Encoding spatial images: A fuzzy set theory approach
NASA Technical Reports Server (NTRS)
Sztandera, Leszek M.
1992-01-01
As the use of fuzzy set theory continues to grow, there is an increased need for methodologies and formalisms to manipulate obtained fuzzy subsets. Concepts involving relative position of fuzzy patterns are acknowledged as being of high importance in many areas. In this paper, we present an approach based on the concept of dominance in fuzzy set theory for modelling relative positions among fuzzy subsets of a plane. In particular, we define the following spatial relations: to the left (right), in front of, behind, above, below, near, far from, and touching. This concept has been implemented to define spatial relationships among fuzzy subsets of the image plane. Spatial relationships based on fuzzy set theory, coupled with a fuzzy segmentation, should therefore yield realistic results in scene understanding.
An analysis of possible applications of fuzzy set theory to the actuarial credibility theory
NASA Technical Reports Server (NTRS)
Ostaszewski, Krzysztof; Karwowski, Waldemar
1992-01-01
In this work, we review the basic concepts of actuarial credibility theory from the point of view of introducing applications of the fuzzy set-theoretic method. We show how the concept of actuarial credibility can be modeled through the fuzzy set membership functions and how fuzzy set methods, especially fuzzy pattern recognition, can provide an alternative tool for estimating credibility.
NASA Technical Reports Server (NTRS)
Abihana, Osama A.; Gonzalez, Oscar R.
1993-01-01
The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.
de Bruin, Jeroen S; Adlassnig, Klaus-Peter; Blacky, Alexander; Koller, Walter
2016-05-01
Many electronic infection detection systems employ dichotomous classification methods, classifying patient data as pathological or normal with respect to one or several types of infection. An electronic monitoring and surveillance system for healthcare-associated infections (HAIs) known as Moni-ICU is being operated at the intensive care units (ICUs) of the Vienna General Hospital (VGH) in Austria. Instead of classifying patient data as pathological or normal, Moni-ICU introduces a third borderline class. Patient data classified as borderline with respect to an infection-related clinical concept or HAI surveillance definition signify that the data nearly or partly fulfill the definition for the respective concept or HAI, and are therefore neither fully pathological nor fully normal. Using fuzzy sets and propositional fuzzy rules, we calculated how frequently patient data are classified as normal, borderline, or pathological with respect to infection-related clinical concepts and HAI definitions. In dichotomous classification methods, borderline classification results would be confounded by normal. Therefore, we also assessed whether the constructed fuzzy sets and rules employed by Moni-ICU classified patient data too often or too infrequently as borderline instead of normal. Electronic surveillance data were collected from adult patients (aged 18 years or older) at ten ICUs of the VGH. All adult patients admitted to these ICUs over a two-year period were reviewed. In all 5099 patient stays (4120 patients) comprising 49,394 patient days were evaluated. For classification, a part of Moni-ICU's knowledge base comprising fuzzy sets and rules for ten infection-related clinical concepts and four top-level HAI definitions was employed. Fuzzy sets were used for the classification of concepts directly related to patient data; fuzzy rules were employed for the classification of more abstract clinical concepts, and for top-level HAI surveillance definitions. Data for each clinical concept and HAI definition were classified as either normal, borderline, or pathological. For the assessment of fuzzy sets and rules, we compared how often a borderline value for a fuzzy set or rule would result in a borderline value versus a normal value for its associated HAI definition(s). The statistical significance of these comparisons was expressed in p-values calculated with Fisher's exact test. The results showed that, for clinical concepts represented by fuzzy sets, 1-17% of the data were classified as borderline. The number was substantially higher (20-81%) for fuzzy rules representing more abstract clinical concepts. A small body of data were found to be in the borderline range for the four top-level HAI definitions (0.02-2.35%). Seven of ten fuzzy sets and rules were associated significantly more often with borderline values than with normal values for their respective HAI definition(s) (p<0.001). The study showed that Moni-ICU was effective in classifying patient data as borderline for infection-related concepts and top-level HAI surveillance definitions. Copyright © 2016 Elsevier B.V. All rights reserved.
Creating Clinical Fuzzy Automata with Fuzzy Arden Syntax.
de Bruin, Jeroen S; Steltzer, Heinz; Rappelsberger, Andrea; Adlassnig, Klaus-Peter
2017-01-01
Formal constructs for fuzzy sets and fuzzy logic are incorporated into Arden Syntax version 2.9 (Fuzzy Arden Syntax). With fuzzy sets, the relationships between measured or observed data and linguistic terms are expressed as degrees of compatibility that model the unsharpness of the boundaries of linguistic terms. Propositional uncertainty due to incomplete knowledge of relationships between clinical linguistic concepts is modeled with fuzzy logic. Fuzzy Arden Syntax also supports the construction of fuzzy state monitors. The latter are defined as monitors that employ fuzzy automata to observe gradual transitions between different stages of disease. As a use case, we re-implemented FuzzyARDS, a previously published clinical monitoring system for patients suffering from acute respiratory distress syndrome (ARDS). Using the re-implementation as an example, we show how key concepts of fuzzy automata, i.e., fuzzy states and parallel fuzzy state transitions, can be implemented in Fuzzy Arden Syntax. The results showed that fuzzy state monitors can be implemented in a straightforward manner.
Decomposition of Fuzzy Soft Sets with Finite Value Spaces
Jun, Young Bae
2014-01-01
The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter. PMID:24558342
Decomposition of fuzzy soft sets with finite value spaces.
Feng, Feng; Fujita, Hamido; Jun, Young Bae; Khan, Madad
2014-01-01
The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter.
Optical Generation of Fuzzy-Based Rules
NASA Astrophysics Data System (ADS)
Gur, Eran; Mendlovic, David; Zalevsky, Zeev
2002-08-01
In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.
NASA Technical Reports Server (NTRS)
Worm, Jeffrey A.; Culas, Donald E.
1991-01-01
Computers are not designed to handle terms where uncertainty is present. To deal with uncertainty, techniques other than classical logic must be developed. This paper examines the concepts of statistical analysis, the Dempster-Shafer theory, rough set theory, and fuzzy set theory to solve this problem. The fundamentals of these theories are combined to provide the possible optimal solution. By incorporating principles from these theories, a decision-making process may be simulated by extracting two sets of fuzzy rules: certain rules and possible rules. From these rules a corresponding measure of how much we believe these rules is constructed. From this, the idea of how much a fuzzy diagnosis is definable in terms of its fuzzy attributes is studied.
A Fuzzy Description Logic with Automatic Object Membership Measurement
NASA Astrophysics Data System (ADS)
Cai, Yi; Leung, Ho-Fung
In this paper, we propose a fuzzy description logic named f om -DL by combining the classical view in cognitive psychology and fuzzy set theory. A formal mechanism used to determine object memberships automatically in concepts is also proposed, which is lacked in previous work fuzzy description logics. In this mechanism, object membership is based on the defining properties of concept definition and properties in object description. Moreover, while previous works cannot express the qualitative measurements of an object possessing a property, we introduce two kinds of properties named N-property and L-property, which are quantitative measurements and qualitative measurements of an object possessing a property respectively. The subsumption and implication of concepts and properties are also explored in our work. We believe that it is useful to the Semantic Web community for reasoning the fuzzy membership of objects for concepts in fuzzy ontologies.
Multi-layered reasoning by means of conceptual fuzzy sets
NASA Technical Reports Server (NTRS)
Takagi, Tomohiro; Imura, Atsushi; Ushida, Hirohide; Yamaguchi, Toru
1993-01-01
The real world consists of a very large number of instances of events and continuous numeric values. On the other hand, people represent and process their knowledge in terms of abstracted concepts derived from generalization of these instances and numeric values. Logic based paradigms for knowledge representation use symbolic processing both for concept representation and inference. Their underlying assumption is that a concept can be defined precisely. However, as this assumption hardly holds for natural concepts, it follows that symbolic processing cannot deal with such concepts. Thus symbolic processing has essential problems from a practical point of view of applications in the real world. In contrast, fuzzy set theory can be viewed as a stronger and more practical notation than formal, logic based theories because it supports both symbolic processing and numeric processing, connecting the logic based world and the real world. In this paper, we propose multi-layered reasoning by using conceptual fuzzy sets (CFS). The general characteristics of CFS are discussed along with upper layer supervision and context dependent processing.
Forecasting Enrollments with Fuzzy Time Series.
ERIC Educational Resources Information Center
Song, Qiang; Chissom, Brad S.
The concept of fuzzy time series is introduced and used to forecast the enrollment of a university. Fuzzy time series, an aspect of fuzzy set theory, forecasts enrollment using a first-order time-invariant model. To evaluate the model, the conventional linear regression technique is applied and the predicted values obtained are compared to the…
Certain and possible rules for decision making using rough set theory extended to fuzzy sets
NASA Technical Reports Server (NTRS)
Dekorvin, Andre; Shipley, Margaret F.
1993-01-01
Uncertainty may be caused by the ambiguity in the terms used to describe a specific situation. It may also be caused by skepticism of rules used to describe a course of action or by missing and/or erroneous data. To deal with uncertainty, techniques other than classical logic need to be developed. Although, statistics may be the best tool available for handling likelihood, it is not always adequate for dealing with knowledge acquisition under uncertainty. Inadequacies caused by estimating probabilities in statistical processes can be alleviated through use of the Dempster-Shafer theory of evidence. Fuzzy set theory is another tool used to deal with uncertainty where ambiguous terms are present. Other methods include rough sets, the theory of endorsements and nonmonotonic logic. J. Grzymala-Busse has defined the concept of lower and upper approximation of a (crisp) set and has used that concept to extract rules from a set of examples. We will define the fuzzy analogs of lower and upper approximations and use these to obtain certain and possible rules from a set of examples where the data is fuzzy. Central to these concepts will be the idea of the degree to which a fuzzy set A is contained in another fuzzy set B, and the degree of intersection of a set A with set B. These concepts will also give meaning to the statement; A implies B. The two meanings will be: (1) if x is certainly in A then it is certainly in B, and (2) if x is possibly in A then it is possibly in B. Next, classification will be looked at and it will be shown that if a classification will be looked at and it will be shown that if a classification is well externally definable then it is well internally definable, and if it is poorly externally definable then it is poorly internally definable, thus generalizing a result of Grzymala-Busse. Finally, some ideas of how to define consensus and group options to form clusters of rules will be given.
NASA Astrophysics Data System (ADS)
Muzafar Shah, Mazlina; Fatah Wahab, Abdul
2017-09-01
There are an abnormal electric activities or irregular interference in brain of epilepsy patient. Then a sensor will be put in patient’s scalp to measure and records all electric activities in brain. The result of the records known as Electroencephalography (EEG). The EEG has been transfer to flat EEG because it’s easier to analyze. In this study, the uncertainty in flat EEG data will be considered as fuzzy digital space. The purpose of this research is to show that the flat EEG is fuzzy topological digital space. Therefore, the main focus for this research is to introduce fuzzy topological digital space concepts with their properties such as neighbourhood, interior and closure by using fuzzy set digital concept and Chang’s fuzzy topology approach. The product fuzzy topology digital also will be shown. By introduce this concept, the data in flat EEG can considering having fuzzy topology digital properties and can identify the area in fuzzy digital space that has been affected by epilepsy seizure in epileptic patient’s brain.
ELIPS: Toward a Sensor Fusion Processor on a Chip
NASA Technical Reports Server (NTRS)
Daud, Taher; Stoica, Adrian; Tyson, Thomas; Li, Wei-te; Fabunmi, James
1998-01-01
The paper presents the concept and initial tests from the hardware implementation of a low-power, high-speed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) processor is developed to seamlessly combine rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor in compact low power VLSI. The first demonstration of the ELIPS concept targets interceptor functionality; other applications, mainly in robotics and autonomous systems are considered for the future. The main assumption behind ELIPS is that fuzzy, rule-based and neural forms of computation can serve as the main primitives of an "intelligent" processor. Thus, in the same way classic processors are designed to optimize the hardware implementation of a set of fundamental operations, ELIPS is developed as an efficient implementation of computational intelligence primitives, and relies on a set of fuzzy set, fuzzy inference and neural modules, built in programmable analog hardware. The hardware programmability allows the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Following software demonstrations on several interceptor data, three important ELIPS building blocks (a fuzzy set preprocessor, a rule-based fuzzy system and a neural network) have been fabricated in analog VLSI hardware and demonstrated microsecond-processing times.
Intelligent virtual reality in the setting of fuzzy sets
NASA Technical Reports Server (NTRS)
Dockery, John; Littman, David
1992-01-01
The authors have previously introduced the concept of virtual reality worlds governed by artificial intelligence. Creation of an intelligent virtual reality was further proposed as a universal interface for the handicapped. This paper extends consideration of intelligent virtual realty to a context in which fuzzy set principles are explored as a major tool for implementing theory in the domain of applications to the disabled.
Walendziak, Andrzej
2015-01-01
The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050
Fuzzy Hybrid Deliberative/Reactive Paradigm (FHDRP)
NASA Technical Reports Server (NTRS)
Sarmadi, Hengameth
2004-01-01
This work aims to introduce a new concept for incorporating fuzzy sets in hybrid deliberative/reactive paradigm. After a brief review on basic issues of hybrid paradigm the definition of agent-based fuzzy hybrid paradigm, which enables the agents to proceed and extract their behavior through quantitative numerical and qualitative knowledge and to impose their decision making procedure via fuzzy rule bank, is discussed. Next an example performs a more applied platform for the developed approach and finally an overview of the corresponding agents architecture enhances agents logical framework.
Fuzzy logic control for camera tracking system
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant
1992-01-01
A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.
A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis.
El-Sappagh, Shaker; Elmogy, Mohammed; Riad, A M
2015-11-01
Case-based reasoning (CBR) is a problem-solving paradigm that uses past knowledge to interpret or solve new problems. It is suitable for experience-based and theory-less problems. Building a semantically intelligent CBR that mimic the expert thinking can solve many problems especially medical ones. Knowledge-intensive CBR using formal ontologies is an evolvement of this paradigm. Ontologies can be used for case representation and storage, and it can be used as a background knowledge. Using standard medical ontologies, such as SNOMED CT, enhances the interoperability and integration with the health care systems. Moreover, utilizing vague or imprecise knowledge further improves the CBR semantic effectiveness. This paper proposes a fuzzy ontology-based CBR framework. It proposes a fuzzy case-base OWL2 ontology, and a fuzzy semantic retrieval algorithm that handles many feature types. This framework is implemented and tested on the diabetes diagnosis problem. The fuzzy ontology is populated with 60 real diabetic cases. The effectiveness of the proposed approach is illustrated with a set of experiments and case studies. The resulting system can answer complex medical queries related to semantic understanding of medical concepts and handling of vague terms. The resulting fuzzy case-base ontology has 63 concepts, 54 (fuzzy) object properties, 138 (fuzzy) datatype properties, 105 fuzzy datatypes, and 2640 instances. The system achieves an accuracy of 97.67%. We compare our framework with existing CBR systems and a set of five machine-learning classifiers; our system outperforms all of these systems. Building an integrated CBR system can improve its performance. Representing CBR knowledge using the fuzzy ontology and building a case retrieval algorithm that treats different features differently improves the accuracy of the resulting systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Wu, Jia-ting; Wang, Jian-qiang; Wang, Jing; Zhang, Hong-yu; Chen, Xiao-hong
2014-01-01
Based on linguistic term sets and hesitant fuzzy sets, the concept of hesitant fuzzy linguistic sets was introduced. The focus of this paper is the multicriteria decision-making (MCDM) problems in which the criteria are in different priority levels and the criteria values take the form of hesitant fuzzy linguistic numbers (HFLNs). A new approach to solving these problems is proposed, which is based on the generalized prioritized aggregation operator of HFLNs. Firstly, the new operations and comparison method for HFLNs are provided and some linguistic scale functions are applied. Subsequently, two prioritized aggregation operators and a generalized prioritized aggregation operator of HFLNs are developed and applied to MCDM problems. Finally, an illustrative example is given to illustrate the effectiveness and feasibility of the proposed method, which are then compared to the existing approach.
NASA Astrophysics Data System (ADS)
Mukherjee, Sathi; Basu, Kajla
2010-10-01
In this paper we develop a methodology to solve the multiple attribute assignment problems where the attributes are considered to be Intuitionistic Fuzzy Sets (IFS). We apply the concept of similarity measures of IFS to solve the Intuitionistic Fuzzy Multi-Attribute Assignment Problem (IFMAAP). The weights of the attributes are determined from expert opinion. An illustrative example is solved to verify the developed approach and to demonstrate its practicality.
From vagueness in medical thought to the foundations of fuzzy reasoning in medical diagnosis.
Seising, Rudolf
2006-11-01
This article delineates a relatively unknown path in the history of medical philosophy and medical diagnosis. It is concerned with the phenomenon of vagueness in the physician's "style of thinking" and with the use of fuzzy sets, systems, and relations with a view to create a model of such reasoning when physicians make a diagnosis. It represents specific features of medical ways of thinking that were mentioned by the Polish physician and philosopher Ludwik Fleck in 1926. The paper links Lotfi Zadeh's work on system theory before the age of fuzzy sets with system-theory concepts in medical philosophy that were introduced by the philosopher Mario Bunge, and with the fuzzy-theoretical analysis of the notions of health, illness, and disease by the Iranian-German physician and philosopher Kazem Sadegh-Zadeh. Some proposals to apply fuzzy sets in medicine were based on a suggestion made by Zadeh: symptoms and diseases are fuzzy in nature and fuzzy sets are feasible to represent these entity classes of medical knowledge. Yet other attempts to use fuzzy sets in medicine were self-contained. The use of this approach contributed to medical decision-making and the development of computer-assisted diagnosis in medicine. With regard to medical philosophy, decision-making, and diagnosis; the framework of fuzzy sets, systems, and relations is very useful to deal with the absence of sharp boundaries of the sets of symptoms, diagnoses, and phenomena of diseases. The foundations of reasoning and computer assistance in medicine were the result of a rapid accumulation of data from medical research. This explosion of knowledge in medicine gave rise to the speculation that computers could be used for the medical diagnosis. Medicine became, to a certain extent, a quantitative science. In the second half of the 20th century medical knowledge started to be stored in computer systems. To assist physicians in medical decision-making and patient care, medical expert systems using the theory of fuzzy sets and relations (such as the Viennese "fuzzy version" of the Computer-Assisted Diagnostic System, CADIAG, which was developed at the end of the 1970s) were constructed. The development of fuzzy relations in medicine and their application in computer-assisted diagnosis show that this fuzzy approach is a framework to deal with the "fuzzy mode of thinking" in medicine.
NASA Astrophysics Data System (ADS)
Gupta, Mahima; Mohanty, B. K.
2017-04-01
In this paper, we have developed a methodology to derive the level of compensation numerically in multiple criteria decision-making (MCDM) problems under fuzzy environment. The degree of compensation is dependent on the tranquility and anxiety level experienced by the decision-maker while taking the decision. Higher tranquility leads to the higher realisation of the compensation whereas the increased level of anxiety reduces the amount of compensation in the decision process. This work determines the level of tranquility (or anxiety) using the concept of fuzzy sets and its various level sets. The concepts of indexing of fuzzy numbers, the risk barriers and the tranquility level of the decision-maker are used to derive his/her risk prone or risk averse attitude of decision-maker in each criterion. The aggregation of the risk levels in each criterion gives us the amount of compensation in the entire MCDM problem. Inclusion of the compensation leads us to model the MCDM problem as binary integer programming problem (BIP). The solution to BIP gives us the compensatory decision to MCDM. The proposed methodology is illustrated through a numerical example.
Fuzziness In Approximate And Common-Sense Reasoning In Knowledge-Based Robotics Systems
NASA Astrophysics Data System (ADS)
Dodds, David R.
1987-10-01
Fuzzy functions, a major key to inexact reasoning, are described as they are applied to the fuzzification of robot co-ordinate systems. Linguistic-variables, a means of labelling ranges in fuzzy sets, are used as computationally pragmatic means of representing spatialization metaphors, themselves an extraordinarily rich basis for understanding concepts in orientational terms. Complex plans may be abstracted and simplified in a system which promotes conceptual planning by means of the orientational representation.
Intersubjective decision-making for computer-aided forging technology design
NASA Astrophysics Data System (ADS)
Kanyukov, S. I.; Konovalov, A. V.; Muizemnek, O. Yu.
2017-12-01
We propose a concept of intersubjective decision-making for problems of open-die forging technology design. The intersubjective decisions are chosen from a set of feasible decisions using the fundamentals of the decision-making theory in fuzzy environment according to the Bellman-Zadeh scheme. We consider the formalization of subjective goals and the choice of membership functions for the decisions depending on subjective goals. We study the arrangement of these functions into an intersubjective membership function. The function is constructed for a resulting decision, which is chosen from a set of feasible decisions. The choice of the final intersubjective decision is discussed. All the issues are exemplified by a specific technological problem. The considered concept of solving technological problems under conditions of fuzzy goals allows one to choose the most efficient decisions from a set of feasible ones. These decisions correspond to the stated goals. The concept allows one to reduce human participation in automated design. This concept can be used to develop algorithms and design programs for forging numerous types of forged parts.
A Z-number-based decision making procedure with ranking fuzzy numbers method
NASA Astrophysics Data System (ADS)
Mohamad, Daud; Shaharani, Saidatull Akma; Kamis, Nor Hanimah
2014-12-01
The theory of fuzzy set has been in the limelight of various applications in decision making problems due to its usefulness in portraying human perception and subjectivity. Generally, the evaluation in the decision making process is represented in the form of linguistic terms and the calculation is performed using fuzzy numbers. In 2011, Zadeh has extended this concept by presenting the idea of Z-number, a 2-tuple fuzzy numbers that describes the restriction and the reliability of the evaluation. The element of reliability in the evaluation is essential as it will affect the final result. Since this concept can still be considered as new, available methods that incorporate reliability for solving decision making problems is still scarce. In this paper, a decision making procedure based on Z-numbers is proposed. Due to the limitation of its basic properties, Z-numbers will be first transformed to fuzzy numbers for simpler calculations. A method of ranking fuzzy number is later used to prioritize the alternatives. A risk analysis problem is presented to illustrate the effectiveness of this proposed procedure.
Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept.
Mazandarani, Mehran; Pariz, Naser
2018-05-01
This paper deals with sub-optimal control of a fuzzy linear dynamical system. The aim is to keep the state variables of the fuzzy linear dynamical system close to zero in an optimal manner. In the fuzzy dynamical system, the fuzzy derivative is considered as the granular derivative; and all the coefficients and initial conditions can be uncertain. The criterion for assessing the optimality is regarded as a granular integral whose integrand is a quadratic function of the state variables and control inputs. Using the relative-distance-measure (RDM) fuzzy interval arithmetic and calculus of variations, the optimal control law is presented as the fuzzy state variables feedback. Since the optimal feedback gains are obtained as fuzzy functions, they need to be defuzzified. This will result in the sub-optimal control law. This paper also sheds light on the restrictions imposed by the approaches which are based on fuzzy standard interval arithmetic (FSIA), and use strongly generalized Hukuhara and generalized Hukuhara differentiability concepts for obtaining the optimal control law. The granular eigenvalues notion is also defined. Using an RLC circuit mathematical model, it is shown that, due to their unnatural behavior in the modeling phenomenon, the FSIA-based approaches may obtain some eigenvalues sets that might be different from the inherent eigenvalues set of the fuzzy dynamical system. This is, however, not the case with the approach proposed in this study. The notions of granular controllability and granular stabilizability of the fuzzy linear dynamical system are also presented in this paper. Moreover, a sub-optimal control for regulating a Boeing 747 in longitudinal direction with uncertain initial conditions and parameters is gained. In addition, an uncertain suspension system of one of the four wheels of a bus is regulated using the sub-optimal control introduced in this paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Nie, Xianghui; Huang, Guo H; Li, Yongping
2009-11-01
This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.
Adding dynamic rules to self-organizing fuzzy systems
NASA Technical Reports Server (NTRS)
Buhusi, Catalin V.
1992-01-01
This paper develops a Dynamic Self-Organizing Fuzzy System (DSOFS) capable of adding, removing, and/or adapting the fuzzy rules and the fuzzy reference sets. The DSOFS background consists of a self-organizing neural structure with neuron relocation features which will develop a map of the input-output behavior. The relocation algorithm extends the topological ordering concept. Fuzzy rules (neurons) are dynamically added or released while the neural structure learns the pattern. The DSOFS advantages are the automatic synthesis and the possibility of parallel implementation. A high adaptation speed and a reduced number of neurons is needed in order to keep errors under some limits. The computer simulation results are presented in a nonlinear systems modelling application.
ERIC Educational Resources Information Center
Güyer, Tolga; Aydogdu, Seyhmus
2016-01-01
This study suggests a classification model and an e-learning system based on this model for all instructional theories, approaches, models, strategies, methods, and technics being used in the process of instructional design that constitutes a direct or indirect resource for educational technology based on the theory of intuitionistic fuzzy sets…
Control of motion stability of the line tracer robot using fuzzy logic and kalman filter
NASA Astrophysics Data System (ADS)
Novelan, M. S.; Tulus; Zamzami, E. M.
2018-03-01
Setting of motion and balance line tracer robot two wheels is actually a combination of a two-wheeled robot balance concept and the concept of line follower robot. The main objective of this research is to maintain the robot in an upright and can move to follow the line of the Wizard while maintaining balance. In this study the motion balance system on line tracer robot by considering the presence of a noise, so that it takes the estimator is used to mengestimasi the line tracer robot motion. The estimation is done by the method of Kalman Filter and the combination of Fuzzy logic-Fuzzy Kalman Filter called Kalman Filter, as well as optimal smooting. Based on the results of the study, the value of the output of the fuzzy results obtained from the sensor input value has been filtered before entering the calculation of the fuzzy. The results of the output of the fuzzy logic hasn’t been able to control dc motors are well balanced at the moment to be able to run. The results of the fuzzy logic by using membership function of triangular membership function or yet can control with good dc motor movement in order to be balanced
Fuzzy time-series based on Fibonacci sequence for stock price forecasting
NASA Astrophysics Data System (ADS)
Chen, Tai-Liang; Cheng, Ching-Hsue; Jong Teoh, Hia
2007-07-01
Time-series models have been utilized to make reasonably accurate predictions in the areas of stock price movements, academic enrollments, weather, etc. For promoting the forecasting performance of fuzzy time-series models, this paper proposes a new model, which incorporates the concept of the Fibonacci sequence, the framework of Song and Chissom's model and the weighted method of Yu's model. This paper employs a 5-year period TSMC (Taiwan Semiconductor Manufacturing Company) stock price data and a 13-year period of TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) stock index data as experimental datasets. By comparing our forecasting performances with Chen's (Forecasting enrollments based on fuzzy time-series. Fuzzy Sets Syst. 81 (1996) 311-319), Yu's (Weighted fuzzy time-series models for TAIEX forecasting. Physica A 349 (2004) 609-624) and Huarng's (The application of neural networks to forecast fuzzy time series. Physica A 336 (2006) 481-491) models, we conclude that the proposed model surpasses in accuracy these conventional fuzzy time-series models.
Fuzzy logic applications to expert systems and control
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
A considerable amount of work on the development of fuzzy logic algorithms and application to space related control problems has been done at the Johnson Space Center (JSC) over the past few years. Particularly, guidance control systems for space vehicles during proximity operations, learning systems utilizing neural networks, control of data processing during rendezvous navigation, collision avoidance algorithms, camera tracking controllers, and tether controllers have been developed utilizing fuzzy logic technology. Several other areas in which fuzzy sets and related concepts are being considered at JSC are diagnostic systems, control of robot arms, pattern recognition, and image processing. It has become evident, based on the commercial applications of fuzzy technology in Japan and China during the last few years, that this technology should be exploited by the government as well as private industry for energy savings.
Zhong, Zhixiong; Zhu, Yanzheng; Ahn, Choon Ki
2018-07-01
In this paper, we address the problem of reachable set estimation for continuous-time Takagi-Sugeno (T-S) fuzzy systems subject to unknown output delays. Based on the reachable set concept, a new controller design method is also discussed for such systems. An effective method is developed to attenuate the negative impact from the unknown output delays, which likely degrade the performance/stability of systems. First, an augmented fuzzy observer is proposed to capacitate a synchronous estimation for the system state and the disturbance term owing to the unknown output delays, which ensures that the reachable set of the estimation error is limited via the intersection operation of ellipsoids. Then, a compensation technique is employed to eliminate the influence on the system performance stemmed from the unknown output delays. Finally, the effectiveness and correctness of the obtained theories are verified by the tracking control of autonomous underwater vehicles. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Implementation of Steiner point of fuzzy set.
Liang, Jiuzhen; Wang, Dejiang
2014-01-01
This paper deals with the implementation of Steiner point of fuzzy set. Some definitions and properties of Steiner point are investigated and extended to fuzzy set. This paper focuses on establishing efficient methods to compute Steiner point of fuzzy set. Two strategies of computing Steiner point of fuzzy set are proposed. One is called linear combination of Steiner points computed by a series of crisp α-cut sets of the fuzzy set. The other is an approximate method, which is trying to find the optimal α-cut set approaching the fuzzy set. Stability analysis of Steiner point of fuzzy set is also studied. Some experiments on image processing are given, in which the two methods are applied for implementing Steiner point of fuzzy image, and both strategies show their own advantages in computing Steiner point of fuzzy set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, F.G.
Sensor-based operation of autonomous robots in unstructured and/or outdoor environments has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. An approach. which we have named the {open_quotes}Fuzzy Behaviorist Approach{close_quotes} (FBA) is proposed in an attempt to remedy some of these difficulties. This approach is based on the representation of the system`s uncertainties using Fuzzy Set Theory-basedmore » approximations and on the representation of the reasoning and control schemes as sets of elemental behaviors. Using the FBA, a formalism for rule base development and an automated generator of fuzzy rules have been developed. This automated system can automatically construct the set of membership functions corresponding to fuzzy behaviors. Once these have been expressed in qualitative terms by the user. The system also checks for completeness of the rule base and for non-redundancy of the rules (which has traditionally been a major hurdle in rule base development). Two major conceptual features, the suppression and inhibition mechanisms which allow to express a dominance between behaviors are discussed in detail. Some experimental results obtained with the automated fuzzy, rule generator applied to the domain of sensor-based navigation in aprion unknown environments. using one of our autonomous test-bed robots as well as a real car in outdoor environments, are then reviewed and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using the {open_quotes}Fuzzy Behaviorist{close_quotes} concepts.« less
A Granular Self-Organizing Map for Clustering and Gene Selection in Microarray Data.
Ray, Shubhra Sankar; Ganivada, Avatharam; Pal, Sankar K
2016-09-01
A new granular self-organizing map (GSOM) is developed by integrating the concept of a fuzzy rough set with the SOM. While training the GSOM, the weights of a winning neuron and the neighborhood neurons are updated through a modified learning procedure. The neighborhood is newly defined using the fuzzy rough sets. The clusters (granules) evolved by the GSOM are presented to a decision table as its decision classes. Based on the decision table, a method of gene selection is developed. The effectiveness of the GSOM is shown in both clustering samples and developing an unsupervised fuzzy rough feature selection (UFRFS) method for gene selection in microarray data. While the superior results of the GSOM, as compared with the related clustering methods, are provided in terms of β -index, DB-index, Dunn-index, and fuzzy rough entropy, the genes selected by the UFRFS are not only better in terms of classification accuracy and a feature evaluation index, but also statistically more significant than the related unsupervised methods. The C-codes of the GSOM and UFRFS are available online at http://avatharamg.webs.com/software-code.
On Some Nonclassical Algebraic Properties of Interval-Valued Fuzzy Soft Sets
2014-01-01
Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation =L. We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets. PMID:25143964
On some nonclassical algebraic properties of interval-valued fuzzy soft sets.
Liu, Xiaoyan; Feng, Feng; Zhang, Hui
2014-01-01
Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation = L . We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets.
Fuzzy Kernel k-Medoids algorithm for anomaly detection problems
NASA Astrophysics Data System (ADS)
Rustam, Z.; Talita, A. S.
2017-07-01
Intrusion Detection System (IDS) is an essential part of security systems to strengthen the security of information systems. IDS can be used to detect the abuse by intruders who try to get into the network system in order to access and utilize the available data sources in the system. There are two approaches of IDS, Misuse Detection and Anomaly Detection (behavior-based intrusion detection). Fuzzy clustering-based methods have been widely used to solve Anomaly Detection problems. Other than using fuzzy membership concept to determine the object to a cluster, other approaches as in combining fuzzy and possibilistic membership or feature-weighted based methods are also used. We propose Fuzzy Kernel k-Medoids that combining fuzzy and possibilistic membership as a powerful method to solve anomaly detection problem since on numerical experiment it is able to classify IDS benchmark data into five different classes simultaneously. We classify IDS benchmark data KDDCup'99 data set into five different classes simultaneously with the best performance was achieved by using 30 % of training data with clustering accuracy reached 90.28 percent.
NASA Astrophysics Data System (ADS)
Zhang, Kejiang; Kluck, Cheryl; Achari, Gopal
2009-11-01
A ranking system for contaminated sites based on comparative risk methodology using fuzzy Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) was developed in this article. It combines the concepts of fuzzy sets to represent uncertain site information with the PROMETHEE, a subgroup of Multi-Criteria Decision Making (MCDM) methods. Criteria are identified based on a combination of the attributes (toxicity, exposure, and receptors) associated with the potential human health and ecological risks posed by contaminated sites, chemical properties, site geology and hydrogeology and contaminant transport phenomena. Original site data are directly used avoiding the subjective assignment of scores to site attributes. When the input data are numeric and crisp the PROMETHEE method can be used. The Fuzzy PROMETHEE method is preferred when substantial uncertainties and subjectivities exist in site information. The PROMETHEE and fuzzy PROMETHEE methods are both used in this research to compare the sites. The case study shows that this methodology provides reasonable results.
Zhang, Kejiang; Kluck, Cheryl; Achari, Gopal
2009-11-01
A ranking system for contaminated sites based on comparative risk methodology using fuzzy Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) was developed in this article. It combines the concepts of fuzzy sets to represent uncertain site information with the PROMETHEE, a subgroup of Multi-Criteria Decision Making (MCDM) methods. Criteria are identified based on a combination of the attributes (toxicity, exposure, and receptors) associated with the potential human health and ecological risks posed by contaminated sites, chemical properties, site geology and hydrogeology and contaminant transport phenomena. Original site data are directly used avoiding the subjective assignment of scores to site attributes. When the input data are numeric and crisp the PROMETHEE method can be used. The Fuzzy PROMETHEE method is preferred when substantial uncertainties and subjectivities exist in site information. The PROMETHEE and fuzzy PROMETHEE methods are both used in this research to compare the sites. The case study shows that this methodology provides reasonable results.
2006-03-01
represented by the set of tiles that it lies in. A variation on tile coding is Berenji and Vengerov’s [4, 5] use of fuzzy state aggregation (FSA) as a means...approximation with Q-learning is not a new or unusual concept [1, 3]. Berenji and Vengerov [4, 5] advanced this work in their application of Q-learning and... Berenji and Vengerov [4, 5]. The simplified Tileworld consists of agents, reward spikes, and deformations. The agent must select which reward to pursue
Data driven model generation based on computational intelligence
NASA Astrophysics Data System (ADS)
Gemmar, Peter; Gronz, Oliver; Faust, Christophe; Casper, Markus
2010-05-01
The simulation of discharges at a local gauge or the modeling of large scale river catchments are effectively involved in estimation and decision tasks of hydrological research and practical applications like flood prediction or water resource management. However, modeling such processes using analytical or conceptual approaches is made difficult by both complexity of process relations and heterogeneity of processes. It was shown manifold that unknown or assumed process relations can principally be described by computational methods, and that system models can automatically be derived from observed behavior or measured process data. This study describes the development of hydrological process models using computational methods including Fuzzy logic and artificial neural networks (ANN) in a comprehensive and automated manner. Methods We consider a closed concept for data driven development of hydrological models based on measured (experimental) data. The concept is centered on a Fuzzy system using rules of Takagi-Sugeno-Kang type which formulate the input-output relation in a generic structure like Ri : IFq(t) = lowAND...THENq(t+Δt) = ai0 +ai1q(t)+ai2p(t-Δti1)+ai3p(t+Δti2)+.... The rule's premise part (IF) describes process states involving available process information, e.g. actual outlet q(t) is low where low is one of several Fuzzy sets defined over variable q(t). The rule's conclusion (THEN) estimates expected outlet q(t + Δt) by a linear function over selected system variables, e.g. actual outlet q(t), previous and/or forecasted precipitation p(t ?Δtik). In case of river catchment modeling we use head gauges, tributary and upriver gauges in the conclusion part as well. In addition, we consider temperature and temporal (season) information in the premise part. By creating a set of rules R = {Ri|(i = 1,...,N)} the space of process states can be covered as concise as necessary. Model adaptation is achieved by finding on optimal set A = (aij) of conclusion parameters with respect to a defined rating function and experimental data. To find A, we use for example a linear equation solver and RMSE-function. In practical process models, the number of Fuzzy sets and the according number of rules is fairly low. Nevertheless, creating the optimal model requires some experience. Therefore, we improved this development step by methods for automatic generation of Fuzzy sets, rules, and conclusions. Basically, the model achievement depends to a great extend on the selection of the conclusion variables. It is the aim that variables having most influence on the system reaction being considered and superfluous ones being neglected. At first, we use Kohonen maps, a specialized ANN, to identify relevant input variables from the large set of available system variables. A greedy algorithm selects a comprehensive set of dominant and uncorrelated variables. Next, the premise variables are analyzed with clustering methods (e.g. Fuzzy-C-means) and Fuzzy sets are then derived from cluster centers and outlines. The rule base is automatically constructed by permutation of the Fuzzy sets of the premise variables. Finally, the conclusion parameters are calculated and the total coverage of the input space is iteratively tested with experimental data, rarely firing rules are combined and coarse coverage of sensitive process states results in refined Fuzzy sets and rules. Results The described methods were implemented and integrated in a development system for process models. A series of models has already been built e.g. for rainfall-runoff modeling or for flood prediction (up to 72 hours) in river catchments. The models required significantly less development effort and showed advanced simulation results compared to conventional models. The models can be used operationally and simulation takes only some minutes on a standard PC e.g. for a gauge forecast (up to 72 hours) for the whole Mosel (Germany) river catchment.
Introduction to Fuzzy Set Theory
NASA Technical Reports Server (NTRS)
Kosko, Bart
1990-01-01
An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.
Dominance-based ranking functions for interval-valued intuitionistic fuzzy sets.
Chen, Liang-Hsuan; Tu, Chien-Cheng
2014-08-01
The ranking of interval-valued intuitionistic fuzzy sets (IvIFSs) is difficult since they include the interval values of membership and nonmembership. This paper proposes ranking functions for IvIFSs based on the dominance concept. The proposed ranking functions consider the degree to which an IvIFS dominates and is not dominated by other IvIFSs. Based on the bivariate framework and the dominance concept, the functions incorporate not only the boundary values of membership and nonmembership, but also the relative relations among IvIFSs in comparisons. The dominance-based ranking functions include bipolar evaluations with a parameter that allows the decision-maker to reflect his actual attitude in allocating the various kinds of dominance. The relationship for two IvIFSs that satisfy the dual couple is defined based on four proposed ranking functions. Importantly, the proposed ranking functions can achieve a full ranking for all IvIFSs. Two examples are used to demonstrate the applicability and distinctiveness of the proposed ranking functions.
Fuzzy health, illness, and disease.
Sadegh-Zadeh, K
2000-10-01
The notions of health, illness, and disease are fuzzy-theoretically analyzed. They present themselves as non-Aristotelian concepts violating basic principles of classical logic. A recursive scheme for defining the controversial notion of disease is proposed that also supports a concept of fuzzy disease. A sketch is given of the prototype resemblance theory of disease.
Adaptive fuzzy system for 3-D vision
NASA Technical Reports Server (NTRS)
Mitra, Sunanda
1993-01-01
An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.
A new type of simplified fuzzy rule-based system
NASA Astrophysics Data System (ADS)
Angelov, Plamen; Yager, Ronald
2012-02-01
Over the last quarter of a century, two types of fuzzy rule-based (FRB) systems dominated, namely Mamdani and Takagi-Sugeno type. They use the same type of scalar fuzzy sets defined per input variable in their antecedent part which are aggregated at the inference stage by t-norms or co-norms representing logical AND/OR operations. In this paper, we propose a significantly simplified alternative to define the antecedent part of FRB systems by data Clouds and density distribution. This new type of FRB systems goes further in the conceptual and computational simplification while preserving the best features (flexibility, modularity, and human intelligibility) of its predecessors. The proposed concept offers alternative non-parametric form of the rules antecedents, which fully reflects the real data distribution and does not require any explicit aggregation operations and scalar membership functions to be imposed. Instead, it derives the fuzzy membership of a particular data sample to a Cloud by the data density distribution of the data associated with that Cloud. Contrast this to the clustering which is parametric data space decomposition/partitioning where the fuzzy membership to a cluster is measured by the distance to the cluster centre/prototype ignoring all the data that form that cluster or approximating their distribution. The proposed new approach takes into account fully and exactly the spatial distribution and similarity of all the real data by proposing an innovative and much simplified form of the antecedent part. In this paper, we provide several numerical examples aiming to illustrate the concept.
eFSM--a novel online neural-fuzzy semantic memory model.
Tung, Whye Loon; Quek, Chai
2010-01-01
Fuzzy rule-based systems (FRBSs) have been successfully applied to many areas. However, traditional fuzzy systems are often manually crafted, and their rule bases that represent the acquired knowledge are static and cannot be trained to improve the modeling performance. This subsequently leads to intensive research on the autonomous construction and tuning of a fuzzy system directly from the observed training data to address the knowledge acquisition bottleneck, resulting in well-established hybrids such as neural-fuzzy systems (NFSs) and genetic fuzzy systems (GFSs). However, the complex and dynamic nature of real-world problems demands that fuzzy rule-based systems and models be able to adapt their parameters and ultimately evolve their rule bases to address the nonstationary (time-varying) characteristics of their operating environments. Recently, considerable research efforts have been directed to the study of evolving Tagaki-Sugeno (T-S)-type NFSs based on the concept of incremental learning. In contrast, there are very few incremental learning Mamdani-type NFSs reported in the literature. Hence, this paper presents the evolving neural-fuzzy semantic memory (eFSM) model, a neural-fuzzy Mamdani architecture with a data-driven progressively adaptive structure (i.e., rule base) based on incremental learning. Issues related to the incremental learning of the eFSM rule base are carefully investigated, and a novel parameter learning approach is proposed for the tuning of the fuzzy set parameters in eFSM. The proposed eFSM model elicits highly interpretable semantic knowledge in the form of Mamdani-type if-then fuzzy rules from low-level numeric training data. These Mamdani fuzzy rules define the computing structure of eFSM and are incrementally learned with the arrival of each training data sample. New rules are constructed from the emergence of novel training data and obsolete fuzzy rules that no longer describe the recently observed data trends are pruned. This enables eFSM to maintain a current and compact set of Mamdani-type if-then fuzzy rules that collectively generalizes and describes the salient associative mappings between the inputs and outputs of the underlying process being modeled. The learning and modeling performances of the proposed eFSM are evaluated using several benchmark applications and the results are encouraging.
Fuzzy robust credibility-constrained programming for environmental management and planning.
Zhang, Yimei; Hang, Guohe
2010-06-01
In this study, a fuzzy robust credibility-constrained programming (FRCCP) is developed and applied to the planning for waste management systems. It incorporates the concepts of credibility-based chance-constrained programming and robust programming within an optimization framework. The developed method can reflect uncertainties presented as possibility-density by fuzzy-membership functions. Fuzzy credibility constraints are transformed to the crisp equivalents with different credibility levels, and ordinary fuzzy inclusion constraints are determined by their robust deterministic constraints by setting a-cut levels. The FRCCP method can provide different system costs under different credibility levels (lambda). From the results of sensitivity analyses, the operation cost of the landfill is a critical parameter. For the management, any factors that would induce cost fluctuation during landfilling operation would deserve serious observation and analysis. By FRCCP, useful solutions can be obtained to provide decision-making support for long-term planning of solid waste management systems. It could be further enhanced through incorporating methods of inexact analysis into its framework. It can also be applied to other environmental management problems.
