approximation Of Multi-Valued Inverse Functions Using Clustering And Sugeno Fuzzy Inference
NASA Technical Reports Server (NTRS)
Walden, Maria A.; Bikdash, Marwan; Homaifar, Abdollah
1998-01-01
Finding the inverse of a continuous function can be challenging and computationally expensive when the inverse function is multi-valued. Difficulties may be compounded when the function itself is difficult to evaluate. We show that we can use fuzzy-logic approximators such as Sugeno inference systems to compute the inverse on-line. To do so, a fuzzy clustering algorithm can be used in conjunction with a discriminating function to split the function data into branches for the different values of the forward function. These data sets are then fed into a recursive least-squares learning algorithm that finds the proper coefficients of the Sugeno approximators; each Sugeno approximator finds one value of the inverse function. Discussions about the accuracy of the approximation will be included.
Fuzzy knowledge base construction through belief networks based on Lukasiewicz logic
NASA Technical Reports Server (NTRS)
Lara-Rosano, Felipe
1992-01-01
In this paper, a procedure is proposed to build a fuzzy knowledge base founded on fuzzy belief networks and Lukasiewicz logic. Fuzzy procedures are developed to do the following: to assess the belief values of a consequent, in terms of the belief values of its logical antecedents and the belief value of the corresponding logical function; and to update belief values when new evidence is available.
Si, Guangsen; Xu, Zeshui
2018-01-01
Hesitant fuzzy linguistic term set provides an effective tool to represent uncertain decision information. However, the semantics corresponding to the linguistic terms in it cannot accurately reflect the decision-makers’ subjective cognition. In general, different decision-makers’ sensitivities towards the semantics are different. Such sensitivities can be represented by the cumulative prospect theory value function. Inspired by this, we propose a linguistic scale function to transform the semantics corresponding to linguistic terms into the linguistic preference values. Furthermore, we propose the hesitant fuzzy linguistic preference utility set, based on which, the decision-makers can flexibly express their distinct semantics and obtain the decision results that are consistent with their cognition. For calculations and comparisons over the hesitant fuzzy linguistic preference utility sets, we introduce some distance measures and comparison laws. Afterwards, to apply the hesitant fuzzy linguistic preference utility sets in emergency management, we develop a method to obtain objective weights of attributes and then propose a hesitant fuzzy linguistic preference utility-TOPSIS method to select the best fire rescue plan. Finally, the validity of the proposed method is verified by some comparisons of the method with other two representative methods including the hesitant fuzzy linguistic-TOPSIS method and the hesitant fuzzy linguistic-VIKOR method. PMID:29614019
Liao, Huchang; Si, Guangsen; Xu, Zeshui; Fujita, Hamido
2018-04-03
Hesitant fuzzy linguistic term set provides an effective tool to represent uncertain decision information. However, the semantics corresponding to the linguistic terms in it cannot accurately reflect the decision-makers' subjective cognition. In general, different decision-makers' sensitivities towards the semantics are different. Such sensitivities can be represented by the cumulative prospect theory value function. Inspired by this, we propose a linguistic scale function to transform the semantics corresponding to linguistic terms into the linguistic preference values. Furthermore, we propose the hesitant fuzzy linguistic preference utility set, based on which, the decision-makers can flexibly express their distinct semantics and obtain the decision results that are consistent with their cognition. For calculations and comparisons over the hesitant fuzzy linguistic preference utility sets, we introduce some distance measures and comparison laws. Afterwards, to apply the hesitant fuzzy linguistic preference utility sets in emergency management, we develop a method to obtain objective weights of attributes and then propose a hesitant fuzzy linguistic preference utility-TOPSIS method to select the best fire rescue plan. Finally, the validity of the proposed method is verified by some comparisons of the method with other two representative methods including the hesitant fuzzy linguistic-TOPSIS method and the hesitant fuzzy linguistic-VIKOR method.
Ellipsoidal fuzzy learning for smart car platoons
NASA Astrophysics Data System (ADS)
Dickerson, Julie A.; Kosko, Bart
1993-12-01
A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.
Guo, Lu; Wang, Ping; Sun, Ranran; Yang, Chengwen; Zhang, Ning; Guo, Yu; Feng, Yuanming
2018-02-19
The diffusion and perfusion magnetic resonance (MR) images can provide functional information about tumour and enable more sensitive detection of the tumour extent. We aimed to develop a fuzzy feature fusion method for auto-segmentation of gliomas in radiotherapy planning using multi-parametric functional MR images including apparent diffusion coefficient (ADC), fractional anisotropy (FA) and relative cerebral blood volume (rCBV). For each functional modality, one histogram-based fuzzy model was created to transform image volume into a fuzzy feature space. Based on the fuzzy fusion result of the three fuzzy feature spaces, regions with high possibility belonging to tumour were generated automatically. The auto-segmentations of tumour in structural MR images were added in final auto-segmented gross tumour volume (GTV). For evaluation, one radiation oncologist delineated GTVs for nine patients with all modalities. Comparisons between manually delineated and auto-segmented GTVs showed that, the mean volume difference was 8.69% (±5.62%); the mean Dice's similarity coefficient (DSC) was 0.88 (±0.02); the mean sensitivity and specificity of auto-segmentation was 0.87 (±0.04) and 0.98 (±0.01) respectively. High accuracy and efficiency can be achieved with the new method, which shows potential of utilizing functional multi-parametric MR images for target definition in precision radiation treatment planning for patients with gliomas.
ANFIS modeling for the assessment of landslide susceptibility for the Cameron Highland (Malaysia)
NASA Astrophysics Data System (ADS)
Pradhan, Biswajeet; Sezer, Ebru; Gokceoglu, Candan; Buchroithner, Manfred F.
