NASA Technical Reports Server (NTRS)
Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru
1991-01-01
Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.
NASA Astrophysics Data System (ADS)
Torghabeh, A. A.; Tousi, A. M.
2007-08-01
This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.
Improving land resource evaluation using fuzzy neural network ensembles
Xue, Yue-Ju; HU, Y.-M.; Liu, S.-G.; YANG, J.-F.; CHEN, Q.-C.; BAO, S.-T.
2007-01-01
Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource experts, and the evaluation results rely heavily on experts' experiences. In order to overcome the shortcoming, we presented a fuzzy neural network ensemble method that did not require grading the evaluation factors into categorical indexes and could evaluate land resources by using the three kinds of attribute values directly. A fuzzy back propagation neural network (BPNN), a fuzzy radial basis function neural network (RBFNN), a fuzzy BPNN ensemble, and a fuzzy RBFNN ensemble were used to evaluate the land resources in Guangdong Province. The evaluation results by using the fuzzy BPNN ensemble and the fuzzy RBFNN ensemble were much better than those by using the single fuzzy BPNN and the single fuzzy RBFNN, and the error rate of the single fuzzy RBFNN or fuzzy RBFNN ensemble was lower than that of the single fuzzy BPNN or fuzzy BPNN ensemble, respectively. By using the fuzzy neural network ensembles, the validity of land resource evaluation was improved and reliance on land evaluators' experiences was considerably reduced. ?? 2007 Soil Science Society of China.
Intelligent neural network and fuzzy logic control of industrial and power systems
NASA Astrophysics Data System (ADS)
Kuljaca, Ognjen
The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of adaptive and neural network control systems, as well as for the analysis of the different algorithms such as elastic fuzzy systems.
Using fuzzy logic to integrate neural networks and knowledge-based systems
NASA Technical Reports Server (NTRS)
Yen, John
1991-01-01
Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1992-01-01
Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.
Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2
NASA Technical Reports Server (NTRS)
Lea, Robert N. (Editor); Villarreal, James A. (Editor)
1991-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.
Fuzzy-neural control of an aircraft tracking camera platform
NASA Technical Reports Server (NTRS)
Mcgrath, Dennis
1994-01-01
A fuzzy-neural control system simulation was developed for the control of a camera platform used to observe aircraft on final approach to an aircraft carrier. The fuzzy-neural approach to control combines the structure of a fuzzy knowledge base with a supervised neural network's ability to adapt and improve. The performance characteristics of this hybrid system were compared to those of a fuzzy system and a neural network system developed independently to determine if the fusion of these two technologies offers any advantage over the use of one or the other. The results of this study indicate that the fuzzy-neural approach to control offers some advantages over either fuzzy or neural control alone.
Comparison of crisp and fuzzy character networks in handwritten word recognition
NASA Technical Reports Server (NTRS)
Gader, Paul; Mohamed, Magdi; Chiang, Jung-Hsien
1992-01-01
Experiments involving handwritten word recognition on words taken from images of handwritten address blocks from the United States Postal Service mailstream are described. The word recognition algorithm relies on the use of neural networks at the character level. The neural networks are trained using crisp and fuzzy desired outputs. The fuzzy outputs were defined using a fuzzy k-nearest neighbor algorithm. The crisp networks slightly outperformed the fuzzy networks at the character level but the fuzzy networks outperformed the crisp networks at the word level.
An improved advertising CTR prediction approach based on the fuzzy deep neural network
Gao, Shu; Li, Mingjiang
2018-01-01
Combining a deep neural network with fuzzy theory, this paper proposes an advertising click-through rate (CTR) prediction approach based on a fuzzy deep neural network (FDNN). In this approach, fuzzy Gaussian-Bernoulli restricted Boltzmann machine (FGBRBM) is first applied to input raw data from advertising datasets. Next, fuzzy restricted Boltzmann machine (FRBM) is used to construct the fuzzy deep belief network (FDBN) with the unsupervised method layer by layer. Finally, fuzzy logistic regression (FLR) is utilized for modeling the CTR. The experimental results show that the proposed FDNN model outperforms several baseline models in terms of both data representation capability and robustness in advertising click log datasets with noise. PMID:29727443
An improved advertising CTR prediction approach based on the fuzzy deep neural network.
Jiang, Zilong; Gao, Shu; Li, Mingjiang
2018-01-01
Combining a deep neural network with fuzzy theory, this paper proposes an advertising click-through rate (CTR) prediction approach based on a fuzzy deep neural network (FDNN). In this approach, fuzzy Gaussian-Bernoulli restricted Boltzmann machine (FGBRBM) is first applied to input raw data from advertising datasets. Next, fuzzy restricted Boltzmann machine (FRBM) is used to construct the fuzzy deep belief network (FDBN) with the unsupervised method layer by layer. Finally, fuzzy logistic regression (FLR) is utilized for modeling the CTR. The experimental results show that the proposed FDNN model outperforms several baseline models in terms of both data representation capability and robustness in advertising click log datasets with noise.
Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 1
NASA Technical Reports Server (NTRS)
Lea, Robert N. (Editor); Villarreal, James (Editor)
1991-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Houston, Clear Lake. The workshop was held April 11 to 13 at the Johnson Space Flight Center. Technical topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.
Wu, Ailong; Zeng, Zhigang
2016-02-01
We show that the ω-periodic fractional-order fuzzy neural networks cannot generate non-constant ω-periodic signals. In addition, several sufficient conditions are obtained to ascertain the boundedness and global Mittag-Leffler stability of fractional-order fuzzy neural networks. Furthermore, S-asymptotical ω-periodicity and global asymptotical ω-periodicity of fractional-order fuzzy neural networks is also characterized. The obtained criteria improve and extend the existing related results. To illustrate and compare the theoretical criteria, some numerical examples with simulation results are discussed in detail. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
2011-07-01
supervised learning process is compared to that of Artificial Neural Network ( ANNs ), fuzzy logic rule set, and Bayesian network approaches...of both fuzzy logic systems and Artificial Neural Networks ( ANNs ). Like fuzzy logic systems, the CINet technique allows the use of human- intuitive...fuzzy rule systems [3] CINets also maintain features common to both fuzzy systems and ANNs . The technique can be be shown to possess the property
NASA Astrophysics Data System (ADS)
Shao, Yuxiang; Chen, Qing; Wei, Zhenhua
Logistics distribution center location evaluation is a dynamic, fuzzy, open and complicated nonlinear system, which makes it difficult to evaluate the distribution center location by the traditional analysis method. The paper proposes a distribution center location evaluation system which uses the fuzzy neural network combined with the genetic algorithm. In this model, the neural network is adopted to construct the fuzzy system. By using the genetic algorithm, the parameters of the neural network are optimized and trained so as to improve the fuzzy system’s abilities of self-study and self-adaptation. At last, the sampled data are trained and tested by Matlab software. The simulation results indicate that the proposed identification model has very small errors.
NASA Astrophysics Data System (ADS)
Luo, Junhui; Wu, Chao; Liu, Xianlin; Mi, Decai; Zeng, Fuquan; Zeng, Yongjun
2018-01-01
At present, the prediction of soft foundation settlement mostly use the exponential curve and hyperbola deferred approximation method, and the correlation between the results is poor. However, the application of neural network in this area has some limitations, and none of the models used in the existing cases adopted the TS fuzzy neural network of which calculation combines the characteristics of fuzzy system and neural network to realize the mutual compatibility methods. At the same time, the developed and optimized calculation program is convenient for engineering designers. Taking the prediction and analysis of soft foundation settlement of gully soft soil in granite area of Guangxi Guihe road as an example, the fuzzy neural network model is established and verified to explore the applicability. The TS fuzzy neural network is used to construct the prediction model of settlement and deformation, and the corresponding time response function is established to calculate and analyze the settlement of soft foundation. The results show that the prediction of short-term settlement of the model is accurate and the final settlement prediction result has certain engineering reference value.
Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 2
NASA Technical Reports Server (NTRS)
Culbert, Christopher J. (Editor)
1993-01-01
Papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake, held 1-3 Jun. 1992 at the Lyndon B. Johnson Space Center in Houston, Texas are included. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.
NASA Astrophysics Data System (ADS)
Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Thangaraj, P.
2013-02-01
This paper addresses the problem of passivity analysis issue for a class of fuzzy bidirectional associative memory (BAM) neural networks with Markovian jumping parameters and time varying delays. A set of sufficient conditions for the passiveness of the considered fuzzy BAM neural network model is derived in terms of linear matrix inequalities by using the delay fractioning technique together with the Lyapunov function approach. In addition, the uncertainties are inevitable in neural networks because of the existence of modeling errors and external disturbance. Further, this result is extended to study the robust passivity criteria for uncertain fuzzy BAM neural networks with time varying delays and uncertainties. These criteria are expressed in the form of linear matrix inequalities (LMIs), which can be efficiently solved via standard numerical software. Two numerical examples are provided to demonstrate the effectiveness of the obtained results.
Fuzzy logic and neural networks in artificial intelligence and pattern recognition
NASA Astrophysics Data System (ADS)
Sanchez, Elie
1991-10-01
With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.
Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 1
NASA Technical Reports Server (NTRS)
Culbert, Christopher J. (Editor)
1993-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake. The workshop was held June 1-3, 1992 at the Lyndon B. Johnson Space Center in Houston, Texas. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control, and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.
Training the Recurrent neural network by the Fuzzy Min-Max algorithm for fault prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemouri, Ryad; Racoceanu, Daniel; Zerhouni, Noureddine
2009-03-05
In this paper, we present a training technique of a Recurrent Radial Basis Function neural network for fault prediction. We use the Fuzzy Min-Max technique to initialize the k-center of the RRBF neural network. The k-means algorithm is then applied to calculate the centers that minimize the mean square error of the prediction task. The performances of the k-means algorithm are then boosted by the Fuzzy Min-Max technique.
A recurrent self-organizing neural fuzzy inference network.
Juang, C F; Lin, C T
1999-01-01
A recurrent self-organizing neural fuzzy inference network (RSONFIN) is proposed in this paper. The RSONFIN is inherently a recurrent multilayered connectionist network for realizing the basic elements and functions of dynamic fuzzy inference, and may be considered to be constructed from a series of dynamic fuzzy rules. The temporal relations embedded in the network are built by adding some feedback connections representing the memory elements to a feedforward neural fuzzy network. Each weight as well as node in the RSONFIN has its own meaning and represents a special element in a fuzzy rule. There are no hidden nodes (i.e., no membership functions and fuzzy rules) initially in the RSONFIN. They are created on-line via concurrent structure identification (the construction of dynamic fuzzy if-then rules) and parameter identification (the tuning of the free parameters of membership functions). The structure learning together with the parameter learning forms a fast learning algorithm for building a small, yet powerful, dynamic neural fuzzy network. Two major characteristics of the RSONFIN can thus be seen: 1) the recurrent property of the RSONFIN makes it suitable for dealing with temporal problems and 2) no predetermination, like the number of hidden nodes, must be given, since the RSONFIN can find its optimal structure and parameters automatically and quickly. Moreover, to reduce the number of fuzzy rules generated, a flexible input partition method, the aligned clustering-based algorithm, is proposed. Various simulations on temporal problems are done and performance comparisons with some existing recurrent networks are also made. Efficiency of the RSONFIN is verified from these results.
Fuzzy logic and neural network technologies
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Lea, Robert N.; Savely, Robert T.
1992-01-01
Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.
Yang, Shiju; Li, Chuandong; Huang, Tingwen
2016-03-01
The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold
2014-12-01
In this study, we propose Hybrid Radial Basis Function Neural Networks (HRBFNNs) realized with the aid of fuzzy clustering method (Fuzzy C-Means, FCM) and polynomial neural networks. Fuzzy clustering used to form information granulation is employed to overcome a possible curse of dimensionality, while the polynomial neural network is utilized to build local models. Furthermore, genetic algorithm (GA) is exploited here to optimize the essential design parameters of the model (including fuzzification coefficient, the number of input polynomial fuzzy neurons (PFNs), and a collection of the specific subset of input PFNs) of the network. To reduce dimensionality of the input space, principal component analysis (PCA) is considered as a sound preprocessing vehicle. The performance of the HRBFNNs is quantified through a series of experiments, in which we use several modeling benchmarks of different levels of complexity (different number of input variables and the number of available data). A comparative analysis reveals that the proposed HRBFNNs exhibit higher accuracy in comparison to the accuracy produced by some models reported previously in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.
A neural network architecture for implementation of expert systems for real time monitoring
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.
1991-01-01
Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.
Usefulness of Neuro-Fuzzy Models' Application for Tobacco Control
NASA Astrophysics Data System (ADS)
Petrovic-Lazarevic, Sonja; Zhang, Jian Ying
2007-12-01
The paper presents neuro-fuzzy models' application appropriate for tobacco control: the fuzzy control model, Adaptive Network Based Fuzzy Inference System, Evolving Fuzzy Neural Network models, and EVOlving POLicies. We propose further the use of Fuzzy Casual Networks to help tobacco control decision makers develop policies and measure their impact on social regulation.
Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao
2018-01-02
In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.
Comments on "The multisynapse neural network and its application to fuzzy clustering".
Yu, Jian; Hao, Pengwei
2005-05-01
In the above-mentioned paper, Wei and Fahn proposed a neural architecture, the multisynapse neural network, to solve constrained optimization problems including high-order, logarithmic, and sinusoidal forms, etc. As one of its main applications, a fuzzy bidirectional associative clustering network (FBACN) was proposed for fuzzy-partition clustering according to the objective-functional method. The connection between the objective-functional-based fuzzy c-partition algorithms and FBACN is the Lagrange multiplier approach. Unfortunately, the Lagrange multiplier approach was incorrectly applied so that FBACN does not equivalently minimize its corresponding constrained objective-function. Additionally, Wei and Fahn adopted traditional definition of fuzzy c-partition, which is not satisfied by FBACN. Therefore, FBACN can not solve constrained optimization problems, either.
Flexible body control using neural networks
NASA Technical Reports Server (NTRS)
Mccullough, Claire L.
1992-01-01
Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.
New Models for Forecasting Enrollments: Fuzzy Time Series and Neural Network Approaches.
ERIC Educational Resources Information Center
Song, Qiang; Chissom, Brad S.
Since university enrollment forecasting is very important, many different methods and models have been proposed by researchers. Two new methods for enrollment forecasting are introduced: (1) the fuzzy time series model; and (2) the artificial neural networks model. Fuzzy time series has been proposed to deal with forecasting problems within a…
Study on pattern recognition of Raman spectrum based on fuzzy neural network
NASA Astrophysics Data System (ADS)
Zheng, Xiangxiang; Lv, Xiaoyi; Mo, Jiaqing
2017-10-01
Hydatid disease is a serious parasitic disease in many regions worldwide, especially in Xinjiang, China. Raman spectrum of the serum of patients with echinococcosis was selected as the research object in this paper. The Raman spectrum of blood samples from healthy people and patients with echinococcosis are measured, of which the spectrum characteristics are analyzed. The fuzzy neural network not only has the ability of fuzzy logic to deal with uncertain information, but also has the ability to store knowledge of neural network, so it is combined with the Raman spectrum on the disease diagnosis problem based on Raman spectrum. Firstly, principal component analysis (PCA) is used to extract the principal components of the Raman spectrum, reducing the network input and accelerating the prediction speed and accuracy of Network based on remaining the original data. Then, the information of the extracted principal component is used as the input of the neural network, the hidden layer of the network is the generation of rules and the inference process, and the output layer of the network is fuzzy classification output. Finally, a part of samples are randomly selected for the use of training network, then the trained network is used for predicting the rest of the samples, and the predicted results are compared with general BP neural network to illustrate the feasibility and advantages of fuzzy neural network. Success in this endeavor would be helpful for the research work of spectroscopic diagnosis of disease and it can be applied in practice in many other spectral analysis technique fields.
Neuro-fuzzy controller to navigate an unmanned vehicle.
Selma, Boumediene; Chouraqui, Samira
2013-12-01
A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).
Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong
2015-01-01
In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896
Using Evolved Fuzzy Neural Networks for Injury Detection from Isokinetic Curves
NASA Astrophysics Data System (ADS)
Couchet, Jorge; Font, José María; Manrique, Daniel
In this paper we propose an evolutionary fuzzy neural networks system for extracting knowledge from a set of time series containing medical information. The series represent isokinetic curves obtained from a group of patients exercising the knee joint on an isokinetic dynamometer. The system has two parts: i) it analyses the time series input in order generate a simplified model of an isokinetic curve; ii) it applies a grammar-guided genetic program to obtain a knowledge base represented by a fuzzy neural network. Once the knowledge base has been generated, the system is able to perform knee injuries detection. The results suggest that evolved fuzzy neural networks perform better than non-evolutionary approaches and have a high accuracy rate during both the training and testing phases. Additionally, they are robust, as the system is able to self-adapt to changes in the problem without human intervention.
Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays
NASA Astrophysics Data System (ADS)
Syed Ali, M.; Balasubramaniam, P.
2008-07-01
In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB.
An architecture for designing fuzzy logic controllers using neural networks
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1991-01-01
Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.
A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns
NASA Astrophysics Data System (ADS)
Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng
2009-11-01
Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.
Artificial Neural Networks Equivalent to Fuzzy Algebra T-Norm Conjunction Operators
NASA Astrophysics Data System (ADS)
Iliadis, L. S.; Spartalis, S. I.
2007-12-01
This paper describes the construction of three Artificial Neural Networks with fuzzy input and output, imitating the performance of fuzzy algebra conjunction operators. More specifically, it is applied over the results of a previous research effort that used T-Norms in order to produce a characteristic torrential risk index that unified the partial risk indices for the area of Xanthi. Each one of the three networks substitutes a T-Norm and consequently they can be used as equivalent operators. This means that ANN performing Fuzzy Algebra operations can be designed and developed.
NASA Astrophysics Data System (ADS)
Tselentis, G.-A.; Sokos, E.
2012-01-01
In this paper we suggest the use of diffusion-neural-networks, (neural networks with intrinsic fuzzy logic abilities) to assess the relationship between isoseismal area and earthquake magnitude for the region of Greece. It is of particular importance to study historical earthquakes for which we often have macroseismic information in the form of isoseisms but it is statistically incomplete to assess magnitudes from an isoseismal area or to train conventional artificial neural networks for magnitude estimation. Fuzzy relationships are developed and used to train a feed forward neural network with a back propagation algorithm to obtain the final relationships. Seismic intensity data from 24 earthquakes in Greece have been used. Special attention is being paid to the incompleteness and contradictory patterns in scanty historical earthquake records. The results show that the proposed processing model is very effective, better than applying classical artificial neural networks since the magnitude macroseismic intensity target function has a strong nonlinearity and in most cases the macroseismic datasets are very small.
A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken
This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology,more » comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)« less
Self-growing neural network architecture using crisp and fuzzy entropy
NASA Technical Reports Server (NTRS)
Cios, Krzysztof J.
1992-01-01
The paper briefly describes the self-growing neural network algorithm, CID2, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results of a real-life recognition problem of distinguishing defects in a glass ribbon and of a benchmark problem of differentiating two spirals are shown and discussed.
Self-growing neural network architecture using crisp and fuzzy entropy
NASA Technical Reports Server (NTRS)
Cios, Krzysztof J.
1992-01-01
The paper briefly describes the self-growing neural network algorithm, CID3, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results for a real-life recognition problem of distinguishing defects in a glass ribbon, and for a benchmark problen of telling two spirals apart are shown and discussed.
Multi-modality image fusion based on enhanced fuzzy radial basis function neural networks.
Chao, Zhen; Kim, Dohyeon; Kim, Hee-Joung
2018-04-01
In clinical applications, single modality images do not provide sufficient diagnostic information. Therefore, it is necessary to combine the advantages or complementarities of different modalities of images. Recently, neural network technique was applied to medical image fusion by many researchers, but there are still many deficiencies. In this study, we propose a novel fusion method to combine multi-modality medical images based on the enhanced fuzzy radial basis function neural network (Fuzzy-RBFNN), which includes five layers: input, fuzzy partition, front combination, inference, and output. Moreover, we propose a hybrid of the gravitational search algorithm (GSA) and error back propagation algorithm (EBPA) to train the network to update the parameters of the network. Two different patterns of images are used as inputs of the neural network, and the output is the fused image. A comparison with the conventional fusion methods and another neural network method through subjective observation and objective evaluation indexes reveals that the proposed method effectively synthesized the information of input images and achieved better results. Meanwhile, we also trained the network by using the EBPA and GSA, individually. The results reveal that the EBPGSA not only outperformed both EBPA and GSA, but also trained the neural network more accurately by analyzing the same evaluation indexes. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
On the fusion of tuning parameters of fuzzy rules and neural network
NASA Astrophysics Data System (ADS)
Mamuda, Mamman; Sathasivam, Saratha
2017-08-01
Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.
Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao
2017-09-01
This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.
A hybrid modeling approach for option pricing
NASA Astrophysics Data System (ADS)
Hajizadeh, Ehsan; Seifi, Abbas
2011-11-01
The complexity of option pricing has led many researchers to develop sophisticated models for such purposes. The commonly used Black-Scholes model suffers from a number of limitations. One of these limitations is the assumption that the underlying probability distribution is lognormal and this is so controversial. We propose a couple of hybrid models to reduce these limitations and enhance the ability of option pricing. The key input to option pricing model is volatility. In this paper, we use three popular GARCH type model for estimating volatility. Then, we develop two non-parametric models based on neural networks and neuro-fuzzy networks to price call options for S&P 500 index. We compare the results with those of Black-Scholes model and show that both neural network and neuro-fuzzy network models outperform Black-Scholes model. Furthermore, comparing the neural network and neuro-fuzzy approaches, we observe that for at-the-money options, neural network model performs better and for both in-the-money and an out-of-the money option, neuro-fuzzy model provides better results.
NASA Astrophysics Data System (ADS)
Chang, Hsien-Cheng
Two novel synergistic systems consisting of artificial neural networks and fuzzy inference systems are developed to determine geophysical properties by using well log data. These systems are employed to improve the determination accuracy in carbonate rocks, which are generally more complex than siliciclastic rocks. One system, consisting of a single adaptive resonance theory (ART) neural network and three fuzzy inference systems (FISs), is used to determine the permeability category. The other system, which is composed of three ART neural networks and a single FIS, is employed to determine the lithofacies. The geophysical properties studied in this research, permeability category and lithofacies, are treated as categorical data. The permeability values are transformed into a "permeability category" to account for the effects of scale differences between core analyses and well logs, and heterogeneity in the carbonate rocks. The ART neural networks dynamically cluster the input data sets into different groups. The FIS is used to incorporate geologic experts' knowledge, which is usually in linguistic forms, into systems. These synergistic systems thus provide viable alternative solutions to overcome the effects of heterogeneity, the uncertainties of carbonate rock depositional environments, and the scarcity of well log data. The results obtained in this research show promising improvements over backpropagation neural networks. For the permeability category, the prediction accuracies are 68.4% and 62.8% for the multiple-single ART neural network-FIS and a single backpropagation neural network, respectively. For lithofacies, the prediction accuracies are 87.6%, 79%, and 62.8% for the single-multiple ART neural network-FIS, a single ART neural network, and a single backpropagation neural network, respectively. The sensitivity analysis results show that the multiple-single ART neural networks-FIS and a single ART neural network possess the same matching trends in determining lithofacies. This research shows that the adaptive resonance theory neural networks enable decision-makers to clearly distinguish the importance of different pieces of data which are useful in three-dimensional subsurface modeling. Geologic experts' knowledge can be easily applied and maintained by using the fuzzy inference systems.
Character recognition using a neural network model with fuzzy representation
NASA Technical Reports Server (NTRS)
Tavakoli, Nassrin; Seniw, David
1992-01-01
The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.
Study on application of adaptive fuzzy control and neural network in the automatic leveling system
NASA Astrophysics Data System (ADS)
Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng
2015-04-01
This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.
Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System
Hosseini, Monireh Sheikh; Zekri, Maryam
2012-01-01
Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054
Are artificial neural networks black boxes?
Benitez, J M; Castro, J L; Requena, I
1997-01-01
Artificial neural networks are efficient computing models which have shown their strengths in solving hard problems in artificial intelligence. They have also been shown to be universal approximators. Notwithstanding, one of the major criticisms is their being black boxes, since no satisfactory explanation of their behavior has been offered. In this paper, we provide such an interpretation of neural networks so that they will no longer be seen as black boxes. This is stated after establishing the equality between a certain class of neural nets and fuzzy rule-based systems. This interpretation is built with fuzzy rules using a new fuzzy logic operator which is defined after introducing the concept of f-duality. In addition, this interpretation offers an automated knowledge acquisition procedure.
Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.
2000-01-01
Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.
Lin, Chin-Teng; Wu, Rui-Cheng; Chang, Jyh-Yeong; Liang, Sheng-Fu
2004-02-01
In this paper, a new technique for the Chinese text-to-speech (TTS) system is proposed. Our major effort focuses on the prosodic information generation. New methodologies for constructing fuzzy rules in a prosodic model simulating human's pronouncing rules are developed. The proposed Recurrent Fuzzy Neural Network (RFNN) is a multilayer recurrent neural network (RNN) which integrates a Self-cOnstructing Neural Fuzzy Inference Network (SONFIN) into a recurrent connectionist structure. The RFNN can be functionally divided into two parts. The first part adopts the SONFIN as a prosodic model to explore the relationship between high-level linguistic features and prosodic information based on fuzzy inference rules. As compared to conventional neural networks, the SONFIN can always construct itself with an economic network size in high learning speed. The second part employs a five-layer network to generate all prosodic parameters by directly using the prosodic fuzzy rules inferred from the first part as well as other important features of syllables. The TTS system combined with the proposed method can behave not only sandhi rules but also the other prosodic phenomena existing in the traditional TTS systems. Moreover, the proposed scheme can even find out some new rules about prosodic phrase structure. The performance of the proposed RFNN-based prosodic model is verified by imbedding it into a Chinese TTS system with a Chinese monosyllable database based on the time-domain pitch synchronous overlap add (TD-PSOLA) method. Our experimental results show that the proposed RFNN can generate proper prosodic parameters including pitch means, pitch shapes, maximum energy levels, syllable duration, and pause duration. Some synthetic sounds are online available for demonstration.
Receptive field optimisation and supervision of a fuzzy spiking neural network.
Glackin, Cornelius; Maguire, Liam; McDaid, Liam; Sayers, Heather
2011-04-01
This paper presents a supervised training algorithm that implements fuzzy reasoning on a spiking neural network. Neuron selectivity is facilitated using receptive fields that enable individual neurons to be responsive to certain spike train firing rates and behave in a similar manner as fuzzy membership functions. The connectivity of the hidden and output layers in the fuzzy spiking neural network (FSNN) is representative of a fuzzy rule base. Fuzzy C-Means clustering is utilised to produce clusters that represent the antecedent part of the fuzzy rule base that aid classification of the feature data. Suitable cluster widths are determined using two strategies; subjective thresholding and evolutionary thresholding respectively. The former technique typically results in compact solutions in terms of the number of neurons, and is shown to be particularly suited to small data sets. In the latter technique a pool of cluster candidates is generated using Fuzzy C-Means clustering and then a genetic algorithm is employed to select the most suitable clusters and to specify cluster widths. In both scenarios, the network is supervised but learning only occurs locally as in the biological case. The advantages and disadvantages of the network topology for the Fisher Iris and Wisconsin Breast Cancer benchmark classification tasks are demonstrated and directions of current and future work are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Modeling Belt-Servomechanism by Chebyshev Functional Recurrent Neuro-Fuzzy Network
NASA Astrophysics Data System (ADS)
Huang, Yuan-Ruey; Kang, Yuan; Chu, Ming-Hui; Chang, Yeon-Pun
A novel Chebyshev functional recurrent neuro-fuzzy (CFRNF) network is developed from a combination of the Takagi-Sugeno-Kang (TSK) fuzzy model and the Chebyshev recurrent neural network (CRNN). The CFRNF network can emulate the nonlinear dynamics of a servomechanism system. The system nonlinearity is addressed by enhancing the input dimensions of the consequent parts in the fuzzy rules due to functional expansion of a Chebyshev polynomial. The back propagation algorithm is used to adjust the parameters of the antecedent membership functions as well as those of consequent functions. To verify the performance of the proposed CFRNF, the experiment of the belt servomechanism is presented in this paper. Both of identification methods of adaptive neural fuzzy inference system (ANFIS) and recurrent neural network (RNN) are also studied for modeling of the belt servomechanism. The analysis and comparison results indicate that CFRNF makes identification of complex nonlinear dynamic systems easier. It is verified that the accuracy and convergence of the CFRNF are superior to those of ANFIS and RNN by the identification results of a belt servomechanism.
Design of fuzzy systems using neurofuzzy networks.
Figueiredo, M; Gomide, F
1999-01-01
This paper introduces a systematic approach for fuzzy system design based on a class of neural fuzzy networks built upon a general neuron model. The network structure is such that it encodes the knowledge learned in the form of if-then fuzzy rules and processes data following fuzzy reasoning principles. The technique provides a mechanism to obtain rules covering the whole input/output space as well as the membership functions (including their shapes) for each input variable. Such characteristics are of utmost importance in fuzzy systems design and application. In addition, after learning, it is very simple to extract fuzzy rules in the linguistic form. The network has universal approximation capability, a property very useful in, e.g., modeling and control applications. Here we focus on function approximation problems as a vehicle to illustrate its usefulness and to evaluate its performance. Comparisons with alternative approaches are also included. Both, nonnoisy and noisy data have been studied and considered in the computational experiments. The neural fuzzy network developed here and, consequently, the underlying approach, has shown to provide good results from the accuracy, complexity, and system design points of view.
A fuzzy neural network for intelligent data processing
NASA Astrophysics Data System (ADS)
Xie, Wei; Chu, Feng; Wang, Lipo; Lim, Eng Thiam
2005-03-01
In this paper, we describe an incrementally generated fuzzy neural network (FNN) for intelligent data processing. This FNN combines the features of initial fuzzy model self-generation, fast input selection, partition validation, parameter optimization and rule-base simplification. A small FNN is created from scratch -- there is no need to specify the initial network architecture, initial membership functions, or initial weights. Fuzzy IF-THEN rules are constantly combined and pruned to minimize the size of the network while maintaining accuracy; irrelevant inputs are detected and deleted, and membership functions and network weights are trained with a gradient descent algorithm, i.e., error backpropagation. Experimental studies on synthesized data sets demonstrate that the proposed Fuzzy Neural Network is able to achieve accuracy comparable to or higher than both a feedforward crisp neural network, i.e., NeuroRule, and a decision tree, i.e., C4.5, with more compact rule bases for most of the data sets used in our experiments. The FNN has achieved outstanding results for cancer classification based on microarray data. The excellent classification result for Small Round Blue Cell Tumors (SRBCTs) data set is shown. Compared with other published methods, we have used a much fewer number of genes for perfect classification, which will help researchers directly focus their attention on some specific genes and may lead to discovery of deep reasons of the development of cancers and discovery of drugs.
Experiments on neural network architectures for fuzzy logic
NASA Technical Reports Server (NTRS)
Keller, James M.
1991-01-01
The use of fuzzy logic to model and manage uncertainty in a rule-based system places high computational demands on an inference engine. In an earlier paper, the authors introduced a trainable neural network structure for fuzzy logic. These networks can learn and extrapolate complex relationships between possibility distributions for the antecedents and consequents in the rules. Here, the power of these networks is further explored. The insensitivity of the output to noisy input distributions (which are likely if the clauses are generated from real data) is demonstrated as well as the ability of the networks to internalize multiple conjunctive clause and disjunctive clause rules. Since different rules with the same variables can be encoded in a single network, this approach to fuzzy logic inference provides a natural mechanism for rule conflict resolution.
Hierarchical singleton-type recurrent neural fuzzy networks for noisy speech recognition.
Juang, Chia-Feng; Chiou, Chyi-Tian; Lai, Chun-Lung
2007-05-01
This paper proposes noisy speech recognition using hierarchical singleton-type recurrent neural fuzzy networks (HSRNFNs). The proposed HSRNFN is a hierarchical connection of two singleton-type recurrent neural fuzzy networks (SRNFNs), where one is used for noise filtering and the other for recognition. The SRNFN is constructed by recurrent fuzzy if-then rules with fuzzy singletons in the consequences, and their recurrent properties make them suitable for processing speech patterns with temporal characteristics. In n words recognition, n SRNFNs are created for modeling n words, where each SRNFN receives the current frame feature and predicts the next one of its modeling word. The prediction error of each SRNFN is used as recognition criterion. In filtering, one SRNFN is created, and each SRNFN recognizer is connected to the same SRNFN filter, which filters noisy speech patterns in the feature domain before feeding them to the SRNFN recognizer. Experiments with Mandarin word recognition under different types of noise are performed. Other recognizers, including multilayer perceptron (MLP), time-delay neural networks (TDNNs), and hidden Markov models (HMMs), are also tested and compared. These experiments and comparisons demonstrate good results with HSRNFN for noisy speech recognition tasks.
A clustering-based fuzzy wavelet neural network model for short-term load forecasting.
Kodogiannis, Vassilis S; Amina, Mahdi; Petrounias, Ilias
2013-10-01
Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi-Sugeno-Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models.
Experimental Verification of Electric Drive Technologies Based on Artificial Intelligence Tools
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed; Ricketts, Daniel; Kotaru, Raj; Thomas, Robert; Noga, Donald F. (Technical Monitor); Kankam, Mark D. (Technical Monitor)
2000-01-01
In this report, a fully integrated prototype of a flight servo control system is successfully developed and implemented using brushless dc motors. The control system is developed by the fuzzy logic theory, and implemented with a multilayer neural network. First, a neural network-based architecture is introduced for fuzzy logic control. The characteristic rules and their membership functions of fuzzy systems are represented as the processing nodes in the neural network structure. The network structure and the parameter learning are performed simultaneously and online in the fuzzy-neural network system. The structure learning is based on the partition of input space. The parameter learning is based on the supervised gradient decent method, using a delta adaptation law. Using experimental setup, the performance of the proposed control system is evaluated under various operating conditions. Test results are presented and discussed in the report. The proposed learning control system has several advantages, namely, simple structure and learning capability, robustness and high tracking performance and few nodes at hidden layers. In comparison with the PI controller, the proposed fuzzy-neural network system can yield a better dynamic performance with shorter settling time, and without overshoot. Experimental results have shown that the proposed control system is adaptive and robust in responding to a wide range of operating conditions. In summary, the goal of this study is to design and implement-advanced servosystems to actuate control surfaces for flight vehicles, namely, aircraft and helicopters, missiles and interceptors, and mini- and micro-air vehicles.
Fuzzy neural network methodology applied to medical diagnosis
NASA Technical Reports Server (NTRS)
Gorzalczany, Marian B.; Deutsch-Mcleish, Mary
1992-01-01
This paper presents a technique for building expert systems that combines the fuzzy-set approach with artificial neural network structures. This technique can effectively deal with two types of medical knowledge: a nonfuzzy one and a fuzzy one which usually contributes to the process of medical diagnosis. Nonfuzzy numerical data is obtained from medical tests. Fuzzy linguistic rules describing the diagnosis process are provided by a human expert. The proposed method has been successfully applied in veterinary medicine as a support system in the diagnosis of canine liver diseases.
Challenging Aerospace Problems for Intelligent Systems
2003-06-01
importance of each rule. Techniques such as logarithmic regression or Saaty’s AHP may be employed to apply the weights on to the fuzzy rules. 15-9 Given u...at which designs could be evaluated. This implies that modeling techniques such as neural networks, fuzzy systems and so on can play an important role...failure conditions [4-6]. These approaches apply techniques, such as neural networks, fuzzy logic, and parameter identification, to improve aircraft
Knowledge extraction from evolving spiking neural networks with rank order population coding.
Soltic, Snjezana; Kasabov, Nikola
2010-12-01
This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.
Julie, E Golden; Selvi, S Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.
Julie, E. Golden; Selvi, S. Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269
1994-06-09
Ethics and the Soul 1-221 P. Werbos A Net Program for Natural Language Comprehension 1-863 J. Weiss Applications Oral ANN Design of Image Processing...Controlling Nonlinear Dynamic Systems Using Neuro-Fuzzy Networks 1-787 E. Teixera, G. Laforga, H. Azevedo Neural Fuzzy Logics as a Tool for Design Ecological ...Discrete Neural Network 11-466 Z. Cheng-fu Representation of Number A Theory of Mathematical Modeling 11-479 J. Cristofano An Ecological Approach to
Fuzzy Logic Module of Convolutional Neural Network for Handwritten Digits Recognition
NASA Astrophysics Data System (ADS)
Popko, E. A.; Weinstein, I. A.
2016-08-01
Optical character recognition is one of the important issues in the field of pattern recognition. This paper presents a method for recognizing handwritten digits based on the modeling of convolutional neural network. The integrated fuzzy logic module based on a structural approach was developed. Used system architecture adjusted the output of the neural network to improve quality of symbol identification. It was shown that proposed algorithm was flexible and high recognition rate of 99.23% was achieved.
A neuro-fuzzy architecture for real-time applications
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Huang, Song
1992-01-01
Neural networks and fuzzy expert systems perform the same task of functional mapping using entirely different approaches. Each approach has certain unique features. The ability to learn specific input-output mappings from large input/output data possibly corrupted by noise and the ability to adapt or continue learning are some important features of neural networks. Fuzzy expert systems are known for their ability to deal with fuzzy information and incomplete/imprecise data in a structured, logical way. Since both of these techniques implement the same task (that of functional mapping--we regard 'inferencing' as one specific category under this class), a fusion of the two concepts that retains their unique features while overcoming their individual drawbacks will have excellent applications in the real world. In this paper, we arrive at a new architecture by fusing the two concepts. The architecture has the trainability/adaptibility (based on input/output observations) property of the neural networks and the architectural features that are unique to fuzzy expert systems. It also does not require specific information such as fuzzy rules, defuzzification procedure used, etc., though any such information can be integrated into the architecture. We show that this architecture can provide better performance than is possible from a single two or three layer feedforward neural network. Further, we show that this new architecture can be used as an efficient vehicle for hardware implementation of complex fuzzy expert systems for real-time applications. A numerical example is provided to show the potential of this approach.
The Satellite Clock Bias Prediction Method Based on Takagi-Sugeno Fuzzy Neural Network
NASA Astrophysics Data System (ADS)
Cai, C. L.; Yu, H. G.; Wei, Z. C.; Pan, J. D.
2017-05-01
The continuous improvement of the prediction accuracy of Satellite Clock Bias (SCB) is the key problem of precision navigation. In order to improve the precision of SCB prediction and better reflect the change characteristics of SCB, this paper proposes an SCB prediction method based on the Takagi-Sugeno fuzzy neural network. Firstly, the SCB values are pre-treated based on their characteristics. Then, an accurate Takagi-Sugeno fuzzy neural network model is established based on the preprocessed data to predict SCB. This paper uses the precise SCB data with different sampling intervals provided by IGS (International Global Navigation Satellite System Service) to realize the short-time prediction experiment, and the results are compared with the ARIMA (Auto-Regressive Integrated Moving Average) model, GM(1,1) model, and the quadratic polynomial model. The results show that the Takagi-Sugeno fuzzy neural network model is feasible and effective for the SCB short-time prediction experiment, and performs well for different types of clocks. The prediction results for the proposed method are better than the conventional methods obviously.
Fuzzy neural network for flow estimation in sewer systems during wet weather.
Shen, Jun; Shen, Wei; Chang, Jian; Gong, Ning
2006-02-01
Estimation of the water flow from rainfall intensity during storm events is important in hydrology, sewer system control, and environmental protection. The runoff-producing behavior of a sewer system changes from one storm event to another because rainfall loss depends not only on rainfall intensities, but also on the state of the soil and vegetation, the general condition of the climate, and so on. As such, it would be difficult to obtain a precise flowrate estimation without sufficient a priori knowledge of these factors. To establish a model for flow estimation, one can also use statistical methods, such as the neural network STORMNET, software developed at Lyonnaise des Eaux, France, analyzing the relation between rainfall intensity and flowrate data of the known storm events registered in the past for a given sewer system. In this study, the authors propose a fuzzy neural network to estimate the flowrate from rainfall intensity. The fuzzy neural network combines four STORMNETs and fuzzy deduction to better estimate the flowrates. This study's system for flow estimation can be calibrated automatically by using known storm events; no data regarding the physical characteristics of the drainage basins are required. Compared with the neural network STORMNET, this method reduces the mean square error of the flow estimates by approximately 20%. Experimental results are reported herein.
ERIC Educational Resources Information Center
Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.
2003-01-01
Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Yatskovsky, Victor I.; Ogorodnik, K. V.; Lischenko, Sergey
2002-07-01
The perspective of neural networks equivalental models (EM) base on vector-matrix procedure with basic operations of continuous and neuro-fuzzy logic (equivalence, absolute difference) are shown. Capacity on base EMs exceeded the amount of neurons in 2.5 times. This is larger than others neural networks paradigms. Amount neurons of this neural networks on base EMs may be 10 - 20 thousands. The base operations in EMs are normalized equivalency operations. The family of new operations equivalency and non-equivalency of neuro-fuzzy logic's, which we have elaborated on the based of such generalized operations of fuzzy-logic's as fuzzy negation, t-norm and s-norm are shown. Generalized rules of construction of new functions (operations) equivalency which uses relations of t-norm and s-norm to fuzzy negation are proposed. Among these elements the following should be underlined: (1) the element which fulfills the operation of limited difference; (2) the element which algebraic product (intensifier with controlled coefficient of transmission or multiplier of analog signals); (3) the element which fulfills a sample summarizing (uniting) of signals (including the one during normalizing). Synthesized structures which realize on the basic of these elements the whole spectrum of required operations: t-norm, s-norm and new operations equivalency are shown. These realization on the basic of new multifunctional optoelectronical BISPIN- devices (MOEBD) represent the circuit with constant and pulse optical input signals. They are modeling the operation of limited difference. These circuits realize frequency- dynamic neuron models and neural networks. Experimental results of these MOEBD and equivalency circuits, which fulfill the limited difference operation are discussed. For effective realization of neural networks on the basic of EMs as it is shown in report, picture elements are required as main nodes to implement element operations equivalence ('non-equivalence') of neuro-fuzzy logic's.
Dai, Zongli; Zhao, Aiwu; He, Jie
2018-01-01
In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method. PMID:29420584
Guan, Hongjun; Dai, Zongli; Zhao, Aiwu; He, Jie
2018-01-01
In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method.
Incomplete fuzzy data processing systems using artificial neural network
NASA Technical Reports Server (NTRS)
Patyra, Marek J.
1992-01-01
In this paper, the implementation of a fuzzy data processing system using an artificial neural network (ANN) is discussed. The binary representation of fuzzy data is assumed, where the universe of discourse is decartelized into n equal intervals. The value of a membership function is represented by a binary number. It is proposed that incomplete fuzzy data processing be performed in two stages. The first stage performs the 'retrieval' of incomplete fuzzy data, and the second stage performs the desired operation on the retrieval data. The method of incomplete fuzzy data retrieval is proposed based on the linear approximation of missing values of the membership function. The ANN implementation of the proposed system is presented. The system was computationally verified and showed a relatively small total error.
A Comparison of Neural Networks and Fuzzy Logic Methods for Process Modeling
NASA Technical Reports Server (NTRS)
Cios, Krzysztof J.; Sala, Dorel M.; Berke, Laszlo
1996-01-01
The goal of this work was to analyze the potential of neural networks and fuzzy logic methods to develop approximate response surfaces as process modeling, that is for mapping of input into output. Structural response was chosen as an example. Each of the many methods surveyed are explained and the results are presented. Future research directions are also discussed.
Maharlou, Hamidreza; Niakan Kalhori, Sharareh R; Shahbazi, Shahrbanoo; Ravangard, Ramin
2018-04-01
Accurate prediction of patients' length of stay is highly important. This study compared the performance of artificial neural network and adaptive neuro-fuzzy system algorithms to predict patients' length of stay in intensive care units (ICU) after cardiac surgery. A cross-sectional, analytical, and applied study was conducted. The required data were collected from 311 cardiac patients admitted to intensive care units after surgery at three hospitals of Shiraz, Iran, through a non-random convenience sampling method during the second quarter of 2016. Following the initial processing of influential factors, models were created and evaluated. The results showed that the adaptive neuro-fuzzy algorithm (with mean squared error [MSE] = 7 and R = 0.88) resulted in the creation of a more precise model than the artificial neural network (with MSE = 21 and R = 0.60). The adaptive neuro-fuzzy algorithm produces a more accurate model as it applies both the capabilities of a neural network architecture and experts' knowledge as a hybrid algorithm. It identifies nonlinear components, yielding remarkable results for prediction the length of stay, which is a useful calculation output to support ICU management, enabling higher quality of administration and cost reduction.
Kuo, R J; Wu, P; Wang, C P
2002-09-01
Sales forecasting plays a very prominent role in business strategy. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average (ARMA). However, sales forecasting is very complicated owing to influence by internal and external environments. Recently, artificial neural networks (ANNs) have also been applied in sales forecasting since their promising performances in the areas of control and pattern recognition. However, further improvement is still necessary since unique circumstances, e.g. promotion, cause a sudden change in the sales pattern. Thus, this study utilizes a proposed fuzzy neural network (FNN), which is able to eliminate the unimportant weights, for the sake of learning fuzzy IF-THEN rules obtained from the marketing experts with respect to promotion. The result from FNN is further integrated with the time series data through an ANN. Both the simulated and real-world problem results show that FNN with weight elimination can have lower training error compared with the regular FNN. Besides, real-world problem results also indicate that the proposed estimation system outperforms the conventional statistical method and single ANN in accuracy.
Adaptive Fuzzy Systems in Computational Intelligence
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1996-01-01
In recent years, the interest in computational intelligence techniques, which currently includes neural networks, fuzzy systems, and evolutionary programming, has grown significantly and a number of their applications have been developed in the government and industry. In future, an essential element in these systems will be fuzzy systems that can learn from experience by using neural network in refining their performances. The GARIC architecture, introduced earlier, is an example of a fuzzy reinforcement learning system which has been applied in several control domains such as cart-pole balancing, simulation of to Space Shuttle orbital operations, and tether control. A number of examples from GARIC's applications in these domains will be demonstrated.
NASA Astrophysics Data System (ADS)
Gjaja, Marin N.
1997-11-01
Neural networks for supervised and unsupervised learning are developed and applied to problems in remote sensing, continuous map learning, and speech perception. Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART networks synthesize fuzzy logic and neural networks, and supervised ARTMAP networks incorporate ART modules for prediction and classification. New ART and ARTMAP methods resulting from analyses of data structure, parameter specification, and category selection are developed. Architectural modifications providing flexibility for a variety of applications are also introduced and explored. A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on fuzzy ARTMAP, is developed. System capabilities are tested on a challenging remote sensing problem, prediction of vegetation classes in the Cleveland National Forest from spectral and terrain features. After training at the pixel level, performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, back propagation neural networks, and K-nearest neighbor algorithms. Best performance is obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. This work forms the foundation for additional studies exploring fuzzy ARTMAP's capability to estimate class mixture composition for non-homogeneous sites. Exploratory simulations apply ARTMAP to the problem of learning continuous multidimensional mappings. A novel system architecture retains basic ARTMAP properties of incremental and fast learning in an on-line setting while adding components to solve this class of problems. The perceptual magnet effect is a language-specific phenomenon arising early in infant speech development that is characterized by a warping of speech sound perception. An unsupervised neural network model is proposed that embodies two principal hypotheses supported by experimental data--that sensory experience guides language-specific development of an auditory neural map and that a population vector can predict psychological phenomena based on map cell activities. Model simulations show how a nonuniform distribution of map cell firing preferences can develop from language-specific input and give rise to the magnet effect.
NASA Astrophysics Data System (ADS)
Burian, Cosmin; Brezmes, Jesus; Vinaixa, Maria; Llobet, Eduard; Vilanova, Xavier; Cañellas, Nicolau; Correig, Xavier
2009-05-01
This paper presents the work done with Fuzzy ARTMAP neural networks in order to improve the performance of mass spectrometry-based electronic noses using the time retention of a chromatographic column as additional information. Solutions of nine isomers of dimethylphenols and ethylphenols were used in this experiment. The gas chromatograph mass spectrometer response was analyzed with an in-house developed Fuzzy ARTMAP neural network, showing that the combined information (GC plus MS) gives better results than MS information alone.
Approximation abilities of neuro-fuzzy networks
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2010-01-01
The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.
Adaptive Neural Networks for Automatic Negotiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakas, D. P.; Vlachos, D. S.; Simos, T. E.
The use of fuzzy logic and fuzzy neural networks has been found effective for the modelling of the uncertain relations between the parameters of a negotiation procedure. The problem with these configurations is that they are static, that is, any new knowledge from theory or experiment lead to the construction of entirely new models. To overcome this difficulty, we apply in this work, an adaptive neural topology to model the negotiation process. Finally a simple simulation is carried in order to test the new method.