NASA Astrophysics Data System (ADS)
Santiago Girola Schneider, Rafael
2015-08-01
The fuzzy logic is a branch of the artificial intelligence founded on the concept that 'everything is a matter of degree.' It intends to create mathematical approximations on the resolution of certain types of problems. In addition, it aims to produce exact results obtained from imprecise data, for which it is particularly useful for electronic and computer applications. This enables it to handle vague or unspecific information when certain parts of a system are unknown or ambiguous and, therefore, they cannot be measured in a reliable manner. Also, when the variation of a variable can produce an alteration on the others.The main focus of this paper is to prove the importance of these techniques formulated from a theoretical analysis on its application on ambiguous situations in the field of the rich clusters of galaxies. The purpose is to show its applicability in the several classification systems proposed for the rich clusters, which are based on criteria such as the level of richness of the cluster, the distribution of the brightest galaxies, whether there are signs of type-cD galaxies or not or the existence of sub-clusters.Fuzzy logic enables the researcher to work with “imprecise” information implementing fuzzy sets and combining rules to define actions. The control systems based on fuzzy logic join input variables that are defined in terms of fuzzy sets through rule groups that produce one or several output values of the system under study. From this context, the application of the fuzzy logic’s techniques approximates the solution of the mathematical models in abstractions about the rich galaxy cluster classification of physical properties in order to solve the obscurities that must be confronted by an investigation group in order to make a decision.
NASA Astrophysics Data System (ADS)
Girola Schneider, R.
2017-07-01
The fuzzy logic is a branch of the artificial intelligence founded on the concept that everything is a matter of degree. It intends to create mathematical approximations on the resolution of certain types of problems. In addition, it aims to produce exact results obtained from imprecise data, for which it is particularly useful for electronic and computer applications. This enables it to handle vague or unspecific information when certain parts of a system are unknown or ambiguous and, therefore, they cannot be measured in a reliable manner. Also, when the variation of a variable can produce an alteration on the others The main focus of this paper is to prove the importance of these techniques formulated from a theoretical analysis on its application on ambiguous situations in the field of the rich clusters of galaxies. The purpose is to show its applicability in the several classification systems proposed for the rich clusters, which are based on criteria such as the level of richness of the cluster, the distribution of the brightest galaxies, whether there are signs of type-cD galaxies or not or the existence of sub-clusters. Fuzzy logic enables the researcher to work with "imprecise" information implementing fuzzy sets and combining rules to define actions. The control systems based on fuzzy logic join input variables that are defined in terms of fuzzy sets through rule groups that produce one or several output values of the system under study. From this context, the application of the fuzzy logic's techniques approximates the solution of the mathematical models in abstractions about the rich galaxy cluster classification of physical properties in order to solve the obscurities that must be confronted by an investigation group in order to make a decision.
Complex Fuzzy Set-Valued Complex Fuzzy Measures and Their Properties
Ma, Shengquan; Li, Shenggang
2014-01-01
Let F*(K) be the set of all fuzzy complex numbers. In this paper some classical and measure-theoretical notions are extended to the case of complex fuzzy sets. They are fuzzy complex number-valued distance on F*(K), fuzzy complex number-valued measure on F*(K), and some related notions, such as null-additivity, pseudo-null-additivity, null-subtraction, pseudo-null-subtraction, autocontionuous from above, autocontionuous from below, and autocontinuity of the defined fuzzy complex number-valued measures. Properties of fuzzy complex number-valued measures are studied in detail. PMID:25093202
Pilot interaction with automated airborne decision making systems
NASA Technical Reports Server (NTRS)
Rouse, W. B.
1981-01-01
The role of the pilot and crew for future aircraft is discussed. Fifteen formal experimental studies and the development of a variety of models of human behavior based on queueing history, pattern recognition methods, control theory, fuzzy set theory, and artificial intelligence concepts are presented. L.F.M.
ERIC Educational Resources Information Center
Moore, Colleen F.; And Others
1991-01-01
Examined the development of proportional reasoning by means of a temperature mixture task. Results show the importance of distinguishing between intuitive knowledge and formal computational knowledge of proportional concepts. Provides a new perspective on the relation of intuitive and computational knowledge during development. (GLR)
Complex fuzzy soft expert sets
NASA Astrophysics Data System (ADS)
Selvachandran, Ganeshsree; Hafeed, Nisren A.; Salleh, Abdul Razak
2017-04-01
Complex fuzzy sets and its accompanying theory although at its infancy, has proven to be superior to classical type-1 fuzzy sets, due its ability in representing time-periodic problem parameters and capturing the seasonality of the fuzziness that exists in the elements of a set. These are important characteristics that are pervasive in most real world problems. However, there are two major problems that are inherent in complex fuzzy sets: it lacks a sufficient parameterization tool and it does not have a mechanism to validate the values assigned to the membership functions of the elements in a set. To overcome these problems, we propose the notion of complex fuzzy soft expert sets which is a hybrid model of complex fuzzy sets and soft expert sets. This model incorporates the advantages of complex fuzzy sets and soft sets, besides having the added advantage of allowing the users to know the opinion of all the experts in a single model without the need for any additional cumbersome operations. As such, this model effectively improves the accuracy of representation of problem parameters that are periodic in nature, besides having a higher level of computational efficiency compared to similar models in literature.
Soft computing in design and manufacturing of advanced materials
NASA Technical Reports Server (NTRS)
Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex
1993-01-01
The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.
ERIC Educational Resources Information Center
Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.
2003-01-01
Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…
NASA Astrophysics Data System (ADS)
Meng, Fanyong
2018-02-01
Triangular fuzzy reciprocal preference relations (TFRPRs) are powerful tools to denoting decision-makers' fuzzy judgments, which permit the decision-makers to apply triangular fuzzy ratio rather than real numbers to express their judgements. Consistency analysis is one of the most crucial issues in preference relations that can guarantee the reasonable ranking order. However, all previous consistency concepts cannot well address this type of preference relations. Based on the operational laws on triangular fuzzy numbers, this paper introduces an additive consistency concept for TFRPRs by using quasi TFRPRs, which can be seen as a natural extension of the crisp case. Using this consistency concept, models to judging the additive consistency of TFRPRs and to estimating missing values in complete TFRPRs are constructed. Then, an algorithm to decision-making with TFRPRs is developed. Finally, two numerical examples are offered to illustrate the application of the proposed procedure, and comparison analysis is performed.
An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination.
Lin, Chin-Teng; Pal, Nikhil R; Wu, Shang-Lin; Liu, Yu-Ting; Lin, Yang-Yin
2015-07-01
We propose an integrated mechanism for discarding derogatory features and extraction of fuzzy rules based on an interval type-2 neural fuzzy system (NFS)-in fact, it is a more general scheme that can discard bad features, irrelevant antecedent clauses, and even irrelevant rules. High-dimensional input variable and a large number of rules not only enhance the computational complexity of NFSs but also reduce their interpretability. Therefore, a mechanism for simultaneous extraction of fuzzy rules and reducing the impact of (or eliminating) the inferior features is necessary. The proposed approach, namely an interval type-2 Neural Fuzzy System for online System Identification and Feature Elimination (IT2NFS-SIFE), uses type-2 fuzzy sets to model uncertainties associated with information and data in designing the knowledge base. The consequent part of the IT2NFS-SIFE is of Takagi-Sugeno-Kang type with interval weights. The IT2NFS-SIFE possesses a self-evolving property that can automatically generate fuzzy rules. The poor features can be discarded through the concept of a membership modulator. The antecedent and modulator weights are learned using a gradient descent algorithm. The consequent part weights are tuned via the rule-ordered Kalman filter algorithm to enhance learning effectiveness. Simulation results show that IT2NFS-SIFE not only simplifies the system architecture by eliminating derogatory/irrelevant antecedent clauses, rules, and features but also maintains excellent performance.
Mathematical models of the simplest fuzzy PI/PD controllers with skewed input and output fuzzy sets.
Mohan, B M; Sinha, Arpita
2008-07-01
This paper unveils mathematical models for fuzzy PI/PD controllers which employ two skewed fuzzy sets for each of the two-input variables and three skewed fuzzy sets for the output variable. The basic constituents of these models are Gamma-type and L-type membership functions for each input, trapezoidal/triangular membership functions for output, intersection/algebraic product triangular norm, maximum/drastic sum triangular conorm, Mamdani minimum/Larsen product/drastic product inference method, and center of sums defuzzification method. The existing simplest fuzzy PI/PD controller structures derived via symmetrical fuzzy sets become special cases of the mathematical models revealed in this paper. Finally, a numerical example along with its simulation results are included to demonstrate the effectiveness of the simplest fuzzy PI controllers.
ST-intuitionistic fuzzy metric space with properties
NASA Astrophysics Data System (ADS)
Arora, Sahil; Kumar, Tanuj
2017-07-01
In this paper, we define ST-intuitionistic fuzzy metric space and the notion of convergence and completeness properties of cauchy sequences is studied. Further, we prove some properties of ST-intuitionistic fuzzy metric space. Finally, we introduce the concept of symmetric ST Intuitionistic Fuzzy metric space.
Saltkjel, Therese; Holm Ingelsrud, Mari; Dahl, Espen; Halvorsen, Knut
2017-08-01
Based on the ideal type classification of European countries done in Part I of this paper, Part II explores whether the real 'danger' to public health is the interplay between austerity and crisis, rather than recession itself. We constructed two fuzzy sets of changes in population health based on a pooled file of European Union Statistics on Income and Living Conditions (EU-SILC) data (2008 and 2013) including 29 European countries. The linear probability analyses of 'limiting long-standing illness' and 'less than good' health were restricted to the age group 20-64 years. We performed fuzzy set qualitative comparative analysis (fsQCA) and studied whether configurations of 'severe crisis' and 'austerity' were linked to changes in population health. Overall, the results of this fsQCA do not support the 'crisis-austerity' thesis. Results on 'less than good' health were highly inconsistent, while results on 'limiting long-standing illness', contrary to the thesis, showed a two-path model. Countries with either no severe crisis or no austerity were subsets of the set of countries that experienced deteriorated health. Results also show that several countries combined both paths. This fuzzy set analysis does not support Stuckler and Basu's 'crisis-austerity' thesis, as those European countries that experienced recession and austerity were not consistently the countries with deteriorating health. There may be multiple reasons for this result, including analytical approach and operationalization of key concepts, but also resilient forces such as family support. We suggest more research on the topic based on more recent data and possibly other, or more, dimensions of austerity.
Wang, S; Huang, G H
2013-03-15
Flood disasters have been extremely severe in recent decades, and they account for about one third of all natural catastrophes throughout the world. In this study, a two-stage mixed-integer fuzzy programming with interval-valued membership functions (TMFP-IMF) approach is developed for flood-diversion planning under uncertainty. TMFP-IMF integrates the fuzzy flexible programming, two-stage stochastic programming, and integer programming within a general framework. A concept of interval-valued fuzzy membership function is introduced to address complexities of system uncertainties. TMFP-IMF can not only deal with uncertainties expressed as fuzzy sets and probability distributions, but also incorporate pre-regulated water-diversion policies directly into its optimization process. TMFP-IMF is applied to a hypothetical case study of flood-diversion planning for demonstrating its applicability. Results indicate that reasonable solutions can be generated for binary and continuous variables. A variety of flood-diversion and capacity-expansion schemes can be obtained under four scenarios, which enable decision makers (DMs) to identify the most desired one based on their perceptions and attitudes towards the objective-function value and constraints. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests
NASA Technical Reports Server (NTRS)
Douglas, Freddie; Bourgeois, Edit Kaminsky
2005-01-01
The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).
Fuzzy forecasting based on fuzzy-trend logical relationship groups.
Chen, Shyi-Ming; Wang, Nai-Yi
2010-10-01
In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.
L-fuzzy fixed points theorems for L-fuzzy mappings via βℱL-admissible pair.
Rashid, Maliha; Azam, Akbar; Mehmood, Nayyar
2014-01-01
We define the concept of βℱL-admissible for a pair of L-fuzzy mappings and establish the existence of common L-fuzzy fixed point theorem. Our result generalizes some useful results in the literature. We provide an example to support our result.
Fuzzy correlation analysis with realization
NASA Astrophysics Data System (ADS)
Tang, Yue Y.; Fan, Xinrui; Zheng, Ying N.
1998-10-01
The fundamental concept of fuzzy correlation is briefly discussed. Based on the correlation coefficient of classic correlation, polarity correlation and fuzzy correlation, the relationship between the correlations are analyzed. A fuzzy correlation analysis has the merits of both rapidity and accuracy as some amplitude information of random signals has been utilized. It has broad prospects for application. The form of fuzzy correlative analyzer with NLX 112 fuzzy data correlator and single-chip microcomputer is introduced.
Fuzzy Set Theory and Medicine: The First Twenty Years and Beyond
Maiers, Jerald E.
1985-01-01
Fuzzy set theory is a mathematical sub-disipline, initially introduced in 1965. Essentially it was conceived as a formal approach to deal with the imprecision characteristic of real world applications, particularly medical issues. This review summarizes the medical applications of fuzzy set theory to date; assesses the value of fuzzy sets in medical applications; and suggests future potential for such an approach.
NASA Astrophysics Data System (ADS)
Liu, Bingsheng; Fu, Meiqing; Zhang, Shuibo; Xue, Bin; Zhou, Qi; Zhang, Shiruo
2018-01-01
The Choquet integral (IL) operator is an effective approach for handling interdependence among decision attributes in complex decision-making problems. However, the fuzzy measures of attributes and attribute sets required by IL are difficult to achieve directly, which limits the application of IL. This paper proposes a new method for determining fuzzy measures of attributes by extending Marichal's concept of entropy for fuzzy measure. To well represent the assessment information, interval-valued 2-tuple linguistic context is utilised to represent information. Then, we propose a Choquet integral operator in an interval-valued 2-tuple linguistic environment, which can effectively handle the correlation between attributes. In addition, we apply these methods to solve multi-attribute group decision-making problems. The feasibility and validity of the proposed operator is demonstrated by comparisons with other models in illustrative example part.
Modelling Subjectivity in Visual Perception of Orientation for Image Retrieval.
ERIC Educational Resources Information Center
Sanchez, D.; Chamorro-Martinez, J.; Vila, M. A.
2003-01-01
Discussion of multimedia libraries and the need for storage, indexing, and retrieval techniques focuses on the combination of computer vision and data mining techniques to model high-level concepts for image retrieval based on perceptual features of the human visual system. Uses fuzzy set theory to measure users' assessments and to capture users'…
Methodological insights: fuzzy sets in medicine.
Vineis, P
2008-03-01
In this paper I wish to introduce some ideas about scientific reasoning that have reached the epidemiological community only marginally. They have to do with how we classify things (diseases), and how we formulate hypotheses (causes). According to a simplified and currently untenable model, we come to defining what a disease, or a protone or a chromosome, is by progressive simplification--that is, by extracting an essence from the individual characters of disease. At the end of this inductive process a single element, which guarantees the unequivocal inclusion in the category, is identified. This is what has been called "Merkmal-definition" (Merkmal meaning distinctive sign)--that is, the definition of disease would be allowed by the isolation of a crucial property, a necessary and sufficient condition, which makes that disease unique (and a chair out of a chair, a proton out of a proton, etc). However many objections have been raised by Wittgenstein, Eleanor Rosch and others to this idea: a Merkmal is not always identifiable, and more often a word is used to indicate not a homogeneous and unequivocal set of observations, but a confused constellation with blurred borders. This constellation has been called a fuzzy set and is at the basis of the semantic theory of metaphors proposed by MacCormac and the prototype theory proposed by Rosch. In this way the concept of disease, for example, abandons monothetic definitions, amenable to a necessary and sufficient characteristic, to become "polythetic." I explain how these concepts can help medicine and epidemiology to clarify some open issues in the definition of disease and the identification of causes, through examples taken from oncology, psychiatry, cardiology and infectious diseases. The definition of a malignant tumour, for example, seems to correspond to the concept of "family resemblance," since there is no single criterion that allows us to define unequivocally the concept of cancer: not morphology (there are borderline situations between benign and malignant), not clinical features, not biochemical or molecular lesions. In the case of schizophrenia, the problem of indetermination, as it has been defined, is even stronger. Mental disease probably cannot be distinguished from health in a clearcut way (according to a minimum set of necessary criteria), but it would have a fuzzy border with mental conditions that characterise normal subjects, through intermediate linking conditions.
L-Fuzzy Fixed Points Theorems for L-Fuzzy Mappings via β ℱL-Admissible Pair
Rashid, Maliha; Azam, Akbar
2014-01-01
We define the concept of β ℱL-admissible for a pair of L-fuzzy mappings and establish the existence of common L-fuzzy fixed point theorem. Our result generalizes some useful results in the literature. We provide an example to support our result. PMID:24688441
Fuzzy Versions of Epistemic and Deontic Logic
NASA Technical Reports Server (NTRS)
Gounder, Ramasamy S.; Esterline, Albert C.
1998-01-01
Epistemic and deontic logics are modal logics, respectively, of knowledge and of the normative concepts of obligation, permission, and prohibition. Epistemic logic is useful in formalizing systems of communicating processes and knowledge and belief in AI (Artificial Intelligence). Deontic logic is useful in computer science wherever we must distinguish between actual and ideal behavior, as in fault tolerance and database integrity constraints. We here discuss fuzzy versions of these logics. In the crisp versions, various axioms correspond to various properties of the structures used in defining the semantics of the logics. Thus, any axiomatic theory will be characterized not only by its axioms but also by the set of properties holding of the corresponding semantic structures. Fuzzy logic does not proceed with axiomatic systems, but fuzzy versions of the semantic properties exist and can be shown to correspond to some of the axioms for the crisp systems in special ways that support dependency networks among assertions in a modal domain. This in turn allows one to implement truth maintenance systems. For the technical development of epistemic logic, and for that of deontic logic. To our knowledge, we are the first to address fuzzy epistemic and fuzzy deontic logic explicitly and to consider the different systems and semantic properties available. We give the syntax and semantics of epistemic logic and discuss the correspondence between axioms of epistemic logic and properties of semantic structures. The same topics are covered for deontic logic. Fuzzy epistemic and fuzzy deontic logic discusses the relationship between axioms and semantic properties for these logics. Our results can be exploited in truth maintenance systems.
Fuzzy logic of Aristotelian forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perlovsky, L.I.
1996-12-31
Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties.more » In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.« less
Competencies: Fuzzy Concepts to Context. Symposium.
ERIC Educational Resources Information Center
2002
This document contains three papers from a symposium titled "Competence: Fuzzy Concepts to Context.""Sales Superstars: Defining Competencies Needed for Sales Performance" (Darlene Russ-Eft, Edward Del Gaizo, Jeannie Moulton, Ruth Pangilinan) discusses a study in which an analysis of 1,688 critical incidents revealed 16…
Entropy Based Feature Selection for Fuzzy Set-Valued Information Systems
NASA Astrophysics Data System (ADS)
Ahmed, Waseem; Sufyan Beg, M. M.; Ahmad, Tanvir
2018-06-01
In Set-valued Information Systems (SIS), several objects contain more than one value for some attributes. Tolerance relation used for handling SIS sometimes leads to loss of certain information. To surmount this problem, fuzzy rough model was introduced. However, in some cases, SIS may contain some real or continuous set-values. Therefore, the existing fuzzy rough model for handling Information system with fuzzy set-values needs some changes. In this paper, Fuzzy Set-valued Information System (FSIS) is proposed and fuzzy similarity relation for FSIS is defined. Yager's relative conditional entropy was studied to find the significance measure of a candidate attribute of FSIS. Later, using these significance values, three greedy forward algorithms are discussed for finding the reduct and relative reduct for the proposed FSIS. An experiment was conducted on a sample population of the real dataset and a comparison of classification accuracies of the proposed FSIS with the existing SIS and single-valued Fuzzy Information Systems was made, which demonstrated the effectiveness of proposed FSIS.
Selection of representative embankments based on rough set - fuzzy clustering method
NASA Astrophysics Data System (ADS)
Bin, Ou; Lin, Zhi-xiang; Fu, Shu-yan; Gao, Sheng-song
2018-02-01
The premise condition of comprehensive evaluation of embankment safety is selection of representative unit embankment, on the basis of dividing the unit levee the influencing factors and classification of the unit embankment are drafted.Based on the rough set-fuzzy clustering, the influence factors of the unit embankment are measured by quantitative and qualitative indexes.Construct to fuzzy similarity matrix of standard embankment then calculate fuzzy equivalent matrix of fuzzy similarity matrix by square method. By setting the threshold of the fuzzy equivalence matrix, the unit embankment is clustered, and the representative unit embankment is selected from the classification of the embankment.
Family of fuzzy J-K flip-flops based on bounded product, bounded sum and complementation.
Gniewek, L; Kluska, J
1998-01-01
This paper presents a concept of new fuzzy J-K flip-flops based on bounded product, bounded sum and fuzzy complementation operations. Relationships between various types of the J-K flip-flops are given and characteristics of them are graphically shown by computer simulation. Two examples of circuits able to memorize and fuzzy information processing using the proposed fuzzy J-K flip-flops are presented.
Some New Sets of Sequences of Fuzzy Numbers with Respect to the Partial Metric
Ozluk, Muharrem
2015-01-01
In this paper, we essentially deal with Köthe-Toeplitz duals of fuzzy level sets defined using a partial metric. Since the utilization of Zadeh's extension principle is quite difficult in practice, we prefer the idea of level sets in order to construct some classical notions. In this paper, we present the sets of bounded, convergent, and null series and the set of sequences of bounded variation of fuzzy level sets, based on the partial metric. We examine the relationships between these sets and their classical forms and give some properties including definitions, propositions, and various kinds of partial metric spaces of fuzzy level sets. Furthermore, we study some of their properties like completeness and duality. Finally, we obtain the Köthe-Toeplitz duals of fuzzy level sets with respect to the partial metric based on a partial ordering. PMID:25695102
Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering
Vianney Kinani, Jean Marie; Gallegos Funes, Francisco; Mújica Vargas, Dante; Ramos Díaz, Eduardo; Arellano, Alfonso
2017-01-01
We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient's response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR) and fluid-attenuated inversion recovery (FLAIR) images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time. PMID:29158887
Research on Bounded Rationality of Fuzzy Choice Functions
Wu, Xinlin; Zhao, Yong
2014-01-01
The rationality of a fuzzy choice function is a hot research topic in the study of fuzzy choice functions. In this paper, two common fuzzy sets are studied and analyzed in the framework of the Banerjee choice function. The complete rationality and bounded rationality of fuzzy choice functions are defined based on the two fuzzy sets. An assumption is presented to study the fuzzy choice function, and especially the fuzzy choice function with bounded rationality is studied combined with some rationality conditions. Results show that the fuzzy choice function with bounded rationality also satisfies some important rationality conditions, but not vice versa. The research gives supplements to the investigation in the framework of the Banerjee choice function. PMID:24782677
Research on bounded rationality of fuzzy choice functions.
Wu, Xinlin; Zhao, Yong
2014-01-01
The rationality of a fuzzy choice function is a hot research topic in the study of fuzzy choice functions. In this paper, two common fuzzy sets are studied and analyzed in the framework of the Banerjee choice function. The complete rationality and bounded rationality of fuzzy choice functions are defined based on the two fuzzy sets. An assumption is presented to study the fuzzy choice function, and especially the fuzzy choice function with bounded rationality is studied combined with some rationality conditions. Results show that the fuzzy choice function with bounded rationality also satisfies some important rationality conditions, but not vice versa. The research gives supplements to the investigation in the framework of the Banerjee choice function.
Boegl, Karl; Adlassnig, Klaus-Peter; Hayashi, Yoichi; Rothenfluh, Thomas E; Leitich, Harald
2004-01-01
This paper describes the fuzzy knowledge representation framework of the medical computer consultation system MedFrame/CADIAG-IV as well as the specific knowledge acquisition techniques that have been developed to support the definition of knowledge concepts and inference rules. As in its predecessor system CADIAG-II, fuzzy medical knowledge bases are used to model the uncertainty and the vagueness of medical concepts and fuzzy logic reasoning mechanisms provide the basic inference processes. The elicitation and acquisition of medical knowledge from domain experts has often been described as the most difficult and time-consuming task in knowledge-based system development in medicine. It comes as no surprise that this is even more so when unfamiliar representations like fuzzy membership functions are to be acquired. From previous projects we have learned that a user-centered approach is mandatory in complex and ill-defined knowledge domains such as internal medicine. This paper describes the knowledge acquisition framework that has been developed in order to make easier and more accessible the three main tasks of: (a) defining medical concepts; (b) providing appropriate interpretations for patient data; and (c) constructing inferential knowledge in a fuzzy knowledge representation framework. Special emphasis is laid on the motivations for some system design and data modeling decisions. The theoretical framework has been implemented in a software package, the Knowledge Base Builder Toolkit. The conception and the design of this system reflect the need for a user-centered, intuitive, and easy-to-handle tool. First results gained from pilot studies have shown that our approach can be successfully implemented in the context of a complex fuzzy theoretical framework. As a result, this critical aspect of knowledge-based system development can be accomplished more easily.
Bratsas, Charalampos; Koutkias, Vassilis; Kaimakamis, Evangelos; Bamidis, Panagiotis; Maglaveras, Nicos
2007-01-01
Medical Computational Problem (MCP) solving is related to medical problems and their computerized algorithmic solutions. In this paper, an extension of an ontology-based model to fuzzy logic is presented, as a means to enhance the information retrieval (IR) procedure in semantic management of MCPs. We present herein the methodology followed for the fuzzy expansion of the ontology model, the fuzzy query expansion procedure, as well as an appropriate ontology-based Vector Space Model (VSM) that was constructed for efficient mapping of user-defined MCP search criteria and MCP acquired knowledge. The relevant fuzzy thesaurus is constructed by calculating the simultaneous occurrences of terms and the term-to-term similarities derived from the ontology that utilizes UMLS (Unified Medical Language System) concepts by using Concept Unique Identifiers (CUI), synonyms, semantic types, and broader-narrower relationships for fuzzy query expansion. The current approach constitutes a sophisticated advance for effective, semantics-based MCP-related IR.
Multicriteria Decision-Making Approach with Hesitant Interval-Valued Intuitionistic Fuzzy Sets
Peng, Juan-juan; Wang, Jian-qiang; Wang, Jing; Chen, Xiao-hong
2014-01-01
The definition of hesitant interval-valued intuitionistic fuzzy sets (HIVIFSs) is developed based on interval-valued intuitionistic fuzzy sets (IVIFSs) and hesitant fuzzy sets (HFSs). Then, some operations on HIVIFSs are introduced in detail, and their properties are further discussed. In addition, some hesitant interval-valued intuitionistic fuzzy number aggregation operators based on t-conorms and t-norms are proposed, which can be used to aggregate decision-makers' information in multicriteria decision-making (MCDM) problems. Some valuable proposals of these operators are studied. In particular, based on algebraic and Einstein t-conorms and t-norms, some hesitant interval-valued intuitionistic fuzzy algebraic aggregation operators and Einstein aggregation operators can be obtained, respectively. Furthermore, an approach of MCDM problems based on the proposed aggregation operators is given using hesitant interval-valued intuitionistic fuzzy information. Finally, an illustrative example is provided to demonstrate the applicability and effectiveness of the developed approach, and the study is supported by a sensitivity analysis and a comparison analysis. PMID:24983009
NASA Astrophysics Data System (ADS)
Xie, Songhua; Li, Dehua; Nie, Hui
2009-10-01
There are a large number of fuzzy concepts and fuzzy phenomena in traditional Chinese medicine, which have led to great difficulties for study of traditional Chinese medicine. In this paper, the mathematical methods are used to quantify fuzzy concepts of drugs and prescription. We put forward the process of innovation formulations and selection method in Chinese medicine based on the Possibility Construction Space Theory (PCST) and fuzzy pattern recognition. Experimental results show that the method of selecting medicines from a number of characteristics of traditional Chinese medicine is consistent with the basic theory of traditional Chinese medicine. The results also reflect the integrated effects of the innovation compound. Through the use of the innovation formulations system, we expect to provide software tools for developing new traditional Chinese medicine and to inspire traditional Chinese medicine researchers to develop novel drugs.
An Expert System for Diagnosis of Sleep Disorder Using Fuzzy Rule-Based Classification Systems
NASA Astrophysics Data System (ADS)
Septem Riza, Lala; Pradini, Mila; Fitrajaya Rahman, Eka; Rasim
2017-03-01
Sleep disorder is an anomaly that could cause problems for someone’ sleeping pattern. Nowadays, it becomes an issue since people are getting busy with their own business and have no time to visit the doctors. Therefore, this research aims to develop a system used for diagnosis of sleep disorder using Fuzzy Rule-Based Classification System (FRBCS). FRBCS is a method based on the fuzzy set concepts. It consists of two steps: (i) constructing a model/knowledge involving rulebase and database, and (ii) prediction over new data. In this case, the knowledge is obtained from experts whereas in the prediction stage, we perform fuzzification, inference, and classification. Then, a platform implementing the method is built with a combination between PHP and the R programming language using the “Shiny” package. To validate the system that has been made, some experiments have been done using data from a psychiatric hospital in West Java, Indonesia. Accuracy of the result and computation time are 84.85% and 0.0133 seconds, respectively.
Si, Guangsen; Xu, Zeshui
2018-01-01
Hesitant fuzzy linguistic term set provides an effective tool to represent uncertain decision information. However, the semantics corresponding to the linguistic terms in it cannot accurately reflect the decision-makers’ subjective cognition. In general, different decision-makers’ sensitivities towards the semantics are different. Such sensitivities can be represented by the cumulative prospect theory value function. Inspired by this, we propose a linguistic scale function to transform the semantics corresponding to linguistic terms into the linguistic preference values. Furthermore, we propose the hesitant fuzzy linguistic preference utility set, based on which, the decision-makers can flexibly express their distinct semantics and obtain the decision results that are consistent with their cognition. For calculations and comparisons over the hesitant fuzzy linguistic preference utility sets, we introduce some distance measures and comparison laws. Afterwards, to apply the hesitant fuzzy linguistic preference utility sets in emergency management, we develop a method to obtain objective weights of attributes and then propose a hesitant fuzzy linguistic preference utility-TOPSIS method to select the best fire rescue plan. Finally, the validity of the proposed method is verified by some comparisons of the method with other two representative methods including the hesitant fuzzy linguistic-TOPSIS method and the hesitant fuzzy linguistic-VIKOR method. PMID:29614019
Liao, Huchang; Si, Guangsen; Xu, Zeshui; Fujita, Hamido
2018-04-03
Hesitant fuzzy linguistic term set provides an effective tool to represent uncertain decision information. However, the semantics corresponding to the linguistic terms in it cannot accurately reflect the decision-makers' subjective cognition. In general, different decision-makers' sensitivities towards the semantics are different. Such sensitivities can be represented by the cumulative prospect theory value function. Inspired by this, we propose a linguistic scale function to transform the semantics corresponding to linguistic terms into the linguistic preference values. Furthermore, we propose the hesitant fuzzy linguistic preference utility set, based on which, the decision-makers can flexibly express their distinct semantics and obtain the decision results that are consistent with their cognition. For calculations and comparisons over the hesitant fuzzy linguistic preference utility sets, we introduce some distance measures and comparison laws. Afterwards, to apply the hesitant fuzzy linguistic preference utility sets in emergency management, we develop a method to obtain objective weights of attributes and then propose a hesitant fuzzy linguistic preference utility-TOPSIS method to select the best fire rescue plan. Finally, the validity of the proposed method is verified by some comparisons of the method with other two representative methods including the hesitant fuzzy linguistic-TOPSIS method and the hesitant fuzzy linguistic-VIKOR method.
Hybrid neural network and fuzzy logic approaches for rendezvous and capture in space
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Castellano, Timothy
1991-01-01
The nonlinear behavior of many practical systems and unavailability of quantitative data regarding the input-output relations makes the analytical modeling of these systems very difficult. On the other hand, approximate reasoning-based controllers which do not require analytical models have demonstrated a number of successful applications such as the subway system in the city of Sendai. These applications have mainly concentrated on emulating the performance of a skilled human operator in the form of linguistic rules. However, the process of learning and tuning the control rules to achieve the desired performance remains a difficult task. Fuzzy Logic Control is based on fuzzy set theory. A fuzzy set is an extension of a crisp set. Crisp sets only allow full membership or no membership at all, whereas fuzzy sets allow partial membership. In other words, an element may partially belong to a set.
NASA Technical Reports Server (NTRS)
Sultan, Labib; Janabi, Talib
1992-01-01
This paper analyses the internal operation of fuzzy logic controllers as referenced to the human cognitive tasks of control and decision making. Two goals are targeted. The first goal focuses on the cognitive interpretation of the mechanisms employed in the current design of fuzzy logic controllers. This analysis helps to create a ground to explore the potential of enhancing the functional intelligence of fuzzy controllers. The second goal is to outline the features of a new class of fuzzy controllers, the Clearness Transformation Fuzzy Logic Controller (CT-FLC), whereby some new concepts are advanced to qualify fuzzy controllers as 'cognitive devices' rather than 'expert system devices'. The operation of the CT-FLC, as a fuzzy pattern processing controller, is explored, simulated, and evaluated.
Measuring uncertainty by extracting fuzzy rules using rough sets
NASA Technical Reports Server (NTRS)
Worm, Jeffrey A.
1991-01-01
Despite the advancements in the computer industry in the past 30 years, there is still one major deficiency. Computers are not designed to handle terms where uncertainty is present. To deal with uncertainty, techniques other than classical logic must be developed. The methods are examined of statistical analysis, the Dempster-Shafer theory, rough set theory, and fuzzy set theory to solve this problem. The fundamentals of these theories are combined to possibly provide the optimal solution. By incorporating principles from these theories, a decision making process may be simulated by extracting two sets of fuzzy rules: certain rules and possible rules. From these rules a corresponding measure of how much these rules is believed is constructed. From this, the idea of how much a fuzzy diagnosis is definable in terms of a set of fuzzy attributes is studied.
NASA Astrophysics Data System (ADS)
Smith, James F., III; Blank, Joseph A.
2003-03-01
An approach is being explored that involves embedding a fuzzy logic based resource manager in an electronic game environment. Game agents can function under their own autonomous logic or human control. This approach automates the data mining problem. The game automatically creates a cleansed database reflecting the domain expert's knowledge, it calls a data mining function, a genetic algorithm, for data mining of the data base as required and allows easy evaluation of the information extracted. The co-evolutionary fitness functions, chromosomes and stopping criteria for ending the game are discussed. Genetic algorithm and genetic program based data mining procedures are discussed that automatically discover new fuzzy rules and strategies. The strategy tree concept and its relationship to co-evolutionary data mining are examined as well as the associated phase space representation of fuzzy concepts. The overlap of fuzzy concepts in phase space reduces the effective strategies available to adversaries. Co-evolutionary data mining alters the geometric properties of the overlap region known as the admissible region of phase space significantly enhancing the performance of the resource manager. Procedures for validation of the information data mined are discussed and significant experimental results provided.
Directed Laplacians For Fuzzy Autocatalytic Set Of Fuzzy Graph Type-3 Of An Incineration Process
NASA Astrophysics Data System (ADS)
Ahmad, Tahir; Baharun, Sabariah; Bakar, Sumarni Abu
2010-11-01
Fuzzy Autocatalytic Set (FACS) of Fuzzy Graph Type-3 was used in the modeling of a clinical waste incineration process in Malacca. FACS provided more accurate explanations of the incineration process than using crisp graph. In this paper we explore further FACS. Directed and combinatorial Laplacian of FACS are developed and their basic properties are presented.
NASA Technical Reports Server (NTRS)
Howard, Ayanna
2005-01-01
The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.
Fuzzy pharmacology: theory and applications.
Sproule, Beth A; Naranjo, Claudio A; Türksen, I Burhan
2002-09-01
Fuzzy pharmacology is a term coined to represent the application of fuzzy logic and fuzzy set theory to pharmacological problems. Fuzzy logic is the science of reasoning, thinking and inference that recognizes and uses the real world phenomenon that everything is a matter of degree. It is an extension of binary logic that is able to deal with complex systems because it does not require crisp definitions and distinctions for the system components. In pharmacology, fuzzy modeling has been used for the mechanical control of drug delivery in surgical settings, and work has begun evaluating its use in other pharmacokinetic and pharmacodynamic applications. Fuzzy pharmacology is an emerging field that, based on these initial explorations, warrants further investigation.
Using fuzzy fractal features of digital images for the material surface analisys
NASA Astrophysics Data System (ADS)
Privezentsev, D. G.; Zhiznyakov, A. L.; Astafiev, A. V.; Pugin, E. V.
2018-01-01
Edge detection is an important task in image processing. There are a lot of approaches in this area: Sobel, Canny operators and others. One of the perspective techniques in image processing is the use of fuzzy logic and fuzzy sets theory. They allow us to increase processing quality by representing information in its fuzzy form. Most of the existing fuzzy image processing methods switch to fuzzy sets on very late stages, so this leads to some useful information loss. In this paper, a novel method of edge detection based on fuzzy image representation and fuzzy pixels is proposed. With this approach, we convert the image to fuzzy form on the first step. Different approaches to this conversion are described. Several membership functions for fuzzy pixel description and requirements for their form and view are given. A novel approach to edge detection based on Sobel operator and fuzzy image representation is proposed. Experimental testing of developed method was performed on remote sensing images.
Security risk assessment: applying the concepts of fuzzy logic.
Bajpai, Shailendra; Sachdeva, Anish; Gupta, J P
2010-01-15
Chemical process industries (CPI) handling hazardous chemicals in bulk can be attractive targets for deliberate adversarial actions by terrorists, criminals and disgruntled employees. It is therefore imperative to have comprehensive security risk management programme including effective security risk assessment techniques. In an earlier work, it has been shown that security risk assessment can be done by conducting threat and vulnerability analysis or by developing Security Risk Factor Table (SRFT). HAZOP type vulnerability assessment sheets can be developed that are scenario based. In SRFT model, important security risk bearing factors such as location, ownership, visibility, inventory, etc., have been used. In this paper, the earlier developed SRFT model has been modified using the concepts of fuzzy logic. In the modified SRFT model, two linguistic fuzzy scales (three-point and four-point) are devised based on trapezoidal fuzzy numbers. Human subjectivity of different experts associated with previous SRFT model is tackled by mapping their scores to the newly devised fuzzy scale. Finally, the fuzzy score thus obtained is defuzzyfied to get the results. A test case of a refinery is used to explain the method and compared with the earlier work.
Solving the interval type-2 fuzzy polynomial equation using the ranking method
NASA Astrophysics Data System (ADS)
Rahman, Nurhakimah Ab.; Abdullah, Lazim
2014-07-01
Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.
Group Decision Support System to Aid the Process of Design and Maintenance of Large Scale Systems
1992-03-23
from a fuzzy set of user requirements. The overall objective of the project is to develop a system combining the characteristics of a compact computer... AHP ) for hierarchical prioritization. 4) Individual Evaluation and Selection of Alternatives - Allows the decision maker to individually evaluate...its concept of outranking relations. The AHP method supports complex decision problems by successively decomposing and synthesizing various elements
A new method for qualitative simulation of water resources systems: 1. Theory
NASA Astrophysics Data System (ADS)
Camara, A. S.; Pinheiro, M.; Antunes, M. P.; Seixas, M. J.
1987-11-01
A new dynamic modeling methodology, SLIN (Simulação Linguistica), allowing for the analysis of systems defined by linguistic variables, is presented. SLIN applies a set of logical rules avoiding fuzzy theoretic concepts. To make the transition from qualitative to quantitative modes, logical rules are used as well. Extensions of the methodology to simulation-optimization applications and multiexpert system modeling are also discussed.
A Novel Method for Discovering Fuzzy Sequential Patterns Using the Simple Fuzzy Partition Method.
ERIC Educational Resources Information Center
Chen, Ruey-Shun; Hu, Yi-Chung
2003-01-01
Discusses sequential patterns, data mining, knowledge acquisition, and fuzzy sequential patterns described by natural language. Proposes a fuzzy data mining technique to discover fuzzy sequential patterns by using the simple partition method which allows the linguistic interpretation of each fuzzy set to be easily obtained. (Author/LRW)
Kumar, Mohit; Yadav, Shiv Prasad
2012-03-01
This paper addresses the fuzzy system reliability analysis using different types of intuitionistic fuzzy numbers. Till now, in the literature, to analyze the fuzzy system reliability, it is assumed that the failure rates of all components of a system follow the same type of fuzzy set or intuitionistic fuzzy set. However, in practical problems, such type of situation rarely occurs. Therefore, in the present paper, a new algorithm has been introduced to construct the membership function and non-membership function of fuzzy reliability of a system having components following different types of intuitionistic fuzzy failure rates. Functions of intuitionistic fuzzy numbers are calculated to construct the membership function and non-membership function of fuzzy reliability via non-linear programming techniques. Using the proposed algorithm, membership functions and non-membership functions of fuzzy reliability of a series system and a parallel systems are constructed. Our study generalizes the various works of the literature. Numerical examples are given to illustrate the proposed algorithm. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Evaluation of Fuzzy Rulemaking for Expert Systems for Failure Detection
NASA Technical Reports Server (NTRS)
Laritz, F.; Sheridan, T. B.
1984-01-01
Computer aids in expert systems were proposed to diagnose failures in complex systems. It is shown that the fuzzy set theory of Zadeh offers a new perspective for modeling for humans thinking and language use. It is assumed that real expert human operators of aircraft, power plants and other systems do not think of their control tasks or failure diagnosis tasks in terms of control laws in differential equation form, but rather keep in mind a set of rules of thumb in fuzzy form. Fuzzy set experiments are described.
On Fuzzy Sets and Rough Sets from the Perspective of Indiscernibility
NASA Astrophysics Data System (ADS)
Chakraborty, Mihir K.
The category theoretic approach of Obtułowicz to Pawlak's rough sets has been reintroduced in a somewhat modified form. A generalization is rendered to this approach that has been motivated by the notion of rough membership function. Thus, a link is established between rough sets and L-fuzzy sets for some special lattices. It is shown that a notion of indistinguishability lies at the root of vagueness. This observation in turn gives a common ground to the theories of rough sets and fuzzy sets.
On the use and usefulness of fuzzy sets in medical AI.
Steimann, F
2001-01-01
Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many medical problems. Based on a literature survey on the first 30 years, we investigate the impact fuzzy set theory has had on the work in medical AI and point out what it is most appreciated for.
Gettings, Mark E.; Bultman, Mark W.
1993-01-01
An application of possibility theory from fuzzy logic to the quantification of favorableness for quartz-carbonate vein deposits in the southern Santa Rita Mountains of southeastern Arizona is described. Three necessary but probably not sufficient conditions for the formation of these deposits were defined as the occurrence of carbonate berain rocks within hypabyssal depths, significant fracturing of the rocks, and proximity to a felsic intrusive. The quality of data available to evaluate these conditions is variable over the study area. The possibility of each condition was represented as a fuzzy set enumerated over the area. The intersection of the sets measures the degree of simultaneous occurrence of hte necessary factors and provides a measure of the possibility of deposit occurrence. Using fuzzy set technicques, the effect of one or more fuzzy sets relative to the others in the intersection can be controlled and logical combinations of the sets can be used to impose a time sequential constraint on the necessary conditions. Other necessary conditions, and supplementary conditions such as variable data quality or intensity of exploration can be included in the analysis by their proper representation as fuzzy sets.
Design of neurophysiologically motivated structures of time-pulse coded neurons
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lobodzinska, Raisa F.