2010-05-01
Landslides are one of the recurrent natural hazard problems throughout most of Malaysia. In landslide literature, there are several approaches such as probabilistic, bivariate and multivariate statistical models, fuzzy and artificial neural network models etc. However, a neuro-fuzzy application on the landslide susceptibility assessment has not been encountered in the literature. For this reason, this study presents the results of an adaptive neuro-fuzzy inference system (ANFIS) using remote sensing data and GIS for landslide susceptibility analysis in a part of the Cameron Highland areas in Malaysia. Landslide locations in the study area were identified by interpreting aerial photographs and satellite images, supported by extensive field surveys. Landsat TM satellite imagery was used to map vegetation index. Maps of topography, lineaments, NDVI and land cover were constructed from the spatial datasets. Seven landslide conditioning factors such as altitude, slope angle, curvature, distance from drainage, lithology, distance from faults and NDVI were extracted from the spatial database. These factors were analyzed using an ANFIS to produce the landslide susceptibility maps. During the model development works, total 5 landslide susceptibility models were constructed. For verification, the results of the analyses were then compared with the field-verified landslide locations. Additionally, the ROC curves for all landslide susceptibility models were drawn and the area under curve values were calculated. Landslide locations were used to validate results of the landslide susceptibility map and the verification results showed 97% accuracy for the model 5 employing all parameters produced in the present study as the landslide conditioning factors. The validation results showed sufficient agreement between the obtained susceptibility map and the existing data on landslide areas. Qualitatively, the model yields reasonable results which can be used for preliminary land-use planning purposes. As a final conclusion, the results revealed that the ANFIS modeling is a very useful and powerful tool for the regional landslide susceptibility assessments. However, the results to be obtained from the ANFIS modeling should be assessed carefully because the overlearning may cause misleading results. To prevent overlerning, the numbers of membership functions of inputs and the number of training epochs should be selected optimally and carefully.
ERIC Educational Resources Information Center
Bosc, P.; Lietard, L.; Pivert, O.
2003-01-01
Considers flexible querying of relational databases. Highlights include SQL languages and basic aggregate operators; Sugeno's fuzzy integral; evaluation examples; and how and under what conditions other aggregate functions could be applied to fuzzy sets in a flexible query. (Author/LRW)
NASA Astrophysics Data System (ADS)
Smith, James F., III; Blank, Joseph A.
2003-03-01
An approach is being explored that involves embedding a fuzzy logic based resource manager in an electronic game environment. Game agents can function under their own autonomous logic or human control. This approach automates the data mining problem. The game automatically creates a cleansed database reflecting the domain expert's knowledge, it calls a data mining function, a genetic algorithm, for data mining of the data base as required and allows easy evaluation of the information extracted. The co-evolutionary fitness functions, chromosomes and stopping criteria for ending the game are discussed. Genetic algorithm and genetic program based data mining procedures are discussed that automatically discover new fuzzy rules and strategies. The strategy tree concept and its relationship to co-evolutionary data mining are examined as well as the associated phase space representation of fuzzy concepts. The overlap of fuzzy concepts in phase space reduces the effective strategies available to adversaries. Co-evolutionary data mining alters the geometric properties of the overlap region known as the admissible region of phase space significantly enhancing the performance of the resource manager. Procedures for validation of the information data mined are discussed and significant experimental results provided.
Intelligent system for automatic feature detection and selection or identification
Sun, Chuen-Tsai; Jang, Jyh-Shing; Fu, Chi-Yung
1997-01-01
A neural network uses a fuzzy membership function, the parameters of which are adaptive during the training process, to parameterize the interconnection weights between an (n-1)'th layer and an n'th layer of the network. Each j'th node in each k'th layer of the network except the input layer produces its output value y.sub.k,j according to the function ##EQU1## where N.sub.k-1 is the number of nodes in layer k-1, i indexes the nodes of layer k-1 and all the w.sub.k,i,j are interconnection weights. The interconnection weights to all nodes j in the n'th layer are given by w.sub.n,i,j =w.sub.n,j (i, p.sub.n,j,1, . . . , p.sub.n,j,p.sbsb.n). The apparatus is trained by setting values for at least one of the parameters p.sub.n,j,1, . . . , p.sub.n,j,Pn. Preferably the number of parameters P.sub.n is less than the number of nodes N.sub.n-1 in layer n-1. w.sub.n,j (i,p.sub.n,j,1, . . . , p.sub.n,j,Pn) can be convex in i, and it can be bell-shaped. Sample functions for w.sub.n,j (i, p.sub.n,j,1, . . . , p.sub.n,j,Pn) include ##EQU2##
Evolutionary Algorithm Based Automated Reverse Engineering and Defect Discovery
2007-09-21
a previous application of a GP as a data mining function to evolve fuzzy decision trees symbolically [3-5], the terminal set consisted of fuzzy...of input and output information is required. In the case of fuzzy decision trees, the database represented a collection of scenarios about which the...fuzzy decision tree to be evolved would make decisions . The database also had entries created by experts representing decisions about the scenarios
Wang, Hue-Yu; Wen, Ching-Feng; Chiu, Yu-Hsien; Lee, I-Nong; Kao, Hao-Yun; Lee, I-Chen; Ho, Wen-Hsien
2013-01-01
An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network (ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. THE ANFIS AND ANN MODELS WERE COMPARED IN TERMS OF SIX STATISTICAL INDICES CALCULATED BY COMPARING THEIR PREDICTION RESULTS WITH ACTUAL DATA: mean absolute percentage error (MAPE), root mean square error (RMSE), standard error of prediction percentage (SEP), bias factor (Bf), accuracy factor (Af), and absolute fraction of variance (R (2)). Graphical plots were also used for model comparison. The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions.