NASA Astrophysics Data System (ADS)
Lohani, A. K.; Kumar, Rakesh; Singh, R. D.
2012-06-01
SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.
Genetic learning in rule-based and neural systems
NASA Technical Reports Server (NTRS)
Smith, Robert E.
1993-01-01
The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.
Online intelligent controllers for an enzyme recovery plant: design methodology and performance.
Leite, M S; Fujiki, T L; Silva, F V; Fileti, A M F
2010-12-27
This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity.
Online Intelligent Controllers for an Enzyme Recovery Plant: Design Methodology and Performance
Leite, M. S.; Fujiki, T. L.; Silva, F. V.; Fileti, A. M. F.
2010-01-01
This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity. PMID:21234106
Diagnosing Parkinson's Diseases Using Fuzzy Neural System
Abiyev, Rahib H.; Abizade, Sanan
2016-01-01
This study presents the design of the recognition system that will discriminate between healthy people and people with Parkinson's disease. A diagnosing of Parkinson's diseases is performed using fusion of the fuzzy system and neural networks. The structure and learning algorithms of the proposed fuzzy neural system (FNS) are presented. The approach described in this paper allows enhancing the capability of the designed system and efficiently distinguishing healthy individuals. It was proved through simulation of the system that has been performed using data obtained from UCI machine learning repository. A comparative study was carried out and the simulation results demonstrated that the proposed fuzzy neural system improves the recognition rate of the designed system. PMID:26881009
El-Nagar, Ahmad M
2018-01-01
In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Neural networks with fuzzy Petri nets for modeling a machining process
NASA Astrophysics Data System (ADS)
Hanna, Moheb M.
1998-03-01
The paper presents an intelligent architecture based a feedforward neural network with fuzzy Petri nets for modeling product quality in a CNC machining center. It discusses how the proposed architecture can be used for modeling, monitoring and control a product quality specification such as surface roughness. The surface roughness represents the output quality specification manufactured by a CNC machining center as a result of a milling process. The neural network approach employed the selected input parameters which defined by the machine operator via the CNC code. The fuzzy Petri nets approach utilized the exact input milling parameters, such as spindle speed, feed rate, tool diameter and coolant (off/on), which can be obtained via the machine or sensors system. An aim of the proposed architecture is to model the demanded quality of surface roughness as high, medium or low.
Introduction to Fuzzy Set Theory
NASA Technical Reports Server (NTRS)
Kosko, Bart
1990-01-01
An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.
Lo, Benjamin W. Y.; Macdonald, R. Loch; Baker, Andrew; Levine, Mitchell A. H.
2013-01-01
Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients). Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs). Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique) denoted cut-off points for poor prognosis at greater than 2.5 clusters. Discussion. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication. PMID:23690884
Imbibition well stimulation via neural network design
Weiss, William [Socorro, NM
2007-08-14
A method for stimulation of hydrocarbon production via imbibition by utilization of surfactants. The method includes use of fuzzy logic and neural network architecture constructs to determine surfactant use.
The 3-D image recognition based on fuzzy neural network technology
NASA Technical Reports Server (NTRS)
Hirota, Kaoru; Yamauchi, Kenichi; Murakami, Jun; Tanaka, Kei
1993-01-01
Three dimensional stereoscopic image recognition system based on fuzzy-neural network technology was developed. The system consists of three parts; preprocessing part, feature extraction part, and matching part. Two CCD color camera image are fed to the preprocessing part, where several operations including RGB-HSV transformation are done. A multi-layer perception is used for the line detection in the feature extraction part. Then fuzzy matching technique is introduced in the matching part. The system is realized on SUN spark station and special image input hardware system. An experimental result on bottle images is also presented.
NASA Technical Reports Server (NTRS)
Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda L.
2007-01-01
In this paper, neural network (NN) modeling is combined with fuzzy logic to estimate Interference Path Loss measurements on Airbus 319 and 320 airplanes. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structures and the communication/navigation system-of-concern. Modeled results are compared with measured data. Combining fuzzy logic and NN modeling is shown to improve estimates of measured data over estimates obtained with NN alone. A plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft.
Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems
NASA Technical Reports Server (NTRS)
Esogbue, Augustine O.
1998-01-01
The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of these are in progress in our laboratory while others await additional support. All of these enhancements will improve the attractiveness of the controller as an effective tool for the on line control of an array of complex process environments.
HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.
Kim, J; Kasabov, N
1999-11-01
This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.
Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests
NASA Technical Reports Server (NTRS)
Douglas, Freddie; Bourgeois, Edit Kaminsky
2005-01-01
The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).
Driving profile modeling and recognition based on soft computing approach.
Wahab, Abdul; Quek, Chai; Tan, Chin Keong; Takeda, Kazuya
2009-04-01
Advancements in biometrics-based authentication have led to its increasing prominence and are being incorporated into everyday tasks. Existing vehicle security systems rely only on alarms or smart card as forms of protection. A biometric driver recognition system utilizing driving behaviors is a highly novel and personalized approach and could be incorporated into existing vehicle security system to form a multimodal identification system and offer a greater degree of multilevel protection. In this paper, detailed studies have been conducted to model individual driving behavior in order to identify features that may be efficiently and effectively used to profile each driver. Feature extraction techniques based on Gaussian mixture models (GMMs) are proposed and implemented. Features extracted from the accelerator and brake pedal pressure were then used as inputs to a fuzzy neural network (FNN) system to ascertain the identity of the driver. Two fuzzy neural networks, namely, the evolving fuzzy neural network (EFuNN) and the adaptive network-based fuzzy inference system (ANFIS), are used to demonstrate the viability of the two proposed feature extraction techniques. The performances were compared against an artificial neural network (NN) implementation using the multilayer perceptron (MLP) network and a statistical method based on the GMM. Extensive testing was conducted and the results show great potential in the use of the FNN for real-time driver identification and verification. In addition, the profiling of driver behaviors has numerous other potential applications for use by law enforcement and companies dealing with buses and truck drivers.
Neural model of gene regulatory network: a survey on supportive meta-heuristics.
Biswas, Surama; Acharyya, Sriyankar
2016-06-01
Gene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics. Predominant use of meta-heuristic algorithms in training neural models has proved its excellence. Considering these facts, this paper is organized to survey neural modelling schemes of GRN and the efficacy of meta-heuristic algorithms towards parameter learning (i.e. weighting connections) within the model. This survey paper renders two different structure-related approaches to infer GRN which are global structure approach and substructure approach. It also describes two neural modelling schemes, such as artificial neural network/recurrent neural network based modelling and neuro-fuzzy modelling. The meta-heuristic algorithms applied so far to learn the structure and parameters of neutrally modelled GRN have been reviewed here.
ELIPS: Toward a Sensor Fusion Processor on a Chip
NASA Technical Reports Server (NTRS)
Daud, Taher; Stoica, Adrian; Tyson, Thomas; Li, Wei-te; Fabunmi, James
1998-01-01
The paper presents the concept and initial tests from the hardware implementation of a low-power, high-speed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) processor is developed to seamlessly combine rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor in compact low power VLSI. The first demonstration of the ELIPS concept targets interceptor functionality; other applications, mainly in robotics and autonomous systems are considered for the future. The main assumption behind ELIPS is that fuzzy, rule-based and neural forms of computation can serve as the main primitives of an "intelligent" processor. Thus, in the same way classic processors are designed to optimize the hardware implementation of a set of fundamental operations, ELIPS is developed as an efficient implementation of computational intelligence primitives, and relies on a set of fuzzy set, fuzzy inference and neural modules, built in programmable analog hardware. The hardware programmability allows the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Following software demonstrations on several interceptor data, three important ELIPS building blocks (a fuzzy set preprocessor, a rule-based fuzzy system and a neural network) have been fabricated in analog VLSI hardware and demonstrated microsecond-processing times.
NASA Astrophysics Data System (ADS)
Levchenko, N. G.; Glushkov, S. V.; Sobolevskaya, E. Yu; Orlov, A. P.
2018-05-01
The method of modeling the transport and logistics process using fuzzy neural network technologies has been considered. The analysis of the implemented fuzzy neural network model of the information management system of transnational multimodal transportation of the process showed the expediency of applying this method to the management of transport and logistics processes in the Arctic and Subarctic conditions. The modular architecture of this model can be expanded by incorporating additional modules, since the working conditions in the Arctic and the subarctic themselves will present more and more realistic tasks. The architecture allows increasing the information management system, without affecting the system or the method itself. The model has a wide range of application possibilities, including: analysis of the situation and behavior of interacting elements; dynamic monitoring and diagnostics of management processes; simulation of real events and processes; prediction and prevention of critical situations.
Fuzzy control of magnetic bearings
NASA Technical Reports Server (NTRS)
Feeley, J. J.; Niederauer, G. M.; Ahlstrom, D. J.
1991-01-01
The use of an adaptive fuzzy control algorithm implemented on a VLSI chip for the control of a magnetic bearing was considered. The architecture of the adaptive fuzzy controller is similar to that of a neural network. The performance of the fuzzy controller is compared to that of a conventional controller by computer simulation.
NASA Astrophysics Data System (ADS)
El-Sebakhy, Emad A.
2009-09-01
Pressure-volume-temperature properties are very important in the reservoir engineering computations. There are many empirical approaches for predicting various PVT properties based on empirical correlations and statistical regression models. Last decade, researchers utilized neural networks to develop more accurate PVT correlations. These achievements of neural networks open the door to data mining techniques to play a major role in oil and gas industry. Unfortunately, the developed neural networks correlations are often limited, and global correlations are usually less accurate compared to local correlations. Recently, adaptive neuro-fuzzy inference systems have been proposed as a new intelligence framework for both prediction and classification based on fuzzy clustering optimization criterion and ranking. This paper proposes neuro-fuzzy inference systems for estimating PVT properties of crude oil systems. This new framework is an efficient hybrid intelligence machine learning scheme for modeling the kind of uncertainty associated with vagueness and imprecision. We briefly describe the learning steps and the use of the Takagi Sugeno and Kang model and Gustafson-Kessel clustering algorithm with K-detected clusters from the given database. It has featured in a wide range of medical, power control system, and business journals, often with promising results. A comparative study will be carried out to compare their performance of this new framework with the most popular modeling techniques, such as neural networks, nonlinear regression, and the empirical correlations algorithms. The results show that the performance of neuro-fuzzy systems is accurate, reliable, and outperform most of the existing forecasting techniques. Future work can be achieved by using neuro-fuzzy systems for clustering the 3D seismic data, identification of lithofacies types, and other reservoir characterization.
An Efficient Interval Type-2 Fuzzy CMAC for Chaos Time-Series Prediction and Synchronization.
Lee, Ching-Hung; Chang, Feng-Yu; Lin, Chih-Min
2014-03-01
This paper aims to propose a more efficient control algorithm for chaos time-series prediction and synchronization. A novel type-2 fuzzy cerebellar model articulation controller (T2FCMAC) is proposed. In some special cases, this T2FCMAC can be reduced to an interval type-2 fuzzy neural network, a fuzzy neural network, and a fuzzy cerebellar model articulation controller (CMAC). So, this T2FCMAC is a more generalized network with better learning ability, thus, it is used for the chaos time-series prediction and synchronization. Moreover, this T2FCMAC realizes the un-normalized interval type-2 fuzzy logic system based on the structure of the CMAC. It can provide better capabilities for handling uncertainty and more design degree of freedom than traditional type-1 fuzzy CMAC. Unlike most of the interval type-2 fuzzy system, the type-reduction of T2FCMAC is bypassed due to the property of un-normalized interval type-2 fuzzy logic system. This causes T2FCMAC to have lower computational complexity and is more practical. For chaos time-series prediction and synchronization applications, the training architectures with corresponding convergence analyses and optimal learning rates based on Lyapunov stability approach are introduced. Finally, two illustrated examples are presented to demonstrate the performance of the proposed T2FCMAC.
Deduction of reservoir operating rules for application in global hydrological models
NASA Astrophysics Data System (ADS)
Coerver, Hubertus M.; Rutten, Martine M.; van de Giesen, Nick C.
2018-01-01
A big challenge in constructing global hydrological models is the inclusion of anthropogenic impacts on the water cycle, such as caused by dams. Dam operators make decisions based on experience and often uncertain information. In this study information generally available to dam operators, like inflow into the reservoir and storage levels, was used to derive fuzzy rules describing the way a reservoir is operated. Using an artificial neural network capable of mimicking fuzzy logic, called the ANFIS adaptive-network-based fuzzy inference system, fuzzy rules linking inflow and storage with reservoir release were determined for 11 reservoirs in central Asia, the US and Vietnam. By varying the input variables of the neural network, different configurations of fuzzy rules were created and tested. It was found that the release from relatively large reservoirs was significantly dependent on information concerning recent storage levels, while release from smaller reservoirs was more dependent on reservoir inflows. Subsequently, the derived rules were used to simulate reservoir release with an average Nash-Sutcliffe coefficient of 0.81.
Optoelectronic fuzzy associative memory with controllable attraction basin sizes
NASA Astrophysics Data System (ADS)
Wen, Zhiqing; Campbell, Scott; Wu, Weishu; Yeh, Pochi
1995-10-01
We propose and demonstrate a new fuzzy associative memory model that provides an option to control the sizes of the attraction basins in neural networks. In our optoelectronic implementation we use spatial/polarization encoding to represent the fuzzy variables. Shadow casting of the encoded patterns is employed to yield the fuzzy-absolute difference between fuzzy variables.
NASA Technical Reports Server (NTRS)
Lu, Thomas; Pham, Timothy; Liao, Jason
2011-01-01
This paper presents the development of a fuzzy logic function trained by an artificial neural network to classify the system noise temperature (SNT) of antennas in the NASA Deep Space Network (DSN). The SNT data were classified into normal, marginal, and abnormal classes. The irregular SNT pattern was further correlated with link margin and weather data. A reasonably good correlation is detected among high SNT, low link margin and the effect of bad weather; however we also saw some unexpected non-correlations which merit further study in the future.
Real-time flood forecasts & risk assessment using a possibility-theory based fuzzy neural network
NASA Astrophysics Data System (ADS)
Khan, U. T.
2016-12-01
Globally floods are one of the most devastating natural disasters and improved flood forecasting methods are essential for better flood protection in urban areas. Given the availability of high resolution real-time datasets for flood variables (e.g. streamflow and precipitation) in many urban areas, data-driven models have been effectively used to predict peak flow rates in river; however, the selection of input parameters for these types of models is often subjective. Additionally, the inherit uncertainty associated with data models along with errors in extreme event observations means that uncertainty quantification is essential. Addressing these concerns will enable improved flood forecasting methods and provide more accurate flood risk assessments. In this research, a new type of data-driven model, a quasi-real-time updating fuzzy neural network is developed to predict peak flow rates in urban riverine watersheds. A possibility-to-probability transformation is first used to convert observed data into fuzzy numbers. A possibility theory based training regime is them used to construct the fuzzy parameters and the outputs. A new entropy-based optimisation criterion is used to train the network. Two existing methods to select the optimum input parameters are modified to account for fuzzy number inputs, and compared. These methods are: Entropy-Wavelet-based Artificial Neural Network (EWANN) and Combined Neural Pathway Strength Analysis (CNPSA). Finally, an automated algorithm design to select the optimum structure of the neural network is implemented. The overall impact of each component of training this network is to replace the traditional ad hoc network configuration methods, with one based on objective criteria. Ten years of data from the Bow River in Calgary, Canada (including two major floods in 2005 and 2013) are used to calibrate and test the network. The EWANN method selected lagged peak flow as a candidate input, whereas the CNPSA method selected lagged precipitation and lagged mean daily flow as candidate inputs. Model performance metric show that the CNPSA method had higher performance (with an efficiency of 0.76). Model output was used to assess the risk of extreme peak flows for a given day using an inverse possibility-to-probability transformation.
Using Fuzzy Logic for Performance Evaluation in Reinforcement Learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap S.
1992-01-01
Current reinforcement learning algorithms require long training periods which generally limit their applicability to small size problems. A new architecture is described which uses fuzzy rules to initialize its two neural networks: a neural network for performance evaluation and another for action selection. This architecture is applied to control of dynamic systems and it is demonstrated that it is possible to start with an approximate prior knowledge and learn to refine it through experiments using reinforcement learning.
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639
Fuzzy Neural Classifiers for Multi-Wavelength Interdigital Sensors
NASA Astrophysics Data System (ADS)
Xenides, D.; Vlachos, D. S.; Simos, T. E.
2007-12-01
The use of multi-wavelength interdigital sensors for non-destructive testing is based on the capability of the measuring system to classify the measured impendence according to some physical properties of the material under test. By varying the measuring frequency and the wavelength of the sensor (and thus the penetration depth of the electric field inside the material under test) we can produce images that correspond to various configurations of dielectric materials under different geometries. The implementation of a fuzzy neural network witch inputs these images for both quantitative and qualitative sensing is demonstrated. The architecture of the system is presented with some references to the general theory of fuzzy sets and fuzzy calculus. Experimental results are presented in the case of a set of 8 well characterized dielectric layers. Finally the effect of network parameters to the functionality of the system is discussed, especially in the case of functions evaluating the fuzzy AND and OR operations.
Boosted ARTMAP: modifications to fuzzy ARTMAP motivated by boosting theory.
Verzi, Stephen J; Heileman, Gregory L; Georgiopoulos, Michael
2006-05-01
In this paper, several modifications to the Fuzzy ARTMAP neural network architecture are proposed for conducting classification in complex, possibly noisy, environments. The goal of these modifications is to improve upon the generalization performance of Fuzzy ART-based neural networks, such as Fuzzy ARTMAP, in these situations. One of the major difficulties of employing Fuzzy ARTMAP on such learning problems involves over-fitting of the training data. Structural risk minimization is a machine-learning framework that addresses the issue of over-fitting by providing a backbone for analysis as well as an impetus for the design of better learning algorithms. The theory of structural risk minimization reveals a trade-off between training error and classifier complexity in reducing generalization error, which will be exploited in the learning algorithms proposed in this paper. Boosted ART extends Fuzzy ART by allowing the spatial extent of each cluster formed to be adjusted independently. Boosted ARTMAP generalizes upon Fuzzy ARTMAP by allowing non-zero training error in an effort to reduce the hypothesis complexity and hence improve overall generalization performance. Although Boosted ARTMAP is strictly speaking not a boosting algorithm, the changes it encompasses were motivated by the goals that one strives to achieve when employing boosting. Boosted ARTMAP is an on-line learner, it does not require excessive parameter tuning to operate, and it reduces precisely to Fuzzy ARTMAP for particular parameter values. Another architecture described in this paper is Structural Boosted ARTMAP, which uses both Boosted ART and Boosted ARTMAP to perform structural risk minimization learning. Structural Boosted ARTMAP will allow comparison of the capabilities of off-line versus on-line learning as well as empirical risk minimization versus structural risk minimization using Fuzzy ARTMAP-based neural network architectures. Both empirical and theoretical results are presented to enhance the understanding of these architectures.
A neural fuzzy controller learning by fuzzy error propagation
NASA Technical Reports Server (NTRS)
Nauck, Detlef; Kruse, Rudolf
1992-01-01
In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.
NASA Astrophysics Data System (ADS)
Gimazov, R.; Shidlovskiy, S.
2018-05-01
In this paper, we consider the architecture of the algorithm for extreme regulation in the photovoltaic system. An algorithm based on an adaptive neural network with fuzzy inference is proposed. The implementation of such an algorithm not only allows solving a number of problems in existing algorithms for extreme power regulation of photovoltaic systems, but also creates a reserve for the creation of a universal control system for a photovoltaic system.
Forecasting of natural gas consumption with neural network and neuro fuzzy system
NASA Astrophysics Data System (ADS)
Kaynar, Oguz; Yilmaz, Isik; Demirkoparan, Ferhan
2010-05-01
The prediction of natural gas consumption is crucial for Turkey which follows foreign-dependent policy in point of providing natural gas and whose stock capacity is only 5% of internal total consumption. Prediction accuracy of demand is one of the elements which has an influence on sectored investments and agreements about obtaining natural gas, so on development of sector. In recent years, new techniques, such as artificial neural networks and fuzzy inference systems, have been widely used in natural gas consumption prediction in addition to classical time series analysis. In this study, weekly natural gas consumption of Turkey has been predicted by means of three different approaches. The first one is Autoregressive Integrated Moving Average (ARIMA), which is classical time series analysis method. The second approach is the Artificial Neural Network. Two different ANN models, which are Multi Layer Perceptron (MLP) and Radial Basis Function Network (RBFN), are employed to predict natural gas consumption. The last is Adaptive Neuro Fuzzy Inference System (ANFIS), which combines ANN and Fuzzy Inference System. Different prediction models have been constructed and one model, which has the best forecasting performance, is determined for each method. Then predictions are made by using these models and results are compared. Keywords: ANN, ANFIS, ARIMA, Natural Gas, Forecasting
Fuzzy Neural Networks for Decision Support in Negotiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakas, D. P.; Vlachos, D. S.; Simos, T. E.
There is a large number of parameters which one can take into account when building a negotiation model. These parameters in general are uncertain, thus leading to models which represents them with fuzzy sets. On the other hand, the nature of these parameters makes them very difficult to model them with precise values. During negotiation, these parameters play an important role by altering the outcomes or changing the state of the negotiators. One reasonable way to model this procedure is to accept fuzzy relations (from theory or experience). The action of these relations to fuzzy sets, produce new fuzzy setsmore » which describe now the new state of the system or the modified parameters. But, in the majority of these situations, the relations are multidimensional, leading to complicated models and exponentially increasing computational time. In this paper a solution to this problem is presented. The use of fuzzy neural networks is shown that it can substitute the use of fuzzy relations with comparable results. Finally a simple simulation is carried in order to test the new method.« less
Sang, Hongqiang; Yang, Chenghao; Liu, Fen; Yun, Jintian; Jin, Guoguang
2016-12-01
It is very important for robotically assisted minimally invasive surgery to achieve a high-precision and smooth motion control. However, the surgical instrument tip will exhibit vibration caused by nonlinear friction and unmodeled dynamics, especially when the surgical robot system is attempting low-speed, fine motion. A fuzzy neural network sliding mode controller (FNNSMC) is proposed to suppress vibration of the surgical robotic system. Nonlinear friction and modeling uncertainties are compensated by a Stribeck model, a radial basis function (RBF) neural network and a fuzzy system, respectively. Simulations and experiments were performed on a 3 degree-of-freedom (DOF) minimally invasive surgical robot. The results demonstrate that the FNNSMC is effective and can suppress vibrations at the surgical instrument tip. The proposed FNNSMC can provide a robust performance and suppress the vibrations at the surgical instrument tip, which can enhance the quality and security of surgical procedures. Copyright © 2016 John Wiley & Sons, Ltd.
Evolving RBF neural networks for adaptive soft-sensor design.
Alexandridis, Alex
2013-12-01
This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.
Design of fuzzy system by NNs and realization of adaptability
NASA Technical Reports Server (NTRS)
Takagi, Hideyuki
1993-01-01
The issue of designing and tuning fuzzy membership functions by neural networks (NN's) was started by NN-driven Fuzzy Reasoning in 1988. NN-driven fuzzy reasoning involves a NN embedded in the fuzzy system which generates membership values. In conventional fuzzy system design, the membership functions are hand-crafted by trial and error for each input variable. In contrast, NN-driven fuzzy reasoning considers several variables simultaneously and can design a multidimensional, nonlinear membership function for the entire subspace.
Neural networks: A simulation technique under uncertainty conditions
NASA Technical Reports Server (NTRS)
Mcallister, M. Luisa Nicosia
1992-01-01
This paper proposes a new definition of fuzzy graphs and shows how transmission through a graph with linguistic expressions as labels provides an easy computational tool. These labels are represented by modified Kauffmann Fuzzy numbers.
NASA/ARC proposed training in intelligent control
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1990-01-01
Viewgraphs on NASA Ames Research Center proposed training in intelligent control was presented. Topics covered include: fuzzy logic control; neural networks in control; artificial intelligence in control; hybrid approaches; hands on experience; and fuzzy controllers.
Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems
Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S.; Agarwal, Dev P.
2015-01-01
Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data. PMID:26366169
Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems.
Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S; Agarwal, Dev P
2015-01-01
Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data.
Development of neural network techniques for finger-vein pattern classification
NASA Astrophysics Data System (ADS)
Wu, Jian-Da; Liu, Chiung-Tsiung; Tsai, Yi-Jang; Liu, Jun-Ching; Chang, Ya-Wen
2010-02-01
A personal identification system using finger-vein patterns and neural network techniques is proposed in the present study. In the proposed system, the finger-vein patterns are captured by a device that can transmit near infrared through the finger and record the patterns for signal analysis and classification. The biometric system for verification consists of a combination of feature extraction using principal component analysis and pattern classification using both back-propagation network and adaptive neuro-fuzzy inference systems. Finger-vein features are first extracted by principal component analysis method to reduce the computational burden and removes noise residing in the discarded dimensions. The features are then used in pattern classification and identification. To verify the effect of the proposed adaptive neuro-fuzzy inference system in the pattern classification, the back-propagation network is compared with the proposed system. The experimental results indicated the proposed system using adaptive neuro-fuzzy inference system demonstrated a better performance than the back-propagation network for personal identification using the finger-vein patterns.
Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.
Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza
2015-11-01
In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Intelligent manipulation technique for multi-branch robotic systems
NASA Technical Reports Server (NTRS)
Chen, Alexander Y. K.; Chen, Eugene Y. S.
1990-01-01
New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system.
Fuzzy Comprehensive Evaluation (FCE) in Military Decision Support Processes
2013-12-01
detection in military aircraft (Brotherton & Johnson, 2001). Today, as reported by the international journal Advances in Fuzzy Systems (2013), as of March... detection for advanced military aircraft using neural networks. In IEEE Proceedings Aerospace Conference, 2001, 6, 3113–3123. Cheng, C . H. (1996... C . OBJECTIVE ................................................................................................... 3 II. THE FUZZY
Fuzzy-Neural Controller in Service Requests Distribution Broker for SOA-Based Systems
NASA Astrophysics Data System (ADS)
Fras, Mariusz; Zatwarnicka, Anna; Zatwarnicki, Krzysztof
The evolution of software architectures led to the rising importance of the Service Oriented Architecture (SOA) concept. This architecture paradigm support building flexible distributed service systems. In the paper the architecture of service request distribution broker designed for use in SOA-based systems is proposed. The broker is built with idea of fuzzy control. The functional and non-functional request requirements in conjunction with monitoring of execution and communication links are used to distribute requests. Decisions are made with use of fuzzy-neural network.
NASA Astrophysics Data System (ADS)
Prakash, S.; Sinha, S. K.
2015-09-01
In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.
Schwaibold, M; Schöchlin, J; Bolz, A
2002-01-01
For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.
NASA Astrophysics Data System (ADS)
Liu, Hsiao-Chuan; Chou, Yi-Hong; Tiu, Chui-Mei; Hsieh, Chi-Wen; Liu, Brent; Shung, K. Kirk
2017-03-01
Many modalities have been developed as screening tools for breast cancer. A new screening method called acoustic radiation force impulse (ARFI) imaging was created for distinguishing breast lesions based on localized tissue displacement. This displacement was quantitated by virtual touch tissue imaging (VTI). However, VTIs sometimes express reverse results to intensity information in clinical observation. In the study, a fuzzy-based neural network with principle component analysis (PCA) was proposed to differentiate texture patterns of malignant breast from benign tumors. Eighty VTIs were randomly retrospected. Thirty four patients were determined as BI-RADS category 2 or 3, and the rest of them were determined as BI-RADS category 4 or 5 by two leading radiologists. Morphological method and Boolean algebra were performed as the image preprocessing to acquire region of interests (ROIs) on VTIs. Twenty four quantitative parameters deriving from first-order statistics (FOS), fractal dimension and gray level co-occurrence matrix (GLCM) were utilized to analyze the texture pattern of breast tumors on VTIs. PCA was employed to reduce the dimension of features. Fuzzy-based neural network as a classifier to differentiate malignant from benign breast tumors. Independent samples test was used to examine the significance of the difference between benign and malignant breast tumors. The area Az under the receiver operator characteristic (ROC) curve, sensitivity, specificity and accuracy were calculated to evaluate the performance of the system. Most all of texture parameters present significant difference between malignant and benign tumors with p-value of less than 0.05 except the average of fractal dimension. For all features classified by fuzzy-based neural network, the sensitivity, specificity, accuracy and Az were 95.7%, 97.1%, 95% and 0.964, respectively. However, the sensitivity, specificity, accuracy and Az can be increased to 100%, 97.1%, 98.8% and 0.985, respectively if PCA was performed to reduce the dimension of features. Patterns of breast tumors on VTIs can effectively be recognized by quantitative texture parameters, and differentiated malignant from benign lesions by fuzzy-based neural network with PCA.
Prediction of coagulation and flocculation processes using ANN models and fuzzy regression.
Zangooei, Hossein; Delnavaz, Mohammad; Asadollahfardi, Gholamreza
2016-09-01
Coagulation and flocculation are two main processes used to integrate colloidal particles into larger particles and are two main stages of primary water treatment. Coagulation and flocculation processes are only needed when colloidal particles are a significant part of the total suspended solid fraction. Our objective was to predict turbidity of water after the coagulation and flocculation process while other parameters such as types and concentrations of coagulants, pH, and influent turbidity of raw water were known. We used a multilayer perceptron (MLP), a radial basis function (RBF) of artificial neural networks (ANNs) and various kinds of fuzzy regression analysis to predict turbidity after the coagulation and flocculation processes. The coagulant used in the pilot plant, which was located in water treatment plant, was poly aluminum chloride. We used existing data, including the type and concentrations of coagulant, pH and influent turbidity, of the raw water because these types of data were available from the pilot plant for simulation and data was collected by the Tehran water authority. The results indicated that ANNs had more ability in simulating the coagulation and flocculation process and predicting turbidity removal with different experimental data than did the fuzzy regression analysis, and may have the ability to reduce the number of jar tests, which are time-consuming and expensive. The MLP neural network proved to be the best network compared to the RBF neural network and fuzzy regression analysis in this study. The MLP neural network can predict the effluent turbidity of the coagulation and the flocculation process with a coefficient of determination (R 2 ) of 0.96 and root mean square error of 0.0106.
NASA Technical Reports Server (NTRS)
Padgett, Mary L. (Editor)
1993-01-01
The present conference discusses such neural networks (NN) related topics as their current development status, NN architectures, NN learning rules, NN optimization methods, NN temporal models, NN control methods, NN pattern recognition systems and applications, biological and biomedical applications of NNs, VLSI design techniques for NNs, NN systems simulation, fuzzy logic, and genetic algorithms. Attention is given to missileborne integrated NNs, adaptive-mixture NNs, implementable learning rules, an NN simulator for travelling salesman problem solutions, similarity-based forecasting, NN control of hypersonic aircraft takeoff, NN control of the Space Shuttle Arm, an adaptive NN robot manipulator controller, a synthetic approach to digital filtering, NNs for speech analysis, adaptive spline networks, an anticipatory fuzzy logic controller, and encoding operations for fuzzy associative memories.
NASA Astrophysics Data System (ADS)
Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong
2017-01-01
A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model.
Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong
2017-01-01
A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model. PMID:28120889
Kwong, C. K.; Fung, K. Y.; Jiang, Huimin; Chan, K. Y.
2013-01-01
Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort. PMID:24385884
Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael
2013-01-01
Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.
GA-based fuzzy reinforcement learning for control of a magnetic bearing system.
Lin, C T; Jou, C P
2000-01-01
This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the reinforcement learning task. The TDGAR learning system is composed of two integrated feedforward networks. One neural network acts as a critic network to guide the learning of the other network (the action network) which determines the outputs (actions) of the TDGAR learning system. The action network can be a normal neural network or a neural fuzzy network. Using the TD prediction method, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network uses the GA to adapt itself according to the internal reinforcement signal. The key concept of the TDGAR learning scheme is to formulate the internal reinforcement signal as the fitness function for the GA such that the GA can evaluate the candidate solutions (chromosomes) regularly, even during periods without external feedback from the environment. This enables the GA to proceed to new generations regularly without waiting for the arrival of the external reinforcement signal. This can usually accelerate the GA learning since a reinforcement signal may only be available at a time long after a sequence of actions has occurred in the reinforcement learning problem. The proposed TDGAR learning system has been used to control an active magnetic bearing (AMB) system in practice. A systematic design procedure is developed to achieve successful integration of all the subsystems including magnetic suspension, mechanical structure, and controller training. The results show that the TDGAR learning scheme can successfully find a neural controller or a neural fuzzy controller for a self-designed magnetic bearing system.
Permeability Estimation of Rock Reservoir Based on PCA and Elman Neural Networks
NASA Astrophysics Data System (ADS)
Shi, Ying; Jian, Shaoyong
2018-03-01
an intelligent method which based on fuzzy neural networks with PCA algorithm, is proposed to estimate the permeability of rock reservoir. First, the dimensionality reduction process is utilized for these parameters by principal component analysis method. Further, the mapping relationship between rock slice characteristic parameters and permeability had been found through fuzzy neural networks. The estimation validity and reliability for this method were tested with practical data from Yan’an region in Ordos Basin. The result showed that the average relative errors of permeability estimation for this method is 6.25%, and this method had the better convergence speed and more accuracy than other. Therefore, by using the cheap rock slice related information, the permeability of rock reservoir can be estimated efficiently and accurately, and it is of high reliability, practicability and application prospect.
NASA Technical Reports Server (NTRS)
Hall, Lawrence O.; Bensaid, Amine M.; Clarke, Laurence P.; Velthuizen, Robert P.; Silbiger, Martin S.; Bezdek, James C.
1992-01-01
Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms and a supervised computational neural network, a dynamic multilayered perception trained with the cascade correlation learning algorithm. Initial clinical results are presented on both normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. However, for a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed.
Adaptive fuzzy leader clustering of complex data sets in pattern recognition
NASA Technical Reports Server (NTRS)
Newton, Scott C.; Pemmaraju, Surya; Mitra, Sunanda
1992-01-01
A modular, unsupervised neural network architecture for clustering and classification of complex data sets is presented. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system that learns on-line in a stable and efficient manner. The initial classification is performed in two stages: a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from fuzzy C-means system equations for the centroids and the membership values. The AFLC algorithm is applied to the Anderson Iris data and laser-luminescent fingerprint image data. It is concluded that the AFLC algorithm successfully classifies features extracted from real data, discrete or continuous.
Yeşilkanat, Cafer Mert; Kobya, Yaşar; Taşkın, Halim; Çevik, Uğur
2017-09-01
The aim of this study was to determine spatial risk dispersion of ambient gamma dose rate (AGDR) by using both artificial neural network (ANN) and fuzzy logic (FL) methods, compare the performances of methods, make dose estimations for intermediate stations with no previous measurements and create dose rate risk maps of the study area. In order to determine the dose distribution by using artificial neural networks, two main networks and five different network structures were used; feed forward ANN; Multi-layer perceptron (MLP), Radial basis functional neural network (RBFNN), Quantile regression neural network (QRNN) and recurrent ANN; Jordan networks (JN), Elman networks (EN). In the evaluation of estimation performance obtained for the test data, all models appear to give similar results. According to the cross-validation results obtained for explaining AGDR distribution, Pearson's r coefficients were calculated as 0.94, 0.91, 0.89, 0.91, 0.91 and 0.92 and RMSE values were calculated as 34.78, 43.28, 63.92, 44.86, 46.77 and 37.92 for MLP, RBFNN, QRNN, JN, EN and FL, respectively. In addition, spatial risk maps showing distributions of AGDR of the study area were created by all models and results were compared with geological, topological and soil structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adaptive fuzzy system for 3-D vision
NASA Technical Reports Server (NTRS)
Mitra, Sunanda
1993-01-01
An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.
Cacha, L A; Parida, S; Dehuri, S; Cho, S-B; Poznanski, R R
2016-12-01
The huge number of voxels in fMRI over time poses a major challenge to for effective analysis. Fast, accurate, and reliable classifiers are required for estimating the decoding accuracy of brain activities. Although machine-learning classifiers seem promising, individual classifiers have their own limitations. To address this limitation, the present paper proposes a method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification for application across multiple subjects. Similarly, the fuzzy integral (FI) approach has been employed as an efficient tool for combining different classifiers. The FI approach led to the development of a classifiers ensemble technique that performs better than any of the single classifier by reducing the misclassification, the bias, and the variance. The proposed method successfully classified the different cognitive states for multiple subjects with high accuracy of classification. Comparison of the performance improvement, while applying ensemble neural networks method, vs. that of the individual neural network strongly points toward the usefulness of the proposed method.
A biologically inspired neural network for dynamic programming.
Francelin Romero, R A; Kacpryzk, J; Gomide, F
2001-12-01
An artificial neural network with a two-layer feedback topology and generalized recurrent neurons, for solving nonlinear discrete dynamic optimization problems, is developed. A direct method to assign the weights of neural networks is presented. The method is based on Bellmann's Optimality Principle and on the interchange of information which occurs during the synaptic chemical processing among neurons. The neural network based algorithm is an advantageous approach for dynamic programming due to the inherent parallelism of the neural networks; further it reduces the severity of computational problems that can occur in methods like conventional methods. Some illustrative application examples are presented to show how this approach works out including the shortest path and fuzzy decision making problems.
Reactive navigation for autonomous guided vehicle using neuro-fuzzy techniques
NASA Astrophysics Data System (ADS)
Cao, Jin; Liao, Xiaoqun; Hall, Ernest L.
1999-08-01
A Neuro-fuzzy control method for navigation of an Autonomous Guided Vehicle robot is described. Robot navigation is defined as the guiding of a mobile robot to a desired destination or along a desired path in an environment characterized by as terrain and a set of distinct objects, such as obstacles and landmarks. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Neural network and fuzzy logic control techniques can improve real-time control performance for mobile robot due to its high robustness and error-tolerance ability. For a mobile robot to navigate automatically and rapidly, an important factor is to identify and classify mobile robots' currently perceptual environment. In this paper, a new approach of the current perceptual environment feature identification and classification, which are based on the analysis of the classifying neural network and the Neuro- fuzzy algorithm, is presented. The significance of this work lies in the development of a new method for mobile robot navigation.
GenSo-EWS: a novel neural-fuzzy based early warning system for predicting bank failures.
Tung, W L; Quek, C; Cheng, P
2004-05-01
Bank failure prediction is an important issue for the regulators of the banking industries. The collapse and failure of a bank could trigger an adverse financial repercussion and generate negative impacts such as a massive bail out cost for the failing bank and loss of confidence from the investors and depositors. Very often, bank failures are due to financial distress. Hence, it is desirable to have an early warning system (EWS) that identifies potential bank failure or high-risk banks through the traits of financial distress. Various traditional statistical models have been employed to study bank failures [J Finance 1 (1975) 21; J Banking Finance 1 (1977) 249; J Banking Finance 10 (1986) 511; J Banking Finance 19 (1995) 1073]. However, these models do not have the capability to identify the characteristics of financial distress and thus function as black boxes. This paper proposes the use of a new neural fuzzy system [Foundations of neuro-fuzzy systems, 1997], namely the Generic Self-organising Fuzzy Neural Network (GenSoFNN) [IEEE Trans Neural Networks 13 (2002c) 1075] based on the compositional rule of inference (CRI) [Commun ACM 37 (1975) 77], as an alternative to predict banking failure. The CRI based GenSoFNN neural fuzzy network, henceforth denoted as GenSoFNN-CRI(S), functions as an EWS and is able to identify the inherent traits of financial distress based on financial covariates (features) derived from publicly available financial statements. The interaction between the selected features is captured in the form of highly intuitive IF-THEN fuzzy rules. Such easily comprehensible rules provide insights into the possible characteristics of financial distress and form the knowledge base for a highly desired EWS that aids bank regulation. The performance of the GenSoFNN-CRI(S) network is subsequently benchmarked against that of the Cox's proportional hazards model [J Banking Finance 10 (1986) 511; J Banking Finance 19 (1995) 1073], the multi-layered perceptron (MLP) and the modified cerebellar model articulation controller (MCMAC) [IEEE Trans Syst Man Cybern: Part B 30 (2000) 491] in predicting bank failures based on a population of 3635 US banks observed over a 21 years period. Three sets of experiments are performed-bank failure classification based on the last available financial record and prediction using financial records one and two years prior to the last available financial statements. The performance of the GenSoFNN-CRI(S) network as a bank failure classification and EWS is encouraging.
Estimation of dew point temperature using neuro-fuzzy and neural network techniques
NASA Astrophysics Data System (ADS)
Kisi, Ozgur; Kim, Sungwon; Shiri, Jalal
2013-11-01
This study investigates the ability of two different artificial neural network (ANN) models, generalized regression neural networks model (GRNNM) and Kohonen self-organizing feature maps neural networks model (KSOFM), and two different adaptive neural fuzzy inference system (ANFIS) models, ANFIS model with sub-clustering identification (ANFIS-SC) and ANFIS model with grid partitioning identification (ANFIS-GP), for estimating daily dew point temperature. The climatic data that consisted of 8 years of daily records of air temperature, sunshine hours, wind speed, saturation vapor pressure, relative humidity, and dew point temperature from three weather stations, Daego, Pohang, and Ulsan, in South Korea were used in the study. The estimates of ANN and ANFIS models were compared according to the three different statistics, root mean square errors, mean absolute errors, and determination coefficient. Comparison results revealed that the ANFIS-SC, ANFIS-GP, and GRNNM models showed almost the same accuracy and they performed better than the KSOFM model. Results also indicated that the sunshine hours, wind speed, and saturation vapor pressure have little effect on dew point temperature. It was found that the dew point temperature could be successfully estimated by using T mean and R H variables.
Multilayer perceptron, fuzzy sets, and classification
NASA Technical Reports Server (NTRS)
Pal, Sankar K.; Mitra, Sushmita
1992-01-01
A fuzzy neural network model based on the multilayer perceptron, using the back-propagation algorithm, and capable of fuzzy classification of patterns is described. The input vector consists of membership values to linguistic properties while the output vector is defined in terms of fuzzy class membership values. This allows efficient modeling of fuzzy or uncertain patterns with appropriate weights being assigned to the backpropagated errors depending upon the membership values at the corresponding outputs. During training, the learning rate is gradually decreased in discrete steps until the network converges to a minimum error solution. The effectiveness of the algorithm is demonstrated on a speech recognition problem. The results are compared with those of the conventional MLP, the Bayes classifier, and the other related models.
Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.
Ko, Chien-Ho
2013-01-01
Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.
GUI Type Fault Diagnostic Program for a Turboshaft Engine Using Fuzzy and Neural Networks
NASA Astrophysics Data System (ADS)
Kong, Changduk; Koo, Youngju
2011-04-01
The helicopter to be operated in a severe flight environmental condition must have a very reliable propulsion system. On-line condition monitoring and fault detection of the engine can promote reliability and availability of the helicopter propulsion system. A hybrid health monitoring program using Fuzzy Logic and Neural Network Algorithms can be proposed. In this hybrid method, the Fuzzy Logic identifies easily the faulted components from engine measuring parameter changes, and the Neural Networks can quantify accurately its identified faults. In order to use effectively the fault diagnostic system, a GUI (Graphical User Interface) type program is newly proposed. This program is composed of the real time monitoring part, the engine condition monitoring part and the fault diagnostic part. The real time monitoring part can display measuring parameters of the study turboshaft engine such as power turbine inlet temperature, exhaust gas temperature, fuel flow, torque and gas generator speed. The engine condition monitoring part can evaluate the engine condition through comparison between monitoring performance parameters the base performance parameters analyzed by the base performance analysis program using look-up tables. The fault diagnostic part can identify and quantify the single faults the multiple faults from the monitoring parameters using hybrid method.
NASA Astrophysics Data System (ADS)
Song, Lu-Kai; Wen, Jie; Fei, Cheng-Wei; Bai, Guang-Chen
2018-05-01
To improve the computing efficiency and precision of probabilistic design for multi-failure structure, a distributed collaborative probabilistic design method-based fuzzy neural network of regression (FR) (called as DCFRM) is proposed with the integration of distributed collaborative response surface method and fuzzy neural network regression model. The mathematical model of DCFRM is established and the probabilistic design idea with DCFRM is introduced. The probabilistic analysis of turbine blisk involving multi-failure modes (deformation failure, stress failure and strain failure) was investigated by considering fluid-structure interaction with the proposed method. The distribution characteristics, reliability degree, and sensitivity degree of each failure mode and overall failure mode on turbine blisk are obtained, which provides a useful reference for improving the performance and reliability of aeroengine. Through the comparison of methods shows that the DCFRM reshapes the probability of probabilistic analysis for multi-failure structure and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of multi-failure structure and thereby also enriches the theory and method of mechanical reliability design.
Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks
2013-01-01
Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism. PMID:23864830
Detection of Anomalies in Hydrometric Data Using Artificial Intelligence Techniques
NASA Astrophysics Data System (ADS)
Lauzon, N.; Lence, B. J.
2002-12-01
This work focuses on the detection of anomalies in hydrometric data sequences, such as 1) outliers, which are individual data having statistical properties that differ from those of the overall population; 2) shifts, which are sudden changes over time in the statistical properties of the historical records of data; and 3) trends, which are systematic changes over time in the statistical properties. For the purpose of the design and management of water resources systems, it is important to be aware of these anomalies in hydrometric data, for they can induce a bias in the estimation of water quantity and quality parameters. These anomalies may be viewed as specific patterns affecting the data, and therefore pattern recognition techniques can be used for identifying them. However, the number of possible patterns is very large for each type of anomaly and consequently large computing capacities are required to account for all possibilities using the standard statistical techniques, such as cluster analysis. Artificial intelligence techniques, such as the Kohonen neural network and fuzzy c-means, are clustering techniques commonly used for pattern recognition in several areas of engineering and have recently begun to be used for the analysis of natural systems. They require much less computing capacity than the standard statistical techniques, and therefore are well suited for the identification of outliers, shifts and trends in hydrometric data. This work constitutes a preliminary study, using synthetic data representing hydrometric data that can be found in Canada. The analysis of the results obtained shows that the Kohonen neural network and fuzzy c-means are reasonably successful in identifying anomalies. This work also addresses the problem of uncertainties inherent to the calibration procedures that fit the clusters to the possible patterns for both the Kohonen neural network and fuzzy c-means. Indeed, for the same database, different sets of clusters can be established with these calibration procedures. A simple method for analyzing uncertainties associated with the Kohonen neural network and fuzzy c-means is developed here. The method combines the results from several sets of clusters, either from the Kohonen neural network or fuzzy c-means, so as to provide an overall diagnosis as to the identification of outliers, shifts and trends. The results indicate an improvement in the performance for identifying anomalies when the method of combining cluster sets is used, compared with when only one cluster set is used.
Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.
Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao
2015-02-01
This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.
Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects.
Tan, Shing Chiang; Watada, Junzo; Ibrahim, Zuwairie; Khalid, Marzuki
2015-05-01
Wafer defect detection using an intelligent system is an approach of quality improvement in semiconductor manufacturing that aims to enhance its process stability, increase production capacity, and improve yields. Occasionally, only few records that indicate defective units are available and they are classified as a minority group in a large database. Such a situation leads to an imbalanced data set problem, wherein it engenders a great challenge to deal with by applying machine-learning techniques for obtaining effective solution. In addition, the database may comprise overlapping samples of different classes. This paper introduces two models of evolutionary fuzzy ARTMAP (FAM) neural networks to deal with the imbalanced data set problems in a semiconductor manufacturing operations. In particular, both the FAM models and hybrid genetic algorithms are integrated in the proposed evolutionary artificial neural networks (EANNs) to classify an imbalanced data set. In addition, one of the proposed EANNs incorporates a facility to learn overlapping samples of different classes from the imbalanced data environment. The classification results of the proposed evolutionary FAM neural networks are presented, compared, and analyzed using several classification metrics. The outcomes positively indicate the effectiveness of the proposed networks in handling classification problems with imbalanced data sets.
Valdés, Julio J; Bonham-Carter, Graeme
2006-03-01
A computational intelligence approach is used to explore the problem of detecting internal state changes in time dependent processes; described by heterogeneous, multivariate time series with imprecise data and missing values. Such processes are approximated by collections of time dependent non-linear autoregressive models represented by a special kind of neuro-fuzzy neural network. Grid and high throughput computing model mining procedures based on neuro-fuzzy networks and genetic algorithms, generate: (i) collections of models composed of sets of time lag terms from the time series, and (ii) prediction functions represented by neuro-fuzzy networks. The composition of the models and their prediction capabilities, allows the identification of changes in the internal structure of the process. These changes are associated with the alternation of steady and transient states, zones with abnormal behavior, instability, and other situations. This approach is general, and its sensitivity for detecting subtle changes of state is revealed by simulation experiments. Its potential in the study of complex processes in earth sciences and astrophysics is illustrated with applications using paleoclimate and solar data.
Gene regulatory network identification from the yeast cell cycle based on a neuro-fuzzy system.