2009-04-01
The common methodology of biologically motivated concept of building of processing sensors systems with parallel input and picture operands processing and time-pulse coding are described in paper. Advantages of such coding for creation of parallel programmed 2D-array structures for the next generation digital computers which require untraditional numerical systems for processing of analog, digital, hybrid and neuro-fuzzy operands are shown. The optoelectronic time-pulse coded intelligent neural elements (OETPCINE) simulation results and implementation results of a wide set of neuro-fuzzy logic operations are considered. The simulation results confirm engineering advantages, intellectuality, circuit flexibility of OETPCINE for creation of advanced 2D-structures. The developed equivalentor-nonequivalentor neural element has power consumption of 10mW and processing time about 10...100us.
Software tool for data mining and its applications
NASA Astrophysics Data System (ADS)
Yang, Jie; Ye, Chenzhou; Chen, Nianyi
2002-03-01
A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.
NASA Technical Reports Server (NTRS)
Kosko, Bart
1991-01-01
Mappings between fuzzy cubes are discussed. This level of abstraction provides a surprising and fruitful alternative to the propositional and predicate-calculas reasoning techniques used in expert systems. It allows one to reason with sets instead of propositions. Discussed here are fuzzy and neural function estimators, neural vs. fuzzy representation of structured knowledge, fuzzy vector-matrix multiplication, and fuzzy associative memory (FAM) system architecture.
Looking at flood trends with different eyes: the value of a fuzzy flood classification scheme
NASA Astrophysics Data System (ADS)
Sikorska, A. E.; Viviroli, D.; Brunner, M. I.; Seibert, J.
2016-12-01
Natural floods can be governed by several processes such as heavy rainfall or intense snow- or glacier-melt. These processes result in different flood characteristics in terms of flood shape and magnitude. Pooling floods of different types might therefore impair the analyses of flood frequencies and trends. Thus, the categorization of flood events into different flood type classes and the determination of their respective frequencies is essential for a better understanding and for the prediction of floods. In reality however most flood events are caused by a mix of processes and a unique determination of a flood type per event often becomes difficult. This study proposes an innovative method for a more reliable categorization of floods according to similarities in flood drivers. The categorization of floods into subgroups relies on a fuzzy decision tree. While the classical (crisp) decision tree allows for the identification of only one flood type per event, the fuzzy approach enables the detection of mixed types. Hence, events are represented as a spectrum of six possible flood types, while a degree of acceptance attributed to each of them specifies the importance of each type during the event formation. Considered types are flash, short rainfall, long rainfall, snow-melt, rainfall-on-snow, and, in high altitude watersheds, also glacier-melt floods. The fuzzy concept also enables uncertainty present in the identification of flood processes and in the method to be incorporated into the flood categorization process. We demonstrate, for a set of nine Swiss watersheds and 30 years of observations, that this new concept provides more reliable flood estimates than the classical approach as it allows for a more dedicated flood prevention technique adapted to a specific flood type.
Fuzzy restrictions and an application to cooperative games with restricted cooperation
NASA Astrophysics Data System (ADS)
Gallardo, J. M.; Jiménez, N.; Jiménez-Losada, A.
2017-10-01
The concept of restriction, which is an extension of that of interior operator, was introduced to model limited cooperation in cooperative game theory. In this paper, a fuzzy version of restrictions is presented. We show that these new operators, called fuzzy restrictions, can be characterized by the transitivity of the fuzzy dependence relations that they induce. As an application, we introduce cooperative games with fuzzy restriction, which are used to model cooperative situations in which each player in a coalition has a level of cooperation within the coalition. A value for these games is defined and characterized.
De la Sen, Manuel; Abbas, Mujahid; Saleem, Naeem
2016-01-01
This paper discusses some convergence properties in fuzzy ordered proximal approaches defined by [Formula: see text]-sequences of pairs, where [Formula: see text] is a surjective self-mapping and [Formula: see text] where Aand Bare nonempty subsets of and abstract nonempty set X and [Formula: see text] is a partially ordered non-Archimedean fuzzy metric space which is endowed with a fuzzy metric M, a triangular norm * and an ordering [Formula: see text] The fuzzy set M takes values in a sequence or set [Formula: see text] where the elements of the so-called switching rule [Formula: see text] are defined from [Formula: see text] to a subset of [Formula: see text] Such a switching rule selects a particular realization of M at the nth iteration and it is parameterized by a growth evolution sequence [Formula: see text] and a sequence or set [Formula: see text] which belongs to the so-called [Formula: see text]-lower-bounding mappings which are defined from [0, 1] to [0, 1]. Some application examples concerning discrete systems under switching rules and best approximation solvability of algebraic equations are discussed.
Hybrid fuzzy cluster ensemble framework for tumor clustering from biomolecular data.
Yu, Zhiwen; Chen, Hantao; You, Jane; Han, Guoqiang; Li, Le
2013-01-01
Cancer class discovery using biomolecular data is one of the most important tasks for cancer diagnosis and treatment. Tumor clustering from gene expression data provides a new way to perform cancer class discovery. Most of the existing research works adopt single-clustering algorithms to perform tumor clustering is from biomolecular data that lack robustness, stability, and accuracy. To further improve the performance of tumor clustering from biomolecular data, we introduce the fuzzy theory into the cluster ensemble framework for tumor clustering from biomolecular data, and propose four kinds of hybrid fuzzy cluster ensemble frameworks (HFCEF), named as HFCEF-I, HFCEF-II, HFCEF-III, and HFCEF-IV, respectively, to identify samples that belong to different types of cancers. The difference between HFCEF-I and HFCEF-II is that they adopt different ensemble generator approaches to generate a set of fuzzy matrices in the ensemble. Specifically, HFCEF-I applies the affinity propagation algorithm (AP) to perform clustering on the sample dimension and generates a set of fuzzy matrices in the ensemble based on the fuzzy membership function and base samples selected by AP. HFCEF-II adopts AP to perform clustering on the attribute dimension, generates a set of subspaces, and obtains a set of fuzzy matrices in the ensemble by performing fuzzy c-means on subspaces. Compared with HFCEF-I and HFCEF-II, HFCEF-III and HFCEF-IV consider the characteristics of HFCEF-I and HFCEF-II. HFCEF-III combines HFCEF-I and HFCEF-II in a serial way, while HFCEF-IV integrates HFCEF-I and HFCEF-II in a concurrent way. HFCEFs adopt suitable consensus functions, such as the fuzzy c-means algorithm or the normalized cut algorithm (Ncut), to summarize generated fuzzy matrices, and obtain the final results. The experiments on real data sets from UCI machine learning repository and cancer gene expression profiles illustrate that 1) the proposed hybrid fuzzy cluster ensemble frameworks work well on real data sets, especially biomolecular data, and 2) the proposed approaches are able to provide more robust, stable, and accurate results when compared with the state-of-the-art single clustering algorithms and traditional cluster ensemble approaches.
Homeopathic drug selection using Intuitionistic fuzzy sets.
Kharal, Athar
2009-01-01
Using intuitionistic fuzzy set theory, Sanchez's approach to medical diagnosis has been applied to the problem of selection of single remedy from homeopathic repertorization. Two types of Intuitionistic Fuzzy Relations (IFRs) and three types of selection indices are discussed. I also propose a new repertory exploiting the benefits of soft-intelligence.
Algebraic and Probabilistic Bases for Fuzzy Sets and the Development of Fuzzy Conditioning
1991-08-01
results; and also recently, among others, Bruno & Gilio (1985) bringing forth the basic is- e of combining implicatives compatible with conditional...probabilistic bases for fuzzy sets 67 7. Bruno, G. & Gilio , A. (1985), Confronto fra eventi condizionati di probabililiti nulla nell’ inferenza statistica
Fuzzy expert systems using CLIPS
NASA Technical Reports Server (NTRS)
Le, Thach C.
1994-01-01
This paper describes a CLIPS-based fuzzy expert system development environment called FCLIPS and illustrates its application to the simulated cart-pole balancing problem. FCLIPS is a straightforward extension of CLIPS without any alteration to the CLIPS internal structures. It makes use of the object-oriented and module features in CLIPS version 6.0 for the implementation of fuzzy logic concepts. Systems of varying degrees of mixed Boolean and fuzzy rules can be implemented in CLIPS. Design and implementation issues of FCLIPS will also be discussed.
NASA Technical Reports Server (NTRS)
Ying, Hao
1993-01-01
The fuzzy controllers studied in this paper are the ones that employ N trapezoidal-shaped members for input fuzzy sets, Zadeh fuzzy logic and a centroid defuzzification algorithm for output fuzzy set. The author analytically proves that the structure of the fuzzy controllers is the sum of a global nonlinear controller and a local nonlinear proportional-integral-like controller. If N approaches infinity, the global controller becomes a nonlinear controller while the local controller disappears. If linear control rules are used, the global controller becomes a global two-dimensional multilevel relay which approaches a global linear proportional-integral (PI) controller as N approaches infinity.
Solutions of interval type-2 fuzzy polynomials using a new ranking method
NASA Astrophysics Data System (ADS)
Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani
2015-10-01
A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.
Generalized statistical convergence of order β for sequences of fuzzy numbers
NASA Astrophysics Data System (ADS)
Altınok, Hıfsı; Karakaş, Abdulkadir; Altın, Yavuz
2018-01-01
In the present paper, we introduce the concepts of Δm-statistical convergence of order β for sequences of fuzzy numbers and strongly Δm-summable of order β for sequences of fuzzy numbers by using a modulus function f and taking supremum on metric d for 0 < β ≤ 1 and give some inclusion relations between them.
Fuzzy-based propagation of prior knowledge to improve large-scale image analysis pipelines
Mikut, Ralf
2017-01-01
Many automatically analyzable scientific questions are well-posed and a variety of information about expected outcomes is available a priori. Although often neglected, this prior knowledge can be systematically exploited to make automated analysis operations sensitive to a desired phenomenon or to evaluate extracted content with respect to this prior knowledge. For instance, the performance of processing operators can be greatly enhanced by a more focused detection strategy and by direct information about the ambiguity inherent in the extracted data. We present a new concept that increases the result quality awareness of image analysis operators by estimating and distributing the degree of uncertainty involved in their output based on prior knowledge. This allows the use of simple processing operators that are suitable for analyzing large-scale spatiotemporal (3D+t) microscopy images without compromising result quality. On the foundation of fuzzy set theory, we transform available prior knowledge into a mathematical representation and extensively use it to enhance the result quality of various processing operators. These concepts are illustrated on a typical bioimage analysis pipeline comprised of seed point detection, segmentation, multiview fusion and tracking. The functionality of the proposed approach is further validated on a comprehensive simulated 3D+t benchmark data set that mimics embryonic development and on large-scale light-sheet microscopy data of a zebrafish embryo. The general concept introduced in this contribution represents a new approach to efficiently exploit prior knowledge to improve the result quality of image analysis pipelines. The generality of the concept makes it applicable to practically any field with processing strategies that are arranged as linear pipelines. The automated analysis of terabyte-scale microscopy data will especially benefit from sophisticated and efficient algorithms that enable a quantitative and fast readout. PMID:29095927
Framework for Analysis of Mitigation in Courts
2005-01-01
present a framework for a pragmatic analysis of mitigation in courts. The study focuses on discursive acts and aspects of discursive acts the purpose...use it is associated with coping (Lazarus, 1999) with (inevitable) negative events or experiences. It is also linked to studies of pragmatics...The concept of ‘hedges’ or ‘metalinguistic operators’ such as ‘more or less’, ‘like’, ‘sort of’ etc. in turn originated in studies on the fuzzy-set
A fuzzy classifier system for process control
NASA Technical Reports Server (NTRS)
Karr, C. L.; Phillips, J. C.
1994-01-01
A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.
Automatic approach to deriving fuzzy slope positions
NASA Astrophysics Data System (ADS)
Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi
2018-03-01
Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.
Samantra, Chitrasen; Datta, Saurav; Mahapatra, Siba Sankar
2017-09-01
This paper presents a unique hierarchical structure on various occupational health hazards including physical, chemical, biological, ergonomic and psychosocial hazards, and associated adverse consequences in relation to an underground coal mine. The study proposes a systematic health hazard risk assessment methodology for estimating extent of hazard risk using three important measuring parameters: consequence of exposure, period of exposure and probability of exposure. An improved decision making method using fuzzy set theory has been attempted herein for converting linguistic data into numeric risk ratings. The concept of 'centre of area' method for generalized triangular fuzzy numbers has been explored to quantify the 'degree of hazard risk' in terms of crisp ratings. Finally, a logical framework for categorizing health hazards into different risk levels has been constructed on the basis of distinguished ranges of evaluated risk ratings (crisp). Subsequently, an action requirement plan has been suggested, which could provide guideline to the managers for successfully managing health hazard risks in the context of underground coal mining exercise.
Answer Sets in a Fuzzy Equilibrium Logic
NASA Astrophysics Data System (ADS)
Schockaert, Steven; Janssen, Jeroen; Vermeir, Dirk; de Cock, Martine
Since its introduction, answer set programming has been generalized in many directions, to cater to the needs of real-world applications. As one of the most general “classical” approaches, answer sets of arbitrary propositional theories can be defined as models in the equilibrium logic of Pearce. Fuzzy answer set programming, on the other hand, extends answer set programming with the capability of modeling continuous systems. In this paper, we combine the expressiveness of both approaches, and define answer sets of arbitrary fuzzy propositional theories as models in a fuzzification of equilibrium logic. We show that the resulting notion of answer set is compatible with existing definitions, when the syntactic restrictions of the corresponding approaches are met. We furthermore locate the complexity of the main reasoning tasks at the second level of the polynomial hierarchy. Finally, as an illustration of its modeling power, we show how fuzzy equilibrium logic can be used to find strong Nash equilibria.
Fuzzy Set Classification of Old-Growth Southern Pine
Don C. Bragg
2002-01-01
I propose the development of a fuzzy set ordination (FSO) approach to old-growth classification of southern pines. A fuzzy systems approach differs from traditional old-growth classification in that it does not require a "crisp" classification where a stand is either "old-growth" or "not old-growth", but allows for fractional membership...
Fuzzy Energy and Reserve Co-optimization With High Penetration of Renewable Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Cong; Botterud, Audun; Zhou, Zhi
In this study, we propose a fuzzy-based energy and reserve co-optimization model with consideration of high penetration of renewable energy. Under the assumption of a fixed uncertainty set of renewables, a two-stage robust model is proposed for clearing energy and reserves in the first stage and checking the feasibility and robustness of re-dispatches in the second stage. Fuzzy sets and their membership functions are introduced into the optimization model to represent the satisfaction degree of the variable uncertainty sets. The lower bound of the uncertainty set is expressed as fuzzy membership functions. The solutions are obtained by transforming the fuzzymore » mathematical programming formulation into traditional mixed integer linear programming problems.« less
Fuzzy Energy and Reserve Co-optimization With High Penetration of Renewable Energy
Liu, Cong; Botterud, Audun; Zhou, Zhi; ...
2016-10-21
In this study, we propose a fuzzy-based energy and reserve co-optimization model with consideration of high penetration of renewable energy. Under the assumption of a fixed uncertainty set of renewables, a two-stage robust model is proposed for clearing energy and reserves in the first stage and checking the feasibility and robustness of re-dispatches in the second stage. Fuzzy sets and their membership functions are introduced into the optimization model to represent the satisfaction degree of the variable uncertainty sets. The lower bound of the uncertainty set is expressed as fuzzy membership functions. The solutions are obtained by transforming the fuzzymore » mathematical programming formulation into traditional mixed integer linear programming problems.« less
Peng, Ding-Hong; Wang, Tie-Dan; Gao, Chang-Yuan; Wang, Hua
2014-01-01
Interval-valued hesitant fuzzy set (IVHFS), which is the further generalization of hesitant fuzzy set, can overcome the barrier that the precise membership degrees are sometimes hard to be specified and permit the membership degrees of an element to a set to have a few different interval values. To efficiently and effectively aggregate the interval-valued hesitant fuzzy information, in this paper, we investigate the continuous hesitant fuzzy aggregation operators with the aid of continuous OWA operator; the C-HFOWA operator and C-HFOWG operator are presented and their essential properties are studied in detail. Then, we extend the C-HFOW operators to aggregate multiple interval-valued hesitant fuzzy elements and then develop the weighted C-HFOW (WC-HFOWA and WC-HFOWG) operators, the ordered weighted C-HFOW (OWC-HFOWA and OWC-HFOWG) operators, and the synergetic weighted C-HFOWA (SWC-HFOWA and SWC-HFOWG) operators; some properties are also discussed to support them. Furthermore, a SWC-HFOW operators-based approach for multicriteria decision making problem is developed. Finally, a practical example involving the evaluation of service quality of high-tech enterprises is carried out and some comparative analyses are performed to demonstrate the applicability and effectiveness of the developed approaches.
Wang, Tie-Dan; Gao, Chang-Yuan; Wang, Hua
2014-01-01
Interval-valued hesitant fuzzy set (IVHFS), which is the further generalization of hesitant fuzzy set, can overcome the barrier that the precise membership degrees are sometimes hard to be specified and permit the membership degrees of an element to a set to have a few different interval values. To efficiently and effectively aggregate the interval-valued hesitant fuzzy information, in this paper, we investigate the continuous hesitant fuzzy aggregation operators with the aid of continuous OWA operator; the C-HFOWA operator and C-HFOWG operator are presented and their essential properties are studied in detail. Then, we extend the C-HFOW operators to aggregate multiple interval-valued hesitant fuzzy elements and then develop the weighted C-HFOW (WC-HFOWA and WC-HFOWG) operators, the ordered weighted C-HFOW (OWC-HFOWA and OWC-HFOWG) operators, and the synergetic weighted C-HFOWA (SWC-HFOWA and SWC-HFOWG) operators; some properties are also discussed to support them. Furthermore, a SWC-HFOW operators-based approach for multicriteria decision making problem is developed. Finally, a practical example involving the evaluation of service quality of high-tech enterprises is carried out and some comparative analyses are performed to demonstrate the applicability and effectiveness of the developed approaches. PMID:24987747
Application of fuzzy set and Dempster-Shafer theory to organic geochemistry interpretation
NASA Technical Reports Server (NTRS)
Kim, C. S.; Isaksen, G. H.
1993-01-01
An application of fuzzy sets and Dempster Shafter Theory (DST) in modeling the interpretational process of organic geochemistry data for predicting the level of maturities of oil and source rock samples is presented. This was accomplished by (1) representing linguistic imprecision and imprecision associated with experience by a fuzzy set theory, (2) capturing the probabilistic nature of imperfect evidences by a DST, and (3) combining multiple evidences by utilizing John Yen's generalized Dempster-Shafter Theory (GDST), which allows DST to deal with fuzzy information. The current prototype provides collective beliefs on the predicted levels of maturity by combining multiple evidences through GDST's rule of combination.
Different methodologies to quantify uncertainties of air emissions.
Romano, Daniela; Bernetti, Antonella; De Lauretis, Riccardo
2004-10-01
Characterization of the uncertainty associated with air emission estimates is of critical importance especially in the compilation of air emission inventories. In this paper, two different theories are discussed and applied to evaluate air emissions uncertainty. In addition to numerical analysis, which is also recommended in the framework of the United Nation Convention on Climate Change guidelines with reference to Monte Carlo and Bootstrap simulation models, fuzzy analysis is also proposed. The methodologies are discussed and applied to an Italian example case study. Air concentration values are measured from two electric power plants: a coal plant, consisting of two boilers and a fuel oil plant, of four boilers; the pollutants considered are sulphur dioxide (SO(2)), nitrogen oxides (NO(X)), carbon monoxide (CO) and particulate matter (PM). Monte Carlo, Bootstrap and fuzzy methods have been applied to estimate uncertainty of these data. Regarding Monte Carlo, the most accurate results apply to Gaussian distributions; a good approximation is also observed for other distributions with almost regular features either positive asymmetrical or negative asymmetrical. Bootstrap, on the other hand, gives a good uncertainty estimation for irregular and asymmetrical distributions. The logic of fuzzy analysis, where data are represented as vague and indefinite in opposition to the traditional conception of neatness, certain classification and exactness of the data, follows a different description. In addition to randomness (stochastic variability) only, fuzzy theory deals with imprecision (vagueness) of data. Fuzzy variance of the data set was calculated; the results cannot be directly compared with empirical data but the overall performance of the theory is analysed. Fuzzy theory may appear more suitable for qualitative reasoning than for a quantitative estimation of uncertainty, but it suits well when little information and few measurements are available and when distributions of data are not properly known.
Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters
Liu, Fei; Heiner, Monika; Yang, Ming
2016-01-01
Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information. PMID:26910830
Fuzzy and rough formal concept analysis: a survey
NASA Astrophysics Data System (ADS)
Poelmans, Jonas; Ignatov, Dmitry I.; Kuznetsov, Sergei O.; Dedene, Guido
2014-02-01
Formal Concept Analysis (FCA) is a mathematical technique that has been extensively applied to Boolean data in knowledge discovery, information retrieval, web mining, etc. applications. During the past years, the research on extending FCA theory to cope with imprecise and incomplete information made significant progress. In this paper, we give a systematic overview of the more than 120 papers published between 2003 and 2011 on FCA with fuzzy attributes and rough FCA. We applied traditional FCA as a text-mining instrument to 1072 papers mentioning FCA in the abstract. These papers were formatted in pdf files and using a thesaurus with terms referring to research topics, we transformed them into concept lattices. These lattices were used to analyze and explore the most prominent research topics within the FCA with fuzzy attributes and rough FCA research communities. FCA turned out to be an ideal metatechnique for representing large volumes of unstructured texts.
NASA Astrophysics Data System (ADS)
Ma, Xiaolin; Ma, Chi; Wan, Zhifang; Wang, Kewei
2017-06-01
Effective management of municipal solid waste (MSW) is critical for urban planning and development. This study aims to develop an integrated type 1 and type 2 fuzzy sets chance-constrained programming (ITFCCP) model for tackling regional MSW management problem under a fuzzy environment, where waste generation amounts are supposed to be type 2 fuzzy variables and treated capacities of facilities are assumed to be type 1 fuzzy variables. The evaluation and expression of uncertainty overcome the drawbacks in describing fuzzy possibility distributions as oversimplified forms. The fuzzy constraints are converted to their crisp equivalents through chance-constrained programming under the same or different confidence levels. Regional waste management of the City of Dalian, China, was used as a case study for demonstration. The solutions under various confidence levels reflect the trade-off between system economy and reliability. It is concluded that the ITFCCP model is capable of helping decision makers to generate reasonable waste-allocation alternatives under uncertainties.
A Fuzzy Query Mechanism for Human Resource Websites
NASA Astrophysics Data System (ADS)
Lai, Lien-Fu; Wu, Chao-Chin; Huang, Liang-Tsung; Kuo, Jung-Chih
Users' preferences often contain imprecision and uncertainty that are difficult for traditional human resource websites to deal with. In this paper, we apply the fuzzy logic theory to develop a fuzzy query mechanism for human resource websites. First, a storing mechanism is proposed to store fuzzy data into conventional database management systems without modifying DBMS models. Second, a fuzzy query language is proposed for users to make fuzzy queries on fuzzy databases. User's fuzzy requirement can be expressed by a fuzzy query which consists of a set of fuzzy conditions. Third, each fuzzy condition associates with a fuzzy importance to differentiate between fuzzy conditions according to their degrees of importance. Fourth, the fuzzy weighted average is utilized to aggregate all fuzzy conditions based on their degrees of importance and degrees of matching. Through the mutual compensation of all fuzzy conditions, the ordering of query results can be obtained according to user's preference.
Type-2 fuzzy set extension of DEMATEL method combined with perceptual computing for decision making
NASA Astrophysics Data System (ADS)
Hosseini, Mitra Bokaei; Tarokh, Mohammad Jafar
2013-05-01
Most decision making methods used to evaluate a system or demonstrate the weak and strength points are based on fuzzy sets and evaluate the criteria with words that are modeled with fuzzy sets. The ambiguity and vagueness of the words and different perceptions of a word are not considered in these methods. For this reason, the decision making methods that consider the perceptions of decision makers are desirable. Perceptual computing is a subjective judgment method that considers that words mean different things to different people. This method models words with interval type-2 fuzzy sets that consider the uncertainty of the words. Also, there are interrelations and dependency between the decision making criteria in the real world; therefore, using decision making methods that cannot consider these relations is not feasible in some situations. The Decision-Making Trail and Evaluation Laboratory (DEMATEL) method considers the interrelations between decision making criteria. The current study used the combination of DEMATEL and perceptual computing in order to improve the decision making methods. For this reason, the fuzzy DEMATEL method was extended into type-2 fuzzy sets in order to obtain the weights of dependent criteria based on the words. The application of the proposed method is presented for knowledge management evaluation criteria.
A new neuro-fuzzy training algorithm for identifying dynamic characteristics of smart dampers
NASA Astrophysics Data System (ADS)
Dzung Nguyen, Sy; Choi, Seung-Bok
2012-08-01
This paper proposes a new algorithm, named establishing neuro-fuzzy system (ENFS), to identify dynamic characteristics of smart dampers such as magnetorheological (MR) and electrorheological (ER) dampers. In the ENFS, data clustering is performed based on the proposed algorithm named partitioning data space (PDS). Firstly, the PDS builds data clusters in joint input-output data space with appropriate constraints. The role of these constraints is to create reasonable data distribution in clusters. The ENFS then uses these clusters to perform the following tasks. Firstly, the fuzzy sets expressing characteristics of data clusters are established. The structure of the fuzzy sets is adjusted to be suitable for features of the data set. Secondly, an appropriate structure of neuro-fuzzy (NF) expressed by an optimal number of labeled data clusters and the fuzzy-set groups is determined. After the ENFS is introduced, its effectiveness is evaluated by a prediction-error-comparative work between the proposed method and some other methods in identifying numerical data sets such as ‘daily data of stock A’, or in identifying a function. The ENFS is then applied to identify damping force characteristics of the smart dampers. In order to evaluate the effectiveness of the ENFS in identifying the damping forces of the smart dampers, the prediction errors are presented by comparing with experimental results.
Revisiting separation properties of convex fuzzy sets
USDA-ARS?s Scientific Manuscript database
Separation of convex sets by hyperplanes has been extensively studied on crisp sets. In a seminal paper separability and convexity are investigated, however there is a flaw on the definition of degree of separation. We revisited separation on convex fuzzy sets that have level-wise (crisp) disjointne...
Multi-objective decision-making under uncertainty: Fuzzy logic methods
NASA Technical Reports Server (NTRS)
Hardy, Terry L.
1995-01-01
Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities.
The consistency of positive fully fuzzy linear system
NASA Astrophysics Data System (ADS)
Malkawi, Ghassan O.; Alfifi, Hassan Y.
2017-11-01
In this paper, the consistency of fuzziness of positive solution of the n × n fully fuzzy linear system (P - FFLS) is studied based on its associated linear system (P - ALS). That can consist of the whole entries of triangular fuzzy numbers in a linear system without fuzzy operations. The nature of solution is differentiated in case of fuzzy solution, non-fuzzy solution and fuzzy non-positive solution. Moreover, the analysis reveals that the P - ALS is applicable to provide the set of infinite number of solutions. Numerical examples are presented to illustrate the proposed analysis.
The knowledge model of MedFrame/CADIAG-IV.
Sageder, B; Boegl, K; Adlassnig, K P; Kolousek, G; Trummer, B
1997-01-01
The medical consultation system MedFrame/CADIAG-IV is a successor of the prior CADIAG projects. It is the result of a complete redesign to account for today's demands on state-of-the-art software. Its knowledge representation and inference process are based on fuzzy set theory and fuzzy logic. Fuzzy sets are used for conversions from measured numeric values and observational data into symbolic ones. Medical relationships between findings, diseases, and therapies, the rules, are represented by fuzzy relations, that express positive or negative associations. Findings, diseases, and therapies are organised in hierarchies.
Fuzzy compromise: An effective way to solve hierarchical design problems
NASA Technical Reports Server (NTRS)
Allen, J. K.; Krishnamachari, R. S.; Masetta, J.; Pearce, D.; Rigby, D.; Mistree, F.
1990-01-01
In this paper, we present a method for modeling design problems using a compromise decision support problem (DSP) incorporating the principles embodied in fuzzy set theory. Specifically, the fuzzy compromise decision support problem is used to study hierarchical design problems. This approach has the advantage that although the system modeled has an element of uncertainty associated with it, the solution obtained is crisp and precise. The efficacy of incorporating fuzzy sets into the solution process is discussed in the context of results obtained for a portal frame.
Syllogistic reasoning in fuzzy logic and its application to usuality and reasoning with dispositions
NASA Technical Reports Server (NTRS)
Zadeh, L. A.
1985-01-01
A fuzzy syllogism in fuzzy logic is defined to be an inference schema in which the major premise, the minor premise and the conclusion are propositions containing fuzzy quantifiers. A basic fuzzy syllogism in fuzzy logic is the intersection/product syllogism. Several other basic syllogisms are developed that may be employed as rules of combination of evidence in expert systems. Among these is the consequent conjunction syllogism. Furthermore, it is shown that syllogistic reasoning in fuzzy logic provides a basis for reasoning with dispositions; that is, with propositions that are preponderantly but not necessarily always true. It is also shown that the concept of dispositionality is closely related to the notion of usuality and serves as a basis for what might be called a theory of usuality - a theory which may eventually provide a computational framework for commonsense reasoning.
Multi-criteria decision making--an approach to setting priorities in health care.
Nobre, F F; Trotta, L T; Gomes, L F
1999-12-15
The objective of this paper is to present a multi-criteria decision making (MCDM) approach to support public health decision making that takes into consideration the fuzziness of the decision goals and the behavioural aspect of the decision maker. The approach is used to analyse the process of health technology procurement in a University Hospital in Rio de Janeiro, Brazil. The method, known as TODIM, relies on evaluating alternatives with a set of decision criteria assessed using an ordinal scale. Fuzziness in generating criteria scores and weights or conflicts caused by dealing with different viewpoints of a group of decision makers (DMs) are solved using fuzzy set aggregation rules. The results suggested that MCDM models, incorporating fuzzy set approaches, should form a set of tools for public health decision making analysis, particularly when there are polarized opinions and conflicting objectives from the DM group. Copyright 1999 John Wiley & Sons, Ltd.
2011-07-01
supervised learning process is compared to that of Artificial Neural Network ( ANNs ), fuzzy logic rule set, and Bayesian network approaches...of both fuzzy logic systems and Artificial Neural Networks ( ANNs ). Like fuzzy logic systems, the CINet technique allows the use of human- intuitive...fuzzy rule systems [3] CINets also maintain features common to both fuzzy systems and ANNs . The technique can be be shown to possess the property
Cluster Analysis of Rat Olfactory Bulb Responses to Diverse Odorants
Falasconi, Matteo; Leon, Michael; Johnson, Brett A.; Marco, Santiago
2012-01-01
In an effort to deepen our understanding of mammalian olfactory coding, we have used an objective method to analyze a large set of odorant-evoked activity maps collected systematically across the rat olfactory bulb to determine whether such an approach could identify specific glomerular regions that are activated by related odorants. To that end, we combined fuzzy c-means clustering methods with a novel validity approach based on cluster stability to evaluate the significance of the fuzzy partitions on a data set of glomerular layer responses to a large diverse group of odorants. Our results confirm the existence of glomerular response clusters to similar odorants. They further indicate a partial hierarchical chemotopic organization wherein larger glomerular regions can be subdivided into smaller areas that are rather specific in their responses to particular functional groups of odorants. These clusters bear many similarities to, as well as some differences from, response domains previously proposed for the glomerular layer of the bulb. These data also provide additional support for the concept of an identity code in the mammalian olfactory system. PMID:22459165
A Distributed Fuzzy Associative Classifier for Big Data.
Segatori, Armando; Bechini, Alessio; Ducange, Pietro; Marcelloni, Francesco
2017-09-19
Fuzzy associative classification has not been widely analyzed in the literature, although associative classifiers (ACs) have proved to be very effective in different real domain applications. The main reason is that learning fuzzy ACs is a very heavy task, especially when dealing with large datasets. To overcome this drawback, in this paper, we propose an efficient distributed fuzzy associative classification approach based on the MapReduce paradigm. The approach exploits a novel distributed discretizer based on fuzzy entropy for efficiently generating fuzzy partitions of the attributes. Then, a set of candidate fuzzy association rules is generated by employing a distributed fuzzy extension of the well-known FP-Growth algorithm. Finally, this set is pruned by using three purposely adapted types of pruning. We implemented our approach on the popular Hadoop framework. Hadoop allows distributing storage and processing of very large data sets on computer clusters built from commodity hardware. We have performed an extensive experimentation and a detailed analysis of the results using six very large datasets with up to 11,000,000 instances. We have also experimented different types of reasoning methods. Focusing on accuracy, model complexity, computation time, and scalability, we compare the results achieved by our approach with those obtained by two distributed nonfuzzy ACs recently proposed in the literature. We highlight that, although the accuracies result to be comparable, the complexity, evaluated in terms of number of rules, of the classifiers generated by the fuzzy distributed approach is lower than the one of the nonfuzzy classifiers.
A neuro-fuzzy architecture for real-time applications
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Huang, Song
1992-01-01
Neural networks and fuzzy expert systems perform the same task of functional mapping using entirely different approaches. Each approach has certain unique features. The ability to learn specific input-output mappings from large input/output data possibly corrupted by noise and the ability to adapt or continue learning are some important features of neural networks. Fuzzy expert systems are known for their ability to deal with fuzzy information and incomplete/imprecise data in a structured, logical way. Since both of these techniques implement the same task (that of functional mapping--we regard 'inferencing' as one specific category under this class), a fusion of the two concepts that retains their unique features while overcoming their individual drawbacks will have excellent applications in the real world. In this paper, we arrive at a new architecture by fusing the two concepts. The architecture has the trainability/adaptibility (based on input/output observations) property of the neural networks and the architectural features that are unique to fuzzy expert systems. It also does not require specific information such as fuzzy rules, defuzzification procedure used, etc., though any such information can be integrated into the architecture. We show that this architecture can provide better performance than is possible from a single two or three layer feedforward neural network. Further, we show that this new architecture can be used as an efficient vehicle for hardware implementation of complex fuzzy expert systems for real-time applications. A numerical example is provided to show the potential of this approach.
ERIC Educational Resources Information Center
Egghe, L.; Michel, C.
2003-01-01
Ordered sets (OS) of documents are encountered more and more in information distribution systems, such as information retrieval systems. Classical similarity measures for ordinary sets of documents need to be extended to these ordered sets. This is done in this article using fuzzy set techniques. The practical usability of the OS-measures is…
Recurrent fuzzy ranking methods
NASA Astrophysics Data System (ADS)
Hajjari, Tayebeh
2012-11-01
With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darby, John L.
LinguisticBelief is a Java computer code that evaluates combinations of linguistic variables using an approximate reasoning rule base. Each variable is comprised of fuzzy sets, and a rule base describes the reasoning on combinations of variables fuzzy sets. Uncertainty is considered and propagated through the rule base using the belief/plausibility measure. The mathematics of fuzzy sets, approximate reasoning, and belief/ plausibility are complex. Without an automated tool, this complexity precludes their application to all but the simplest of problems. LinguisticBelief automates the use of these techniques, allowing complex problems to be evaluated easily. LinguisticBelief can be used free of chargemore » on any Windows XP machine. This report documents the use and structure of the LinguisticBelief code, and the deployment package for installation client machines.« less
Information compression in the context model
NASA Technical Reports Server (NTRS)
Gebhardt, Joerg; Kruse, Rudolf; Nauck, Detlef
1992-01-01
The Context Model provides a formal framework for the representation, interpretation, and analysis of vague and uncertain data. The clear semantics of the underlying concepts make it feasible to compare well-known approaches to the modeling of imperfect knowledge like that given in Bayes Theory, Shafer's Evidence Theory, the Transferable Belief Model, and Possibility Theory. In this paper we present the basic ideas of the Context Model and show its applicability as an alternative foundation of Possibility Theory and the epistemic view of fuzzy sets.
Knowledge Network Values: Learning at Risk?
ERIC Educational Resources Information Center
Young, Peter R.
The boundaries between various information, entertainment, and communication fields are shifting. The edges between our library systems and communication networks are becoming increasingly fuzzy. These fuzzy edges affect concepts of education, learning, and knowledge. The existing library paradigm does not easily accommodate the new, fluid and…
Najafi, Shahriar; Flintsch, Gerardo W; Khaleghian, Seyedmeysam
2016-05-01
Minimizing roadway crashes and fatalities is one of the primary objectives of highway engineers, and can be achieved in part through appropriate maintenance practices. Maintaining an appropriate level of friction is a crucial maintenance practice, due to the effect it has on roadway safety. This paper presents a fuzzy logic inference system that predicts the rate of vehicle crashes based on traffic level, speed limit, and surface friction. Mamdani and Sugeno fuzzy controllers were used to develop the model. The application of the proposed fuzzy control system in a real-time slippery road warning system is demonstrated as a proof of concept. The results of this study provide a decision support model for highway agencies to monitor their network's friction and make appropriate judgments to correct deficiencies based on crash risk. Furthermore, this model can be implemented in the connected vehicle environment to warn drivers of potentially slippery locations. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Brancalioni, Ana Rita; Magnago, Karine Faverzani; Keske-Soares, Marcia
2012-01-01
The objective of this study is to create a new proposal for classifying the severity of speech disorders using a fuzzy model in accordance with a linguistic model that represents the speech acquisition of Brazilian Portuguese. The fuzzy linguistic model was run in the MATLAB software fuzzy toolbox from a set of fuzzy rules, and it encompassed…
Economic demography in fuzzy spatial dilemmas and power laws
NASA Astrophysics Data System (ADS)
Fort, H.; Pérez, N.
2005-03-01
Adaptive agents, playing the iterated Prisoner's Dilemma (IPD) in a two-dimensional spatial setting and governed by Pavlovian strategies ("higher success-higher chance to stay"), are used to approach the problem of cooperation between self-interested individuals from a novel angle: We investigate the effect of different possible measures of success (MS) used by players to asses their performance in the game. These MS involve quantities such as: the player's utilities U, his cumulative score (or "capital") W, his neighborhood "welfare", etc. To handle an imprecise concept like "success" the agents use fuzzy logic. The degree of cooperation, the "economic demography" and the "efficiency" attained by the system depend dramatically on the MS. Specifically, patterns of "segregation" or "exploitation" are observed for some MS. On the other hand, power laws, that may be interpreted as signatures of critical self-organization (SOC), constitute a common feature for all the MS.
Nguyen, Huu-Tho; Dawal, Siti Zawiah Md; Nukman, Yusoff; Rifai, Achmad P; Aoyama, Hideki
2016-01-01
The conveyor system plays a vital role in improving the performance of flexible manufacturing cells (FMCs). The conveyor selection problem involves the evaluation of a set of potential alternatives based on qualitative and quantitative criteria. This paper presents an integrated multi-criteria decision making (MCDM) model of a fuzzy AHP (analytic hierarchy process) and fuzzy ARAS (additive ratio assessment) for conveyor evaluation and selection. In this model, linguistic terms represented as triangular fuzzy numbers are used to quantify experts' uncertain assessments of alternatives with respect to the criteria. The fuzzy set is then integrated into the AHP to determine the weights of the criteria. Finally, a fuzzy ARAS is used to calculate the weights of the alternatives. To demonstrate the effectiveness of the proposed model, a case study is performed of a practical example, and the results obtained demonstrate practical potential for the implementation of FMCs.
Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; P. Rifai, Achmad; Aoyama, Hideki
2016-01-01
The conveyor system plays a vital role in improving the performance of flexible manufacturing cells (FMCs). The conveyor selection problem involves the evaluation of a set of potential alternatives based on qualitative and quantitative criteria. This paper presents an integrated multi-criteria decision making (MCDM) model of a fuzzy AHP (analytic hierarchy process) and fuzzy ARAS (additive ratio assessment) for conveyor evaluation and selection. In this model, linguistic terms represented as triangular fuzzy numbers are used to quantify experts’ uncertain assessments of alternatives with respect to the criteria. The fuzzy set is then integrated into the AHP to determine the weights of the criteria. Finally, a fuzzy ARAS is used to calculate the weights of the alternatives. To demonstrate the effectiveness of the proposed model, a case study is performed of a practical example, and the results obtained demonstrate practical potential for the implementation of FMCs. PMID:27070543
Uncertainty representation of grey numbers and grey sets.
Yang, Yingjie; Liu, Sifeng; John, Robert
2014-09-01
In the literature, there is a presumption that a grey set and an interval-valued fuzzy set are equivalent. This presumption ignores the existence of discrete components in a grey number. In this paper, new measurements of uncertainties of grey numbers and grey sets, consisting of both absolute and relative uncertainties, are defined to give a comprehensive representation of uncertainties in a grey number and a grey set. Some simple examples are provided to illustrate that the proposed uncertainty measurement can give an effective representation of both absolute and relative uncertainties in a grey number and a grey set. The relationships between grey sets and interval-valued fuzzy sets are also analyzed from the point of view of the proposed uncertainty representation. The analysis demonstrates that grey sets and interval-valued fuzzy sets provide different but overlapping models for uncertainty representation in sets.
Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory
NASA Astrophysics Data System (ADS)
Deyi, Feng; Ichikawa, M.
1989-11-01
In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.
An Image Processing Algorithm Based On FMAT
NASA Technical Reports Server (NTRS)
Wang, Lui; Pal, Sankar K.
1995-01-01
Information deleted in ways minimizing adverse effects on reconstructed images. New grey-scale generalization of medial axis transformation (MAT), called FMAT (short for Fuzzy MAT) proposed. Formulated by making natural extension to fuzzy-set theory of all definitions and conditions (e.g., characteristic function of disk, subset condition of disk, and redundancy checking) used in defining MAT of crisp set. Does not need image to have any kind of priori segmentation, and allows medial axis (and skeleton) to be fuzzy subset of input image. Resulting FMAT (consisting of maximal fuzzy disks) capable of reconstructing exactly original image.
NASA Astrophysics Data System (ADS)
Borgelt, Christian
In clustering we often face the situation that only a subset of the available attributes is relevant for forming clusters, even though this may not be known beforehand. In such cases it is desirable to have a clustering algorithm that automatically weights attributes or even selects a proper subset. In this paper I study such an approach for fuzzy clustering, which is based on the idea to transfer an alternative to the fuzzifier (Klawonn and Höppner, What is fuzzy about fuzzy clustering? Understanding and improving the concept of the fuzzifier, In: Proc. 5th Int. Symp. on Intelligent Data Analysis, 254-264, Springer, Berlin, 2003) to attribute weighting fuzzy clustering (Keller and Klawonn, Int J Uncertain Fuzziness Knowl Based Syst 8:735-746, 2000). In addition, by reformulating Gustafson-Kessel fuzzy clustering, a scheme for weighting and selecting principal axes can be obtained. While in Borgelt (Feature weighting and feature selection in fuzzy clustering, In: Proc. 17th IEEE Int. Conf. on Fuzzy Systems, IEEE Press, Piscataway, NJ, 2008) I already presented such an approach for a global selection of attributes and principal axes, this paper extends it to a cluster-specific selection, thus arriving at a fuzzy subspace clustering algorithm (Parsons, Haque, and Liu, 2004).
Fuzzy Logic-Based Filter for Removing Additive and Impulsive Noise from Color Images
NASA Astrophysics Data System (ADS)
Zhu, Yuhong; Li, Hongyang; Jiang, Huageng
2017-12-01
This paper presents an efficient filter method based on fuzzy logics for adaptively removing additive and impulsive noise from color images. The proposed filter comprises two parts including noise detection and noise removal filtering. In the detection part, the fuzzy peer group concept is applied to determine what type of noise is added to each pixel of the corrupted image. In the filter part, the impulse noise is deducted by the vector median filter in the CIELAB color space and an optimal fuzzy filter is introduced to reduce the Gaussian noise, while they can work together to remove the mixed Gaussian-impulse noise from color images. Experimental results on several color images proves the efficacy of the proposed fuzzy filter.