Wang, Hue-Yu; Wen, Ching-Feng; Chiu, Yu-Hsien; Lee, I-Nong; Kao, Hao-Yun; Lee, I-Chen; Ho, Wen-Hsien
2013-01-01
Background An adaptive-network-based fuzzy inference system (ANFIS) was compared with an artificial neural network (ANN) in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. Methods The ANFIS and ANN models were compared in terms of six statistical indices calculated by comparing their prediction results with actual data: mean absolute percentage error (MAPE), root mean square error (RMSE), standard error of prediction percentage (SEP), bias factor (Bf), accuracy factor (Af), and absolute fraction of variance (R 2). Graphical plots were also used for model comparison. Conclusions The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. PMID:23705023
NASA Astrophysics Data System (ADS)
Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.
2015-12-01
This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.
Automatic casting surface defect recognition and classification
NASA Astrophysics Data System (ADS)
Wong, Boon K.; Elliot, M. P.; Rapley, C. W.
1995-03-01
High integrity castings require surfaces free from defects to reduce, if not eliminate, vulnerability to component failure from such as physical or thermal fatigue or corrosion attack. Previous studies have shown that defects on casting surfaces can be optically enhanced from the surrounding randomly textured surface by liquid penetrants, magnetic particle and other methods. However, very little has been reported on recognition and classification of the defects. The basic problem is one of shape recognition and classification, where the shape can vary in size and orientation as well as in actual shape generally within an envelope that classifies it as a particular defect. The initial work done towards this has focused on recognizing and classifying standard shapes such as the circle, square, rectangle and triangle. Various approaches were tried and this led eventually to a series of fuzzy logic based algorithms from which very good results were obtained. From this work fuzzy logic memberships were generated for the detection of defects found on casting surfaces. Simulated model shapes of such as the quench crack, mechanical crack and hole have been used to test the generated algorithm and the results for recognition and classification are very encouraging.
NASA Astrophysics Data System (ADS)
Dheeba, J.; Jaya, T.; Singh, N. Albert
2017-09-01
Classification of cancerous masses is a challenging task in many computerised detection systems. Cancerous masses are difficult to detect because these masses are obscured and subtle in mammograms. This paper investigates an intelligent classifier - fuzzy support vector machine (FSVM) applied to classify the tissues containing masses on mammograms for breast cancer diagnosis. The algorithm utilises texture features extracted using Laws texture energy measures and a FSVM to classify the suspicious masses. The new FSVM treats every feature as both normal and abnormal samples, but with different membership. By this way, the new FSVM have more generalisation ability to classify the masses in mammograms. The classifier analysed 219 clinical mammograms collected from breast cancer screening laboratory. The tests made on the real clinical mammograms shows that the proposed detection system has better discriminating power than the conventional support vector machine. With the best combination of FSVM and Laws texture features, the area under the Receiver operating characteristic curve reached .95, which corresponds to a sensitivity of 93.27% with a specificity of 87.17%. The results suggest that detecting masses using FSVM contribute to computer-aided detection of breast cancer and as a decision support system for radiologists.
Green, Geoffrey C; Chan, Adrian D C; Goubran, Rafik A
2009-01-01
Adopting the use of real-time odour monitoring in the smart home has the potential to alert the occupant of unsafe or unsanitary conditions. In this paper, we measured (with a commercial metal-oxide sensor-based electronic nose) the odours of five household foods that had been left out at room temperature for a week to spoil. A multilayer perceptron (MLP) neural network was trained to recognize the age of the samples (a quantity related to the degree of spoilage). For four of these foods, median correlation coefficients (between target values and MLP outputs) of R > 0.97 were observed. Fuzzy C-means clustering (FCM) was applied to the evolving odour patterns of spoiling milk, which had been sampled more frequently (4h intervals for 7 days). The FCM results showed that both the freshest and oldest milk samples had a high degree of membership in "fresh" and "spoiled" clusters, respectively. In the future, as advancements in electronic nose development remove the present barriers to acceptance, signal processing methods like those explored in this paper can be incorporated into odour monitoring systems used in the smart home.
Fuzzy Neural Classifiers for Multi-Wavelength Interdigital Sensors
NASA Astrophysics Data System (ADS)
Xenides, D.; Vlachos, D. S.; Simos, T. E.
2007-12-01
The use of multi-wavelength interdigital sensors for non-destructive testing is based on the capability of the measuring system to classify the measured impendence according to some physical properties of the material under test. By varying the measuring frequency and the wavelength of the sensor (and thus the penetration depth of the electric field inside the material under test) we can produce images that correspond to various configurations of dielectric materials under different geometries. The implementation of a fuzzy neural network witch inputs these images for both quantitative and qualitative sensing is demonstrated. The architecture of the system is presented with some references to the general theory of fuzzy sets and fuzzy calculus. Experimental results are presented in the case of a set of 8 well characterized dielectric layers. Finally the effect of network parameters to the functionality of the system is discussed, especially in the case of functions evaluating the fuzzy AND and OR operations.
Li, Yongming; Ma, Zhiyao; Tong, Shaocheng
2017-09-01
The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.
Refining Linear Fuzzy Rules by Reinforcement Learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap S.; Malkani, Anil
1996-01-01
Linear fuzzy rules are increasingly being used in the development of fuzzy logic systems. Radial basis functions have also been used in the antecedents of the rules for clustering in product space which can automatically generate a set of linear fuzzy rules from an input/output data set. Manual methods are usually used in refining these rules. This paper presents a method for refining the parameters of these rules using reinforcement learning which can be applied in domains where supervised input-output data is not available and reinforcements are received only after a long sequence of actions. This is shown for a generalization of radial basis functions. The formation of fuzzy rules from data and their automatic refinement is an important step in closing the gap between the application of reinforcement learning methods in the domains where only some limited input-output data is available.
Improved fuzzy PID controller design using predictive functional control structure.