Wang, B H; Lim, J W; Lim, J S
2016-08-30
Many studies exist for reconstructing gene regulatory networks (GRNs). In this paper, we propose a method based on an advanced neuro-fuzzy system, for gene regulatory network reconstruction from microarray time-series data. This approach uses a neural network with a weighted fuzzy function to model the relationships between genes. Fuzzy rules, which determine the regulators of genes, are very simplified through this method. Additionally, a regulator selection procedure is proposed, which extracts the exact dynamic relationship between genes, using the information obtained from the weighted fuzzy function. Time-series related features are extracted from the original data to employ the characteristics of temporal data that are useful for accurate GRN reconstruction. The microarray dataset of the yeast cell cycle was used for our study. We measured the mean squared prediction error for the efficiency of the proposed approach and evaluated the accuracy in terms of precision, sensitivity, and F-score. The proposed method outperformed the other existing approaches.
Mamdani Fuzzy System for Indoor Autonomous Mobile Robot
NASA Astrophysics Data System (ADS)
Khan, M. K. A. Ahamed; Rashid, Razif; Elamvazuthi, I.
2011-06-01
Several control algorithms for autonomous mobile robot navigation have been proposed in the literature. Recently, the employment of non-analytical methods of computing such as fuzzy logic, evolutionary computation, and neural networks has demonstrated the utility and potential of these paradigms for intelligent control of mobile robot navigation. In this paper, Mamdani fuzzy system for an autonomous mobile robot is developed. The paper begins with the discussion on the conventional controller and then followed by the description of fuzzy logic controller in detail.
Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm
Sun, Baoliang; Jiang, Chunlan; Li, Ming
2016-01-01
An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271
A Decade of Neural Networks: Practical Applications and Prospects
NASA Technical Reports Server (NTRS)
Kemeny, Sabrina E.
1994-01-01
The Jet Propulsion Laboratory Neural Network Workshop, sponsored by NASA and DOD, brings together sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and application prospects. While the speed and computing power of microprocessors continue to grow at an ever-increasing pace, the demand to intelligently and adaptively deal with the complex, fuzzy, and often ill-defined world around us remains to a large extent unaddressed. Powerful, highly parallel computing paradigms such as neural networks promise to have a major impact in addressing these needs. Papers in the workshop proceedings highlight benefits of neural networks in real-world applications compared to conventional computing techniques. Topics include fault diagnosis, pattern recognition, and multiparameter optimization.
An intercomparison of artificial intelligence approaches for polar scene identification
NASA Technical Reports Server (NTRS)
Tovinkere, V. R.; Penaloza, M.; Logar, A.; Lee, J.; Weger, R. C.; Berendes, T. A.; Welch, R. M.
1993-01-01
The following six different artificial-intelligence (AI) approaches to polar scene identification are examined: (1) a feed forward back propagation neural network, (2) a probabilistic neural network, (3) a hybrid neural network, (4) a 'don't care' feed forward perception model, (5) a 'don't care' feed forward back propagation neural network, and (6) a fuzzy logic based expert system. The ten classes into which six AVHRR local-coverage arctic scenes were classified were: water, solid sea ice, broken sea ice, snow-covered mountains, land, stratus over ice, stratus over water, cirrus over water, cumulus over water, and multilayer cloudiness. It was found that 'don't care' back propagation neural network produced the highest accuracies. This approach has also low CPU requirement.
NASA Astrophysics Data System (ADS)
Lin, Tsung-Chih
2010-12-01
In this paper, a novel direct adaptive interval type-2 fuzzy-neural tracking control equipped with sliding mode and Lyapunov synthesis approach is proposed to handle the training data corrupted by noise or rule uncertainties for nonlinear SISO nonlinear systems involving external disturbances. By employing adaptive fuzzy-neural control theory, the update laws will be derived for approximating the uncertain nonlinear dynamical system. In the meantime, the sliding mode control method and the Lyapunov stability criterion are incorporated into the adaptive fuzzy-neural control scheme such that the derived controller is robust with respect to unmodeled dynamics, external disturbance and approximation errors. In comparison with conventional methods, the advocated approach not only guarantees closed-loop stability but also the output tracking error of the overall system will converge to zero asymptotically without prior knowledge on the upper bound of the lumped uncertainty. Furthermore, chattering effect of the control input will be substantially reduced by the proposed technique. To illustrate the performance of the proposed method, finally simulation example will be given.
Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.
2007-01-01
To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.
Hall, L O; Bensaid, A M; Clarke, L P; Velthuizen, R P; Silbiger, M S; Bezdek, J C
1992-01-01
Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms, and a supervised computational neural network. Initial clinical results are presented on normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. For a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed, with fuzz-c-means approaches being slightly preferred over feedforward cascade correlation results. Various facets of both approaches, such as supervised versus unsupervised learning, time complexity, and utility for the diagnostic process, are compared.
Fuzzy Petri nets to model vision system decisions within a flexible manufacturing system
NASA Astrophysics Data System (ADS)
Hanna, Moheb M.; Buck, A. A.; Smith, R.
1994-10-01
The paper presents a Petri net approach to modelling, monitoring and control of the behavior of an FMS cell. The FMS cell described comprises a pick and place robot, vision system, CNC-milling machine and 3 conveyors. The work illustrates how the block diagrams in a hierarchical structure can be used to describe events at different levels of abstraction. It focuses on Fuzzy Petri nets (Fuzzy logic with Petri nets) including an artificial neural network (Fuzzy Neural Petri nets) to model and control vision system decisions and robot sequences within an FMS cell. This methodology can be used as a graphical modelling tool to monitor and control the imprecise, vague and uncertain situations, and determine the quality of the output product of an FMS cell.
Fuzzylot: a novel self-organising fuzzy-neural rule-based pilot system for automated vehicles.
Pasquier, M; Quek, C; Toh, M
2001-10-01
This paper presents part of our research work concerned with the realisation of an Intelligent Vehicle and the technologies required for its routing, navigation, and control. An automated driver prototype has been developed using a self-organising fuzzy rule-based system (POPFNN-CRI(S)) to model and subsequently emulate human driving expertise. The ability of fuzzy logic to represent vague information using linguistic variables makes it a powerful tool to develop rule-based control systems when an exact working model is not available, as is the case of any vehicle-driving task. Designing a fuzzy system, however, is a complex endeavour, due to the need to define the variables and their associated fuzzy sets, and determine a suitable rule base. Many efforts have thus been devoted to automating this process, yielding the development of learning and optimisation techniques. One of them is the family of POP-FNNs, or Pseudo-Outer Product Fuzzy Neural Networks (TVR, AARS(S), AARS(NS), CRI, Yager). These generic self-organising neural networks developed at the Intelligent Systems Laboratory (ISL/NTU) are based on formal fuzzy mathematical theory and are able to objectively extract a fuzzy rule base from training data. In this application, a driving simulator has been developed, that integrates a detailed model of the car dynamics, complete with engine characteristics and environmental parameters, and an OpenGL-based 3D-simulation interface coupled with driving wheel and accelerator/ brake pedals. The simulator has been used on various road scenarios to record from a human pilot driving data consisting of steering and speed control actions associated to road features. Specifically, the POPFNN-CRI(S) system is used to cluster the data and extract a fuzzy rule base modelling the human driving behaviour. Finally, the effectiveness of the generated rule base has been validated using the simulator in autopilot mode.
AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection
Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying
2015-01-01
Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes’ status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors’ detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability. PMID:26193280
NASA Astrophysics Data System (ADS)
Li, Kelin
2010-02-01
In this article, a class of impulsive bidirectional associative memory (BAM) fuzzy cellular neural networks (FCNNs) with time-varying delays is formulated and investigated. By employing delay differential inequality and M-matrix theory, some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM FCNNs with time-varying delays are obtained. In particular, a precise estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive perturbation intention. It is believed that these results are significant and useful for the design and applications of BAM FCNNs. An example is given to show the effectiveness of the results obtained here.
Smart sensorless prediction diagnosis of electric drives
NASA Astrophysics Data System (ADS)
Kruglova, TN; Glebov, NA; Shoshiashvili, ME
2017-10-01
In this paper, the discuss diagnostic method and prediction of the technical condition of an electrical motor using artificial intelligent method, based on the combination of fuzzy logic and neural networks, are discussed. The fuzzy sub-model determines the degree of development of each fault. The neural network determines the state of the object as a whole and the number of serviceable work periods for motors actuator. The combination of advanced techniques reduces the learning time and increases the forecasting accuracy. The experimental implementation of the method for electric drive diagnosis and associated equipment is carried out at different speeds. As a result, it was found that this method allows troubleshooting the drive at any given speed.
Waewsak, Chaiwat; Nopharatana, Annop; Chaiprasert, Pawinee
2010-01-01
Based on the developed neural-fuzzy control system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogas production, the neural network with backpropagation algorithm for prediction of the variables pH, alkalinity (Alk) and total volatile acids (TVA) at present day time t was used as input data for the fuzzy logic to calculate the influent feed flow rate that was applied to control and monitor the process response at different operations in the initial, overload influent feeding and the recovery phases. In all three phases, this neural-fuzzy control system showed great potential to control AHR in high stability and performance and quick response. Although in the overloading operation phase II with two fold calculating influent flow rate together with a two fold organic loading rate (OLR), this control system had rapid response and was sensitive to the intended overload. When the influent feeding rate was followed by the calculation of control system in the initial operation phase I and the recovery operation phase III, it was found that the neural-fuzzy control system application was capable of controlling the AHR in a good manner with the pH close to 7, TVA/Alk < 0.4 and COD removal > 80% with biogas and methane yields at 0.45 and 0.30 m3/kg COD removed.
Atanassova, Vassia; Sotirova, Evdokia; Doukovska, Lyubka; Bureva, Veselina; Mavrov, Deyan; Tomov, Jivko
2017-01-01
The approach of InterCriteria Analysis (ICA) was applied for the aim of reducing the set of variables on the input of a neural network, taking into account the fact that their large number increases the number of neurons in the network, thus making them unusable for hardware implementation. Here, for the first time, with the help of the ICA method, correlations between triples of the input parameters for training of the neural networks were obtained. In this case, we use the approach of ICA for data preprocessing, which may yield reduction of the total time for training the neural networks, hence, the time for the network's processing of data and images. PMID:28874908
Using artificial intelligence to predict permeability from petrographic data
NASA Astrophysics Data System (ADS)
Ali, Maqsood; Chawathé, Adwait
2000-10-01
Petrographic data collected during thin section analysis can be invaluable for understanding the factors that control permeability distribution. Reliable prediction of permeability is important for reservoir characterization. The petrographic elements (mineralogy, porosity types, cements and clays, and pore morphology) interact with each other uniquely to generate a specific permeability distribution. It is difficult to quantify accurately this interaction and its consequent effect on permeability, emphasizing the non-linear nature of the process. To capture these non-linear interactions, neural networks were used to predict permeability from petrographic data. The neural net was used as a multivariate correlative tool because of its ability to learn the non-linear relationships between multiple input and output variables. The study was conducted on the upper Queen formation called the Shattuck Member (Permian age). The Shattuck Member is composed of very fine-grained arkosic sandstone. The core samples were available from the Sulimar Queen and South Lucky Lake fields located in Chaves County, New Mexico. Nineteen petrographic elements were collected for each permeability value using a combined minipermeameter-petrographic technique. In order to reduce noise and overfitting the permeability model, these petrographic elements were screened, and their control (ranking) with respect to permeability was determined using fuzzy logic. Since the fuzzy logic algorithm provides unbiased ranking, it was used to reduce the dimensionality of the input variables. Based on the fuzzy logic ranking, only the most influential petrographic elements were selected as inputs for permeability prediction. The neural net was trained and tested using data from Well 1-16 in the Sulimar Queen field. Relying on the ranking obtained from the fuzzy logic analysis, the net was trained using the most influential three, five, and ten petrographic elements. A fast algorithm (the scaled conjugate gradient method) was used to optimize the network weight matrix. The net was then successfully used to predict the permeability in the nearby South Lucky Lake field, also in the Shattuck Member. This study underscored various important aspects of using neural networks as non-linear estimators. The neural network learnt the complex relationships between petrographic control and permeability. By predicting permeability in a remotely-located, yet geologically similar field, the generalizing capability of the neural network was also demonstrated. In old fields, where conventional petrographic analysis was routine, this technique may be used to supplement core permeability estimates.
Fuzzy recognition of noncompact musical objects
NASA Astrophysics Data System (ADS)
Cristobal Salas, Alfredo; Tchernykh, Andrei
1997-03-01
This article describes and compares some techniques to extract attributes from black and white images which contain musical objects. The inertia moment, the central moments and the wavelet transform methods are used to describe the images. Two supervised neural networks are applied to classify the images: backpropagation and fuzzy backpropagation. The results are compared.
NASA Astrophysics Data System (ADS)
Kong, Changduk; Lim, Semyeong; Kim, Keunwoo
2013-03-01
The Neural Networks is mostly used to engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measuring performance data, and proposes a fault diagnostic system using the base performance model and artificial intelligent methods such as Fuzzy and Neural Networks. Each real engine performance model, which is named as the base performance model that can simulate a new engine performance, is inversely made using its performance test data. Therefore the condition monitoring of each engine can be more precisely carried out through comparison with measuring performance data. The proposed diagnostic system identifies firstly the faulted components using Fuzzy Logic, and then quantifies faults of the identified components using Neural Networks leaned by fault learning data base obtained from the developed base performance model. In leaning the measuring performance data of the faulted components, the FFBP (Feed Forward Back Propagation) is used. In order to user's friendly purpose, the proposed diagnostic program is coded by the GUI type using MATLAB.
Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.
Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng
2016-02-01
This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.
A medical cost estimation with fuzzy neural network of acute hepatitis patients in emergency room.
Kuo, R J; Cheng, W C; Lien, W C; Yang, T J
2015-10-01
Taiwan is an area where chronic hepatitis is endemic. Liver cancer is so common that it has been ranked first among cancer mortality rates since the early 1980s in Taiwan. Besides, liver cirrhosis and chronic liver diseases are the sixth or seventh in the causes of death. Therefore, as shown by the active research on hepatitis, it is not only a health threat, but also a huge medical cost for the government. The estimated total number of hepatitis B carriers in the general population aged more than 20 years old is 3,067,307. Thus, a case record review was conducted from all patients with diagnosis of acute hepatitis admitted to the Emergency Department (ED) of a well-known teaching-oriented hospital in Taipei. The cost of medical resource utilization is defined as the total medical fee. In this study, a fuzzy neural network is employed to develop the cost forecasting model. A total of 110 patients met the inclusion criteria. The computational results indicate that the FNN model can provide more accurate forecasts than the support vector regression (SVR) or artificial neural network (ANN). In addition, unlike SVR and ANN, FNN can also provide fuzzy IF-THEN rules for interpretation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing
2017-01-14
In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT.
Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing
2017-01-01
In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT. PMID:28098822
Study on a Biometric Authentication Model based on ECG using a Fuzzy Neural Network
NASA Astrophysics Data System (ADS)
Kim, Ho J.; Lim, Joon S.
2018-03-01
Traditional authentication methods use numbers or graphic passwords and thus involve the risk of loss or theft. Various studies are underway regarding biometric authentication because it uses the unique biometric data of a human being. Biometric authentication technology using ECG from biometric data involves signals that record electrical stimuli from the heart. It is difficult to manipulate and is advantageous in that it enables unrestrained measurements from sensors that are attached to the skin. This study is on biometric authentication methods using the neural network with weighted fuzzy membership functions (NEWFM). In the biometric authentication process, normalization and the ensemble average is applied during preprocessing, characteristics are extracted using Haar-wavelets, and a registration process called “training” is performed in the fuzzy neural network. In the experiment, biometric authentication was performed on 73 subjects in the Physionet Database. 10-40 ECG waveforms were tested for use in the registration process, and 15 ECG waveforms were deemed the appropriate number for registering ECG waveforms. 1 ECG waveforms were used during the authentication stage to conduct the biometric authentication test. Upon testing the proposed biometric authentication method based on 73 subjects from the Physionet Database, the TAR was 98.32% and FAR was 5.84%.
NASA Astrophysics Data System (ADS)
Wilson, Eric Lee
Due to increased competition in a world economy, steel companies are currently interested in developing techniques that will allow for the improvement of the steelmaking process, either by increasing output efficiency or by improving the quality of their product, or both. Slag foaming is one practice that has been shown to contribute to both these goals. However, slag foaming is highly dynamic and difficult to model or control. This dissertation describes an effort to use artificial intelligence-based tools (genetic algorithms, fuzzy logic, and neural networks) to both model and control the slag foaming process. Specifically, a neural network is trained and tested on slag foaming data provided by a steel plant. This neural network model is then controlled by a fuzzy logic controller, which in turn is optimized by a genetic algorithm. This tuned controller is then installed at a steel plant and given control be a more efficient slag foaming controller than what was previously used by the steel plant.
Quick fuzzy backpropagation algorithm.
Nikov, A; Stoeva, S
2001-03-01
A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.
NASA Astrophysics Data System (ADS)
Pan, Yongping; Huang, Daoping
2011-03-01
In this comment, we point out the inappropriateness of Theorem 1 in the article [Tsung-Chih Lin, Mehdi Roopaei. Based on interval type-2 adaptive fuzzy H∞ tracking controller for SISO time-delay nonlinear systems. Commun Nonlinear Sci Numer Simulat 2010;15:4065-75]. For solving this problem, some formular mistakes are corrected and novel parameter adaptive laws of interval type-2 fuzzy neural network system are given.
NASA Astrophysics Data System (ADS)
Nebot, Àngela; Mugica, Francisco
2012-10-01
Fuzzy inductive reasoning (FIR) is a modelling and simulation methodology derived from the General Systems Problem Solver. It compares favourably with other soft computing methodologies, such as neural networks, genetic or neuro-fuzzy systems, and with hard computing methodologies, such as AR, ARIMA, or NARMAX, when it is used to predict future behaviour of different kinds of systems. This paper contains an overview of the FIR methodology, its historical background, and its evolution.
Hybrid Architectures and Their Impact on Intelligent Design
NASA Technical Reports Server (NTRS)
Kandel, Abe
1996-01-01
In this presentation we investigate a novel framework for the design of autonomous fuzzy intelligent systems. The system integrates the following modules into a single autonomous entity: (1) a fuzzy expert system; (2) artificial neural network; (3) genetic algorithm; and (4) case-base reasoning. We describe the integration of these units into one intelligent structure and discuss potential applications.
NASA Astrophysics Data System (ADS)
Sdao, F.; Lioi, D. S.; Pascale, S.; Caniani, D.; Mancini, I. M.
2013-02-01
The complete assessment of landslide susceptibility needs uniformly distributed detailed information on the territory. This information, which is related to the temporal occurrence of landslide phenomena and their causes, is often fragmented and heterogeneous. The present study evaluates the landslide susceptibility map of the Natural Archaeological Park of Matera (Southern Italy) (Sassi and area Rupestrian Churches sites). The assessment of the degree of "spatial hazard" or "susceptibility" was carried out by the spatial prediction regardless of the return time of the events. The evaluation model for the susceptibility presented in this paper is very focused on the use of innovative techniques of artificial intelligence such as Neural Network, Fuzzy Logic and Neuro-fuzzy Network. The method described in this paper is a novel technique based on a neuro-fuzzy system. It is able to train data like neural network and it is able to shape and control uncertain and complex systems like a fuzzy system. This methodology allows us to derive susceptibility maps of the study area. These data are obtained from thematic maps representing the parameters responsible for the instability of the slopes. The parameters used in the analysis are: plan curvature, elevation (DEM), angle and aspect of the slope, lithology, fracture density, kinematic hazard index of planar and wedge sliding and toppling. Moreover, this method is characterized by the network training which uses a training matrix, consisting of input and output training data, which determine the landslide susceptibility. The neuro-fuzzy method was integrated to a sensitivity analysis in order to overcome the uncertainty linked to the used membership functions. The method was compared to the landslide inventory map and was validated by applying three methods: a ROC (Receiver Operating Characteristic) analysis, a confusion matrix and a SCAI method. The developed neuro-fuzzy method showed a good performance in the determination of the landslide susceptibility map.
An intelligent load shedding scheme using neural networks and neuro-fuzzy.
Haidar, Ahmed M A; Mohamed, Azah; Al-Dabbagh, Majid; Hussain, Aini; Masoum, Mohammad
2009-12-01
Load shedding is some of the essential requirement for maintaining security of modern power systems, particularly in competitive energy markets. This paper proposes an intelligent scheme for fast and accurate load shedding using neural networks for predicting the possible loss of load at the early stage and neuro-fuzzy for determining the amount of load shed in order to avoid a cascading outage. A large scale electrical power system has been considered to validate the performance of the proposed technique in determining the amount of load shed. The proposed techniques can provide tools for improving the reliability and continuity of power supply. This was confirmed by the results obtained in this research of which sample results are given in this paper.
Yang, Wengui; Yu, Wenwu; Cao, Jinde; Alsaadi, Fuad E; Hayat, Tasawar
2018-02-01
This paper investigates the stability and lag synchronization for memristor-based fuzzy Cohen-Grossberg bidirectional associative memory (BAM) neural networks with mixed delays (asynchronous time delays and continuously distributed delays) and impulses. By applying the inequality analysis technique, homeomorphism theory and some suitable Lyapunov-Krasovskii functionals, some new sufficient conditions for the uniqueness and global exponential stability of equilibrium point are established. Furthermore, we obtain several sufficient criteria concerning globally exponential lag synchronization for the proposed system based on the framework of Filippov solution, differential inclusion theory and control theory. In addition, some examples with numerical simulations are given to illustrate the feasibility and validity of obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hosseini-Golgoo, S. M.; Bozorgi, H.; Saberkari, A.
2015-06-01
Performances of three neural networks, consisting of a multi-layer perceptron, a radial basis function, and a neuro-fuzzy network with local linear model tree training algorithm, in modeling and extracting discriminative features from the response patterns of a temperature-modulated resistive gas sensor are quantitatively compared. For response pattern recording, a voltage staircase containing five steps each with a 20 s plateau is applied to the micro-heater of the sensor, when 12 different target gases, each at 11 concentration levels, are present. In each test, the hidden layer neuron weights are taken as the discriminatory feature vector of the target gas. These vectors are then mapped to a 3D feature space using linear discriminant analysis. The discriminative information content of the feature vectors are determined by the calculation of the Fisher’s discriminant ratio, affording quantitative comparison among the success rates achieved by the different neural network structures. The results demonstrate a superior discrimination ratio for features extracted from local linear neuro-fuzzy and radial-basis-function networks with recognition rates of 96.27% and 90.74%, respectively.
A Hybrid Neuro-Fuzzy Model For Integrating Large Earth-Science Datasets
NASA Astrophysics Data System (ADS)
Porwal, A.; Carranza, J.; Hale, M.
2004-12-01
A GIS-based hybrid neuro-fuzzy approach to integration of large earth-science datasets for mineral prospectivity mapping is described. It implements a Takagi-Sugeno type fuzzy inference system in the framework of a four-layered feed-forward adaptive neural network. Each unique combination of the datasets is considered a feature vector whose components are derived by knowledge-based ordinal encoding of the constituent datasets. A subset of feature vectors with a known output target vector (i.e., unique conditions known to be associated with either a mineralized or a barren location) is used for the training of an adaptive neuro-fuzzy inference system. Training involves iterative adjustment of parameters of the adaptive neuro-fuzzy inference system using a hybrid learning procedure for mapping each training vector to its output target vector with minimum sum of squared error. The trained adaptive neuro-fuzzy inference system is used to process all feature vectors. The output for each feature vector is a value that indicates the extent to which a feature vector belongs to the mineralized class or the barren class. These values are used to generate a prospectivity map. The procedure is demonstrated by an application to regional-scale base metal prospectivity mapping in a study area located in the Aravalli metallogenic province (western India). A comparison of the hybrid neuro-fuzzy approach with pure knowledge-driven fuzzy and pure data-driven neural network approaches indicates that the former offers a superior method for integrating large earth-science datasets for predictive spatial mathematical modelling.
Design of double fuzzy clustering-driven context neural networks.
Kim, Eun-Hu; Oh, Sung-Kwun; Pedrycz, Witold
2018-08-01
In this study, we introduce a novel category of double fuzzy clustering-driven context neural networks (DFCCNNs). The study is focused on the development of advanced design methodologies for redesigning the structure of conventional fuzzy clustering-based neural networks. The conventional fuzzy clustering-based neural networks typically focus on dividing the input space into several local spaces (implied by clusters). In contrast, the proposed DFCCNNs take into account two distinct local spaces called context and cluster spaces, respectively. Cluster space refers to the local space positioned in the input space whereas context space concerns a local space formed in the output space. Through partitioning the output space into several local spaces, each context space is used as the desired (target) local output to construct local models. To complete this, the proposed network includes a new context layer for reasoning about context space in the output space. In this sense, Fuzzy C-Means (FCM) clustering is useful to form local spaces in both input and output spaces. The first one is used in order to form clusters and train weights positioned between the input and hidden layer, whereas the other one is applied to the output space to form context spaces. The key features of the proposed DFCCNNs can be enumerated as follows: (i) the parameters between the input layer and hidden layer are built through FCM clustering. The connections (weights) are specified as constant terms being in fact the centers of the clusters. The membership functions (represented through the partition matrix) produced by the FCM are used as activation functions located at the hidden layer of the "conventional" neural networks. (ii) Following the hidden layer, a context layer is formed to approximate the context space of the output variable and each node in context layer means individual local model. The outputs of the context layer are specified as a combination of both weights formed as linear function and the outputs of the hidden layer. The weights are updated using the least square estimation (LSE)-based method. (iii) At the output layer, the outputs of context layer are decoded to produce the corresponding numeric output. At this time, the weighted average is used and the weights are also adjusted with the use of the LSE scheme. From the viewpoint of performance improvement, the proposed design methodologies are discussed and experimented with the aid of benchmark machine learning datasets. Through the experiments, it is shown that the generalization abilities of the proposed DFCCNNs are better than those of the conventional FCNNs reported in the literature. Copyright © 2018 Elsevier Ltd. All rights reserved.
Application of artificial intelligence to the management of urological cancer.
Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C
2007-10-01
Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.
Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach
NASA Astrophysics Data System (ADS)
Verma, Akhilesh K.; Chaki, Soumi; Routray, Aurobinda; Mohanty, William K.; Jenamani, Mamata
2014-12-01
In this paper, we illustrate the modeling of a reservoir property (sand fraction) from seismic attributes namely seismic impedance, seismic amplitude, and instantaneous frequency using Neuro-Fuzzy (NF) approach. Input dataset includes 3D post-stacked seismic attributes and six well logs acquired from a hydrocarbon field located in the western coast of India. Presence of thin sand and shale layers in the basin area makes the modeling of reservoir characteristic a challenging task. Though seismic data is helpful in extrapolation of reservoir properties away from boreholes; yet, it could be challenging to delineate thin sand and shale reservoirs using seismic data due to its limited resolvability. Therefore, it is important to develop state-of-art intelligent methods for calibrating a nonlinear mapping between seismic data and target reservoir variables. Neural networks have shown its potential to model such nonlinear mappings; however, uncertainties associated with the model and datasets are still a concern. Hence, introduction of Fuzzy Logic (FL) is beneficial for handling these uncertainties. More specifically, hybrid variants of Artificial Neural Network (ANN) and fuzzy logic, i.e., NF methods, are capable for the modeling reservoir characteristics by integrating the explicit knowledge representation power of FL with the learning ability of neural networks. In this paper, we opt for ANN and three different categories of Adaptive Neuro-Fuzzy Inference System (ANFIS) based on clustering of the available datasets. A comparative analysis of these three different NF models (i.e., Sugeno-type fuzzy inference systems using a grid partition on the data (Model 1), using subtractive clustering (Model 2), and using Fuzzy c-means (FCM) clustering (Model 3)) and ANN suggests that Model 3 has outperformed its counterparts in terms of performance evaluators on the present dataset. Performance of the selected algorithms is evaluated in terms of correlation coefficients (CC), root mean square error (RMSE), absolute error mean (AEM) and scatter index (SI) between target and predicted sand fraction values. The achieved estimation accuracy may diverge minutely depending on geological characteristics of a particular study area. The documented results in this study demonstrate acceptable resemblance between target and predicted variables, and hence, encourage the application of integrated machine learning approaches such as Neuro-Fuzzy in reservoir characterization domain. Furthermore, visualization of the variation of sand probability in the study area would assist in identifying placement of potential wells for future drilling operations.
NASA Astrophysics Data System (ADS)
Jahedi Rad, Shahpour; Kaveh, Mohammad; Sharabiani, Vali Rasooli; Taghinezhad, Ebrahim
2018-05-01
The thin-layer convective- infrared drying behavior of white mulberry was experimentally studied at infrared power levels of 500, 1000 and 1500 W, drying air temperatures of 40, 55 and 70 °C and inlet drying air speeds of 0.4, 1 and 1.6 m/s. Drying rate raised with the rise of infrared power levels at a distinct air temperature and velocity and thus decreased the drying time. Five mathematical models describing thin-layer drying have been fitted to the drying data. Midlli et al. model could satisfactorily describe the convective-infrared drying of white mulberry fruit with the values of the correlation coefficient (R 2=0.9986) and root mean square error of (RMSE= 0.04795). Artificial neural network (ANN) and fuzzy logic methods was desirably utilized for modeling output parameters (moisture ratio (MR)) regarding input parameters. Results showed that output parameters were more accurately predicted by fuzzy model than by the ANN and mathematical models. Correlation coefficient (R 2) and RMSE generated by the fuzzy model (respectively 0.9996 and 0.01095) were higher than referred values for the ANN model (0.9990 and 0.01988 respectively).
Neural manufacturing: a novel concept for processing modeling, monitoring, and control
NASA Astrophysics Data System (ADS)
Fu, Chi Y.; Petrich, Loren; Law, Benjamin
1995-09-01
Semiconductor fabrication lines have become extremely costly, and achieving a good return from such a high capital investment requires efficient utilization of these expensive facilities. It is highly desirable to shorten processing development time, increase fabrication yield, enhance flexibility, improve quality, and minimize downtime. We propose that these ends can be achieved by applying recent advances in the areas of artificial neural networks, fuzzy logic, machine learning, and genetic algorithms. We use the term neural manufacturing to describe such applications. This paper describes our use of artificial neural networks to improve the monitoring and control of semiconductor process.
Brasil, L M; de Azevedo, F M; Barreto, J M
2001-09-01
This paper proposes a hybrid expert system (HES) to minimise some complexity problems pervasive to the artificial intelligence such as: the knowledge elicitation process, known as the bottleneck of expert systems; the model choice for knowledge representation to code human reasoning; the number of neurons in the hidden layer and the topology used in the connectionist approach; the difficulty to obtain the explanation on how the network arrived to a conclusion. Two algorithms applied to developing of HES are also suggested. One of them is used to train the fuzzy neural network and the other to obtain explanations on how the fuzzy neural network attained a conclusion. To overcome these difficulties the cognitive computing was integrated to the developed system. A case study is presented (e.g. epileptic crisis) with the problem definition and simulations. Results are also discussed.
A reinforcement learning-based architecture for fuzzy logic control
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1992-01-01
This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.
Signal processing and neural network toolbox and its application to failure diagnosis and prognosis
NASA Astrophysics Data System (ADS)
Tu, Fang; Wen, Fang; Willett, Peter K.; Pattipati, Krishna R.; Jordan, Eric H.
2001-07-01
Many systems are comprised of components equipped with self-testing capability; however, if the system is complex involving feedback and the self-testing itself may occasionally be faulty, tracing faults to a single or multiple causes is difficult. Moreover, many sensors are incapable of reliable decision-making on their own. In such cases, a signal processing front-end that can match inference needs will be very helpful. The work is concerned with providing an object-oriented simulation environment for signal processing and neural network-based fault diagnosis and prognosis. In the toolbox, we implemented a wide range of spectral and statistical manipulation methods such as filters, harmonic analyzers, transient detectors, and multi-resolution decomposition to extract features for failure events from data collected by data sensors. Then we evaluated multiple learning paradigms for general classification, diagnosis and prognosis. The network models evaluated include Restricted Coulomb Energy (RCE) Neural Network, Learning Vector Quantization (LVQ), Decision Trees (C4.5), Fuzzy Adaptive Resonance Theory (FuzzyArtmap), Linear Discriminant Rule (LDR), Quadratic Discriminant Rule (QDR), Radial Basis Functions (RBF), Multiple Layer Perceptrons (MLP) and Single Layer Perceptrons (SLP). Validation techniques, such as N-fold cross-validation and bootstrap techniques, are employed for evaluating the robustness of network models. The trained networks are evaluated for their performance using test data on the basis of percent error rates obtained via cross-validation, time efficiency, generalization ability to unseen faults. Finally, the usage of neural networks for the prediction of residual life of turbine blades with thermal barrier coatings is described and the results are shown. The neural network toolbox has also been applied to fault diagnosis in mixed-signal circuits.
North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 1
NASA Technical Reports Server (NTRS)
Villarreal, James A. (Compiler)
1992-01-01
This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such as neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies.
North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 2
NASA Technical Reports Server (NTRS)
Villarreal, James A. (Compiler)
1992-01-01
This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such a neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies.
Soft computing in design and manufacturing of advanced materials
NASA Technical Reports Server (NTRS)
Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex
1993-01-01
The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.
Robust stochastic stability of discrete-time fuzzy Markovian jump neural networks.
Arunkumar, A; Sakthivel, R; Mathiyalagan, K; Park, Ju H
2014-07-01
This paper focuses the issue of robust stochastic stability for a class of uncertain fuzzy Markovian jumping discrete-time neural networks (FMJDNNs) with various activation functions and mixed time delay. By employing the Lyapunov technique and linear matrix inequality (LMI) approach, a new set of delay-dependent sufficient conditions are established for the robust stochastic stability of uncertain FMJDNNs. More precisely, the parameter uncertainties are assumed to be time varying, unknown and norm bounded. The obtained stability conditions are established in terms of LMIs, which can be easily checked by using the efficient MATLAB-LMI toolbox. Finally, numerical examples with simulation result are provided to illustrate the effectiveness and less conservativeness of the obtained results. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentili, Pier Luigi, E-mail: pierluigi.gentili@unipg.it; Gotoda, Hiroshi; Dolnik, Milos
Forecasting of aperiodic time series is a compelling challenge for science. In this work, we analyze aperiodic spectrophotometric data, proportional to the concentrations of two forms of a thermoreversible photochromic spiro-oxazine, that are generated when a cuvette containing a solution of the spiro-oxazine undergoes photoreaction and convection due to localized ultraviolet illumination. We construct the phase space for the system using Takens' theorem and we calculate the Lyapunov exponents and the correlation dimensions to ascertain the chaotic character of the time series. Finally, we predict the time series using three distinct methods: a feed-forward neural network, fuzzy logic, and amore » local nonlinear predictor. We compare the performances of these three methods.« less
Software tool for data mining and its applications
NASA Astrophysics Data System (ADS)
Yang, Jie; Ye, Chenzhou; Chen, Nianyi
2002-03-01
A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.
Using Neural Networks in Decision Making for a Reconfigurable Electro Mechanical Actuator (EMA)
NASA Technical Reports Server (NTRS)
Latino, Carl D.
2001-01-01
The objectives of this project were to demonstrate applicability and advantages of a neural network approach for evaluating the performance of an electro-mechanical actuator (EMA). The EMA in question was intended for the X-37 Advanced Technology Vehicle. It will have redundant components for safety and reliability. The neural networks for this application are to monitor the operation of the redundant electronics that control the actuator in real time and decide on the operating configuration. The system we proposed consists of the actuator, sensors, control circuitry and dedicated (embedded) processors. The main purpose of the study was to develop suitable hardware and neural network capable of allowing real time reconfiguration decisions to be made. This approach was to be compared to other methods such as fuzzy logic and knowledge based systems considered for the same application. Over the course of the project a more general objective was the identification of the other neural network applications and the education of interested NASA personnel on the topic of Neural Networks.
Abrasive slurry jet cutting model based on fuzzy relations
NASA Astrophysics Data System (ADS)
Qiang, C. H.; Guo, C. W.
2017-12-01
The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.
Computer graphics testbed to simulate and test vision systems for space applications
NASA Technical Reports Server (NTRS)
Cheatham, John B.
1991-01-01
Artificial intelligence concepts are applied to robotics. Artificial neural networks, expert systems and laser imaging techniques for autonomous space robots are being studied. A computer graphics laser range finder simulator developed by Wu has been used by Weiland and Norwood to study use of artificial neural networks for path planning and obstacle avoidance. Interest is expressed in applications of CLIPS, NETS, and Fuzzy Control. These applications are applied to robot navigation.
Applications of Wavelet Transform and Fuzzy Neural Network on Power Quality Recognition
NASA Astrophysics Data System (ADS)
Liao, Chiung-Chou; Yang, Hong-Tzer; Lin, Ying-Chun
2008-10-01
The wavelet transform coefficients (WTCs) contain plenty of information needed for transient event identification of power quality (PQ) events. However, adopting WTCs directly has the drawbacks of taking a longer time and too much memory for the recognition system. To solve the abovementioned recognition problems and to effectively reduce the number of features representing power transients, spectrum energies of WTCs in different scales are calculated by Parseval's Theorem. Through the proposed approach, features of the original power signals can be reserved and not influenced by occurring points of PQ events. The fuzzy neural classification systems are then used for signal recognition and fuzzy rule construction. Success rates of recognizing PQ events from noise-riding signals are proven to be feasible in power system applications in this paper.
NASA Astrophysics Data System (ADS)
Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith
2014-05-01
An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith
2014-05-01
An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
Self-learning fuzzy controllers based on temporal back propagation
NASA Technical Reports Server (NTRS)
Jang, Jyh-Shing R.
1992-01-01
This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.
NASA Astrophysics Data System (ADS)
Zheng, Mingwen; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhang, Yanping; Zhao, Hui
2018-06-01
This paper mainly studies the finite-time stability and synchronization problems of memristor-based fractional-order fuzzy cellular neural network (MFFCNN). Firstly, we discuss the existence and uniqueness of the Filippov solution of the MFFCNN according to the Banach fixed point theorem and give a sufficient condition for the existence and uniqueness of the solution. Secondly, a sufficient condition to ensure the finite-time stability of the MFFCNN is obtained based on the definition of finite-time stability of the MFFCNN and Gronwall-Bellman inequality. Thirdly, by designing a simple linear feedback controller, the finite-time synchronization criterion for drive-response MFFCNN systems is derived according to the definition of finite-time synchronization. These sufficient conditions are easy to verify. Finally, two examples are given to show the effectiveness of the proposed results.
Flame analysis using image processing techniques
NASA Astrophysics Data System (ADS)
Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng
2018-04-01
This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.
Predictability in space launch vehicle anomaly detection using intelligent neuro-fuzzy systems
NASA Technical Reports Server (NTRS)
Gulati, Sandeep; Toomarian, Nikzad; Barhen, Jacob; Maccalla, Ayanna; Tawel, Raoul; Thakoor, Anil; Daud, Taher
1994-01-01
Included in this viewgraph presentation on intelligent neuroprocessors for launch vehicle health management systems (HMS) are the following: where the flight failures have been in launch vehicles; cumulative delay time; breakdown of operations hours; failure of Mars Probe; vehicle health management (VHM) cost optimizing curve; target HMS-STS auxiliary power unit location; APU monitoring and diagnosis; and integration of neural networks and fuzzy logic.
NASA Astrophysics Data System (ADS)
Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Arunkumar, A.
2013-09-01
This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov-Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results.
Fuzzy neural network technique for system state forecasting.
Li, Dezhi; Wang, Wilson; Ismail, Fathy
2013-10-01
In many system state forecasting applications, the prediction is performed based on multiple datasets, each corresponding to a distinct system condition. The traditional methods dealing with multiple datasets (e.g., vector autoregressive moving average models and neural networks) have some shortcomings, such as limited modeling capability and opaque reasoning operations. To tackle these problems, a novel fuzzy neural network (FNN) is proposed in this paper to effectively extract information from multiple datasets, so as to improve forecasting accuracy. The proposed predictor consists of both autoregressive (AR) nodes modeling and nonlinear nodes modeling; AR models/nodes are used to capture the linear correlation of the datasets, and the nonlinear correlation of the datasets are modeled with nonlinear neuron nodes. A novel particle swarm technique [i.e., Laplace particle swarm (LPS) method] is proposed to facilitate parameters estimation of the predictor and improve modeling accuracy. The effectiveness of the developed FNN predictor and the associated LPS method is verified by a series of tests related to Mackey-Glass data forecast, exchange rate data prediction, and gear system prognosis. Test results show that the developed FNN predictor and the LPS method can capture the dynamics of multiple datasets effectively and track system characteristics accurately.
Neural-tree call admission controller for ATM networks
NASA Astrophysics Data System (ADS)
Rughooputh, Harry C. S.
1999-03-01
Asynchronous Transfer Mode (ATM) has been recommended by ITU-T as the transport method for broadband integrated services digital networks. In high-speed ATM networks different types of multimedia traffic streams with widely varying traffic characteristics and Quality of Service (QoS) are asynchronously multiplexed on transmission links and switched without window flow control as found in X.25. In such an environment, a traffic control scheme is required to manage the required QoS of each class individually. To meet the QoS requirements, Bandwidth Allocation and Call Admission Control (CAC) in ATM networks must be able to adapt gracefully to the dynamic behavior of traffic and the time-varying nature of the network condition. In this paper, a Neural Network approach for CAC is proposed. The call admission problem is addressed by designing controllers based on Neural Tree Networks. Simulations reveal that the proposed scheme is not only simple but it also offers faster response than conventional neural/neuro-fuzzy controllers.
A new learning algorithm for a fully connected neuro-fuzzy inference system.
Chen, C L Philip; Wang, Jing; Wang, Chi-Hsu; Chen, Long
2014-10-01
A traditional neuro-fuzzy system is transformed into an equivalent fully connected three layer neural network (NN), namely, the fully connected neuro-fuzzy inference systems (F-CONFIS). The F-CONFIS differs from traditional NNs by its dependent and repeated weights between input and hidden layers and can be considered as the variation of a kind of multilayer NN. Therefore, an efficient learning algorithm for the F-CONFIS to cope these repeated weights is derived. Furthermore, a dynamic learning rate is proposed for neuro-fuzzy systems via F-CONFIS where both premise (hidden) and consequent portions are considered. Several simulation results indicate that the proposed approach achieves much better accuracy and fast convergence.
Soft computing methods for geoidal height transformation
NASA Astrophysics Data System (ADS)
Akyilmaz, O.; Özlüdemir, M. T.; Ayan, T.; Çelik, R. N.
2009-07-01
Soft computing techniques, such as fuzzy logic and artificial neural network (ANN) approaches, have enabled researchers to create precise models for use in many scientific and engineering applications. Applications that can be employed in geodetic studies include the estimation of earth rotation parameters and the determination of mean sea level changes. Another important field of geodesy in which these computing techniques can be applied is geoidal height transformation. We report here our use of a conventional polynomial model, the Adaptive Network-based Fuzzy (or in some publications, Adaptive Neuro-Fuzzy) Inference System (ANFIS), an ANN and a modified ANN approach to approximate geoid heights. These approximation models have been tested on a number of test points. The results obtained through the transformation processes from ellipsoidal heights into local levelling heights have also been compared.
Distributed Learning, Recognition, and Prediction by ART and ARTMAP Neural Networks.
Carpenter, Gail A.
1997-11-01
A class of adaptive resonance theory (ART) models for learning, recognition, and prediction with arbitrarily distributed code representations is introduced. Distributed ART neural networks combine the stable fast learning capabilities of winner-take-all ART systems with the noise tolerance and code compression capabilities of multilayer perceptrons. With a winner-take-all code, the unsupervised model dART reduces to fuzzy ART and the supervised model dARTMAP reduces to fuzzy ARTMAP. With a distributed code, these networks automatically apportion learned changes according to the degree of activation of each coding node, which permits fast as well as slow learning without catastrophic forgetting. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Thresholds increase monotonically during learning according to a principle of atrophy due to disuse. However, monotonic change at the synaptic level manifests itself as bidirectional change at the dynamic level, where the result of adaptation resembles long-term potentiation (LTP) for single-pulse or low frequency test inputs but can resemble long-term depression (LTD) for higher frequency test inputs. This paradoxical behavior is traced to dual computational properties of phasic and tonic coding signal components. A parallel distributed match-reset-search process also helps stabilize memory. Without the match-reset-search system, dART becomes a type of distributed competitive learning network.
Automated Interpretation of LIBS Spectra using a Fuzzy Logic Inference Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeremy J. Hatch; Timothy R. McJunkin; Cynthia Hanson
2012-02-01
Automated interpretation of laser-induced breakdown spectroscopy (LIBS) data is necessary due to the plethora of spectra that can be acquired in a relatively short time. However, traditional chemometric and artificial neural network methods that have been employed are not always transparent to a skilled user. A fuzzy logic approach to data interpretation has now been adapted to LIBS spectral interpretation. A fuzzy logic inference engine (FLIE) was used to differentiate between various copper containing and stainless steel alloys as well as unknowns. Results using FLIE indicate a high degree of confidence in spectral assignment.
NASA Astrophysics Data System (ADS)
Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad
2013-06-01
This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.
Li, Yuanyuan; Xie, Yanming; Fu, Yingkun
2011-10-01
Currently massive researches have been launched about the safety, efficiency and economy of post-marketing Chinese patent medicine (CPM) proprietary Chinese medicine, but it was lack of a comprehensive interpretation. Establishing the risk evaluation index system and risk assessment model of CPM is the key to solve drug safety problems and protect people's health. The clinical risk factors of CPM exist similarities with the Western medicine, can draw lessons from foreign experience, but also have itself multi-factor multivariate multi-level complex features. Drug safety risk assessment for the uncertainty and complexity, using analytic hierarchy process (AHP) to empower the index weights, AHP-based fuzzy neural network to build post-marketing CPM risk evaluation index system and risk assessment model and constantly improving the application of traditional Chinese medicine characteristic is accord with the road and feasible beneficial exploration.
Decade Review (1999-2009): Artificial Intelligence Techniques in Student Modeling
NASA Astrophysics Data System (ADS)
Drigas, Athanasios S.; Argyri, Katerina; Vrettaros, John
Artificial Intelligence applications in educational field are getting more and more popular during the last decade (1999-2009) and that is why much relevant research has been conducted. In this paper, we present the most interesting attempts to apply artificial intelligence methods such as fuzzy logic, neural networks, genetic programming and hybrid approaches such as neuro - fuzzy systems and genetic programming neural networks (GPNN) in student modeling. This latest research trend is a part of every Intelligent Tutoring System and aims at generating and updating a student model in order to modify learning content to fit individual needs or to provide reliable assessment and feedback to student's answers. In this paper, we make a brief presentation of methods used to point out their qualities and then we attempt a navigation to the most representative studies sought in the decade of our interest after classifying them according to the principal aim they attempted to serve.
Ando, Tatsuya; Suguro, Miyuki; Hanai, Taizo; Kobayashi, Takeshi; Seto, Masao
2002-01-01
Diffuse large B‐cell lymphoma (DLBCL) is the largest category of aggressive lymphomas. Less than 50% of patients can be cured by combination chemotherapy. Microarray technologies have recently shown that the response to chemotherapy reflects the molecular heterogeneity in DLBCL. On the basis of published microarray data, we attempted to develop a long‐overdue method for the precise and simple prediction of survival of DLBCL patients. We developed a fuzzy neural network (FNN) model to analyze gene expression profiling data for DLBCL. From data on 5857 genes, this model identified four genes (CD10, AA807551, AA805611 and IRF‐4) that could be used to predict prognosis with 93% accuracy. FNNs are powerful tools for extracting significant biological markers affecting prognosis, and are applicable to various kinds of expression profiling data for any malignancy. PMID:12460461
Fuzzy-cellular neural network for face recognition HCI Authentication
NASA Astrophysics Data System (ADS)
Hoomod, Haider K.; ali, Ahmed abd
2018-05-01
Because of the rapid development of mobile devices technology, ease of use and interact with humans. May have found a mobile device most uses in our communications. Mobile devices can carry large amounts of personal and sensitive data, but often left not guaranteed (pin) locks are inconvenient to use and thus have seen low adoption while biometrics is more convenient and less susceptible to fraud and manipulation. Were propose in this paper authentication technique for using a mobile face recognition based on cellular neural networks [1] and fuzzy rules control. The good speed and get recognition rate from applied the proposed system in Android system. The images obtained in real time for 60 persons each person has 20 t0 60 different shot face images (about 3600 images), were the results for (FAR = 0), (FRR = 1.66%), (FER = 1.66) and accuracy = 98.34
Wood texture classification by fuzzy neural networks
NASA Astrophysics Data System (ADS)
Gonzaga, Adilson; de Franca, Celso A.; Frere, Annie F.