Zaylaa, Amira; Oudjemia, Souad; Charara, Jamal; Girault, Jean-Marc
2015-09-01
This paper presents two new concepts for discrimination of signals of different complexity. The first focused initially on solving the problem of setting entropy descriptors by varying the pattern size instead of the tolerance. This led to the search for the optimal pattern size that maximized the similarity entropy. The second paradigm was based on the n-order similarity entropy that encompasses the 1-order similarity entropy. To improve the statistical stability, n-order fuzzy similarity entropy was proposed. Fractional Brownian motion was simulated to validate the different methods proposed, and fetal heart rate signals were used to discriminate normal from abnormal fetuses. In all cases, it was found that it was possible to discriminate time series of different complexity such as fractional Brownian motion and fetal heart rate signals. The best levels of performance in terms of sensitivity (90%) and specificity (90%) were obtained with the n-order fuzzy similarity entropy. However, it was shown that the optimal pattern size and the maximum similarity measurement were related to intrinsic features of the time series. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluation about the performance of E-government based on interval-valued intuitionistic fuzzy set.
Zhang, Shuai; Yu, Dejian; Wang, Yan; Zhang, Wenyu
2014-01-01
The evaluation is an important approach to promote the development of the E-Government. Since the rapid development of E-Government in the world, the E-Government performance evaluation has become a hot issue in the academia. In this paper, we develop a new evaluation method for the development of the E-Government based on the interval-valued intuitionistic fuzzy set which is a powerful technique in expressing the uncertainty of the real situation. First, we extend the geometric Heronian mean (GHM) operator to interval-valued intuitionistic fuzzy environment and proposed the interval-valued intuitionistic fuzzy GHM (IIFGHM) operator. Then, we investigate the relationships between the IIFGHM operator and some existing ones, such as generalized interval-valued intuitionistic fuzzy HM (GIIFHM) and interval-valued intuitionistic fuzzy weighted Bonferoni mean operator. Furthermore, we validate the effectiveness of the proposed method using a real case about the E-Government evaluation in Hangzhou City, China.
Computer vision for general purpose visual inspection: a fuzzy logic approach
NASA Astrophysics Data System (ADS)
Chen, Y. H.
In automatic visual industrial inspection, computer vision systems have been widely used. Such systems are often application specific, and therefore require domain knowledge in order to have a successful implementation. Since visual inspection can be viewed as a decision making process, it is argued that the integration of fuzzy logic analysis and computer vision systems provides a practical approach to general purpose visual inspection applications. This paper describes the development of an integrated fuzzy-rule-based automatic visual inspection system. Domain knowledge about a particular application is represented as a set of fuzzy rules. From the status of predefined fuzzy variables, the set of fuzzy rules are defuzzified to give the inspection results. A practical application where IC marks (often in the forms of English characters and a company logo) inspection is demonstrated, which shows a more consistent result as compared to a conventional thresholding method.
FuzzyCLIPS from research to product
NASA Technical Reports Server (NTRS)
Bochsler, Dan; Dohmann, Edgar
1994-01-01
This paper describes the commercial productization of FuzzyCLIPS which was developed under a NASA Phase 2 SBIR contract. The intent of this paper is to provide a general roadmap of the processes that are required to make a viable, marketable product once its concept and development are complete.
An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream
Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.
2016-01-01
This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081
Fuzzy Set Methods for Object Recognition in Space Applications
NASA Technical Reports Server (NTRS)
Keller, James M. (Editor)
1992-01-01
Progress on the following four tasks is described: (1) fuzzy set based decision methodologies; (2) membership calculation; (3) clustering methods (including derivation of pose estimation parameters), and (4) acquisition of images and testing of algorithms.
Pesticide applicators questionnaire content validation: A fuzzy delphi method.
Manakandan, S K; Rosnah, I; Mohd Ridhuan, J; Priya, R
2017-08-01
The most crucial step in forming a set of survey questionnaire is deciding the appropriate items in a construct. Retaining irrelevant items and removing important items will certainly mislead the direction of a particular study. This article demonstrates Fuzzy Delphi method as one of the scientific analysis technique to consolidate consensus agreement within a panel of experts pertaining to each item's appropriateness. This method reduces the ambiguity, diversity, and discrepancy of the opinions among the experts hence enhances the quality of the selected items. The main purpose of this study was to obtain experts' consensus on the suitability of the preselected items on the questionnaire. The panel consists of sixteen experts from the Occupational and Environmental Health Unit of Ministry of Health, Vector-borne Disease Control Unit of Ministry of Health and Occupational and Safety Health Unit of both public and private universities. A set of questionnaires related to noise and chemical exposure were compiled based on the literature search. There was a total of six constructs with 60 items in which three constructs for knowledge, attitude, and practice of noise exposure and three constructs for knowledge, attitude, and practice of chemical exposure. The validation process replicated recent Fuzzy Delphi method that using a concept of Triangular Fuzzy Numbers and Defuzzification process. A 100% response rate was obtained from all the sixteen experts with an average Likert scoring of four to five. Post FDM analysis, the first prerequisite was fulfilled with a threshold value (d) ≤ 0.2, hence all the six constructs were accepted. For the second prerequisite, three items (21%) from noise-attitude construct and four items (40%) from chemical-practice construct had expert consensus lesser than 75%, which giving rise to about 12% from the total items in the questionnaire. The third prerequisite was used to rank the items within the constructs by calculating the average fuzzy numbers. The seven items which did not fulfill the second prerequisite similarly had lower ranks during the analysis, therefore those items were discarded from the final draft. Post FDM analysis, the experts' consensus on the suitability of the pre-selected items on the questionnaire set were obtained, hence it is now ready for further construct validation process.
Learning fuzzy information in a hybrid connectionist, symbolic model
NASA Technical Reports Server (NTRS)
Romaniuk, Steve G.; Hall, Lawrence O.
1993-01-01
An instance-based learning system is presented. SC-net is a fuzzy hybrid connectionist, symbolic learning system. It remembers some examples and makes groups of examples into exemplars. All real-valued attributes are represented as fuzzy sets. The network representation and learning method is described. To illustrate this approach to learning in fuzzy domains, an example of segmenting magnetic resonance images of the brain is discussed. Clearly, the boundaries between human tissues are ill-defined or fuzzy. Example fuzzy rules for recognition are generated. Segmentations are presented that provide results that radiologists find useful.
Learning and Tuning of Fuzzy Rules
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1997-01-01
In this chapter, we review some of the current techniques for learning and tuning fuzzy rules. For clarity, we refer to the process of generating rules from data as the learning problem and distinguish it from tuning an already existing set of fuzzy rules. For learning, we touch on unsupervised learning techniques such as fuzzy c-means, fuzzy decision tree systems, fuzzy genetic algorithms, and linear fuzzy rules generation methods. For tuning, we discuss Jang's ANFIS architecture, Berenji-Khedkar's GARIC architecture and its extensions in GARIC-Q. We show that the hybrid techniques capable of learning and tuning fuzzy rules, such as CART-ANFIS, RNN-FLCS, and GARIC-RB, are desirable in development of a number of future intelligent systems.
Fuzzy logic in control systems: Fuzzy logic controller. I, II
NASA Technical Reports Server (NTRS)
Lee, Chuen Chien
1990-01-01
Recent advances in the theory and applications of fuzzy-logic controllers (FLCs) are examined in an analytical review. The fundamental principles of fuzzy sets and fuzzy logic are recalled; the basic FLC components (fuzzification and defuzzification interfaces, knowledge base, and decision-making logic) are described; and the advantages of FLCs for incorporating expert knowledge into a control system are indicated. Particular attention is given to fuzzy implication functions, the interpretation of sentence connectives (and, also), compositional operators, and inference mechanisms. Applications discussed include the FLC-guided automobile developed by Sugeno and Nishida (1985), FLC hardware systems, FLCs for subway trains and ship-loading cranes, fuzzy-logic chips, and fuzzy computers.
Combinational Reasoning of Quantitative Fuzzy Topological Relations for Simple Fuzzy Regions
Liu, Bo; Li, Dajun; Xia, Yuanping; Ruan, Jian; Xu, Lili; Wu, Huanyi
2015-01-01
In recent years, formalization and reasoning of topological relations have become a hot topic as a means to generate knowledge about the relations between spatial objects at the conceptual and geometrical levels. These mechanisms have been widely used in spatial data query, spatial data mining, evaluation of equivalence and similarity in a spatial scene, as well as for consistency assessment of the topological relations of multi-resolution spatial databases. The concept of computational fuzzy topological space is applied to simple fuzzy regions to efficiently and more accurately solve fuzzy topological relations. Thus, extending the existing research and improving upon the previous work, this paper presents a new method to describe fuzzy topological relations between simple spatial regions in Geographic Information Sciences (GIS) and Artificial Intelligence (AI). Firstly, we propose a new definition for simple fuzzy line segments and simple fuzzy regions based on the computational fuzzy topology. And then, based on the new definitions, we also propose a new combinational reasoning method to compute the topological relations between simple fuzzy regions, moreover, this study has discovered that there are (1) 23 different topological relations between a simple crisp region and a simple fuzzy region; (2) 152 different topological relations between two simple fuzzy regions. In the end, we have discussed some examples to demonstrate the validity of the new method, through comparisons with existing fuzzy models, we showed that the proposed method can compute more than the existing models, as it is more expressive than the existing fuzzy models. PMID:25775452
1980-05-31
34 International Journal of Man- Machine Studies , Vol. 9, No. 1, 1977, pp. 1-68. [16] Zimmermann, H. J., Theory and Applications of Fuzzy Sets, Institut...Boston, Inc., Hingham, MA, 1978. [18] Yager, R. R., "Multiple Objective Decision-Making Using Fuzzy Sets," International Journal of Man- Machine Studies ...Professor of Industria Engineering ... iv t TABLE OF CONTENTS page ABSTRACT .. .. . ...... . .... ...... ........ iii LIST OF TABLES
GPU accelerated fuzzy connected image segmentation by using CUDA.
Zhuge, Ying; Cao, Yong; Miller, Robert W
2009-01-01
Image segmentation techniques using fuzzy connectedness principles have shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem of these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays commodity graphics hardware provides high parallel computing power. In this paper, we present a parallel fuzzy connected image segmentation algorithm on Nvidia's Compute Unified Device Architecture (CUDA) platform for segmenting large medical image data sets. Our experiments based on three data sets with small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets over the sequential implementation of fuzzy connected image segmentation algorithm on CPU.
Fan, Yurui; Huang, Guohe; Veawab, Amornvadee
2012-01-01
In this study, a generalized fuzzy linear programming (GFLP) method was developed to deal with uncertainties expressed as fuzzy sets that exist in the constraints and objective function. A stepwise interactive algorithm (SIA) was advanced to solve GFLP model and generate solutions expressed as fuzzy sets. To demonstrate its application, the developed GFLP method was applied to a regional sulfur dioxide (SO2) control planning model to identify effective SO2 mitigation polices with a minimized system performance cost under uncertainty. The results were obtained to represent the amount of SO2 allocated to different control measures from different sources. Compared with the conventional interval-parameter linear programming (ILP) approach, the solutions obtained through GFLP were expressed as fuzzy sets, which can provide intervals for the decision variables and objective function, as well as related possibilities. Therefore, the decision makers can make a tradeoff between model stability and the plausibility based on solutions obtained through GFLP and then identify desired policies for SO2-emission control under uncertainty.
Reference set design for relational modeling of fuzzy systems
NASA Astrophysics Data System (ADS)
Lapohos, Tibor; Buchal, Ralph O.
1994-10-01
One of the keys to the successful relational modeling of fuzzy systems is the proper design of fuzzy reference sets. This has been discussed throughout the literature. In the frame of modeling a stochastic system, we analyze the problem numerically. First, we briefly describe the relational model and present the performance of the modeling in the most trivial case: the reference sets are triangle shaped. Next, we present a known fuzzy reference set generator algorithm (FRSGA) which is based on the fuzzy c-means (Fc-M) clustering algorithm. In the second section of this chapter we improve the previous FRSGA by adding a constraint to the Fc-M algorithm (modified Fc-M or MFc-M): two cluster centers are forced to coincide with the domain limits. This is needed to obtain properly shaped extreme linguistic reference values. We apply this algorithm to uniformly discretized domains of the variables involved. The fuzziness of the reference sets produced by both Fc-M and MFc-M is determined by a parameter, which in our experiments is modified iteratively. Each time, a new model is created and its performance analyzed. For certain algorithm parameter values both of these two algorithms have shortcomings. To eliminate the drawbacks of these two approaches, we develop a completely new generator algorithm for reference sets which we call Polyline. This algorithm and its performance are described in the last section. In all three cases, the modeling is performed for a variety of operators used in the inference engine and two defuzzification methods. Therefore our results depend neither on the system model order nor the experimental setup.
A computer-aided diagnostic system for kidney disease
Jahantigh, Farzad Firouzi; Malmir, Behnam; Avilaq, Behzad Aslani
2017-01-01
Background Disease diagnosis is complicated since patients may demonstrate similar symptoms but physician may diagnose different diseases. There are a few number of investigations aimed to create a fuzzy expert system, as a computer aided system for disease diagnosis. Methods In this research, a cross-sectional descriptive study conducted in a kidney clinic in Tehran, Iran in 2012. Medical diagnosis fuzzy rules applied, and a set of symptoms related to the set of considered diseases defined. The input case to be diagnosed defined by assigning a fuzzy value to each symptom and then three physicians asked about each suspected diseases. Then comments of those three physicians summarized for each disease. The fuzzy inference applied to obtain a decision fuzzy set for each disease, and crisp decision values attained to determine the certainty of existence for each disease. Results Results indicated that, in the diagnosis of seven cases of kidney disease by examining 21 indicators using fuzzy expert system, kidney stone disease with 63% certainty was the most probable, renal tubular was at the lowest level with 15%, and other kidney diseases were at the other levels. The most remarkable finding of this study was that results of kidney disease diagnosis (e.g., kidney stone) via fuzzy expert system were fully compatible with those of kidney physicians. Conclusion The proposed fuzzy expert system is a valid, reliable, and flexible instrument to diagnose several typical input cases. The developed system decreases the effort of initial physical checking and manual feeding of input symptoms. PMID:28392995
A computer-aided diagnostic system for kidney disease.
Jahantigh, Farzad Firouzi; Malmir, Behnam; Avilaq, Behzad Aslani
2017-03-01
Disease diagnosis is complicated since patients may demonstrate similar symptoms but physician may diagnose different diseases. There are a few number of investigations aimed to create a fuzzy expert system, as a computer aided system for disease diagnosis. In this research, a cross-sectional descriptive study conducted in a kidney clinic in Tehran, Iran in 2012. Medical diagnosis fuzzy rules applied, and a set of symptoms related to the set of considered diseases defined. The input case to be diagnosed defined by assigning a fuzzy value to each symptom and then three physicians asked about each suspected diseases. Then comments of those three physicians summarized for each disease. The fuzzy inference applied to obtain a decision fuzzy set for each disease, and crisp decision values attained to determine the certainty of existence for each disease. Results indicated that, in the diagnosis of seven cases of kidney disease by examining 21 indicators using fuzzy expert system, kidney stone disease with 63% certainty was the most probable, renal tubular was at the lowest level with 15%, and other kidney diseases were at the other levels. The most remarkable finding of this study was that results of kidney disease diagnosis (e.g., kidney stone) via fuzzy expert system were fully compatible with those of kidney physicians. The proposed fuzzy expert system is a valid, reliable, and flexible instrument to diagnose several typical input cases. The developed system decreases the effort of initial physical checking and manual feeding of input symptoms.
Parallel fuzzy connected image segmentation on GPU
Zhuge, Ying; Cao, Yong; Udupa, Jayaram K.; Miller, Robert W.
2011-01-01
Purpose: Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA’s compute unified device Architecture (cuda) platform for segmenting medical image data sets. Methods: In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as cuda kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Results: Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. Conclusions: The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set. PMID:21859037
Parallel fuzzy connected image segmentation on GPU.
Zhuge, Ying; Cao, Yong; Udupa, Jayaram K; Miller, Robert W
2011-07-01
Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA's compute unified device Architecture (CUDA) platform for segmenting medical image data sets. In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as CUDA kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set.
NASA Astrophysics Data System (ADS)
Kusumawati, Rosita; Subekti, Retno
2017-04-01
Fuzzy bi-objective linear programming (FBOLP) model is bi-objective linear programming model in fuzzy number set where the coefficients of the equations are fuzzy number. This model is proposed to solve portfolio selection problem which generate an asset portfolio with the lowest risk and the highest expected return. FBOLP model with normal fuzzy numbers for risk and expected return of stocks is transformed into linear programming (LP) model using magnitude ranking function.
Fuzzy logic and neural networks in artificial intelligence and pattern recognition
NASA Astrophysics Data System (ADS)
Sanchez, Elie
1991-10-01
With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.
Approximation abilities of neuro-fuzzy networks
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2010-01-01
The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.
NASA Astrophysics Data System (ADS)
Liu, Xiaojia; An, Haizhong; Wang, Lijun; Guan, Qing
2017-09-01
The moving average strategy is a technical indicator that can generate trading signals to assist investment. While the trading signals tell the traders timing to buy or sell, the moving average cannot tell the trading volume, which is a crucial factor for investment. This paper proposes a fuzzy moving average strategy, in which the fuzzy logic rule is used to determine the strength of trading signals, i.e., the trading volume. To compose one fuzzy logic rule, we use four types of moving averages, the length of the moving average period, the fuzzy extent, and the recommend value. Ten fuzzy logic rules form a fuzzy set, which generates a rating level that decides the trading volume. In this process, we apply genetic algorithms to identify an optimal fuzzy logic rule set and utilize crude oil futures prices from the New York Mercantile Exchange (NYMEX) as the experiment data. Each experiment is repeated for 20 times. The results show that firstly the fuzzy moving average strategy can obtain a more stable rate of return than the moving average strategies. Secondly, holding amounts series is highly sensitive to price series. Thirdly, simple moving average methods are more efficient. Lastly, the fuzzy extents of extremely low, high, and very high are more popular. These results are helpful in investment decisions.
Fuzzy Logic as a Tool for Assessing Students' Knowledge and Skills
ERIC Educational Resources Information Center
Voskoglou, Michael Gr.
2013-01-01
Fuzzy logic, which is based on fuzzy sets theory introduced by Zadeh in 1965, provides a rich and meaningful addition to standard logic. The applications which may be generated from or adapted to fuzzy logic are wide-ranging and provide the opportunity for modeling under conditions which are imprecisely defined. In this article we develop a fuzzy…
Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions
NASA Astrophysics Data System (ADS)
Khoury, Mehdi; Liu, Honghai
This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.
Fuzzy Neural Networks for Decision Support in Negotiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakas, D. P.; Vlachos, D. S.; Simos, T. E.
There is a large number of parameters which one can take into account when building a negotiation model. These parameters in general are uncertain, thus leading to models which represents them with fuzzy sets. On the other hand, the nature of these parameters makes them very difficult to model them with precise values. During negotiation, these parameters play an important role by altering the outcomes or changing the state of the negotiators. One reasonable way to model this procedure is to accept fuzzy relations (from theory or experience). The action of these relations to fuzzy sets, produce new fuzzy setsmore » which describe now the new state of the system or the modified parameters. But, in the majority of these situations, the relations are multidimensional, leading to complicated models and exponentially increasing computational time. In this paper a solution to this problem is presented. The use of fuzzy neural networks is shown that it can substitute the use of fuzzy relations with comparable results. Finally a simple simulation is carried in order to test the new method.« less
NASA Astrophysics Data System (ADS)
Ďuračiová, Renata; Rášová, Alexandra; Lieskovský, Tibor
2017-12-01
When combining spatial data from various sources, it is often important to determine similarity or identity of spatial objects. Besides the differences in geometry, representations of spatial objects are inevitably more or less uncertain. Fuzzy set theory can be used to address both modelling of the spatial objects uncertainty and determining the identity, similarity, and inclusion of two sets as fuzzy identity, fuzzy similarity, and fuzzy inclusion. In this paper, we propose to use fuzzy measures to determine the similarity or identity of two uncertain spatial object representations in geographic information systems. Labelling the spatial objects by the degree of their similarity or inclusion measure makes the process of their identification more efficient. It reduces the need for a manual control. This leads to a more simple process of spatial datasets update from external data sources. We use this approach to get an accurate and correct representation of historical streams, which is derived from contemporary digital elevation model, i.e. we identify the segments that are similar to the streams depicted on historical maps.
On Negations and Algebras in Fuzzy Set Theory
1986-03-19
Esteva Departament de Matematiques i Estadistica ~ Universitat Politecnica de Catalunya Diagonal 649 08028 Barcelona !Spain) ABSTRACT Dual... Estadistica Universitat Politecnica de Catalunya Diagonal 649 08028 Barcelona (Spain) In Zadeh’s definition of Fuzzy Sets [1] the operations are defined
Defect inspection in hot slab surface: multi-source CCD imaging based fuzzy-rough sets method
NASA Astrophysics Data System (ADS)
Zhao, Liming; Zhang, Yi; Xu, Xiaodong; Xiao, Hong; Huang, Chao
2016-09-01
To provide an accurate surface defects inspection method and make the automation of robust image region of interests(ROI) delineation strategy a reality in production line, a multi-source CCD imaging based fuzzy-rough sets method is proposed for hot slab surface quality assessment. The applicability of the presented method and the devised system are mainly tied to the surface quality inspection for strip, billet and slab surface etcetera. In this work we take into account the complementary advantages in two common machine vision (MV) systems(line array CCD traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging)), and through establishing the model of fuzzy-rough sets in the detection system the seeds for relative fuzzy connectedness(RFC) delineation for ROI can placed adaptively, which introduces the upper and lower approximation sets for RIO definition, and by which the boundary region can be delineated by RFC region competitive classification mechanism. For the first time, a Multi-source CCD imaging based fuzzy-rough sets strategy is attempted for CC-slab surface defects inspection that allows an automatic way of AI algorithms and powerful ROI delineation strategies to be applied to the MV inspection field.
Evolving fuzzy rules in a learning classifier system
NASA Technical Reports Server (NTRS)
Valenzuela-Rendon, Manuel
1993-01-01
The fuzzy classifier system (FCS) combines the ideas of fuzzy logic controllers (FLC's) and learning classifier systems (LCS's). It brings together the expressive powers of fuzzy logic as it has been applied in fuzzy controllers to express relations between continuous variables, and the ability of LCS's to evolve co-adapted sets of rules. The goal of the FCS is to develop a rule-based system capable of learning in a reinforcement regime, and that can potentially be used for process control.
Moshtagh-Khorasani, Majid; Akbarzadeh-T, Mohammad-R; Jahangiri, Nader; Khoobdel, Mehdi
2009-01-01
BACKGROUND: Aphasia diagnosis is particularly challenging due to the linguistic uncertainty and vagueness, inconsistencies in the definition of aphasic syndromes, large number of measurements with imprecision, natural diversity and subjectivity in test objects as well as in opinions of experts who diagnose the disease. METHODS: Fuzzy probability is proposed here as the basic framework for handling the uncertainties in medical diagnosis and particularly aphasia diagnosis. To efficiently construct this fuzzy probabilistic mapping, statistical analysis is performed that constructs input membership functions as well as determines an effective set of input features. RESULTS: Considering the high sensitivity of performance measures to different distribution of testing/training sets, a statistical t-test of significance is applied to compare fuzzy approach results with NN results as well as author's earlier work using fuzzy logic. The proposed fuzzy probability estimator approach clearly provides better diagnosis for both classes of data sets. Specifically, for the first and second type of fuzzy probability classifiers, i.e. spontaneous speech and comprehensive model, P-values are 2.24E-08 and 0.0059, respectively, strongly rejecting the null hypothesis. CONCLUSIONS: The technique is applied and compared on both comprehensive and spontaneous speech test data for diagnosis of four Aphasia types: Anomic, Broca, Global and Wernicke. Statistical analysis confirms that the proposed approach can significantly improve accuracy using fewer Aphasia features. PMID:21772867
Abou, Seraphin C
2012-03-01
In this paper, a new interpretation of intuitionistic fuzzy sets in the advanced framework of the Dempster-Shafer theory of evidence is extended to monitor safety-critical systems' performance. Not only is the proposed approach more effective, but it also takes into account the fuzzy rules that deal with imperfect knowledge/information and, therefore, is different from the classical Takagi-Sugeno fuzzy system, which assumes that the rule (the knowledge) is perfect. We provide an analytical solution to the practical and important problem of the conceptual probabilistic approach for formal ship safety assessment using the fuzzy set theory that involves uncertainties associated with the reliability input data. Thus, the overall safety of the ship engine is investigated as an object of risk analysis using the fuzzy mapping structure, which considers uncertainty and partial truth in the input-output mapping. The proposed method integrates direct evidence of the frame of discernment and is demonstrated through references to examples where fuzzy set models are informative. These simple applications illustrate how to assess the conflict of sensor information fusion for a sufficient cooling power system of vessels under extreme operation conditions. It was found that propulsion engine safety systems are not only a function of many environmental and operation profiles but are also dynamic and complex. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Comparison of Fuzzy Models in Similarity Assessment of Misregistered Area Class Maps
NASA Astrophysics Data System (ADS)
Brown, Scott
Spatial uncertainty refers to unknown error and vagueness in geographic data. It is relevant to land change and urban growth modelers, soil and biome scientists, geological surveyors and others, who must assess thematic maps for similarity, or categorical agreement. In this paper I build upon prior map comparison research, testing the effectiveness of similarity measures on misregistered data. Though several methods compare uncertain thematic maps, few methods have been tested on misregistration. My objective is to test five map comparison methods for sensitivity to misregistration, including sub-pixel errors in both position and rotation. Methods included four fuzzy categorical models: fuzzy kappa's model, fuzzy inference, cell aggregation, and the epsilon band. The fifth method used conventional crisp classification. I applied these methods to a case study map and simulated data in two sets: a test set with misregistration error, and a control set with equivalent uniform random error. For all five methods, I used raw accuracy or the kappa statistic to measure similarity. Rough-set epsilon bands report the most similarity increase in test maps relative to control data. Conversely, the fuzzy inference model reports a decrease in test map similarity.
A two-phased fuzzy decision making procedure for IT supplier selection
NASA Astrophysics Data System (ADS)
Shohaimay, Fairuz; Ramli, Nazirah; Mohamed, Siti Rosiah; Mohd, Ainun Hafizah
2013-09-01
In many studies on fuzzy decision making, linguistic terms are usually represented by corresponding fixed triangular or trapezoidal fuzzy numbers. However, the fixed fuzzy numbers used in decision making process may not explain the actual respondents' opinions. Hence, a two-phased fuzzy decision making procedure is proposed. First, triangular fuzzy numbers were built based on respondents' opinions on the appropriate range (0-100) for each seven-scale linguistic terms. Then, the fuzzy numbers were integrated into fuzzy decision making model. The applicability of the proposed method is demonstrated in a case study of supplier selection in Information Technology (IT) department. The results produced via the developed fuzzy numbers were consistent with the results obtained using fixed fuzzy numbers. However, with different set of fuzzy numbers based on respondents, there is a difference in the ranking of suppliers based on criterion X1 (background of supplier). Hopefully the proposed model which incorporates fuzzy numbers based on respondents will provide a more significant meaning towards future decision making.
Different Treatment Stages in Medical Diagnosis using Fuzzy Membership Matrix
NASA Astrophysics Data System (ADS)
Sundaresan, T.; Sheeja, G.; Govindarajan, A.
2018-04-01
The field of medicine is the most important and developing area of applications of fuzzy set theory. The nature of medical documentation and uncertain information gathered in the use of fuzzy triangular matrix. In this paper, procedures are presented for medical diagnosis and treatment-stages, patient and drug is constructed in fuzzy membership matrix. Examples are given to verify the proposed approach.
RSA cryptosystem with fuzzy set theory for encryption and decryption
NASA Astrophysics Data System (ADS)
Abdullah, Kamilah; Bakar, Sumarni Abu; Kamis, Nor Hanimah; Aliamis, Hardi
2017-11-01
In the communication area, user is more focus on communication instead of security of the data communication. Many cryptosystems have been improvised to achieved the effectiveness in communication. RSA cryptosystem is one of well-known cryptosystem used to secure the information and protect the communication by providing a difficulty to the attackers specifically in encryption and decryption. As need arises for guarantee the security of the cryptosystem while the communication must be ensured, we propose a new RSA cryptosystem which is based on fuzzy set theory whereby the plaintext and the ciphertext are in terms of Triangular Fuzzy Number (TFN). Decryption result shows that the message obtained is the same as the original plaintext. This study reveals that the fuzzy set theory is suitable to be used as an alternative tool in securing other cryptosystem.
Research of MPPT for photovoltaic generation based on two-dimensional cloud model
NASA Astrophysics Data System (ADS)
Liu, Shuping; Fan, Wei
2013-03-01
The cloud model is a mathematical representation to fuzziness and randomness in linguistic concepts. It represents a qualitative concept with expected value Ex, entropy En and hyper entropy He, and integrates the fuzziness and randomness of a linguistic concept in a unified way. This model is a new method for transformation between qualitative and quantitative in the knowledge. This paper is introduced MPPT (maximum power point tracking, MPPT) controller based two- dimensional cloud model through analysis of auto-optimization MPPT control of photovoltaic power system and combining theory of cloud model. Simulation result shows that the cloud controller is simple and easy, directly perceived through the senses, and has strong robustness, better control performance.
Ocean feature recognition using genetic algorithms with fuzzy fitness functions (GA/F3)
NASA Technical Reports Server (NTRS)
Ankenbrandt, C. A.; Buckles, B. P.; Petry, F. E.; Lybanon, M.
1990-01-01
A model for genetic algorithms with semantic nets is derived for which the relationships between concepts is depicted as a semantic net. An organism represents the manner in which objects in a scene are attached to concepts in the net. Predicates between object pairs are continuous valued truth functions in the form of an inverse exponential function (e sub beta lxl). 1:n relationships are combined via the fuzzy OR (Max (...)). Finally, predicates between pairs of concepts are resolved by taking the average of the combined predicate values of the objects attached to the concept at the tail of the arc representing the predicate in the semantic net. The method is illustrated by applying it to the identification of oceanic features in the North Atlantic.
An Application of Fuzzy Analytic Hierarchy Process (FAHP) for Evaluating Students' Project
ERIC Educational Resources Information Center
Çebi, Ayça; Karal, Hasan
2017-01-01
In recent years, artificial intelligence applications for understanding the human thinking process and transferring it to virtual environments come into prominence. The fuzzy logic which paves the way for modeling human behaviors and expressing even vague concepts mathematically, and is also regarded as an artificial intelligence technique has…
Fuzzy methods in decision making process - A particular approach in manufacturing systems
NASA Astrophysics Data System (ADS)
Coroiu, A. M.
2015-11-01
We are living in a competitive environment, so we can see and understand that the most of manufacturing firms do the best in order to accomplish meeting demand, increasing quality, decreasing costs, and delivery rate. In present a stake point of interest is represented by the development of fuzzy technology. A particular approach for this is represented through the development of methodologies to enhance the ability to managed complicated optimization and decision making aspects involving non-probabilistic uncertainty with the reason to understand, development, and practice the fuzzy technologies to be used in fields such as economic, engineering, management, and societal problems. Fuzzy analysis represents a method for solving problems which are related to uncertainty and vagueness; it is used in multiple areas, such as engineering and has applications in decision making problems, planning and production. As a definition for decision making process we can use the next one: result of mental processes based upon cognitive process with a main role in the selection of a course of action among several alternatives. Every process of decision making can be represented as a result of a final choice and the output can be represented as an action or as an opinion of choice. Different types of uncertainty can be discovered in a wide variety of optimization and decision making problems related to planning and operation of power systems and subsystems. The mixture of the uncertainty factor in the construction of different models serves for increasing their adequacy and, as a result, the reliability and factual efficiency of decisions based on their analysis. Another definition of decision making process which came to illustrate and sustain the necessity of using fuzzy method: the decision making is an approach of choosing a strategy among many different projects in order to achieve some purposes and is formulated as three different models: high risk decision, usual risk decision and low risk decision - some specific formulas of fuzzy logic. The fuzzy set concepts has some certain parameterization features which are certain extensions of crisp and fuzzy relations respectively and have a rich potential for application to the decision making problems. The proposed approach from this paper presents advantages of fuzzy approach, in comparison with other paradigm and presents a particular way in which fuzzy logic can emerge in decision making process and planning process with implication, as a simulation, in manufacturing - involved in measuring performance of advanced manufacturing systems. Finally, an example is presented to illustrate our simulation.
Butt, Muhammad Arif; Akram, Muhammad
2016-01-01
We present a new intuitionistic fuzzy rule-based decision-making system based on intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our proposed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time of all available processes in the ready queue, intuitionistically fuzzify the input values, triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calculates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of every process is calculated the ready queue is sorted in decreasing order of dp of every process. The process with maximum dp value is sent to the central processing unit for execution. Finally, we show complete working of our algorithm on two different data sets and give comparisons with some standard non-preemptive process schedulers.
Evaluation about the Performance of E-Government Based on Interval-Valued Intuitionistic Fuzzy Set
Zhang, Shuai; Wang, Yan
2014-01-01
The evaluation is an important approach to promote the development of the E-Government. Since the rapid development of E-Government in the world, the E-Government performance evaluation has become a hot issue in the academia. In this paper, we develop a new evaluation method for the development of the E-Government based on the interval-valued intuitionistic fuzzy set which is a powerful technique in expressing the uncertainty of the real situation. First, we extend the geometric Heronian mean (GHM) operator to interval-valued intuitionistic fuzzy environment and proposed the interval-valued intuitionistic fuzzy GHM (IIFGHM) operator. Then, we investigate the relationships between the IIFGHM operator and some existing ones, such as generalized interval-valued intuitionistic fuzzy HM (GIIFHM) and interval-valued intuitionistic fuzzy weighted Bonferoni mean operator. Furthermore, we validate the effectiveness of the proposed method using a real case about the E-Government evaluation in Hangzhou City, China. PMID:24707196
The weakest t-norm based intuitionistic fuzzy fault-tree analysis to evaluate system reliability.
Kumar, Mohit; Yadav, Shiv Prasad
2012-07-01
In this paper, a new approach of intuitionistic fuzzy fault-tree analysis is proposed to evaluate system reliability and to find the most critical system component that affects the system reliability. Here weakest t-norm based intuitionistic fuzzy fault tree analysis is presented to calculate fault interval of system components from integrating expert's knowledge and experience in terms of providing the possibility of failure of bottom events. It applies fault-tree analysis, α-cut of intuitionistic fuzzy set and T(ω) (the weakest t-norm) based arithmetic operations on triangular intuitionistic fuzzy sets to obtain fault interval and reliability interval of the system. This paper also modifies Tanaka et al.'s fuzzy fault-tree definition. In numerical verification, a malfunction of weapon system "automatic gun" is presented as a numerical example. The result of the proposed method is compared with the listing approaches of reliability analysis methods. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
DecisionMaker software and extracting fuzzy rules under uncertainty
NASA Technical Reports Server (NTRS)
Walker, Kevin B.
1992-01-01
Knowledge acquisition under uncertainty is examined. Theories proposed in deKorvin's paper 'Extracting Fuzzy Rules Under Uncertainty and Measuring Definability Using Rough Sets' are discussed as they relate to rule calculation algorithms. A data structure for holding an arbitrary number of data fields is described. Limitations of Pascal for loops in the generation of combinations are also discussed. Finally, recursive algorithms for generating all possible combination of attributes and for calculating the intersection of an arbitrary number of fuzzy sets are presented.
Adlassnig, Klaus-Peter; Fehre, Karsten; Rappelsberger, Andrea
2015-01-01
This study's objective is to develop and use a scalable genuine technology platform for clinical decision support based on Arden Syntax, which was extended by fuzzy set theory and fuzzy logic. Arden Syntax is a widely recognized formal language for representing clinical and scientific knowledge in an executable format, and is maintained by Health Level Seven (HL7) International and approved by the American National Standards Institute (ANSI). Fuzzy set theory and logic permit the representation of knowledge and automated reasoning under linguistic and propositional uncertainty. These forms of uncertainty are a common feature of patients' medical data, the body of medical knowledge, and deductive clinical reasoning.
A fuzzy case based reasoning tool for model based approach to rocket engine health monitoring
NASA Technical Reports Server (NTRS)
Krovvidy, Srinivas; Nolan, Adam; Hu, Yong-Lin; Wee, William G.
1992-01-01
In this system we develop a fuzzy case based reasoner that can build a case representation for several past anomalies detected, and we develop case retrieval methods that can be used to index a relevant case when a new problem (case) is presented using fuzzy sets. The choice of fuzzy sets is justified by the uncertain data. The new problem can be solved using knowledge of the model along with the old cases. This system can then be used to generalize the knowledge from previous cases and use this generalization to refine the existing model definition. This in turn can help to detect failures using the model based algorithms.
Adaptive fuzzy leader clustering of complex data sets in pattern recognition
NASA Technical Reports Server (NTRS)
Newton, Scott C.; Pemmaraju, Surya; Mitra, Sunanda
1992-01-01
A modular, unsupervised neural network architecture for clustering and classification of complex data sets is presented. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system that learns on-line in a stable and efficient manner. The initial classification is performed in two stages: a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from fuzzy C-means system equations for the centroids and the membership values. The AFLC algorithm is applied to the Anderson Iris data and laser-luminescent fingerprint image data. It is concluded that the AFLC algorithm successfully classifies features extracted from real data, discrete or continuous.
THERP and HEART integrated methodology for human error assessment
NASA Astrophysics Data System (ADS)
Castiglia, Francesco; Giardina, Mariarosa; Tomarchio, Elio
2015-11-01
THERP and HEART integrated methodology is proposed to investigate accident scenarios that involve operator errors during high-dose-rate (HDR) treatments. The new approach has been modified on the basis of fuzzy set concept with the aim of prioritizing an exhaustive list of erroneous tasks that can lead to patient radiological overexposures. The results allow for the identification of human errors that are necessary to achieve a better understanding of health hazards in the radiotherapy treatment process, so that it can be properly monitored and appropriately managed.
ERIC Educational Resources Information Center
Bosc, P.; Lietard, L.; Pivert, O.
2003-01-01
Considers flexible querying of relational databases. Highlights include SQL languages and basic aggregate operators; Sugeno's fuzzy integral; evaluation examples; and how and under what conditions other aggregate functions could be applied to fuzzy sets in a flexible query. (Author/LRW)
Knowledge representation in fuzzy logic
NASA Technical Reports Server (NTRS)
Zadeh, Lotfi A.
1989-01-01
The author presents a summary of the basic concepts and techniques underlying the application of fuzzy logic to knowledge representation. He then describes a number of examples relating to its use as a computational system for dealing with uncertainty and imprecision in the context of knowledge, meaning, and inference. It is noted that one of the basic aims of fuzzy logic is to provide a computational framework for knowledge representation and inference in an environment of uncertainty and imprecision. In such environments, fuzzy logic is effective when the solutions need not be precise and/or it is acceptable for a conclusion to have a dispositional rather than categorical validity. The importance of fuzzy logic derives from the fact that there are many real-world applications which fit these conditions, especially in the realm of knowledge-based systems for decision-making and control.
NASA Astrophysics Data System (ADS)
Ramli, Nazirah; Mutalib, Siti Musleha Ab; Mohamad, Daud
2017-08-01
Fuzzy time series forecasting model has been proposed since 1993 to cater for data in linguistic values. Many improvement and modification have been made to the model such as enhancement on the length of interval and types of fuzzy logical relation. However, most of the improvement models represent the linguistic term in the form of discrete fuzzy sets. In this paper, fuzzy time series model with data in the form of trapezoidal fuzzy numbers and natural partitioning length approach is introduced for predicting the unemployment rate. Two types of fuzzy relations are used in this study which are first order and second order fuzzy relation. This proposed model can produce the forecasted values under different degree of confidence.
NASA Astrophysics Data System (ADS)
Shah, Mazlina Muzafar; Wahab, Abdul Fatah
2017-08-01
Epilepsy disease occurs because of there is a temporary electrical disturbance in a group of brain cells (nurons). The recording of electrical signals come from the human brain which can be collected from the scalp of the head is called Electroencephalography (EEG). EEG then considered in digital format and in fuzzy form makes it a fuzzy digital space data form. The purpose of research is to identify the area (curve and surface) in fuzzy digital space affected by inside epilepsy seizure in epileptic patient's brain. The main focus for this research is to generalize fuzzy topological digital space, definition and basic operation also the properties by using digital fuzzy set and the operations. By using fuzzy digital space, the theory of digital fuzzy spline can be introduced to replace grid data that has been use previously to get better result. As a result, the flat of EEG can be fuzzy topological digital space and this type of data can be use to interpolate the digital fuzzy spline.
Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2
NASA Technical Reports Server (NTRS)
Lea, Robert N. (Editor); Villarreal, James A. (Editor)
1991-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.
Decomposed fuzzy systems and their application in direct adaptive fuzzy control.
Hsueh, Yao-Chu; Su, Shun-Feng; Chen, Ming-Chang
2014-10-01
In this paper, a novel fuzzy structure termed as the decomposed fuzzy system (DFS) is proposed to act as the fuzzy approximator for adaptive fuzzy control systems. The proposed structure is to decompose each fuzzy variable into layers of fuzzy systems, and each layer is to characterize one traditional fuzzy set. Similar to forming fuzzy rules in traditional fuzzy systems, layers from different variables form the so-called component fuzzy systems. DFS is proposed to provide more adjustable parameters to facilitate possible adaptation in fuzzy rules, but without introducing a learning burden. It is because those component fuzzy systems are independent so that it can facilitate minimum distribution learning effects among component fuzzy systems. It can be seen from our experiments that even when the rule number increases, the learning time in terms of cycles is still almost constant. It can also be found that the function approximation capability and learning efficiency of the DFS are much better than that of the traditional fuzzy systems when employed in adaptive fuzzy control systems. Besides, in order to further reduce the computational burden, a simplified DFS is proposed in this paper to satisfy possible real time constraints required in many applications. From our simulation results, it can be seen that the simplified DFS can perform fairly with a more concise decomposition structure.
Fuzzy-Neural Controller in Service Requests Distribution Broker for SOA-Based Systems
NASA Astrophysics Data System (ADS)
Fras, Mariusz; Zatwarnicka, Anna; Zatwarnicki, Krzysztof
The evolution of software architectures led to the rising importance of the Service Oriented Architecture (SOA) concept. This architecture paradigm support building flexible distributed service systems. In the paper the architecture of service request distribution broker designed for use in SOA-based systems is proposed. The broker is built with idea of fuzzy control. The functional and non-functional request requirements in conjunction with monitoring of execution and communication links are used to distribute requests. Decisions are made with use of fuzzy-neural network.
NASA Astrophysics Data System (ADS)
Malczewski, Jacek
2006-12-01
The objective of this paper is to incorporate the concept of fuzzy (linguistic) quantifiers into the GIS-based land suitability analysis via ordered weighted averaging (OWA). OWA is a multicriteria evaluation procedure (or combination operator). The nature of the OWA procedure depends on some parameters, which can be specified by means of fuzzy (linguistic) quantifiers. By changing the parameters, OWA can generate a wide range of decision strategies or scenarios. The quantifier-guided OWA procedure is illustrated using land-use suitability analysis in a region of Mexico.