Wang, Yuzhong; Jin, Qibing; Zhang, Ridong
2017-11-01
In conventional PID scheme, the ensemble control performance may be unsatisfactory due to limited degrees of freedom under various kinds of uncertainty. To overcome this disadvantage, a novel PID control method that inherits the advantages of fuzzy PID control and the predictive functional control (PFC) is presented and further verified on the temperature model of a coke furnace. Based on the framework of PFC, the prediction of the future process behavior is first obtained using the current process input signal. Then, the fuzzy PID control based on the multi-step prediction is introduced to acquire the optimal control law. Finally, the case study on a temperature model of a coke furnace shows the effectiveness of the fuzzy PID control scheme when compared with conventional PID control and fuzzy self-adaptive PID control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Balantekin, Katherine N; Birch, Leann L; Savage, Jennifer S
2018-04-01
To examine the relationship of family, friend, and media factors on weight-control group membership at 15 years separately and in a combined model. Subjects included 166 15 year girls. Latent class analysis identified four patterns of weight-control behaviors: non-dieters, lifestyle, dieters, and extreme dieters. Family (family functioning, priority of the family meals, maternal/paternal weight-teasing, and mother's/father's dieting), friend (weight-teasing and dieting), and media variables (media sensitivity and weekly TV time) were included as predictors of weight-control group membership. Family functioning and priority of family meals predicted membership in the Extreme Dieters group, and maternal weight-teasing predicted membership in both dieters and extreme dieters. Friend's dieting and weight-teasing predicted membership in both dieters and extreme dieters. Media sensitivity was significantly associated with membership in lifestyle, dieters, and extreme dieters. In a combined influence model with family, friend, and media factors included, the following remained significantly associated with weight-control group membership: family functioning, friends' dieting, and media sensitivity. Family, friends, and the media are three sources of sociocultural influence, which play a role in adolescent girls' use of patterns of weight-control behaviors; family functioning was a protective factor, whereas friend's dieting and media sensitivity were risk factors. These findings emphasize the need for multidimensional interventions, addressing risk factors for dieting and use of unhealthy weight-control behaviors at the family, peer, and community (e.g., media) levels.
Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach.
Tanaka, Kazuo; Ohtake, Hiroshi; Wang, Hua O
2009-04-01
This paper presents the guaranteed cost control of polynomial fuzzy systems via a sum of squares (SOS) approach. First, we present a polynomial fuzzy model and controller that are more general representations of the well-known Takagi-Sugeno (T-S) fuzzy model and controller, respectively. Second, we derive a guaranteed cost control design condition based on polynomial Lyapunov functions. Hence, the design approach discussed in this paper is more general than the existing LMI approaches (to T-S fuzzy control system designs) based on quadratic Lyapunov functions. The design condition realizes a guaranteed cost control by minimizing the upper bound of a given performance function. In addition, the design condition in the proposed approach can be represented in terms of SOS and is numerically (partially symbolically) solved via the recent developed SOSTOOLS. To illustrate the validity of the design approach, two design examples are provided. The first example deals with a complicated nonlinear system. The second example presents micro helicopter control. Both the examples show that our approach provides more extensive design results for the existing LMI approach.
Category Membership and Semantic Coding in the Cerebral Hemispheres.
Turner, Casey E; Kellogg, Ronald T
2016-01-01
Although a gradient of category membership seems to form the internal structure of semantic categories, it is unclear whether the 2 hemispheres of the brain differ in terms of this gradient. The 2 experiments reported here examined this empirical question and explored alternative theoretical interpretations. Participants viewed category names centrally and determined whether a closely related or distantly related word presented to either the left visual field/right hemisphere (LVF/RH) or the right visual field/left hemisphere (RVF/LH) was a member of the category. Distantly related words were categorized more slowly in the LVF/RH relative to the RVF/LH, with no difference for words close to the prototype. The finding resolved past mixed results showing an unambiguous typicality effect for both visual field presentations. Furthermore, we examined items near the fuzzy border that were sometimes rejected as nonmembers of the category and found both hemispheres use the same category boundary. In Experiment 2, we presented 2 target words to be categorized, with the expectation of augmenting the speed advantage for the RVF/LH if the 2 hemispheres differ structurally. Instead the results showed a weakening of the hemispheric difference, arguing against a structural in favor of a processing explanation.
Fuzzy set approach to quality function deployment: An investigation
NASA Technical Reports Server (NTRS)
Masud, Abu S. M.
1992-01-01
The final report of the 1992 NASA/ASEE Summer Faculty Fellowship at the Space Exploration Initiative Office (SEIO) in Langley Research Center is presented. Quality Function Deployment (QFD) is a process, focused on facilitating the integration of the customer's voice in the design and development of a product or service. Various input, in the form of judgements and evaluations, are required during the QFD analyses. All the input variables in these analyses are treated as numeric variables. The purpose of the research was to investigate how QFD analyses can be performed when some or all of the input variables are treated as linguistic variables with values expressed as fuzzy numbers. The reason for this consideration is that human judgement, perception, and cognition are often ambiguous and are better represented as fuzzy numbers. Two approaches for using fuzzy sets in QFD have been proposed. In both cases, all the input variables are considered as linguistic variables with values indicated as linguistic expressions. These expressions are then converted to fuzzy numbers. The difference between the two approaches is due to how the QFD computations are performed with these fuzzy numbers. In Approach 1, the fuzzy numbers are first converted to their equivalent crisp scores and then the QFD computations are performed using these crisp scores. As a result, the output of this approach are crisp numbers, similar to those in traditional QFD. In Approach 2, all the QFD computations are performed with the fuzzy numbers and the output are fuzzy numbers also. Both the approaches have been explained with the help of illustrative examples of QFD application. Approach 2 has also been applied in a QFD application exercise in SEIO, involving a 'mini moon rover' design. The mini moon rover is a proposed tele-operated vehicle that will traverse and perform various tasks, including autonomous operations, on the moon surface. The output of the moon rover application exercise is a ranking of the rover functions so that a subset of these functions can be targeted for design improvement. The illustrative examples and the mini rover application exercise confirm that the proposed approaches for using fuzzy sets in QFD are viable. However, further research is needed to study the various issues involved and to verify/validate the methods proposed.