1999-03-01
The majority of scientific papers focusing on wood classification for pencil manufacturing take into account defects and visual appearance. Traditional methodologies are base don texture analysis by co-occurrence matrix, by image modeling, or by tonal measures over the plate surface. In this work, we propose to classify plates of wood without biological defects like insect holes, nodes, and cracks, by analyzing their texture. By this methodology we divide the plate image in several rectangular windows or local areas and reduce the number of gray levels. From each local area, we compute the histogram of difference sand extract texture features, given them as input to a Local Neuro-Fuzzy Network. Those features are from the histogram of differences instead of the image pixels due to their better performance and illumination independence. Among several features like media, contrast, second moment, entropy, and IDN, the last three ones have showed better results for network training. Each LNN output is taken as input to a Partial Neuro-Fuzzy Network (PNFN) classifying a pencil region on the plate. At last, the outputs from the PNFN are taken as input to a Global Fuzzy Logic doing the plate classification. Each pencil classification within the plate is done taking into account each quality index.
Intelligent control based on fuzzy logic and neural net theory
NASA Technical Reports Server (NTRS)
Lee, Chuen-Chien
1991-01-01
In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.
A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation
NASA Astrophysics Data System (ADS)
Tahmasebi, Pejman; Hezarkhani, Ardeshir
2012-05-01
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.
A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation
Tahmasebi, Pejman; Hezarkhani, Ardeshir
2012-01-01
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called “Coactive Neuro-Fuzzy Inference System” (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) – as a well-known technique to solve the complex optimization problems – is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS–GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS–GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems. PMID:25540468
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor)
1990-01-01
Various papers on intelligent control and adaptive systems are presented. Individual topics addressed include: control architecture for a Mars walking vehicle, representation for error detection and recovery in robot task plans, real-time operating system for robots, execution monitoring of a mobile robot system, statistical mechanics models for motion and force planning, global kinematics for manipulator planning and control, exploration of unknown mechanical assemblies through manipulation, low-level representations for robot vision, harmonic functions for robot path construction, simulation of dual behavior of an autonomous system. Also discussed are: control framework for hand-arm coordination, neural network approach to multivehicle navigation, electronic neural networks for global optimization, neural network for L1 norm linear regression, planning for assembly with robot hands, neural networks in dynamical systems, control design with iterative learning, improved fuzzy process control of spacecraft autonomous rendezvous using a genetic algorithm.
Syed Ali, M; Vadivel, R; Saravanakumar, R
2018-06-01
This study examines the problem of robust reliable control for Takagi-Sugeno (T-S) fuzzy Markovian jumping delayed neural networks with probabilistic actuator faults and leakage terms. An event-triggered communication scheme. First, the randomly occurring actuator faults and their failures rates are governed by two sets of unrelated random variables satisfying certain probabilistic failures of every actuator, new type of distribution based event triggered fault model is proposed, which utilize the effect of transmission delay. Second, Takagi-Sugeno (T-S) fuzzy model is adopted for the neural networks and the randomness of actuators failures is modeled in a Markov jump model framework. Third, to guarantee the considered closed-loop system is exponential mean square stable with a prescribed reliable control performance, a Markov jump event-triggered scheme is designed in this paper, which is the main purpose of our study. Fourth, by constructing appropriate Lyapunov-Krasovskii functional, employing Newton-Leibniz formulation and integral inequalities, several delay-dependent criteria for the solvability of the addressed problem are derived. The obtained stability criteria are stated in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Finally, numerical examples are given to illustrate the effectiveness and reduced conservatism of the proposed results over the existing ones, among them one example was supported by real-life application of the benchmark problem. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Neural Modeling of Fuzzy Controllers for Maximum Power Point Tracking in Photovoltaic Energy Systems
NASA Astrophysics Data System (ADS)
Lopez-Guede, Jose Manuel; Ramos-Hernanz, Josean; Altın, Necmi; Ozdemir, Saban; Kurt, Erol; Azkune, Gorka
2018-06-01
One field in which electronic materials have an important role is energy generation, especially within the scope of photovoltaic energy. This paper deals with one of the most relevant enabling technologies within that scope, i.e, the algorithms for maximum power point tracking implemented in the direct current to direct current converters and its modeling through artificial neural networks (ANNs). More specifically, as a proof of concept, we have addressed the problem of modeling a fuzzy logic controller that has shown its performance in previous works, and more specifically the dimensionless duty cycle signal that controls a quadratic boost converter. We achieved a very accurate model since the obtained medium squared error is 3.47 × 10-6, the maximum error is 16.32 × 10-3 and the regression coefficient R is 0.99992, all for the test dataset. This neural implementation has obvious advantages such as a higher fault tolerance and a simpler implementation, dispensing with all the complex elements needed to run a fuzzy controller (fuzzifier, defuzzifier, inference engine and knowledge base) because, ultimately, ANNs are sums and products.
NASA Astrophysics Data System (ADS)
Asoodeh, Mojtaba; Bagheripour, Parisa
2012-01-01
Measurement of compressional, shear, and Stoneley wave velocities, carried out by dipole sonic imager (DSI) logs, provides invaluable data in geophysical interpretation, geomechanical studies and hydrocarbon reservoir characterization. The presented study proposes an improved methodology for making a quantitative formulation between conventional well logs and sonic wave velocities. First, sonic wave velocities were predicted from conventional well logs using artificial neural network, fuzzy logic, and neuro-fuzzy algorithms. Subsequently, a committee machine with intelligent systems was constructed by virtue of hybrid genetic algorithm-pattern search technique while outputs of artificial neural network, fuzzy logic and neuro-fuzzy models were used as inputs of the committee machine. It is capable of improving the accuracy of final prediction through integrating the outputs of aforementioned intelligent systems. The hybrid genetic algorithm-pattern search tool, embodied in the structure of committee machine, assigns a weight factor to each individual intelligent system, indicating its involvement in overall prediction of DSI parameters. This methodology was implemented in Asmari formation, which is the major carbonate reservoir rock of Iranian oil field. A group of 1,640 data points was used to construct the intelligent model, and a group of 800 data points was employed to assess the reliability of the proposed model. The results showed that the committee machine with intelligent systems performed more effectively compared with individual intelligent systems performing alone.
Fuzzy Emotional Semantic Analysis and Automated Annotation of Scene Images
Cao, Jianfang; Chen, Lichao
2015-01-01
With the advances in electronic and imaging techniques, the production of digital images has rapidly increased, and the extraction and automated annotation of emotional semantics implied by images have become issues that must be urgently addressed. To better simulate human subjectivity and ambiguity for understanding scene images, the current study proposes an emotional semantic annotation method for scene images based on fuzzy set theory. A fuzzy membership degree was calculated to describe the emotional degree of a scene image and was implemented using the Adaboost algorithm and a back-propagation (BP) neural network. The automated annotation method was trained and tested using scene images from the SUN Database. The annotation results were then compared with those based on artificial annotation. Our method showed an annotation accuracy rate of 91.2% for basic emotional values and 82.4% after extended emotional values were added, which correspond to increases of 5.5% and 8.9%, respectively, compared with the results from using a single BP neural network algorithm. Furthermore, the retrieval accuracy rate based on our method reached approximately 89%. This study attempts to lay a solid foundation for the automated emotional semantic annotation of more types of images and therefore is of practical significance. PMID:25838818
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ondrej Linda; Dumidu Wijayasekara; Milos Manic
Resiliency and improved state-awareness of modern critical infrastructures, such as energy production and industrial systems, is becoming increasingly important. As control systems become increasingly complex, the number of inputs and outputs increase. Therefore, in order to maintain sufficient levels of state-awareness, a robust system state monitoring must be implemented that correctly identifies system behavior even when one or more sensors are faulty. Furthermore, as intelligent cyber adversaries become more capable, incorrect values may be fed to the operators. To address these needs, this paper proposes a Fuzzy-Neural Data Fusion Engine (FN-DFE) for resilient state-awareness of control systems. The designed FN-DFEmore » is composed of a three-layered system consisting of: 1) traditional threshold based alarms, 2) anomalous behavior detector using self-organizing fuzzy logic system, and 3) artificial neural network based system modeling and prediction. The improved control system state-awareness is achieved via fusing input data from multiple sources and combining them into robust anomaly indicators. In addition, the neural network based signal predictions are used to augment the resiliency of the system and provide coherent state-awareness despite temporary unavailability of sensory data. The proposed system was integrated and tested with a model of the Idaho National Laboratory’s (INL) hybrid energy system facility know as HYTEST. Experimental results demonstrate that the proposed FN-DFE provides timely plant performance monitoring and anomaly detection capabilities. It was shown that the system is capable of identifying intrusive behavior significantly earlier than conventional threshold based alarm systems.« less
Innovative neuro-fuzzy system of smart transport infrastructure for road traffic safety
NASA Astrophysics Data System (ADS)
Beinarovica, Anna; Gorobetz, Mikhail; Levchenkov, Anatoly
2017-09-01
The proposed study describes applying of neural network and fuzzy logic in transport control for safety improvement by evaluation of accidents’ risk by intelligent infrastructure devices. Risk evaluation is made by following multiple-criteria: danger, changeability and influence of changes for risk increasing. Neuro-fuzzy algorithms are described and proposed for task solution. The novelty of the proposed system is proved by deep analysis of known studies in the field. The structure of neuro-fuzzy system for risk evaluation and mathematical model is described in the paper. The simulation model of the intelligent devices for transport infrastructure is proposed to simulate different situations, assess the risks and propose the possible actions for infrastructure or vehicles to minimize the risk of possible accidents.
A mathematical model of neuro-fuzzy approximation in image classification
NASA Astrophysics Data System (ADS)
Gopalan, Sasi; Pinto, Linu; Sheela, C.; Arun Kumar M., N.
2016-06-01
Image digitization and explosion of World Wide Web has made traditional search for image, an inefficient method for retrieval of required grassland image data from large database. For a given input query image Content-Based Image Retrieval (CBIR) system retrieves the similar images from a large database. Advances in technology has increased the use of grassland image data in diverse areas such has agriculture, art galleries, education, industry etc. In all the above mentioned diverse areas it is necessary to retrieve grassland image data efficiently from a large database to perform an assigned task and to make a suitable decision. A CBIR system based on grassland image properties and it uses the aid of a feed-forward back propagation neural network for an effective image retrieval is proposed in this paper. Fuzzy Memberships plays an important role in the input space of the proposed system which leads to a combined neural fuzzy approximation in image classification. The CBIR system with mathematical model in the proposed work gives more clarity about fuzzy-neuro approximation and the convergence of the image features in a grassland image.
NASA Astrophysics Data System (ADS)
Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning
2009-11-01
The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.
Fuzzy regression modeling for tool performance prediction and degradation detection.
Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L
2010-10-01
In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.
Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology
NASA Astrophysics Data System (ADS)
Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat
2014-07-01
The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.
An object recognition method based on fuzzy theory and BP networks
NASA Astrophysics Data System (ADS)
Wu, Chuan; Zhu, Ming; Yang, Dong
2006-01-01
It is difficult to choose eigenvectors when neural network recognizes object. It is possible that the different object eigenvectors is similar or the same object eigenvectors is different under scaling, shifting, rotation if eigenvectors can not be chosen appropriately. In order to solve this problem, the image is edged, the membership function is reconstructed and a new threshold segmentation method based on fuzzy theory is proposed to get the binary image. Moment invariant of binary image is extracted and normalized. Some time moment invariant is too small to calculate effectively so logarithm of moment invariant is taken as input eigenvectors of BP network. The experimental results demonstrate that the proposed approach could recognize the object effectively, correctly and quickly.
BP network identification technology of infrared polarization based on fuzzy c-means clustering
NASA Astrophysics Data System (ADS)
Zeng, Haifang; Gu, Guohua; He, Weiji; Chen, Qian; Yang, Wei
2011-08-01
Infrared detection system is frequently employed on surveillance operations and reconnaissance mission to detect particular targets of interest in both civilian and military communities. By incorporating the polarization of light as supplementary information, the target discrimination performance could be enhanced. So this paper proposed an infrared target identification method which is based on fuzzy theory and neural network with polarization properties of targets. The paper utilizes polarization degree and light intensity to advance the unsupervised KFCM (kernel fuzzy C-Means) clustering method. And establish different material pol1arization properties database. In the built network, the system can feedback output corresponding material types of probability distribution toward any input polarized degree such as 10° 15°, 20°, 25°, 30°. KFCM, which has stronger robustness and accuracy than FCM, introduces kernel idea and gives the noise points and invalid value different but intuitively reasonable weights. Because of differences in characterization of material properties, there will be some conflicts in classification results. And D - S evidence theory was used in the combination of the polarization and intensity information. Related results show KFCM clustering precision and operation rate are higher than that of the FCM clustering method. The artificial neural network method realizes material identification, which reasonable solved the problems of complexity in environmental information of infrared polarization, and improperness of background knowledge and inference rule. This method of polarization identification is fast in speed, good in self-adaption and high in resolution.
Fuzzy logic applications to expert systems and control
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
A considerable amount of work on the development of fuzzy logic algorithms and application to space related control problems has been done at the Johnson Space Center (JSC) over the past few years. Particularly, guidance control systems for space vehicles during proximity operations, learning systems utilizing neural networks, control of data processing during rendezvous navigation, collision avoidance algorithms, camera tracking controllers, and tether controllers have been developed utilizing fuzzy logic technology. Several other areas in which fuzzy sets and related concepts are being considered at JSC are diagnostic systems, control of robot arms, pattern recognition, and image processing. It has become evident, based on the commercial applications of fuzzy technology in Japan and China during the last few years, that this technology should be exploited by the government as well as private industry for energy savings.
NASA Astrophysics Data System (ADS)
Jahangoshai Rezaee, Mustafa; Jozmaleki, Mehrdad; Valipour, Mahsa
2018-01-01
One of the main features to invest in stock exchange companies is their financial performance. On the other hand, conventional evaluation methods such as data envelopment analysis are not only a retrospective process, but are also a process, which are incomplete and ineffective approaches to evaluate the companies in the future. To remove this problem, it is required to plan an expert system for evaluating organizations when the online data are received from stock exchange market. This paper deals with an approach for predicting the online financial performance of companies when data are received in different time's intervals. The proposed approach is based on integrating fuzzy C-means (FCM), data envelopment analysis (DEA) and artificial neural network (ANN). The classical FCM method is unable to update the number of clusters and their members when the data are changed or the new data are received. Hence, this method is developed in order to make dynamic features for the number of clusters and clusters members in classical FCM. Then, DEA is used to evaluate DMUs by using financial ratios to provide targets in neural network. Finally, the designed network is trained and prepared for predicting companies' future performance. The data on Tehran Stock Market companies for six consecutive years (2007-2012) are used to show the abilities of the proposed approach.
NASA Astrophysics Data System (ADS)
Nooruddin, Hasan A.; Anifowose, Fatai; Abdulraheem, Abdulazeez
2014-03-01
Soft computing techniques are recently becoming very popular in the oil industry. A number of computational intelligence-based predictive methods have been widely applied in the industry with high prediction capabilities. Some of the popular methods include feed-forward neural networks, radial basis function network, generalized regression neural network, functional networks, support vector regression and adaptive network fuzzy inference system. A comparative study among most popular soft computing techniques is presented using a large dataset published in literature describing multimodal pore systems in the Arab D formation. The inputs to the models are air porosity, grain density, and Thomeer parameters obtained using mercury injection capillary pressure profiles. Corrected air permeability is the target variable. Applying developed permeability models in recent reservoir characterization workflow ensures consistency between micro and macro scale information represented mainly by Thomeer parameters and absolute permeability. The dataset was divided into two parts with 80% of data used for training and 20% for testing. The target permeability variable was transformed to the logarithmic scale as a pre-processing step and to show better correlations with the input variables. Statistical and graphical analysis of the results including permeability cross-plots and detailed error measures were created. In general, the comparative study showed very close results among the developed models. The feed-forward neural network permeability model showed the lowest average relative error, average absolute relative error, standard deviations of error and root means squares making it the best model for such problems. Adaptive network fuzzy inference system also showed very good results.
Comparison of four approaches to a rock facies classification problem
Dubois, M.K.; Bohling, Geoffrey C.; Chakrabarti, S.
2007-01-01
In this study, seven classifiers based on four different approaches were tested in a rock facies classification problem: classical parametric methods using Bayes' rule, and non-parametric methods using fuzzy logic, k-nearest neighbor, and feed forward-back propagating artificial neural network. Determining the most effective classifier for geologic facies prediction in wells without cores in the Panoma gas field, in Southwest Kansas, was the objective. Study data include 3600 samples with known rock facies class (from core) with each sample having either four or five measured properties (wire-line log curves), and two derived geologic properties (geologic constraining variables). The sample set was divided into two subsets, one for training and one for testing the ability of the trained classifier to correctly assign classes. Artificial neural networks clearly outperformed all other classifiers and are effective tools for this particular classification problem. Classical parametric models were inadequate due to the nature of the predictor variables (high dimensional and not linearly correlated), and feature space of the classes (overlapping). The other non-parametric methods tested, k-nearest neighbor and fuzzy logic, would need considerable improvement to match the neural network effectiveness, but further work, possibly combining certain aspects of the three non-parametric methods, may be justified. ?? 2006 Elsevier Ltd. All rights reserved.
Streamflow Forecasting Using Nuero-Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Nanduri, U. V.; Swain, P. C.
2005-12-01
The prediction of flow into a reservoir is fundamental in water resources planning and management. The need for timely and accurate streamflow forecasting is widely recognized and emphasized by many in water resources fraternity. Real-time forecasts of natural inflows to reservoirs are of particular interest for operation and scheduling. The physical system of the river basin that takes the rainfall as an input and produces the runoff is highly nonlinear, complicated and very difficult to fully comprehend. The system is influenced by large number of factors and variables. The large spatial extent of the systems forces the uncertainty into the hydrologic information. A variety of methods have been proposed for forecasting reservoir inflows including conceptual (physical) and empirical (statistical) models (WMO 1994), but none of them can be considered as unique superior model (Shamseldin 1997). Owing to difficulties of formulating reasonable non-linear watershed models, recent attempts have resorted to Neural Network (NN) approach for complex hydrologic modeling. In recent years the use of soft computing in the field of hydrological forecasting is gaining ground. The relatively new soft computing technique of Adaptive Neuro-Fuzzy Inference System (ANFIS), developed by Jang (1993) is able to take care of the non-linearity, uncertainty, and vagueness embedded in the system. It is a judicious combination of the Neural Networks and fuzzy systems. It can learn and generalize highly nonlinear and uncertain phenomena due to the embedded neural network (NN). NN is efficient in learning and generalization, and the fuzzy system mimics the cognitive capability of human brain. Hence, ANFIS can learn the complicated processes involved in the basin and correlate the precipitation to the corresponding discharge. In the present study, one step ahead forecasts are made for ten-daily flows, which are mostly required for short term operational planning of multipurpose reservoirs. A Neuro-Fuzzy model is developed to forecast ten-daily flows into the Hirakud reservoir on River Mahanadi in the state of Orissa in India. Correlation analysis is carried out to find out the most influential variables on the ten daily flow at Hirakud. Based on this analysis, four variables, namely, flow during the previous time period, ql1, rainfall during the previous two time periods, rl1 and rl2, and flow during the same period in previous year, qpy, are identified as the most influential variables to forecast the ten daily flow. Performance measures such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and coefficient of efficiency R2 are computed for training and testing phases of the model to evaluate its performance. The results indicate that the ten-daily forecasting model is efficient in predicting the high and medium flows with reasonable accuracy. The forecast of low flows is associated with less efficiency. REFERENCES Jang, J.S.R. (1993). "ANFIS: Adaptive - network- based fuzzy inference system." IEEE Trans. on Systems, Man and Cybernetics, 23 (3), 665-685. Shamseldin, A.Y. (1997). "Application of a neural network technique to rainfall-runoff modeling." Journal of Hydrology, 199, 272-294. World Meteorological Organization (1975). Intercomparison of conceptual models used in operational hydrological forecasting. World Meteorological Organization, Technical Report No.429, Geneva, Switzerland.
NASA Technical Reports Server (NTRS)
Kosko, Bart
1991-01-01
Mappings between fuzzy cubes are discussed. This level of abstraction provides a surprising and fruitful alternative to the propositional and predicate-calculas reasoning techniques used in expert systems. It allows one to reason with sets instead of propositions. Discussed here are fuzzy and neural function estimators, neural vs. fuzzy representation of structured knowledge, fuzzy vector-matrix multiplication, and fuzzy associative memory (FAM) system architecture.
Fuzzy time-series based on Fibonacci sequence for stock price forecasting
NASA Astrophysics Data System (ADS)
Chen, Tai-Liang; Cheng, Ching-Hsue; Jong Teoh, Hia
2007-07-01
Time-series models have been utilized to make reasonably accurate predictions in the areas of stock price movements, academic enrollments, weather, etc. For promoting the forecasting performance of fuzzy time-series models, this paper proposes a new model, which incorporates the concept of the Fibonacci sequence, the framework of Song and Chissom's model and the weighted method of Yu's model. This paper employs a 5-year period TSMC (Taiwan Semiconductor Manufacturing Company) stock price data and a 13-year period of TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) stock index data as experimental datasets. By comparing our forecasting performances with Chen's (Forecasting enrollments based on fuzzy time-series. Fuzzy Sets Syst. 81 (1996) 311-319), Yu's (Weighted fuzzy time-series models for TAIEX forecasting. Physica A 349 (2004) 609-624) and Huarng's (The application of neural networks to forecast fuzzy time series. Physica A 336 (2006) 481-491) models, we conclude that the proposed model surpasses in accuracy these conventional fuzzy time-series models.
Artificial neural network modeling of dissolved oxygen in reservoir.
Chen, Wei-Bo; Liu, Wen-Cheng
2014-02-01
The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.
NOVIN, Vahid; GIVEHCHI, Saeed; HOVEIDI, Hassan
2016-01-01
Background: Reliable methods are crucial to cope with uncertainties in the risk analysis process. The aim of this study is to develop an integrated approach to assessing risks of benzene in the petrochemical plant that produces benzene. We offer an integrated system to contribute imprecise variables into the health risk calculation. Methods: The project was conducted in Asaluyeh, southern Iran during the years from 2013 to 2014. Integrated method includes fuzzy logic and artificial neural networks. Each technique had specific computational properties. Fuzzy logic was used for estimation of absorption rate. Artificial neural networks can decrease the noise of the data so applied for prediction of benzene concentration. First, the actual exposure was calculated then it combined with Integrated Risk Information System (IRIS) toxicity factors to assess real health risks. Results: High correlation between the measured and predicted benzene concentration was achieved (R2= 0.941). As for variable distribution, the best estimation of risk in a population implied 33% of workers exposed less than 1×10−5 and 67% inserted between 1.0×10−5 to 9.8×10−5 risk levels. The average estimated risk of exposure to benzene for entire work zones is equal to 2.4×10−5, ranging from 1.5×10−6 to 6.9×10−5. Conclusion: The integrated model is highly flexible as well as the rules possibly will be changed according to the necessities of the user in a different circumstance. The measured exposures can be duplicated well through proposed model and realistic risk assessment data will be produced. PMID:27957464
NASA Astrophysics Data System (ADS)
Wang, Baijie; Wang, Xin; Chen, Zhangxin
2013-08-01
Reservoir characterization refers to the process of quantitatively assigning reservoir properties using all available field data. Artificial neural networks (ANN) have recently been introduced to solve reservoir characterization problems dealing with the complex underlying relationships inherent in well log data. Despite the utility of ANNs, the current limitation is that most existing applications simply focus on directly implementing existing ANN models instead of improving/customizing them to fit the specific reservoir characterization tasks at hand. In this paper, we propose a novel intelligent framework that integrates fuzzy ranking (FR) and multilayer perceptron (MLP) neural networks for reservoir characterization. FR can automatically identify a minimum subset of well log data as neural inputs, and the MLP is trained to learn the complex correlations from the selected well log data to a target reservoir property. FR guarantees the selection of the optimal subset of representative data from the overall well log data set for the characterization of a specific reservoir property; and, this implicitly improves the modeling and predication accuracy of the MLP. In addition, a growing number of industrial agencies are implementing geographic information systems (GIS) in field data management; and, we have designed the GFAR solution (GIS-based FR ANN Reservoir characterization solution) system, which integrates the proposed framework into a GIS system that provides an efficient characterization solution. Three separate petroleum wells from southwestern Alberta, Canada, were used in the presented case study of reservoir porosity characterization. Our experiments demonstrate that our method can generate reliable results.
Yoo, Sung-Hoon; Oh, Sung-Kwun; Pedrycz, Witold
2015-09-01
In this study, we propose a hybrid method of face recognition by using face region information extracted from the detected face region. In the preprocessing part, we develop a hybrid approach based on the Active Shape Model (ASM) and the Principal Component Analysis (PCA) algorithm. At this step, we use a CCD (Charge Coupled Device) camera to acquire a facial image by using AdaBoost and then Histogram Equalization (HE) is employed to improve the quality of the image. ASM extracts the face contour and image shape to produce a personal profile. Then we use a PCA method to reduce dimensionality of face images. In the recognition part, we consider the improved Radial Basis Function Neural Networks (RBF NNs) to identify a unique pattern associated with each person. The proposed RBF NN architecture consists of three functional modules realizing the condition phase, the conclusion phase, and the inference phase completed with the help of fuzzy rules coming in the standard 'if-then' format. In the formation of the condition part of the fuzzy rules, the input space is partitioned with the use of Fuzzy C-Means (FCM) clustering. In the conclusion part of the fuzzy rules, the connections (weights) of the RBF NNs are represented by four kinds of polynomials such as constant, linear, quadratic, and reduced quadratic. The values of the coefficients are determined by running a gradient descent method. The output of the RBF NNs model is obtained by running a fuzzy inference method. The essential design parameters of the network (including learning rate, momentum coefficient and fuzzification coefficient used by the FCM) are optimized by means of Differential Evolution (DE). The proposed P-RBF NNs (Polynomial based RBF NNs) are applied to facial recognition and its performance is quantified from the viewpoint of the output performance and recognition rate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hybrid neural network and fuzzy logic approaches for rendezvous and capture in space
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Castellano, Timothy
1991-01-01
The nonlinear behavior of many practical systems and unavailability of quantitative data regarding the input-output relations makes the analytical modeling of these systems very difficult. On the other hand, approximate reasoning-based controllers which do not require analytical models have demonstrated a number of successful applications such as the subway system in the city of Sendai. These applications have mainly concentrated on emulating the performance of a skilled human operator in the form of linguistic rules. However, the process of learning and tuning the control rules to achieve the desired performance remains a difficult task. Fuzzy Logic Control is based on fuzzy set theory. A fuzzy set is an extension of a crisp set. Crisp sets only allow full membership or no membership at all, whereas fuzzy sets allow partial membership. In other words, an element may partially belong to a set.
Larkin, Andrew; Siddens, Lisbeth K.; Krueger, Sharon K.; Tilton, Susan C.; Waters, Katrina M.; Williams, David E.; Baird, William M.
2013-01-01
Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave one out cross-validation. Predictions were within 1 log2 fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. PMID:23274566
NASA Astrophysics Data System (ADS)
Asoodeh, Mojtaba; Bagheripour, Parisa; Gholami, Amin
2015-06-01
Free fluid porosity and rock permeability, undoubtedly the most critical parameters of hydrocarbon reservoir, could be obtained by processing of nuclear magnetic resonance (NMR) log. Despite conventional well logs (CWLs), NMR logging is very expensive and time-consuming. Therefore, idea of synthesizing NMR log from CWLs would be of a great appeal among reservoir engineers. For this purpose, three optimization strategies are followed. Firstly, artificial neural network (ANN) is optimized by virtue of hybrid genetic algorithm-pattern search (GA-PS) technique, then fuzzy logic (FL) is optimized by means of GA-PS, and eventually an alternative condition expectation (ACE) model is constructed using the concept of committee machine to combine outputs of optimized and non-optimized FL and ANN models. Results indicated that optimization of traditional ANN and FL model using GA-PS technique significantly enhances their performances. Furthermore, the ACE committee of aforementioned models produces more accurate and reliable results compared with a singular model performing alone.
Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems
NASA Astrophysics Data System (ADS)
Wang, Rongrong; Qi, Liang; Xie, Xiaofeng; Ding, Qingqing; Li, Chunwen; Ma, ChenChi M.
The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system.
Prediction of drug synergy in cancer using ensemble-based machine learning techniques
NASA Astrophysics Data System (ADS)
Singh, Harpreet; Rana, Prashant Singh; Singh, Urvinder
2018-04-01
Drug synergy prediction plays a significant role in the medical field for inhibiting specific cancer agents. It can be developed as a pre-processing tool for therapeutic successes. Examination of different drug-drug interaction can be done by drug synergy score. It needs efficient regression-based machine learning approaches to minimize the prediction errors. Numerous machine learning techniques such as neural networks, support vector machines, random forests, LASSO, Elastic Nets, etc., have been used in the past to realize requirement as mentioned above. However, these techniques individually do not provide significant accuracy in drug synergy score. Therefore, the primary objective of this paper is to design a neuro-fuzzy-based ensembling approach. To achieve this, nine well-known machine learning techniques have been implemented by considering the drug synergy data. Based on the accuracy of each model, four techniques with high accuracy are selected to develop ensemble-based machine learning model. These models are Random forest, Fuzzy Rules Using Genetic Cooperative-Competitive Learning method (GFS.GCCL), Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Dynamic Evolving Neural-Fuzzy Inference System method (DENFIS). Ensembling is achieved by evaluating the biased weighted aggregation (i.e. adding more weights to the model with a higher prediction score) of predicted data by selected models. The proposed and existing machine learning techniques have been evaluated on drug synergy score data. The comparative analysis reveals that the proposed method outperforms others in terms of accuracy, root mean square error and coefficient of correlation.
Urban Growth Modeling Using Anfis Algorithm: a Case Study for Sanandaj City, Iran
NASA Astrophysics Data System (ADS)
Mohammady, S.; Delavar, M. R.; Pijanowski, B. C.
2013-10-01
Global urban population has increased from 22.9% in 1985 to 47% in 2010. In spite of the tendency for urbanization worldwide, only about 2% of Earth's land surface is covered by cities. Urban population in Iran is increasing due to social and economic development. The proportion of the population living in Iran urban areas has consistently increased from about 31% in 1956 to 68.4% in 2006. Migration of the rural population to cities and population growth in cities have caused many problems, such as irregular growth of cities, improper placement of infrastructure and urban services. Air and environmental pollution, resource degradation and insufficient infrastructure, are the results of poor urban planning that have negative impact on the environment or livelihoods of people living in cities. These issues are a consequence of improper land use planning. Models have been employed to assist in our understanding of relations between land use and its subsequent effects. Different models for urban growth modeling have been developed. Methods from computational intelligence have made great contributions in all specific application domains and hybrid algorithms research as a part of them has become a big trend in computational intelligence. Artificial Neural Network (ANN) has the capability to deal with imprecise data by training, while fuzzy logic can deal with the uncertainty of human cognition. ANN learns from scratch by adjusting the interconnections between layers and Fuzzy Inference Systems (FIS) is a popular computing framework based on the concept of fuzzy set theory, fuzzy logic, and fuzzy reasoning. Fuzzy logic has many advantages such as flexibility and at the other sides, one of the biggest problems in fuzzy logic application is the location and shape and of membership function for each fuzzy variable which is generally being solved by trial and error method. In contrast, numerical computation and learning are the advantages of neural network, however, it is not easy to obtain the optimal structure. Since, in this type of fuzzy logic, neural network has been used, therefore, by using a learning algorithm the parameters have been changed until reach the optimal solution. Adaptive Neuro Fuzzy Inference System (ANFIS) computing due to ability to understand nonlinear structures is a popular framework for solving complex problems. Fusion of ANN and FIS has attracted the growing interest of researchers in various scientific and engineering areas due to the growing need of adaptive intelligent systems to solve the real world problems. In this research, an ANFIS method has been developed for modeling land use change and interpreting the relationship between the drivers of urbanization. Our study area is the city of Sanandaj located in the west of Iran. Landsat images acquired in 2000 and 2006 have been used for model development and calibration. The parameters used in this study include distance to major roads, distance to residential regions, elevation, number of urban pixels in a 3 by 3 neighborhood and distance to green space. Percent Correct Match (PCM) and Figure of Merit were used to assess model goodness of fit were 93.77% and 64.30%, respectively.
Cao, Hui; Li, Yao-Jiang; Zhou, Yan; Wang, Yan-Xia
2014-11-01
To deal with nonlinear characteristics of spectra data for the thermal power plant flue, a nonlinear partial least square (PLS) analysis method with internal model based on neural network is adopted in the paper. The latent variables of the independent variables and the dependent variables are extracted by PLS regression firstly, and then they are used as the inputs and outputs of neural network respectively to build the nonlinear internal model by train process. For spectra data of flue gases of the thermal power plant, PLS, the nonlinear PLS with the internal model of back propagation neural network (BP-NPLS), the non-linear PLS with the internal model of radial basis function neural network (RBF-NPLS) and the nonlinear PLS with the internal model of adaptive fuzzy inference system (ANFIS-NPLS) are compared. The root mean square error of prediction (RMSEP) of sulfur dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 16.96%, 16.60% and 19.55% than that of PLS, respectively. The RMSEP of nitric oxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 8.60%, 8.47% and 10.09% than that of PLS, respectively. The RMSEP of nitrogen dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 2.11%, 3.91% and 3.97% than that of PLS, respectively. Experimental results show that the nonlinear PLS is more suitable for the quantitative analysis of glue gas than PLS. Moreover, by using neural network function which can realize high approximation of nonlinear characteristics, the nonlinear partial least squares method with internal model mentioned in this paper have well predictive capabilities and robustness, and could deal with the limitations of nonlinear partial least squares method with other internal model such as polynomial and spline functions themselves under a certain extent. ANFIS-NPLS has the best performance with the internal model of adaptive fuzzy inference system having ability to learn more and reduce the residuals effectively. Hence, ANFIS-NPLS is an accurate and useful quantitative thermal power plant flue gas analysis method.
Shahinfar, Saleh; Mehrabani-Yeganeh, Hassan; Lucas, Caro; Kalhor, Ahmad; Kazemian, Majid; Weigel, Kent A.
2012-01-01
Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production. PMID:22991575
Design of fuzzy cognitive maps using neural networks for predicting chaotic time series.
Song, H J; Miao, C Y; Shen, Z Q; Roel, W; Maja, D H; Francky, C
2010-12-01
As a powerful paradigm for knowledge representation and a simulation mechanism applicable to numerous research and application fields, Fuzzy Cognitive Maps (FCMs) have attracted a great deal of attention from various research communities. However, the traditional FCMs do not provide efficient methods to determine the states of the investigated system and to quantify causalities which are the very foundation of the FCM theory. Therefore in many cases, constructing FCMs for complex causal systems greatly depends on expert knowledge. The manually developed models have a substantial shortcoming due to model subjectivity and difficulties with accessing its reliability. In this paper, we propose a fuzzy neural network to enhance the learning ability of FCMs so that the automatic determination of membership functions and quantification of causalities can be incorporated with the inference mechanism of conventional FCMs. In this manner, FCM models of the investigated systems can be automatically constructed from data, and therefore are independent of the experts. Furthermore, we employ mutual subsethood to define and describe the causalities in FCMs. It provides more explicit interpretation for causalities in FCMs and makes the inference process easier to understand. To validate the performance, the proposed approach is tested in predicting chaotic time series. The simulation studies show the effectiveness of the proposed approach. Copyright © 2010 Elsevier Ltd. All rights reserved.
Recurrent-neural-network-based Boolean factor analysis and its application to word clustering.
Frolov, Alexander A; Husek, Dusan; Polyakov, Pavel Yu
2009-07-01
The objective of this paper is to introduce a neural-network-based algorithm for word clustering as an extension of the neural-network-based Boolean factor analysis algorithm (Frolov , 2007). It is shown that this extended algorithm supports even the more complex model of signals that are supposed to be related to textual documents. It is hypothesized that every topic in textual data is characterized by a set of words which coherently appear in documents dedicated to a given topic. The appearance of each word in a document is coded by the activity of a particular neuron. In accordance with the Hebbian learning rule implemented in the network, sets of coherently appearing words (treated as factors) create tightly connected groups of neurons, hence, revealing them as attractors of the network dynamics. The found factors are eliminated from the network memory by the Hebbian unlearning rule facilitating the search of other factors. Topics related to the found sets of words can be identified based on the words' semantics. To make the method complete, a special technique based on a Bayesian procedure has been developed for the following purposes: first, to provide a complete description of factors in terms of component probability, and second, to enhance the accuracy of classification of signals to determine whether it contains the factor. Since it is assumed that every word may possibly contribute to several topics, the proposed method might be related to the method of fuzzy clustering. In this paper, we show that the results of Boolean factor analysis and fuzzy clustering are not contradictory, but complementary. To demonstrate the capabilities of this attempt, the method is applied to two types of textual data on neural networks in two different languages. The obtained topics and corresponding words are at a good level of agreement despite the fact that identical topics in Russian and English conferences contain different sets of keywords.
Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.
Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi
2013-01-01
The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.
Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan
2013-12-01
An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.
Catto, James W F; Linkens, Derek A; Abbod, Maysam F; Chen, Minyou; Burton, Julian L; Feeley, Kenneth M; Hamdy, Freddie C
2003-09-15
New techniques for the prediction of tumor behavior are needed, because statistical analysis has a poor accuracy and is not applicable to the individual. Artificial intelligence (AI) may provide these suitable methods. Whereas artificial neural networks (ANN), the best-studied form of AI, have been used successfully, its hidden networks remain an obstacle to its acceptance. Neuro-fuzzy modeling (NFM), another AI method, has a transparent functional layer and is without many of the drawbacks of ANN. We have compared the predictive accuracies of NFM, ANN, and traditional statistical methods, for the behavior of bladder cancer. Experimental molecular biomarkers, including p53 and the mismatch repair proteins, and conventional clinicopathological data were studied in a cohort of 109 patients with bladder cancer. For all three of the methods, models were produced to predict the presence and timing of a tumor relapse. Both methods of AI predicted relapse with an accuracy ranging from 88% to 95%. This was superior to statistical methods (71-77%; P < 0.0006). NFM appeared better than ANN at predicting the timing of relapse (P = 0.073). The use of AI can accurately predict cancer behavior. NFM has a similar or superior predictive accuracy to ANN. However, unlike the impenetrable "black-box" of a neural network, the rules of NFM are transparent, enabling validation from clinical knowledge and the manipulation of input variables to allow exploratory predictions. This technique could be used widely in a variety of areas of medicine.
A review and analysis of neural networks for classification of remotely sensed multispectral imagery
NASA Technical Reports Server (NTRS)
Paola, Justin D.; Schowengerdt, Robert A.
1993-01-01
A literature survey and analysis of the use of neural networks for the classification of remotely sensed multispectral imagery is presented. As part of a brief mathematical review, the backpropagation algorithm, which is the most common method of training multi-layer networks, is discussed with an emphasis on its application to pattern recognition. The analysis is divided into five aspects of neural network classification: (1) input data preprocessing, structure, and encoding; (2) output encoding and extraction of classes; (3) network architecture, (4) training algorithms; and (5) comparisons to conventional classifiers. The advantages of the neural network method over traditional classifiers are its non-parametric nature, arbitrary decision boundary capabilities, easy adaptation to different types of data and input structures, fuzzy output values that can enhance classification, and good generalization for use with multiple images. The disadvantages of the method are slow training time, inconsistent results due to random initial weights, and the requirement of obscure initialization values (e.g., learning rate and hidden layer size). Possible techniques for ameliorating these problems are discussed. It is concluded that, although the neural network method has several unique capabilities, it will become a useful tool in remote sensing only if it is made faster, more predictable, and easier to use.
Implementation of logic functions and computations by chemical kinetics
NASA Astrophysics Data System (ADS)
Hjelmfelt, A.; Ross, J.
We review our work on the computational functions of the kinetics of chemical networks. We examine spatially homogeneous networks which are based on prototypical reactions occurring in living cells and show the construction of logic gates and sequential and parallel networks. This work motivates the study of an important biochemical pathway, glycolysis, and we demonstrate that the switch that controls the flux in the direction of glycolysis or gluconeogenesis may be described as a fuzzy AND operator. We also study a spatially inhomogeneous network which shares features of theoretical and biological neural networks.
Neurocontrol and fuzzy logic: Connections and designs
NASA Technical Reports Server (NTRS)
Werbos, Paul J.
1991-01-01
Artificial neural networks (ANNs) and fuzzy logic are complementary technologies. ANNs extract information from systems to be learned or controlled, while fuzzy techniques mainly use verbal information from experts. Ideally, both sources of information should be combined. For example, one can learn rules in a hybrid fashion, and then calibrate them for better whole-system performance. ANNs offer universal approximation theorems, pedagogical advantages, very high-throughput hardware, and links to neurophysiology. Neurocontrol - the use of ANNs to directly control motors or actuators, etc. - uses five generalized designs, related to control theory, which can work on fuzzy logic systems as well as ANNs. These designs can copy what experts do instead of what they say, learn to track trajectories, generalize adaptive control, and maximize performance or minimize cost over time, even in noisy environments. Design tradeoffs and future directions are discussed throughout.
Exploiting expert systems in cardiology: a comparative study.
Economou, George-Peter K; Sourla, Efrosini; Stamatopoulou, Konstantina-Maria; Syrimpeis, Vasileios; Sioutas, Spyros; Tsakalidis, Athanasios; Tzimas, Giannis
2015-01-01
An improved Adaptive Neuro-Fuzzy Inference System (ANFIS) in the field of critical cardiovascular diseases is presented. The system stems from an earlier application based only on a Sugeno-type Fuzzy Expert System (FES) with the addition of an Artificial Neural Network (ANN) computational structure. Thus, inherent characteristics of ANNs, along with the human-like knowledge representation of fuzzy systems are integrated. The ANFIS has been utilized into building five different sub-systems, distinctly covering Coronary Disease, Hypertension, Atrial Fibrillation, Heart Failure, and Diabetes, hence aiding doctors of medicine (MDs), guide trainees, and encourage medical experts in their diagnoses centering a wide range of Cardiology. The Fuzzy Rules have been trimmed down and the ANNs have been optimized in order to focus into each particular disease and produce results ready-to-be applied to real-world patients.
A Neuro-Fuzzy Approach in the Classification of Students' Academic Performance
2013-01-01
Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions. PMID:24302928
A neuro-fuzzy approach in the classification of students' academic performance.
Do, Quang Hung; Chen, Jeng-Fung
2013-01-01
Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions.
Macrocell path loss prediction using artificial intelligence techniques
NASA Astrophysics Data System (ADS)
Usman, Abraham U.; Okereke, Okpo U.; Omizegba, Elijah E.
2014-04-01
The prediction of propagation loss is a practical non-linear function approximation problem which linear regression or auto-regression models are limited in their ability to handle. However, some computational Intelligence techniques such as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) have been shown to have great ability to handle non-linear function approximation and prediction problems. In this study, the multiple layer perceptron neural network (MLP-NN), radial basis function neural network (RBF-NN) and an ANFIS network were trained using actual signal strength measurement taken at certain suburban areas of Bauchi metropolis, Nigeria. The trained networks were then used to predict propagation losses at the stated areas under differing conditions. The predictions were compared with the prediction accuracy of the popular Hata model. It was observed that ANFIS model gave a better fit in all cases having higher R2 values in each case and on average is more robust than MLP and RBF models as it generalises better to a different data.
Motorized CPM/CAM physiotherapy device with sliding-mode Fuzzy Neural Network control loop.
Ho, Hung-Jung; Chen, Tien-Chi
2009-11-01
Continuous passive motion (CPM) and controllable active motion (CAM) physiotherapy devices promote rehabilitation of damaged joints. This paper presents a computerized CPM/CAM system that obviates the need for mechanical resistance devices such as springs. The system is controlled by a computer which performs sliding-mode Fuzzy Neural Network (FNN) calculations online. CAM-type resistance force is generated by the active performance of an electric motor which is controlled so as to oppose the motion of the patient's leg. A force sensor under the patient's foot on the device pedal provides data for feedback in a sliding-mode FNN control loop built around the motor. Via an active impedance control feedback system, the controller drives the motor to behave similarly to a damped spring by generating and controlling the amplitude and direction of the pedal force in relation to the patient's leg. Experiments demonstrate the high sensitivity and speed of the device. The PC-based feedback nature of the control loop means that sophisticated auto-adaptable CPM/CAM custom-designed physiotherapy becomes possible. The computer base also allows extensive data recording, data analysis and network-connected remote patient monitoring.
NASA Astrophysics Data System (ADS)
Ansari, Hamid Reza
2014-09-01
In this paper we propose a new method for predicting rock porosity based on a combination of several artificial intelligence systems. The method focuses on one of the Iranian carbonate fields in the Persian Gulf. Because there is strong heterogeneity in carbonate formations, estimation of rock properties experiences more challenge than sandstone. For this purpose, seismic colored inversion (SCI) and a new approach of committee machine are used in order to improve porosity estimation. The study comprises three major steps. First, a series of sample-based attributes is calculated from 3D seismic volume. Acoustic impedance is an important attribute that is obtained by the SCI method in this study. Second, porosity log is predicted from seismic attributes using common intelligent computation systems including: probabilistic neural network (PNN), radial basis function network (RBFN), multi-layer feed forward network (MLFN), ε-support vector regression (ε-SVR) and adaptive neuro-fuzzy inference system (ANFIS). Finally, a power law committee machine (PLCM) is constructed based on imperial competitive algorithm (ICA) to combine the results of all previous predictions in a single solution. This technique is called PLCM-ICA in this paper. The results show that PLCM-ICA model improved the results of neural networks, support vector machine and neuro-fuzzy system.
Anfis Approach for Sssc Controller Design for the Improvement of Transient Stability Performance
NASA Astrophysics Data System (ADS)
Khuntia, Swasti R.; Panda, Sidhartha
2011-06-01
In this paper, Adaptive Neuro-Fuzzy Inference System (ANFIS) method based on the Artificial Neural Network (ANN) is applied to design a Static Synchronous Series Compensator (SSSC)-based controller for improvement of transient stability. The proposed ANFIS controller combines the advantages of fuzzy controller and quick response and adaptability nature of ANN. The ANFIS structures were trained using the generated database by fuzzy controller of SSSC. It is observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances. The results prove that the proposed SSSC-based ANFIS controller is found to be robust to fault location and change in operating conditions. Further, the results obtained are compared with the conventional lead-lag controllers for SSSC.
NASA Astrophysics Data System (ADS)
Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi
2016-09-01
This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.
Bianconi, André; Zuben, Cláudio J. Von; Serapião, Adriane B. de S.; Govone, José S.
2010-01-01
Bionomic features of blowflies may be clarified and detailed by the deployment of appropriate modelling techniques such as artificial neural networks, which are mathematical tools widely applied to the resolution of complex biological problems. The principal aim of this work was to use three well-known neural networks, namely Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), and Adaptive Neural Network-Based Fuzzy Inference System (ANFIS), to ascertain whether these tools would be able to outperform a classical statistical method (multiple linear regression) in the prediction of the number of resultant adults (survivors) of experimental populations of Chrysomya megacephala (F.) (Diptera: Calliphoridae), based on initial larval density (number of larvae), amount of available food, and duration of immature stages. The coefficient of determination (R2) derived from the RBF was the lowest in the testing subset in relation to the other neural networks, even though its R2 in the training subset exhibited virtually a maximum value. The ANFIS model permitted the achievement of the best testing performance. Hence this model was deemed to be more effective in relation to MLP and RBF for predicting the number of survivors. All three networks outperformed the multiple linear regression, indicating that neural models could be taken as feasible techniques for predicting bionomic variables concerning the nutritional dynamics of blowflies. PMID:20569135
Liu, Meiqin; Zhang, Senlin
2008-10-01
A unified neural network model termed standard neural network model (SNNM) is advanced. Based on the robust L(2) gain (i.e. robust H(infinity) performance) analysis of the SNNM with external disturbances, a state-feedback control law is designed for the SNNM to stabilize the closed-loop system and eliminate the effect of external disturbances. The control design constraints are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms (e.g. interior-point algorithms) to determine the control law. Most discrete-time recurrent neural network (RNNs) and discrete-time nonlinear systems modelled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be robust H(infinity) performance analyzed or robust H(infinity) controller synthesized in a unified SNNM's framework. Finally, some examples are presented to illustrate the wide application of the SNNMs to the nonlinear systems, and the proposed approach is compared with related methods reported in the literature.