Quantum structure of negation and conjunction in human thought
Aerts, Diederik; Sozzo, Sandro; Veloz, Tomas
2015-01-01
We analyze in this paper the data collected in a set of experiments investigating how people combine natural concepts. We study the mutual influence of conceptual conjunction and negation by measuring the membership weights of a list of exemplars with respect to two concepts, e.g., Fruits and Vegetables, and their conjunction Fruits And Vegetables, but also their conjunction when one or both concepts are negated, namely, Fruits And Not Vegetables, Not Fruits And Vegetables, and Not Fruits And Not Vegetables. Our findings sharpen and advance existing analysis on conceptual combinations, revealing systematic deviations from classical (fuzzy set) logic and probability theory. And, more important, our results give further considerable evidence to the validity of our quantum-theoretic framework for the combination of two concepts. Indeed, the representation of conceptual negation naturally arises from the general assumptions of our two-sector Fock space model, and this representation faithfully agrees with the collected data. In addition, we find a new significant and a priori unexpected deviation from classicality, which can exactly be explained by assuming that human reasoning is the superposition of an “emergent reasoning” and a “logical reasoning,” and that these two processes are represented in a Fock space algebraic structure. PMID:26483715
Interval Neutrosophic Sets and Their Application in Multicriteria Decision Making Problems
Zhang, Hong-yu; Wang, Jian-qiang; Chen, Xiao-hong
2014-01-01
As a generalization of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete, and inconsistent information existing in the real world. And interval neutrosophic sets (INSs) have been proposed exactly to address issues with a set of numbers in the real unit interval, not just a specific number. However, there are fewer reliable operations for INSs, as well as the INS aggregation operators and decision making method. For this purpose, the operations for INSs are defined and a comparison approach is put forward based on the related research of interval valued intuitionistic fuzzy sets (IVIFSs) in this paper. On the basis of the operations and comparison approach, two interval neutrosophic number aggregation operators are developed. Then, a method for multicriteria decision making problems is explored applying the aggregation operators. In addition, an example is provided to illustrate the application of the proposed method. PMID:24695916
Interval neutrosophic sets and their application in multicriteria decision making problems.
Zhang, Hong-yu; Wang, Jian-qiang; Chen, Xiao-hong
2014-01-01
As a generalization of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete, and inconsistent information existing in the real world. And interval neutrosophic sets (INSs) have been proposed exactly to address issues with a set of numbers in the real unit interval, not just a specific number. However, there are fewer reliable operations for INSs, as well as the INS aggregation operators and decision making method. For this purpose, the operations for INSs are defined and a comparison approach is put forward based on the related research of interval valued intuitionistic fuzzy sets (IVIFSs) in this paper. On the basis of the operations and comparison approach, two interval neutrosophic number aggregation operators are developed. Then, a method for multicriteria decision making problems is explored applying the aggregation operators. In addition, an example is provided to illustrate the application of the proposed method.
Inducing Fuzzy Models for Student Classification
ERIC Educational Resources Information Center
Nykanen, Ossi
2006-01-01
We report an approach for implementing predictive fuzzy systems that manage capturing both the imprecision of the empirically induced classifications and the imprecision of the intuitive linguistic expressions via the extensive use of fuzzy sets. From end-users' point of view, the approach enables encapsulating the technical details of the…
An Intuitionistic Fuzzy Logic Models for Multicriteria Decision Making Under Uncertainty
NASA Astrophysics Data System (ADS)
Jana, Biswajit; Mohanty, Sachi Nandan
2017-04-01
The purpose of this paper is to enhance the applicability of the fuzzy sets for developing mathematical models for decision making under uncertainty, In general a decision making process consist of four stages, namely collection of information from various sources, compile the information, execute the information and finally take the decision/action. Only fuzzy sets theory is capable to quantifying the linguistic expression to mathematical form in complex situation. Intuitionistic fuzzy set (IFSs) which reflects the fact that the degree of non membership is not always equal to one minus degree of membership. There may be some degree of hesitation. Thus, there are some situations where IFS theory provides a more meaningful and applicable to cope with imprecise information present for solving multiple criteria decision making problem. This paper emphasis on IFSs, which is help for solving real world problem in uncertainty situation.
Fuzzy logic controllers for electrotechnical devices - On-site tuning approach
NASA Astrophysics Data System (ADS)
Hissel, D.; Maussion, P.; Faucher, J.
2001-12-01
Fuzzy logic offers nowadays an interesting alternative to the designers of non linear control laws for electrical or electromechanical systems. However, due to the huge number of tuning parameters, this kind of control is only used in a few industrial applications. This paper proposes a new, very simple, on-site tuning strategy for a PID-like fuzzy logic controller. Thanks to the experimental designs methodology, we will propose sets of optimized pre-established settings for this kind of fuzzy controllers. The proposed parameters are only depending on one on-site open-loop identification test. In this way, this on-site tuning methodology has to be compared to the Ziegler-Nichols one's for conventional controllers. Experimental results (on a permanent magnets synchronous motor and on a DC/DC converter) will underline all the efficiency of this tuning methodology. Finally, the field of validity of the proposed pre-established settings will be given.
NASA Astrophysics Data System (ADS)
Ningrum, R. W.; Surarso, B.; Farikhin; Safarudin, Y. M.
2018-03-01
This paper proposes the combination of Firefly Algorithm (FA) and Chen Fuzzy Time Series Forecasting. Most of the existing fuzzy forecasting methods based on fuzzy time series use the static length of intervals. Therefore, we apply an artificial intelligence, i.e., Firefly Algorithm (FA) to set non-stationary length of intervals for each cluster on Chen Method. The method is evaluated by applying on the Jakarta Composite Index (IHSG) and compare with classical Chen Fuzzy Time Series Forecasting. Its performance verified through simulation using Matlab.
Fuzzy Neural Classifiers for Multi-Wavelength Interdigital Sensors
NASA Astrophysics Data System (ADS)
Xenides, D.; Vlachos, D. S.; Simos, T. E.
2007-12-01
The use of multi-wavelength interdigital sensors for non-destructive testing is based on the capability of the measuring system to classify the measured impendence according to some physical properties of the material under test. By varying the measuring frequency and the wavelength of the sensor (and thus the penetration depth of the electric field inside the material under test) we can produce images that correspond to various configurations of dielectric materials under different geometries. The implementation of a fuzzy neural network witch inputs these images for both quantitative and qualitative sensing is demonstrated. The architecture of the system is presented with some references to the general theory of fuzzy sets and fuzzy calculus. Experimental results are presented in the case of a set of 8 well characterized dielectric layers. Finally the effect of network parameters to the functionality of the system is discussed, especially in the case of functions evaluating the fuzzy AND and OR operations.
Refining Linear Fuzzy Rules by Reinforcement Learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap S.; Malkani, Anil
1996-01-01
Linear fuzzy rules are increasingly being used in the development of fuzzy logic systems. Radial basis functions have also been used in the antecedents of the rules for clustering in product space which can automatically generate a set of linear fuzzy rules from an input/output data set. Manual methods are usually used in refining these rules. This paper presents a method for refining the parameters of these rules using reinforcement learning which can be applied in domains where supervised input-output data is not available and reinforcements are received only after a long sequence of actions. This is shown for a generalization of radial basis functions. The formation of fuzzy rules from data and their automatic refinement is an important step in closing the gap between the application of reinforcement learning methods in the domains where only some limited input-output data is available.
Fuzzy logic techniques for rendezvous and docking of two geostationary satellites
NASA Technical Reports Server (NTRS)
Ortega, Guillermo
1995-01-01
Large assemblings in space require the ability to manage rendezvous and docking operations. In future these techniques will be required for the gradual build up of big telecommunication platforms in the geostationary orbit. The paper discusses the use of fuzzy logic to model and implement a control system for the docking/berthing of two satellites in geostationary orbit. The system mounted in a chaser vehicle determines the actual state of both satellites and generates torques to execute maneuvers to establish the structural latching. The paper describes the proximity operations to collocate the two satellites in the same orbital window, the fuzzy guidance and navigation of the chaser approaching the target and the final Fuzzy berthing. The fuzzy logic system represents a knowledge based controller that realizes the close loop operations autonomously replacing the conventional control algorithms. The goal is to produce smooth control actions in the proximity of the target and during the docking to avoid disturbance torques in the final assembly orbit. The knowledge of the fuzzy controller consists of a data base of rules and the definitions of the fuzzy sets. The knowledge of an experienced spacecraft controller is captured into a set of rules forming the Rules Data Base.
A Simple and Effective Remedial Learning System with a Fuzzy Expert System
ERIC Educational Resources Information Center
Lin, C.-C.; Guo, K.-H.; Lin, Y.-C.
2016-01-01
This study aims at implementing a simple and effective remedial learning system. Based on fuzzy inference, a remedial learning material selection system is proposed for a digital logic course. Two learning concepts of the course have been used in the proposed system: number systems and combinational logic. We conducted an experiment to validate…
Multi-objective decision-making under uncertainty: Fuzzy logic methods
NASA Technical Reports Server (NTRS)
Hardy, Terry L.
1994-01-01
Selecting the best option among alternatives is often a difficult process. This process becomes even more difficult when the evaluation criteria are vague or qualitative, and when the objectives vary in importance and scope. Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities.
Multicriteria Personnel Selection by the Modified Fuzzy VIKOR Method
Alguliyev, Rasim M.; Aliguliyev, Ramiz M.; Mahmudova, Rasmiyya S.
2015-01-01
Personnel evaluation is an important process in human resource management. The multicriteria nature and the presence of both qualitative and quantitative factors make it considerably more complex. In this study, a fuzzy hybrid multicriteria decision-making (MCDM) model is proposed to personnel evaluation. This model solves personnel evaluation problem in a fuzzy environment where both criteria and weights could be fuzzy sets. The triangular fuzzy numbers are used to evaluate the suitability of personnel and the approximate reasoning of linguistic values. For evaluation, we have selected five information culture criteria. The weights of the criteria were calculated using worst-case method. After that, modified fuzzy VIKOR is proposed to rank the alternatives. The outcome of this research is ranking and selecting best alternative with the help of fuzzy VIKOR and modified fuzzy VIKOR techniques. A comparative analysis of results by fuzzy VIKOR and modified fuzzy VIKOR methods is presented. Experiments showed that the proposed modified fuzzy VIKOR method has some advantages over fuzzy VIKOR method. Firstly, from a computational complexity point of view, the presented model is effective. Secondly, compared to fuzzy VIKOR method, it has high acceptable advantage compared to fuzzy VIKOR method. PMID:26516634
Fuzzy Arden Syntax: A fuzzy programming language for medicine.
Vetterlein, Thomas; Mandl, Harald; Adlassnig, Klaus-Peter
2010-05-01
The programming language Arden Syntax has been optimised for use in clinical decision support systems. We describe an extension of this language named Fuzzy Arden Syntax, whose original version was introduced in S. Tiffe's dissertation on "Fuzzy Arden Syntax: Representation and Interpretation of Vague Medical Knowledge by Fuzzified Arden Syntax" (Vienna University of Technology, 2003). The primary aim is to provide an easy means of processing vague or uncertain data, which frequently appears in medicine. For both propositional and number data types, fuzzy equivalents have been added to Arden Syntax. The Boolean data type was generalised to represent any truth degree between the two extremes 0 (falsity) and 1 (truth); fuzzy data types were introduced to represent fuzzy sets. The operations on truth values and real numbers were generalised accordingly. As the conditions to decide whether a certain programme unit is executed or not may be indeterminate, a Fuzzy Arden Syntax programme may split. The data in the different branches may be optionally aggregated subsequently. Fuzzy Arden Syntax offers the possibility to formulate conveniently Medical Logic Modules (MLMs) based on the principle of a continuously graded applicability of statements. Furthermore, ad hoc decisions about sharp value boundaries can be avoided. As an illustrative example shows, an MLM making use of the features of Fuzzy Arden Syntax is not significantly more complex than its Arden Syntax equivalent; in the ideal case, a programme handling crisp data remains practically unchanged when compared to its fuzzified version. In the latter case, the output data, which can be a set of weighted alternatives, typically depends continuously from the input data. In typical applications an Arden Syntax MLM can produce a different output after only slight changes of the input; discontinuities are in fact unavoidable when the input varies continuously but the output is taken from a discrete set of possibilities. This inconvenience can, however, be attenuated by means of certain mechanisms on which the programme flow under Fuzzy Arden Syntax is based. To write a programme making use of these possibilities is not significantly more difficult than to write a programme according to the usual practice. 2010 Elsevier B.V. All rights reserved.
An approach to solve replacement problems under intuitionistic fuzzy nature
NASA Astrophysics Data System (ADS)
Balaganesan, M.; Ganesan, K.
2018-04-01
Due to impreciseness to solve the day to day problems the researchers use fuzzy sets in their discussions of the replacement problems. The aim of this paper is to solve the replacement theory problems with triangular intuitionistic fuzzy numbers. An effective methodology based on fuzziness index and location index is proposed to determine the optimal solution of the replacement problem. A numerical example is illustrated to validate the proposed method.
A Priority Fuzzy Logic Extension of the XQuery Language
NASA Astrophysics Data System (ADS)
Škrbić, Srdjan; Wettayaprasit, Wiphada; Saeueng, Pannipa
2011-09-01
In recent years there have been significant research findings in flexible XML querying techniques using fuzzy set theory. Many types of fuzzy extensions to XML data model and XML query languages have been proposed. In this paper, we introduce priority fuzzy logic extensions to XQuery language. Describing these extensions we introduce a new query language. Moreover, we describe a way to implement an interpreter for this language using an existing XML native database.
Evolutionary Algorithm Based Automated Reverse Engineering and Defect Discovery
2007-09-21
a previous application of a GP as a data mining function to evolve fuzzy decision trees symbolically [3-5], the terminal set consisted of fuzzy...of input and output information is required. In the case of fuzzy decision trees, the database represented a collection of scenarios about which the...fuzzy decision tree to be evolved would make decisions . The database also had entries created by experts representing decisions about the scenarios
Doubravsky, Karel; Dohnal, Mirko
2015-01-01
Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details. PMID:26158662
Doubravsky, Karel; Dohnal, Mirko
2015-01-01
Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details.
This paper presents a fuzzy set-based method of mapping spatial accuracy of thematic map and computing several ecological indicators while taking into account spatial variation of accuracy associated with different land cover types and other factors (e.g., slope, soil type, etc.)...
A genetic fuzzy system for unstable angina risk assessment.
Dong, Wei; Huang, Zhengxing; Ji, Lei; Duan, Huilong
2014-02-18
Unstable Angina (UA) is widely accepted as a critical phase of coronary heart disease with patients exhibiting widely varying risks. Early risk assessment of UA is at the center of the management program, which allows physicians to categorize patients according to the clinical characteristics and stratification of risk and different prognosis. Although many prognostic models have been widely used for UA risk assessment in clinical practice, a number of studies have highlighted possible shortcomings. One serious drawback is that existing models lack the ability to deal with the intrinsic uncertainty about the variables utilized. In order to help physicians refine knowledge for the stratification of UA risk with respect to vagueness in information, this paper develops an intelligent system combining genetic algorithm and fuzzy association rule mining. In detail, it models the input information's vagueness through fuzzy sets, and then applies a genetic fuzzy system on the acquired fuzzy sets to extract the fuzzy rule set for the problem of UA risk assessment. The proposed system is evaluated using a real data-set collected from the cardiology department of a Chinese hospital, which consists of 54 patient cases. 9 numerical patient features and 17 categorical patient features that appear in the data-set are selected in the experiments. The proposed system made the same decisions as the physician in 46 (out of a total of 54) tested cases (85.2%). By comparing the results that are obtained through the proposed system with those resulting from the physician's decision, it has been found that the developed model is highly reflective of reality. The proposed system could be used for educational purposes, and with further improvements, could assist and guide young physicians in their daily work.
Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems
NASA Astrophysics Data System (ADS)
Peng, Juan-juan; Wang, Jian-qiang; Wang, Jing; Zhang, Hong-yu; Chen, Xiao-hong
2016-07-01
As a variation of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete and inconsistent information that exists in the real world. Simplified neutrosophic sets (SNSs) have been proposed for the main purpose of addressing issues with a set of specific numbers. However, there are certain problems regarding the existing operations of SNSs, as well as their aggregation operators and the comparison methods. Therefore, this paper defines the novel operations of simplified neutrosophic numbers (SNNs) and develops a comparison method based on the related research of intuitionistic fuzzy numbers. On the basis of these operations and the comparison method, some SNN aggregation operators are proposed. Additionally, an approach for multi-criteria group decision-making (MCGDM) problems is explored by applying these aggregation operators. Finally, an example to illustrate the applicability of the proposed method is provided and a comparison with some other methods is made.
Assessment of Seismic Damage on The Exist Buildings Using Fuzzy Logic
NASA Astrophysics Data System (ADS)
Pınar, USTA; Nihat, MOROVA; EVCİ, Ahmet; ERGÜN, Serap
2018-01-01
Earthquake as a natural disaster could damage the lives of many people and buildings all over the world. These is micvulnerability of the buildings needs to be evaluated. Accurate evaluation of damage sustained by buildings during natural disaster events is critical to determine the buildings safety and their suitability for future occupancy. The earthquake is one of the disasters that structures face the most. There fore, there is a need to evaluate seismic damage and vulnerability of the buildings to protect them. These days fuzzy systems have been widely used in different fields of science because of its simpli city and efficiency. Fuzzy logic provides a suitable framework for reasoning, deduction, and decision making in fuzzy conditions. In this paper, studies on earthquake hazard evaluation of buildings by fuzzy logic modeling concepts in the literature have been investigated and evaluated, as a whole.
Cost-Sharing of Ecological Construction Based on Trapezoidal Intuitionistic Fuzzy Cooperative Games.
Liu, Jiacai; Zhao, Wenjian
2016-11-08
There exist some fuzziness and uncertainty in the process of ecological construction. The aim of this paper is to develop a direct and an effective simplified method for obtaining the cost-sharing scheme when some interested parties form a cooperative coalition to improve the ecological environment of Min River together. Firstly, we propose the solution concept of the least square prenucleolus of cooperative games with coalition values expressed by trapezoidal intuitionistic fuzzy numbers. Then, based on the square of the distance in the numerical value between two trapezoidal intuitionistic fuzzy numbers, we establish a corresponding quadratic programming model to obtain the least square prenucleolus, which can effectively avoid the information distortion and uncertainty enlargement brought about by the subtraction of trapezoidal intuitionistic fuzzy numbers. Finally, we give a numerical example about the cost-sharing of ecological construction in Fujian Province in China to show the validity, applicability, and advantages of the proposed model and method.
Application of Fuzzy Reasoning for Filtering and Enhancement of Ultrasonic Images
NASA Technical Reports Server (NTRS)
Sacha, J. P.; Cios, K. J.; Roth, D. J.; Berke, L.; Vary, A.
1994-01-01
This paper presents a new type of an adaptive fuzzy operator for detection of isolated abnormalities, and enhancement of raw ultrasonic images. Fuzzy sets used in decision rules are defined for each image based on empirical statistics of the color intensities. Examples of the method are also presented in the paper.
Desired Accuracy Estimation of Noise Function from ECG Signal by Fuzzy Approach
Vahabi, Zahra; Kermani, Saeed
2012-01-01
Unknown noise and artifacts present in medical signals with non-linear fuzzy filter will be estimated and then removed. An adaptive neuro-fuzzy interference system which has a non-linear structure presented for the noise function prediction by before Samples. This paper is about a neuro-fuzzy method to estimate unknown noise of Electrocardiogram signal. Adaptive neural combined with Fuzzy System to construct a fuzzy Predictor. For this system setting parameters such as the number of Membership Functions for each input and output, training epochs, type of MFs for each input and output, learning algorithm and etc. is determined by learning data. At the end simulated experimental results are presented for proper validation. PMID:23717810
A fuzzy logic approach to modeling a vehicle crash test
NASA Astrophysics Data System (ADS)
Pawlus, Witold; Karimi, Hamid Reza; Robbersmyr, Kjell G.
2013-03-01
This paper presents an application of fuzzy approach to vehicle crash modeling. A typical vehicle to pole collision is described and kinematics of a car involved in this type of crash event is thoroughly characterized. The basics of fuzzy set theory and modeling principles based on fuzzy logic approach are presented. In particular, exceptional attention is paid to explain the methodology of creation of a fuzzy model of a vehicle collision. Furthermore, the simulation results are presented and compared to the original vehicle's kinematics. It is concluded which factors have influence on the accuracy of the fuzzy model's output and how they can be adjusted to improve the model's fidelity.
Dynamic Fuzzy Model Development for a Drum-type Boiler-turbine Plant Through GK Clustering
NASA Astrophysics Data System (ADS)
Habbi, Ahcène; Zelmat, Mimoun
2008-10-01
This paper discusses a TS fuzzy model identification method for an industrial drum-type boiler plant using the GK fuzzy clustering approach. The fuzzy model is constructed from a set of input-output data that covers a wide operating range of the physical plant. The reference data is generated using a complex first-principle-based mathematical model that describes the key dynamical properties of the boiler-turbine dynamics. The proposed fuzzy model is derived by means of fuzzy clustering method with particular attention on structure flexibility and model interpretability issues. This may provide a basement of a new way to design model based control and diagnosis mechanisms for the complex nonlinear plant.
An experimental methodology for a fuzzy set preference model
NASA Technical Reports Server (NTRS)
Turksen, I. B.; Willson, Ian A.
1992-01-01
A flexible fuzzy set preference model first requires approximate methodologies for implementation. Fuzzy sets must be defined for each individual consumer using computer software, requiring a minimum of time and expertise on the part of the consumer. The amount of information needed in defining sets must also be established. The model itself must adapt fully to the subject's choice of attributes (vague or precise), attribute levels, and importance weights. The resulting individual-level model should be fully adapted to each consumer. The methodologies needed to develop this model will be equally useful in a new generation of intelligent systems which interact with ordinary consumers, controlling electronic devices through fuzzy expert systems or making recommendations based on a variety of inputs. The power of personal computers and their acceptance by consumers has yet to be fully utilized to create interactive knowledge systems that fully adapt their function to the user. Understanding individual consumer preferences is critical to the design of new products and the estimation of demand (market share) for existing products, which in turn is an input to management systems concerned with production and distribution. The question of what to make, for whom to make it and how much to make requires an understanding of the customer's preferences and the trade-offs that exist between alternatives. Conjoint analysis is a widely used methodology which de-composes an overall preference for an object into a combination of preferences for its constituent parts (attributes such as taste and price), which are combined using an appropriate combination function. Preferences are often expressed using linguistic terms which cannot be represented in conjoint models. Current models are also not implemented an individual level, making it difficult to reach meaningful conclusions about the cause of an individual's behavior from an aggregate model. The combination of complex aggregate models and vague linguistic preferences has greatly limited the usefulness and predictive validity of existing preference models. A fuzzy set preference model that uses linguistic variables and a fully interactive implementation should be able to simultaneously address these issues and substantially improve the accuracy of demand estimates. The parallel implementation of crisp and fuzzy conjoint models using identical data not only validates the fuzzy set model but also provides an opportunity to assess the impact of fuzzy set definitions and individual attribute choices implemented in the interactive methodology developed in this research. The generalized experimental tools needed for conjoint models can also be applied to many other types of intelligent systems.
North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 1
NASA Technical Reports Server (NTRS)
Villarreal, James A. (Compiler)
1992-01-01
This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such as neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies.
North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 2
NASA Technical Reports Server (NTRS)
Villarreal, James A. (Compiler)
1992-01-01
This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such a neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies.
Equipment Selection by using Fuzzy TOPSIS Method
NASA Astrophysics Data System (ADS)
Yavuz, Mahmut
2016-10-01
In this study, Fuzzy TOPSIS method was performed for the selection of open pit truck and the optimal solution of the problem was investigated. Data from Turkish Coal Enterprises was used in the application of the method. This paper explains the Fuzzy TOPSIS approaches with group decision-making application in an open pit coal mine in Turkey. An algorithm of the multi-person multi-criteria decision making with fuzzy set approach was applied an equipment selection problem. It was found that Fuzzy TOPSIS with a group decision making is a method that may help decision-makers in solving different decision-making problems in mining.
Chen, Shyi-Ming; Chen, Shen-Wen
2015-03-01
In this paper, we present a new method for fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy-trend logical relationships. Firstly, the proposed method fuzzifies the historical training data of the main factor and the secondary factor into fuzzy sets, respectively, to form two-factors second-order fuzzy logical relationships. Then, it groups the obtained two-factors second-order fuzzy logical relationships into two-factors second-order fuzzy-trend logical relationship groups. Then, it calculates the probability of the "down-trend," the probability of the "equal-trend" and the probability of the "up-trend" of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group, respectively. Finally, it performs the forecasting based on the probabilities of the down-trend, the equal-trend, and the up-trend of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group. We also apply the proposed method to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and the NTD/USD exchange rates. The experimental results show that the proposed method outperforms the existing methods.
Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images.
Udupa, Jayaram K; Odhner, Dewey; Zhao, Liming; Tong, Yubing; Matsumoto, Monica M S; Ciesielski, Krzysztof C; Falcao, Alexandre X; Vaideeswaran, Pavithra; Ciesielski, Victoria; Saboury, Babak; Mohammadianrasanani, Syedmehrdad; Sin, Sanghun; Arens, Raanan; Torigian, Drew A
2014-07-01
To make Quantitative Radiology (QR) a reality in radiological practice, computerized body-wide Automatic Anatomy Recognition (AAR) becomes essential. With the goal of building a general AAR system that is not tied to any specific organ system, body region, or image modality, this paper presents an AAR methodology for localizing and delineating all major organs in different body regions based on fuzzy modeling ideas and a tight integration of fuzzy models with an Iterative Relative Fuzzy Connectedness (IRFC) delineation algorithm. The methodology consists of five main steps: (a) gathering image data for both building models and testing the AAR algorithms from patient image sets existing in our health system; (b) formulating precise definitions of each body region and organ and delineating them following these definitions; (c) building hierarchical fuzzy anatomy models of organs for each body region; (d) recognizing and locating organs in given images by employing the hierarchical models; and (e) delineating the organs following the hierarchy. In Step (c), we explicitly encode object size and positional relationships into the hierarchy and subsequently exploit this information in object recognition in Step (d) and delineation in Step (e). Modality-independent and dependent aspects are carefully separated in model encoding. At the model building stage, a learning process is carried out for rehearsing an optimal threshold-based object recognition method. The recognition process in Step (d) starts from large, well-defined objects and proceeds down the hierarchy in a global to local manner. A fuzzy model-based version of the IRFC algorithm is created by naturally integrating the fuzzy model constraints into the delineation algorithm. The AAR system is tested on three body regions - thorax (on CT), abdomen (on CT and MRI), and neck (on MRI and CT) - involving a total of over 35 organs and 130 data sets (the total used for model building and testing). The training and testing data sets are divided into equal size in all cases except for the neck. Overall the AAR method achieves a mean accuracy of about 2 voxels in localizing non-sparse blob-like objects and most sparse tubular objects. The delineation accuracy in terms of mean false positive and negative volume fractions is 2% and 8%, respectively, for non-sparse objects, and 5% and 15%, respectively, for sparse objects. The two object groups achieve mean boundary distance relative to ground truth of 0.9 and 1.5 voxels, respectively. Some sparse objects - venous system (in the thorax on CT), inferior vena cava (in the abdomen on CT), and mandible and naso-pharynx (in neck on MRI, but not on CT) - pose challenges at all levels, leading to poor recognition and/or delineation results. The AAR method fares quite favorably when compared with methods from the recent literature for liver, kidneys, and spleen on CT images. We conclude that separation of modality-independent from dependent aspects, organization of objects in a hierarchy, encoding of object relationship information explicitly into the hierarchy, optimal threshold-based recognition learning, and fuzzy model-based IRFC are effective concepts which allowed us to demonstrate the feasibility of a general AAR system that works in different body regions on a variety of organs and on different modalities. Copyright © 2014 Elsevier B.V. All rights reserved.
Identification of different geologic units using fuzzy constrained resistivity tomography
NASA Astrophysics Data System (ADS)
Singh, Anand; Sharma, S. P.
2018-01-01
Different geophysical inversion strategies are utilized as a component of an interpretation process that tries to separate geologic units based on the resistivity distribution. In the present study, we present the results of separating different geologic units using fuzzy constrained resistivity tomography. This was accomplished using fuzzy c means, a clustering procedure to improve the 2D resistivity image and geologic separation within the iterative minimization through inversion. First, we developed a Matlab-based inversion technique to obtain a reliable resistivity image using different geophysical data sets (electrical resistivity and electromagnetic data). Following this, the recovered resistivity model was converted into a fuzzy constrained resistivity model by assigning the highest probability value of each model cell to the cluster utilizing fuzzy c means clustering procedure during the iterative process. The efficacy of the algorithm is demonstrated using three synthetic plane wave electromagnetic data sets and one electrical resistivity field dataset. The presented approach shows improvement on the conventional inversion approach to differentiate between different geologic units if the correct number of geologic units will be identified. Further, fuzzy constrained resistivity tomography was performed to examine the augmentation of uranium mineralization in the Beldih open cast mine as a case study. We also compared geologic units identified by fuzzy constrained resistivity tomography with geologic units interpreted from the borehole information.
Zhang, Fan; Zhang, Xinhong
2011-01-01
Most of classification, quality evaluation or grading of the flue-cured tobacco leaves are manually operated, which relies on the judgmental experience of experts, and inevitably limited by personal, physical and environmental factors. The classification and the quality evaluation are therefore subjective and experientially based. In this paper, an automatic classification method of tobacco leaves based on the digital image processing and the fuzzy sets theory is presented. A grading system based on image processing techniques was developed for automatically inspecting and grading flue-cured tobacco leaves. This system uses machine vision for the extraction and analysis of color, size, shape and surface texture. Fuzzy comprehensive evaluation provides a high level of confidence in decision making based on the fuzzy logic. The neural network is used to estimate and forecast the membership function of the features of tobacco leaves in the fuzzy sets. The experimental results of the two-level fuzzy comprehensive evaluation (FCE) show that the accuracy rate of classification is about 94% for the trained tobacco leaves, and the accuracy rate of the non-trained tobacco leaves is about 72%. We believe that the fuzzy comprehensive evaluation is a viable way for the automatic classification and quality evaluation of the tobacco leaves. PMID:22163744
Navigating a Mobile Robot Across Terrain Using Fuzzy Logic
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Howard, Ayanna; Bon, Bruce
2003-01-01
A strategy for autonomous navigation of a robotic vehicle across hazardous terrain involves the use of a measure of traversability of terrain within a fuzzy-logic conceptual framework. This navigation strategy requires no a priori information about the environment. Fuzzy logic was selected as a basic element of this strategy because it provides a formal methodology for representing and implementing a human driver s heuristic knowledge and operational experience. Within a fuzzy-logic framework, the attributes of human reasoning and decision- making can be formulated by simple IF (antecedent), THEN (consequent) rules coupled with easily understandable and natural linguistic representations. The linguistic values in the rule antecedents convey the imprecision associated with measurements taken by sensors onboard a mobile robot, while the linguistic values in the rule consequents represent the vagueness inherent in the reasoning processes to generate the control actions. The operational strategies of the human expert driver can be transferred, via fuzzy logic, to a robot-navigation strategy in the form of a set of simple conditional statements composed of linguistic variables. These linguistic variables are defined by fuzzy sets in accordance with user-defined membership functions. The main advantages of a fuzzy navigation strategy lie in the ability to extract heuristic rules from human experience and to obviate the need for an analytical model of the robot navigation process.
El-Nagar, Ahmad M
2018-01-01
In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
The coordinating contracts of supply chain in a fuzzy decision environment.
Sang, Shengju
2016-01-01
The rapid change of the product life cycle is making the parameters of the supply chain models more and more uncertain. Therefore, we consider the coordination mechanisms between one manufacturer and one retailer in a fuzzy decision marking environment, where the parameters of the models can be forecasted and expressed as the triangular fuzzy variables. The centralized decision-making system, two types of supply chain contracts, namely, the revenue sharing contract and the return contract are proposed. To obtain their optimal policies, the fuzzy set theory is adopted to solve these fuzzy models. Finally, three numerical examples are provided to analyze the impacts of the fuzziness of the market demand, retail price and salvage value of the product on the optimal solutions in two contracts. It shows that in order to obtain more fuzzy expected profits the retailer and the manufacturer should seek as low fuzziness of demand, high fuzziness of the retail price and the salvage value as possible in both contracts.
Character recognition using a neural network model with fuzzy representation
NASA Technical Reports Server (NTRS)
Tavakoli, Nassrin; Seniw, David
1992-01-01
The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.
Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 1
NASA Technical Reports Server (NTRS)
Lea, Robert N. (Editor); Villarreal, James (Editor)
1991-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Houston, Clear Lake. The workshop was held April 11 to 13 at the Johnson Space Flight Center. Technical topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.
Fuzzy variable impedance control based on stiffness identification for human-robot cooperation
NASA Astrophysics Data System (ADS)
Mao, Dachao; Yang, Wenlong; Du, Zhijiang
2017-06-01
This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.
An Application of Fuzzy Logic Control to a Classical Military Tracking Problem
1994-05-19
34, Fuzzy Sets and Systems, vol.4., 1980, pp.13-30. Berenji , Hamid R . and Pratap Khedkar. "Learning and Tuning Fuzzy Logic Controllers Through...A TRIDENT SCHOLAR PROJECT REPORT" NO. 222 "An Application of Fuzzy Logic Control to a Classical Military Tracking Problem" DTIC •S r F UNITED STATES...Zq qAvail andlor ____________________I__________ Dist SpecialDate USNA- 1531-2 REPORT DOCUMENTATION PAGE r •,,,op APmw OMB no. 0704.0188 ¢iQiiati~m.f
The Construction of a Vague Fuzzy Measure Through L1 Parameter Optimization
2012-08-26
Programming v. 1.21, http://cvxr.com/cvx, (2011) 11 [3] E.J. Candes, J. Romberg and T. Tao. Robust Uncertainty Principles: Exact Signal Reconstruction From...Annales de I’institut Fourer, 5 (1954), pp. 131-295 [9] D. Diakoulaki, C. Antunes and A. Martins. MCDA in Energy Planning, Int. Series in Operations...formance and Tests , Fuzzy Sets and Systems, Vol. 65, Issues 2-3 (1994), pp.255-271 [15] M. Grabisch. Fuzzy Integral in Multicriteria Decision Making, Fuzzy
A Dual Hesitant Fuzzy Multigranulation Rough Set over Two-Universe Model for Medical Diagnoses
Zhang, Chao; Li, Deyu; Yan, Yan
2015-01-01
In medical science, disease diagnosis is one of the difficult tasks for medical experts who are confronted with challenges in dealing with a lot of uncertain medical information. And different medical experts might express their own thought about the medical knowledge base which slightly differs from other medical experts. Thus, to solve the problems of uncertain data analysis and group decision making in disease diagnoses, we propose a new rough set model called dual hesitant fuzzy multigranulation rough set over two universes by combining the dual hesitant fuzzy set and multigranulation rough set theories. In the framework of our study, both the definition and some basic properties of the proposed model are presented. Finally, we give a general approach which is applied to a decision making problem in disease diagnoses, and the effectiveness of the approach is demonstrated by a numerical example. PMID:26858772
Adaptive Filter Design Using Type-2 Fuzzy Cerebellar Model Articulation Controller.
Lin, Chih-Min; Yang, Ming-Shu; Chao, Fei; Hu, Xiao-Min; Zhang, Jun
2016-10-01
This paper aims to propose an efficient network and applies it as an adaptive filter for the signal processing problems. An adaptive filter is proposed using a novel interval type-2 fuzzy cerebellar model articulation controller (T2FCMAC). The T2FCMAC realizes an interval type-2 fuzzy logic system based on the structure of the CMAC. Due to the better ability of handling uncertainties, type-2 fuzzy sets can solve some complicated problems with outstanding effectiveness than type-1 fuzzy sets. In addition, the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so that the convergence of the filtering error can be guaranteed. In order to demonstrate the performance of the proposed adaptive T2FCMAC filter, it is tested in signal processing applications, including a nonlinear channel equalization system, a time-varying channel equalization system, and an adaptive noise cancellation system. The advantages of the proposed filter over the other adaptive filters are verified through simulations.
Fluorescence intensity positivity classification of Hep-2 cells images using fuzzy logic
NASA Astrophysics Data System (ADS)
Sazali, Dayang Farzana Abang; Janier, Josefina Barnachea; May, Zazilah Bt.
2014-10-01
Indirect Immunofluorescence (IIF) is a good standard used for antinuclear autoantibody (ANA) test using Hep-2 cells to determine specific diseases. Different classifier algorithm methods have been proposed in previous works however, there still no valid set as a standard to classify the fluorescence intensity. This paper presents the use of fuzzy logic to classify the fluorescence intensity and to determine the positivity of the Hep-2 cell serum samples. The fuzzy algorithm involves the image pre-processing by filtering the noises and smoothen the image, converting the red, green and blue (RGB) color space of images to luminosity layer, chromaticity layer "a" and "b" (LAB) color space where the mean value of the lightness and chromaticity layer "a" was extracted and classified by using fuzzy logic algorithm based on the standard score ranges of antinuclear autoantibody (ANA) fluorescence intensity. Using 100 data sets of positive and intermediate fluorescence intensity for testing the performance measurements, the fuzzy logic obtained an accuracy of intermediate and positive class as 85% and 87% respectively.
Assessment of Uncertainties Related to Seismic Hazard Using Fuzzy Analysis
NASA Astrophysics Data System (ADS)
Jorjiashvili, N.; Yokoi, T.; Javakhishvili, Z.
2013-05-01
Seismic hazard analysis in last few decades has been become very important issue. Recently, new technologies and available data have been improved that helped many scientists to understand where and why earthquakes happen, physics of earthquakes, etc. They have begun to understand the role of uncertainty in Seismic hazard analysis. However, there is still significant problem how to handle existing uncertainty. The same lack of information causes difficulties to quantify uncertainty accurately. Usually attenuation curves are obtained in statistical way: regression analysis. Statistical and probabilistic analysis show overlapped results for the site coefficients. This overlapping takes place not only at the border between two neighboring classes, but also among more than three classes. Although the analysis starts from classifying sites using the geological terms, these site coefficients are not classified at all. In the present study, this problem is solved using Fuzzy set theory. Using membership functions the ambiguities at the border between neighboring classes can be avoided. Fuzzy set theory is performed for southern California by conventional way. In this study standard deviations that show variations between each site class obtained by Fuzzy set theory and classical way are compared. Results on this analysis show that when we have insufficient data for hazard assessment site classification based on Fuzzy set theory shows values of standard deviations less than obtained by classical way which is direct proof of less uncertainty.
A fuzzy goal programming model for biodiesel production
NASA Astrophysics Data System (ADS)
Lutero, D. S.; Pangue, EMU; Tubay, J. M.; Lubag, S. P.
2016-02-01
A fuzzy goal programming (FGP) model for biodiesel production in the Philippines was formulated with Coconut (Cocos nucifera) and Jatropha (Jatropha curcas) as sources of biodiesel. Objectives were maximization of feedstock production and overall revenue and, minimization of energy used in production and working capital for farming subject to biodiesel and non-biodiesel requirements, and availability of land, labor, water and machine time. All these objectives and constraints were assumed to be fuzzy. Model was tested for different sets of weights. Results for all sets of weights showed the same optimal allocation. Coconut alone can satisfy the biodiesel requirement of 2% per volume.
The fuzzy polynucleotide space: basic properties.
Torres, Angela; Nieto, Juan J
2003-03-22
Any triplet codon may be regarded as a 12-dimensional fuzzy code. Sufficient information about a particular sequence may not be available in certain situations. The investigator will be confronted with imprecise sequences, yet want to make comparisons of sequences. Fuzzy polynucleotides can be compared by using geometrical interpretation of fuzzy sets as points in a hypercube. We introduce the space of fuzzy polynucleotides and a means of measuring dissimilitudes between them. We establish mathematical principles to measure dissimilarities between fuzzy polynucleotides and present several examples in this metric space. We calculate the frequencies of the nucleotides at the three base sites of a codon in the coding sequences of Escherichia coli K-12 and Mycobacterium tuberculosis H37Rv, and consider them as points in that fuzzy space. We compute the distance between the genomes of E.coli and M.tuberculosis.
Knowledge-Based Motion Control of AN Intelligent Mobile Autonomous System
NASA Astrophysics Data System (ADS)
Isik, Can
An Intelligent Mobile Autonomous System (IMAS), which is equipped with vision and low level sensors to cope with unknown obstacles, is modeled as a hierarchy of path planning and motion control. This dissertation concentrates on the lower level of this hierarchy (Pilot) with a knowledge-based controller. The basis of a theory of knowledge-based controllers is established, using the example of the Pilot level motion control of IMAS. In this context, the knowledge-based controller with a linguistic world concept is shown to be adequate for the minimum time control of an autonomous mobile robot motion. The Pilot level motion control of IMAS is approached in the framework of production systems. The three major components of the knowledge-based control that are included here are the hierarchies of the database, the rule base and the rule evaluator. The database, which is the representation of the state of the world, is organized as a semantic network, using a concept of minimal admissible vocabulary. The hierarchy of rule base is derived from the analytical formulation of minimum-time control of IMAS motion. The procedure introduced for rule derivation, which is called analytical model verbalization, utilizes the concept of causalities to describe the system behavior. A realistic analytical system model is developed and the minimum-time motion control in an obstacle strewn environment is decomposed to a hierarchy of motion planning and control. The conditions for the validity of the hierarchical problem decomposition are established, and the consistency of operation is maintained by detecting the long term conflicting decisions of the levels of the hierarchy. The imprecision in the world description is modeled using the theory of fuzzy sets. The method developed for the choice of the rule that prescribes the minimum-time motion control among the redundant set of applicable rules is explained and the usage of fuzzy set operators is justified. Also included in the dissertation are the description of the computer simulation of Pilot within the hierarchy of IMAS control and the simulated experiments that demonstrate the theoretical work.
Applications of fuzzy logic to control and decision making
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
Long range space missions will require high operational efficiency as well as autonomy to enhance the effectivity of performance. Fuzzy logic technology has been shown to be powerful and robust in interpreting imprecise measurements and generating appropriate control decisions for many space operations. Several applications are underway, studying the fuzzy logic approach to solving control and decision making problems. Fuzzy logic algorithms for relative motion and attitude control have been developed and demonstrated for proximity operations. Based on this experience, motion control algorithms that include obstacle avoidance were developed for a Mars Rover prototype for maneuvering during the sample collection process. A concept of an intelligent sensor system that can identify objects and track them continuously and learn from its environment is under development to support traffic management and proximity operations around the Space Station Freedom. For safe and reliable operation of Lunar/Mars based crew quarters, high speed controllers with ability to combine imprecise measurements from several sensors is required. A fuzzy logic approach that uses high speed fuzzy hardware chips is being studied.
Poverty Lines Based on Fuzzy Sets Theory and Its Application to Malaysian Data
ERIC Educational Resources Information Center
Abdullah, Lazim
2011-01-01
Defining the poverty line has been acknowledged as being highly variable by the majority of published literature. Despite long discussions and successes, poverty line has a number of problems due to its arbitrary nature. This paper proposes three measurements of poverty lines using membership functions based on fuzzy set theory. The three…
NASA Astrophysics Data System (ADS)
Pradhan, Moumita; Pradhan, Dinesh; Bandyopadhyay, G.
2010-10-01
Fuzzy System has demonstrated their ability to solve different kinds of problem in various application domains. There is an increasing interest to apply fuzzy concept to improve tasks of any system. Here case study of a thermal power plant is considered. Existing time estimation represents time to complete tasks. Applying fuzzy linear approach it becomes clear that after each confidence level least time is taken to complete tasks. As time schedule is less than less amount of cost is needed. Objective of this paper is to show how one system becomes more efficient in applying Fuzzy Linear approach. In this paper we want to optimize the time estimation to perform all tasks in appropriate time schedules. For the case study, optimistic time (to), pessimistic time (tp), most likely time(tm) is considered as data collected from thermal power plant. These time estimates help to calculate expected time(te) which represents time to complete particular task to considering all happenings. Using project evaluation and review technique (PERT) and critical path method (CPM) concept critical path duration (CPD) of this project is calculated. This tells that the probability of fifty percent of the total tasks can be completed in fifty days. Using critical path duration and standard deviation of the critical path, total completion of project can be completed easily after applying normal distribution. Using trapezoidal rule from four time estimates (to, tm, tp, te), we can calculate defuzzyfied value of time estimates. For range of fuzzy, we consider four confidence interval level say 0.4, 0.6, 0.8,1. From our study, it is seen that time estimates at confidence level between 0.4 and 0.8 gives the better result compared to other confidence levels.