Water quality assessment of the Li Canal using a functional fuzzy synthetic evaluation model.
Feng, Yan; Ling, Liu
2014-07-01
Through introducing functional data analysis (FDA) theory into the conventional fuzzy synthetic evaluation (FSE) method, the functional fuzzy synthetic evaluation (FFSE) model is established. FFSE keeps the property of the conventional FSE that the fuzziness in the water quality condition can be suitably measured. Furthermore, compared with FSE, FFSE has the following advantages: (1) FFSE requires fewer conditions for observation, for example, pollutants can be monitored at different times, and missing data is accepted; (2) the dynamic variation of the water quality condition can be represented more comprehensively and intuitively. The procedure of FFSE is discussed and the water quality of the Li Canal in 2012 is evaluated as an illustration. The synthetic classification of the Li Canal is "II" in January, February and July, and "I" in other months, which can satisfy the requirement of the Chinese South-to-North Water Diversion Project.
Long-term consequences of adolescent gang membership for adult functioning.
Gilman, Amanda B; Hill, Karl G; Hawkins, J David
2014-05-01
We examined the possible public health consequences of adolescent gang membership for adult functioning. Data were drawn from the Seattle Social Development Project, a longitudinal study focusing on the development of positive and problem outcomes. Using propensity score matching and logistic regression analyses, we assessed the effects of adolescent gang membership on illegal behavior, educational and occupational attainment, and physical and mental health at the ages of 27, 30, and 33 years. In comparison with their nongang peers, who had been matched on 23 confounding risk variables known to be related to selection into gang membership, those who had joined a gang in adolescence had poorer outcomes in multiple areas of adult functioning, including higher rates of self-reported crime, receipt of illegal income, incarceration, drug abuse or dependence, poor general health, and welfare receipt and lower rates of high school graduation. The finding that adolescent gang membership has significant consequences in adulthood beyond criminal behavior indicates the public health importance of the development of effective gang prevention programs.
Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin
2017-10-01
Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary to fixed window length conventional filters. Copyright © 2017 Elsevier B.V. All rights reserved.
Miller, David J; Nelson, Carl A; Oleynikov, Dmitry
2009-05-01
With a limited number of access ports, minimally invasive surgery (MIS) often requires the complete removal of one tool and reinsertion of another. Modular or multifunctional tools can be used to avoid this step. In this study, soft computing techniques are used to optimally arrange a modular tool's functional tips, allowing surgeons to deliver treatment of improved quality in less time, decreasing overall cost. The investigators watched University Medical Center surgeons perform MIS procedures (e.g., cholecystectomy and Nissen fundoplication) and recorded the procedures to digital video. The video was then used to analyze the types of instruments used, the duration of each use, and the function of each instrument. These data were aggregated with fuzzy logic techniques using four membership functions to quantify the overall usefulness of each tool. This allowed subsequent optimization of the arrangement of functional tips within the modular tool to decrease overall time spent changing instruments during simulated surgical procedures based on the video recordings. Based on a prototype and a virtual model of a multifunction laparoscopic tool designed by the investigators that can interchange six different instrument tips through the tool's shaft, the range of tool change times is approximately 11-13 s. Using this figure, estimated time savings for the procedures analyzed ranged from 2.5 to over 32 min, and on average, total surgery time can be reduced by almost 17% by using the multifunction tool.
Wang, Huanqing; Chen, Bing; Liu, Xiaoping; Liu, Kefu; Lin, Chong
2013-12-01
This paper is concerned with the problem of adaptive fuzzy tracking control for a class of pure-feedback stochastic nonlinear systems with input saturation. To overcome the design difficulty from nondifferential saturation nonlinearity, a smooth nonlinear function of the control input signal is first introduced to approximate the saturation function; then, an adaptive fuzzy tracking controller based on the mean-value theorem is constructed by using backstepping technique. The proposed adaptive fuzzy controller guarantees that all signals in the closed-loop system are bounded in probability and the system output eventually converges to a small neighborhood of the desired reference signal in the sense of mean quartic value. Simulation results further illustrate the effectiveness of the proposed control scheme.
Crisp, R J; Hewstone, M; Cairns, E
2001-12-01
A study was conducted to explore whether participants in Northern Ireland attend to, and process information about, different group members as a function of a single dimension of category membership (religion) or as a function of additional and/or alternative bases for group membership. Utilizing a bogus 'newspaper story' paradigm, we explored whether participants would differentially recall target attributes as a function of two dimensions of category membership. Findings from this recall measure suggested that information concerning ingroup and outgroup members was processed as an interactive function of both religion and gender intergroup dimensions. Religion was only used to guide processing of more specific information if the story character was also an outgroup member on the gender dimension. These findings suggest a complex pattern of intergroup representation in the processing of group-relevant information in the Northern Irish context.
Digital modelling of landscape and soil in a mountainous region: A neuro-fuzzy approach
NASA Astrophysics Data System (ADS)
Viloria, Jesús A.; Viloria-Botello, Alvaro; Pineda, María Corina; Valera, Angel
2016-01-01
Research on genetic relationships between soil and landforms has largely improved soil mapping. Recent technological advances have created innovative methods for modelling the spatial soil variation from digital elevation models (DEMs) and remote sensors. This generates new opportunities for the application of geomorphology to soil mapping. This study applied a method based on artificial neural networks and fuzzy clustering to recognize digital classes of land surfaces in a mountainous area in north-central Venezuela. The spatial variation of the fuzzy memberships exposed the areas where each class predominates, while the class centres helped to recognize the topographic attributes and vegetation cover of each class. The obtained classes of terrain revealed the structure of the land surface, which showed regional differences in climate, vegetation, and topography and landscape stability. The land-surface classes were subdivided on the basis of the geological substratum to produce landscape classes that additionally considered the influence of soil parent material. These classes were used as a framework for soil sampling. A redundancy analysis confirmed that changes of landscape classes explained the variation in soil properties (p = 0.01), and a Kruskal-Wallis test showed significant differences (p = 0.01) in clay, hydraulic conductivity, soil organic carbon, base saturation, and exchangeable Ca and Mg between classes. Thus, the produced landscape classes correspond to three-dimensional bodies that differ in soil conditions. Some changes of land-surface classes coincide with abrupt boundaries in the landscape, such as ridges and thalwegs. However, as the model is continuous, it disclosed the remaining variation between those boundaries.