NASA Astrophysics Data System (ADS)
Hussain Mutlag, Ammar; Mohamed, Azah; Shareef, Hussain
2016-03-01
Maximum power point tracking (MPPT) is normally required to improve the performance of photovoltaic (PV) systems. This paper presents artificial intelligent-based maximum power point tracking (AI-MPPT) by considering three artificial intelligent techniques, namely, artificial neural network (ANN), adaptive neuro fuzzy inference system with seven triangular fuzzy sets (7-tri), and adaptive neuro fuzzy inference system with seven gbell fuzzy sets. The AI-MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with the capacity of 3 kW peak. A complete PV system is modelled using 300,000 data samples and simulated in the MATLAB/SIMULINK. The AI-MPPT has been tested under real environmental conditions for two days from 8 am to 18 pm. The results showed that the ANN based MPPT gives the most accurate performance and then followed by the 7-tri-based MPPT.
Neuro-fuzzy model for estimating race and gender from geometric distances of human face across pose
NASA Astrophysics Data System (ADS)
Nanaa, K.; Rahman, M. N. A.; Rizon, M.; Mohamad, F. S.; Mamat, M.
2018-03-01
Classifying human face based on race and gender is a vital process in face recognition. It contributes to an index database and eases 3D synthesis of the human face. Identifying race and gender based on intrinsic factor is problematic, which is more fitting to utilizing nonlinear model for estimating process. In this paper, we aim to estimate race and gender in varied head pose. For this purpose, we collect dataset from PICS and CAS-PEAL databases, detect the landmarks and rotate them to the frontal pose. After geometric distances are calculated, all of distance values will be normalized. Implementation is carried out by using Neural Network Model and Fuzzy Logic Model. These models are combined by using Adaptive Neuro-Fuzzy Model. The experimental results showed that the optimization of address fuzzy membership. Model gives a better assessment rate and found that estimating race contributing to a more accurate gender assessment.
Fuzzy logic in autonomous orbital operations
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.
NASA Astrophysics Data System (ADS)
Hsiao, Feng-Hsiag
2016-10-01
In this study, a novel approach via improved genetic algorithm (IGA)-based fuzzy observer is proposed to realise exponential optimal H∞ synchronisation and secure communication in multiple time-delay chaotic (MTDC) systems. First, an original message is inserted into the MTDC system. Then, a neural-network (NN) model is employed to approximate the MTDC system. Next, a linear differential inclusion (LDI) state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, this study proposes a delay-dependent exponential stability criterion derived in terms of Lyapunov's direct method, thus ensuring that the trajectories of the slave system approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI). Due to GA's random global optimisation search capabilities, the lower and upper bounds of the search space can be set so that the GA will seek better fuzzy observer feedback gains, accelerating feedback gain-based synchronisation via the LMI-based approach. IGA, which exhibits better performance than traditional GA, is used to synthesise a fuzzy observer to not only realise the exponential synchronisation, but also achieve optimal H∞ performance by minimizing the disturbance attenuation level and recovering the transmitted message. Finally, a numerical example with simulations is given in order to demonstrate the effectiveness of our approach.
Dropout Prediction in E-Learning Courses through the Combination of Machine Learning Techniques
ERIC Educational Resources Information Center
Lykourentzou, Ioanna; Giannoukos, Ioannis; Nikolopoulos, Vassilis; Mpardis, George; Loumos, Vassili
2009-01-01
In this paper, a dropout prediction method for e-learning courses, based on three popular machine learning techniques and detailed student data, is proposed. The machine learning techniques used are feed-forward neural networks, support vector machines and probabilistic ensemble simplified fuzzy ARTMAP. Since a single technique may fail to…
First CLIPS Conference Proceedings, volume 2
NASA Technical Reports Server (NTRS)
1990-01-01
The topics of volume 2 of First CLIPS Conference are associated with following applications: quality control; intelligent data bases and networks; Space Station Freedom; Space Shuttle and satellite; user interface; artificial neural systems and fuzzy logic; parallel and distributed processing; enchancements to CLIPS; aerospace; simulation and defense; advisory systems and tutors; and intelligent control.
Discrimination of Mixed Taste Solutions using Ultrasonic Wave and Soft Computing
NASA Astrophysics Data System (ADS)
Kojima, Yohichiro; Kimura, Futoshi; Mikami, Tsuyoshi; Kitama, Masataka
In this study, ultrasonic wave acoustic properties of mixed taste solutions were investigated, and the possibility of taste sensing based on the acoustical properties obtained was examined. In previous studies, properties of solutions were discriminated based on sound velocity, amplitude and frequency characteristics of ultrasonic waves propagating through the five basic taste solutions and marketed beverages. However, to make this method applicable to beverages that contain many taste substances, further studies are required. In this paper, the waveform of an ultrasonic wave with frequency of approximately 5 MHz propagating through mixed solutions composed of sweet and salty substance was measured. As a result, differences among solutions were clearly observed as differences in their properties. Furthermore, these mixed solutions were discriminated by a self-organizing neural network. The ratio of volume in their mixed solutions was estimated by a distance-type fuzzy reasoning method. Therefore, the possibility of taste sensing was shown by using ultrasonic wave acoustic properties and the soft computing, such as the self-organizing neural network and the distance-type fuzzy reasoning method.
Ruan, Jujun; Zhang, Chao; Li, Ya; Li, Peiyi; Yang, Zaizhi; Chen, Xiaohong; Huang, Mingzhi; Zhang, Tao
2017-02-01
This work proposes an on-line hybrid intelligent control system based on a genetic algorithm (GA) evolving fuzzy wavelet neural network software sensor to control dissolved oxygen (DO) in an anaerobic/anoxic/oxic process for treating papermaking wastewater. With the self-learning and memory abilities of neural network, handling the uncertainty capacity of fuzzy logic, analyzing local detail superiority of wavelet transform and global search of GA, this proposed control system can extract the dynamic behavior and complex interrelationships between various operation variables. The results indicate that the reasonable forecasting and control performances were achieved with optimal DO, and the effluent quality was stable at and below the desired values in real time. Our proposed hybrid approach proved to be a robust and effective DO control tool, attaining not only adequate effluent quality but also minimizing the demand for energy, and is easily integrated into a global monitoring system for purposes of cost management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Intelligent robust tracking control for a class of uncertain strict-feedback nonlinear systems.
Chang, Yeong-Chan
2009-02-01
This paper addresses the problem of designing robust tracking controls for a large class of strict-feedback nonlinear systems involving plant uncertainties and external disturbances. The input and virtual input weighting matrices are perturbed by bounded time-varying uncertainties. An adaptive fuzzy-based (or neural-network-based) dynamic feedback tracking controller will be developed such that all the states and signals of the closed-loop system are bounded and the trajectory tracking error should be as small as possible. First, the adaptive approximators with linearly parameterized models are designed, and a partitioned procedure with respect to the developed adaptive approximators is proposed such that the implementation of the fuzzy (or neural network) basis functions depends only on the state variables but does not depend on the tuning approximation parameters. Furthermore, we extend to design the nonlinearly parameterized adaptive approximators. Consequently, the intelligent robust tracking control schemes developed in this paper possess the properties of computational simplicity and easy implementation. Finally, simulation examples are presented to demonstrate the effectiveness of the proposed control algorithms.
Modification of Hazen's equation in coarse grained soils by soft computing techniques
NASA Astrophysics Data System (ADS)
Kaynar, Oguz; Yilmaz, Isik; Marschalko, Marian; Bednarik, Martin; Fojtova, Lucie
2013-04-01
Hazen first proposed a Relationship between coefficient of permeability (k) and effective grain size (d10) was first proposed by Hazen, and it was then extended by some other researchers. However many attempts were done for estimation of k, correlation coefficients (R2) of the models were generally lower than ~0.80 and whole grain size distribution curves were not included in the assessments. Soft computing techniques such as; artificial neural networks, fuzzy inference systems, genetic algorithms, etc. and their hybrids are now being successfully used as an alternative tool. In this study, use of some soft computing techniques such as Artificial Neural Networks (ANNs) (MLP, RBF, etc.) and Adaptive Neuro-Fuzzy Inference System (ANFIS) for prediction of permeability of coarse grained soils was described, and Hazen's equation was then modificated. It was found that the soft computing models exhibited high performance in prediction of permeability coefficient. However four different kinds of ANN algorithms showed similar prediction performance, results of MLP was found to be relatively more accurate than RBF models. The most reliable prediction was obtained from ANFIS model.
NASA Astrophysics Data System (ADS)
Heidary, Saeed; Setayeshi, Saeed; Ghannadi-Maragheh, Mohammad
2014-09-01
The aim of this study is to compare the adaptive neuro-fuzzy inference system (ANFIS) and the artificial neural network (ANN) to estimate the cross-talk contamination of 99 m Tc / 201 Tl image acquisition in the 201 Tl energy window (77 ± 15% keV). GATE (Geant4 Application in Emission and Tomography) is employed due to its ability to simulate multiple radioactive sources concurrently. Two kinds of phantoms, including two digital and one physical phantom, are used. In the real and the simulation studies, data acquisition is carried out using eight energy windows. The ANN and the ANFIS are prepared in MATLAB, and the GATE results are used as a training data set. Three indications are evaluated and compared. The ANFIS method yields better outcomes for two indications (Spearman's rank correlation coefficient and contrast) and the two phantom results in each category. The maximum image biasing, which is the third indication, is found to be 6% more than that for the ANN.
Assessing the Health of LiFePO4 Traction Batteries through Monotonic Echo State Networks
Anseán, David; Otero, José; Couso, Inés
2017-01-01
A soft sensor is presented that approximates certain health parameters of automotive rechargeable batteries from on-vehicle measurements of current and voltage. The sensor is based on a model of the open circuit voltage curve. This last model is implemented through monotonic neural networks and estimate over-potentials arising from the evolution in time of the Lithium concentration in the electrodes of the battery. The proposed soft sensor is able to exploit the information contained in operational records of the vehicle better than the alternatives, this being particularly true when the charge or discharge currents are between moderate and high. The accuracy of the neural model has been compared to different alternatives, including data-driven statistical models, first principle-based models, fuzzy observers and other recurrent neural networks with different topologies. It is concluded that monotonic echo state networks can outperform well established first-principle models. The algorithms have been validated with automotive Li-FePO4 cells. PMID:29267219
NASA Astrophysics Data System (ADS)
Kurtulus, Bedri; Razack, Moumtaz
2010-02-01
SummaryThis paper compares two methods for modeling karst aquifers, which are heterogeneous, highly non-linear, and hierarchical systems. There is a clear need to model these systems given the crucial role they play in water supply in many countries. In recent years, the main components of soft computing (fuzzy logic (FL), and Artificial Neural Networks, (ANNs)) have come to prevail in the modeling of complex non-linear systems in different scientific and technologic disciplines. In this study, Artificial Neural Networks and Adaptive Neuro-Fuzzy Interface System (ANFIS) methods were used for the prediction of daily discharge of karstic aquifers and their capability was compared. The approach was applied to 7 years of daily data of La Rochefoucauld karst system in south-western France. In order to predict the karst daily discharges, single-input (rainfall, piezometric level) vs. multiple-input (rainfall and piezometric level) series were used. In addition to these inputs, all models used measured or simulated discharges from the previous days with a specified delay. The models were designed in a Matlab™ environment. An automatic procedure was used to select the best calibrated models. Daily discharge predictions were then performed using the calibrated models. Comparing predicted and observed hydrographs indicates that both models (ANN and ANFIS) provide close predictions of the karst daily discharges. The summary statistics of both series (observed and predicted daily discharges) are comparable. The performance of both models is improved when the number of inputs is increased from one to two. The root mean square error between the observed and predicted series reaches a minimum for two-input models. However, the ANFIS model demonstrates a better performance than the ANN model to predict peak flow. The ANFIS approach demonstrates a better generalization capability and slightly higher performance than the ANN, especially for peak discharges.
NASA Astrophysics Data System (ADS)
Megherbi, Dalila B.; Lodhi, S. M.; Boulenouar, A. J.
2001-03-01
This work is in the field of automated document processing. This work addresses the problem of representation and recognition of Urdu characters using Fourier representation and a Neural Network architecture. In particular, we show that a two-stage Neural Network scheme is used here to make classification of 36 Urdu characters into seven sub-classes namely subclasses characterized by seven proposed and defined fuzzy features specifically related to Urdu characters. We show that here Fourier Descriptors and Neural Network provide a remarkably simple way to draw definite conclusions from vague, ambiguous, noisy or imprecise information. In particular, we illustrate the concept of interest regions and describe a framing method that provides a way to make the proposed technique for Urdu characters recognition robust and invariant to scaling and translation. We also show that a given character rotation is dealt with by using the Hotelling transform. This transform is based upon the eigenvalue decomposition of the covariance matrix of an image, providing a method of determining the orientation of the major axis of an object within an image. Finally experimental results are presented to show the power and robustness of the proposed two-stage Neural Network based technique for Urdu character recognition, its fault tolerance, and high recognition accuracy.
Knowledge and intelligent computing system in medicine.
Pandey, Babita; Mishra, R B
2009-03-01
Knowledge-based systems (KBS) and intelligent computing systems have been used in the medical planning, diagnosis and treatment. The KBS consists of rule-based reasoning (RBR), case-based reasoning (CBR) and model-based reasoning (MBR) whereas intelligent computing method (ICM) encompasses genetic algorithm (GA), artificial neural network (ANN), fuzzy logic (FL) and others. The combination of methods in KBS such as CBR-RBR, CBR-MBR and RBR-CBR-MBR and the combination of methods in ICM is ANN-GA, fuzzy-ANN, fuzzy-GA and fuzzy-ANN-GA. The combination of methods from KBS to ICM is RBR-ANN, CBR-ANN, RBR-CBR-ANN, fuzzy-RBR, fuzzy-CBR and fuzzy-CBR-ANN. In this paper, we have made a study of different singular and combined methods (185 in number) applicable to medical domain from mid 1970s to 2008. The study is presented in tabular form, showing the methods and its salient features, processes and application areas in medical domain (diagnosis, treatment and planning). It is observed that most of the methods are used in medical diagnosis very few are used for planning and moderate number in treatment. The study and its presentation in this context would be helpful for novice researchers in the area of medical expert system.
Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions.
Abe, S
1998-01-01
In this paper, we discuss a fuzzy classifier with ellipsoidal regions that dynamically generates clusters. First, for the data belonging to a class we define a fuzzy rule with an ellipsoidal region. Namely, using the training data for each class, we calculate the center and the covariance matrix of the ellipsoidal region for the class. Then we tune the fuzzy rules, i.e., the slopes of the membership functions, successively until there is no improvement in the recognition rate of the training data. Then if the number of the data belonging to a class that are misclassified into another class exceeds a prescribed number, we define a new cluster to which those data belong and the associated fuzzy rule. Then we tune the newly defined fuzzy rules in the similar way as stated above, fixing the already obtained fuzzy rules. We iterate generation of clusters and tuning of the newly generated fuzzy rules until the number of the data belonging to a class that are misclassified into another class does not exceed the prescribed number. We evaluate our method using thyroid data, Japanese Hiragana data of vehicle license plates, and blood cell data. By dynamic cluster generation, the generalization ability of the classifier is improved and the recognition rate of the fuzzy classifier for the test data is the best among the neural network classifiers and other fuzzy classifiers if there are no discrete input variables.
NASA Astrophysics Data System (ADS)
Savari, Maryam; Moghaddam, Amin Hedayati; Amiri, Ahmad; Shanbedi, Mehdi; Ayub, Mohamad Nizam Bin
2017-10-01
Herein, artificial neural network and adaptive neuro-fuzzy inference system are employed for modeling the effects of important parameters on heat transfer and fluid flow characteristics of a car radiator and followed by comparing with those of the experimental results for testing data. To this end, two novel nanofluids (water/ethylene glycol-based graphene and nitrogen-doped graphene nanofluids) were experimentally synthesized. Then, Nusselt number was modeled with respect to the variation of inlet temperature, Reynolds number, Prandtl number and concentration, which were defined as the input (design) variables. To reach reliable results, we divided these data into train and test sections to accomplish modeling. Artificial networks were instructed by a major part of experimental data. The other part of primary data which had been considered for testing the appropriateness of the models was entered into artificial network models. Finally, predictad results were compared to the experimental data to evaluate validity. Confronted with high-level of validity confirmed that the proposed modeling procedure by BPNN with one hidden layer and five neurons is efficient and it can be expanded for all water/ethylene glycol-based carbon nanostructures nanofluids. Finally, we expanded our data collection from model and could present a fundamental correlation for calculating Nusselt number of the water/ethylene glycol-based nanofluids including graphene or nitrogen-doped graphene.
Azarkhish, Iman; Raoufy, Mohammad Reza; Gharibzadeh, Shahriar
2012-06-01
Iron deficiency anemia (IDA) is the most common nutritional deficiency worldwide. Measuring serum iron is time consuming, expensive and not available in most hospitals. In this study, based on four accessible laboratory data (MCV, MCH, MCHC, Hb/RBC), we developed an artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) to diagnose the IDA and to predict serum iron level. Our results represent that the neural network analysis is superior to ANFIS and logistic regression models in diagnosing IDA. Moreover, the results show that the ANN is likely to provide an accurate test for predicting serum iron levels with high accuracy and acceptable precision.
Mizutani, Eiji; Demmel, James W
2003-01-01
This paper briefly introduces our numerical linear algebra approaches for solving structured nonlinear least squares problems arising from 'multiple-output' neural-network (NN) models. Our algorithms feature trust-region regularization, and exploit sparsity of either the 'block-angular' residual Jacobian matrix or the 'block-arrow' Gauss-Newton Hessian (or Fisher information matrix in statistical sense) depending on problem scale so as to render a large class of NN-learning algorithms 'efficient' in both memory and operation costs. Using a relatively large real-world nonlinear regression application, we shall explain algorithmic strengths and weaknesses, analyzing simulation results obtained by both direct and iterative trust-region algorithms with two distinct NN models: 'multilayer perceptrons' (MLP) and 'complementary mixtures of MLP-experts' (or neuro-fuzzy modular networks).
SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot.
Ferreira, João P; Crisóstomo, Manuel M; Coimbra, A Paulo
2009-12-01
The real-time balance control of an eight-link biped robot using a zero moment point (ZMP) dynamic model is difficult due to the processing time of the corresponding equations. To overcome this limitation, two alternative intelligent computing control techniques were compared: one based on support vector regression (SVR) and another based on a first-order Takagi-Sugeno-Kang (TSK)-type neural-fuzzy (NF) network. Both methods use the ZMP error and its variation as inputs and the output is the correction of the robot's torso necessary for its sagittal balance. The SVR and the NF were trained based on simulation data and their performance was verified with a real biped robot. Two performance indexes are proposed to evaluate and compare the online performance of the two control methods. The ZMP is calculated by reading four force sensors placed under each robot's foot. The gait implemented in this biped is similar to a human gait that was acquired and adapted to the robot's size. Some experiments are presented and the results show that the implemented gait combined either with the SVR controller or with the TSK NF network controller can be used to control this biped robot. The SVR and the NF controllers exhibit similar stability, but the SVR controller runs about 50 times faster.
Hosseini, Seyed Abolfazl; Esmaili Paeen Afrakoti, Iman
2018-01-17
The purpose of the present study was to reconstruct the energy spectrum of a poly-energetic neutron source using an algorithm developed based on an Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS is a kind of artificial neural network based on the Takagi-Sugeno fuzzy inference system. The ANFIS algorithm uses the advantages of both fuzzy inference systems and artificial neural networks to improve the effectiveness of algorithms in various applications such as modeling, control and classification. The neutron pulse height distributions used as input data in the training procedure for the ANFIS algorithm were obtained from the simulations performed by MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). Taking into account the normalization condition of each energy spectrum, 4300 neutron energy spectra were generated randomly. (The value in each bin was generated randomly, and finally a normalization of each generated energy spectrum was performed). The randomly generated neutron energy spectra were considered as output data of the developed ANFIS computational code in the training step. To calculate the neutron energy spectrum using conventional methods, an inverse problem with an approximately singular response matrix (with the determinant of the matrix close to zero) should be solved. The solution of the inverse problem using the conventional methods unfold neutron energy spectrum with low accuracy. Application of the iterative algorithms in the solution of such a problem, or utilizing the intelligent algorithms (in which there is no need to solve the problem), is usually preferred for unfolding of the energy spectrum. Therefore, the main reason for development of intelligent algorithms like ANFIS for unfolding of neutron energy spectra is to avoid solving the inverse problem. In the present study, the unfolded neutron energy spectra of 252Cf and 241Am-9Be neutron sources using the developed computational code were found to have excellent agreement with the reference data. Also, the unfolded energy spectra of the neutron sources as obtained using ANFIS were more accurate than the results reported from calculations performed using artificial neural networks in previously published papers. © The Author(s) 2018. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Vector control of wind turbine on the basis of the fuzzy selective neural net*
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-04-01
An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.
Hybrid supervisory control using recurrent fuzzy neural network for tracking periodic inputs.
Lin, F J; Wai, R J; Hong, C M
2001-01-01
A hybrid supervisory control system using a recurrent fuzzy neural network (RFNN) is proposed to control the mover of a permanent magnet linear synchronous motor (PMLSM) servo drive for the tracking of periodic reference inputs. First, the field-oriented mechanism is applied to formulate the dynamic equation of the PMLSM. Then, a hybrid supervisory control system, which combines a supervisory control system and an intelligent control system, is proposed to control the mover of the PMLSM for periodic motion. The supervisory control law is designed based on the uncertainty bounds of the controlled system to stabilize the system states around a predefined bound region. Since the supervisory control law will induce excessive and chattering control effort, the intelligent control system is introduced to smooth and reduce the control effort when the system states are inside the predefined bound region. In the intelligent control system, the RFNN control is the main tracking controller which is used to mimic a idea control law and a compensated control is proposed to compensate the difference between the idea control law and the RFNN control. The RFNN has the merits of fuzzy inference, dynamic mapping and fast convergence speed, In addition, an online parameter training methodology, which is derived using the Lyapunov stability theorem and the gradient descent method, is proposed to increase the learning capability of the RFNN. The proposed hybrid supervisory control system using RFNN can track various periodic reference inputs effectively with robust control performance.
Training Software in Artificial-Intelligence Computing Techniques
NASA Technical Reports Server (NTRS)
Howard, Ayanna; Rogstad, Eric; Chalfant, Eugene
2005-01-01
The Artificial Intelligence (AI) Toolkit is a computer program for training scientists, engineers, and university students in three soft-computing techniques (fuzzy logic, neural networks, and genetic algorithms) used in artificial-intelligence applications. The program promotes an easily understandable tutorial interface, including an interactive graphical component through which the user can gain hands-on experience in soft-computing techniques applied to realistic example problems. The tutorial provides step-by-step instructions on the workings of soft-computing technology, whereas the hands-on examples allow interaction and reinforcement of the techniques explained throughout the tutorial. In the fuzzy-logic example, a user can interact with a robot and an obstacle course to verify how fuzzy logic is used to command a rover traverse from an arbitrary start to the goal location. For the genetic algorithm example, the problem is to determine the minimum-length path for visiting a user-chosen set of planets in the solar system. For the neural-network example, the problem is to decide, on the basis of input data on physical characteristics, whether a person is a man, woman, or child. The AI Toolkit is compatible with the Windows 95,98, ME, NT 4.0, 2000, and XP operating systems. A computer having a processor speed of at least 300 MHz, and random-access memory of at least 56MB is recommended for optimal performance. The program can be run on a slower computer having less memory, but some functions may not be executed properly.
A neuro approach to solve fuzzy Riccati differential equations
NASA Astrophysics Data System (ADS)
Shahrir, Mohammad Shazri; Kumaresan, N.; Kamali, M. Z. M.; Ratnavelu, Kurunathan
2015-10-01
There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.
A neuro approach to solve fuzzy Riccati differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahrir, Mohammad Shazri, E-mail: mshazri@gmail.com; Telekom Malaysia, R&D TM Innovation Centre, LingkaranTeknokrat Timur, 63000 Cyberjaya, Selangor; Kumaresan, N., E-mail: drnk2008@gmail.com
There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.
Trends and Issues in Fuzzy Control and Neuro-Fuzzy Modeling
NASA Technical Reports Server (NTRS)
Chiu, Stephen
1996-01-01
Everyday experience in building and repairing things around the home have taught us the importance of using the right tool for the right job. Although we tend to think of a 'job' in broad terms, such as 'build a bookcase,' we understand well that the 'right job' associated with each 'right tool' is typically a narrowly bounded subtask, such as 'tighten the screws.' Unfortunately, we often lose sight of this principle when solving engineering problems; we treat a broadly defined problem, such as controlling or modeling a system, as a narrow one that has a single 'right tool' (e.g., linear analysis, fuzzy logic, neural network). We need to recognize that a typical real-world problem contains a number of different sub-problems, and that a truly optimal solution (the best combination of cost, performance and feature) is obtained by applying the right tool to the right sub-problem. Here I share some of my perspectives on what constitutes the 'right job' for fuzzy control and describe recent advances in neuro-fuzzy modeling to illustrate and to motivate the synergistic use of different tools.
NASA Astrophysics Data System (ADS)
Kiso, Atsushi; Seki, Hirokazu
This paper describes a method for discriminating of the human forearm motions based on the myoelectric signals using an adaptive fuzzy inference system. In conventional studies, the neural network is often used to estimate motion intention by the myoelectric signals and realizes the high discrimination precision. On the other hand, this study uses the fuzzy inference for a human forearm motion discrimination based on the myoelectric signals. This study designs the membership function and the fuzzy rules using the average value and the standard deviation of the root mean square of the myoelectric potential for every channel of each motion. In addition, the characteristics of the myoelectric potential gradually change as a result of the muscle fatigue. Therefore, the motion discrimination should be performed by taking muscle fatigue into consideration. This study proposes a method to redesign the fuzzy inference system such that dynamic change of the myoelectric potential because of the muscle fatigue will be taken into account. Some experiments carried out using a myoelectric hand simulator show the effectiveness of the proposed motion discrimination method.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
NASA Astrophysics Data System (ADS)
Baumann, Erwin W.; Williams, David L.
1993-08-01
Artificial neural networks capable of learning and recalling stochastic associations between non-deterministic quantities have received relatively little attention to date. One potential application of such stochastic associative networks is the generation of sensory 'expectations' based on arbitrary subsets of sensor inputs to support anticipatory and investigate behavior in sensor-based robots. Another application of this type of associative memory is the prediction of how a scene will look in one spectral band, including noise, based upon its appearance in several other wavebands. This paper describes a semi-supervised neural network architecture composed of self-organizing maps associated through stochastic inter-layer connections. This 'Stochastic Associative Memory' (SAM) can learn and recall non-deterministic associations between multi-dimensional probability density functions. The stochastic nature of the network also enables it to represent noise distributions that are inherent in any true sensing process. The SAM architecture, training process, and initial application to sensor image prediction are described. Relationships to Fuzzy Associative Memory (FAM) are discussed.
Li, Meina; Kwak, Keun-Chang; Kim, Youn Tae
2016-01-01
Conventionally, indirect calorimetry has been used to estimate oxygen consumption in an effort to accurately measure human body energy expenditure. However, calorimetry requires the subject to wear a mask that is neither convenient nor comfortable. The purpose of our study is to develop a patch-type sensor module with an embedded incremental radial basis function neural network (RBFNN) for estimating the energy expenditure. The sensor module contains one ECG electrode and a three-axis accelerometer, and can perform real-time heart rate (HR) and movement index (MI) monitoring. The embedded incremental network includes linear regression (LR) and RBFNN based on context-based fuzzy c-means (CFCM) clustering. This incremental network is constructed by building a collection of information granules through CFCM clustering that is guided by the distribution of error of the linear part of the LR model. PMID:27669249
Perendeci, Altinay; Arslan, Sever; Tanyolaç, Abdurrahman; Celebi, Serdar S
2009-10-01
A conceptual neural fuzzy model based on adaptive-network based fuzzy inference system, ANFIS, was proposed using available input on-line and off-line operational variables for a sugar factory anaerobic wastewater treatment plant operating under unsteady state to estimate the effluent chemical oxygen demand, COD. The predictive power of the developed model was improved as a new approach by adding the phase vector and the recent values of COD up to 5-10 days, longer than overall retention time of wastewater in the system. History of last 10 days for COD effluent with two-valued phase vector in the input variable matrix including all parameters had more predictive power. History of 7 days with two-valued phase vector in the matrix comprised of only on-line variables yielded fairly well estimations. The developed ANFIS model with phase vector and history extension has been able to adequately represent the behavior of the treatment system.
A hierarchical two-phase framework for selecting genes in cancer datasets with a neuro-fuzzy system.
Lim, Jongwoo; Wang, Bohyun; Lim, Joon S
2016-04-29
Finding the minimum number of appropriate biomarkers for specific targets such as a lung cancer has been a challenging issue in bioinformatics. We propose a hierarchical two-phase framework for selecting appropriate biomarkers that extracts candidate biomarkers from the cancer microarray datasets and then selects the minimum number of appropriate biomarkers from the extracted candidate biomarkers datasets with a specific neuro-fuzzy algorithm, which is called a neural network with weighted fuzzy membership function (NEWFM). In this context, as the first phase, the proposed framework is to extract candidate biomarkers by using a Bhattacharyya distance method that measures the similarity of two discrete probability distributions. Finally, the proposed framework is able to reduce the cost of finding biomarkers by not receiving medical supplements and improve the accuracy of the biomarkers in specific cancer target datasets.
Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm
NASA Technical Reports Server (NTRS)
Mitra, Sunanda; Pemmaraju, Surya
1992-01-01
Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.
Fuzzy bilevel programming with multiple non-cooperative followers: model, algorithm and application
NASA Astrophysics Data System (ADS)
Ke, Hua; Huang, Hu; Ralescu, Dan A.; Wang, Lei
2016-04-01
In centralized decision problems, it is not complicated for decision-makers to make modelling technique selections under uncertainty. When a decentralized decision problem is considered, however, choosing appropriate models is no longer easy due to the difficulty in estimating the other decision-makers' inconclusive decision criteria. These decision criteria may vary with different decision-makers because of their special risk tolerances and management requirements. Considering the general differences among the decision-makers in decentralized systems, we propose a general framework of fuzzy bilevel programming including hybrid models (integrated with different modelling methods in different levels). Specially, we discuss two of these models which may have wide applications in many fields. Furthermore, we apply the proposed two models to formulate a pricing decision problem in a decentralized supply chain with fuzzy coefficients. In order to solve these models, a hybrid intelligent algorithm integrating fuzzy simulation, neural network and particle swarm optimization based on penalty function approach is designed. Some suggestions on the applications of these models are also presented.
Intelligent voltage control strategy for three-phase UPS inverters with output LC filter
NASA Astrophysics Data System (ADS)
Jung, J. W.; Leu, V. Q.; Dang, D. Q.; Do, T. D.; Mwasilu, F.; Choi, H. H.
2015-08-01
This paper presents a supervisory fuzzy neural network control (SFNNC) method for a three-phase inverter of uninterruptible power supplies (UPSs). The proposed voltage controller is comprised of a fuzzy neural network control (FNNC) term and a supervisory control term. The FNNC term is deliberately employed to estimate the uncertain terms, and the supervisory control term is designed based on the sliding mode technique to stabilise the system dynamic errors. To improve the learning capability, the FNNC term incorporates an online parameter training methodology, using the gradient descent method and Lyapunov stability theory. Besides, a linear load current observer that estimates the load currents is used to exclude the load current sensors. The proposed SFNN controller and the observer are robust to the filter inductance variations, and their stability analyses are described in detail. The experimental results obtained on a prototype UPS test bed with a TMS320F28335 DSP are presented to validate the feasibility of the proposed scheme. Verification results demonstrate that the proposed control strategy can achieve smaller steady-state error and lower total harmonic distortion when subjected to nonlinear or unbalanced loads compared to the conventional sliding mode control method.
Shafizadeh-Moghadam, Hossein; Tayyebi, Amin; Helbich, Marco
2017-06-01
Transition index maps (TIMs) are key products in urban growth simulation models. However, their operationalization is still conflicting. Our aim was to compare the prediction accuracy of three TIM-based spatially explicit land cover change (LCC) models in the mega city of Mumbai, India. These LCC models include two data-driven approaches, namely artificial neural networks (ANNs) and weight of evidence (WOE), and one knowledge-based approach which integrates an analytical hierarchical process with fuzzy membership functions (FAHP). Using the relative operating characteristics (ROC), the performance of these three LCC models were evaluated. The results showed 85%, 75%, and 73% accuracy for the ANN, FAHP, and WOE. The ANN was clearly superior compared to the other LCC models when simulating urban growth for the year 2010; hence, ANN was used to predict urban growth for 2020 and 2030. Projected urban growth maps were assessed using statistical measures, including figure of merit, average spatial distance deviation, producer accuracy, and overall accuracy. Based on our findings, we recomend ANNs as an and accurate method for simulating future patterns of urban growth.
Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong
2018-01-01
Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control. PMID:29461469
Zhang, Sen; Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong
2018-02-20
Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control.
NASA Astrophysics Data System (ADS)
Salehi, Mohammad Reza; Noori, Leila; Abiri, Ebrahim
2016-11-01
In this paper, a subsystem consisting of a microstrip bandpass filter and a microstrip low noise amplifier (LNA) is designed for WLAN applications. The proposed filter has a small implementation area (49 mm2), small insertion loss (0.08 dB) and wide fractional bandwidth (FBW) (61%). To design the proposed LNA, the compact microstrip cells, an field effect transistor, and only a lumped capacitor are used. It has a low supply voltage and a low return loss (-40 dB) at the operation frequency. The matching condition of the proposed subsystem is predicted using subsystem analysis, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To design the proposed filter, the transmission matrix of the proposed resonator is obtained and analysed. The performance of the proposed ANN and ANFIS models is tested using the numerical data by four performance measures, namely the correlation coefficient (CC), the mean absolute error (MAE), the average percentage error (APE) and the root mean square error (RMSE). The obtained results show that these models are in good agreement with the numerical data, and a small error between the predicted values and numerical solution is obtained.
Zhang, Fan; Zhang, Xinhong
2011-01-01
Most of classification, quality evaluation or grading of the flue-cured tobacco leaves are manually operated, which relies on the judgmental experience of experts, and inevitably limited by personal, physical and environmental factors. The classification and the quality evaluation are therefore subjective and experientially based. In this paper, an automatic classification method of tobacco leaves based on the digital image processing and the fuzzy sets theory is presented. A grading system based on image processing techniques was developed for automatically inspecting and grading flue-cured tobacco leaves. This system uses machine vision for the extraction and analysis of color, size, shape and surface texture. Fuzzy comprehensive evaluation provides a high level of confidence in decision making based on the fuzzy logic. The neural network is used to estimate and forecast the membership function of the features of tobacco leaves in the fuzzy sets. The experimental results of the two-level fuzzy comprehensive evaluation (FCE) show that the accuracy rate of classification is about 94% for the trained tobacco leaves, and the accuracy rate of the non-trained tobacco leaves is about 72%. We believe that the fuzzy comprehensive evaluation is a viable way for the automatic classification and quality evaluation of the tobacco leaves. PMID:22163744
NASA Astrophysics Data System (ADS)
Guruprasad, R.; Behera, B. K.
2015-10-01
Quantitative prediction of fabric mechanical properties is an essential requirement for design engineering of textile and apparel products. In this work, the possibility of prediction of bending rigidity of cotton woven fabrics has been explored with the application of Artificial Neural Network (ANN) and two hybrid methodologies, namely Neuro-genetic modeling and Adaptive Neuro-Fuzzy Inference System (ANFIS) modeling. For this purpose, a set of cotton woven grey fabrics was desized, scoured and relaxed. The fabrics were then conditioned and tested for bending properties. With the database thus created, a neural network model was first developed using back propagation as the learning algorithm. The second model was developed by applying a hybrid learning strategy, in which genetic algorithm was first used as a learning algorithm to optimize the number of neurons and connection weights of the neural network. The Genetic algorithm optimized network structure was further allowed to learn using back propagation algorithm. In the third model, an ANFIS modeling approach was attempted to map the input-output data. The prediction performances of the models were compared and a sensitivity analysis was reported. The results show that the prediction by neuro-genetic and ANFIS models were better in comparison with that of back propagation neural network model.
A hybrid neural network model for noisy data regression.
Lee, Eric W M; Lim, Chee Peng; Yuen, Richard K K; Lo, S M
2004-04-01
A hybrid neural network model, based on the fusion of fuzzy adaptive resonance theory (FA ART) and the general regression neural network (GRNN), is proposed in this paper. Both FA and the GRNN are incremental learning systems and are very fast in network training. The proposed hybrid model, denoted as GRNNFA, is able to retain these advantages and, at the same time, to reduce the computational requirements in calculating and storing information of the kernels. A clustering version of the GRNN is designed with data compression by FA for noise removal. An adaptive gradient-based kernel width optimization algorithm has also been devised. Convergence of the gradient descent algorithm can be accelerated by the geometric incremental growth of the updating factor. A series of experiments with four benchmark datasets have been conducted to assess and compare effectiveness of GRNNFA with other approaches. The GRNNFA model is also employed in a novel application task for predicting the evacuation time of patrons at typical karaoke centers in Hong Kong in the event of fire. The results positively demonstrate the applicability of GRNNFA in noisy data regression problems.
Ellipsoidal fuzzy learning for smart car platoons
NASA Astrophysics Data System (ADS)
Dickerson, Julie A.; Kosko, Bart
1993-12-01
A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.
Membership generation using multilayer neural network
NASA Technical Reports Server (NTRS)
Kim, Jaeseok
1992-01-01
There has been intensive research in neural network applications to pattern recognition problems. Particularly, the back-propagation network has attracted many researchers because of its outstanding performance in pattern recognition applications. In this section, we describe a new method to generate membership functions from training data using a multilayer neural network. The basic idea behind the approach is as follows. The output values of a sigmoid activation function of a neuron bear remarkable resemblance to membership values. Therefore, we can regard the sigmoid activation values as the membership values in fuzzy set theory. Thus, in order to generate class membership values, we first train a suitable multilayer network using a training algorithm such as the back-propagation algorithm. After the training procedure converges, the resulting network can be treated as a membership generation network, where the inputs are feature values and the outputs are membership values in the different classes. This method allows fairly complex membership functions to be generated because the network is highly nonlinear in general. Also, it is to be noted that the membership functions are generated from a classification point of view. For pattern recognition applications, this is highly desirable, although the membership values may not be indicative of the degree of typicality of a feature value in a particular class.
Locomotion training of legged robots using hybrid machine learning techniques
NASA Technical Reports Server (NTRS)
Simon, William E.; Doerschuk, Peggy I.; Zhang, Wen-Ran; Li, Andrew L.
1995-01-01
In this study artificial neural networks and fuzzy logic are used to control the jumping behavior of a three-link uniped robot. The biped locomotion control problem is an increment of the uniped locomotion control. Study of legged locomotion dynamics indicates that a hierarchical controller is required to control the behavior of a legged robot. A structured control strategy is suggested which includes navigator, motion planner, biped coordinator and uniped controllers. A three-link uniped robot simulation is developed to be used as the plant. Neurocontrollers were trained both online and offline. In the case of on-line training, a reinforcement learning technique was used to train the neurocontroller to make the robot jump to a specified height. After several hundred iterations of training, the plant output achieved an accuracy of 7.4%. However, when jump distance and body angular momentum were also included in the control objectives, training time became impractically long. In the case of off-line training, a three-layered backpropagation (BP) network was first used with three inputs, three outputs and 15 to 40 hidden nodes. Pre-generated data were presented to the network with a learning rate as low as 0.003 in order to reach convergence. The low learning rate required for convergence resulted in a very slow training process which took weeks to learn 460 examples. After training, performance of the neurocontroller was rather poor. Consequently, the BP network was replaced by a Cerebeller Model Articulation Controller (CMAC) network. Subsequent experiments described in this document show that the CMAC network is more suitable to the solution of uniped locomotion control problems in terms of both learning efficiency and performance. A new approach is introduced in this report, viz., a self-organizing multiagent cerebeller model for fuzzy-neural control of uniped locomotion is suggested to improve training efficiency. This is currently being evaluated for a possible patent by NASA, Johnson Space Center. An alternative modular approach is also developed which uses separate controllers for each stage of the running stride. A self-organizing fuzzy-neural controller controls the height, distance and angular momentum of the stride. A CMAC-based controller controls the movement of the leg from the time the foot leaves the ground to the time of landing. Because the leg joints are controlled at each time step during flight, movement is smooth and obstacles can be avoided. Initial results indicate that this approach can yield fast, accurate results.
2012-11-01
few sensors/complex computations, and many sensors/simple computation. II. CHALLENGES WITH NANO-ENABLED NEUROMORPHIC CHIPS A wide variety of...scenarios. Neuromorphic processors, which are based on the highly parallelized computing architecture of the mammalian brain, show great promise in...in the brain. This fundamentally different approach, frequently referred to as neuromorphic computing, is thought to be better able to solve fuzzy
Joint Data Management for MOVINT Data-to-Decision Making
2011-07-01
flux tensor , aligned motion history images, and related approaches have been shown to be versatile approaches [12, 16, 17, 18]. Scaling these...methods include voting , neural networks, fuzzy logic, neuro-dynamic programming, support vector machines, Bayesian and Dempster-Shafer methods. One way...Information Fusion, 2010. [16] F. Bunyak, K. Palaniappan, S. K. Nath, G. Seetharaman, “Flux tensor constrained geodesic active contours with sensor fusion
NASA Astrophysics Data System (ADS)
Rigosa, J.; Weber, D. J.; Prochazka, A.; Stein, R. B.; Micera, S.
2011-08-01
Functional electrical stimulation (FES) is used to improve motor function after injury to the central nervous system. Some FES systems use artificial sensors to switch between finite control states. To optimize FES control of the complex behavior of the musculo-skeletal system in activities of daily life, it is highly desirable to implement feedback control. In theory, sensory neural signals could provide the required control signals. Recent studies have demonstrated the feasibility of deriving limb-state estimates from the firing rates of primary afferent neurons recorded in dorsal root ganglia (DRG). These studies used multiple linear regression (MLR) methods to generate estimates of limb position and velocity based on a weighted sum of firing rates in an ensemble of simultaneously recorded DRG neurons. The aim of this study was to test whether the use of a neuro-fuzzy (NF) algorithm (the generalized dynamic fuzzy neural networks (GD-FNN)) could improve the performance, robustness and ability to generalize from training to test sets compared to the MLR technique. NF and MLR decoding methods were applied to ensemble DRG recordings obtained during passive and active limb movements in anesthetized and freely moving cats. The GD-FNN model provided more accurate estimates of limb state and generalized better to novel movement patterns. Future efforts will focus on implementing these neural recording and decoding methods in real time to provide closed-loop control of FES using the information extracted from sensory neurons.
Soft computing techniques toward modeling the water supplies of Cyprus.
Iliadis, L; Maris, F; Tachos, S
2011-10-01
This research effort aims in the application of soft computing techniques toward water resources management. More specifically, the target is the development of reliable soft computing models capable of estimating the water supply for the case of "Germasogeia" mountainous watersheds in Cyprus. Initially, ε-Regression Support Vector Machines (ε-RSVM) and fuzzy weighted ε-RSVMR models have been developed that accept five input parameters. At the same time, reliable artificial neural networks have been developed to perform the same job. The 5-fold cross validation approach has been employed in order to eliminate bad local behaviors and to produce a more representative training data set. Thus, the fuzzy weighted Support Vector Regression (SVR) combined with the fuzzy partition has been employed in an effort to enhance the quality of the results. Several rational and reliable models have been produced that can enhance the efficiency of water policy designers. Copyright © 2011 Elsevier Ltd. All rights reserved.
A computational neural approach to support the discovery of gene function and classes of cancer.
Azuaje, F
2001-03-01
Advances in molecular classification of tumours may play a central role in cancer treatment. Here, a novel approach to genome expression pattern interpretation is described and applied to the recognition of B-cell malignancies as a test set. Using cDNA microarrays data generated by a previous study, a neural network model known as simplified fuzzy ARTMAP is able to identify normal and diffuse large B-cell lymphoma (DLBCL) patients. Furthermore, it discovers the distinction between patients with molecularly distinct forms of DLBCL without previous knowledge of those subtypes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larkin, Andrew; Department of Statistics, Oregon State University; Superfund Research Center, Oregon State University
2013-03-01
Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdanimore » logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions for combining PAH mixtures in agreement with microarrays ► Predictions highly dependent on aryl hydrocarbon receptor repressor expression.« less
Close coupling of pre- and post-processing vision stations using inexact algorithms
NASA Astrophysics Data System (ADS)
Shih, Chi-Hsien V.; Sherkat, Nasser; Thomas, Peter D.
1996-02-01
Work has been reported using lasers to cut deformable materials. Although the use of laser reduces material deformation, distortion due to mechanical feed misalignment persists. Changes in the lace patten are also caused by the release of tension in the lace structure as it is cut. To tackle the problem of distortion due to material flexibility, the 2VMethod together with the Piecewise Error Compensation Algorithm incorporating the inexact algorithms, i.e., fuzzy logic, neural networks and neural fuzzy technique, are developed. A spring mounted pen is used to emulate the distortion of the lace pattern caused by tactile cutting and feed misalignment. Using pre- and post-processing vision systems, it is possible to monitor the scalloping process and generate on-line information for the artificial intelligence engines. This overcomes the problems of lace distortion due to the trimming process. Applying the algorithms developed, the system can produce excellent results, much better than a human operator.
Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models.
Nadiri, Ata Allah; Gharekhani, Maryam; Khatibi, Rahman; Moghaddam, Asghar Asghari
2017-03-01
Vulnerability indices of an aquifer assessed by different fuzzy logic (FL) models often give rise to differing values with no theoretical or empirical basis to establish a validated baseline or to develop a comparison basis between the modeling results and baselines, if any. Therefore, this research presents a supervised committee fuzzy logic (SCFL) method, which uses artificial neural networks to overarch and combine a selection of FL models. The indices are expressed by the widely used DRASTIC framework, which include geological, hydrological, and hydrogeological parameters often subject to uncertainty. DRASTIC indices represent collectively intrinsic (or natural) vulnerability and give a sense of contaminants, such as nitrate-N, percolating to aquifers from the surface. The study area is an aquifer in Ardabil plain, the province of Ardabil, northwest Iran. Improvements on vulnerability indices are achieved by FL techniques, which comprise Sugeno fuzzy logic (SFL), Mamdani fuzzy logic (MFL), and Larsen fuzzy logic (LFL). As the correlation between estimated DRASTIC vulnerability index values and nitrate-N values is as low as 0.4, it is improved significantly by FL models (SFL, MFL, and LFL), which perform in similar ways but have differences. Their synergy is exploited by SCFL and uses the FL modeling results "conditioned" by nitrate-N values to raise their correlation to higher than 0.9.
Khanesar, Mojtaba Ahmadieh; Kayacan, Erdal; Reyhanoglu, Mahmut; Kaynak, Okyay
2015-04-01
A novel type-2 fuzzy membership function (MF) in the form of an ellipse has recently been proposed in literature, the parameters of which that represent uncertainties are de-coupled from its parameters that determine the center and the support. This property has enabled the proposers to make an analytical comparison of the noise rejection capabilities of type-1 fuzzy logic systems with its type-2 counterparts. In this paper, a sliding mode control theory-based learning algorithm is proposed for an interval type-2 fuzzy logic system which benefits from elliptic type-2 fuzzy MFs. The learning is based on the feedback error learning method and not only the stability of the learning is proved but also the stability of the overall system is shown by adding an additional component to the control scheme to ensure robustness. In order to test the efficiency and efficacy of the proposed learning and the control algorithm, the trajectory tracking problem of a magnetic rigid spacecraft is studied. The simulations results show that the proposed control algorithm gives better performance results in terms of a smaller steady state error and a faster transient response as compared to conventional control algorithms.
Nonlinear rescaling of control values simplifies fuzzy control
NASA Technical Reports Server (NTRS)
Vanlangingham, H.; Tsoukkas, A.; Kreinovich, V.; Quintana, C.
1993-01-01
Traditional control theory is well-developed mainly for linear control situations. In non-linear cases there is no general method of generating a good control, so we have to rely on the ability of the experts (operators) to control them. If we want to automate their control, we must acquire their knowledge and translate it into a precise control strategy. The experts' knowledge is usually represented in non-numeric terms, namely, in terms of uncertain statements of the type 'if the obstacle is straight ahead, the distance to it is small, and the velocity of the car is medium, press the brakes hard'. Fuzzy control is a methodology that translates such statements into precise formulas for control. The necessary first step of this strategy consists of assigning membership functions to all the terms that the expert uses in his rules (in our sample phrase these words are 'small', 'medium', and 'hard'). The appropriate choice of a membership function can drastically improve the quality of a fuzzy control. In the simplest cases, we can take the functions whose domains have equally spaced endpoints. Because of that, many software packages for fuzzy control are based on this choice of membership functions. This choice is not very efficient in more complicated cases. Therefore, methods have been developed that use neural networks or generic algorithms to 'tune' membership functions. But this tuning takes lots of time (for example, several thousands iterations are typical for neural networks). In some cases there are evident physical reasons why equally space domains do not work: e.g., if the control variable u is always positive (i.e., if we control temperature in a reactor), then negative values (that are generated by equal spacing) simply make no sense. In this case it sounds reasonable to choose another scale u' = f(u) to represent u, so that equal spacing will work fine for u'. In the present paper we formulate the problem of finding the best rescaling function, solve this problem, and show (on a real-life example) that after an optimal rescaling, the un-tuned fuzzy control can be as good as the best state-of-art traditional non-linear controls.