Fuzzy feature selection based on interval type-2 fuzzy sets
NASA Astrophysics Data System (ADS)
Cherif, Sahar; Baklouti, Nesrine; Alimi, Adel; Snasel, Vaclav
2017-03-01
When dealing with real world data; noise, complexity, dimensionality, uncertainty and irrelevance can lead to low performance and insignificant judgment. Fuzzy logic is a powerful tool for controlling conflicting attributes which can have similar effects and close meanings. In this paper, an interval type-2 fuzzy feature selection is presented as a new approach for removing irrelevant features and reducing complexity. We demonstrate how can Feature Selection be joined with Interval Type-2 Fuzzy Logic for keeping significant features and hence reducing time complexity. The proposed method is compared with some other approaches. The results show that the number of attributes is proportionally small.
Fuzzy-Rough Nearest Neighbour Classification
NASA Astrophysics Data System (ADS)
Jensen, Richard; Cornelis, Chris
A new fuzzy-rough nearest neighbour (FRNN) classification algorithm is presented in this paper, as an alternative to Sarkar's fuzzy-rough ownership function (FRNN-O) approach. By contrast to the latter, our method uses the nearest neighbours to construct lower and upper approximations of decision classes, and classifies test instances based on their membership to these approximations. In the experimental analysis, we evaluate our approach with both classical fuzzy-rough approximations (based on an implicator and a t-norm), as well as with the recently introduced vaguely quantified rough sets. Preliminary results are very good, and in general FRNN outperforms FRNN-O, as well as the traditional fuzzy nearest neighbour (FNN) algorithm.
NASA Astrophysics Data System (ADS)
Hsieh, Bieng-Zih; Lewis, Charles; Lin, Zsay-Shing
2005-04-01
The purpose of this study is to construct a fuzzy lithology system from well logs to identify formation lithology of a groundwater aquifer system in order to better apply conventional well logging interpretation in hydro-geologic studies because well log responses of aquifers are sometimes different from those of conventional oil and gas reservoirs. The input variables for this system are the gamma-ray log reading, the separation between the spherically focused resistivity and the deep very-enhanced resistivity curves, and the borehole compensated sonic log reading. The output variable is groundwater formation lithology. All linguistic variables are based on five linguistic terms with a trapezoidal membership function. In this study, 50 data sets are clustered into 40 training sets and 10 testing sets for constructing the fuzzy lithology system and validating the ability of system prediction, respectively. The rule-based database containing 12 fuzzy lithology rules is developed from the training data sets, and the rule strength is weighted. A Madani inference system and the bisector of area defuzzification method are used for fuzzy inference and defuzzification. The success of training performance and the prediction ability were both 90%, with the calculated correlation of training and testing equal to 0.925 and 0.928, respectively. Well logs and core data from a clastic aquifer (depths 100-198 m) in the Shui-Lin area of west-central Taiwan are used for testing the system's construction. Comparison of results from core analysis, well logging and the fuzzy lithology system indicates that even though the well logging method can easily define a permeable sand formation, distinguishing between silts and sands and determining grain size variation in sands is more subjective. These shortcomings can be improved by a fuzzy lithology system that is able to yield more objective decisions than some conventional methods of log interpretation.
DFP: a Bioconductor package for fuzzy profile identification and gene reduction of microarray data
Glez-Peña, Daniel; Álvarez, Rodrigo; Díaz, Fernando; Fdez-Riverola, Florentino
2009-01-01
Background Expression profiling assays done by using DNA microarray technology generate enormous data sets that are not amenable to simple analysis. The greatest challenge in maximizing the use of this huge amount of data is to develop algorithms to interpret and interconnect results from different genes under different conditions. In this context, fuzzy logic can provide a systematic and unbiased way to both (i) find biologically significant insights relating to meaningful genes, thereby removing the need for expert knowledge in preliminary steps of microarray data analyses and (ii) reduce the cost and complexity of later applied machine learning techniques being able to achieve interpretable models. Results DFP is a new Bioconductor R package that implements a method for discretizing and selecting differentially expressed genes based on the application of fuzzy logic. DFP takes advantage of fuzzy membership functions to assign linguistic labels to gene expression levels. The technique builds a reduced set of relevant genes (FP, Fuzzy Pattern) able to summarize and represent each underlying class (pathology). A last step constructs a biased set of genes (DFP, Discriminant Fuzzy Pattern) by intersecting existing fuzzy patterns in order to detect discriminative elements. In addition, the software provides new functions and visualisation tools that summarize achieved results and aid in the interpretation of differentially expressed genes from multiple microarray experiments. Conclusion DFP integrates with other packages of the Bioconductor project, uses common data structures and is accompanied by ample documentation. It has the advantage that its parameters are highly configurable, facilitating the discovery of biologically relevant connections between sets of genes belonging to different pathologies. This information makes it possible to automatically filter irrelevant genes thereby reducing the large volume of data supplied by microarray experiments. Based on these contributions GENECBR, a successful tool for cancer diagnosis using microarray datasets, has recently been released. PMID:19178723
DFP: a Bioconductor package for fuzzy profile identification and gene reduction of microarray data.
Glez-Peña, Daniel; Alvarez, Rodrigo; Díaz, Fernando; Fdez-Riverola, Florentino
2009-01-29
Expression profiling assays done by using DNA microarray technology generate enormous data sets that are not amenable to simple analysis. The greatest challenge in maximizing the use of this huge amount of data is to develop algorithms to interpret and interconnect results from different genes under different conditions. In this context, fuzzy logic can provide a systematic and unbiased way to both (i) find biologically significant insights relating to meaningful genes, thereby removing the need for expert knowledge in preliminary steps of microarray data analyses and (ii) reduce the cost and complexity of later applied machine learning techniques being able to achieve interpretable models. DFP is a new Bioconductor R package that implements a method for discretizing and selecting differentially expressed genes based on the application of fuzzy logic. DFP takes advantage of fuzzy membership functions to assign linguistic labels to gene expression levels. The technique builds a reduced set of relevant genes (FP, Fuzzy Pattern) able to summarize and represent each underlying class (pathology). A last step constructs a biased set of genes (DFP, Discriminant Fuzzy Pattern) by intersecting existing fuzzy patterns in order to detect discriminative elements. In addition, the software provides new functions and visualisation tools that summarize achieved results and aid in the interpretation of differentially expressed genes from multiple microarray experiments. DFP integrates with other packages of the Bioconductor project, uses common data structures and is accompanied by ample documentation. It has the advantage that its parameters are highly configurable, facilitating the discovery of biologically relevant connections between sets of genes belonging to different pathologies. This information makes it possible to automatically filter irrelevant genes thereby reducing the large volume of data supplied by microarray experiments. Based on these contributions GENECBR, a successful tool for cancer diagnosis using microarray datasets, has recently been released.
Fuzzy adaptive interacting multiple model nonlinear filter for integrated navigation sensor fusion.
Tseng, Chien-Hao; Chang, Chih-Wen; Jwo, Dah-Jing
2011-01-01
In this paper, the application of the fuzzy interacting multiple model unscented Kalman filter (FUZZY-IMMUKF) approach to integrated navigation processing for the maneuvering vehicle is presented. The unscented Kalman filter (UKF) employs a set of sigma points through deterministic sampling, such that a linearization process is not necessary, and therefore the errors caused by linearization as in the traditional extended Kalman filter (EKF) can be avoided. The nonlinear filters naturally suffer, to some extent, the same problem as the EKF for which the uncertainty of the process noise and measurement noise will degrade the performance. As a structural adaptation (model switching) mechanism, the interacting multiple model (IMM), which describes a set of switching models, can be utilized for determining the adequate value of process noise covariance. The fuzzy logic adaptive system (FLAS) is employed to determine the lower and upper bounds of the system noise through the fuzzy inference system (FIS). The resulting sensor fusion strategy can efficiently deal with the nonlinear problem for the vehicle navigation. The proposed FUZZY-IMMUKF algorithm shows remarkable improvement in the navigation estimation accuracy as compared to the relatively conventional approaches such as the UKF and IMMUKF.
Chen, Jing; Tang, Yuan Yan; Chen, C L Philip; Fang, Bin; Lin, Yuewei; Shang, Zhaowei
2014-12-01
Protein subcellular location prediction aims to predict the location where a protein resides within a cell using computational methods. Considering the main limitations of the existing methods, we propose a hierarchical multi-label learning model FHML for both single-location proteins and multi-location proteins. The latent concepts are extracted through feature space decomposition and label space decomposition under the nonnegative data factorization framework. The extracted latent concepts are used as the codebook to indirectly connect the protein features to their annotations. We construct dual fuzzy hypergraphs to capture the intrinsic high-order relations embedded in not only feature space, but also label space. Finally, the subcellular location annotation information is propagated from the labeled proteins to the unlabeled proteins by performing dual fuzzy hypergraph Laplacian regularization. The experimental results on the six protein benchmark datasets demonstrate the superiority of our proposed method by comparing it with the state-of-the-art methods, and illustrate the benefit of exploiting both feature correlations and label correlations.
Associating Human-Centered Concepts with Social Networks Using Fuzzy Sets
NASA Astrophysics Data System (ADS)
Yager, Ronald R.
The rapidly growing global interconnectivity, brought about to a large extent by the Internet, has dramatically increased the importance and diversity of social networks. Modern social networks cut across a spectrum from benign recreational focused websites such as Facebook to occupationally oriented websites such as LinkedIn to criminally focused groups such as drug cartels to devastation and terror focused groups such as Al-Qaeda. Many organizations are interested in analyzing and extracting information related to these social networks. Among these are governmental police and security agencies as well marketing and sales organizations. To aid these organizations there is a need for technologies to model social networks and intelligently extract information from these models. While established technologies exist for the modeling of relational networks [1-7] few technologies exist to extract information from these, compatible with human perception and understanding. Data bases is an example of a technology in which we have tools for representing our information as well as tools for querying and extracting the information contained. Our goal is in some sense analogous. We want to use the relational network model to represent information, in this case about relationships and interconnections, and then be able to query the social network using intelligent human-centered concepts. To extend our capabilities to interact with social relational networks we need to associate with these network human concepts and ideas. Since human beings predominantly use linguistic terms in which to reason and understand we need to build bridges between human conceptualization and the formal mathematical representation of the social network. Consider for example a concept such as "leader". An analyst may be able to express, in linguistic terms, using a network relevant vocabulary, properties of a leader. Our task is to translate this linguistic description into a mathematical formalism that allows us to determine how true it is that a particular node is a leader. In this work we look at the use of fuzzy set methodologies [8-10] to provide a bridge between the human analyst and the formal model of the network.
Das, Saptarshi; Pan, Indranil; Das, Shantanu
2013-07-01
Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Students' Understanding of the Function-Derivative Relationship When Learning Economic Concepts
ERIC Educational Resources Information Center
Ariza, Angel; Llinares, Salvador; Valls, Julia
2015-01-01
The aim of this study is to characterise students' understanding of the function-derivative relationship when learning economic concepts. To this end, we use a fuzzy metric (Chang 1968) to identify the development of economic concept understanding that is defined by the function-derivative relationship. The results indicate that the understanding…
ERIC Educational Resources Information Center
Levintova, Ekaterina M.; Mueller, Daniel W.
2015-01-01
One of the difficulties in teaching global sustainability in the introductory political science classes is the different emphases placed on this concept and the absence of the consensus on where the overall balance between environmental protection, economic development, and social justice should reside. Like many fuzzy concepts with which students…
Lyapunov Stability of Fuzzy Discrete Event Systems
NASA Astrophysics Data System (ADS)
Liu, Fuchun; Qiu, Daowen
Fuzzy discrete event systems (FDESs) as a generalization of (crisp) discrete event systems (DESs) may better deal with the problems of fuzziness, impreciseness, and subjectivity. Qiu, Cao and Ying, Liu and Qiu interestingly developed the theory of FDESs. As a continuation of Qiu's work, this paper is to deal with the Lyapunov stability of FDESs, some main results of crisp DESs are generalized. We formalize the notions of the reachability of fuzzy states defined on a metric space. A linear algorithm of computing the r-reachable fuzzy state set is presented. Then we introduce the definitions of stability and asymptotical stability in the sense of Lyapunov to guarantee the convergence of the behaviors of fuzzy automaton to the desired fuzzy states when system engages in some illegal behaviors which can be tolerated. In particular, we present a necessary and sufficient condition for stability and another for asymptotical stability of FDESs.
NASA Astrophysics Data System (ADS)
Han, Jiang; Chen, Ye-Hwa; Zhao, Xiaomin; Dong, Fangfang
2018-04-01
A novel fuzzy dynamical system approach to the control design of flexible joint manipulators with mismatched uncertainty is proposed. Uncertainties of the system are assumed to lie within prescribed fuzzy sets. The desired system performance includes a deterministic phase and a fuzzy phase. First, by creatively implanting a fictitious control, a robust control scheme is constructed to render the system uniformly bounded and uniformly ultimately bounded. Both the manipulator modelling and control scheme are deterministic and not IF-THEN heuristic rules-based. Next, a fuzzy-based performance index is proposed. An optimal design problem for a control design parameter is formulated as a constrained optimisation problem. The global solution to this problem can be obtained from solving two quartic equations. The fuzzy dynamical system approach is systematic and is able to assure the deterministic performance as well as to minimise the fuzzy performance index.
Fuzzy inference game approach to uncertainty in business decisions and market competitions.
Oderanti, Festus Oluseyi
2013-01-01
The increasing challenges and complexity of business environments are making business decisions and operations more difficult for entrepreneurs to predict the outcomes of these processes. Therefore, we developed a decision support scheme that could be used and adapted to various business decision processes. These involve decisions that are made under uncertain situations such as business competition in the market or wage negotiation within a firm. The scheme uses game strategies and fuzzy inference concepts to effectively grasp the variables in these uncertain situations. The games are played between human and fuzzy players. The accuracy of the fuzzy rule base and the game strategies help to mitigate the adverse effects that a business may suffer from these uncertain factors. We also introduced learning which enables the fuzzy player to adapt over time. We tested this scheme in different scenarios and discover that it could be an invaluable tool in the hand of entrepreneurs that are operating under uncertain and competitive business environments.
Cost-Sharing of Ecological Construction Based on Trapezoidal Intuitionistic Fuzzy Cooperative Games
Liu, Jiacai; Zhao, Wenjian
2016-01-01
There exist some fuzziness and uncertainty in the process of ecological construction. The aim of this paper is to develop a direct and an effective simplified method for obtaining the cost-sharing scheme when some interested parties form a cooperative coalition to improve the ecological environment of Min River together. Firstly, we propose the solution concept of the least square prenucleolus of cooperative games with coalition values expressed by trapezoidal intuitionistic fuzzy numbers. Then, based on the square of the distance in the numerical value between two trapezoidal intuitionistic fuzzy numbers, we establish a corresponding quadratic programming model to obtain the least square prenucleolus, which can effectively avoid the information distortion and uncertainty enlargement brought about by the subtraction of trapezoidal intuitionistic fuzzy numbers. Finally, we give a numerical example about the cost-sharing of ecological construction in Fujian Province in China to show the validity, applicability, and advantages of the proposed model and method. PMID:27834830
Stability margin of linear systems with parameters described by fuzzy numbers.
Husek, Petr
2011-10-01
This paper deals with the linear systems with uncertain parameters described by fuzzy numbers. The problem of determining the stability margin of those systems with linear affine dependence of the coefficients of a characteristic polynomial on system parameters is studied. Fuzzy numbers describing the system parameters are allowed to be characterized by arbitrary nonsymmetric membership functions. An elegant solution, graphical in nature, based on generalization of the Tsypkin-Polyak plot is presented. The advantage of the presented approach over the classical robust concept is demonstrated on a control of the Fiat Dedra engine model and a control of the quarter car suspension model.
On Decision-Making Among Multiple Rule-Bases in Fuzzy Control Systems
NASA Technical Reports Server (NTRS)
Tunstel, Edward; Jamshidi, Mo
1997-01-01
Intelligent control of complex multi-variable systems can be a challenge for single fuzzy rule-based controllers. This class of problems cam often be managed with less difficulty by distributing intelligent decision-making amongst a collection of rule-bases. Such an approach requires that a mechanism be chosen to ensure goal-oriented interaction between the multiple rule-bases. In this paper, a hierarchical rule-based approach is described. Decision-making mechanisms based on generalized concepts from single-rule-based fuzzy control are described. Finally, the effects of different aggregation operators on multi-rule-base decision-making are examined in a navigation control problem for mobile robots.
Research on fuzzy PID control to electronic speed regulator
NASA Astrophysics Data System (ADS)
Xu, Xiao-gang; Chen, Xue-hui; Zheng, Sheng-guo
2007-12-01
As an important part of diesel engine, the speed regulator plays an important role in stabilizing speed and improving engine's performance. Because there are so many model parameters of diesel-engine considered in traditional PID control and these parameters present non-linear characteristic.The method to adjust engine speed using traditional PID is not considered as a best way. Especially for the diesel-engine generator set. In this paper, the Fuzzy PID control strategy is proposed. Some problems about its utilization in electronic speed regulator are discussed. A mathematical model of electric control system for diesel-engine generator set is established and the way of the PID parameters in the model to affect the function of system is analyzed. And then it is proposed the differential coefficient must be applied in control design for reducing dynamic deviation of system and adjusting time. Based on the control theory, a study combined control with PID calculation together for turning fuzzy PID parameter is implemented. And also a simulation experiment about electronic speed regulator system was conducted using Matlab/Simulink and the Fuzzy-Toolbox. Compared with the traditional PID Algorithm, the simulated results presented obvious improvements in the instantaneous speed governing rate and steady state speed governing rate of diesel-engine generator set when the fuzzy logic control strategy used.
Optimization with Fuzzy Data via Evolutionary Algorithms
NASA Astrophysics Data System (ADS)
Kosiński, Witold
2010-09-01
Order fuzzy numbers (OFN) that make possible to deal with fuzzy inputs quantitatively, exactly in the same way as with real numbers, have been recently defined by the author and his 2 coworkers. The set of OFN forms a normed space and is a partially ordered ring. The case when the numbers are presented in the form of step functions, with finite resolution, simplifies all operations and the representation of defuzzification functionals. A general optimization problem with fuzzy data is formulated. Its fitness function attains fuzzy values. Since the adjoint space to the space of OFN is finite dimensional, a convex combination of all linear defuzzification functionals may be used to introduce a total order and a real-valued fitness function. Genetic operations on individuals representing fuzzy data are defined.
Juang, Chia-Feng; Hsu, Chia-Hung
2009-12-01
This paper proposes a new reinforcement-learning method using online rule generation and Q-value-aided ant colony optimization (ORGQACO) for fuzzy controller design. The fuzzy controller is based on an interval type-2 fuzzy system (IT2FS). The antecedent part in the designed IT2FS uses interval type-2 fuzzy sets to improve controller robustness to noise. There are initially no fuzzy rules in the IT2FS. The ORGQACO concurrently designs both the structure and parameters of an IT2FS. We propose an online interval type-2 rule generation method for the evolution of system structure and flexible partitioning of the input space. Consequent part parameters in an IT2FS are designed using Q -values and the reinforcement local-global ant colony optimization algorithm. This algorithm selects the consequent part from a set of candidate actions according to ant pheromone trails and Q-values, both of which are updated using reinforcement signals. The ORGQACO design method is applied to the following three control problems: 1) truck-backing control; 2) magnetic-levitation control; and 3) chaotic-system control. The ORGQACO is compared with other reinforcement-learning methods to verify its efficiency and effectiveness. Comparisons with type-1 fuzzy systems verify the noise robustness property of using an IT2FS.
Fuzzy neural network methodology applied to medical diagnosis
NASA Technical Reports Server (NTRS)
Gorzalczany, Marian B.; Deutsch-Mcleish, Mary
1992-01-01
This paper presents a technique for building expert systems that combines the fuzzy-set approach with artificial neural network structures. This technique can effectively deal with two types of medical knowledge: a nonfuzzy one and a fuzzy one which usually contributes to the process of medical diagnosis. Nonfuzzy numerical data is obtained from medical tests. Fuzzy linguistic rules describing the diagnosis process are provided by a human expert. The proposed method has been successfully applied in veterinary medicine as a support system in the diagnosis of canine liver diseases.
ERIC Educational Resources Information Center
Velastegui, Pamela J.
2013-01-01
This hypothesis-generating case study investigates the naturally emerging roles of technology brokers and technology leaders in three independent schools in New York involving 92 school educators. A multiple and mixed method design utilizing Social Network Analysis (SNA) and fuzzy set Qualitative Comparative Analysis (FSQCA) involved gathering…
Veloz, Tomas; Desjardins, Sylvie
2015-01-01
Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked. In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations. PMID:26617556
Veloz, Tomas; Desjardins, Sylvie
2015-01-01
Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked. In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations.
Samec, Pavel; Caha, Jan; Zapletal, Miloš; Tuček, Pavel; Cudlín, Pavel; Kučera, Miloš
2017-12-01
Forest decline is either caused by damage or else by vulnerability due to unfavourable growth conditions or due to unnatural silvicultural systems. Here, we assess forest decline in the Czech Republic (Central Europe) using fuzzy functions, fuzzy sets and fuzzy rating of ecosystem properties over a 1×1km grid. The model was divided into fuzzy functions of the abiotic predictors of growth conditions (F pred including temperature, precipitation, acid deposition, soil data and relative site insolation) and forest biomass receptors (F rec including remote sensing data, density and volume of aboveground biomass, and surface humus chemical data). Fuzzy functions were designed at the limits of unfavourable, undetermined or favourable effects on the forest ecosystem health status. Fuzzy sets were distinguished through similarity in a particular membership of the properties at the limits of the forest status margins. Fuzzy rating was obtained from the least difference of F pred -F rec . Unfavourable F pred within unfavourable F rec indicated chronic damage, favourable F pred within unfavourable F rec indicated acute damage, and unfavourable F pred within favourable F rec indicated vulnerability. The model in the 1×1km grid was validated through spatial intersection with a point field of uniform forest stands. Favourable status was characterised by soil base saturation (BS)>50%, BCC/Al>1, C org >1%, MgO>6g/kg, and nitrogen deposition<1200mol(H + )/ha·year. Vulnerable forests had BS humus 46-60%, BCC/Al 9-20 and NDVI≈0.42. Chronic forest damage occurs in areas with low temperatures, high nitrogen deposition, and low soil BS and C org levels. In the Czech Republic, 10% of forests were considered non-damaged and 77% vulnerable, with damage considered acute in 7% of forests and chronic in 5%. The fuzzy model used suggests that improvement in forest health will depend on decreasing environmental load and restoration concordance between growth conditions and tree species composition. Copyright © 2017 Elsevier B.V. All rights reserved.
Fuzzy multinomial logistic regression analysis: A multi-objective programming approach
NASA Astrophysics Data System (ADS)
Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan
2017-05-01
Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.
Use of fuzzy sets in modeling of GIS objects
NASA Astrophysics Data System (ADS)
Mironova, Yu N.
2018-05-01
The paper discusses modeling and methods of data visualization in geographic information systems. Information processing in Geoinformatics is based on the use of models. Therefore, geoinformation modeling is a key in the chain of GEODATA processing. When solving problems, using geographic information systems often requires submission of the approximate or insufficient reliable information about the map features in the GIS database. Heterogeneous data of different origin and accuracy have some degree of uncertainty. In addition, not all information is accurate: already during the initial measurements, poorly defined terms and attributes (e.g., "soil, well-drained") are used. Therefore, there are necessary methods for working with uncertain requirements, classes, boundaries. The author proposes using spatial information fuzzy sets. In terms of a characteristic function, a fuzzy set is a natural generalization of ordinary sets, when one rejects the binary nature of this feature and assumes that it can take any value in the interval.
Genetic reinforcement learning through symbiotic evolution for fuzzy controller design.
Juang, C F; Lin, J Y; Lin, C T
2000-01-01
An efficient genetic reinforcement learning algorithm for designing fuzzy controllers is proposed in this paper. The genetic algorithm (GA) adopted in this paper is based upon symbiotic evolution which, when applied to fuzzy controller design, complements the local mapping property of a fuzzy rule. Using this Symbiotic-Evolution-based Fuzzy Controller (SEFC) design method, the number of control trials, as well as consumed CPU time, are considerably reduced when compared to traditional GA-based fuzzy controller design methods and other types of genetic reinforcement learning schemes. Moreover, unlike traditional fuzzy controllers, which partition the input space into a grid, SEFC partitions the input space in a flexible way, thus creating fewer fuzzy rules. In SEFC, different types of fuzzy rules whose consequent parts are singletons, fuzzy sets, or linear equations (TSK-type fuzzy rules) are allowed. Further, the free parameters (e.g., centers and widths of membership functions) and fuzzy rules are all tuned automatically. For the TSK-type fuzzy rule especially, which put the proposed learning algorithm in use, only the significant input variables are selected to participate in the consequent of a rule. The proposed SEFC design method has been applied to different simulated control problems, including the cart-pole balancing system, a magnetic levitation system, and a water bath temperature control system. The proposed SEFC has been verified to be efficient and superior from these control problems, and from comparisons with some traditional GA-based fuzzy systems.
Fuzzy set approach to quality function deployment: An investigation
NASA Technical Reports Server (NTRS)
Masud, Abu S. M.
1992-01-01
The final report of the 1992 NASA/ASEE Summer Faculty Fellowship at the Space Exploration Initiative Office (SEIO) in Langley Research Center is presented. Quality Function Deployment (QFD) is a process, focused on facilitating the integration of the customer's voice in the design and development of a product or service. Various input, in the form of judgements and evaluations, are required during the QFD analyses. All the input variables in these analyses are treated as numeric variables. The purpose of the research was to investigate how QFD analyses can be performed when some or all of the input variables are treated as linguistic variables with values expressed as fuzzy numbers. The reason for this consideration is that human judgement, perception, and cognition are often ambiguous and are better represented as fuzzy numbers. Two approaches for using fuzzy sets in QFD have been proposed. In both cases, all the input variables are considered as linguistic variables with values indicated as linguistic expressions. These expressions are then converted to fuzzy numbers. The difference between the two approaches is due to how the QFD computations are performed with these fuzzy numbers. In Approach 1, the fuzzy numbers are first converted to their equivalent crisp scores and then the QFD computations are performed using these crisp scores. As a result, the output of this approach are crisp numbers, similar to those in traditional QFD. In Approach 2, all the QFD computations are performed with the fuzzy numbers and the output are fuzzy numbers also. Both the approaches have been explained with the help of illustrative examples of QFD application. Approach 2 has also been applied in a QFD application exercise in SEIO, involving a 'mini moon rover' design. The mini moon rover is a proposed tele-operated vehicle that will traverse and perform various tasks, including autonomous operations, on the moon surface. The output of the moon rover application exercise is a ranking of the rover functions so that a subset of these functions can be targeted for design improvement. The illustrative examples and the mini rover application exercise confirm that the proposed approaches for using fuzzy sets in QFD are viable. However, further research is needed to study the various issues involved and to verify/validate the methods proposed.
Fuzzy rule based estimation of agricultural diffuse pollution concentration in streams.
Singh, Raj Mohan
2008-04-01
Outflow from the agricultural fields carries diffuse pollutants like nutrients, pesticides, herbicides etc. and transports the pollutants into the nearby streams. It is a matter of serious concern for water managers and environmental researchers. The application of chemicals in the agricultural fields, and transport of these chemicals into streams are uncertain that cause complexity in reliable stream quality predictions. The chemical characteristics of applied chemical, percentage of area under the chemical application etc. are some of the main inputs that cause pollution concentration as output in streams. Each of these inputs and outputs may contain measurement errors. Fuzzy rule based model based on fuzzy sets suits to address uncertainties in inputs by incorporating overlapping membership functions for each of inputs even for limited data availability situations. In this study, the property of fuzzy sets to address the uncertainty in input-output relationship is utilized to obtain the estimate of concentrations of a herbicide, atrazine, in a stream. The data of White river basin, a part of the Mississippi river system, is used for developing the fuzzy rule based models. The performance of the developed methodology is found encouraging.
Determining rules for closing customer service centers: A public utility company's fuzzy decision
NASA Technical Reports Server (NTRS)
Dekorvin, Andre; Shipley, Margaret F.
1992-01-01
In the present work, we consider the general problem of knowledge acquisition under uncertainty. A commonly used method is to learn by examples. We observe how the expert solves specific cases and from this infer some rules by which the decision was made. Unique to this work is the fuzzy set representation of the conditions or attributes upon which the decision make may base his fuzzy set decision. From our examples, we infer certain and possible rules containing fuzzy terms. It should be stressed that the procedure determines how closely the expert follows the conditions under consideration in making his decision. We offer two examples pertaining to the possible decision to close a customer service center of a public utility company. In the first example, the decision maker does not follow too closely the conditions. In the second example, the conditions are much more relevant to the decision of the expert.
NASA Astrophysics Data System (ADS)
Hussain Mutlag, Ammar; Mohamed, Azah; Shareef, Hussain
2016-03-01
Maximum power point tracking (MPPT) is normally required to improve the performance of photovoltaic (PV) systems. This paper presents artificial intelligent-based maximum power point tracking (AI-MPPT) by considering three artificial intelligent techniques, namely, artificial neural network (ANN), adaptive neuro fuzzy inference system with seven triangular fuzzy sets (7-tri), and adaptive neuro fuzzy inference system with seven gbell fuzzy sets. The AI-MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with the capacity of 3 kW peak. A complete PV system is modelled using 300,000 data samples and simulated in the MATLAB/SIMULINK. The AI-MPPT has been tested under real environmental conditions for two days from 8 am to 18 pm. The results showed that the ANN based MPPT gives the most accurate performance and then followed by the 7-tri-based MPPT.
Fractals, Fuzzy Sets And Image Representation
NASA Astrophysics Data System (ADS)
Dodds, D. R.
1988-10-01
This paper addresses some uses of fractals, fuzzy sets and image representation as it pertains to robotic grip planning and autonomous vehicle navigation AVN. The robot/vehicle is assumed to be equipped with multimodal sensors including ultrashort pulse imaging laser rangefinder. With a temporal resolution of 50 femtoseconds a time of flight laser rangefinder can resolve distances within approximately half an inch or 1.25 centimeters. (Fujimoto88)
Fuzzy MCDM Technique for Planning the Environment Watershed
NASA Astrophysics Data System (ADS)
Chen, Yi-Chun; Lien, Hui-Pang; Tzeng, Gwo-Hshiung; Yang, Lung-Shih; Yen, Leon
In the real word, the decision making problems are very vague and uncertain in a number of ways. The most criteria have interdependent and interactive features so they cannot be evaluated by conventional measures method. Such as the feasibility, thus, to approximate the human subjective evaluation process, it would be more suitable to apply a fuzzy method in environment-watershed plan topic. This paper describes the design of a fuzzy decision support system in multi-criteria analysis approach for selecting the best plan alternatives or strategies in environmentwatershed. The Fuzzy Analytic Hierarchy Process (FAHP) method is used to determine the preference weightings of criteria for decision makers by subjective perception. A questionnaire was used to find out from three related groups comprising fifteen experts. Subjectivity and vagueness analysis is dealt with the criteria and alternatives for selection process and simulation results by using fuzzy numbers with linguistic terms. Incorporated the decision makers’ attitude towards preference, overall performance value of each alternative can be obtained based on the concept of Fuzzy Multiple Criteria Decision Making (FMCDM). This research also gives an example of evaluating consisting of five alternatives, solicited from a environmentwatershed plan works in Taiwan, is illustrated to demonstrate the effectiveness and usefulness of the proposed approach.
Liu, Yan; Xu, Zhen-Jun
2013-01-01
As a high-risk subindustry involved in construction projects, highway construction safety has experienced major developments in the past 20 years, mainly due to the lack of safe early warnings in Chinese construction projects. By combining the current state of early warning technology with the requirements of the State Administration of Work Safety and using case-based reasoning (CBR), this paper expounds on the concept and flow of highway construction safety early warnings based on CBR. The present study provides solutions to three key issues, index selection, accident cause association analysis, and warning degree forecasting implementation, through the use of association rule mining, support vector machine classifiers, and variable fuzzy qualitative and quantitative change criterion modes, which fully cover the needs of safe early warning systems. Using a detailed description of the principles and advantages of each method and by proving the methods' effectiveness and ability to act together in safe early warning applications, effective means and intelligent technology for a safe highway construction early warning system are established. PMID:24191134
Liu, Yan; Yi, Ting-Hua; Xu, Zhen-Jun
2013-01-01
As a high-risk subindustry involved in construction projects, highway construction safety has experienced major developments in the past 20 years, mainly due to the lack of safe early warnings in Chinese construction projects. By combining the current state of early warning technology with the requirements of the State Administration of Work Safety and using case-based reasoning (CBR), this paper expounds on the concept and flow of highway construction safety early warnings based on CBR. The present study provides solutions to three key issues, index selection, accident cause association analysis, and warning degree forecasting implementation, through the use of association rule mining, support vector machine classifiers, and variable fuzzy qualitative and quantitative change criterion modes, which fully cover the needs of safe early warning systems. Using a detailed description of the principles and advantages of each method and by proving the methods' effectiveness and ability to act together in safe early warning applications, effective means and intelligent technology for a safe highway construction early warning system are established.
Evaluation of students' perceptions on game based learning program using fuzzy set conjoint analysis
NASA Astrophysics Data System (ADS)
Sofian, Siti Siryani; Rambely, Azmin Sham
2017-04-01
An effectiveness of a game based learning (GBL) can be determined from an application of fuzzy set conjoint analysis. The analysis was used due to the fuzziness in determining individual perceptions. This study involved a survey collected from 36 students aged 16 years old of SMK Mersing, Johor who participated in a Mathematics Discovery Camp organized by UKM research group called PRISMatik. The aim of this research was to determine the effectiveness of the module delivered to cultivate interest in mathematics subject in the form of game based learning through different values. There were 11 games conducted for the participants and students' perceptions based on the evaluation of six criteria were measured. A seven-point Likert scale method was used to collect students' preferences and perceptions. This scale represented seven linguistic terms to indicate their perceptions on each module of GBLs. Score of perceptions were transformed into degree of similarity using fuzzy set conjoint analysis. It was found that Geometric Analysis Recreation (GEAR) module was able to increase participant preference corresponded to the six attributes generated. The computations were also made for the other 10 games conducted during the camp. Results found that interest, passion and team work were the strongest values obtained from GBL activities in this camp as participants stated very strongly agreed that these attributes fulfilled their preferences in every module. This was an indicator of efficiency for the program. The evaluation using fuzzy conjoint analysis implicated the successfulness of a fuzzy approach to evaluate students' perceptions toward GBL.
Fuzzy geometry, entropy, and image information
NASA Technical Reports Server (NTRS)
Pal, Sankar K.
1991-01-01
Presented here are various uncertainty measures arising from grayness ambiguity and spatial ambiguity in an image, and their possible applications as image information measures. Definitions are given of an image in the light of fuzzy set theory, and of information measures and tools relevant for processing/analysis e.g., fuzzy geometrical properties, correlation, bound functions and entropy measures. Also given is a formulation of algorithms along with management of uncertainties for segmentation and object extraction, and edge detection. The output obtained here is both fuzzy and nonfuzzy. Ambiguity in evaluation and assessment of membership function are also described.
Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 2
NASA Technical Reports Server (NTRS)
Culbert, Christopher J. (Editor)
1993-01-01
Papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake, held 1-3 Jun. 1992 at the Lyndon B. Johnson Space Center in Houston, Texas are included. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.
Atlas-based segmentation of 3D cerebral structures with competitive level sets and fuzzy control.
Ciofolo, Cybèle; Barillot, Christian
2009-06-01
We propose a novel approach for the simultaneous segmentation of multiple structures with competitive level sets driven by fuzzy control. To this end, several contours evolve simultaneously toward previously defined anatomical targets. A fuzzy decision system combines the a priori knowledge provided by an anatomical atlas with the intensity distribution of the image and the relative position of the contours. This combination automatically determines the directional term of the evolution equation of each level set. This leads to a local expansion or contraction of the contours, in order to match the boundaries of their respective targets. Two applications are presented: the segmentation of the brain hemispheres and the cerebellum, and the segmentation of deep internal structures. Experimental results on real magnetic resonance (MR) images are presented, quantitatively assessed and discussed.
NASA Astrophysics Data System (ADS)
Hui, Liu; Ding, Liu Wen
Inspection is not only one of the most significant duties, but the important prerequisite for going through Customs. Setting the inspection rate scientifically can not only solve the contradiction between the "check on" and "service" for CIQ (CHINA ENTRY-EXIT INSPECTION AND UARANTINE)site inspection personnel, but can highlight the key of inspection and enhance the ratio of discovering, achieving the optimum allocation of CIQ's limited human and material resources. In this article, from the characteristics of inspection risk evaluation themselves, considering the setting problem of check rate at from the angle of data mining, construct an index system rationally and objectively. On the basis of Fuzzy theory, evaluate the risk of the inward and outward goods with the grey-fuzzy comprehensive evaluation method, and establish the inspection rate scientifically.
Narimani, Mohammand; Lam, H K; Dilmaghani, R; Wolfe, Charles
2011-06-01
Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S-procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.
Fuzzy logic in autonomous orbital operations
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.
Tuning fuzzy PD and PI controllers using reinforcement learning.
Boubertakh, Hamid; Tadjine, Mohamed; Glorennec, Pierre-Yves; Labiod, Salim
2010-10-01
In this paper, we propose a new auto-tuning fuzzy PD and PI controllers using reinforcement Q-learning (QL) algorithm for SISO (single-input single-output) and TITO (two-input two-output) systems. We first, investigate the design parameters and settings of a typical class of Fuzzy PD (FPD) and Fuzzy PI (FPI) controllers: zero-order Takagi-Sugeno controllers with equidistant triangular membership functions for inputs, equidistant singleton membership functions for output, Larsen's implication method, and average sum defuzzification method. Secondly, the analytical structures of these typical fuzzy PD and PI controllers are compared to their classical counterpart PD and PI controllers. Finally, the effectiveness of the proposed method is proven through simulation examples. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
A fuzzy logic approach to modeling the underground economy in Taiwan
NASA Astrophysics Data System (ADS)
Yu, Tiffany Hui-Kuang; Wang, David Han-Min; Chen, Su-Jane
2006-04-01
The size of the ‘underground economy’ (UE) is valuable information in the formulation of macroeconomic and fiscal policy. This study applies fuzzy set theory and fuzzy logic to model Taiwan's UE over the period from 1960 to 2003. Two major factors affecting the size of the UE, the effective tax rate and the degree of government regulation, are used. The size of Taiwan's UE is scaled and compared with those of other models. Although our approach yields different estimates, similar patterns and leading are exhibited throughout the period. The advantage of applying fuzzy logic is twofold. First, it can avoid the complex calculations in conventional econometric models. Second, fuzzy rules with linguistic terms are easy for human to understand.
Multilayer perceptron, fuzzy sets, and classification
NASA Technical Reports Server (NTRS)
Pal, Sankar K.; Mitra, Sushmita
1992-01-01
A fuzzy neural network model based on the multilayer perceptron, using the back-propagation algorithm, and capable of fuzzy classification of patterns is described. The input vector consists of membership values to linguistic properties while the output vector is defined in terms of fuzzy class membership values. This allows efficient modeling of fuzzy or uncertain patterns with appropriate weights being assigned to the backpropagated errors depending upon the membership values at the corresponding outputs. During training, the learning rate is gradually decreased in discrete steps until the network converges to a minimum error solution. The effectiveness of the algorithm is demonstrated on a speech recognition problem. The results are compared with those of the conventional MLP, the Bayes classifier, and the other related models.
Fuzzy risk analysis of a modern γ-ray industrial irradiator.
Castiglia, F; Giardina, M
2011-06-01
Fuzzy fault tree analyses were used to investigate accident scenarios that involve radiological exposure to operators working in industrial γ-ray irradiation facilities. The HEART method, a first generation human reliability analysis method, was used to evaluate the probability of adverse human error in these analyses. This technique was modified on the basis of fuzzy set theory to more directly take into account the uncertainties in the error-promoting factors on which the methodology is based. Moreover, with regard to some identified accident scenarios, fuzzy radiological exposure risk, expressed in terms of potential annual death, was evaluated. The calculated fuzzy risks for the examined plant were determined to be well below the reference risk suggested by International Commission on Radiological Protection.
"Fuzziness" in the celular interactome: a historical perspective.
Welch, G Rickey
2012-01-01
Some historical background is given for appreciating the impact of the empirical construct known as the cellular protein-protein interactome, which is a seemingly de novo entity that has arisen of late within the context of postgenomic systems biology. The approach here builds on a generalized principle of "fuzziness" in protein behavior, proposed by Tompa and Fuxreiter.(1) Recent controversies in the analysis and interpretation of the interactome studies are rationalized historically under the auspices of this concept. There is an extensive literature on protein-protein interactions, dating to the mid-1900s, which may help clarify the "fuzziness" in the interactome picture and, also, provide a basis for understanding the physiological importance of protein-protein interactions in vivo.
Train repathing in emergencies based on fuzzy linear programming.
Meng, Xuelei; Cui, Bingmou
2014-01-01
Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.
Chung, Eun-Sung; Kim, Yeonjoo
2014-12-15
This study proposed a robust prioritization framework to identify the priorities of treated wastewater (TWW) use locations with consideration of various uncertainties inherent in the climate change scenarios and the decision-making process. First, a fuzzy concept was applied because future forecast precipitation and their hydrological impact analysis results displayed significant variances when considering various climate change scenarios and long periods (e.g., 2010-2099). Second, various multi-criteria decision making (MCDM) techniques including weighted sum method (WSM), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and fuzzy TOPSIS were introduced to robust prioritization because different MCDM methods use different decision philosophies. Third, decision making method under complete uncertainty (DMCU) including maximin, maximax, minimax regret, Hurwicz, and equal likelihood were used to find robust final rankings. This framework is then applied to a Korean urban watershed. As a result, different rankings were obviously appeared between fuzzy TOPSIS and non-fuzzy MCDMs (e.g., WSM and TOPSIS) because the inter-annual variability in effectiveness was considered only with fuzzy TOPSIS. Then, robust prioritizations were derived based on 18 rankings from nine decadal periods of RCP4.5 and RCP8.5. For more robust rankings, five DMCU approaches using the rankings from fuzzy TOPSIS were derived. This framework combining fuzzy TOPSIS with DMCU approaches can be rendered less controversial among stakeholders under complete uncertainty of changing environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cloud classification from satellite data using a fuzzy sets algorithm: A polar example
NASA Technical Reports Server (NTRS)
Key, J. R.; Maslanik, J. A.; Barry, R. G.
1988-01-01
Where spatial boundaries between phenomena are diffuse, classification methods which construct mutually exclusive clusters seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each observation to all clusters, with membership values as a function of distance to the cluster center. The FCM algorithm is applied to AVHRR data for the purpose of classifying polar clouds and surfaces. Careful analysis of the fuzzy sets can provide information on which spectral channels are best suited to the classification of particular features, and can help determine likely areas of misclassification. General agreement in the resulting classes and cloud fraction was found between the FCM algorithm, a manual classification, and an unsupervised maximum likelihood classifier.
Fuzzy fractals, chaos, and noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zardecki, A.
1997-05-01
To distinguish between chaotic and noisy processes, the authors analyze one- and two-dimensional chaotic mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, they consider the fractal fuzzy sets whose {alpha}-cuts are fractals, arising in the context of a quadratic mapping in the extended complex plane. In an example provided by the Julia set, the conceptmore » of Hausdorff dimension enables one to decide in favor of chaotic or noisy evolution.« less
A fuzzy neural network for intelligent data processing
NASA Astrophysics Data System (ADS)
Xie, Wei; Chu, Feng; Wang, Lipo; Lim, Eng Thiam
2005-03-01
In this paper, we describe an incrementally generated fuzzy neural network (FNN) for intelligent data processing. This FNN combines the features of initial fuzzy model self-generation, fast input selection, partition validation, parameter optimization and rule-base simplification. A small FNN is created from scratch -- there is no need to specify the initial network architecture, initial membership functions, or initial weights. Fuzzy IF-THEN rules are constantly combined and pruned to minimize the size of the network while maintaining accuracy; irrelevant inputs are detected and deleted, and membership functions and network weights are trained with a gradient descent algorithm, i.e., error backpropagation. Experimental studies on synthesized data sets demonstrate that the proposed Fuzzy Neural Network is able to achieve accuracy comparable to or higher than both a feedforward crisp neural network, i.e., NeuroRule, and a decision tree, i.e., C4.5, with more compact rule bases for most of the data sets used in our experiments. The FNN has achieved outstanding results for cancer classification based on microarray data. The excellent classification result for Small Round Blue Cell Tumors (SRBCTs) data set is shown. Compared with other published methods, we have used a much fewer number of genes for perfect classification, which will help researchers directly focus their attention on some specific genes and may lead to discovery of deep reasons of the development of cancers and discovery of drugs.