Higher spin gauge theory on fuzzy \\boldsymbol {S^4_N}
NASA Astrophysics Data System (ADS)
Sperling, Marcus; Steinacker, Harold C.
2018-02-01
We examine in detail the higher spin fields which arise on the basic fuzzy sphere S^4N in the semi-classical limit. The space of functions can be identified with functions on classical S 4 taking values in a higher spin algebra associated to \
A fuzzy call admission control scheme in wireless networks
NASA Astrophysics Data System (ADS)
Ma, Yufeng; Gong, Shenguang; Hu, Xiulin; Zhang, Yunyu
2007-11-01
Scarcity of the spectrum resource and mobility of users make quality of service (QoS) provision a critical issue in wireless networks. This paper presents a fuzzy call admission control scheme to meet the requirement of the QoS. A performance measure is formed as a weighted linear function of new call and handoff call blocking probabilities. Simulation compares the proposed fuzzy scheme with an adaptive channel reservation scheme. Simulation results show that fuzzy scheme has a better robust performance in terms of average blocking criterion.
Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamadameen, Abdulqader Othman; Zainuddin, Zaitul Marlizawati
This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.
Prediction system of hydroponic plant growth and development using algorithm Fuzzy Mamdani method
NASA Astrophysics Data System (ADS)
Sudana, I. Made; Purnawirawan, Okta; Arief, Ulfa Mediaty
2017-03-01
Hydroponics is a method of farming without soil. One of the Hydroponic plants is Watercress (Nasturtium Officinale). The development and growth process of hydroponic Watercress was influenced by levels of nutrients, acidity and temperature. The independent variables can be used as input variable system to predict the value level of plants growth and development. The prediction system is using Fuzzy Algorithm Mamdani method. This system was built to implement the function of Fuzzy Inference System (Fuzzy Inference System/FIS) as a part of the Fuzzy Logic Toolbox (FLT) by using MATLAB R2007b. FIS is a computing system that works on the principle of fuzzy reasoning which is similar to humans' reasoning. Basically FIS consists of four units which are fuzzification unit, fuzzy logic reasoning unit, base knowledge unit and defuzzification unit. In addition to know the effect of independent variables on the plants growth and development that can be visualized with the function diagram of FIS output surface that is shaped three-dimensional, and statistical tests based on the data from the prediction system using multiple linear regression method, which includes multiple linear regression analysis, T test, F test, the coefficient of determination and donations predictor that are calculated using SPSS (Statistical Product and Service Solutions) software applications.
El-Nagar, Ahmad M
2018-01-01
In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System
NASA Astrophysics Data System (ADS)
Huang, Shiuh-Jer; Chen, Hung-Yi
In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.
Fuzzy-Neural Controller in Service Requests Distribution Broker for SOA-Based Systems
NASA Astrophysics Data System (ADS)
Fras, Mariusz; Zatwarnicka, Anna; Zatwarnicki, Krzysztof
The evolution of software architectures led to the rising importance of the Service Oriented Architecture (SOA) concept. This architecture paradigm support building flexible distributed service systems. In the paper the architecture of service request distribution broker designed for use in SOA-based systems is proposed. The broker is built with idea of fuzzy control. The functional and non-functional request requirements in conjunction with monitoring of execution and communication links are used to distribute requests. Decisions are made with use of fuzzy-neural network.
NASA Technical Reports Server (NTRS)
Ruspini, Enrique H.
1991-01-01
Summarized here are the results of recent research on the conceptual foundations of fuzzy logic. The focus is primarily on the principle characteristics of a model that quantifies resemblance between possible worlds by means of a similarity function that assigns a number between 0 and 1 to every pair of possible worlds. Introduction of such a function permits one to interpret the major constructs and methods of fuzzy logic: conditional and unconditional possibility and necessity distributions and the generalized modus ponens of Zadeh on the basis of related metric relationships between subsets of possible worlds.
Current State of an Intelligent System to Aid in Tephra Layer Correlation
NASA Astrophysics Data System (ADS)
Hanson-Hedgecock, S.; Bursik, M.; Rogova, G.