Neural and Neural Gray-Box Modeling for Entry Temperature Prediction in a Hot Strip Mill
NASA Astrophysics Data System (ADS)
Barrios, José Angel; Torres-Alvarado, Miguel; Cavazos, Alberto; Leduc, Luis
2011-10-01
In hot strip mills, initial controller set points have to be calculated before the steel bar enters the mill. Calculations rely on the good knowledge of rolling variables. Measurements are available only after the bar has entered the mill, and therefore they have to be estimated. Estimation of process variables, particularly that of temperature, is of crucial importance for the bar front section to fulfill quality requirements, and the same must be performed in the shortest possible time to preserve heat. Currently, temperature estimation is performed by physical modeling; however, it is highly affected by measurement uncertainties, variations in the incoming bar conditions, and final product changes. In order to overcome these problems, artificial intelligence techniques such as artificial neural networks and fuzzy logic have been proposed. In this article, neural network-based systems, including neural-based Gray-Box models, are applied to estimate scale breaker entry temperature, given its importance, and their performance is compared to that of the physical model used in plant. Several neural systems and several neural-based Gray-Box models are designed and tested with real data. Taking advantage of the flexibility of neural networks for input incorporation, several factors which are believed to have influence on the process are also tested. The systems proposed in this study were proven to have better performance indexes and hence better prediction capabilities than the physical models currently used in plant.
Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran
NASA Astrophysics Data System (ADS)
Ostovari, Yaser; Ghorbani-Dashtaki, Shoja; Bahrami, Hossein-Ali; Naderi, Mehdi; Dematte, Jose Alexandre M.; Kerry, Ruth
2016-11-01
The measurement of soil erodibility (K) in the field is tedious, time-consuming and expensive; therefore, its prediction through pedotransfer functions (PTFs) could be far less costly and time-consuming. The aim of this study was to develop new PTFs to estimate the K factor using multiple linear regression, Mamdani fuzzy inference systems, and artificial neural networks. For this purpose, K was measured in 40 erosion plots with natural rainfall. Various soil properties including the soil particle size distribution, calcium carbonate equivalent, organic matter, permeability, and wet-aggregate stability were measured. The results showed that the mean measured K was 0.014 t h MJ- 1 mm- 1 and 2.08 times less than the estimated mean K (0.030 t h MJ- 1 mm- 1) using the USLE model. Permeability, wet-aggregate stability, very fine sand, and calcium carbonate were selected as independent variables by forward stepwise regression in order to assess the ability of multiple linear regression, Mamdani fuzzy inference systems and artificial neural networks to predict K. The calcium carbonate equivalent, which is not accounted for in the USLE model, had a significant impact on K in multiple linear regression due to its strong influence on the stability of aggregates and soil permeability. Statistical indices in validation and calibration datasets determined that the artificial neural networks method with the highest R2, lowest RMSE, and lowest ME was the best model for estimating the K factor. A strong correlation (R2 = 0.81, n = 40, p < 0.05) between the estimated K from multiple linear regression and measured K indicates that the use of calcium carbonate equivalent as a predictor variable gives a better estimation of K in areas with calcareous soils.
Sun, Guanghao; Matsui, Takemi; Hakozaki, Yukiya; Abe, Shigeto
2015-03-01
To classify higher-risk influenza patients within 10 s, we developed an infectious disease and fever screening radar system. The system screens infected patients based on vital signs, i.e., respiration rate measured by a radar, heart rate by a finger-tip photo-reflector, and facial temperature by a thermography. The system segregates subjects into higher-risk influenza (HR-I) group, lower-risk influenza (LR-I) group, and non-influenza (Non-I) group using a neural network and fuzzy clustering method (FCM). We conducted influenza screening for 35 seasonal influenza patients and 48 normal control subjects at the Japan Self-Defense Force Central Hospital. Pulse oximetry oxygen saturation (SpO2) was measured as a reference. The system classified 17 subjects into HR-I group, 26 into LR-I group, and 40 into Non-I group. Ten out of the 17 HR-I subjects indicated SpO2 <96%, whereas only two out of the 26 LR-I subjects showed SpO2 <96%. The chi-squared test revealed a significant difference in the ratio of subjects showed SpO2 <96% between HR-I and LR-I group (p < 0.001). There were zero and nine normal control subjects in HR-I and LR-I groups, respectively, and there was one influenza patient in Non-I group. The combination of neural network and FCM achieved efficient detection of higher-risk influenza patients who indicated SpO2 96% within 10 s. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Adding dynamic rules to self-organizing fuzzy systems
NASA Technical Reports Server (NTRS)
Buhusi, Catalin V.
1992-01-01
This paper develops a Dynamic Self-Organizing Fuzzy System (DSOFS) capable of adding, removing, and/or adapting the fuzzy rules and the fuzzy reference sets. The DSOFS background consists of a self-organizing neural structure with neuron relocation features which will develop a map of the input-output behavior. The relocation algorithm extends the topological ordering concept. Fuzzy rules (neurons) are dynamically added or released while the neural structure learns the pattern. The DSOFS advantages are the automatic synthesis and the possibility of parallel implementation. A high adaptation speed and a reduced number of neurons is needed in order to keep errors under some limits. The computer simulation results are presented in a nonlinear systems modelling application.
de Oliveira, Mario A; Araujo, Nelcileno V S; da Silva, Rodolfo N; da Silva, Tony I; Epaarachchi, Jayantha
2018-01-08
A considerable amount of research has focused on monitoring structural damage using Structural Health Monitoring (SHM) technologies, which has had recent advances. However, it is important to note the challenges and unresolved problems that disqualify currently developed monitoring systems. One of the frontline SHM technologies, the Electromechanical Impedance (EMI) technique, has shown its potential to overcome remaining problems and challenges. Unfortunately, the recently developed neural network algorithms have not shown significant improvements in the accuracy of rate and the required processing time. In order to fill this gap in advanced neural networks used with EMI techniques, this paper proposes an enhanced and reliable strategy for improving the structural damage detection via: (1) Savitzky-Golay (SG) filter, using both first and second derivatives; (2) Probabilistic Neural Network (PNN); and, (3) Simplified Fuzzy ARTMAP Network (SFAN). Those three methods were employed to analyze the EMI data experimentally obtained from an aluminum plate containing three attached PZT (Lead Zirconate Titanate) patches. In this present study, the damage scenarios were simulated by attaching a small metallic nut at three different positions in the aluminum plate. We found that the proposed method achieves a hit rate of more than 83%, which is significantly higher than current state-of-the-art approaches. Furthermore, this approach results in an improvement of 93% when considering the best case scenario.
Araujo, Nelcileno V. S.; da Silva, Rodolfo N.; da Silva, Tony I.; Epaarachchi, Jayantha
2018-01-01
A considerable amount of research has focused on monitoring structural damage using Structural Health Monitoring (SHM) technologies, which has had recent advances. However, it is important to note the challenges and unresolved problems that disqualify currently developed monitoring systems. One of the frontline SHM technologies, the Electromechanical Impedance (EMI) technique, has shown its potential to overcome remaining problems and challenges. Unfortunately, the recently developed neural network algorithms have not shown significant improvements in the accuracy of rate and the required processing time. In order to fill this gap in advanced neural networks used with EMI techniques, this paper proposes an enhanced and reliable strategy for improving the structural damage detection via: (1) Savitzky–Golay (SG) filter, using both first and second derivatives; (2) Probabilistic Neural Network (PNN); and, (3) Simplified Fuzzy ARTMAP Network (SFAN). Those three methods were employed to analyze the EMI data experimentally obtained from an aluminum plate containing three attached PZT (Lead Zirconate Titanate) patches. In this present study, the damage scenarios were simulated by attaching a small metallic nut at three different positions in the aluminum plate. We found that the proposed method achieves a hit rate of more than 83%, which is significantly higher than current state-of-the-art approaches. Furthermore, this approach results in an improvement of 93% when considering the best case scenario. PMID:29316693
NASA Astrophysics Data System (ADS)
Golsanami, Naser; Kadkhodaie-Ilkhchi, Ali; Erfani, Amir
2015-01-01
Capillary pressure curves are important data for reservoir rock typing, analyzing pore throat distribution, determining height above free water level, and reservoir simulation. Laboratory experiments provide accurate data, however they are expensive, time-consuming and discontinuous through the reservoir intervals. The current study focuses on synthesizing artificial capillary pressure (Pc) curves from seismic attributes with the use of artificial intelligent systems including Artificial Neural Networks (ANNs), Fuzzy logic (FL) and Adaptive Neuro-Fuzzy Inference Systems (ANFISs). The synthetic capillary pressure curves were achieved by estimating pressure values at six mercury saturation points. These points correspond to mercury filled pore volumes of core samples (Hg-saturation) at 5%, 20%, 35%, 65%, 80%, and 90% saturations. To predict the synthetic Pc curve at each saturation point, various FL, ANFIS and ANN models were constructed. The varying neural network models differ in their training algorithm. Based on the performance function, the most accurately functioning models were selected as the final solvers to do the prediction process at each of the above-mentioned mercury saturation points. The constructed models were then tested at six depth points of the studied well which were already unforeseen by the models. The results show that the Fuzzy logic and neuro-fuzzy models were not capable of making reliable estimations, while the predictions from the ANN models were satisfyingly trustworthy. The obtained results showed a good agreement between the laboratory derived and synthetic capillary pressure curves. Finally, a 3D seismic cube was captured for which the required attributes were extracted and the capillary pressure cube was estimated by using the developed models. In the next step, the synthesized Pc cube was compared with the seismic cube and an acceptable correspondence was observed.
Forecasting of palm oil price in Malaysia using linear and nonlinear methods
NASA Astrophysics Data System (ADS)
Nor, Abu Hassan Shaari Md; Sarmidi, Tamat; Hosseinidoust, Ehsan
2014-09-01
The first question that comes to the mind is: "How can we predict the palm oil price accurately?" This question is the authorities, policy makers and economist's question for a long period of time. The first reason is that in the recent years Malaysia showed a comparative advantage in palm oil production and has become top producer and exporter in the world. Secondly, palm oil price plays significant role in government budget and represents important source of income for Malaysia, which potentially can influence the magnitude of monetary policies and eventually have an impact on inflation. Thirdly, knowledge on the future trends would be helpful in the planning and decision making procedures and will generate precise fiscal and monetary policy. Daily data on palm oil prices along with the ARIMA models, neural networks and fuzzy logic systems are employed in this paper. Empirical findings indicate that the dynamic neural network of NARX and the hybrid system of ANFIS provide higher accuracy than the ARIMA and static neural network for forecasting the palm oil price in Malaysia.
Classification of arrhythmia using hybrid networks.
Haseena, Hassan H; Joseph, Paul K; Mathew, Abraham T
2011-12-01
Reliable detection of arrhythmias based on digital processing of Electrocardiogram (ECG) signals is vital in providing suitable and timely treatment to a cardiac patient. Due to corruption of ECG signals with multiple frequency noise and presence of multiple arrhythmic events in a cardiac rhythm, computerized interpretation of abnormal ECG rhythms is a challenging task. This paper focuses a Fuzzy C- Mean (FCM) clustered Probabilistic Neural Network (PNN) and Multi Layered Feed Forward Network (MLFFN) for the discrimination of eight types of ECG beats. Parameters such as fourth order Auto Regressive (AR) coefficients along with Spectral Entropy (SE) are extracted from each ECG beat and feature reduction has been carried out using FCM clustering. The cluster centers form the input of neural network classifiers. The extensive analysis of Massachusetts Institute of Technology- Beth Israel Hospital (MIT-BIH) arrhythmia database shows that FCM clustered PNNs is superior in cardiac arrhythmia classification than FCM clustered MLFFN with an overall accuracy of 99.05%, 97.14%, respectively.
Grossi, Enzo
2006-05-03
In recent years a number of algorithms for cardiovascular risk assessment has been proposed to the medical community. These algorithms consider a number of variables and express their results as the percentage risk of developing a major fatal or non-fatal cardiovascular event in the following 10 to 20 years The author has identified three major pitfalls of these algorithms, linked to the limitation of the classical statistical approach in dealing with this kind of non linear and complex information. The pitfalls are the inability to capture the disease complexity, the inability to capture process dynamics, and the wide confidence interval of individual risk assessment. Artificial Intelligence tools can provide potential advantage in trying to overcome these limitations. The theoretical background and some application examples related to artificial neural networks and fuzzy logic have been reviewed and discussed. The use of predictive algorithms to assess individual absolute risk of cardiovascular future events is currently hampered by methodological and mathematical flaws. The use of newer approaches, such as fuzzy logic and artificial neural networks, linked to artificial intelligence, seems to better address both the challenge of increasing complexity resulting from a correlation between predisposing factors, data on the occurrence of cardiovascular events, and the prediction of future events on an individual level.
NASA Astrophysics Data System (ADS)
Xu, Rui; Zhou, Miaolei
2018-04-01
Piezo-actuated stages are widely applied in the high-precision positioning field nowadays. However, the inherent hysteresis nonlinearity in piezo-actuated stages greatly deteriorates the positioning accuracy of piezo-actuated stages. This paper first utilizes a nonlinear autoregressive moving average with exogenous inputs (NARMAX) model based on the Pi-sigma fuzzy neural network (PSFNN) to construct an online rate-dependent hysteresis model for describing the hysteresis nonlinearity in piezo-actuated stages. In order to improve the convergence rate of PSFNN and modeling precision, we adopt the gradient descent algorithm featuring three different learning factors to update the model parameters. The convergence of the NARMAX model based on the PSFNN is analyzed effectively. To ensure that the parameters can converge to the true values, the persistent excitation condition is considered. Then, a self-adaption compensation controller is designed for eliminating the hysteresis nonlinearity in piezo-actuated stages. A merit of the proposed controller is that it can directly eliminate the complex hysteresis nonlinearity in piezo-actuated stages without any inverse dynamic models. To demonstrate the effectiveness of the proposed model and control methods, a set of comparative experiments are performed on piezo-actuated stages. Experimental results show that the proposed modeling and control methods have excellent performance.
NASA Technical Reports Server (NTRS)
Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.
2015-01-01
Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.
Airline Passenger Profiling Based on Fuzzy Deep Machine Learning.
Zheng, Yu-Jun; Sheng, Wei-Guo; Sun, Xing-Ming; Chen, Sheng-Yong
2017-12-01
Passenger profiling plays a vital part of commercial aviation security, but classical methods become very inefficient in handling the rapidly increasing amounts of electronic records. This paper proposes a deep learning approach to passenger profiling. The center of our approach is a Pythagorean fuzzy deep Boltzmann machine (PFDBM), whose parameters are expressed by Pythagorean fuzzy numbers such that each neuron can learn how a feature affects the production of the correct output from both the positive and negative sides. We propose a hybrid algorithm combining a gradient-based method and an evolutionary algorithm for training the PFDBM. Based on the novel learning model, we develop a deep neural network (DNN) for classifying normal passengers and potential attackers, and further develop an integrated DNN for identifying group attackers whose individual features are insufficient to reveal the abnormality. Experiments on data sets from Air China show that our approach provides much higher learning ability and classification accuracy than existing profilers. It is expected that the fuzzy deep learning approach can be adapted for a variety of complex pattern analysis tasks.
System identification of smart structures using a wavelet neuro-fuzzy model
NASA Astrophysics Data System (ADS)
Mitchell, Ryan; Kim, Yeesock; El-Korchi, Tahar
2012-11-01
This paper proposes a complex model of smart structures equipped with magnetorheological (MR) dampers. Nonlinear behavior of the structure-MR damper systems is represented by the use of a wavelet-based adaptive neuro-fuzzy inference system (WANFIS). The WANFIS is developed through the integration of wavelet transforms, artificial neural networks, and fuzzy logic theory. To evaluate the effectiveness of the WANFIS model, a three-story building employing an MR damper under a variety of natural hazards is investigated. An artificial earthquake is used for training the input-output mapping of the WANFIS model. The artificial earthquake is generated such that the characteristics of a variety of real recorded earthquakes are included. It is demonstrated that this new WANFIS approach is effective in modeling nonlinear behavior of the structure-MR damper system subjected to a variety of disturbances while resulting in shorter training times in comparison with an adaptive neuro-fuzzy inference system (ANFIS) model. Comparison with high fidelity data proves the viability of the proposed approach in a structural health monitoring setting, and it is validated using known earthquake signals such as El-Centro, Kobe, Northridge, and Hachinohe.
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1992-01-01
The reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we also use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use two terms interchangeable to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS). This report is the deliverable D3 in our project activity and provides the test results of the fuzzy learning translational controller. This report is organized in six sections. Based on our experience and analysis with the attitude controller, we have modified the basic configuration of the reinforcement learning algorithm in ARIC as described in section 2. The shuttle translational controller and its implementation in fuzzy learning architecture is described in section 3. Two test cases that we have performed are described in section 4. Our results and conclusions are discussed in section 5, and section 6 provides future plans and summary for the project.
eFSM--a novel online neural-fuzzy semantic memory model.
Tung, Whye Loon; Quek, Chai
2010-01-01
Fuzzy rule-based systems (FRBSs) have been successfully applied to many areas. However, traditional fuzzy systems are often manually crafted, and their rule bases that represent the acquired knowledge are static and cannot be trained to improve the modeling performance. This subsequently leads to intensive research on the autonomous construction and tuning of a fuzzy system directly from the observed training data to address the knowledge acquisition bottleneck, resulting in well-established hybrids such as neural-fuzzy systems (NFSs) and genetic fuzzy systems (GFSs). However, the complex and dynamic nature of real-world problems demands that fuzzy rule-based systems and models be able to adapt their parameters and ultimately evolve their rule bases to address the nonstationary (time-varying) characteristics of their operating environments. Recently, considerable research efforts have been directed to the study of evolving Tagaki-Sugeno (T-S)-type NFSs based on the concept of incremental learning. In contrast, there are very few incremental learning Mamdani-type NFSs reported in the literature. Hence, this paper presents the evolving neural-fuzzy semantic memory (eFSM) model, a neural-fuzzy Mamdani architecture with a data-driven progressively adaptive structure (i.e., rule base) based on incremental learning. Issues related to the incremental learning of the eFSM rule base are carefully investigated, and a novel parameter learning approach is proposed for the tuning of the fuzzy set parameters in eFSM. The proposed eFSM model elicits highly interpretable semantic knowledge in the form of Mamdani-type if-then fuzzy rules from low-level numeric training data. These Mamdani fuzzy rules define the computing structure of eFSM and are incrementally learned with the arrival of each training data sample. New rules are constructed from the emergence of novel training data and obsolete fuzzy rules that no longer describe the recently observed data trends are pruned. This enables eFSM to maintain a current and compact set of Mamdani-type if-then fuzzy rules that collectively generalizes and describes the salient associative mappings between the inputs and outputs of the underlying process being modeled. The learning and modeling performances of the proposed eFSM are evaluated using several benchmark applications and the results are encouraging.
A proposal of fuzzy connective with learning function and its application to fuzzy retrieval system
NASA Technical Reports Server (NTRS)
Hayashi, Isao; Naito, Eiichi; Ozawa, Jun; Wakami, Noboru
1993-01-01
A new fuzzy connective and a structure of network constructed by fuzzy connectives are proposed to overcome a drawback of conventional fuzzy retrieval systems. This network represents a retrieval query and the fuzzy connectives in networks have a learning function to adjust its parameters by data from a database and outputs of a user. The fuzzy retrieval systems employing this network are also constructed. Users can retrieve results even with a query whose attributes do not exist in a database schema and can get satisfactory results for variety of thinkings by learning function.
NASA Astrophysics Data System (ADS)
Vaganova, E. V.; Syryamkin, M. V.
2015-11-01
The purpose of the research is the development of evolutionary algorithms for assessments of promising scientific directions. The main attention of the present study is paid to the evaluation of the foresight possibilities for identification of technological peaks and emerging technologies in professional medical equipment engineering in Russia and worldwide on the basis of intellectual property items and neural network modeling. An automated information system consisting of modules implementing various classification methods for accuracy of the forecast improvement and the algorithm of construction of neuro-fuzzy decision tree have been developed. According to the study result, modern trends in this field will focus on personalized smart devices, telemedicine, bio monitoring, «e-Health» and «m-Health» technologies.
Exponential H ∞ Synchronization of Chaotic Cryptosystems Using an Improved Genetic Algorithm
Hsiao, Feng-Hsiag
2015-01-01
This paper presents a systematic design methodology for neural-network- (NN-) based secure communications in multiple time-delay chaotic (MTDC) systems with optimal H ∞ performance and cryptography. On the basis of the Improved Genetic Algorithm (IGA), which is demonstrated to have better performance than that of a traditional GA, a model-based fuzzy controller is then synthesized to stabilize the MTDC systems. A fuzzy controller is synthesized to not only realize the exponential synchronization, but also achieve optimal H ∞ performance by minimizing the disturbance attenuation level. Furthermore, the error of the recovered message is stated by using the n-shift cipher and key. Finally, a numerical example with simulations is given to demonstrate the effectiveness of our approach. PMID:26366432
NASA Astrophysics Data System (ADS)
Vasant, P.; Ganesan, T.; Elamvazuthi, I.
2012-11-01
A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.
Du, Gang; Jiang, Zhibin; Diao, Xiaodi; Yao, Yang
2013-07-01
Takagi-Sugeno (T-S) fuzzy neural networks (FNNs) can be used to handle complex, fuzzy, uncertain clinical pathway (CP) variances. However, there are many drawbacks, such as slow training rate, propensity to become trapped in a local minimum and poor ability to perform a global search. In order to improve overall performance of variance handling by T-S FNNs, a new CP variance handling method is proposed in this study. It is based on random cooperative decomposing particle swarm optimization with double mutation mechanism (RCDPSO_DM) for T-S FNNs. Moreover, the proposed integrated learning algorithm, combining the RCDPSO_DM algorithm with a Kalman filtering algorithm, is applied to optimize antecedent and consequent parameters of constructed T-S FNNs. Then, a multi-swarm cooperative immigrating particle swarm algorithm ensemble method is used for intelligent ensemble T-S FNNs with RCDPSO_DM optimization to further improve stability and accuracy of CP variance handling. Finally, two case studies on liver and kidney poisoning variances in osteosarcoma preoperative chemotherapy are used to validate the proposed method. The result demonstrates that intelligent ensemble T-S FNNs based on the RCDPSO_DM achieves superior performances, in terms of stability, efficiency, precision and generalizability, over PSO ensemble of all T-S FNNs with RCDPSO_DM optimization, single T-S FNNs with RCDPSO_DM optimization, standard T-S FNNs, standard Mamdani FNNs and T-S FNNs based on other algorithms (cooperative particle swarm optimization and particle swarm optimization) for CP variance handling. Therefore, it makes CP variance handling more effective. Copyright © 2013 Elsevier Ltd. All rights reserved.
Darwinian Spacecraft: Soft Computing Strategies Breeding Better, Faster Cheaper
NASA Technical Reports Server (NTRS)
Noever, David A.; Baskaran, Subbiah
1999-01-01
Computers can create infinite lists of combinations to try to solve a particular problem, a process called "soft-computing." This process uses statistical comparables, neural networks, genetic algorithms, fuzzy variables in uncertain environments, and flexible machine learning to create a system which will allow spacecraft to increase robustness, and metric evaluation. These concepts will allow for the development of a spacecraft which will allow missions to be performed at lower costs.
NASA Technical Reports Server (NTRS)
Lin, Paul P.; Jules, Kenol
2002-01-01
An intelligent system for monitoring the microgravity environment quality on-board the International Space Station is presented. The monitoring system uses a new approach combining Kohonen's self-organizing feature map, learning vector quantization, and back propagation neural network to recognize and classify the known and unknown patterns. Finally, fuzzy logic is used to assess the level of confidence associated with each vibrating source activation detected by the system.
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1992-01-01
As part of the Research Institute for Computing and Information Systems (RICIS) activity, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Max satellite simulation. This activity is carried out in the software technology laboratory utilizing the Orbital Operations Simulator (OOS). This interim report provides the status of the project and outlines the future plans.
A Self-Tuning Kalman Filter for Autonomous Spacecraft Navigation
NASA Technical Reports Server (NTRS)
Truong, Son H.
1998-01-01
Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman Filter and Global Positioning System (GPS) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. Current techniques of Kalman filtering, however, still rely on manual tuning from analysts, and cannot help in optimizing autonomy without compromising accuracy and performance. This paper presents an approach to produce a high accuracy autonomous navigation system fully integrated with the flight system. The resulting system performs real-time state estimation by using an Extended Kalman Filter (EKF) implemented with high-fidelity state dynamics model, as does the GPS Enhanced Orbit Determination Experiment (GEODE) system developed by the NASA Goddard Space Flight Center. Augmented to the EKF is a sophisticated neural-fuzzy system, which combines the explicit knowledge representation of fuzzy logic with the learning power of neural networks. The fuzzy-neural system performs most of the self-tuning capability and helps the navigation system recover from estimation errors. The core requirement is a method of state estimation that handles uncertainties robustly, capable of identifying estimation problems, flexible enough to make decisions and adjustments to recover from these problems, and compact enough to run on flight hardware. The resulting system can be extended to support geosynchronous spacecraft and high-eccentricity orbits. Mathematical methodology, systems and operations concepts, and implementation of a system prototype are presented in this paper. Results from the use of the prototype to evaluate optimal control algorithms implemented are discussed. Test data and major control issues (e.g., how to define specific roles for fuzzy logic to support the self-learning capability) are also discussed. In addition, architecture of a complete end-to-end candidate flight system that provides navigation with highly autonomous control using data from GPS is presented.
Fuzzy logic of Aristotelian forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perlovsky, L.I.
1996-12-31
Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties.more » In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.« less
Chien, Yi-Hsing; Wang, Wei-Yen; Leu, Yih-Guang; Lee, Tsu-Tian
2011-04-01
This paper proposes a novel method of online modeling and control via the Takagi-Sugeno (T-S) fuzzy-neural model for a class of uncertain nonlinear systems with some kinds of outputs. Although studies about adaptive T-S fuzzy-neural controllers have been made on some nonaffine nonlinear systems, little is known about the more complicated uncertain nonlinear systems. Because the nonlinear functions of the systems are uncertain, traditional T-S fuzzy control methods can model and control them only with great difficulty, if at all. Instead of modeling these uncertain functions directly, we propose that a T-S fuzzy-neural model approximates a so-called virtual linearized system (VLS) of the system, which includes modeling errors and external disturbances. We also propose an online identification algorithm for the VLS and put significant emphasis on robust tracking controller design using an adaptive scheme for the uncertain systems. Moreover, the stability of the closed-loop systems is proven by using strictly positive real Lyapunov theory. The proposed overall scheme guarantees that the outputs of the closed-loop systems asymptotically track the desired output trajectories. To illustrate the effectiveness and applicability of the proposed method, simulation results are given in this paper.
A hierarchical fuzzy rule-based approach to aphasia diagnosis.
Akbarzadeh-T, Mohammad-R; Moshtagh-Khorasani, Majid
2007-10-01
Aphasia diagnosis is a particularly challenging medical diagnostic task due to the linguistic uncertainty and vagueness, inconsistencies in the definition of aphasic syndromes, large number of measurements with imprecision, natural diversity and subjectivity in test objects as well as in opinions of experts who diagnose the disease. To efficiently address this diagnostic process, a hierarchical fuzzy rule-based structure is proposed here that considers the effect of different features of aphasia by statistical analysis in its construction. This approach can be efficient for diagnosis of aphasia and possibly other medical diagnostic applications due to its fuzzy and hierarchical reasoning construction. Initially, the symptoms of the disease which each consists of different features are analyzed statistically. The measured statistical parameters from the training set are then used to define membership functions and the fuzzy rules. The resulting two-layered fuzzy rule-based system is then compared with a back propagating feed-forward neural network for diagnosis of four Aphasia types: Anomic, Broca, Global and Wernicke. In order to reduce the number of required inputs, the technique is applied and compared on both comprehensive and spontaneous speech tests. Statistical t-test analysis confirms that the proposed approach uses fewer Aphasia features while also presenting a significant improvement in terms of accuracy.
ANFIS multi criteria decision making for overseas construction projects: a methodology
NASA Astrophysics Data System (ADS)
Utama, W. P.; Chan, A. P. C.; Zulherman; Zahoor, H.; Gao, R.; Jumas, D. Y.
2018-02-01
A critical part when a company targeting a foreign market is how to make a better decision in connection with potential project selection. Since different attributes of information are often incomplete, imprecise and ill-defined in overseas projects selection, the process of decision making by relying on the experiences and intuition is a risky attitude. This paper aims to demonstrate a decision support method in deciding overseas construction projects (OCPs). An Adaptive Neuro-Fuzzy Inference System (ANFIS), the amalgamation of Neural Network and Fuzzy Theory, was used as decision support tool to decide to go or not go on OCPs. Root mean square error (RMSE) and coefficient of correlation (R) were employed to identify the ANFIS system indicating an optimum and efficient result. The optimum result was obtained from ANFIS network with two input membership functions, Gaussian membership function (gaussmf) and hybrid optimization method. The result shows that ANFIS may help the decision-making process for go/not go decision in OCPs.
An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination.
Lin, Chin-Teng; Pal, Nikhil R; Wu, Shang-Lin; Liu, Yu-Ting; Lin, Yang-Yin
2015-07-01
We propose an integrated mechanism for discarding derogatory features and extraction of fuzzy rules based on an interval type-2 neural fuzzy system (NFS)-in fact, it is a more general scheme that can discard bad features, irrelevant antecedent clauses, and even irrelevant rules. High-dimensional input variable and a large number of rules not only enhance the computational complexity of NFSs but also reduce their interpretability. Therefore, a mechanism for simultaneous extraction of fuzzy rules and reducing the impact of (or eliminating) the inferior features is necessary. The proposed approach, namely an interval type-2 Neural Fuzzy System for online System Identification and Feature Elimination (IT2NFS-SIFE), uses type-2 fuzzy sets to model uncertainties associated with information and data in designing the knowledge base. The consequent part of the IT2NFS-SIFE is of Takagi-Sugeno-Kang type with interval weights. The IT2NFS-SIFE possesses a self-evolving property that can automatically generate fuzzy rules. The poor features can be discarded through the concept of a membership modulator. The antecedent and modulator weights are learned using a gradient descent algorithm. The consequent part weights are tuned via the rule-ordered Kalman filter algorithm to enhance learning effectiveness. Simulation results show that IT2NFS-SIFE not only simplifies the system architecture by eliminating derogatory/irrelevant antecedent clauses, rules, and features but also maintains excellent performance.
Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Akhavan, P.; Karimi, M.; Pahlavani, P.
2014-10-01
Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL) created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.
Liao, Pei-Hung; Hsu, Pei-Ti; Chu, William; Chu, Woei-Chyn
2015-06-01
This study applied artificial intelligence to help nurses address problems and receive instructions through information technology. Nurses make diagnoses according to professional knowledge, clinical experience, and even instinct. Without comprehensive knowledge and thinking, diagnostic accuracy can be compromised and decisions may be delayed. We used a back-propagation neural network and other tools for data mining and statistical analysis. We further compared the prediction accuracy of the previous methods with an adaptive-network-based fuzzy inference system and the back-propagation neural network, identifying differences in the questions and in nurse satisfaction levels before and after using the nursing information system. This study investigated the use of artificial intelligence to generate nursing diagnoses. The percentage of agreement between diagnoses suggested by the information system and those made by nurses was as much as 87 percent. When patients are hospitalized, we can calculate the probability of various nursing diagnoses based on certain characteristics. © The Author(s) 2013.
Gharghan, Sadik Kamel; Nordin, Rosdiadee; Ismail, Mahamod
2016-08-06
In this paper, we propose two soft computing localization techniques for wireless sensor networks (WSNs). The two techniques, Neural Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN), focus on a range-based localization method which relies on the measurement of the received signal strength indicator (RSSI) from the three ZigBee anchor nodes distributed throughout the track cycling field. The soft computing techniques aim to estimate the distance between bicycles moving on the cycle track for outdoor and indoor velodromes. In the first approach the ANFIS was considered, whereas in the second approach the ANN was hybridized individually with three optimization algorithms, namely Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Backtracking Search Algorithm (BSA). The results revealed that the hybrid GSA-ANN outperforms the other methods adopted in this paper in terms of accuracy localization and distance estimation accuracy. The hybrid GSA-ANN achieves a mean absolute distance estimation error of 0.02 m and 0.2 m for outdoor and indoor velodromes, respectively.
A Wireless Sensor Network with Soft Computing Localization Techniques for Track Cycling Applications
Gharghan, Sadik Kamel; Nordin, Rosdiadee; Ismail, Mahamod
2016-01-01
In this paper, we propose two soft computing localization techniques for wireless sensor networks (WSNs). The two techniques, Neural Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN), focus on a range-based localization method which relies on the measurement of the received signal strength indicator (RSSI) from the three ZigBee anchor nodes distributed throughout the track cycling field. The soft computing techniques aim to estimate the distance between bicycles moving on the cycle track for outdoor and indoor velodromes. In the first approach the ANFIS was considered, whereas in the second approach the ANN was hybridized individually with three optimization algorithms, namely Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Backtracking Search Algorithm (BSA). The results revealed that the hybrid GSA-ANN outperforms the other methods adopted in this paper in terms of accuracy localization and distance estimation accuracy. The hybrid GSA-ANN achieves a mean absolute distance estimation error of 0.02 m and 0.2 m for outdoor and indoor velodromes, respectively. PMID:27509495
NASA Astrophysics Data System (ADS)
Chang, Ya-Ting; Chang, Li-Chiu; Chang, Fi-John
2005-04-01
To bridge the gap between academic research and actual operation, we propose an intelligent control system for reservoir operation. The methodology includes two major processes, the knowledge acquired and implemented, and the inference system. In this study, a genetic algorithm (GA) and a fuzzy rule base (FRB) are used to extract knowledge based on the historical inflow data with a design objective function and on the operating rule curves respectively. The adaptive network-based fuzzy inference system (ANFIS) is then used to implement the knowledge, to create the fuzzy inference system, and then to estimate the optimal reservoir operation. To investigate its applicability and practicability, the Shihmen reservoir, Taiwan, is used as a case study. For the purpose of comparison, a simulation of the currently used M-5 operating rule curve is also performed. The results demonstrate that (1) the GA is an efficient way to search the optimal input-output patterns, (2) the FRB can extract the knowledge from the operating rule curves, and (3) the ANFIS models built on different types of knowledge can produce much better performance than the traditional M-5 curves in real-time reservoir operation. Moreover, we show that the model can be more intelligent for reservoir operation if more information (or knowledge) is involved.
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1992-01-01
As part of the RICIS activity, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Max satellite simulation. This activity is carried out in the software technology laboratory utilizing the Orbital Operations Simulator (OOS). This report is deliverable D2 Altitude Control Results and provides the status of the project after four months of activities and outlines the future plans. In section 2 we describe the Fuzzy-Learner system for the attitude control functions. In section 3, we provide the description of test cases and results in a chronological order. In section 4, we have summarized our results and conclusions. Our future plans and recommendations are provided in section 5.
Enhancing Communication in Noisy Environments
2009-10-01
derived from the ITD and ILD cues, which are binaural . ITD depends on the azimuthal position of the source. Similarly, ILD refers to the fact...4.4 dB No Perceptual Binaural Speech Enhancement [42] 4.5 dB Yes Fuzzy Cocktail Party Processor [25] 7.5 dB Yes Binaural segregation [43] 8.9 dB No...modulation. IEEE Transactions on Neural Networks. 15 (2004): 1135-50. [42] Dong R. Perceptual Binaural Speech Enhancement in Noisy Environments. M.A.Sc
Kaga, Chiaki; Okochi, Mina; Tomita, Yasuyuki; Kato, Ryuji; Honda, Hiroyuki
2008-03-01
We developed a method of effective peptide screening that combines experiments and computational analysis. The method is based on the concept that screening efficiency can be enhanced from even limited data by use of a model derived from computational analysis that serves as a guide to screening and combining the model with subsequent repeated experiments. Here we focus on cell-adhesion peptides as a model application of this peptide-screening strategy. Cell-adhesion peptides were screened by use of a cell-based assay of a peptide array. Starting with the screening data obtained from a limited, random 5-mer library (643 sequences), a rule regarding structural characteristics of cell-adhesion peptides was extracted by fuzzy neural network (FNN) analysis. According to this rule, peptides with unfavored residues in certain positions that led to inefficient binding were eliminated from the random sequences. In the restricted, second random library (273 sequences), the yield of cell-adhesion peptides having an adhesion rate more than 1.5-fold to that of the basal array support was significantly high (31%) compared with the unrestricted random library (20%). In the restricted third library (50 sequences), the yield of cell-adhesion peptides increased to 84%. We conclude that a repeated cycle of experiments screening limited numbers of peptides can be assisted by the rule-extracting feature of FNN.
Moghtadaei, Motahareh; Hashemi Golpayegani, Mohammad Reza; Malekzadeh, Reza
2013-02-07
Identification of squamous dysplasia and esophageal squamous cell carcinoma (ESCC) is of great importance in prevention of cancer incidence. Computer aided algorithms can be very useful for identification of people with higher risks of squamous dysplasia, and ESCC. Such method can limit the clinical screenings to people with higher risks. Different regression methods have been used to predict ESCC and dysplasia. In this paper, a Fuzzy Neural Network (FNN) model is selected for ESCC and dysplasia prediction. The inputs to the classifier are the risk factors. Since the relation between risk factors in the tumor system has a complex nonlinear behavior, in comparison to most of ordinary data, the cost function of its model can have more local optimums. Thus the need for global optimization methods is more highlighted. The proposed method in this paper is a Chaotic Optimization Algorithm (COA) proceeding by the common Error Back Propagation (EBP) local method. Since the model has many parameters, we use a strategy to reduce the dependency among parameters caused by the chaotic series generator. This dependency was not considered in the previous COA methods. The algorithm is compared with logistic regression model as the latest successful methods of ESCC and dysplasia prediction. The results represent a more precise prediction with less mean and variance of error. Copyright © 2012 Elsevier Ltd. All rights reserved.
Daily water level forecasting using wavelet decomposition and artificial intelligence techniques
NASA Astrophysics Data System (ADS)
Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.
2015-01-01
Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.
Grossi, Enzo
2006-01-01
Background In recent years a number of algorithms for cardiovascular risk assessment has been proposed to the medical community. These algorithms consider a number of variables and express their results as the percentage risk of developing a major fatal or non-fatal cardiovascular event in the following 10 to 20 years Discussion The author has identified three major pitfalls of these algorithms, linked to the limitation of the classical statistical approach in dealing with this kind of non linear and complex information. The pitfalls are the inability to capture the disease complexity, the inability to capture process dynamics, and the wide confidence interval of individual risk assessment. Artificial Intelligence tools can provide potential advantage in trying to overcome these limitations. The theoretical background and some application examples related to artificial neural networks and fuzzy logic have been reviewed and discussed. Summary The use of predictive algorithms to assess individual absolute risk of cardiovascular future events is currently hampered by methodological and mathematical flaws. The use of newer approaches, such as fuzzy logic and artificial neural networks, linked to artificial intelligence, seems to better address both the challenge of increasing complexity resulting from a correlation between predisposing factors, data on the occurrence of cardiovascular events, and the prediction of future events on an individual level. PMID:16672045
A Computer-Aided Type-II Fuzzy Image Processing for Diagnosis of Meniscus Tear.
Zarandi, M H Fazel; Khadangi, A; Karimi, F; Turksen, I B
2016-12-01
Meniscal tear is one of the prevalent knee disorders among young athletes and the aging population, and requires correct diagnosis and surgical intervention, if necessary. Not only the errors followed by human intervention but also the obstacles of manual meniscal tear detection highlight the need for automatic detection techniques. This paper presents a type-2 fuzzy expert system for meniscal tear diagnosis using PD magnetic resonance images (MRI). The scheme of the proposed type-2 fuzzy image processing model is composed of three distinct modules: Pre-processing, Segmentation, and Classification. λ-nhancement algorithm is used to perform the pre-processing step. For the segmentation step, first, Interval Type-2 Fuzzy C-Means (IT2FCM) is applied to the images, outputs of which are then employed by Interval Type-2 Possibilistic C-Means (IT2PCM) to perform post-processes. Second stage concludes with re-estimation of "η" value to enhance IT2PCM. Finally, a Perceptron neural network with two hidden layers is used for Classification stage. The results of the proposed type-2 expert system have been compared with a well-known segmentation algorithm, approving the superiority of the proposed system in meniscal tear recognition.
Verifying Stability of Dynamic Soft-Computing Systems
NASA Technical Reports Server (NTRS)
Wen, Wu; Napolitano, Marcello; Callahan, John
1997-01-01
Soft computing is a general term for algorithms that learn from human knowledge and mimic human skills. Example of such algorithms are fuzzy inference systems and neural networks. Many applications, especially in control engineering, have demonstrated their appropriateness in building intelligent systems that are flexible and robust. Although recent research have shown that certain class of neuro-fuzzy controllers can be proven bounded and stable, they are implementation dependent and difficult to apply to the design and validation process. Many practitioners adopt the trial and error approach for system validation or resort to exhaustive testing using prototypes. In this paper, we describe our on-going research towards establishing necessary theoretic foundation as well as building practical tools for the verification and validation of soft-computing systems. A unified model for general neuro-fuzzy system is adopted. Classic non-linear system control theory and recent results of its applications to neuro-fuzzy systems are incorporated and applied to the unified model. It is hoped that general tools can be developed to help the designer to visualize and manipulate the regions of stability and boundedness, much the same way Bode plots and Root locus plots have helped conventional control design and validation.
Parameterized data-driven fuzzy model based optimal control of a semi-batch reactor.
Kamesh, Reddi; Rani, K Yamuna
2016-09-01
A parameterized data-driven fuzzy (PDDF) model structure is proposed for semi-batch processes, and its application for optimal control is illustrated. The orthonormally parameterized input trajectories, initial states and process parameters are the inputs to the model, which predicts the output trajectories in terms of Fourier coefficients. Fuzzy rules are formulated based on the signs of a linear data-driven model, while the defuzzification step incorporates a linear regression model to shift the domain from input to output domain. The fuzzy model is employed to formulate an optimal control problem for single rate as well as multi-rate systems. Simulation study on a multivariable semi-batch reactor system reveals that the proposed PDDF modeling approach is capable of capturing the nonlinear and time-varying behavior inherent in the semi-batch system fairly accurately, and the results of operating trajectory optimization using the proposed model are found to be comparable to the results obtained using the exact first principles model, and are also found to be comparable to or better than parameterized data-driven artificial neural network model based optimization results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Intelligent-based Structural Damage Detection Model
NASA Astrophysics Data System (ADS)
Lee, Eric Wai Ming; Yu, Kin Fung
2010-05-01
This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.
NASA Astrophysics Data System (ADS)
Hsiao, Feng-Hsiag
2017-10-01
In order to obtain double encryption via elliptic curve cryptography (ECC) and chaotic synchronisation, this study presents a design methodology for neural-network (NN)-based secure communications in multiple time-delay chaotic systems. ECC is an asymmetric encryption and its strength is based on the difficulty of solving the elliptic curve discrete logarithm problem which is a much harder problem than factoring integers. Because it is much harder, we can get away with fewer bits to provide the same level of security. To enhance the strength of the cryptosystem, we conduct double encryption that combines chaotic synchronisation with ECC. According to the improved genetic algorithm, a fuzzy controller is synthesised to realise the exponential synchronisation and achieves optimal H∞ performance by minimising the disturbances attenuation level. Finally, a numerical example with simulations is given to demonstrate the effectiveness of the proposed approach.
Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Masri Husam Fayiz, Al
2017-01-01
The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.
From fuzzy recurrence plots to scalable recurrence networks of time series
NASA Astrophysics Data System (ADS)
Pham, Tuan D.
2017-04-01
Recurrence networks, which are derived from recurrence plots of nonlinear time series, enable the extraction of hidden features of complex dynamical systems. Because fuzzy recurrence plots are represented as grayscale images, this paper presents a variety of texture features that can be extracted from fuzzy recurrence plots. Based on the notion of fuzzy recurrence plots, defuzzified, undirected, and unweighted recurrence networks are introduced. Network measures can be computed for defuzzified recurrence networks that are scalable to meet the demand for the network-based analysis of big data.
Parrado-Hernández, Emilio; Gómez-Sánchez, Eduardo; Dimitriadis, Yannis A
2003-09-01
An evaluation of distributed learning as a means to attenuate the category proliferation problem in Fuzzy ARTMAP based neural systems is carried out, from both qualitative and quantitative points of view. The study involves two original winner-take-all (WTA) architectures, Fuzzy ARTMAP and FasArt, and their distributed versions, dARTMAP and dFasArt. A qualitative analysis of the distributed learning properties of dARTMAP is made, focusing on the new elements introduced to endow Fuzzy ARTMAP with distributed learning. In addition, a quantitative study on a selected set of classification problems points out that problems have to present certain features in their output classes in order to noticeably reduce the number of recruited categories and achieve an acceptable classification accuracy. As part of this analysis, distributed learning was successfully adapted to a member of the Fuzzy ARTMAP family, FasArt, and similar procedures can be used to extend distributed learning capabilities to other Fuzzy ARTMAP based systems.
The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center
NASA Astrophysics Data System (ADS)
Tseng, Pai-Chung; Chen, Shen-Len
The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.
NASA Astrophysics Data System (ADS)
Yan, Fengxia; Udupa, Jayaram K.; Tong, Yubing; Xu, Guoping; Odhner, Dewey; Torigian, Drew A.
2018-03-01
The recently developed body-wide Automatic Anatomy Recognition (AAR) methodology depends on fuzzy modeling of individual objects, hierarchically arranging objects, constructing an anatomy ensemble of these models, and a dichotomous object recognition-delineation process. The parent-to-offspring spatial relationship in the object hierarchy is crucial in the AAR method. We have found this relationship to be quite complex, and as such any improvement in capturing this relationship information in the anatomy model will improve the process of recognition itself. Currently, the method encodes this relationship based on the layout of the geometric centers of the objects. Motivated by the concept of virtual landmarks (VLs), this paper presents a new one-shot AAR recognition method that utilizes the VLs to learn object relationships by training a neural network to predict the pose and the VLs of an offspring object given the VLs of the parent object in the hierarchy. We set up two neural networks for each parent-offspring object pair in a body region, one for predicting the VLs and another for predicting the pose parameters. The VL-based learning/prediction method is evaluated on two object hierarchies involving 14 objects. We utilize 54 computed tomography (CT) image data sets of head and neck cancer patients and the associated object contours drawn by dosimetrists for routine radiation therapy treatment planning. The VL neural network method is found to yield more accurate object localization than the currently used simple AAR method.
A knowledge-base generating hierarchical fuzzy-neural controller.
Kandadai, R M; Tien, J M
1997-01-01
We present an innovative fuzzy-neural architecture that is able to automatically generate a knowledge base, in an extractable form, for use in hierarchical knowledge-based controllers. The knowledge base is in the form of a linguistic rule base appropriate for a fuzzy inference system. First, we modify Berenji and Khedkar's (1992) GARIC architecture to enable it to automatically generate a knowledge base; a pseudosupervised learning scheme using reinforcement learning and error backpropagation is employed. Next, we further extend this architecture to a hierarchical controller that is able to generate its own knowledge base. Example applications are provided to underscore its viability.
Speed challenge: a case for hardware implementation in soft-computing
NASA Technical Reports Server (NTRS)
Daud, T.; Stoica, A.; Duong, T.; Keymeulen, D.; Zebulum, R.; Thomas, T.; Thakoor, A.
2000-01-01
For over a decade, JPL has been actively involved in soft computing research on theory, architecture, applications, and electronics hardware. The driving force in all our research activities, in addition to the potential enabling technology promise, has been creation of a niche that imparts orders of magnitude speed advantage by implementation in parallel processing hardware with algorithms made especially suitable for hardware implementation. We review our work on neural networks, fuzzy logic, and evolvable hardware with selected application examples requiring real time response capabilities.