Grossi, Enzo
2005-09-27
The concept of risk has pervaded medical literature in the last decades and has become a familiar topic, and the concept of probability, linked to binary logic approach, is commonly applied in epidemiology and clinical medicine. The application of probability theory to groups of individuals is quite straightforward but can pose communication challenges at individual level. Few articles by the way have tried to focus the concept of "risk" at the individual subject level rather than at population level. The author has reviewed the conceptual framework which has led to the use of probability theory in the medical field in a time when the principal causes of death were represented by acute disease often of infective origin. In the present scenario, in which chronic degenerative disease dominate and there are smooth transitions between health and disease the use of fuzzy logic rather than binary logic would be more appropriate. The use of fuzzy logic in which more than two possible truth-value assignments are allowed overcomes the trap of probability theory when dealing with uncertain outcomes, thereby making the meaning of a certain prognostic statement easier to understand by the patient. At individual subject level the recourse to the term plausibility, related to fuzzy logic, would help the physician to communicate to the patient more efficiently in comparison with the term probability, related to binary logic. This would represent an evident advantage for the transfer of medical evidences to individual subjects.
Fuzzy control of small servo motors
NASA Technical Reports Server (NTRS)
Maor, Ron; Jani, Yashvant
1993-01-01
To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.
A Fuzzy Aproach For Facial Emotion Recognition
NASA Astrophysics Data System (ADS)
Gîlcă, Gheorghe; Bîzdoacă, Nicu-George
2015-09-01
This article deals with an emotion recognition system based on the fuzzy sets. Human faces are detected in images with the Viola - Jones algorithm and for its tracking in video sequences we used the Camshift algorithm. The detected human faces are transferred to the decisional fuzzy system, which is based on the variable fuzzyfication measurements of the face: eyebrow, eyelid and mouth. The system can easily determine the emotional state of a person.
Mocz, G.
1995-01-01
Fuzzy cluster analysis has been applied to the 20 amino acids by using 65 physicochemical properties as a basis for classification. The clustering products, the fuzzy sets (i.e., classical sets with associated membership functions), have provided a new measure of amino acid similarities for use in protein folding studies. This work demonstrates that fuzzy sets of simple molecular attributes, when assigned to amino acid residues in a protein's sequence, can predict the secondary structure of the sequence with reasonable accuracy. An approach is presented for discriminating standard folding states, using near-optimum information splitting in half-overlapping segments of the sequence of assigned membership functions. The method is applied to a nonredundant set of 252 proteins and yields approximately 73% matching for correctly predicted and correctly rejected residues with approximately 60% overall success rate for the correctly recognized ones in three folding states: alpha-helix, beta-strand, and coil. The most useful attributes for discriminating these states appear to be related to size, polarity, and thermodynamic factors. Van der Waals volume, apparent average thickness of surrounding molecular free volume, and a measure of dimensionless surface electron density can explain approximately 95% of prediction results. hydrogen bonding and hydrophobicity induces do not yet enable clear clustering and prediction. PMID:7549882
Feature Selection for Classification of Polar Regions Using a Fuzzy Expert System
NASA Technical Reports Server (NTRS)
Penaloza, Mauel A.; Welch, Ronald M.
1996-01-01
Labeling, feature selection, and the choice of classifier are critical elements for classification of scenes and for image understanding. This study examines several methods for feature selection in polar regions, including the list, of a fuzzy logic-based expert system for further refinement of a set of selected features. Six Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage (LAC) arctic scenes are classified into nine classes: water, snow / ice, ice cloud, land, thin stratus, stratus over water, cumulus over water, textured snow over water, and snow-covered mountains. Sixty-seven spectral and textural features are computed and analyzed by the feature selection algorithms. The divergence, histogram analysis, and discriminant analysis approaches are intercompared for their effectiveness in feature selection. The fuzzy expert system method is used not only to determine the effectiveness of each approach in classifying polar scenes, but also to further reduce the features into a more optimal set. For each selection method,features are ranked from best to worst, and the best half of the features are selected. Then, rules using these selected features are defined. The results of running the fuzzy expert system with these rules show that the divergence method produces the best set features, not only does it produce the highest classification accuracy, but also it has the lowest computation requirements. A reduction of the set of features produced by the divergence method using the fuzzy expert system results in an overall classification accuracy of over 95 %. However, this increase of accuracy has a high computation cost.
Hamdy, M; Hamdan, I
2015-07-01
In this paper, a robust H∞ fuzzy output feedback controller is designed for a class of affine nonlinear systems with disturbance via Takagi-Sugeno (T-S) fuzzy bilinear model. The parallel distributed compensation (PDC) technique is utilized to design a fuzzy controller. The stability conditions of the overall closed loop T-S fuzzy bilinear model are formulated in terms of Lyapunov function via linear matrix inequality (LMI). The control law is robustified by H∞ sense to attenuate external disturbance. Moreover, the desired controller gains can be obtained by solving a set of LMI. A continuous stirred tank reactor (CSTR), which is a benchmark problem in nonlinear process control, is discussed in detail to verify the effectiveness of the proposed approach with a comparative study. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Fuzzy observer-based control for maximum power-point tracking of a photovoltaic system
NASA Astrophysics Data System (ADS)
Allouche, M.; Dahech, K.; Chaabane, M.; Mehdi, D.
2018-04-01
This paper presents a novel fuzzy control design method for maximum power-point tracking (MPPT) via a Takagi and Sugeno (TS) fuzzy model-based approach. A knowledge-dynamic model of the PV system is first developed leading to a TS representation by a simple convex polytopic transformation. Then, based on this exact fuzzy representation, a H∞ observer-based fuzzy controller is proposed to achieve MPPT even when we consider varying climatic conditions. A specified TS reference model is designed to generate the optimum trajectory which must be tracked to ensure maximum power operation. The controller and observer gains are obtained in a one-step procedure by solving a set of linear matrix inequalities (LMIs). The proposed method has been compared with some classical MPPT techniques taking into account convergence speed and tracking accuracy. Finally, various simulation and experimental tests have been carried out to illustrate the effectiveness of the proposed TS fuzzy MPPT strategy.
Bidargaddi, Niranjan P; Chetty, Madhu; Kamruzzaman, Joarder
2008-06-01
Profile hidden Markov models (HMMs) based on classical HMMs have been widely applied for protein sequence identification. The formulation of the forward and backward variables in profile HMMs is made under statistical independence assumption of the probability theory. We propose a fuzzy profile HMM to overcome the limitations of that assumption and to achieve an improved alignment for protein sequences belonging to a given family. The proposed model fuzzifies the forward and backward variables by incorporating Sugeno fuzzy measures and Choquet integrals, thus further extends the generalized HMM. Based on the fuzzified forward and backward variables, we propose a fuzzy Baum-Welch parameter estimation algorithm for profiles. The strong correlations and the sequence preference involved in the protein structures make this fuzzy architecture based model as a suitable candidate for building profiles of a given family, since the fuzzy set can handle uncertainties better than classical methods.
Hierarchical fuzzy control of low-energy building systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhen; Dexter, Arthur
2010-04-15
A hierarchical fuzzy supervisory controller is described that is capable of optimizing the operation of a low-energy building, which uses solar energy to heat and cool its interior spaces. The highest level fuzzy rules choose the most appropriate set of lower level rules according to the weather and occupancy information; the second level fuzzy rules determine an optimal energy profile and the overall modes of operation of the heating, ventilating and air-conditioning system (HVAC); the third level fuzzy rules select the mode of operation of specific equipment, and assign schedules to the local controllers so that the optimal energy profilemore » can be achieved in the most efficient way. Computer simulation is used to compare the hierarchical fuzzy control scheme with a supervisory control scheme based on expert rules. The performance is evaluated by comparing the energy consumption and thermal comfort. (author)« less
Learning fuzzy logic control system
NASA Technical Reports Server (NTRS)
Lung, Leung Kam
1994-01-01
The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the D.C. motor. Furthermore, the LFLC has better performance in rise time, settling time and steady state error than to the conventional PI controller. This abstract accurately represents the content of the candidate's thesis. I recommend its publication.
Adaptive Scaling of Cluster Boundaries for Large-Scale Social Media Data Clustering.
Meng, Lei; Tan, Ah-Hwee; Wunsch, Donald C
2016-12-01
The large scale and complex nature of social media data raises the need to scale clustering techniques to big data and make them capable of automatically identifying data clusters with few empirical settings. In this paper, we present our investigation and three algorithms based on the fuzzy adaptive resonance theory (Fuzzy ART) that have linear computational complexity, use a single parameter, i.e., the vigilance parameter to identify data clusters, and are robust to modest parameter settings. The contribution of this paper lies in two aspects. First, we theoretically demonstrate how complement coding, commonly known as a normalization method, changes the clustering mechanism of Fuzzy ART, and discover the vigilance region (VR) that essentially determines how a cluster in the Fuzzy ART system recognizes similar patterns in the feature space. The VR gives an intrinsic interpretation of the clustering mechanism and limitations of Fuzzy ART. Second, we introduce the idea of allowing different clusters in the Fuzzy ART system to have different vigilance levels in order to meet the diverse nature of the pattern distribution of social media data. To this end, we propose three vigilance adaptation methods, namely, the activation maximization (AM) rule, the confliction minimization (CM) rule, and the hybrid integration (HI) rule. With an initial vigilance value, the resulting clustering algorithms, namely, the AM-ART, CM-ART, and HI-ART, can automatically adapt the vigilance values of all clusters during the learning epochs in order to produce better cluster boundaries. Experiments on four social media data sets show that AM-ART, CM-ART, and HI-ART are more robust than Fuzzy ART to the initial vigilance value, and they usually achieve better or comparable performance and much faster speed than the state-of-the-art clustering algorithms that also do not require a predefined number of clusters.
A fuzzy MCDM approach for evaluating school performance based on linguistic information
NASA Astrophysics Data System (ADS)
Musani, Suhaina; Jemain, Abdul Aziz
2013-11-01
Decision making is the process of finding the best option among the feasible alternatives. This process should consider a variety of criteria, but this study only focus on academic achievement. The data used is the percentage of candidates who obtained Malaysian Certificate of Education (SPM) in Melaka based on school academic achievement for each subject. 57 secondary schools in Melaka as listed by the Ministry of Education involved in this study. Therefore the school ranking can be done using MCDM (Multi Criteria Decision Making) methods. The objective of this study is to develop a rational method for evaluating school performance based on linguistic information. Since the information or level of academic achievement provided in linguistic manner, there is a possible chance of getting incomplete or uncertain problems. So in order to overcome the situation, the information could be provided as fuzzy numbers. Since fuzzy set represents the uncertainty in human perceptions. In this research, VIKOR (Multi Criteria Optimization and Compromise Solution) has been used as a MCDM tool for the school ranking process in fuzzy environment. Results showed that fuzzy set theory can solve the limitations of using MCDM when there is uncertainty problems exist in the data.
NASA Technical Reports Server (NTRS)
Howard, Ayanna; Bayard, David
2006-01-01
Fuzzy Feature Observation Planner for Small Body Proximity Observations (FuzzObserver) is a developmental computer program, to be used along with other software, for autonomous planning of maneuvers of a spacecraft near an asteroid, comet, or other small astronomical body. Selection of terrain features and estimation of the position of the spacecraft relative to these features is an essential part of such planning. FuzzObserver contributes to the selection and estimation by generating recommendations for spacecraft trajectory adjustments to maintain the spacecraft's ability to observe sufficient terrain features for estimating position. The input to FuzzObserver consists of data from terrain images, including sets of data on features acquired during descent toward, or traversal of, a body of interest. The name of this program reflects its use of fuzzy logic to reason about the terrain features represented by the data and extract corresponding trajectory-adjustment rules. Linguistic fuzzy sets and conditional statements enable fuzzy systems to make decisions based on heuristic rule-based knowledge derived by engineering experts. A major advantage of using fuzzy logic is that it involves simple arithmetic calculations that can be performed rapidly enough to be useful for planning within the short times typically available for spacecraft maneuvers.
NASA Astrophysics Data System (ADS)
Zamri, Nurnadiah; Abdullah, Lazim
2014-06-01
Flood control project is a complex issue which takes economic, social, environment and technical attributes into account. Selection of the best flood control project requires the consideration of conflicting quantitative and qualitative evaluation criteria. When decision-makers' judgment are under uncertainty, it is relatively difficult for them to provide exact numerical values. The interval type-2 fuzzy set (IT2FS) is a strong tool which can deal with the uncertainty case of subjective, incomplete, and vague information. Besides, it helps to solve for some situations where the information about criteria weights for alternatives is completely unknown. Therefore, this paper is adopted the information interval type-2 entropy concept into the weighting process of interval type-2 fuzzy TOPSIS. This entropy weight is believed can effectively balance the influence of uncertainty factors in evaluating attribute. Then, a modified ranking value is proposed in line with the interval type-2 entropy weight. Quantitative and qualitative factors that normally linked with flood control project are considered for ranking. Data in form of interval type-2 linguistic variables were collected from three authorised personnel of three Malaysian Government agencies. Study is considered for the whole of Malaysia. From the analysis, it shows that diversion scheme yielded the highest closeness coefficient at 0.4807. A ranking can be drawn using the magnitude of closeness coefficient. It was indicated that the diversion scheme recorded the first rank among five causes.
Pythagorean fuzzy analytic hierarchy process to multi-criteria decision making
NASA Astrophysics Data System (ADS)
Mohd, Wan Rosanisah Wan; Abdullah, Lazim
2017-11-01
A numerous approaches have been proposed in the literature to determine the criteria of weight. The weight of criteria is very significant in the process of decision making. One of the outstanding approaches that used to determine weight of criteria is analytic hierarchy process (AHP). This method involves decision makers (DMs) to evaluate the decision to form the pair-wise comparison between criteria and alternatives. In classical AHP, the linguistic variable of pairwise comparison is presented in terms of crisp value. However, this method is not appropriate to present the real situation of the problems because it involved the uncertainty in linguistic judgment. For this reason, AHP has been extended by incorporating the Pythagorean fuzzy sets. In addition, no one has found in the literature proposed how to determine the weight of criteria using AHP under Pythagorean fuzzy sets. In order to solve the MCDM problem, the Pythagorean fuzzy analytic hierarchy process is proposed to determine the criteria weight of the evaluation criteria. Using the linguistic variables, pairwise comparison for evaluation criteria are made to the weights of criteria using Pythagorean fuzzy numbers (PFNs). The proposed method is implemented in the evaluation problem in order to demonstrate its applicability. This study shows that the proposed method provides us with a useful way and a new direction in solving MCDM problems with Pythagorean fuzzy context.
Fuzzy logic and neural network technologies
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Lea, Robert N.; Savely, Robert T.
1992-01-01
Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.
Estimation of tool wear length in finish milling using a fuzzy inference algorithm
NASA Astrophysics Data System (ADS)
Ko, Tae Jo; Cho, Dong Woo
1993-10-01
The geometric accuracy and surface roughness are mainly affected by the flank wear at the minor cutting edge in finish machining. A fuzzy estimator obtained by a fuzzy inference algorithm with a max-min composition rule to evaluate the minor flank wear length in finish milling is introduced. The features sensitive to minor flank wear are extracted from the dispersion analysis of a time series AR model of the feed directional acceleration of the spindle housing. Linguistic rules for fuzzy estimation are constructed using these features, and then fuzzy inferences are carried out with test data sets under various cutting conditions. The proposed system turns out to be effective for estimating minor flank wear length, and its mean error is less than 12%.
Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 1
NASA Technical Reports Server (NTRS)
Culbert, Christopher J. (Editor)
1993-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake. The workshop was held June 1-3, 1992 at the Lyndon B. Johnson Space Center in Houston, Texas. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control, and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.
The search for structure - Object classification in large data sets. [for astronomers
NASA Technical Reports Server (NTRS)
Kurtz, Michael J.
1988-01-01
Research concerning object classifications schemes are reviewed, focusing on large data sets. Classification techniques are discussed, including syntactic, decision theoretic methods, fuzzy techniques, and stochastic and fuzzy grammars. Consideration is given to the automation of MK classification (Morgan and Keenan, 1973) and other problems associated with the classification of spectra. In addition, the classification of galaxies is examined, including the problems of systematic errors, blended objects, galaxy types, and galaxy clusters.
Project Delivery System Mode Decision Based on Uncertain AHP and Fuzzy Sets
NASA Astrophysics Data System (ADS)
Kaishan, Liu; Huimin, Li
2017-12-01
The project delivery system mode determines the contract pricing type, project management mode and the risk allocation among all participants. Different project delivery system modes have different characteristics and applicable scope. For the owners, the selection of the delivery mode is the key point to decide whether the project can achieve the expected benefits, it relates to the success or failure of project construction. Under the precondition of comprehensively considering the influence factors of the delivery mode, the model of project delivery system mode decision was set up on the basis of uncertain AHP and fuzzy sets, which can well consider the uncertainty and fuzziness when conducting the index evaluation and weight confirmation, so as to rapidly and effectively identify the most suitable delivery mode according to project characteristics. The effectiveness of the model has been verified via the actual case analysis in order to provide reference for the construction project delivery system mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin
Here, we construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N = 1* field theory with a non-trivial chargedensity. The solutions we construct have a Ζ N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions formore » each value of the angular momentum. We study the phase structure of the solutions for various values of N . Also the continuum limit where N → ∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.« less
Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin
2015-08-27
Here, we construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N = 1* field theory with a non-trivial chargedensity. The solutions we construct have a Ζ N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions formore » each value of the angular momentum. We study the phase structure of the solutions for various values of N . Also the continuum limit where N → ∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamburrini, G.; Termini, S.
1982-01-01
The general thesis underlying the present paper is that there are very strong methodological relations among cybernetics, system science, artificial intelligence, fuzzy sets and many other related fields. Then, in order to understand better both the achievements and the weak points of all the previous disciplines, one should look for some common features for looking at them in this general frame. What will be done is to present a brief analysis of the primitive program of cybernetics, presenting it as a case study useful for developing the previous thesis. Among the discussed points are the problems of interdisciplinarity and ofmore » the unity of cybernetics. Some implications of this analysis for a new reading of general system theory and fuzzy sets are briefly outlined at the end of the paper. 3 references.« less
Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling.
Tsipouras, Markos G; Exarchos, Themis P; Fotiadis, Dimitrios I; Kotsia, Anna P; Vakalis, Konstantinos V; Naka, Katerina K; Michalis, Lampros K
2008-07-01
A fuzzy rule-based decision support system (DSS) is presented for the diagnosis of coronary artery disease (CAD). The system is automatically generated from an initial annotated dataset, using a four stage methodology: 1) induction of a decision tree from the data; 2) extraction of a set of rules from the decision tree, in disjunctive normal form and formulation of a crisp model; 3) transformation of the crisp set of rules into a fuzzy model; and 4) optimization of the parameters of the fuzzy model. The dataset used for the DSS generation and evaluation consists of 199 subjects, each one characterized by 19 features, including demographic and history data, as well as laboratory examinations. Tenfold cross validation is employed, and the average sensitivity and specificity obtained is 62% and 54%, respectively, using the set of rules extracted from the decision tree (first and second stages), while the average sensitivity and specificity increase to 80% and 65%, respectively, when the fuzzification and optimization stages are used. The system offers several advantages since it is automatically generated, it provides CAD diagnosis based on easily and noninvasively acquired features, and is able to provide interpretation for the decisions made.
Fuzzy set methods for object recognition in space applications
NASA Technical Reports Server (NTRS)
Keller, James M.
1991-01-01
Progress on the following tasks is reported: (1) fuzzy set-based decision making methodologies; (2) feature calculation; (3) clustering for curve and surface fitting; and (4) acquisition of images. The general structure for networks based on fuzzy set connectives which are being used for information fusion and decision making in space applications is described. The structure and training techniques for such networks consisting of generalized means and gamma-operators are described. The use of other hybrid operators in multicriteria decision making is currently being examined. Numerous classical features on image regions such as gray level statistics, edge and curve primitives, texture measures from cooccurrance matrix, and size and shape parameters were implemented. Several fractal geometric features which may have a considerable impact on characterizing cluttered background, such as clouds, dense star patterns, or some planetary surfaces, were used. A new approach to a fuzzy C-shell algorithm is addressed. NASA personnel are in the process of acquiring suitable simulation data and hopefully videotaped actual shuttle imagery. Photographs have been digitized to use in the algorithms. Also, a model of the shuttle was assembled and a mechanism to orient this model in 3-D to digitize for experiments on pose estimation is being constructed.
A Scalable Framework For Segmenting Magnetic Resonance Images
Hore, Prodip; Goldgof, Dmitry B.; Gu, Yuhua; Maudsley, Andrew A.; Darkazanli, Ammar
2009-01-01
A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data. PMID:20046893
A Different Web-Based Geocoding Service Using Fuzzy Techniques
NASA Astrophysics Data System (ADS)
Pahlavani, P.; Abbaspour, R. A.; Zare Zadiny, A.
2015-12-01
Geocoding - the process of finding position based on descriptive data such as address or postal code - is considered as one of the most commonly used spatial analyses. Many online map providers such as Google Maps, Bing Maps and Yahoo Maps present geocoding as one of their basic capabilities. Despite the diversity of geocoding services, users usually face some limitations when they use available online geocoding services. In existing geocoding services, proximity and nearness concept is not modelled appropriately as well as these services search address only by address matching based on descriptive data. In addition there are also some limitations in display searching results. Resolving these limitations can enhance efficiency of the existing geocoding services. This paper proposes the idea of integrating fuzzy technique with geocoding process to resolve these limitations. In order to implement the proposed method, a web-based system is designed. In proposed method, nearness to places is defined by fuzzy membership functions and multiple fuzzy distance maps are created. Then these fuzzy distance maps are integrated using fuzzy overlay technique for obtain the results. Proposed methods provides different capabilities for users such as ability to search multi-part addresses, searching places based on their location, non-point representation of results as well as displaying search results based on their priority.
Designing a Successful Bidding Strategy Using Fuzzy Sets and Agent Attitudes
NASA Astrophysics Data System (ADS)
Ma, Jun; Goyal, Madhu Lata
To be successful in a multi-attribute auction, agents must be capable of adapting to continuously changing bidding price. This chapter presents a novel fuzzy attitude-based bidding strategy (FA-Bid), which employs dual assessment technique, i.e., assessment of multiple attributes of the goods as well as assessment of agents' attitude (eagerness) to procure an item in automated auction. The assessment of attributes adapts the fuzzy sets technique to handle uncertainty of the bidding process as well use heuristic rules to determine the attitude of bidding agents in simulated auctions to procure goods. The overall assessment is used to determine a price range based on current bid, which finally selects the best one as the new bid.
Kim, Dongcheol; Rhee, Sehun
2002-01-01
CO(2) welding is a complex process. Weld quality is dependent on arc stability and minimizing the effects of disturbances or changes in the operating condition commonly occurring during the welding process. In order to minimize these effects, a controller can be used. In this study, a fuzzy controller was used in order to stabilize the arc during CO(2) welding. The input variable of the controller was the Mita index. This index estimates quantitatively the arc stability that is influenced by many welding process parameters. Because the welding process is complex, a mathematical model of the Mita index was difficult to derive. Therefore, the parameter settings of the fuzzy controller were determined by performing actual control experiments without using a mathematical model of the controlled process. The solution, the Taguchi method was used to determine the optimal control parameter settings of the fuzzy controller to make the control performance robust and insensitive to the changes in the operating conditions.
Are artificial neural networks black boxes?
Benitez, J M; Castro, J L; Requena, I
1997-01-01
Artificial neural networks are efficient computing models which have shown their strengths in solving hard problems in artificial intelligence. They have also been shown to be universal approximators. Notwithstanding, one of the major criticisms is their being black boxes, since no satisfactory explanation of their behavior has been offered. In this paper, we provide such an interpretation of neural networks so that they will no longer be seen as black boxes. This is stated after establishing the equality between a certain class of neural nets and fuzzy rule-based systems. This interpretation is built with fuzzy rules using a new fuzzy logic operator which is defined after introducing the concept of f-duality. In addition, this interpretation offers an automated knowledge acquisition procedure.
NASA Technical Reports Server (NTRS)
Starks, Scott; Abdel-Hafeez, Saleh; Usevitch, Bryan
1997-01-01
This paper discusses the implementation of a fuzzy logic system using an ASICs design approach. The approach is based upon combining the inherent advantages of symmetric triangular membership functions and fuzzy singleton sets to obtain a novel structure for fuzzy logic system application development. The resulting structure utilizes a fuzzy static RAM to store the rule-base and the end-points of the triangular membership functions. This provides advantages over other approaches in which all sampled values of membership functions for all universes must be stored. The fuzzy coprocessor structure implements the fuzzification and defuzzification processes through a two-stage parallel pipeline architecture which is capable of executing complex fuzzy computations in less than 0.55us with an accuracy of more than 95%, thus making it suitable for a wide range of applications. Using the approach presented in this paper, a fuzzy logic rule-base can be directly downloaded via a host processor to an onchip rule-base memory with a size of 64 words. The fuzzy coprocessor's design supports up to 49 rules for seven fuzzy membership functions associated with each of the chip's two input variables. This feature allows designers to create fuzzy logic systems without the need for additional on-board memory. Finally, the paper reports on simulation studies that were conducted for several adaptive filter applications using the least mean squared adaptive algorithm for adjusting the knowledge rule-base.
Multiobject relative fuzzy connectedness and its implications in image segmentation
NASA Astrophysics Data System (ADS)
Udupa, Jayaram K.; Saha, Punam K.
2001-07-01
The notion of fuzzy connectedness captures the idea of hanging-togetherness of image elements in an object by assigning a strength of connectedness to every possible path between every possible pair of image elements. This concept leads to powerful image segmentation algorithms based on dynamic programming whose effectiveness has been demonstrated on 1000s of images in a variety of applications. In a previous framework, we introduced the notion of relative fuzzy connectedness for separating a foreground object from a background object. In this framework, an image element c is considered to belong to that among these two objects with respect to whose reference image element c has the higher strength of connectedness. In fuzzy connectedness, a local fuzzy reflation called affinity is used on the image domain. This relation was required for theoretical reasons to be of fixed form in the previous framework. In the present paper, we generalize relative connectedness to multiple objects, allowing all objects (of importance) to compete among themselves to grab membership of image elements based on their relative strength of connectedness to reference elements. We also allow affinity to be tailored to the individual objects. We present a theoretical and algorithmic framework and demonstrate that the objects defined are independent of the reference elements chosen as long as they are not in the fuzzy boundary between objects. Examples from medical imaging are presented to illustrate visually the effectiveness of multiple object relative fuzzy connectedness. A quantitative evaluation based on 160 mathematical phantom images demonstrates objectively the effectiveness of relative fuzzy connectedness with object- tailored affinity relation.
NASA Astrophysics Data System (ADS)
Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.
2014-03-01
This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.
Amador-Angulo, Leticia; Mendoza, Olivia; Castro, Juan R.; Rodríguez-Díaz, Antonio; Melin, Patricia; Castillo, Oscar
2016-01-01
A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in an autonomous mobile robot. We add two types of perturbations in the model for the Generalized Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better results when compared to the original BCO. We implemented various performance indices; ITAE, IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation the parameters for the BCO algorithm. PMID:27618062
Business Planning in the Light of Neuro-fuzzy and Predictive Forecasting
NASA Astrophysics Data System (ADS)
Chakrabarti, Prasun; Basu, Jayanta Kumar; Kim, Tai-Hoon
In this paper we have pointed out gain sensing on forecast based techniques.We have cited an idea of neural based gain forecasting. Testing of sequence of gain pattern is also verifies using statsistical analysis of fuzzy value assignment. The paper also suggests realization of stable gain condition using K-Means clustering of data mining. A new concept of 3D based gain sensing has been pointed out. The paper also reveals what type of trend analysis can be observed for probabilistic gain prediction.
A generic method for the evaluation of interval type-2 fuzzy linguistic summaries.
Boran, Fatih Emre; Akay, Diyar
2014-09-01
Linguistic summarization has turned out to be an important knowledge discovery technique by providing the most relevant natural language-based sentences in a human consistent manner. While many studies on linguistic summarization have handled ordinary fuzzy sets [type-1 fuzzy set (T1FS)] for modeling words, only few of them have dealt with interval type-2 fuzzy sets (IT2FS) even though IT2FS is better capable of handling uncertainties associated with words. Furthermore, the existent studies work with the scalar cardinality based degree of truth which might lead to inconsistency in the evaluation of interval type-2 fuzzy (IT2F) linguistic summaries. In this paper, to overcome this shortcoming, we propose a novel probabilistic degree of truth for evaluating IT2F linguistic summaries in the forms of type-I and type-II quantified sentences. We also extend the properties that should be fulfilled by any degree of truth on linguistic summarization with T1FS to IT2F environment. We not only prove that our probabilistic degree of truth satisfies the given properties, but also illustrate by examples that it provides more consistent results when compared to the existing degree of truth in the literature. Furthermore, we carry out an application on linguistic summarization of time series data of Europe Brent Spot Price, along with a comparison of the results achieved with our approach and that of the existing degree of truth in the literature.
Hierarchical semi-numeric method for pairwise fuzzy group decision making.
Marimin, M; Umano, M; Hatono, I; Tamura, H
2002-01-01
Gradual improvements to a single-level semi-numeric method, i.e., linguistic labels preference representation by fuzzy sets computation for pairwise fuzzy group decision making are summarized. The method is extended to solve multiple criteria hierarchical structure pairwise fuzzy group decision-making problems. The problems are hierarchically structured into focus, criteria, and alternatives. Decision makers express their evaluations of criteria and alternatives based on each criterion by using linguistic labels. The labels are converted into and processed in triangular fuzzy numbers (TFNs). Evaluations of criteria yield relative criteria weights. Evaluations of the alternatives, based on each criterion, yield a degree of preference for each alternative or a degree of satisfaction for each preference value. By using a neat ordered weighted average (OWA) or a fuzzy weighted average operator, solutions obtained based on each criterion are aggregated into final solutions. The hierarchical semi-numeric method is suitable for solving a larger and more complex pairwise fuzzy group decision-making problem. The proposed method has been verified and applied to solve some real cases and is compared to Saaty's (1996) analytic hierarchy process (AHP) method.
Brancalioni, Ana Rita; Magnago, Karine Faverzani; Keske-Soares, Marcia
2012-09-01
The objective of this study is to create a new proposal for classifying the severity of speech disorders using a fuzzy model in accordance with a linguistic model that represents the speech acquisition of Brazilian Portuguese. The fuzzy linguistic model was run in the MATLAB software fuzzy toolbox from a set of fuzzy rules, and it encompassed three input variables: path routing, level of complexity and phoneme acquisition. The output was the Speech Disorder Severity Index, and it used the following fuzzy subsets: severe, moderate severe, mild moderate and mild. The proposal was used for 204 children with speech disorders who were monolingual speakers of Brazilian Portuguese. The fuzzy linguistic model provided the Speech Disorder Severity Index for all of the evaluated phonological systems in a fast and practical manner. It was then possible to classify the systems according to the severity of the speech disorder as severe, moderate severe, mild moderate and mild; the speech disorders could also be differentiated according to the severity index.
Robust Programming Problems Based on the Mean-Variance Model Including Uncertainty Factors
NASA Astrophysics Data System (ADS)
Hasuike, Takashi; Ishii, Hiroaki
2009-01-01
This paper considers robust programming problems based on the mean-variance model including uncertainty sets and fuzzy factors. Since these problems are not well-defined problems due to fuzzy factors, it is hard to solve them directly. Therefore, introducing chance constraints, fuzzy goals and possibility measures, the proposed models are transformed into the deterministic equivalent problems. Furthermore, in order to solve these equivalent problems efficiently, the solution method is constructed introducing the mean-absolute deviation and doing the equivalent transformations.
Urban Growth Modeling Using Anfis Algorithm: a Case Study for Sanandaj City, Iran
NASA Astrophysics Data System (ADS)
Mohammady, S.; Delavar, M. R.; Pijanowski, B. C.
2013-10-01
Global urban population has increased from 22.9% in 1985 to 47% in 2010. In spite of the tendency for urbanization worldwide, only about 2% of Earth's land surface is covered by cities. Urban population in Iran is increasing due to social and economic development. The proportion of the population living in Iran urban areas has consistently increased from about 31% in 1956 to 68.4% in 2006. Migration of the rural population to cities and population growth in cities have caused many problems, such as irregular growth of cities, improper placement of infrastructure and urban services. Air and environmental pollution, resource degradation and insufficient infrastructure, are the results of poor urban planning that have negative impact on the environment or livelihoods of people living in cities. These issues are a consequence of improper land use planning. Models have been employed to assist in our understanding of relations between land use and its subsequent effects. Different models for urban growth modeling have been developed. Methods from computational intelligence have made great contributions in all specific application domains and hybrid algorithms research as a part of them has become a big trend in computational intelligence. Artificial Neural Network (ANN) has the capability to deal with imprecise data by training, while fuzzy logic can deal with the uncertainty of human cognition. ANN learns from scratch by adjusting the interconnections between layers and Fuzzy Inference Systems (FIS) is a popular computing framework based on the concept of fuzzy set theory, fuzzy logic, and fuzzy reasoning. Fuzzy logic has many advantages such as flexibility and at the other sides, one of the biggest problems in fuzzy logic application is the location and shape and of membership function for each fuzzy variable which is generally being solved by trial and error method. In contrast, numerical computation and learning are the advantages of neural network, however, it is not easy to obtain the optimal structure. Since, in this type of fuzzy logic, neural network has been used, therefore, by using a learning algorithm the parameters have been changed until reach the optimal solution. Adaptive Neuro Fuzzy Inference System (ANFIS) computing due to ability to understand nonlinear structures is a popular framework for solving complex problems. Fusion of ANN and FIS has attracted the growing interest of researchers in various scientific and engineering areas due to the growing need of adaptive intelligent systems to solve the real world problems. In this research, an ANFIS method has been developed for modeling land use change and interpreting the relationship between the drivers of urbanization. Our study area is the city of Sanandaj located in the west of Iran. Landsat images acquired in 2000 and 2006 have been used for model development and calibration. The parameters used in this study include distance to major roads, distance to residential regions, elevation, number of urban pixels in a 3 by 3 neighborhood and distance to green space. Percent Correct Match (PCM) and Figure of Merit were used to assess model goodness of fit were 93.77% and 64.30%, respectively.
Zoning of agricultural field using a fuzzy indicators model
USDA-ARS?s Scientific Manuscript database
Zoning of agricultural fields is an important task for utilization of precision farming technology. One method for deciding how to subdivide a field into a few relatively homogenous zones is using applications of fuzzy sets theory. Data collected from a precision agriculture study in central Texas...
Competitive Facility Location with Fuzzy Random Demands
NASA Astrophysics Data System (ADS)
Uno, Takeshi; Katagiri, Hideki; Kato, Kosuke
2010-10-01
This paper proposes a new location problem of competitive facilities, e.g. shops, with uncertainty and vagueness including demands for the facilities in a plane. By representing the demands for facilities as fuzzy random variables, the location problem can be formulated as a fuzzy random programming problem. For solving the fuzzy random programming problem, first the α-level sets for fuzzy numbers are used for transforming it to a stochastic programming problem, and secondly, by using their expectations and variances, it can be reformulated to a deterministic programming problem. After showing that one of their optimal solutions can be found by solving 0-1 programming problems, their solution method is proposed by improving the tabu search algorithm with strategic oscillation. The efficiency of the proposed method is shown by applying it to numerical examples of the facility location problems.
Pricing for a basket of LCDS under fuzzy environments.
Wu, Liang; Liu, Jie-Fang; Wang, Jun-Tao; Zhuang, Ya-Ming
2016-01-01
This paper looks at both the prepayment risks of housing mortgage loan credit default swaps (LCDS) as well as the fuzziness and hesitation of investors as regards prepayments by borrowers. It further discusses the first default pricing of a basket of LCDS in a fuzzy environment by using stochastic analysis and triangular intuition-based fuzzy set theory. Through the 'fuzzification' of the sensitivity coefficient in the prepayment intensity, this paper describes the dynamic features of mortgage housing values using the One-factor copula function and concludes with a formula for 'fuzzy' pricing the first default of a basket of LCDS. Using analog simulation to analyze the sensitivity of hesitation, we derive a model that considers what the LCDS fair premium is in a fuzzy environment, including a pure random environment. In addition, the model also shows that a suitable pricing range will give investors more flexible choices and make the predictions of the model closer to real market values.
Fuzzy logic control of telerobot manipulators
NASA Technical Reports Server (NTRS)
Franke, Ernest A.; Nedungadi, Ashok
1992-01-01
Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.
Imprecise (fuzzy) information in geostatistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardossy, A.; Bogardi, I.; Kelly, W.E.
1988-05-01
A methodology based on fuzzy set theory for the utilization of imprecise data in geostatistics is presented. A common problem preventing a broader use of geostatistics has been the insufficient amount of accurate measurement data. In certain cases, additional but uncertain (soft) information is available and can be encoded as subjective probabilities, and then the soft kriging method can be applied (Journal, 1986). In other cases, a fuzzy encoding of soft information may be more realistic and simplify the numerical calculations. Imprecise (fuzzy) spatial information on the possible variogram is integrated into a single variogram which is used in amore » fuzzy kriging procedure. The overall uncertainty of prediction is represented by the estimation variance and the calculated membership function for each kriged point. The methodology is applied to the permeability prediction of a soil liner for hazardous waste containment. The available number of hard measurement data (20) was not enough for a classical geostatistical analysis. An additional 20 soft data made it possible to prepare kriged contour maps using the fuzzy geostatistical procedure.« less
Parrado-Hernández, Emilio; Gómez-Sánchez, Eduardo; Dimitriadis, Yannis A
2003-09-01
An evaluation of distributed learning as a means to attenuate the category proliferation problem in Fuzzy ARTMAP based neural systems is carried out, from both qualitative and quantitative points of view. The study involves two original winner-take-all (WTA) architectures, Fuzzy ARTMAP and FasArt, and their distributed versions, dARTMAP and dFasArt. A qualitative analysis of the distributed learning properties of dARTMAP is made, focusing on the new elements introduced to endow Fuzzy ARTMAP with distributed learning. In addition, a quantitative study on a selected set of classification problems points out that problems have to present certain features in their output classes in order to noticeably reduce the number of recruited categories and achieve an acceptable classification accuracy. As part of this analysis, distributed learning was successfully adapted to a member of the Fuzzy ARTMAP family, FasArt, and similar procedures can be used to extend distributed learning capabilities to other Fuzzy ARTMAP based systems.
Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays
NASA Astrophysics Data System (ADS)
Syed Ali, M.; Balasubramaniam, P.
2008-07-01
In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB.
Risk analysis with a fuzzy-logic approach of a complex installation
NASA Astrophysics Data System (ADS)
Peikert, Tim; Garbe, Heyno; Potthast, Stefan
2016-09-01
This paper introduces a procedural method based on fuzzy logic to analyze systematic the risk of an electronic system in an intentional electromagnetic environment (IEME). The method analyzes the susceptibility of a complex electronic installation with respect to intentional electromagnetic interference (IEMI). It combines the advantages of well-known techniques as fault tree analysis (FTA), electromagnetic topology (EMT) and Bayesian networks (BN) and extends the techniques with an approach to handle uncertainty. This approach uses fuzzy sets, membership functions and fuzzy logic to handle the uncertainty with probability functions and linguistic terms. The linguistic terms add to the risk analysis the knowledge from experts of the investigated system or environment.
Robust traffic sign detection using fuzzy shape recognizer
NASA Astrophysics Data System (ADS)
Li, Lunbo; Li, Jun; Sun, Jianhong
2009-10-01
A novel fuzzy approach for the detection of traffic signs in natural environments is presented. More than 3000 road images were collected under different weather conditions by a digital camera, and used for testing this approach. Every RGB image was converted into HSV colour space, and segmented by the hue and saturation thresholds. A symmetrical detector was used to extract the local features of the regions of interest (ROI), and the shape of ROI was determined by a fuzzy shape recognizer which invoked a set of fuzzy rules. The experimental results show that the proposed algorithm is translation, rotation and scaling invariant, and gives reliable shape recognition in complex traffic scenes where clustering and partial occlusion normally occur.
A fuzzy set approach for reliability calculation of valve controlling electric actuators
NASA Astrophysics Data System (ADS)
Karmachev, D. P.; Yefremov, A. A.; Luneva, E. E.
2017-02-01
The oil and gas equipment and electric actuators in particular frequently perform in various operational modes and under dynamic environmental conditions. These factors affect equipment reliability measures in a vague, uncertain way. To eliminate the ambiguity, reliability model parameters could be defined as fuzzy numbers. We suggest a technique that allows constructing fundamental fuzzy-valued performance reliability measures based on an analysis of electric actuators failure data in accordance with the amount of work, completed before the failure, instead of failure time. Also, this paper provides a computation example of fuzzy-valued reliability and hazard rate functions, assuming Kumaraswamy complementary Weibull geometric distribution as a lifetime (reliability) model for electric actuators.
Fuzzy indicator approach: development of impact factor of soil amendments
USDA-ARS?s Scientific Manuscript database
Soil amendments have been shown to be useful for improving soil condition, but it is often difficult to make management decisions as to their usefulness. Utilization of Fuzzy Set Theory is a promising method for decision support associated with utilization of soil amendments. In this article a tool ...
Novel Observer Scheme of Fuzzy-MRAS Sensorless Speed Control of Induction Motor Drive
NASA Astrophysics Data System (ADS)
Chekroun, S.; Zerikat, M.; Mechernene, A.; Benharir, N.
2017-01-01
This paper presents a novel approach Fuzzy-MRAS conception for robust accurate tracking of induction motor drive operating in a high-performance drives environment. Of the different methods for sensorless control of induction motor drive the model reference adaptive system (MRAS) finds lot of attention due to its good performance. The analysis of the sensorless vector control system using MRAS is presented and the resistance parameters variations and speed observer using new Fuzzy Self-Tuning adaptive IP Controller is proposed. In fact, fuzzy logic is reminiscent of human thinking processes and natural language enabling decisions to be made based on vague information. The present approach helps to achieve a good dynamic response, disturbance rejection and low to plant parameter variations of the induction motor. In order to verify the performances of the proposed observer and control algorithms and to test behaviour of the controlled system, numerical simulation is achieved. Simulation results are presented and discussed to shown the validity and the performance of the proposed observer.
Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm
NASA Technical Reports Server (NTRS)
Mitra, Sunanda; Pemmaraju, Surya
1992-01-01
Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.
NASA Astrophysics Data System (ADS)
Boubakir, A.; Boudjema, F.; Boubakir, C.
2008-06-01
This paper proposes an approach of hybrid control that is based on the concept of combining fuzzy logic and the methodology of sliding mode control (SMC). In the present works, a first-order nonlinear sliding surface is presented, on which the developed control law is based. Mathematical proof for the stability and convergence of the system is presented. In order to reduce the chattering in sliding mode control, a fixed boundary layer around the switch surface is used. Within the boundary layer, since the fuzzy logic control is applied, the chattering phenomenon, which is inherent in a sliding mode control, is avoided by smoothing the switch signal. Outside the boundary, the sliding mode control is applied to driving the system states into the boundary layer. Experimental studies carried out on a coupled Tanks system indicate that the proposed fuzzy sliding mode control (FSMC) is a good candidate for control applications.