2007-12-01
We are developing a computer based intelligent system to correlate tephra layers by using the lithologic, mineralogic, and geochemical characteristics of field samples, to aid geologists in interpreting eruption patterns of volcanic chains and fields. The intelligent system is used to define groups of tephra source vents by utilizing geochemical data, and to correlate tephra layers based on lithostratigraphic characteristics. Understanding the eruption history of a volcano from stratigraphic studies is important for forecasting future eruptive behavior and hazards. In volcanic chains and fields with a complex eruptive history and no central vent, determining the spatio- temporal eruption patterns is difficult. Sedimentologic and chemical variability, and sparse sampling often result in relatively large variances and imprecision in the dataset. Lithostratigraphic and geochemical interpretation also depends on ones' level of expertise and can be subjective. The processing of lithostratigraphic features is conducted by a hybrid classifier, composed of supervised artificial neural networks (ANNs) combined within the framework of the Dempster-Shafer theory of evidence. Since lithostratigraphic features vary with distance from source, hypothetical vent locations are determined by using expert domain knowledge and geostatistical methods. Geochemical data are processed by a suit of fuzzy k- means classifiers. Each fuzzy k-means classifier assigns observations to multiple clusters with various degrees, called membership coefficients. The assignment minimizes a function of the total distance between the centers of clusters and the individual geochemical data patterns weighed by the membership coefficients. Improved clustering results of geochemical data are achieved by the fusion of individual clustering results with an evidential combination method. Lithostratigraphic data from individual tephra beds of the North Mono eruption sequence are used to test the effectiveness of the intelligent system for tephra layer correlation. Geochemical data from tephra bedsets of the Mono and Inyo Craters, CA, are used to test the effectiveness of the intelligent system for eruption sequence correlation. The intelligent system aids correlation by showing matches and disparities between data patterns from different outcrops that may have been overlooked in initial interpretations. Initial results show that the lithostratigraphic classifier is able to accurately differentiate known layers 76% of the time. Output from the lithostratigraphic classifier can furthermore be plotted directly as isopleth maps that can aid in rapid recognition of tephra layers as well as determination of eruption characteristics, e.g. eruption volume, plume height, etc. The intelligent system produces a useful recognition result, while dealing with the uncertainty from sparse data and the imprecise description of layer characteristics.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 4 2013-10-01 2013-10-01 false Membership. 1700.3 Section 1700.3 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL COMMISSION ON LIBRARIES AND INFORMATION SCIENCE ORGANIZATION AND FUNCTIONS § 1700.3 Membership. (a) The Commission is composed of the Librarian of Congress...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 4 2011-10-01 2011-10-01 false Membership. 1700.3 Section 1700.3 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL COMMISSION ON LIBRARIES AND INFORMATION SCIENCE ORGANIZATION AND FUNCTIONS § 1700.3 Membership. (a) The Commission is composed of the Librarian of Congress...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 4 2014-10-01 2014-10-01 false Membership. 1700.3 Section 1700.3 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL COMMISSION ON LIBRARIES AND INFORMATION SCIENCE ORGANIZATION AND FUNCTIONS § 1700.3 Membership. (a) The Commission is composed of the Librarian of Congress...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 4 2012-10-01 2012-10-01 false Membership. 1700.3 Section 1700.3 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL COMMISSION ON LIBRARIES AND INFORMATION SCIENCE ORGANIZATION AND FUNCTIONS § 1700.3 Membership. (a) The Commission is composed of the Librarian of Congress...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false Membership. 1700.3 Section 1700.3 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL COMMISSION ON LIBRARIES AND INFORMATION SCIENCE ORGANIZATION AND FUNCTIONS § 1700.3 Membership. (a) The Commission is composed of the Librarian of Congress...
NASA Astrophysics Data System (ADS)
Ebrahimnejad, Ali
2015-08-01
There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.
Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept.
Mazandarani, Mehran; Pariz, Naser
2018-05-01
This paper deals with sub-optimal control of a fuzzy linear dynamical system. The aim is to keep the state variables of the fuzzy linear dynamical system close to zero in an optimal manner. In the fuzzy dynamical system, the fuzzy derivative is considered as the granular derivative; and all the coefficients and initial conditions can be uncertain. The criterion for assessing the optimality is regarded as a granular integral whose integrand is a quadratic function of the state variables and control inputs. Using the relative-distance-measure (RDM) fuzzy interval arithmetic and calculus of variations, the optimal control law is presented as the fuzzy state variables feedback. Since the optimal feedback gains are obtained as fuzzy functions, they need to be defuzzified. This will result in the sub-optimal control law. This paper also sheds light on the restrictions imposed by the approaches which are based on fuzzy standard interval arithmetic (FSIA), and use strongly generalized Hukuhara and generalized Hukuhara differentiability concepts for obtaining the optimal control law. The granular eigenvalues notion is also defined. Using an RLC circuit mathematical model, it is shown that, due to their unnatural behavior in the modeling phenomenon, the FSIA-based approaches may obtain some eigenvalues sets that might be different from the inherent eigenvalues set of the fuzzy dynamical system. This is, however, not the case with the approach proposed in this study. The notions of granular controllability and granular stabilizability of the fuzzy linear dynamical system are also presented in this paper. Moreover, a sub-optimal control for regulating a Boeing 747 in longitudinal direction with uncertain initial conditions and parameters is gained. In addition, an uncertain suspension system of one of the four wheels of a bus is regulated using the sub-optimal control introduced in this paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Fan, Yurui; Huang, Guohe; Veawab, Amornvadee
2012-01-01
In this study, a generalized fuzzy linear programming (GFLP) method was developed to deal with uncertainties expressed as fuzzy sets that exist in the constraints and objective function. A stepwise interactive algorithm (SIA) was advanced to solve GFLP model and generate solutions expressed as fuzzy sets. To demonstrate its application, the developed GFLP method was applied to a regional sulfur dioxide (SO2) control planning model to identify effective SO2 mitigation polices with a minimized system performance cost under uncertainty. The results were obtained to represent the amount of SO2 allocated to different control measures from different sources. Compared with the conventional interval-parameter linear programming (ILP) approach, the solutions obtained through GFLP were expressed as fuzzy sets, which can provide intervals for the decision variables and objective function, as well as related possibilities. Therefore, the decision makers can make a tradeoff between model stability and the plausibility based on solutions obtained through GFLP and then identify desired policies for SO2-emission control under uncertainty.
Solving Fuzzy Optimization Problem Using Hybrid Ls-Sa Method
NASA Astrophysics Data System (ADS)
Vasant, Pandian
2011-06-01
Fuzzy optimization problem has been one of the most and prominent topics inside the broad area of computational intelligent. It's especially relevant in the filed of fuzzy non-linear programming. It's application as well as practical realization can been seen in all the real world problems. In this paper a large scale non-linear fuzzy programming problem has been solved by hybrid optimization techniques of Line Search (LS), Simulated Annealing (SA) and Pattern Search (PS). As industrial production planning problem with cubic objective function, 8 decision variables and 29 constraints has been solved successfully using LS-SA-PS hybrid optimization techniques. The computational results for the objective function respect to vagueness factor and level of satisfaction has been provided in the form of 2D and 3D plots. The outcome is very promising and strongly suggests that the hybrid LS-SA-PS algorithm is very efficient and productive in solving the large scale non-linear fuzzy programming problem.