Innovation and application of ANN in Europe demonstrated by Kohonen maps
NASA Technical Reports Server (NTRS)
Goser, Karl
1994-01-01
One of the most important contributions to neural networks comes from Kohonen, Helsinki/Espoo, Finland, who had the idea of self-organizating maps in 1981. He verified his idea by an algorithm of which many applications make use of. The impetus for this idea came from biology, a field where the Europeans have always been very active at several research laboratories. The challenge was to model the self-organization found in the brain. Today one goal is the development of more sophisticated neurons which model the biological neurons more exactly. They should come to a better performance of neural nets with only a few complex neurons instead of many simple ones. A lot of application concepts arise from this idea: Kohonen himself applied it to speech recognition, but the project did not overcome much more than the recognition of the numerals one to ten at that time. A more promising application for self-organizing maps is process control and process monitoring. Several proposals were made which concern parameter classification of semiconductor technologies, design of integrated circuits, and control of chemical processes. Self-organizing maps were applied to robotics. The neural concept was introduced into electric power systems. At Dortmund we are working on a system which has to monitor the quality and the reliability of gears and electrical motors in equipment installed in coal mines. The results are promising and the probability to apply the system in the field is very high. A special feature of the system is that linguistic rules which are embedded in a fuzzy controller analyze the data of the self-organizing map in regard to life expectation of the gears. It seems that the fuzzy technique will introduce the technology of neural networks in a tandem mode. These technologies together with the genetic algorithms start to form the attractive field of computational intelligence.
NASA Astrophysics Data System (ADS)
Akhoondzadeh, M.
2013-09-01
Anomaly detection is extremely important for forecasting the date, location and magnitude of an impending earthquake. In this paper, an Adaptive Network-based Fuzzy Inference System (ANFIS) has been proposed to detect the thermal and Total Electron Content (TEC) anomalies around the time of the Varzeghan, Iran, (Mw = 6.4) earthquake jolted in 11 August 2012 NW Iran. ANFIS is the famous hybrid neuro-fuzzy network for modeling the non-linear complex systems. In this study, also the detected thermal and TEC anomalies using the proposed method are compared to the results dealing with the observed anomalies by applying the classical and intelligent methods including Interquartile, Auto-Regressive Integrated Moving Average (ARIMA), Artificial Neural Network (ANN) and Support Vector Machine (SVM) methods. The duration of the dataset which is comprised from Aqua-MODIS Land Surface Temperature (LST) night-time snapshot images and also Global Ionospheric Maps (GIM), is 62 days. It can be shown that, if the difference between the predicted value using the ANFIS method and the observed value, exceeds the pre-defined threshold value, then the observed precursor value in the absence of non seismic effective parameters could be regarded as precursory anomaly. For two precursors of LST and TEC, the ANFIS method shows very good agreement with the other implemented classical and intelligent methods and this indicates that ANFIS is capable of detecting earthquake anomalies. The applied methods detected anomalous occurrences 1 and 2 days before the earthquake. This paper indicates that the detection of the thermal and TEC anomalies derive their credibility from the overall efficiencies and potentialities of the five integrated methods.
Heddam, Salim
2014-01-01
In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Aleksandr I.; Lazarev, Alexander A.; Magas, Taras E.
2010-04-01
Equivalence models (EM) advantages of neural networks (NN) are shown in paper. EMs are based on vectormatrix procedures with basic operations of continuous neurologic: normalized vector operations "equivalence", "nonequivalence", "autoequivalence", "autononequivalence". The capacity of NN on the basis of EM and of its modifications, including auto-and heteroassociative memories for 2D images, exceeds in several times quantity of neurons. Such neuroparadigms are very perspective for processing, recognition, storing large size and strongly correlated images. A family of "normalized equivalence-nonequivalence" neuro-fuzzy logic operations on the based of generalized operations fuzzy-negation, t-norm and s-norm is elaborated. A biologically motivated concept and time pulse encoding principles of continuous logic photocurrent reflexions and sample-storage devices with pulse-width photoconverters have allowed us to design generalized structures for realization of the family of normalized linear vector operations "equivalence"-"nonequivalence". Simulation results show, that processing time in such circuits does not exceed units of micro seconds. Circuits are simple, have low supply voltage (1-3 V), low power consumption (milliwatts), low levels of input signals (microwatts), integrated construction, satisfy the problem of interconnections and cascading.
Green, Geoffrey C; Chan, Adrian D C; Goubran, Rafik A
2009-01-01
Adopting the use of real-time odour monitoring in the smart home has the potential to alert the occupant of unsafe or unsanitary conditions. In this paper, we measured (with a commercial metal-oxide sensor-based electronic nose) the odours of five household foods that had been left out at room temperature for a week to spoil. A multilayer perceptron (MLP) neural network was trained to recognize the age of the samples (a quantity related to the degree of spoilage). For four of these foods, median correlation coefficients (between target values and MLP outputs) of R > 0.97 were observed. Fuzzy C-means clustering (FCM) was applied to the evolving odour patterns of spoiling milk, which had been sampled more frequently (4h intervals for 7 days). The FCM results showed that both the freshest and oldest milk samples had a high degree of membership in "fresh" and "spoiled" clusters, respectively. In the future, as advancements in electronic nose development remove the present barriers to acceptance, signal processing methods like those explored in this paper can be incorporated into odour monitoring systems used in the smart home.
Vivekanandan, T; Sriman Narayana Iyengar, N Ch
2017-11-01
Enormous data growth in multiple domains has posed a great challenge for data processing and analysis techniques. In particular, the traditional record maintenance strategy has been replaced in the healthcare system. It is vital to develop a model that is able to handle the huge amount of e-healthcare data efficiently. In this paper, the challenging tasks of selecting critical features from the enormous set of available features and diagnosing heart disease are carried out. Feature selection is one of the most widely used pre-processing steps in classification problems. A modified differential evolution (DE) algorithm is used to perform feature selection for cardiovascular disease and optimization of selected features. Of the 10 available strategies for the traditional DE algorithm, the seventh strategy, which is represented by DE/rand/2/exp, is considered for comparative study. The performance analysis of the developed modified DE strategy is given in this paper. With the selected critical features, prediction of heart disease is carried out using fuzzy AHP and a feed-forward neural network. Various performance measures of integrating the modified differential evolution algorithm with fuzzy AHP and a feed-forward neural network in the prediction of heart disease are evaluated in this paper. The accuracy of the proposed hybrid model is 83%, which is higher than that of some other existing models. In addition, the prediction time of the proposed hybrid model is also evaluated and has shown promising results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sensor fusion methods for reducing false alarms in heart rate monitoring.
Borges, Gabriel; Brusamarello, Valner
2016-12-01
Automatic patient monitoring is an essential resource in hospitals for good health care management. While alarms caused by abnormal physiological conditions are important for the delivery of fast treatment, they can be also a source of unnecessary noise because of false alarms caused by electromagnetic interference or motion artifacts. One significant source of false alarms is related to heart rate, which is triggered when the heart rhythm of the patient is too fast or too slow. In this work, the fusion of different physiological sensors is explored in order to create a robust heart rate estimation. A set of algorithms using heart rate variability index, Bayesian inference, neural networks, fuzzy logic and majority voting is proposed to fuse the information from the electrocardiogram, arterial blood pressure and photoplethysmogram. Three kinds of information are extracted from each source, namely, heart rate variability, the heart rate difference between sensors and the spectral analysis of low and high noise of each sensor. This information is used as input to the algorithms. Twenty recordings selected from the MIMIC database were used to validate the system. The results showed that neural networks fusion had the best false alarm reduction of 92.5 %, while the Bayesian technique had a reduction of 84.3 %, fuzzy logic 80.6 %, majority voter 72.5 % and the heart rate variability index 67.5 %. Therefore, the proposed algorithms showed good performance and could be useful in bedside monitors.
NASA Astrophysics Data System (ADS)
Altıparmak, Hamit; Al Shahadat, Mohamad; Kiani, Ehsan; Dimililer, Kamil
2018-04-01
Robotic agriculture requires smart and doable techniques to substitute the human intelligence with machine intelligence. Strawberry is one of the important Mediterranean product and its productivity enhancement requires modern and machine-based methods. Whereas a human identifies the disease infected leaves by his eye, the machine should also be capable of vision-based disease identification. The objective of this paper is to practically verify the applicability of a new computer-vision method for discrimination between the healthy and disease infected strawberry leaves which does not require neural network or time consuming trainings. The proposed method was tested under outdoor lighting condition using a regular DLSR camera without any particular lens. Since the type and infection degree of disease is approximated a human brain a fuzzy decision maker classifies the leaves over the images captured on-site having the same properties of human vision. Optimizing the fuzzy parameters for a typical strawberry production area at a summer mid-day in Cyprus produced 96% accuracy for segmented iron deficiency and 93% accuracy for segmented using a typical human instant classification approximation as the benchmark holding higher accuracy than a human eye identifier. The fuzzy-base classifier provides approximate result for decision making on the leaf status as if it is healthy or not.
Age Estimation Based on Children's Voice: A Fuzzy-Based Decision Fusion Strategy
Ting, Hua-Nong
2014-01-01
Automatic estimation of a speaker's age is a challenging research topic in the area of speech analysis. In this paper, a novel approach to estimate a speaker's age is presented. The method features a “divide and conquer” strategy wherein the speech data are divided into six groups based on the vowel classes. There are two reasons behind this strategy. First, reduction in the complicated distribution of the processing data improves the classifier's learning performance. Second, different vowel classes contain complementary information for age estimation. Mel-frequency cepstral coefficients are computed for each group and single layer feed-forward neural networks based on self-adaptive extreme learning machine are applied to the features to make a primary decision. Subsequently, fuzzy data fusion is employed to provide an overall decision by aggregating the classifier's outputs. The results are then compared with a number of state-of-the-art age estimation methods. Experiments conducted based on six age groups including children aged between 7 and 12 years revealed that fuzzy fusion of the classifier's outputs resulted in considerable improvement of up to 53.33% in age estimation accuracy. Moreover, the fuzzy fusion of decisions aggregated the complementary information of a speaker's age from various speech sources. PMID:25006595
NASA Astrophysics Data System (ADS)
Zhou, Changjiu; Meng, Qingchun; Guo, Zhongwen; Qu, Wiefen; Yin, Bo
2002-04-01
Robot learning in unstructured environments has been proved to be an extremely challenging problem, mainly because of many uncertainties always present in the real world. Human beings, on the other hand, seem to cope very well with uncertain and unpredictable environments, often relying on perception-based information. Furthermore, humans beings can also utilize perceptions to guide their learning on those parts of the perception-action space that are actually relevant to the task. Therefore, we conduct a research aimed at improving robot learning through the incorporation of both perception-based and measurement-based information. For this reason, a fuzzy reinforcement learning (FRL) agent is proposed in this paper. Based on a neural-fuzzy architecture, different kinds of information can be incorporated into the FRL agent to initialise its action network, critic network and evaluation feedback module so as to accelerate its learning. By making use of the global optimisation capability of GAs (genetic algorithms), a GA-based FRL (GAFRL) agent is presented to solve the local minima problem in traditional actor-critic reinforcement learning. On the other hand, with the prediction capability of the critic network, GAs can perform a more effective global search. Different GAFRL agents are constructed and verified by using the simulation model of a physical biped robot. The simulation analysis shows that the biped learning rate for dynamic balance can be improved by incorporating perception-based information on biped balancing and walking evaluation. The biped robot can find its application in ocean exploration, detection or sea rescue activity, as well as military maritime activity.
NASA Astrophysics Data System (ADS)
Kong, Changduk; Lim, Semyeong
2011-12-01
Recently, the health monitoring system of major gas path components of gas turbine uses mostly the model based method like the Gas Path Analysis (GPA). This method is to find quantity changes of component performance characteristic parameters such as isentropic efficiency and mass flow parameter by comparing between measured engine performance parameters such as temperatures, pressures, rotational speeds, fuel consumption, etc. and clean engine performance parameters without any engine faults which are calculated by the base engine performance model. Currently, the expert engine diagnostic systems using the artificial intelligent methods such as Neural Networks (NNs), Fuzzy Logic and Genetic Algorithms (GAs) have been studied to improve the model based method. Among them the NNs are mostly used to the engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base if there are large amount of learning data. In addition, it has a very complex structure for finding effectively single type faults or multiple type faults of gas path components. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measured performance data, and proposes a fault diagnostic system using the base engine performance model and the artificial intelligent methods such as Fuzzy logic and Neural Network. The proposed diagnostic system isolates firstly the faulted components using Fuzzy Logic, then quantifies faults of the identified components using the NN leaned by fault learning data base, which are obtained from the developed base performance model. In leaning the NN, the Feed Forward Back Propagation (FFBP) method is used. Finally, it is verified through several test examples that the component faults implanted arbitrarily in the engine are well isolated and quantified by the proposed diagnostic system.
Learning-based computing techniques in geoid modeling for precise height transformation
NASA Astrophysics Data System (ADS)
Erol, B.; Erol, S.
2013-03-01
Precise determination of local geoid is of particular importance for establishing height control in geodetic GNSS applications, since the classical leveling technique is too laborious. A geoid model can be accurately obtained employing properly distributed benchmarks having GNSS and leveling observations using an appropriate computing algorithm. Besides the classical multivariable polynomial regression equations (MPRE), this study attempts an evaluation of learning based computing algorithms: artificial neural networks (ANNs), adaptive network-based fuzzy inference system (ANFIS) and especially the wavelet neural networks (WNNs) approach in geoid surface approximation. These algorithms were developed parallel to advances in computer technologies and recently have been used for solving complex nonlinear problems of many applications. However, they are rather new in dealing with precise modeling problem of the Earth gravity field. In the scope of the study, these methods were applied to Istanbul GPS Triangulation Network data. The performances of the methods were assessed considering the validation results of the geoid models at the observation points. In conclusion the ANFIS and WNN revealed higher prediction accuracies compared to ANN and MPRE methods. Beside the prediction capabilities, these methods were also compared and discussed from the practical point of view in conclusions.
Designing a holistic end-to-end intelligent network analysis and security platform
NASA Astrophysics Data System (ADS)
Alzahrani, M.
2018-03-01
Firewall protects a network from outside attacks, however, once an attack entering a network, it is difficult to detect. Recent significance accidents happened. i.e.: millions of Yahoo email account were stolen and crucial data from institutions are held for ransom. Within two year Yahoo’s system administrators were not aware that there are intruder inside the network. This happened due to the lack of intelligent tools to monitor user behaviour in internal network. This paper discusses a design of an intelligent anomaly/malware detection system with proper proactive actions. The aim is to equip the system administrator with a proper tool to battle the insider attackers. The proposed system adopts machine learning to analyse user’s behaviour through the runtime behaviour of each node in the network. The machine learning techniques include: deep learning, evolving machine learning perceptron, hybrid of Neural Network and Fuzzy, as well as predictive memory techniques. The proposed system is expanded to deal with larger network using agent techniques.
A review of techniques to determine alternative selection in design for remanufacturing
NASA Astrophysics Data System (ADS)
Noor, A. Z. Mohamed; Fauadi, M. H. F. Md; Jafar, F. A.; Mohamad, N. R.; Yunos, A. S. Mohd
2017-10-01
This paper discusses the techniques used for optimization in manufacturing system. Although problem domain is focused on sustainable manufacturing, techniques used to optimize general manufacturing system were also discussed. Important aspects of Design for Remanufacturing (DFReM) considered include indexes, weighted average, grey decision making and Fuzzy TOPSIS. The limitation of existing techniques are most of them is highly based on decision maker’s perspective. Different experts may have different understanding and eventually scale it differently. Therefore, the objective of this paper is to determine available techniques and identify the lacking feature in it. Once all the techniques have been reviewed, a decision will be made by create another technique which should counter the lacking of discussed techniques. In this paper, shows that the hybrid computation of Fuzzy Analytic Hierarchy Process (AHP) and Artificial Neural Network (ANN) is suitable and fill the gap of all discussed technique.
A study of fuzzy logic ensemble system performance on face recognition problem
NASA Astrophysics Data System (ADS)
Polyakova, A.; Lipinskiy, L.
2017-02-01
Some problems are difficult to solve by using a single intelligent information technology (IIT). The ensemble of the various data mining (DM) techniques is a set of models which are able to solve the problem by itself, but the combination of which allows increasing the efficiency of the system as a whole. Using the IIT ensembles can improve the reliability and efficiency of the final decision, since it emphasizes on the diversity of its components. The new method of the intellectual informational technology ensemble design is considered in this paper. It is based on the fuzzy logic and is designed to solve the classification and regression problems. The ensemble consists of several data mining algorithms: artificial neural network, support vector machine and decision trees. These algorithms and their ensemble have been tested by solving the face recognition problems. Principal components analysis (PCA) is used for feature selection.
Daily pan evaporation modelling using a neuro-fuzzy computing technique
NASA Astrophysics Data System (ADS)
Kişi, Özgür
2006-10-01
SummaryEvaporation, as a major component of the hydrologic cycle, is important in water resources development and management. This paper investigates the abilities of neuro-fuzzy (NF) technique to improve the accuracy of daily evaporation estimation. Five different NF models comprising various combinations of daily climatic variables, that is, air temperature, solar radiation, wind speed, pressure and humidity are developed to evaluate degree of effect of each of these variables on evaporation. A comparison is made between the estimates provided by the NF model and the artificial neural networks (ANNs). The Stephens-Stewart (SS) method is also considered for the comparison. Various statistic measures are used to evaluate the performance of the models. Based on the comparisons, it was found that the NF computing technique could be employed successfully in modelling evaporation process from the available climatic data. The ANN also found to perform better than the SS method.
Prediction of Pathological Stage in Patients with Prostate Cancer: A Neuro-Fuzzy Model
Acampora, Giovanni; Brown, David; Rees, Robert C.
2016-01-01
The prediction of cancer staging in prostate cancer is a process for estimating the likelihood that the cancer has spread before treatment is given to the patient. Although important for determining the most suitable treatment and optimal management strategy for patients, staging continues to present significant challenges to clinicians. Clinical test results such as the pre-treatment Prostate-Specific Antigen (PSA) level, the biopsy most common tumor pattern (Primary Gleason pattern) and the second most common tumor pattern (Secondary Gleason pattern) in tissue biopsies, and the clinical T stage can be used by clinicians to predict the pathological stage of cancer. However, not every patient will return abnormal results in all tests. This significantly influences the capacity to effectively predict the stage of prostate cancer. Herein we have developed a neuro-fuzzy computational intelligence model for classifying and predicting the likelihood of a patient having Organ-Confined Disease (OCD) or Extra-Prostatic Disease (ED) using a prostate cancer patient dataset obtained from The Cancer Genome Atlas (TCGA) Research Network. The system input consisted of the following variables: Primary and Secondary Gleason biopsy patterns, PSA levels, age at diagnosis, and clinical T stage. The performance of the neuro-fuzzy system was compared to other computational intelligence based approaches, namely the Artificial Neural Network, Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers, and also the AJCC pTNM Staging Nomogram which is commonly used by clinicians. A comparison of the optimal Receiver Operating Characteristic (ROC) points that were identified using these approaches, revealed that the neuro-fuzzy system, at its optimal point, returns the largest Area Under the ROC Curve (AUC), with a low number of false positives (FPR = 0.274, TPR = 0.789, AUC = 0.812). The proposed approach is also an improvement over the AJCC pTNM Staging Nomogram (FPR = 0.032, TPR = 0.197, AUC = 0.582). PMID:27258119
Artificial intelligence in medicine.
Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.
2004-01-01
INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167
NASA Astrophysics Data System (ADS)
Tautz-Weinert, J.; Watson, S. J.
2016-09-01
Effective condition monitoring techniques for wind turbines are needed to improve maintenance processes and reduce operational costs. Normal behaviour modelling of temperatures with information from other sensors can help to detect wear processes in drive trains. In a case study, modelling of bearing and generator temperatures is investigated with operational data from the SCADA systems of more than 100 turbines. The focus is here on automated training and testing on a farm level to enable an on-line system, which will detect failures without human interpretation. Modelling based on linear combinations, artificial neural networks, adaptive neuro-fuzzy inference systems, support vector machines and Gaussian process regression is compared. The selection of suitable modelling inputs is discussed with cross-correlation analyses and a sensitivity study, which reveals that the investigated modelling techniques react in different ways to an increased number of inputs. The case study highlights advantages of modelling with linear combinations and artificial neural networks in a feedforward configuration.
Unsupervised texture image segmentation by improved neural network ART2
NASA Technical Reports Server (NTRS)
Wang, Zhiling; Labini, G. Sylos; Mugnuolo, R.; Desario, Marco
1994-01-01
We here propose a segmentation algorithm of texture image for a computer vision system on a space robot. An improved adaptive resonance theory (ART2) for analog input patterns is adapted to classify the image based on a set of texture image features extracted by a fast spatial gray level dependence method (SGLDM). The nonlinear thresholding functions in input layer of the neural network have been constructed by two parts: firstly, to reduce the effects of image noises on the features, a set of sigmoid functions is chosen depending on the types of the feature; secondly, to enhance the contrast of the features, we adopt fuzzy mapping functions. The cluster number in output layer can be increased by an autogrowing mechanism constantly when a new pattern happens. Experimental results and original or segmented pictures are shown, including the comparison between this approach and K-means algorithm. The system written in C language is performed on a SUN-4/330 sparc-station with an image board IT-150 and a CCD camera.
Design of Power System Architectures for Small Spacecraft Systems
NASA Technical Reports Server (NTRS)
Momoh, James A.; Subramonian, Rama; Dias, Lakshman G.
1996-01-01
The objective of this research is to perform a trade study on several candidate power system architectures for small spacecrafts to be used in NASA's new millennium program. Three initial candidate architectures have been proposed by NASA and two other candidate architectures have been proposed by Howard University. Howard University is currently conducting the necessary analysis, synthesis, and simulation needed to perform the trade studies and arrive at the optimal power system architecture. Statistical, sensitivity and tolerant studies has been performed on the systems. It is concluded from present studies that certain components such as the series regulators, buck-boost converters and power converters can be minimized while retaining the desired functionality of the overall architecture. This in conjunction with battery scalability studies and system efficiency studies have enabled us to develop more economic architectures. Future studies will include artificial neural networks and fuzzy logic to analyze the performance of the systems. Fault simulation studies and fault diagnosis studies using EMTP and artificial neural networks will also be conducted.
Artificial intelligence in medicine.
Ramesh, A N; Kambhampati, C; Monson, J R T; Drew, P J
2004-09-01
Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting.
SoftLab: A Soft-Computing Software for Experimental Research with Commercialization Aspects
NASA Technical Reports Server (NTRS)
Akbarzadeh-T, M.-R.; Shaikh, T. S.; Ren, J.; Hubbell, Rob; Kumbla, K. K.; Jamshidi, M
1998-01-01
SoftLab is a software environment for research and development in intelligent modeling/control using soft-computing paradigms such as fuzzy logic, neural networks, genetic algorithms, and genetic programs. SoftLab addresses the inadequacies of the existing soft-computing software by supporting comprehensive multidisciplinary functionalities from management tools to engineering systems. Furthermore, the built-in features help the user process/analyze information more efficiently by a friendly yet powerful interface, and will allow the user to specify user-specific processing modules, hence adding to the standard configuration of the software environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehlaghi, Vahab; Taghipour, Mostafa; Haghparast, Abbas
In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS) are investigated to predict the thickness of the compensator filter in radiation therapy. In the proposed models, the input parameters are field size (S), off-axis distance, and relative dose (D/D{sub 0}), and the output is the thickness of the compensator. The obtained results show that the proposed ANN and ANFIS models are useful, reliable, and cheap tools to predict the thickness of the compensator filter in intensity-modulated radiation therapy.
Tularosa Basin Play Fairway: Weights of Evidence Models
Adam Brandt
2015-12-01
These models are related to weights of evidence play fairway anlaysis of the Tularosa Basin, New Mexico and Texas. They were created through Spatial Data Modeler: ArcMAP 9.3 geoprocessing tools for spatial data modeling using weights of evidence, logistic regression, fuzzy logic and neural networks. It used to identify high values for potential geothermal plays and low values. The results are relative not only within the Tularosa Basin, but also throughout New Mexico, Utah, Nevada, and other places where high to moderate enthalpy geothermal systems are present (training sites).
[Research Progress of Multi-Model Medical Image Fusion at Feature Level].
Zhang, Junjie; Zhou, Tao; Lu, Huiling; Wang, Huiqun
2016-04-01
Medical image fusion realizes advantage integration of functional images and anatomical images.This article discusses the research progress of multi-model medical image fusion at feature level.We firstly describe the principle of medical image fusion at feature level.Then we analyze and summarize fuzzy sets,rough sets,D-S evidence theory,artificial neural network,principal component analysis and other fusion methods’ applications in medical image fusion and get summery.Lastly,we in this article indicate present problems and the research direction of multi-model medical images in the future.
Computational Intelligence and Its Impact on Future High-Performance Engineering Systems
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler)
1996-01-01
This document contains presentations from the joint UVA/NASA Workshop on Computational Intelligence held at the Virginia Consortium of Engineering and Science Universities, Hampton, Virginia, June 27-28, 1995. The presentations addressed activities in the areas of fuzzy logic, neural networks, and evolutionary computations. Workshop attendees represented NASA, the National Science Foundation, the Department of Energy, National Institute of Standards and Technology (NIST), the Jet Propulsion Laboratory, industry, and academia. The workshop objectives were to assess the state of technology in the Computational intelligence area and to provide guidelines for future research.
Mars Rover imaging systems and directional filtering
NASA Technical Reports Server (NTRS)
Wang, Paul P.
1989-01-01
Computer literature searches were carried out at Duke University and NASA Langley Research Center. The purpose is to enhance personal knowledge based on the technical problems of pattern recognition and image understanding which must be solved for the Mars Rover and Sample Return Mission. Intensive study effort of a large collection of relevant literature resulted in a compilation of all important documents in one place. Furthermore, the documents are being classified into: Mars Rover; computer vision (theory); imaging systems; pattern recognition methodologies; and other smart techniques (AI, neural networks, fuzzy logic, etc).
Tagliaferri, Roberto; Longo, Giuseppe; Milano, Leopoldo; Acernese, Fausto; Barone, Fabrizio; Ciaramella, Angelo; De Rosa, Rosario; Donalek, Ciro; Eleuteri, Antonio; Raiconi, Giancarlo; Sessa, Salvatore; Staiano, Antonino; Volpicelli, Alfredo
2003-01-01
In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).
NASA Astrophysics Data System (ADS)
Efremenko, Vladimir; Belyaevsky, Roman; Skrebneva, Evgeniya
2017-11-01
In article the analysis of electric power consumption and problems of power saving on coal mines are considered. Nowadays the share of conditionally constant costs of electric power for providing safe working conditions underground on coal mines is big. Therefore, the power efficiency of underground coal mining depends on electric power expense of the main technological processes and size of conditionally constant costs. The important direction of increase of power efficiency of coal mining is forecasting of a power consumption and monitoring of electric power expense. One of the main approaches to reducing of electric power costs is increase in accuracy of the enterprise demand in the wholesale electric power market. It is offered to use artificial neural networks to forecasting of day-ahead power consumption with hourly breakdown. At the same time use of neural and indistinct (hybrid) systems on the principles of fuzzy logic, neural networks and genetic algorithms is more preferable. This model allows to do exact short-term forecasts at a small array of input data. A set of the input parameters characterizing mining-and-geological and technological features of the enterprise is offered.
Upper Torso Control for HOAP-2 Using Neural Networks
NASA Technical Reports Server (NTRS)
Sandoval, Steven P.
2005-01-01
Humanoid robots have similar physical builds and motion patterns as humans. Not only does this provide a suitable operating environment for the humanoid but it also opens up many research doors on how humans function. The overall objective is replacing humans operating in unsafe environments. A first target application is assembly of structures for future lunar-planetary bases. The initial development platform is a Fujitsu HOAP-2 humanoid robot. The goal for the project is to demonstrate the capability of a HOAP-2 to autonomously construct a cubic frame using provided tubes and joints. This task will require the robot to identify several items, pick them up, transport them to the build location, then properly assemble the structure. The ability to grasp and assemble the pieces will require improved motor control and the addition of tactile feedback sensors. In recent years, learning-based control is becoming more and more popular; for implementing this method we will be using the Adaptive Neural Fuzzy Inference System (ANFIS). When using neural networks for control, no complex models of the system must be constructed in advance-only input/output relationships are required to model the system.
Adaptive Control Strategies for Flexible Robotic Arm
NASA Technical Reports Server (NTRS)
Bialasiewicz, Jan T.
1996-01-01
The control problem of a flexible robotic arm has been investigated. The control strategies that have been developed have a wide application in approaching the general control problem of flexible space structures. The following control strategies have been developed and evaluated: neural self-tuning control algorithm, neural-network-based fuzzy logic control algorithm, and adaptive pole assignment algorithm. All of the above algorithms have been tested through computer simulation. In addition, the hardware implementation of a computer control system that controls the tip position of a flexible arm clamped on a rigid hub mounted directly on the vertical shaft of a dc motor, has been developed. An adaptive pole assignment algorithm has been applied to suppress vibrations of the described physical model of flexible robotic arm and has been successfully tested using this testbed.
Image processing and analysis using neural networks for optometry area
NASA Astrophysics Data System (ADS)
Netto, Antonio V.; Ferreira de Oliveira, Maria C.
2002-11-01
In this work we describe the framework of a functional system for processing and analyzing images of the human eye acquired by the Hartmann-Shack technique (HS), in order to extract information to formulate a diagnosis of eye refractive errors (astigmatism, hypermetropia and myopia). The analysis is to be carried out using an Artificial Intelligence system based on Neural Nets, Fuzzy Logic and Classifier Combination. The major goal is to establish the basis of a new technology to effectively measure ocular refractive errors that is based on methods alternative those adopted in current patented systems. Moreover, analysis of images acquired with the Hartmann-Shack technique may enable the extraction of additional information on the health of an eye under exam from the same image used to detect refraction errors.
NASA Astrophysics Data System (ADS)
Yegireddi, Satyanarayana; Uday Bhaskar, G.
2009-01-01
Different parameters obtained through well-logging geophysical sensors such as SP, resistivity, gamma-gamma, neutron, natural gamma and acoustic, help in identification of strata and estimation of the physical, electrical and acoustical properties of the subsurface lithology. Strong and conspicuous changes in some of the log parameters associated with any particular stratigraphy formation, are function of its composition, physical properties and help in classification. However some substrata show moderate values in respective log parameters and make difficult to identify or assess the type of strata, if we go by the standard variability ranges of any log parameters and visual inspection. The complexity increases further with more number of sensors involved. An attempt is made to identify the type of stratigraphy from borehole geophysical log data using a combined approach of neural networks and fuzzy logic, known as Adaptive Neuro-Fuzzy Inference System. A model is built based on a few data sets (geophysical logs) of known stratigraphy of in coal areas of Kothagudem, Godavari basin and further the network model is used as test model to infer the lithology of a borehole from their geophysical logs, not used in simulation. The results are very encouraging and the model is able to decipher even thin cola seams and other strata from borehole geophysical logs. The model can be further modified to assess the physical properties of the strata, if the corresponding ground truth is made available for simulation.
NASA Astrophysics Data System (ADS)
Yang, G.; Lin, Y.; Bhattacharya, P.
2007-12-01
To achieve an effective and safe operation on the machine system where the human interacts with the machine mutually, there is a need for the machine to understand the human state, especially cognitive state, when the human's operation task demands an intensive cognitive activity. Due to a well-known fact with the human being, a highly uncertain cognitive state and behavior as well as expressions or cues, the recent trend to infer the human state is to consider multimodality features of the human operator. In this paper, we present a method for multimodality inferring of human cognitive states by integrating neuro-fuzzy network and information fusion techniques. To demonstrate the effectiveness of this method, we take the driver fatigue detection as an example. The proposed method has, in particular, the following new features. First, human expressions are classified into four categories: (i) casual or contextual feature, (ii) contact feature, (iii) contactless feature, and (iv) performance feature. Second, the fuzzy neural network technique, in particular Takagi-Sugeno-Kang (TSK) model, is employed to cope with uncertain behaviors. Third, the sensor fusion technique, in particular ordered weighted aggregation (OWA), is integrated with the TSK model in such a way that cues are taken as inputs to the TSK model, and then the outputs of the TSK are fused by the OWA which gives outputs corresponding to particular cognitive states under interest (e.g., fatigue). We call this method TSK-OWA. Validation of the TSK-OWA, performed in the Northeastern University vehicle drive simulator, has shown that the proposed method is promising to be a general tool for human cognitive state inferring and a special tool for the driver fatigue detection.
Prediction of Software Reliability using Bio Inspired Soft Computing Techniques.
Diwaker, Chander; Tomar, Pradeep; Poonia, Ramesh C; Singh, Vijander
2018-04-10
A lot of models have been made for predicting software reliability. The reliability models are restricted to using particular types of methodologies and restricted number of parameters. There are a number of techniques and methodologies that may be used for reliability prediction. There is need to focus on parameters consideration while estimating reliability. The reliability of a system may increase or decreases depending on the selection of different parameters used. Thus there is need to identify factors that heavily affecting the reliability of the system. In present days, reusability is mostly used in the various area of research. Reusability is the basis of Component-Based System (CBS). The cost, time and human skill can be saved using Component-Based Software Engineering (CBSE) concepts. CBSE metrics may be used to assess those techniques which are more suitable for estimating system reliability. Soft computing is used for small as well as large-scale problems where it is difficult to find accurate results due to uncertainty or randomness. Several possibilities are available to apply soft computing techniques in medicine related problems. Clinical science of medicine using fuzzy-logic, neural network methodology significantly while basic science of medicine using neural-networks-genetic algorithm most frequently and preferably. There is unavoidable interest shown by medical scientists to use the various soft computing methodologies in genetics, physiology, radiology, cardiology and neurology discipline. CBSE boost users to reuse the past and existing software for making new products to provide quality with a saving of time, memory space, and money. This paper focused on assessment of commonly used soft computing technique like Genetic Algorithm (GA), Neural-Network (NN), Fuzzy Logic, Support Vector Machine (SVM), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC). This paper presents working of soft computing techniques and assessment of soft computing techniques to predict reliability. The parameter considered while estimating and prediction of reliability are also discussed. This study can be used in estimation and prediction of the reliability of various instruments used in the medical system, software engineering, computer engineering and mechanical engineering also. These concepts can be applied to both software and hardware, to predict the reliability using CBSE.
Adaptive fuzzy-neural-network control for maglev transportation system.
Wai, Rong-Jong; Lee, Jeng-Dao
2008-01-01
A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.
Yang, Yi-Chao; Sun, Da-Wen; Wang, Nan-Nan; Xie, Anguo
2015-07-01
A novel method of using hyperspectral imaging technique with the weighted combination of spectral data and image features by fuzzy neural network (FNN) was proposed for real-time prediction of polyphenol oxidase (PPO) activity in lychee pericarp. Lychee images were obtained by a hyperspectral reflectance imaging system operating in the range of 400-1000nm. A support vector machine-recursive feature elimination (SVM-RFE) algorithm was applied to eliminating variables with no or little information for the prediction from all bands, resulting in a reduced set of optimal wavelengths. Spectral information at the optimal wavelengths and image color features were then used respectively to develop calibration models for the prediction of PPO in pericarp during storage, and the results of two models were compared. In order to improve the prediction accuracy, a decision strategy was developed based on weighted combination of spectral data and image features, in which the weights were determined by FNN for a better estimation of PPO activity. The results showed that the combined decision model was the best among all of the calibration models, with high R(2) values of 0.9117 and 0.9072 and low RMSEs of 0.45% and 0.459% for calibration and prediction, respectively. These results demonstrate that the proposed weighted combined decision method has great potential for improving model performance. The proposed technique could be used for a better prediction of other internal and external quality attributes of fruits. Copyright © 2015 Elsevier B.V. All rights reserved.
Ensemble of ground subsidence hazard maps using fuzzy logic
NASA Astrophysics Data System (ADS)
Park, Inhye; Lee, Jiyeong; Saro, Lee
2014-06-01
Hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok, Korea, were constructed using fuzzy ensemble techniques and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, groundwater, and ground subsidence maps. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 70/30 for training and validation of the models. The relationships between the detected ground-subsidence area and the factors were identified and quantified by frequency ratio (FR), logistic regression (LR) and artificial neural network (ANN) models. The relationships were used as factor ratings in the overlay analysis to create ground-subsidence hazard indexes and maps. The three GSH maps were then used as new input factors and integrated using fuzzy-ensemble methods to make better hazard maps. All of the hazard maps were validated by comparison with known subsidence areas that were not used directly in the analysis. As the result, the ensemble model was found to be more effective in terms of prediction accuracy than the individual model.
Fuzzy Nonlinear Proximal Support Vector Machine for Land Extraction Based on Remote Sensing Image
Zhong, Xiaomei; Li, Jianping; Dou, Huacheng; Deng, Shijun; Wang, Guofei; Jiang, Yu; Wang, Yongjie; Zhou, Zebing; Wang, Li; Yan, Fei
2013-01-01
Currently, remote sensing technologies were widely employed in the dynamic monitoring of the land. This paper presented an algorithm named fuzzy nonlinear proximal support vector machine (FNPSVM) by basing on ETM+ remote sensing image. This algorithm is applied to extract various types of lands of the city Da’an in northern China. Two multi-category strategies, namely “one-against-one” and “one-against-rest” for this algorithm were described in detail and then compared. A fuzzy membership function was presented to reduce the effects of noises or outliers on the data samples. The approaches of feature extraction, feature selection, and several key parameter settings were also given. Numerous experiments were carried out to evaluate its performances including various accuracies (overall accuracies and kappa coefficient), stability, training speed, and classification speed. The FNPSVM classifier was compared to the other three classifiers including the maximum likelihood classifier (MLC), back propagation neural network (BPN), and the proximal support vector machine (PSVM) under different training conditions. The impacts of the selection of training samples, testing samples and features on the four classifiers were also evaluated in these experiments. PMID:23936016
NASA Astrophysics Data System (ADS)
Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.
2012-09-01
The global rise in energy demands brings major obstacles to many energy organizations in providing adequate energy supply. Hence, many techniques to generate cost effective, reliable and environmentally friendly alternative energy source are being explored. One such method is the integration of photovoltaic cells, wind turbine generators and fuel-based generators, included with storage batteries. This sort of power systems are known as distributed generation (DG) power system. However, the application of DG power systems raise certain issues such as cost effectiveness, environmental impact and reliability. The modelling as well as the optimization of this DG power system was successfully performed in the previous work using Particle Swarm Optimization (PSO). The central idea of that work was to minimize cost, minimize emissions and maximize reliability (multi-objective (MO) setting) with respect to the power balance and design requirements. In this work, we introduce a fuzzy model that takes into account the uncertain nature of certain variables in the DG system which are dependent on the weather conditions (such as; the insolation and wind speed profiles). The MO optimization in a fuzzy environment was performed by applying the Hopfield Recurrent Neural Network (HNN). Analysis on the optimized results was then carried out.
Desired Accuracy Estimation of Noise Function from ECG Signal by Fuzzy Approach
Vahabi, Zahra; Kermani, Saeed
2012-01-01
Unknown noise and artifacts present in medical signals with non-linear fuzzy filter will be estimated and then removed. An adaptive neuro-fuzzy interference system which has a non-linear structure presented for the noise function prediction by before Samples. This paper is about a neuro-fuzzy method to estimate unknown noise of Electrocardiogram signal. Adaptive neural combined with Fuzzy System to construct a fuzzy Predictor. For this system setting parameters such as the number of Membership Functions for each input and output, training epochs, type of MFs for each input and output, learning algorithm and etc. is determined by learning data. At the end simulated experimental results are presented for proper validation. PMID:23717810
A Real-Time Decision Support System for Voltage Collapse Avoidance in Power Supply Networks
NASA Astrophysics Data System (ADS)
Chang, Chen-Sung
This paper presents a real-time decision support system (RDSS) based on artificial intelligence (AI) for voltage collapse avoidance (VCA) in power supply networks. The RDSS scheme employs a fuzzy hyperrectangular composite neural network (FHRCNN) to carry out voltage risk identification (VRI). In the event that a threat to the security of the power supply network is detected, an evolutionary programming (EP)-based algorithm is triggered to determine the operational settings required to restore the power supply network to a secure condition. The effectiveness of the RDSS methodology is demonstrated through its application to the American Electric Power Provider System (AEP, 30-bus system) under various heavy load conditions and contingency scenarios. In general, the numerical results confirm the ability of the RDSS scheme to minimize the risk of voltage collapse in power supply networks. In other words, RDSS provides Power Provider Enterprises (PPEs) with a viable tool for performing on-line voltage risk assessment and power system security enhancement functions.
Research on particle swarm optimization algorithm based on optimal movement probability
NASA Astrophysics Data System (ADS)
Ma, Jianhong; Zhang, Han; He, Baofeng
2017-01-01
The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.
Si, Lei; Wang, Zhongbin; Yang, Yinwei
2014-01-01
In order to efficiently and accurately adjust the shearer traction speed, a novel approach based on Takagi-Sugeno (T-S) cloud inference network (CIN) and improved particle swarm optimization (IPSO) is proposed. The T-S CIN is built through the combination of cloud model and T-S fuzzy neural network. Moreover, the IPSO algorithm employs parameter automation adjustment strategy and velocity resetting to significantly improve the performance of basic PSO algorithm in global search and fine-tuning of the solutions, and the flowchart of proposed approach is designed. Furthermore, some simulation examples are carried out and comparison results indicate that the proposed method is feasible, efficient, and is outperforming others. Finally, an industrial application example of coal mining face is demonstrated to specify the effect of proposed system. PMID:25506358
An embedded Simplified Fuzzy ARTMAP implemented on a microcontroller for food classification.
Garcia-Breijo, Eduardo; Garrigues, Jose; Sanchez, Luis Gil; Laguarda-Miro, Nicolas
2013-08-13
In the present study, a portable system based on a microcontroller has been developed to classify different kinds of honeys. In order to do this classification, a Simplified Fuzzy ARTMAP network (SFA) implemented in a microcontroller has been used. Due to memory limits when working with microcontrollers, it is necessary to optimize the use of both program and data memory. Thus, a Graphical User Interface (GUI) for MATLAB® has been developed in order to optimize the necessary parameters to programme the SFA in a microcontroller. The measures have been carried out by potentiometric techniques using a multielectrode made of seven different metals. Next, the neural network has been trained on a PC by means of the GUI in Matlab using the data obtained in the experimental phase. The microcontroller has been programmed with the obtained parameters and then, new samples have been analysed using the portable system in order to test the model. Results are very promising, as an 87.5% recognition rate has been achieved in the training phase, which suggests that this kind of procedures can be successfully used not only for honey classification, but also for many other kinds of food.
An Embedded Simplified Fuzzy ARTMAP Implemented on a Microcontroller for Food Classification
Garcia-Breijo, Eduardo; Garrigues, Jose; Sanchez, Luis Gil; Laguarda-Miro, Nicolas
2013-01-01
In the present study, a portable system based on a microcontroller has been developed to classify different kinds of honeys. In order to do this classification, a Simplified Fuzzy ARTMAP network (SFA) implemented in a microcontroller has been used. Due to memory limits when working with microcontrollers, it is necessary to optimize the use of both program and data memory. Thus, a Graphical User Interface (GUI) for MATLAB® has been developed in order to optimize the necessary parameters to programme the SFA in a microcontroller. The measures have been carried out by potentiometric techniques using a multielectrode made of seven different metals. Next, the neural network has been trained on a PC by means of the GUI in Matlab using the data obtained in the experimental phase. The microcontroller has been programmed with the obtained parameters and then, new samples have been analysed using the portable system in order to test the model. Results are very promising, as an 87.5% recognition rate has been achieved in the training phase, which suggests that this kind of procedures can be successfully used not only for honey classification, but also for many other kinds of food. PMID:23945736
Fuzzy knowledge base construction through belief networks based on Lukasiewicz logic
NASA Technical Reports Server (NTRS)
Lara-Rosano, Felipe
1992-01-01
In this paper, a procedure is proposed to build a fuzzy knowledge base founded on fuzzy belief networks and Lukasiewicz logic. Fuzzy procedures are developed to do the following: to assess the belief values of a consequent, in terms of the belief values of its logical antecedents and the belief value of the corresponding logical function; and to update belief values when new evidence is available.
Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths
NASA Astrophysics Data System (ADS)
Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna
2011-06-01
We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using α -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.
Closed loop supply chain network design with fuzzy tactical decisions
NASA Astrophysics Data System (ADS)
Sherafati, Mahtab; Bashiri, Mahdi
2016-09-01
One of the most strategic and the most significant decisions in supply chain management is reconfiguration of the structure and design of the supply chain network. In this paper, a closed loop supply chain network design model is presented to select the best tactical and strategic decision levels simultaneously considering the appropriate transportation mode in activated links. The strategic decisions are made for a long term; thus, it is more satisfactory and more appropriate when the decision variables are considered uncertain and fuzzy, because it is more flexible and near to the real world. This paper is the first research which considers fuzzy decision variables in the supply chain network design model. Moreover, in this study a new fuzzy optimization approach is proposed to solve a supply chain network design problem with fuzzy tactical decision variables. Finally, the proposed approach and model are verified using several numerical examples. The comparison of the results with other existing approaches confirms efficiency of the proposed approach. Moreover the results confirms that by considering the vagueness of tactical decisions some properties of the supply chain network will be improved.
Fuzzy logic applications to control engineering
NASA Astrophysics Data System (ADS)
Langari, Reza
1993-12-01
This paper presents the results of a project presently under way at Texas A&M which focuses on the use of fuzzy logic in integrated control of manufacturing systems. The specific problems investigated here include diagnosis of critical tool wear in machining of metals via a neuro-fuzzy algorithm, as well as compensation of friction in mechanical positioning systems via an adaptive fuzzy logic algorithm. The results indicate that fuzzy logic in conjunction with conventional algorithmic based approaches or neural nets can prove useful in dealing with the intricacies of control/monitoring of manufacturing systems and can potentially play an active role in multi-modal integrated control systems of the future.
Developing a multimodal biometric authentication system using soft computing methods.
Malcangi, Mario
2015-01-01
Robust personal authentication is becoming ever more important in computer-based applications. Among a variety of methods, biometric offers several advantages, mainly in embedded system applications. Hard and soft multi-biometric, combined with hard and soft computing methods, can be applied to improve the personal authentication process and to generalize the applicability. This chapter describes the embedded implementation of a multi-biometric (voiceprint and fingerprint) multimodal identification system based on hard computing methods (DSP) for feature extraction and matching, an artificial neural network (ANN) for soft feature pattern matching, and a fuzzy logic engine (FLE) for data fusion and decision.
A brief history and technical review of the expert system research
NASA Astrophysics Data System (ADS)
Tan, Haocheng
2017-09-01
The expert system is a computer system that emulates the decision-making ability of a human expert, which aims to solve complex problems by reasoning knowledge. It is an important branch of artificial intelligence. In this paper, firstly, we briefly introduce the development and basic structure of the expert system. Then, from the perspective of the enabling technology, we classify the current expert systems and elaborate four expert systems: The Rule-Based Expert System, the Framework-Based Expert System, the Fuzzy Logic-Based Expert System and the Expert System Based on Neural Network.
The 2002 NASA Faculty Fellowship Program Research Reports
NASA Technical Reports Server (NTRS)
Bland, J. (Compiler)
2003-01-01
Contents include the following: System Identification of X-33. Neural Network Advanced Ceramic Technology for Space Applications at NASA MSFC. Developing a MATLAB-Based Tool for Visualization and Transformation. Subsurface Stress Fields in Single Crystal (Anisotropic). Contacts Our Space Future: A Challenge to the Conceptual Artist Concept Art for Presentation and Education. Identification and Characterization of Extremophile Microorganisms. Significant to Astrobiology. Mathematical Investigation of Gamma Ray and Neutron. Absorption Grid Patterns for Homeland Defense-Related Fourier Imaging Systems. The Potential of Microwave Radiation for Processing Martian Soil. Fuzzy Logic Trajectory Design and Guidance for Terminal Area.
NASA Astrophysics Data System (ADS)
Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.
2017-09-01
Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.
Cerebellum-inspired neural network solution of the inverse kinematics problem.
Asadi-Eydivand, Mitra; Ebadzadeh, Mohammad Mehdi; Solati-Hashjin, Mehran; Darlot, Christian; Abu Osman, Noor Azuan
2015-12-01
The demand today for more complex robots that have manipulators with higher degrees of freedom is increasing because of technological advances. Obtaining the precise movement for a desired trajectory or a sequence of arm and positions requires the computation of the inverse kinematic (IK) function, which is a major problem in robotics. The solution of the IK problem leads robots to the precise position and orientation of their end-effector. We developed a bioinspired solution comparable with the cerebellar anatomy and function to solve the said problem. The proposed model is stable under all conditions merely by parameter determination, in contrast to recursive model-based solutions, which remain stable only under certain conditions. We modified the proposed model for the simple two-segmented arm to prove the feasibility of the model under a basic condition. A fuzzy neural network through its learning method was used to compute the parameters of the system. Simulation results show the practical feasibility and efficiency of the proposed model in robotics. The main advantage of the proposed model is its generalizability and potential use in any robot.
An alternative respiratory sounds classification system utilizing artificial neural networks.
Oweis, Rami J; Abdulhay, Enas W; Khayal, Amer; Awad, Areen
2015-01-01
Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) toolboxes. The methods have been applied to 10 different respiratory sounds for classification. The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.
Fuzzy Edge Connectivity of Graphical Fuzzy State Space Model in Multi-connected System
NASA Astrophysics Data System (ADS)
Harish, Noor Ainy; Ismail, Razidah; Ahmad, Tahir
2010-11-01
Structured networks of interacting components illustrate complex structure in a direct or intuitive way. Graph theory provides a mathematical modeling for studying interconnection among elements in natural and man-made systems. On the other hand, directed graph is useful to define and interpret the interconnection structure underlying the dynamics of the interacting subsystem. Fuzzy theory provides important tools in dealing various aspects of complexity, imprecision and fuzziness of the network structure of a multi-connected system. Initial development for systems of Fuzzy State Space Model (FSSM) and a fuzzy algorithm approach were introduced with the purpose of solving the inverse problems in multivariable system. In this paper, fuzzy algorithm is adapted in order to determine the fuzzy edge connectivity between subsystems, in particular interconnected system of Graphical Representation of FSSM. This new approach will simplify the schematic diagram of interconnection of subsystems in a multi-connected system.
Faro, Alberto; Giordano, Daniela; Spampinato, Concetto
2008-06-01
This paper proposes a traffic monitoring architecture based on a high-speed communication network whose nodes are equipped with fuzzy processors and cellular neural network (CNN) embedded systems. It implements a real-time mobility information system where visual human perceptions sent by people working on the territory and video-sequences of traffic taken from webcams are jointly processed to evaluate the fundamental traffic parameters for every street of a metropolitan area. This paper presents the whole methodology for data collection and analysis and compares the accuracy and the processing time of the proposed soft computing techniques with other existing algorithms. Moreover, this paper discusses when and why it is recommended to fuse the visual perceptions of the traffic with the automated measurements taken from the webcams to compute the maximum traveling time that is likely needed to reach any destination in the traffic network.
Zhang, Cunji; Yao, Xifan; Zhang, Jianming; Jin, Hong
2016-05-31
Tool breakage causes losses of surface polishing and dimensional accuracy for machined part, or possible damage to a workpiece or machine. Tool Condition Monitoring (TCM) is considerably vital in the manufacturing industry. In this paper, an indirect TCM approach is introduced with a wireless triaxial accelerometer. The vibrations in the three vertical directions (x, y and z) are acquired during milling operations, and the raw signals are de-noised by wavelet analysis. These features of de-noised signals are extracted in the time, frequency and time-frequency domains. The key features are selected based on Pearson's Correlation Coefficient (PCC). The Neuro-Fuzzy Network (NFN) is adopted to predict the tool wear and Remaining Useful Life (RUL). In comparison with Back Propagation Neural Network (BPNN) and Radial Basis Function Network (RBFN), the results show that the NFN has the best performance in the prediction of tool wear and RUL.
Guijarro, María; Pajares, Gonzalo; Herrera, P. Javier
2009-01-01
The increasing technology of high-resolution image airborne sensors, including those on board Unmanned Aerial Vehicles, demands automatic solutions for processing, either on-line or off-line, the huge amountds of image data sensed during the flights. The classification of natural spectral signatures in images is one potential application. The actual tendency in classification is oriented towards the combination of simple classifiers. In this paper we propose a combined strategy based on the Deterministic Simulated Annealing (DSA) framework. The simple classifiers used are the well tested supervised parametric Bayesian estimator and the Fuzzy Clustering. The DSA is an optimization approach, which minimizes an energy function. The main contribution of DSA is its ability to avoid local minima during the optimization process thanks to the annealing scheme. It outperforms simple classifiers used for the combination and some combined strategies, including a scheme based on the fuzzy cognitive maps and an optimization approach based on the Hopfield neural network paradigm. PMID:22399989
A fuzzy call admission control scheme in wireless networks
NASA Astrophysics Data System (ADS)
Ma, Yufeng; Gong, Shenguang; Hu, Xiulin; Zhang, Yunyu
2007-11-01
Scarcity of the spectrum resource and mobility of users make quality of service (QoS) provision a critical issue in wireless networks. This paper presents a fuzzy call admission control scheme to meet the requirement of the QoS. A performance measure is formed as a weighted linear function of new call and handoff call blocking probabilities. Simulation compares the proposed fuzzy scheme with an adaptive channel reservation scheme. Simulation results show that fuzzy scheme has a better robust performance in terms of average blocking criterion.
Zou, Lingyun; Wang, Zhengzhi; Huang, Jiaomin
2007-12-01
Subcellular location is one of the key biological characteristics of proteins. Position-specific profiles (PSP) have been introduced as important characteristics of proteins in this article. In this study, to obtain position-specific profiles, the Position Specific Iterative-Basic Local Alignment Search Tool (PSI-BLAST) has been used to search for protein sequences in a database. Position-specific scoring matrices are extracted from the profiles as one class of characteristics. Four-part amino acid compositions and 1st-7th order dipeptide compositions have also been calculated as the other two classes of characteristics. Therefore, twelve characteristic vectors are extracted from each of the protein sequences. Next, the characteristic vectors are weighed by a simple weighing function and inputted into a BP neural network predictor named PSP-Weighted Neural Network (PSP-WNN). The Levenberg-Marquardt algorithm is employed to adjust the weight matrices and thresholds during the network training instead of the error back propagation algorithm. With a jackknife test on the RH2427 dataset, PSP-WNN has achieved a higher overall prediction accuracy of 88.4% rather than the prediction results by the general BP neural network, Markov model, and fuzzy k-nearest neighbors algorithm on this dataset. In addition, the prediction performance of PSP-WNN has been evaluated with a five-fold cross validation test on the PK7579 dataset and the prediction results have been consistently better than those of the previous method on the basis of several support vector machines, using compositions of both amino acids and amino acid pairs. These results indicate that PSP-WNN is a powerful tool for subcellular localization prediction. At the end of the article, influences on prediction accuracy using different weighting proportions among three characteristic vector categories have been discussed. An appropriate proportion is considered by increasing the prediction accuracy.
Osman, Onur; Ucan, Osman N.
2008-01-01
Objective The purpose of this study was to develop a new method for automated lung nodule detection in serial section CT images with using the characteristics of the 3D appearance of the nodules that distinguish themselves from the vessels. Materials and Methods Lung nodules were detected in four steps. First, to reduce the number of region of interests (ROIs) and the computation time, the lung regions of the CTs were segmented using Genetic Cellular Neural Networks (G-CNN). Then, for each lung region, ROIs were specified with using the 8 directional search; +1 or -1 values were assigned to each voxel. The 3D ROI image was obtained by combining all the 2-Dimensional (2D) ROI images. A 3D template was created to find the nodule-like structures on the 3D ROI image. Convolution of the 3D ROI image with the proposed template strengthens the shapes that are similar to those of the template and it weakens the other ones. Finally, fuzzy rule based thresholding was applied and the ROI's were found. To test the system's efficiency, we used 16 cases with a total of 425 slices, which were taken from the Lung Image Database Consortium (LIDC) dataset. Results The computer aided diagnosis (CAD) system achieved 100% sensitivity with 13.375 FPs per case when the nodule thickness was greater than or equal to 5.625 mm. Conclusion Our results indicate that the detection performance of our algorithm is satisfactory, and this may well improve the performance of computer-aided detection of lung nodules. PMID:18253070
Development of an intelligent system for cooling rate and fill control in GMAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einerson, C.J.; Smartt, H.B.; Johnson, J.A.
1992-09-01
A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding proceduresmore » detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einerson, C.J.; Smartt, H.B.; Johnson, J.A.
1992-01-01
A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding proceduresmore » detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.« less
Mobile robots traversability awareness based on terrain visual sensory data fusion
NASA Astrophysics Data System (ADS)
Shirkhodaie, Amir
2007-04-01
In this paper, we have presented methods that significantly improve the robot awareness of its terrain traversability conditions. The terrain traversability awareness is achieved by association of terrain image appearances from different poses and fusion of extracted information from multimodality imaging and range sensor data for localization and clustering environment landmarks. Initially, we describe methods for extraction of salient features of the terrain for the purpose of landmarks registration from two or more images taken from different via points along the trajectory path of the robot. The method of image registration is applied as a means of overlaying (two or more) of the same terrain scene at different viewpoints. The registration geometrically aligns salient landmarks of two images (the reference and sensed images). A Similarity matching techniques is proposed for matching the terrain salient landmarks. Secondly, we present three terrain classifier models based on rule-based, supervised neural network, and fuzzy logic for classification of terrain condition under uncertainty and mapping the robot's terrain perception to apt traversability measures. This paper addresses the technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on terrain spatial and textural cues.
Autonomous Control of Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basher, H.
2003-10-20
A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that maymore » be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.« less
Kang, Jin Kyu; Hong, Hyung Gil; Park, Kang Ryoung
2017-07-08
A number of studies have been conducted to enhance the pedestrian detection accuracy of intelligent surveillance systems. However, detecting pedestrians under outdoor conditions is a challenging problem due to the varying lighting, shadows, and occlusions. In recent times, a growing number of studies have been performed on visible light camera-based pedestrian detection systems using a convolutional neural network (CNN) in order to make the pedestrian detection process more resilient to such conditions. However, visible light cameras still cannot detect pedestrians during nighttime, and are easily affected by shadows and lighting. There are many studies on CNN-based pedestrian detection through the use of far-infrared (FIR) light cameras (i.e., thermal cameras) to address such difficulties. However, when the solar radiation increases and the background temperature reaches the same level as the body temperature, it remains difficult for the FIR light camera to detect pedestrians due to the insignificant difference between the pedestrian and non-pedestrian features within the images. Researchers have been trying to solve this issue by inputting both the visible light and the FIR camera images into the CNN as the input. This, however, takes a longer time to process, and makes the system structure more complex as the CNN needs to process both camera images. This research adaptively selects a more appropriate candidate between two pedestrian images from visible light and FIR cameras based on a fuzzy inference system (FIS), and the selected candidate is verified with a CNN. Three types of databases were tested, taking into account various environmental factors using visible light and FIR cameras. The results showed that the proposed method performs better than the previously reported methods.
Asnaashari, Maryam; Farhoosh, Reza; Farahmandfar, Reza
2016-10-01
As a result of concerns regarding possible health hazards of synthetic antioxidants, gallic acid and methyl gallate may be introduced as natural antioxidants to improve oxidative stability of marine oil. Since conventional modelling could not predict the oxidative parameters precisely, artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS) modelling with three inputs, including type of antioxidant (gallic acid and methyl gallate), temperature (35, 45 and 55 °C) and concentration (0, 200, 400, 800 and 1600 mg L(-1) ) and four outputs containing induction period (IP), slope of initial stage of oxidation curve (k1 ) and slope of propagation stage of oxidation curve (k2 ) and peroxide value at the IP (PVIP ) were performed to predict the oxidation parameters of Kilka oil triacylglycerols and were compared to multiple linear regression (MLR). The results showed ANFIS was the best model with high coefficient of determination (R(2) = 0.99, 0.99, 0.92 and 0.77 for IP, k1 , k2 and PVIP , respectively). So, the RMSE and MAE values for IP were 7.49 and 4.92 in ANFIS model. However, they were to be 15.95 and 10.88 and 34.14 and 3.60 for the best MLP structure and MLR, respectively. So, MLR showed the minimum accuracy among the constructed models. Sensitivity analysis based on the ANFIS model suggested a high sensitivity of oxidation parameters, particularly the induction period on concentrations of gallic acid and methyl gallate due to their high antioxidant activity to retard oil oxidation and enhanced Kilka oil shelf life. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia
NASA Astrophysics Data System (ADS)
Karimi, Sepideh; Kisi, Ozgur; Shiri, Jalal; Makarynskyy, Oleg
2013-03-01
Accurate predictions of sea level with different forecast horizons are important for coastal and ocean engineering applications, as well as in land drainage and reclamation studies. The methodology of tidal harmonic analysis, which is generally used for obtaining a mathematical description of the tides, is data demanding requiring processing of tidal observation collected over several years. In the present study, hourly sea levels for Darwin Harbor, Australia were predicted using two different, data driven techniques, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Multi linear regression (MLR) technique was used for selecting the optimal input combinations (lag times) of hourly sea level. The input combination comprises current sea level as well as five previous level values found to be optimal. For the ANFIS models, five different membership functions namely triangular, trapezoidal, generalized bell, Gaussian and two Gaussian membership function were tested and employed for predicting sea level for the next 1 h, 24 h, 48 h and 72 h. The used ANN models were trained using three different algorithms, namely, Levenberg-Marquardt, conjugate gradient and gradient descent. Predictions of optimal ANFIS and ANN models were compared with those of the optimal auto-regressive moving average (ARMA) models. The coefficient of determination, root mean square error and variance account statistics were used as comparison criteria. The obtained results indicated that triangular membership function was optimal for predictions with the ANFIS models while adaptive learning rate and Levenberg-Marquardt were most suitable for training the ANN models. Consequently, ANFIS and ANN models gave similar forecasts and performed better than the developed for the same purpose ARMA models for all the prediction intervals.
Dande, Payal; Samant, Purva
2018-01-01
Tuberculosis [TB] has afflicted numerous nations in the world. As per a report by the World Health Organization [WHO], an estimated 1.4 million TB deaths in 2015 and an additional 0.4 million deaths resulting from TB disease among people living with HIV, were observed. Most of the TB deaths can be prevented if it is detected at an early stage. The existing processes of diagnosis like blood tests or sputum tests are not only tedious but also take a long time for analysis and cannot differentiate between different drug resistant stages of TB. The need to find newer prompt methods for disease detection has been aided by the latest Artificial Intelligence [AI] tools. Artificial Neural Network [ANN] is one of the important tools that is being used widely in diagnosis and evaluation of medical conditions. This review aims at providing brief introduction to various AI tools that are used in TB detection and gives a detailed description about the utilization of ANN as an efficient diagnostic technique. The paper also provides a critical assessment of ANN and the existing techniques for their diagnosis of TB. Researchers and Practitioners in the field are looking forward to use ANN and other upcoming AI tools such as Fuzzy-logic, genetic algorithms and artificial intelligence simulation as a promising current and future technology tools towards tackling the global menace of Tuberculosis. Latest advancements in the diagnostic field include the combined use of ANN with various other AI tools like the Fuzzy-logic, which has led to an increase in the efficacy and specificity of the diagnostic techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fuzzy similarity measures for ultrasound tissue characterization
NASA Astrophysics Data System (ADS)
Emara, Salem M.; Badawi, Ahmed M.; Youssef, Abou-Bakr M.
1995-03-01
Computerized ultrasound tissue characterization has become an objective means for diagnosis of diseases. It is difficult to differentiate diffuse liver diseases, namely cirrhotic and fatty liver from a normal one, by visual inspection from the ultrasound images. The visual criteria for differentiating diffused diseases is rather confusing and highly dependent upon the sonographer's experience. The need for computerized tissue characterization is thus justified to quantitatively assist the sonographer for accurate differentiation and to minimize the degree of risk from erroneous interpretation. In this paper we used the fuzzy similarity measure as an approximate reasoning technique to find the maximum degree of matching between an unknown case defined by a feature vector and a family of prototypes (knowledge base). The feature vector used for the matching process contains 8 quantitative parameters (textural, acoustical, and speckle parameters) extracted from the ultrasound image. The steps done to match an unknown case with the family of prototypes (cirr, fatty, normal) are: Choosing the membership functions for each parameter, then obtaining the fuzzification matrix for the unknown case and the family of prototypes, then by the linguistic evaluation of two fuzzy quantities we obtain the similarity matrix, then by a simple aggregation method and the fuzzy integrals we obtain the degree of similarity. Finally, we find that the similarity measure results are comparable to the neural network classification techniques and it can be used in medical diagnosis to determine the pathology of the liver and to monitor the extent of the disease.
Liu, Cheng-Li
2009-05-01
Only a few studies in the literature have focused on the effects of age on virtual environment (VE) sickness susceptibility and even less research was carried out focusing on the elderly. In general, the elderly usually browse VEs on a thin film transistor liquid crystal display (TFT-LCD) at home or somewhere, not a head-mounted display (HMD). While the TFT-LCD is used to present VEs, this set-up does not physically enclose the user. Therefore, this study investigated the factors that contribute to cybersickness among the elderly when immersed into a VE on TFT-LCD, including exposure durations, navigation rotating speeds and angle of inclination. Participants were elderly, with an average age of 69.5 years. The results of the first experiment showed that the rate of simulator sickness questionnaire (SSQ) scores increases significantly with navigational rotating speed and duration of exposure. However, the experimental data also showed that the rate of SSQ scores does not increase with the increase in angle of inclination. In applying these findings, the neuro-fuzzy technology was used to develop a neuro-fuzzy cybersickness-warning system integrating fuzzy logic reasoning and neural network learning. The contributing factors were navigational rotating speed and duration of exposure. The results of the second experiment showed that the proposed system can efficiently determine the level of cybersickness based on the associated subjective sickness estimates and combat cybersickness due to long exposure to a VE.
Fuzzy probabilistic design of water distribution networks
NASA Astrophysics Data System (ADS)
Fu, Guangtao; Kapelan, Zoran
2011-05-01
The primary aim of this paper is to present a fuzzy probabilistic approach for optimal design and rehabilitation of water distribution systems, combining aleatoric and epistemic uncertainties in a unified framework. The randomness and imprecision in future water consumption are characterized using fuzzy random variables whose realizations are not real but fuzzy numbers, and the nodal head requirements are represented by fuzzy sets, reflecting the imprecision in customers' requirements. The optimal design problem is formulated as a two-objective optimization problem, with minimization of total design cost and maximization of system performance as objectives. The system performance is measured by the fuzzy random reliability, defined as the probability that the fuzzy head requirements are satisfied across all network nodes. The satisfactory degree is represented by necessity measure or belief measure in the sense of the Dempster-Shafer theory of evidence. An efficient algorithm is proposed, within a Monte Carlo procedure, to calculate the fuzzy random system reliability and is effectively combined with the nondominated sorting genetic algorithm II (NSGAII) to derive the Pareto optimal design solutions. The newly proposed methodology is demonstrated with two case studies: the New York tunnels network and Hanoi network. The results from both cases indicate that the new methodology can effectively accommodate and handle various aleatoric and epistemic uncertainty sources arising from the design process and can provide optimal design solutions that are not only cost-effective but also have higher reliability to cope with severe future uncertainties.
An Inverse Neural Controller Based on the Applicability Domain of RBF Network Models
Alexandridis, Alex; Stogiannos, Marios; Papaioannou, Nikolaos; Zois, Elias; Sarimveis, Haralambos
2018-01-01
This paper presents a novel methodology of generic nature for controlling nonlinear systems, using inverse radial basis function neural network models, which may combine diverse data originating from various sources. The algorithm starts by applying the particle swarm optimization-based non-symmetric variant of the fuzzy means (PSO-NSFM) algorithm so that an approximation of the inverse system dynamics is obtained. PSO-NSFM offers models of high accuracy combined with small network structures. Next, the applicability domain concept is suitably tailored and embedded into the proposed control structure in order to ensure that extrapolation is avoided in the controller predictions. Finally, an error correction term, estimating the error produced by the unmodeled dynamics and/or unmeasured external disturbances, is included to the control scheme to increase robustness. The resulting controller guarantees bounded input-bounded state (BIBS) stability for the closed loop system when the open loop system is BIBS stable. The proposed methodology is evaluated on two different control problems, namely, the control of an experimental armature-controlled direct current (DC) motor and the stabilization of a highly nonlinear simulated inverted pendulum. For each one of these problems, appropriate case studies are tested, in which a conventional neural controller employing inverse models and a PID controller are also applied. The results reveal the ability of the proposed control scheme to handle and manipulate diverse data through a data fusion approach and illustrate the superiority of the method in terms of faster and less oscillatory responses. PMID:29361781
Adaptive neuro fuzzy inference system-based power estimation method for CMOS VLSI circuits
NASA Astrophysics Data System (ADS)
Vellingiri, Govindaraj; Jayabalan, Ramesh
2018-03-01
Recent advancements in very large scale integration (VLSI) technologies have made it feasible to integrate millions of transistors on a single chip. This greatly increases the circuit complexity and hence there is a growing need for less-tedious and low-cost power estimation techniques. The proposed work employs Back-Propagation Neural Network (BPNN) and Adaptive Neuro Fuzzy Inference System (ANFIS), which are capable of estimating the power precisely for the complementary metal oxide semiconductor (CMOS) VLSI circuits, without requiring any knowledge on circuit structure and interconnections. The ANFIS to power estimation application is relatively new. Power estimation using ANFIS is carried out by creating initial FIS modes using hybrid optimisation and back-propagation (BP) techniques employing constant and linear methods. It is inferred that ANFIS with the hybrid optimisation technique employing the linear method produces better results in terms of testing error that varies from 0% to 0.86% when compared to BPNN as it takes the initial fuzzy model and tunes it by means of a hybrid technique combining gradient descent BP and mean least-squares optimisation algorithms. ANFIS is the best suited for power estimation application with a low RMSE of 0.0002075 and a high coefficient of determination (R) of 0.99961.
An Artificial Intelligence Approach for Gears Diagnostics in AUVs
Marichal, Graciliano Nicolás; Del Castillo, María Lourdes; López, Jesús; Padrón, Isidro; Artés, Mariano
2016-01-01
In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved. PMID:27077868
An Artificial Intelligence Approach for Gears Diagnostics in AUVs.
Marichal, Graciliano Nicolás; Del Castillo, María Lourdes; López, Jesús; Padrón, Isidro; Artés, Mariano
2016-04-12
In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved.
NASA Astrophysics Data System (ADS)
Kozel, Tomas; Stary, Milos
2017-12-01
The main advantage of stochastic forecasting is fan of possible value whose deterministic method of forecasting could not give us. Future development of random process is described better by stochastic then deterministic forecasting. Discharge in measurement profile could be categorized as random process. Content of article is construction and application of forecasting model for managed large open water reservoir with supply function. Model is based on neural networks (NS) and zone models, which forecasting values of average monthly flow from inputs values of average monthly flow, learned neural network and random numbers. Part of data was sorted to one moving zone. The zone is created around last measurement average monthly flow. Matrix of correlation was assembled only from data belonging to zone. The model was compiled for forecast of 1 to 12 month with using backward month flows (NS inputs) from 2 to 11 months for model construction. Data was got ridded of asymmetry with help of Box-Cox rule (Box, Cox, 1964), value r was found by optimization. In next step were data transform to standard normal distribution. The data were with monthly step and forecast is not recurring. 90 years long real flow series was used for compile of the model. First 75 years were used for calibration of model (matrix input-output relationship), last 15 years were used only for validation. Outputs of model were compared with real flow series. For comparison between real flow series (100% successfully of forecast) and forecasts, was used application to management of artificially made reservoir. Course of water reservoir management using Genetic algorithm (GE) + real flow series was compared with Fuzzy model (Fuzzy) + forecast made by Moving zone model. During evaluation process was founding the best size of zone. Results show that the highest number of input did not give the best results and ideal size of zone is in interval from 25 to 35, when course of management was almost same for all numbers from interval. Resulted course of management was compared with course, which was obtained from using GE + real flow series. Comparing results showed that fuzzy model with forecasted values has been able to manage main malfunction and artificially disorders made by model were founded essential, after values of water volume during management were evaluated. Forecasting model in combination with fuzzy model provide very good results in management of water reservoir with storage function and can be recommended for this purpose.
Prospects of second generation artificial intelligence tools in calibration of chemical sensors.
Braibanti, Antonio; Rao, Rupenaguntla Sambasiva; Ramam, Veluri Anantha; Rao, Gollapalli Nageswara; Rao, Vaddadi Venkata Panakala
2005-05-01
Multivariate data driven calibration models with neural networks (NNs) are developed for binary (Cu++ and Ca++) and quaternary (K+, Ca++, NO3- and Cl-) ion-selective electrode (ISE) data. The response profiles of ISEs with concentrations are non-linear and sub-Nernstian. This task represents function approximation of multi-variate, multi-response, correlated, non-linear data with unknown noise structure i.e. multi-component calibration/prediction in chemometric parlance. Radial distribution function (RBF) and Fuzzy-ARTMAP-NN models implemented in the software packages, TRAJAN and Professional II, are employed for the calibration. The optimum NN models reported are based on residuals in concentration space. Being a data driven information technology, NN does not require a model, prior- or posterior- distribution of data or noise structure. Missing information, spikes or newer trends in different concentration ranges can be modeled through novelty detection. Two simulated data sets generated from mathematical functions are modeled as a function of number of data points and network parameters like number of neurons and nearest neighbors. The success of RBF and Fuzzy-ARTMAP-NNs to develop adequate calibration models for experimental data and function approximation models for more complex simulated data sets ensures AI2 (artificial intelligence, 2nd generation) as a promising technology in quantitation.
Fault detection and identification in missile system guidance and control: a filtering approach
NASA Astrophysics Data System (ADS)
Padgett, Mary Lou; Evers, Johnny; Karplus, Walter J.
1996-03-01
Real-world applications of computational intelligence can enhance the fault detection and identification capabilities of a missile guidance and control system. A simulation of a bank-to- turn missile demonstrates that actuator failure may cause the missile to roll and miss the target. Failure of one fin actuator can be detected using a filter and depicting the filter output as fuzzy numbers. The properties and limitations of artificial neural networks fed by these fuzzy numbers are explored. A suite of networks is constructed to (1) detect a fault and (2) determine which fin (if any) failed. Both the zero order moment term and the fin rate term show changes during actuator failure. Simulations address the following questions: (1) How bad does the actuator failure have to be for detection to occur, (2) How bad does the actuator failure have to be for fault detection and isolation to occur, (3) are both zero order moment and fine rate terms needed. A suite of target trajectories are simulated, and properties and limitations of the approach reported. In some cases, detection of the failed actuator occurs within 0.1 second, and isolation of the failure occurs 0.1 after that. Suggestions for further research are offered.
Recognition of Handwritten Arabic words using a neuro-fuzzy network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boukharouba, Abdelhak; Bennia, Abdelhak
We present a new method for the recognition of handwritten Arabic words based on neuro-fuzzy hybrid network. As a first step, connected components (CCs) of black pixels are detected. Then the system determines which CCs are sub-words and which are stress marks. The stress marks are then isolated and identified separately and the sub-words are segmented into graphemes. Each grapheme is described by topological and statistical features. Fuzzy rules are extracted from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data using a fuzzy c-means, and rule parameter tuning phase using gradient descentmore » learning. After learning, the network encodes in its topology the essential design parameters of a fuzzy inference system.The contribution of this technique is shown through the significant tests performed on a handwritten Arabic words database.« less
Optimization of Close Range Photogrammetry Network Design Applying Fuzzy Computation
NASA Astrophysics Data System (ADS)
Aminia, A. S.
2017-09-01
Measuring object 3D coordinates with optimum accuracy is one of the most important issues in close range photogrammetry. In this context, network design plays an important role in determination of optimum position of imaging stations. This is, however, not a trivial task due to various geometric and radiometric constraints affecting the quality of the measurement network. As a result, most camera stations in the network are defined on a try and error basis based on the user's experience and generic network concept. In this paper, we propose a post-processing task to investigate the quality of camera positions right after image capturing to achieve the best result. To do this, a new fuzzy reasoning approach is adopted, in which the constraints affecting the network design are all modeled. As a result, the position of all camera locations is defined based on fuzzy rules and inappropriate stations are determined. The experiments carried out show that after determination and elimination of the inappropriate images using the proposed fuzzy reasoning system, the accuracy of measurements is improved and enhanced about 17% for the latter network.
Extended Logic Intelligent Processing System for a Sensor Fusion Processor Hardware
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Thomas, Tyson; Li, Wei-Te; Daud, Taher; Fabunmi, James
2000-01-01
The paper presents the hardware implementation and initial tests from a low-power, highspeed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) is described, which combines rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor signals in compact low power VLSI. The development of the ELIPS concept is being done to demonstrate the interceptor functionality which particularly underlines the high speed and low power requirements. The hardware programmability allows the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Processing speeds of microseconds have been demonstrated using our test hardware.
NASA Astrophysics Data System (ADS)
Mohd Yunos, Zuriahati; Shamsuddin, Siti Mariyam; Ismail, Noriszura; Sallehuddin, Roselina
2013-04-01
Artificial neural network (ANN) with back propagation algorithm (BP) and ANFIS was chosen as an alternative technique in modeling motor insurance claims. In particular, an ANN and ANFIS technique is applied to model and forecast the Malaysian motor insurance data which is categorized into four claim types; third party property damage (TPPD), third party bodily injury (TPBI), own damage (OD) and theft. This study is to determine whether an ANN and ANFIS model is capable of accurately predicting motor insurance claim. There were changes made to the network structure as the number of input nodes, number of hidden nodes and pre-processing techniques are also examined and a cross-validation technique is used to improve the generalization ability of ANN and ANFIS models. Based on the empirical studies, the prediction performance of the ANN and ANFIS model is improved by using different number of input nodes and hidden nodes; and also various sizes of data. The experimental results reveal that the ANFIS model has outperformed the ANN model. Both models are capable of producing a reliable prediction for the Malaysian motor insurance claims and hence, the proposed method can be applied as an alternative to predict claim frequency and claim severity.
ERIC Educational Resources Information Center
Su, Chiu Hung; Tzeng, Gwo-Hshiung; Hu, Shu-Kung
2016-01-01
The purpose of this study was to address this problem by applying a new hybrid fuzzy multiple criteria decision-making model including (a) using the fuzzy decision-making trial and evaluation laboratory (DEMATEL) technique to construct the fuzzy scope influential network relationship map (FSINRM) and determine the fuzzy influential weights of the…
Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks.
Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il
2015-08-18
Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node's role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network's lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively.
Modelling of Reservoir Operations using Fuzzy Logic and ANNs
NASA Astrophysics Data System (ADS)
Van De Giesen, N.; Coerver, B.; Rutten, M.
2015-12-01
Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, <0,1>, was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.
Buller, G; Lutman, M E
1998-08-01
The increasing use of transiently evoked otoacoustic emissions (TEOAE) in large neonatal hearing screening programmes makes a standardized method of response classification desirable. Until now methods have been either subjective or based on arbitrary response characteristics. This study takes an expert system approach to standardize the subjective judgements of an experienced scorer. The method that is developed comprises three stages. First, it transforms TEOAEs from waveforms in the time domain into a simplified parameter set. Second, the parameter set is classified by an artificial neural network that has been taught on a large database TEOAE waveforms and corresponding expert scores. Third, additional fuzzy logic rules automatically detect probable artefacts in the waveforms and synchronized spontaneous emission components. In this way, the knowledge of the experienced scorer is encapsulated in the expert system software and thereafter can be accessed by non-experts. Teaching and evaluation of the neural network was based on TEOAEs from a database totalling 2190 neonatal hearing screening tests. The database was divided into learning and test groups with 820 and 1370 waveforms respectively. From each recorded waveform a set of 12 parameters was calculated, representing signal static and dynamic properties. The artifical network was taught with parameter sets of only the learning groups. Reproduction of the human scorer classification by the neural net in the learning group showed a sensitivity for detecting screen fails of 99.3% (299 from 301 failed results on subjective scoring) and a specificity for detecting screen passes of 81.1% (421 of 519 pass results). To quantify the post hoc performance of the net (generalization), the test group was then presented to the network input. Sensitivity was 99.4% (474 from 477) and specificity was 87.3% (780 from 893). To check the efficiency of the classification method, a second learning group was selected out of the previous test group, and the previous learning group was used as the test group. Repeating learning and test procedures yielded 99.3% sensitivity and 80.7% specificity for reproduction, and 99.4% sensitivity and 86.7% specificity for generalization. In all respects, performance was better than for a previously optimized method based simply on cross-correlation between replicate non-linear waveforms. It is concluded that classification methods based on neural networks show promise for application to large neonatal screening programmes utilizing TEOAEs.
Reconstruction of sub-surface archaeological remains from magnetic data using neural computing.
NASA Astrophysics Data System (ADS)
Bescoby, D. J.; Cawley, G. C.; Chroston, P. N.
2003-04-01
The remains of a former Roman colonial settlement, once part of the classical city of Butrint in southern Albania have been the subject of a high resolution magnetic survey using a caesium-vapour magnetometer. The survey revealed the surviving remains of an extensive planned settlement and a number of outlying buildings, today buried beneath over 0.5 m of alluvial deposits. The aim of the current research is to derive a sub-surface model from the magnetic survey measurements, allowing an enhanced archaeological interpretation of the data. Neural computing techniques are used to perform the non-linear mapping between magnetic data and corresponding sub-surface model parameters. The adoption of neural computing paradigms potentially holds several advantages over other modelling techniques, allowing fast solutions for complex data, while having a high tolerance to noise. A multi-layer perceptron network with a feed-forward architecture is trained to estimate the shape and burial depth of wall foundations using a series of representative models as training data. Parameters used to forward model the training data sets are derived from a number of trial trench excavations targeted over features identified by the magnetic survey. The training of the network was optimized by first applying it to synthetic test data of known source parameters. Pre-processing of the network input data, including the use of a rotationally invariant transform, enhanced network performance and the efficiency of the training data. The approach provides good results when applied to real magnetic data, accurately predicting the depths and layout of wall foundations within the former settlement, verified by subsequent excavation. The resulting sub-surface model is derived from the averaged outputs of a ‘committee’ of five networks, trained with individualized training sets. Fuzzy logic inference has also been used to combine individual network outputs through correlation with data from a second geophysical technique, allowing the integration of data from a separate series of measurements.
Intelligent control of PV system on the basis of the fuzzy recurrent neuronet*
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-04-01
This paper presents the fuzzy recurrent neuronet for PV system’s control. Based on the PV system’s state, the fuzzy recurrent neural net tracks the maximum power point under random perturbations. The validity and advantages of the proposed intelligent control of PV system are demonstrated by numerical simulations. The simulation results show that the proposed intelligent control of PV system achieves real-time control speed and competitive performance, as compared to a classical control scheme on the basis of the perturbation & observation algorithm.
Neural Net Gains Estimation Based on an Equivalent Model
Aguilar Cruz, Karen Alicia; Medel Juárez, José de Jesús; Fernández Muñoz, José Luis; Esmeralda Vigueras Velázquez, Midory
2016-01-01
A model of an Equivalent Artificial Neural Net (EANN) describes the gains set, viewed as parameters in a layer, and this consideration is a reproducible process, applicable to a neuron in a neural net (NN). The EANN helps to estimate the NN gains or parameters, so we propose two methods to determine them. The first considers a fuzzy inference combined with the traditional Kalman filter, obtaining the equivalent model and estimating in a fuzzy sense the gains matrix A and the proper gain K into the traditional filter identification. The second develops a direct estimation in state space, describing an EANN using the expected value and the recursive description of the gains estimation. Finally, a comparison of both descriptions is performed; highlighting the analytical method describes the neural net coefficients in a direct form, whereas the other technique requires selecting into the Knowledge Base (KB) the factors based on the functional error and the reference signal built with the past information of the system. PMID:27366146
Neural Net Gains Estimation Based on an Equivalent Model.
Aguilar Cruz, Karen Alicia; Medel Juárez, José de Jesús; Fernández Muñoz, José Luis; Esmeralda Vigueras Velázquez, Midory
2016-01-01
A model of an Equivalent Artificial Neural Net (EANN) describes the gains set, viewed as parameters in a layer, and this consideration is a reproducible process, applicable to a neuron in a neural net (NN). The EANN helps to estimate the NN gains or parameters, so we propose two methods to determine them. The first considers a fuzzy inference combined with the traditional Kalman filter, obtaining the equivalent model and estimating in a fuzzy sense the gains matrix A and the proper gain K into the traditional filter identification. The second develops a direct estimation in state space, describing an EANN using the expected value and the recursive description of the gains estimation. Finally, a comparison of both descriptions is performed; highlighting the analytical method describes the neural net coefficients in a direct form, whereas the other technique requires selecting into the Knowledge Base (KB) the factors based on the functional error and the reference signal built with the past information of the system.
NASA Technical Reports Server (NTRS)
Moebes, T. A.
1994-01-01
To locate the accessory pathway(s) in preexicitation syndromes, epicardial and endocardial ventricular mapping is performed during anterograde ventricular activation via accessory pathway(s) from data originally received in signal form. As the number of channels increases, it is pertinent that more automated detection of coherent/incoherent signals is achieved as well as the prediction and prognosis of ventricular tachywardia (VT). Today's computers and computer program algorithms are not good in simple perceptual tasks such as recognizing a pattern or identifying a sound. This discrepancy, among other things, has been a major motivating factor in developing brain-based, massively parallel computing architectures. Neural net paradigms have proven to be effective at pattern recognition tasks. In signal processing, the picking of coherent/incoherent signals represents a pattern recognition task for computer systems. The picking of signals representing the onset ot VT also represents such a computer task. We attacked this problem by defining four signal attributes for each potential first maximal arrival peak and one signal attribute over the entire signal as input to a back propagation neural network. One attribute was the predicted amplitude value after the maximum amplitude over a data window. Then, by using a set of known (user selected) coherent/incoherent signals, and signals representing the onset of VT, we trained the back propagation network to recognize coherent/incoherent signals, and signals indicating the onset of VT. Since our output scheme involves a true or false decision, and since the output unit computes values between 0 and 1, we used a Fuzzy Arithmetic approach to classify data as coherent/incoherent signals. Furthermore, a Mean-Square Error Analysis was used to determine system stability. The neural net based picking coherent/incoherent signal system achieved high accuracy on picking coherent/incoherent signals on different patients. The system also achieved a high accuracy of picking signals which represent the onset of VT, that is, VT immediately followed these signals. A special binary representation of the input and output data allowed the neural network to train very rapidly as compared to another standard decimal or normalized representations of the data.
INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenneth D. Luff
2002-06-30
Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less
INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenneth D. Luff
2002-09-30
Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less
Mathematical modeling of wastewater-derived biodegradable dissolved organic nitrogen.
Simsek, Halis
2016-11-01
Wastewater-derived dissolved organic nitrogen (DON) typically constitutes the majority of total dissolved nitrogen (TDN) discharged to surface waters from advanced wastewater treatment plants (WWTPs). When considering the stringent regulations on nitrogen discharge limits in sensitive receiving waters, DON becomes problematic and needs to be reduced. Biodegradable DON (BDON) is a portion of DON that is biologically degradable by bacteria when the optimum environmental conditions are met. BDON in a two-stage trickling filter WWTP was estimated using artificial intelligence techniques, such as adaptive neuro-fuzzy inference systems, multilayer perceptron, radial basis neural networks (RBNN), and generalized regression neural networks. Nitrite, nitrate, ammonium, TDN, and DON data were used as input neurons. Wastewater samples were collected from four different locations in the plant. Model performances were evaluated using root mean square error, mean absolute error, mean bias error, and coefficient of determination statistics. Modeling results showed that the R(2) values were higher than 0.85 in all four models for all wastewater samples, except only R(2) in the final effluent sample for RBNN modeling was low (0.52). Overall, it was found that all four computing techniques could be employed successfully to predict BDON.
Segmentation and classification of dermatological lesions
NASA Astrophysics Data System (ADS)
Sáez, Aurora; Acha, Begoña; Serrano, Carmen
2010-03-01
Certain skin diseases are chronic, inflammatory and without cure. However, there are many treatment options that can clear them for a period of time. Measuring their severity and assessing their extent, is a fundamental issue to determine the efficacy of the treatment under test. Two of the most important parameters of severity assessment are Erythema (redness) and Scaliness. Physicians classify these parameters into several grades by visual grading method. In this paper a color image segmentation and classification algorithm is developed to obtain an assessment of erythema and scaliness of dermatological lesions. Color digital photographs taken under an acquisition protocol form the database. Difference between green band and blue band of images in RGB color space shows two modes (healthy skin and lesion) with clear separation. Otsu's method is applied to this difference in order to isolate the lesion. After the skin disease is segmented, some color and texture features are calculated and they are the inputs to a Fuzzy-ARTMAP neural network. The neural network classifies them into the five grades of erythema and the five grades of scaliness. The method has been tested with 31 images with a success percentage of 83.87 % when the images are classified in erythema, and 77.42 % for scaliness classification.
Fan, Mingyi; Hu, Jiwei; Cao, Rensheng; Ruan, Wenqian; Wei, Xionghui
2018-06-01
Water pollution occurs mainly due to inorganic and organic pollutants, such as nutrients, heavy metals and persistent organic pollutants. For the modeling and optimization of pollutants removal, artificial intelligence (AI) has been used as a major tool in the experimental design that can generate the optimal operational variables, since AI has recently gained a tremendous advance. The present review describes the fundamentals, advantages and limitations of AI tools. Artificial neural networks (ANNs) are the AI tools frequently adopted to predict the pollutants removal processes because of their capabilities of self-learning and self-adapting, while genetic algorithm (GA) and particle swarm optimization (PSO) are also useful AI methodologies in efficient search for the global optima. This article summarizes the modeling and optimization of pollutants removal processes in water treatment by using multilayer perception, fuzzy neural, radial basis function and self-organizing map networks. Furthermore, the results conclude that the hybrid models of ANNs with GA and PSO can be successfully applied in water treatment with satisfactory accuracies. Finally, the limitations of current AI tools and their new developments are also highlighted for prospective applications in the environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, W.-B.; Liu, W.-C.; Hsu, M.-H.
2012-12-01
Precise predictions of storm surges during typhoon events have the necessity for disaster prevention in coastal seas. This paper explores an artificial neural network (ANN) model, including the back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) algorithms used to correct poor calculations with a two-dimensional hydrodynamic model in predicting storm surge height during typhoon events. The two-dimensional model has a fine horizontal resolution and considers the interaction between storm surges and astronomical tides, which can be applied for describing the complicated physical properties of storm surges along the east coast of Taiwan. The model is driven by the tidal elevation at the open boundaries using a global ocean tidal model and is forced by the meteorological conditions using a cyclone model. The simulated results of the hydrodynamic model indicate that this model fails to predict storm surge height during the model calibration and verification phases as typhoons approached the east coast of Taiwan. The BPNN model can reproduce the astronomical tide level but fails to modify the prediction of the storm surge tide level. The ANFIS model satisfactorily predicts both the astronomical tide level and the storm surge height during the training and verification phases and exhibits the lowest values of mean absolute error and root-mean-square error compared to the simulated results at the different stations using the hydrodynamic model and the BPNN model. Comparison results showed that the ANFIS techniques could be successfully applied in predicting water levels along the east coastal of Taiwan during typhoon events.
NASA Astrophysics Data System (ADS)
Gholami, V.; Khaleghi, M. R.; Sebghati, M.
2017-11-01
The process of water quality testing is money/time-consuming, quite important and difficult stage for routine measurements. Therefore, use of models has become commonplace in simulating water quality. In this study, the coactive neuro-fuzzy inference system (CANFIS) was used to simulate groundwater quality. Further, geographic information system (GIS) was used as the pre-processor and post-processor tool to demonstrate spatial variation of groundwater quality. All important factors were quantified and groundwater quality index (GWQI) was developed. The proposed model was trained and validated by taking a case study of Mazandaran Plain located in northern part of Iran. The factors affecting groundwater quality were the input variables for the simulation, whereas GWQI index was the output. The developed model was validated to simulate groundwater quality. Network validation was performed via comparison between the estimated and actual GWQI values. In GIS, the study area was separated to raster format in the pixel dimensions of 1 km and also by incorporation of input data layers of the Fuzzy Network-CANFIS model; the geo-referenced layers of the effective factors in groundwater quality were earned. Therefore, numeric values of each pixel with geographical coordinates were entered to the Fuzzy Network-CANFIS model and thus simulation of groundwater quality was accessed in the study area. Finally, the simulated GWQI indices using the Fuzzy Network-CANFIS model were entered into GIS, and hence groundwater quality map (raster layer) based on the results of the network simulation was earned. The study's results confirm the high efficiency of incorporation of neuro-fuzzy techniques and GIS. It is also worth noting that the general quality of the groundwater in the most studied plain is fairly low.
Water demand forecasting: review of soft computing methods.
Ghalehkhondabi, Iman; Ardjmand, Ehsan; Young, William A; Weckman, Gary R
2017-07-01
Demand forecasting plays a vital role in resource management for governments and private companies. Considering the scarcity of water and its inherent constraints, demand management and forecasting in this domain are critically important. Several soft computing techniques have been developed over the last few decades for water demand forecasting. This study focuses on soft computing methods of water consumption forecasting published between 2005 and 2015. These methods include artificial neural networks (ANNs), fuzzy and neuro-fuzzy models, support vector machines, metaheuristics, and system dynamics. Furthermore, it was discussed that while in short-term forecasting, ANNs have been superior in many cases, but it is still very difficult to pick a single method as the overall best. According to the literature, various methods and their hybrids are applied to water demand forecasting. However, it seems soft computing has a lot more to contribute to water demand forecasting. These contribution areas include, but are not limited, to various ANN architectures, unsupervised methods, deep learning, various metaheuristics, and ensemble methods. Moreover, it is found that soft computing methods are mainly used for short-term demand forecasting.
K, Jalal Deen; R, Ganesan; A, Merline
2017-07-27
Objective: Accurate segmentation of abnormal and healthy lungs is very crucial for a steadfast computer-aided disease diagnostics. Methods: For this purpose a stack of chest CT scans are processed. In this paper, novel methods are proposed for segmentation of the multimodal grayscale lung CT scan. In the conventional methods using Markov–Gibbs Random Field (MGRF) model the required regions of interest (ROI) are identified. Result: The results of proposed FCM and CNN based process are compared with the results obtained from the conventional method using MGRF model. The results illustrate that the proposed method can able to segment the various kinds of complex multimodal medical images precisely. Conclusion: However, in this paper, to obtain an exact boundary of the regions, every empirical dispersion of the image is computed by Fuzzy C-Means Clustering segmentation. A classification process based on the Convolutional Neural Network (CNN) classifier is accomplished to distinguish the normal tissue and the abnormal tissue. The experimental evaluation is done using the Interstitial Lung Disease (ILD) database. Creative Commons Attribution License
Ye, Qing; Pan, Hao; Liu, Changhua
2015-01-01
This research proposes a novel framework of final drive simultaneous failure diagnosis containing feature extraction, training paired diagnostic models, generating decision threshold, and recognizing simultaneous failure modes. In feature extraction module, adopt wavelet package transform and fuzzy entropy to reduce noise interference and extract representative features of failure mode. Use single failure sample to construct probability classifiers based on paired sparse Bayesian extreme learning machine which is trained only by single failure modes and have high generalization and sparsity of sparse Bayesian learning approach. To generate optimal decision threshold which can convert probability output obtained from classifiers into final simultaneous failure modes, this research proposes using samples containing both single and simultaneous failure modes and Grid search method which is superior to traditional techniques in global optimization. Compared with other frequently used diagnostic approaches based on support vector machine and probability neural networks, experiment results based on F 1-measure value verify that the diagnostic accuracy and efficiency of the proposed framework which are crucial for simultaneous failure diagnosis are superior to the existing approach. PMID:25722717
K, Jalal Deen; R, Ganesan; A, Merline
2017-01-01
Objective: Accurate segmentation of abnormal and healthy lungs is very crucial for a steadfast computer-aided disease diagnostics. Methods: For this purpose a stack of chest CT scans are processed. In this paper, novel methods are proposed for segmentation of the multimodal grayscale lung CT scan. In the conventional methods using Markov–Gibbs Random Field (MGRF) model the required regions of interest (ROI) are identified. Result: The results of proposed FCM and CNN based process are compared with the results obtained from the conventional method using MGRF model. The results illustrate that the proposed method can able to segment the various kinds of complex multimodal medical images precisely. Conclusion: However, in this paper, to obtain an exact boundary of the regions, every empirical dispersion of the image is computed by Fuzzy C-Means Clustering segmentation. A classification process based on the Convolutional Neural Network (CNN) classifier is accomplished to distinguish the normal tissue and the abnormal tissue. The experimental evaluation is done using the Interstitial Lung Disease (ILD) database. PMID:28749127
NASA Astrophysics Data System (ADS)
Guermoui, Mawloud; Gairaa, Kacem; Rabehi, Abdelaziz; Djafer, Djelloul; Benkaciali, Said
2018-06-01
Accurate estimation of solar radiation is the major concern in renewable energy applications. Over the past few years, a lot of machine learning paradigms have been proposed in order to improve the estimation performances, mostly based on artificial neural networks, fuzzy logic, support vector machine and adaptive neuro-fuzzy inference system. The aim of this work is the prediction of the daily global solar radiation, received on a horizontal surface through the Gaussian process regression (GPR) methodology. A case study of Ghardaïa region (Algeria) has been used in order to validate the above methodology. In fact, several combinations have been tested; it was found that, GPR-model based on sunshine duration, minimum air temperature and relative humidity gives the best results in term of mean absolute bias error (MBE), root mean square error (RMSE), relative mean square error (rRMSE), and correlation coefficient ( r) . The obtained values of these indicators are 0.67 MJ/m2, 1.15 MJ/m2, 5.2%, and 98.42%, respectively.