Optimizing Constrained Single Period Problem under Random Fuzzy Demand
NASA Astrophysics Data System (ADS)
Taleizadeh, Ata Allah; Shavandi, Hassan; Riazi, Afshin
2008-09-01
In this paper, we consider the multi-product multi-constraint newsboy problem with random fuzzy demands and total discount. The demand of the products is often stochastic in the real word but the estimation of the parameters of distribution function may be done by fuzzy manner. So an appropriate option to modeling the demand of products is using the random fuzzy variable. The objective function of proposed model is to maximize the expected profit of newsboy. We consider the constraints such as warehouse space and restriction on quantity order for products, and restriction on budget. We also consider the batch size for products order. Finally we introduce a random fuzzy multi-product multi-constraint newsboy problem (RFM-PM-CNP) and it is changed to a multi-objective mixed integer nonlinear programming model. Furthermore, a hybrid intelligent algorithm based on genetic algorithm, Pareto and TOPSIS is presented for the developed model. Finally an illustrative example is presented to show the performance of the developed model and algorithm.
Gene regulatory network identification from the yeast cell cycle based on a neuro-fuzzy system.
Wang, B H; Lim, J W; Lim, J S
2016-08-30
Many studies exist for reconstructing gene regulatory networks (GRNs). In this paper, we propose a method based on an advanced neuro-fuzzy system, for gene regulatory network reconstruction from microarray time-series data. This approach uses a neural network with a weighted fuzzy function to model the relationships between genes. Fuzzy rules, which determine the regulators of genes, are very simplified through this method. Additionally, a regulator selection procedure is proposed, which extracts the exact dynamic relationship between genes, using the information obtained from the weighted fuzzy function. Time-series related features are extracted from the original data to employ the characteristics of temporal data that are useful for accurate GRN reconstruction. The microarray dataset of the yeast cell cycle was used for our study. We measured the mean squared prediction error for the efficiency of the proposed approach and evaluated the accuracy in terms of precision, sensitivity, and F-score. The proposed method outperformed the other existing approaches.
An Island Grouping Genetic Algorithm for Fuzzy Partitioning Problems
Salcedo-Sanz, S.; Del Ser, J.; Geem, Z. W.
2014-01-01
This paper presents a novel fuzzy clustering technique based on grouping genetic algorithms (GGAs), which are a class of evolutionary algorithms especially modified to tackle grouping problems. Our approach hinges on a GGA devised for fuzzy clustering by means of a novel encoding of individuals (containing elements and clusters sections), a new fitness function (a superior modification of the Davies Bouldin index), specially tailored crossover and mutation operators, and the use of a scheme based on a local search and a parallelization process, inspired from an island-based model of evolution. The overall performance of our approach has been assessed over a number of synthetic and real fuzzy clustering problems with different objective functions and distance measures, from which it is concluded that the proposed approach shows excellent performance in all cases. PMID:24977235
Li, Yongming; Tong, Shaocheng
2017-12-01
In this paper, an adaptive fuzzy output constrained control design approach is addressed for multi-input multioutput uncertain stochastic nonlinear systems in nonstrict-feedback form. The nonlinear systems addressed in this paper possess unstructured uncertainties, unknown gain functions and unknown stochastic disturbances. Fuzzy logic systems are utilized to tackle the problem of unknown nonlinear uncertainties. The barrier Lyapunov function technique is employed to solve the output constrained problem. In the framework of backstepping design, an adaptive fuzzy control design scheme is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.
Generalized statistical convergence of order β for sequences of fuzzy numbers
NASA Astrophysics Data System (ADS)
Altınok, Hıfsı; Karakaş, Abdulkadir; Altın, Yavuz
2018-01-01
In the present paper, we introduce the concepts of Δm-statistical convergence of order β for sequences of fuzzy numbers and strongly Δm-summable of order β for sequences of fuzzy numbers by using a modulus function f and taking supremum on metric d for 0 < β ≤ 1 and give some inclusion relations between them.
Modeling Choice Under Uncertainty in Military Systems Analysis
1991-11-01
operators rather than fuzzy operators. This is suggested for further research. 4.3 ANALYTIC HIERARCHICAL PROCESS ( AHP ) In AHP , objectives, functions and...14 4.1 IMPRECISELY SPECIFIED MULTIPLE A’ITRIBUTE UTILITY THEORY... 14 4.2 FUZZY DECISION ANALYSIS...14 4.3 ANALYTIC HIERARCHICAL PROCESS ( AHP ) ................................... 14 4.4 SUBJECTIVE TRANSFER FUNCTION APPROACH
Model predictive controller design for boost DC-DC converter using T-S fuzzy cost function
NASA Astrophysics Data System (ADS)
Seo, Sang-Wha; Kim, Yong; Choi, Han Ho
2017-11-01
This paper proposes a Takagi-Sugeno (T-S) fuzzy method to select cost function weights of finite control set model predictive DC-DC converter control algorithms. The proposed method updates the cost function weights at every sample time by using T-S type fuzzy rules derived from the common optimal control engineering knowledge that a state or input variable with an excessively large magnitude can be penalised by increasing the weight corresponding to the variable. The best control input is determined via the online optimisation of the T-S fuzzy cost function for all the possible control input sequences. This paper implements the proposed model predictive control algorithm in real time on a Texas Instruments TMS320F28335 floating-point Digital Signal Processor (DSP). Some experimental results are given to illuminate the practicality and effectiveness of the proposed control system under several operating conditions. The results verify that our method can yield not only good transient and steady-state responses (fast recovery time, small overshoot, zero steady-state error, etc.) but also insensitiveness to abrupt load or input voltage parameter variations.