Giménez-Espert, María Del Carmen; Prado-Gascó, Vicente Javier
2018-03-01
To analyse link between empathy and emotional intelligence as a predictor of nurses' attitudes towards communication while comparing the contribution of emotional aspects and attitudinal elements on potential behaviour. Nurses' attitudes towards communication, empathy and emotional intelligence are key skills for nurses involved in patient care. There are currently no studies analysing this link, and its investigation is needed because attitudes may influence communication behaviours. Correlational study. To attain this goal, self-reported instruments (attitudes towards communication of nurses, trait emotional intelligence (Trait Emotional Meta-Mood Scale) and Jefferson Scale of Nursing Empathy (Jefferson Scale Nursing Empathy) were collected from 460 nurses between September 2015-February 2016. Two different analytical methodologies were used: traditional regression models and fuzzy-set qualitative comparative analysis models. The results of the regression model suggest that cognitive dimensions of attitude are a significant and positive predictor of the behavioural dimension. The perspective-taking dimension of empathy and the emotional-clarity dimension of emotional intelligence were significant positive predictors of the dimensions of attitudes towards communication, except for the affective dimension (for which the association was negative). The results of the fuzzy-set qualitative comparative analysis models confirm that the combination of high levels of cognitive dimension of attitudes, perspective-taking and emotional clarity explained high levels of the behavioural dimension of attitude. Empathy and emotional intelligence are predictors of nurses' attitudes towards communication, and the cognitive dimension of attitude is a good predictor of the behavioural dimension of attitudes towards communication of nurses in both regression models and fuzzy-set qualitative comparative analysis. In general, the fuzzy-set qualitative comparative analysis models appear to be better predictors than the regression models are. To evaluate current practices, establish intervention strategies and evaluate their effectiveness. The evaluation of these variables and their relationships are important in creating a satisfied and sustainable workforce and improving quality of care and patient health. © 2018 John Wiley & Sons Ltd.
A Fuzzy Goal Programming for a Multi-Depot Distribution Problem
NASA Astrophysics Data System (ADS)
Nunkaew, Wuttinan; Phruksaphanrat, Busaba
2010-10-01
A fuzzy goal programming model for solving a Multi-Depot Distribution Problem (MDDP) is proposed in this research. This effective proposed model is applied for solving in the first step of Assignment First-Routing Second (AFRS) approach. Practically, a basic transportation model is firstly chosen to solve this kind of problem in the assignment step. After that the Vehicle Routing Problem (VRP) model is used to compute the delivery cost in the routing step. However, in the basic transportation model, only depot to customer relationship is concerned. In addition, the consideration of customer to customer relationship should also be considered since this relationship exists in the routing step. Both considerations of relationships are solved using Preemptive Fuzzy Goal Programming (P-FGP). The first fuzzy goal is set by a total transportation cost and the second fuzzy goal is set by a satisfactory level of the overall independence value. A case study is used for describing the effectiveness of the proposed model. Results from the proposed model are compared with the basic transportation model that has previously been used in this company. The proposed model can reduce the actual delivery cost in the routing step owing to the better result in the assignment step. Defining fuzzy goals by membership functions are more realistic than crisps. Furthermore, flexibility to adjust goals and an acceptable satisfactory level for decision maker can also be increased and the optimal solution can be obtained.
NASA Astrophysics Data System (ADS)
Pei, Lidan; Jin, Feifei; Ni, Zhiwei; Chen, Huayou; Tao, Zhifu
2017-10-01
As a new preference structure, the intuitionistic fuzzy linguistic preference relation (IFLPR) was recently introduced to efficiently deal with situations in which the membership and non-membership are represented as linguistic terms. In this paper, we study the issues of additive consistency and the derivation of the intuitionistic fuzzy weight vector of an IFLPR. First, the new concepts of order consistency, additive consistency and weak transitivity for IFLPRs are introduced, and followed by a discussion of the characterisation about additive consistent IFLPRs. Then, a parameterised transformation approach is investigated to convert the normalised intuitionistic fuzzy weight vector into additive consistent IFLPRs. After that, a linear optimisation model is established to derive the normalised intuitionistic fuzzy weights for IFLPRs, and a consistency index is defined to measure the deviation degree between an IFLPR and its additive consistent IFLPR. Furthermore, we develop an automatic iterative decision-making method to improve the IFLPRs with unacceptable additive consistency until the adjusted IFLPRs are acceptable additive consistent, and it helps the decision-maker to obtain the reasonable and reliable decision-making results. Finally, an illustrative example is provided to demonstrate the validity and applicability of the proposed method.
Garibaldi, Jonathan M; Zhou, Shang-Ming; Wang, Xiao-Ying; John, Robert I; Ellis, Ian O
2012-06-01
It has been often demonstrated that clinicians exhibit both inter-expert and intra-expert variability when making difficult decisions. In contrast, the vast majority of computerized models that aim to provide automated support for such decisions do not explicitly recognize or replicate this variability. Furthermore, the perfect consistency of computerized models is often presented as a de facto benefit. In this paper, we describe a novel approach to incorporate variability within a fuzzy inference system using non-stationary fuzzy sets in order to replicate human variability. We apply our approach to a decision problem concerning the recommendation of post-operative breast cancer treatment; specifically, whether or not to administer chemotherapy based on assessment of five clinical variables: NPI (the Nottingham Prognostic Index), estrogen receptor status, vascular invasion, age and lymph node status. In doing so, we explore whether such explicit modeling of variability provides any performance advantage over a more conventional fuzzy approach, when tested on a set of 1310 unselected cases collected over a fourteen year period at the Nottingham University Hospitals NHS Trust, UK. The experimental results show that the standard fuzzy inference system (that does not model variability) achieves overall agreement to clinical practice around 84.6% (95% CI: 84.1-84.9%), while the non-stationary fuzzy model can significantly increase performance to around 88.1% (95% CI: 88.0-88.2%), p<0.001. We conclude that non-stationary fuzzy models provide a valuable new approach that may be applied to clinical decision support systems in any application domain. Copyright © 2012 Elsevier Inc. All rights reserved.
Li, Jia; Wang, Deming; Huang, Zonghou
2017-01-01
Coal dust explosions (CDE) are one of the main threats to the occupational safety of coal miners. Aiming to identify and assess the risk of CDE, this paper proposes a novel method of fuzzy fault tree analysis combined with the Visual Basic (VB) program. In this methodology, various potential causes of the CDE are identified and a CDE fault tree is constructed. To overcome drawbacks from the lack of exact probability data for the basic events, fuzzy set theory is employed and the probability data of each basic event is treated as intuitionistic trapezoidal fuzzy numbers. In addition, a new approach for calculating the weighting of each expert is also introduced in this paper to reduce the error during the expert elicitation process. Specifically, an in-depth quantitative analysis of the fuzzy fault tree, such as the importance measure of the basic events and the cut sets, and the CDE occurrence probability is given to assess the explosion risk and acquire more details of the CDE. The VB program is applied to simplify the analysis process. A case study and analysis is provided to illustrate the effectiveness of this proposed method, and some suggestions are given to take preventive measures in advance and avoid CDE accidents. PMID:28793348
Real-time qualitative reasoning for telerobotic systems
NASA Technical Reports Server (NTRS)
Pin, Eancois G.
1993-01-01
This paper discusses the sensor-based telerobotic driving of a car in a-priori unknown environments using 'human-like' reasoning schemes implemented on custom-designed VLSI fuzzy inferencing boards. These boards use the Fuzzy Set theoretic framework to allow very vast (30 kHz) processing of full sets of information that are expressed in qualitative form using membership functions. The sensor-based and fuzzy inferencing system was incorporated on an outdoor test-bed platform to investigate two control modes for driving a car on the basis of very sparse and imprecise range data. In the first mode, the car navigates fully autonomously to a goal specified by the operator, while in the second mode, the system acts as a telerobotic driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right, speed up, slow down, stop, or back up depending on the obstacles perceived by the sensors. Indoor and outdoor experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Sample results are presented that illustrate the feasibility of developing autonomous navigation modules and robust, safety-enhancing driver's aids for telerobotic systems using the new fuzzy inferencing VLSI hardware and 'human-like' reasoning schemes.
Wang, Hetang; Li, Jia; Wang, Deming; Huang, Zonghou
2017-01-01
Coal dust explosions (CDE) are one of the main threats to the occupational safety of coal miners. Aiming to identify and assess the risk of CDE, this paper proposes a novel method of fuzzy fault tree analysis combined with the Visual Basic (VB) program. In this methodology, various potential causes of the CDE are identified and a CDE fault tree is constructed. To overcome drawbacks from the lack of exact probability data for the basic events, fuzzy set theory is employed and the probability data of each basic event is treated as intuitionistic trapezoidal fuzzy numbers. In addition, a new approach for calculating the weighting of each expert is also introduced in this paper to reduce the error during the expert elicitation process. Specifically, an in-depth quantitative analysis of the fuzzy fault tree, such as the importance measure of the basic events and the cut sets, and the CDE occurrence probability is given to assess the explosion risk and acquire more details of the CDE. The VB program is applied to simplify the analysis process. A case study and analysis is provided to illustrate the effectiveness of this proposed method, and some suggestions are given to take preventive measures in advance and avoid CDE accidents.
Construction of FuzzyFind Dictionary using Golay Coding Transformation for Searching Applications
NASA Astrophysics Data System (ADS)
Kowsari, Kamram
2015-03-01
searching through a large volume of data is very critical for companies, scientists, and searching engines applications due to time complexity and memory complexity. In this paper, a new technique of generating FuzzyFind Dictionary for text mining was introduced. We simply mapped the 23 bits of the English alphabet into a FuzzyFind Dictionary or more than 23 bits by using more FuzzyFind Dictionary, and reflecting the presence or absence of particular letters. This representation preserves closeness of word distortions in terms of closeness of the created binary vectors within Hamming distance of 2 deviations. This paper talks about the Golay Coding Transformation Hash Table and how it can be used on a FuzzyFind Dictionary as a new technology for using in searching through big data. This method is introduced by linear time complexity for generating the dictionary and constant time complexity to access the data and update by new data sets, also updating for new data sets is linear time depends on new data points. This technique is based on searching only for letters of English that each segment has 23 bits, and also we have more than 23-bit and also it could work with more segments as reference table.
Cao, Yuzhen; Cai, Lihui; Wang, Jiang; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing
2015-08-01
In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease.
NASA Astrophysics Data System (ADS)
Cao, Yuzhen; Cai, Lihui; Wang, Jiang; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing
2015-08-01
In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease.
NASA Astrophysics Data System (ADS)
Aggarwal, Anil Kr.; Kumar, Sanjeev; Singh, Vikram
2017-03-01
The binary states, i.e., success or failed state assumptions used in conventional reliability are inappropriate for reliability analysis of complex industrial systems due to lack of sufficient probabilistic information. For large complex systems, the uncertainty of each individual parameter enhances the uncertainty of the system reliability. In this paper, the concept of fuzzy reliability has been used for reliability analysis of the system, and the effect of coverage factor, failure and repair rates of subsystems on fuzzy availability for fault-tolerant crystallization system of sugar plant is analyzed. Mathematical modeling of the system is carried out using the mnemonic rule to derive Chapman-Kolmogorov differential equations. These governing differential equations are solved with Runge-Kutta fourth-order method.
A Fuzzy Approach of the Competition on the Air Transport Market
NASA Technical Reports Server (NTRS)
Charfeddine, Souhir; DeColigny, Marc; Camino, Felix Mora; Cosenza, Carlos Alberto Nunes
2003-01-01
The aim of this communication is to study with a new scope the conditions of the equilibrium in an air transport market where two competitive airlines are operating. Each airline is supposed to adopt a strategy maximizing its profit while its estimation of the demand has a fuzzy nature. This leads each company to optimize a program of its proposed services (frequency of the flights and ticket prices) characterized by some fuzzy parameters. The case of monopoly is being taken as a benchmark. Classical convex optimization can be used to solve this decision problem. This approach provides the airline with a new decision tool where uncertainty can be taken into account explicitly. The confrontation of the strategies of the companies, in the ease of duopoly, leads to the definition of a fuzzy equilibrium. This concept of fuzzy equilibrium is more general and can be applied to several other domains. The formulation of the optimization problem and the methodological consideration adopted for its resolution are presented in their general theoretical aspect. In the case of air transportation, where the conditions of management of operations are critical, this approach should offer to the manager elements needed to the consolidation of its decisions depending on the circumstances (ordinary, exceptional events,..) and to be prepared to face all possibilities. Keywords: air transportation, competition equilibrium, convex optimization , fuzzy modeling,
Fuzzy intelligent quality monitoring model for X-ray image processing.
Khalatbari, Azadeh; Jenab, Kouroush
2009-01-01
Today's imaging diagnosis needs to adapt modern techniques of quality engineering to maintain and improve its accuracy and reliability in health care system. One of the main factors that influences diagnostic accuracy of plain film X-ray on detecting pathology is the level of film exposure. If the level of film exposure is not adequate, a normal body structure may be interpretated as pathology and vice versa. This not only influences the patient management but also has an impact on health care cost and patient's quality of life. Therefore, providing an accurate and high quality image is the first step toward an excellent patient management in any health care system. In this paper, we study these techniques and also present a fuzzy intelligent quality monitoring model, which can be used to keep variables from degrading the image quality. The variables derived from chemical activity, cleaning procedures, maintenance, and monitoring may not be sensed, measured, or calculated precisely due to uncertain situations. Therefore, the gamma-level fuzzy Bayesian model for quality monitoring of an image processing is proposed. In order to apply the Bayesian concept, the fuzzy quality characteristics are assumed as fuzzy random variables. Using the fuzzy quality characteristics, the newly developed model calculates the degradation risk for image processing. A numerical example is also presented to demonstrate the application of the model.
Rastgarpour, Maryam; Shanbehzadeh, Jamshid
2014-01-01
Researchers recently apply an integrative approach to automate medical image segmentation for benefiting available methods and eliminating their disadvantages. Intensity inhomogeneity is a challenging and open problem in this area, which has received less attention by this approach. It has considerable effects on segmentation accuracy. This paper proposes a new kernel-based fuzzy level set algorithm by an integrative approach to deal with this problem. It can directly evolve from the initial level set obtained by Gaussian Kernel-Based Fuzzy C-Means (GKFCM). The controlling parameters of level set evolution are also estimated from the results of GKFCM. Moreover the proposed algorithm is enhanced with locally regularized evolution based on an image model that describes the composition of real-world images, in which intensity inhomogeneity is assumed as a component of an image. Such improvements make level set manipulation easier and lead to more robust segmentation in intensity inhomogeneity. The proposed algorithm has valuable benefits including automation, invariant of intensity inhomogeneity, and high accuracy. Performance evaluation of the proposed algorithm was carried on medical images from different modalities. The results confirm its effectiveness for medical image segmentation.
Fuzzy linear model for production optimization of mining systems with multiple entities
NASA Astrophysics Data System (ADS)
Vujic, Slobodan; Benovic, Tomo; Miljanovic, Igor; Hudej, Marjan; Milutinovic, Aleksandar; Pavlovic, Petar
2011-12-01
Planning and production optimization within multiple mines or several work sites (entities) mining systems by using fuzzy linear programming (LP) was studied. LP is the most commonly used operations research methods in mining engineering. After the introductory review of properties and limitations of applying LP, short reviews of the general settings of deterministic and fuzzy LP models are presented. With the purpose of comparative analysis, the application of both LP models is presented using the example of the Bauxite Basin Niksic with five mines. After the assessment, LP is an efficient mathematical modeling tool in production planning and solving many other single-criteria optimization problems of mining engineering. After the comparison of advantages and deficiencies of both deterministic and fuzzy LP models, the conclusion presents benefits of the fuzzy LP model but is also stating that seeking the optimal plan of production means to accomplish the overall analysis that will encompass the LP model approaches.
Fuzzy-probabilistic model for risk assessment of radioactive material railway transportation.
Avramenko, M; Bolyatko, V; Kosterev, V
2005-01-01
Transportation of radioactive materials is obviously accompanied by a certain risk. A model for risk assessment of emergency situations and terrorist attacks may be useful for choosing possible routes and for comparing the various defence strategies. In particular, risk assessment is crucial for safe transportation of excess weapons-grade plutonium arising from the removal of plutonium from military employment. A fuzzy-probabilistic model for risk assessment of railway transportation has been developed taking into account the different natures of risk-affecting parameters (probabilistic and not probabilistic but fuzzy). Fuzzy set theory methods as well as standard methods of probability theory have been used for quantitative risk assessment. Information-preserving transformations are applied to realise the correct aggregation of probabilistic and fuzzy parameters. Estimations have also been made of the inhalation doses resulting from possible accidents during plutonium transportation. The obtained data show the scale of possible consequences that may arise from plutonium transportation accidents.
Dynamical tachyons on fuzzy spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berenstein, David; Institute for Advanced Study, School of Natural Science, Princeton, New Jersey 08540; Trancanelli, Diego
2011-05-15
We study the spectrum of off-diagonal fluctuations between displaced fuzzy spheres in the Berenstein-Maldacena-Nastase plane wave matrix model. The displacement is along the plane of the fuzzy spheres. We find that when two fuzzy spheres intersect at angles, classical tachyons develop and that the spectrum of these modes can be computed analytically. These tachyons can be related to the familiar Nielsen-Olesen instabilities in Yang-Mills theory on a constant magnetic background. Many features of the problem become more apparent when we compare with maximally supersymmetric Yang-Mills theory on a sphere, of which this system is a truncation. We also set upmore » a simple oscillatory trajectory on the displacement between the fuzzy spheres and study the dynamics of the modes as they become tachyonic for part of the oscillations. We speculate on their role regarding the possible thermalization of the system.« less
Li, Yongming; Ma, Zhiyao; Tong, Shaocheng
2017-09-01
The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.
ERIC Educational Resources Information Center
Tzeng, Jeng-Yi
2010-01-01
From the perspective of the Fuzzy Trace Theory, this study investigated the impacts of concept maps with two strategic orientations (comprehensive and thematic representations) on readers' performance of cognitive operations (such as perception, verbatim memory, gist reasoning and syntheses) while the readers were reading two history articles that…
Developing new services using fuzzy QFD: a LIFENET case study.
Rahman, Zillur; Qureshi, M N
2008-01-01
The purpose of this paper is to suggest the fuzzy quality function deployment (QFD) method to assess LIFENET customers' spoken and unspoken needs in order to achieve the various objectives like: how to decide optimum portfolio for health services strategically; how to assess competitors' market position in order to reckon the market position of LIFENET; and how to set the revised target in order to satisfy the customers' demand and to fetch profit in order to satisfy managers' mission and vision in a competitive market. A fuzzy QFD method has been devised to take care of the various LIFENET objectives. Fuzzy logic's use has been recommended to remove the uncertainty, vagueness, and impreciseness from data obtained to assess customers' spoken and unspoken needs. Symmetric triangular fuzzy numbers (STFNs) may be used to assess various needs to enhance data accuracy. House of quality (HOQ), an in-built QFD matrix, may be constructed to take care of LIFENET's various requirements in order to satisfy internal and external customers. Fuzzy QFD plays a vital role in assessing customers' need in terms of WHATs. Various WHATs thus obtained can be accomplished by incorporating technical parameter HOWs'. The QFD HOQ offers various vital comparisons for instance, WHATs vs HOWs, HOWs vs HOWs, NOWs vs WHATs, etc. to obtain important inferences, which help to revise target to remain competitive in the market Fuzzy QFD helps devise a management strategy to follow customers' needs in health industry successfully. Accessing Indian customers' needs poses many challenges as the decision to opt for a given healthcare service is most uncertain because it varies from person to person. The set of parameters that influence individual decisions to opt for healthcare services are costs, treatment response time, disease/risk, and health service satisfaction. Fuzzy QFD may help LIFENET promoters to consider customers' favored health services thereby helping strategically in their attempt for major expansion, in order to get the most benefits of becoming first-movers in the sector. Fuzzy QFD may also help LIFENET to avert major investment decisions that looked attractive in short-term, but in fact were unfruitful, in long-term.
GOClonto: an ontological clustering approach for conceptualizing PubMed abstracts.
Zheng, Hai-Tao; Borchert, Charles; Kim, Hong-Gee
2010-02-01
Concurrent with progress in biomedical sciences, an overwhelming of textual knowledge is accumulating in the biomedical literature. PubMed is the most comprehensive database collecting and managing biomedical literature. To help researchers easily understand collections of PubMed abstracts, numerous clustering methods have been proposed to group similar abstracts based on their shared features. However, most of these methods do not explore the semantic relationships among groupings of documents, which could help better illuminate the groupings of PubMed abstracts. To address this issue, we proposed an ontological clustering method called GOClonto for conceptualizing PubMed abstracts. GOClonto uses latent semantic analysis (LSA) and gene ontology (GO) to identify key gene-related concepts and their relationships as well as allocate PubMed abstracts based on these key gene-related concepts. Based on two PubMed abstract collections, the experimental results show that GOClonto is able to identify key gene-related concepts and outperforms the STC (suffix tree clustering) algorithm, the Lingo algorithm, the Fuzzy Ants algorithm, and the clustering based TRS (tolerance rough set) algorithm. Moreover, the two ontologies generated by GOClonto show significant informative conceptual structures.
1978-11-01
a fuzzy set of real numbers clustered around m, or as a possibility distribution on the value of some ill-known quantity. A fuzzy relation R on the...distribution of . va.- nossibly clustered around some mean value. STho -Ict.n uf F to X is f. Moreover, It should be noticed that the image of a *uz!y L...10) 1(•)(y)= sup Rjin (i(x),• ()(y)) xcX One may verify that 11(-())(z)= sup min (V(x),N)( 0)(×)(z)) . Gmx ) xCX •) ’ . This shows that the extension
Full design of fuzzy controllers using genetic algorithms
NASA Technical Reports Server (NTRS)
Homaifar, Abdollah; Mccormick, ED
1992-01-01
This paper examines the applicability of genetic algorithms (GA) in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.
Full design of fuzzy controllers using genetic algorithms
NASA Technical Reports Server (NTRS)
Homaifar, Abdollah; Mccormick, ED
1992-01-01
This paper examines the applicability of genetic algorithms in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miltiadis Alamaniotis; Vivek Agarwal
This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are thenmore » inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.« less
Dragović, Ivana; Turajlić, Nina; Pilčević, Dejan; Petrović, Bratislav; Radojević, Dragan
2015-01-01
Fuzzy inference systems (FIS) enable automated assessment and reasoning in a logically consistent manner akin to the way in which humans reason. However, since no conventional fuzzy set theory is in the Boolean frame, it is proposed that Boolean consistent fuzzy logic should be used in the evaluation of rules. The main distinction of this approach is that it requires the execution of a set of structural transformations before the actual values can be introduced, which can, in certain cases, lead to different results. While a Boolean consistent FIS could be used for establishing the diagnostic criteria for any given disease, in this paper it is applied for determining the likelihood of peritonitis, as the leading complication of peritoneal dialysis (PD). Given that patients could be located far away from healthcare institutions (as peritoneal dialysis is a form of home dialysis) the proposed Boolean consistent FIS would enable patients to easily estimate the likelihood of them having peritonitis (where a high likelihood would suggest that prompt treatment is indicated), when medical experts are not close at hand. PMID:27069500
Consistent linguistic fuzzy preference relations method with ranking fuzzy numbers
NASA Astrophysics Data System (ADS)
Ridzuan, Siti Amnah Mohd; Mohamad, Daud; Kamis, Nor Hanimah
2014-12-01
Multi-Criteria Decision Making (MCDM) methods have been developed to help decision makers in selecting the best criteria or alternatives from the options given. One of the well known methods in MCDM is the Consistent Fuzzy Preference Relation (CFPR) method, essentially utilizes a pairwise comparison approach. This method was later improved to cater subjectivity in the data by using fuzzy set, known as the Consistent Linguistic Fuzzy Preference Relations (CLFPR). The CLFPR method uses the additive transitivity property in the evaluation of pairwise comparison matrices. However, the calculation involved is lengthy and cumbersome. To overcome this problem, a method of defuzzification was introduced by researchers. Nevertheless, the defuzzification process has a major setback where some information may lose due to the simplification process. In this paper, we propose a method of CLFPR that preserves the fuzzy numbers form throughout the process. In obtaining the desired ordering result, a method of ranking fuzzy numbers is utilized in the procedure. This improved procedure for CLFPR is implemented to a case study to verify its effectiveness. This method is useful for solving decision making problems and can be applied to many areas of applications.
Neuro-fuzzy controller to navigate an unmanned vehicle.
Selma, Boumediene; Chouraqui, Samira
2013-12-01
A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).
Julie, E Golden; Selvi, S Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.
Julie, E. Golden; Selvi, S. Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269
Tran, Liem T; Knight, C Gregory; O'Neill, Robert V; Smith, Elizabeth R; Riitters, Kurt H; Wickham, James
2002-06-01
A fuzzy decision analysis method for integrating ecological indicators was developed. This was a combination of a fuzzy ranking method and the analytic hierarchy process (AHP). The method was capable of ranking ecosystems in terms of environmental conditions and suggesting cumulative impacts across a large region. Using data on land cover, population, roads, streams, air pollution, and topography of the Mid-Atlantic region, we were able to point out areas that were in relatively poor condition and/or vulnerable to future deterioration. The method offered an easy and comprehensive way to combine the strengths of fuzzy set theory and the AHP for ecological assessment. Furthermore, the suggested method can serve as a building block for the evaluation of environmental policies.
Fuzzy architecture assessment for critical infrastructure resilience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, George
2012-12-01
This paper presents an approach for the selection of alternative architectures in a connected infrastructure system to increase resilience of the overall infrastructure system. The paper begins with a description of resilience and critical infrastructure, then summarizes existing approaches to resilience, and presents a fuzzy-rule based method of selecting among alternative infrastructure architectures. This methodology includes considerations which are most important when deciding on an approach to resilience. The paper concludes with a proposed approach which builds on existing resilience architecting methods by integrating key system aspects using fuzzy memberships and fuzzy rule sets. This novel approach aids the systemsmore » architect in considering resilience for the evaluation of architectures for adoption into the final system architecture.« less
Mental Status Documentation: Information Quality and Data Processes
Weir, Charlene; Gibson, Bryan; Taft, Teresa; Slager, Stacey; Lewis, Lacey; Staggers, Nancy
2016-01-01
Delirium is a fluctuating disturbance of cognition and/or consciousness associated with poor outcomes. Caring for patients with delirium requires integration of disparate information across clinicians, settings and time. The goal of this project was to characterize the information processes involved in nurses’ assessment, documentation, decisionmaking and communication regarding patients’ mental status in the inpatient setting. VA nurse managers of medical wards (n=18) were systematically selected across the US. A semi-structured telephone interview focused on current assessment, documentation, and communication processes, as well as clinical and administrative decision-making was conducted, audio-recorded and transcribed. A thematic analytic approach was used. Five themes emerged: 1) Fuzzy Concepts, 2) Grey Data, 3) Process Variability 4) Context is Critical and 5) Goal Conflict. This project describes the vague and variable information processes related to delirium and mental status that undermine effective risk, prevention, identification, communication and mitigation of harm. PMID:28269919
Mental Status Documentation: Information Quality and Data Processes.
Weir, Charlene; Gibson, Bryan; Taft, Teresa; Slager, Stacey; Lewis, Lacey; Staggers, Nancy
2016-01-01
Delirium is a fluctuating disturbance of cognition and/or consciousness associated with poor outcomes. Caring for patients with delirium requires integration of disparate information across clinicians, settings and time. The goal of this project was to characterize the information processes involved in nurses' assessment, documentation, decisionmaking and communication regarding patients' mental status in the inpatient setting. VA nurse managers of medical wards (n=18) were systematically selected across the US. A semi-structured telephone interview focused on current assessment, documentation, and communication processes, as well as clinical and administrative decision-making was conducted, audio-recorded and transcribed. A thematic analytic approach was used. Five themes emerged: 1) Fuzzy Concepts, 2) Grey Data, 3) Process Variability 4) Context is Critical and 5) Goal Conflict. This project describes the vague and variable information processes related to delirium and mental status that undermine effective risk, prevention, identification, communication and mitigation of harm.
Artificial-intelligence-based hospital-acquired infection control.
Adlassnig, Klaus-Peter; Blacky, Alexander; Koller, Walter
2009-01-01
Nosocomial or hospital-acquired infections (NIs) are a frequent complication in hospitalized patients. The growing availability of computerized patient records in hospitals permits automated identification and extended monitoring for signs of NIs. A fuzzy- and knowledge-based system to identify and monitor NIs at intensive care units (ICUs) according to the European Surveillance System HELICS (NI definitions derived from the Centers of Disease Control and Prevention (CDC) criteria) was developed and put into operation at the Vienna General Hospital. This system, named Moni, for monitoring of nosocomial infections contains medical knowledge packages (MKPs) to identify and monitor various infections of the bloodstream, pneumonia, urinary tract infections, and central venous catheter-associated infections. The MKPs consist of medical logic modules (MLMs) in Arden syntax, a medical knowledge representation scheme, whose definition is part of the HL7 standards. These MLM packages together with the Arden software are well suited to be incorporated in medical information systems such as hospital information or intensive-care patient data management systems, or in web-based applications. In terms of method, Moni contains an extended data-to-symbol conversion with several layers of abstraction, until the top level defining NIs according to HELICS is reached. All included medical concepts such as "normal", "increased", "decreased", or similar ones are formally modeled by fuzzy sets, and fuzzy logic is used to process the interpretations of the clinically observed and measured patient data through an inference network. The currently implemented cockpit surveillance connects 96 ICU beds with Moni and offers the hospital's infection control department a hitherto unparalleled NI infection survey.
An, Yan; Zou, Zhihong; Li, Ranran
2014-01-01
A large number of parameters are acquired during practical water quality monitoring. If all the parameters are used in water quality assessment, the computational complexity will definitely increase. In order to reduce the input space dimensions, a fuzzy rough set was introduced to perform attribute reduction. Then, an attribute recognition theoretical model and entropy method were combined to assess water quality in the Harbin reach of the Songhuajiang River in China. A dataset consisting of ten parameters was collected from January to October in 2012. Fuzzy rough set was applied to reduce the ten parameters to four parameters: BOD5, NH3-N, TP, and F. coli (Reduct A). Considering that DO is a usual parameter in water quality assessment, another reduct, including DO, BOD5, NH3-N, TP, TN, F, and F. coli (Reduct B), was obtained. The assessment results of Reduct B show a good consistency with those of Reduct A, and this means that DO is not always necessary to assess water quality. The results with attribute reduction are not exactly the same as those without attribute reduction, which can be attributed to the α value decided by subjective experience. The assessment results gained by the fuzzy rough set obviously reduce computational complexity, and are acceptable and reliable. The model proposed in this paper enhances the water quality assessment system. PMID:24675643
Formal analysis of imprecise system requirements with Event-B.
Le, Hong Anh; Nakajima, Shin; Truong, Ninh Thuan
2016-01-01
Formal analysis of functional properties of system requirements needs precise descriptions. However, the stakeholders sometimes describe the system with ambiguous, vague or fuzzy terms, hence formal frameworks for modeling and verifying such requirements are desirable. The Fuzzy If-Then rules have been used for imprecise requirements representation, but verifying their functional properties still needs new methods. In this paper, we propose a refinement-based modeling approach for specification and verification of such requirements. First, we introduce a representation of imprecise requirements in the set theory. Then we make use of Event-B refinement providing a set of translation rules from Fuzzy If-Then rules to Event-B notations. After that, we show how to verify both safety and eventuality properties with RODIN/Event-B. Finally, we illustrate the proposed method on the example of Crane Controller.
Vadiati, M; Asghari-Moghaddam, A; Nakhaei, M; Adamowski, J; Akbarzadeh, A H
2016-12-15
Due to inherent uncertainties in measurement and analysis, groundwater quality assessment is a difficult task. Artificial intelligence techniques, specifically fuzzy inference systems, have proven useful in evaluating groundwater quality in uncertain and complex hydrogeological systems. In the present study, a Mamdani fuzzy-logic-based decision-making approach was developed to assess groundwater quality based on relevant indices. In an effort to develop a set of new hybrid fuzzy indices for groundwater quality assessment, a Mamdani fuzzy inference model was developed with widely-accepted groundwater quality indices: the Groundwater Quality Index (GQI), the Water Quality Index (WQI), and the Ground Water Quality Index (GWQI). In an effort to present generalized hybrid fuzzy indices a significant effort was made to employ well-known groundwater quality index acceptability ranges as fuzzy model output ranges rather than employing expert knowledge in the fuzzification of output parameters. The proposed approach was evaluated for its ability to assess the drinking water quality of 49 samples collected seasonally from groundwater resources in Iran's Sarab Plain during 2013-2014. Input membership functions were defined as "desirable", "acceptable" and "unacceptable" based on expert knowledge and the standard and permissible limits prescribed by the World Health Organization. Output data were categorized into multiple categories based on the GQI (5 categories), WQI (5 categories), and GWQI (3 categories). Given the potential of fuzzy models to minimize uncertainties, hybrid fuzzy-based indices produce significantly more accurate assessments of groundwater quality than traditional indices. The developed models' accuracy was assessed and a comparison of the performance indices demonstrated the Fuzzy Groundwater Quality Index model to be more accurate than both the Fuzzy Water Quality Index and Fuzzy Ground Water Quality Index models. This suggests that the new hybrid fuzzy indices developed in this research are reliable and flexible when used in groundwater quality assessment for drinking purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Takagi-Sugeno-Kang fuzzy models of the rainfall-runoff transformation
NASA Astrophysics Data System (ADS)
Jacquin, A. P.; Shamseldin, A. Y.
2009-04-01
Fuzzy inference systems, or fuzzy models, are non-linear models that describe the relation between the inputs and the output of a real system using a set of fuzzy IF-THEN rules. This study deals with the application of Takagi-Sugeno-Kang type fuzzy models to the development of rainfall-runoff models operating on a daily basis, using a system based approach. The models proposed are classified in two types, each intended to account for different kinds of dominant non-linear effects in the rainfall-runoff relationship. Fuzzy models type 1 are intended to incorporate the effect of changes in the prevailing soil moisture content, while fuzzy models type 2 address the phenomenon of seasonality. Each model type consists of five fuzzy models of increasing complexity; the most complex fuzzy model of each model type includes all the model components found in the remaining fuzzy models of the respective type. The models developed are applied to data of six catchments from different geographical locations and sizes. Model performance is evaluated in terms of two measures of goodness of fit, namely the Nash-Sutcliffe criterion and the index of volumetric fit. The results of the fuzzy models are compared with those of the Simple Linear Model, the Linear Perturbation Model and the Nearest Neighbour Linear Perturbation Model, which use similar input information. Overall, the results of this study indicate that Takagi-Sugeno-Kang fuzzy models are a suitable alternative for modelling the rainfall-runoff relationship. However, it is also observed that increasing the complexity of the model structure does not necessarily produce an improvement in the performance of the fuzzy models. The relative importance of the different model components in determining the model performance is evaluated through sensitivity analysis of the model parameters in the accompanying study presented in this meeting. Acknowledgements: We would like to express our gratitude to Prof. Kieran M. O'Connor from the National University of Ireland, Galway, for providing the data used in this study.
Fuzzy Neuron: Method and Hardware Realization
NASA Technical Reports Server (NTRS)
Krasowski, Michael J.; Prokop, Norman F.
2014-01-01
This innovation represents a method by which single-to-multi-input, single-to-many-output system transfer functions can be estimated from input/output data sets. This innovation can be run in the background while a system is operating under other means (e.g., through human operator effort), or may be utilized offline using data sets created from observations of the estimated system. It utilizes a set of fuzzy membership functions spanning the input space for each input variable. Linear combiners associated with combinations of input membership functions are used to create the output(s) of the estimator. Coefficients are adjusted online through the use of learning algorithms.
Closed-form estimates of the domain of attraction for nonlinear systems via fuzzy-polynomial models.
Pitarch, José Luis; Sala, Antonio; Ariño, Carlos Vicente
2014-04-01
In this paper, the domain of attraction of the origin of a nonlinear system is estimated in closed form via level sets with polynomial boundaries, iteratively computed. In particular, the domain of attraction is expanded from a previous estimate, such as a classical Lyapunov level set. With the use of fuzzy-polynomial models, the domain of attraction analysis can be carried out via sum of squares optimization and an iterative algorithm. The result is a function that bounds the domain of attraction, free from the usual restriction of being positive and decrescent in all the interior of its level sets.
NASA Astrophysics Data System (ADS)
Milani, Armin Ebrahimi; Haghifam, Mahmood Reza
2008-10-01
The reconfiguration is an operation process used for optimization with specific objectives by means of changing the status of switches in a distribution network. In this paper each objectives is normalized with inspiration from fuzzy sets-to cause optimization more flexible- and formulized as a unique multi-objective function. The genetic algorithm is used for solving the suggested model, in which there is no risk of non-liner objective functions and constraints. The effectiveness of the proposed method is demonstrated through the examples.
[New horizons in medicine. The application of "fuzzy logic" in clinical and experimental medicine].
Guarini, G
1994-06-01
In medicine, the study of physiological and physiopathological problems is generally programmed by elaborating models which respond to the principals of formal logic. This gives the advantage of favouring the transformation of the formal model into a mathematical model of reference which responds to the principles of the set theories. All this is in the utopian wish to obtain as a result of each research, a net answer whether positive or negative, according to the Aristotelian principal of tertium non datur. Taking this into consideration, the A. briefly traces the principles of modal logic and, in particular, those of fuzzy logic, proposing that the latter substitute the actual definition of "logic with more truth values", with that perhaps more pertinent of "logic of conditioned possibilities". After a brief synthesis on the state of the art on the application of fuzzy logic, the A. reports an example of graphic expression of fuzzy logic by demonstrating how the basic glycemic data (expressed by the vectors magnitude) revealed in a sample of healthy individuals, constituted on the whole an unbroken continuous stream of set partials. The A. calls attention to fuzzy logic as a useful instrument to elaborate in a new way the analysis of scenario qualified to acquire the necessary information to single out the critical points which characterize the potential development of any biological phenomenon.
Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes
NASA Technical Reports Server (NTRS)
Duerksen, Noel
1997-01-01
It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.
A genetic algorithms approach for altering the membership functions in fuzzy logic controllers
NASA Technical Reports Server (NTRS)
Shehadeh, Hana; Lea, Robert N.
1992-01-01
Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.
Receptive field optimisation and supervision of a fuzzy spiking neural network.
Glackin, Cornelius; Maguire, Liam; McDaid, Liam; Sayers, Heather
2011-04-01
This paper presents a supervised training algorithm that implements fuzzy reasoning on a spiking neural network. Neuron selectivity is facilitated using receptive fields that enable individual neurons to be responsive to certain spike train firing rates and behave in a similar manner as fuzzy membership functions. The connectivity of the hidden and output layers in the fuzzy spiking neural network (FSNN) is representative of a fuzzy rule base. Fuzzy C-Means clustering is utilised to produce clusters that represent the antecedent part of the fuzzy rule base that aid classification of the feature data. Suitable cluster widths are determined using two strategies; subjective thresholding and evolutionary thresholding respectively. The former technique typically results in compact solutions in terms of the number of neurons, and is shown to be particularly suited to small data sets. In the latter technique a pool of cluster candidates is generated using Fuzzy C-Means clustering and then a genetic algorithm is employed to select the most suitable clusters and to specify cluster widths. In both scenarios, the network is supervised but learning only occurs locally as in the biological case. The advantages and disadvantages of the network topology for the Fisher Iris and Wisconsin Breast Cancer benchmark classification tasks are demonstrated and directions of current and future work are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Formalization of treatment guidelines using Fuzzy Cognitive Maps and semantic web tools.
Papageorgiou, Elpiniki I; Roo, Jos De; Huszka, Csaba; Colaert, Dirk
2012-02-01
Therapy decision making and support in medicine deals with uncertainty and needs to take into account the patient's clinical parameters, the context of illness and the medical knowledge of the physician and guidelines to recommend a treatment therapy. This research study is focused on the formalization of medical knowledge using a cognitive process, called Fuzzy Cognitive Maps (FCMs) and semantic web approach. The FCM technique is capable of dealing with situations including uncertain descriptions using similar procedure such as human reasoning does. Thus, it was selected for the case of modeling and knowledge integration of clinical practice guidelines. The semantic web tools were established to implement the FCM approach. The knowledge base was constructed from the clinical guidelines as the form of if-then fuzzy rules. These fuzzy rules were transferred to FCM modeling technique and, through the semantic web tools, the whole formalization was accomplished. The problem of urinary tract infection (UTI) in adult community was examined for the proposed approach. Forty-seven clinical concepts and eight therapy concepts were identified for the antibiotic treatment therapy problem of UTIs. A preliminary pilot-evaluation study with 55 patient cases showed interesting findings; 91% of the antibiotic treatments proposed by the implemented approach were in fully agreement with the guidelines and physicians' opinions. The results have shown that the suggested approach formalizes medical knowledge efficiently and gives a front-end decision on antibiotics' suggestion for cystitis. Concluding, modeling medical knowledge/therapeutic guidelines using cognitive methods and web semantic tools is both reliable and useful. Copyright © 2011 Elsevier Inc. All rights reserved.
A GIS-based fuzzy classification for mapping the agricultural soils for N-fertilizers use.
Assimakopoulos, J H; Kalivas, D P; Kollias, V J
2003-06-20
Special attention should be paid to the choice of the proper N-fertilizer, in order to avoid a further acidification and degradation of acid soils and at the same time to improve nitrogen use efficiency and to limit the nitrate pollution of the ground waters. Therefore, the risk of leaching of the fertilizer and of the acidification of the soils must be considered prior to any N-fertilizer application. The application of N-fertilizers to the soil requires a good knowledge of the soil-fertilizer relationship, which those who are planning the fertilization policy and/or applying it might not have. In this study, a fuzzy classification methodology is presented for mapping the agricultural soils according to the kind and the rate of application of N-fertilizer that should be used. The values of pH, clay, sand and carbonates soil variables are estimated at each point of an area by applying geostatistical techniques. Using the pH values three fuzzy sets: "no-risk-acidification"; "low-risk-acidification"; and "high-risk-acidification" are produced and the memberships of each point to the three sets are estimated. Additionally, from the clay and sand values the membership grade to the fuzzy set "risk-of-leaching" is calculated. The parameters and their values, which are used for the construction of the fuzzy sets, are based on the literature, the existing knowledge and the experimentation, of the soil-fertilizer relationships and provide a consistent mechanism for mapping the soils according to the type of N-fertilizers that should be applied and the rate of applications. The maps produced can easily be interpreted and used by non-experts in the application of the fertilization policy at national, local and farm level. The methodology is presented through a case study using data from the Amfilochia area, west Greece.
NASA Astrophysics Data System (ADS)
Zlinszky, A.; Deák, B.; Kania, A.; Schroiff, A.; Pfeifer, N.
2016-06-01
Biodiversity is an ecological concept, which essentially involves a complex sum of several indicators. One widely accepted such set of indicators is prescribed for habitat conservation status assessment within Natura 2000, a continental-scale conservation programme of the European Union. Essential Biodiversity Variables are a set of indicators designed to be relevant for biodiversity and suitable for global-scale operational monitoring. Here we revisit a study of Natura 2000 conservation status mapping via airbone LIDAR that develops individual remote sensing-derived proxies for every parameter required by the Natura 2000 manual, from the perspective of developing regional-scale Essential Biodiversity Variables. Based on leaf-on and leaf-off point clouds (10 pt/m2) collected in an alkali grassland area, a set of data products were calculated at 0.5 ×0.5 m resolution. These represent various aspects of radiometric and geometric texture. A Random Forest machine learning classifier was developed to create fuzzy vegetation maps of classes of interest based on these data products. In the next step, either classification results or LIDAR data products were selected as proxies for individual Natura 2000 conservation status variables, and fine-tuned based on field references. These proxies showed adequate performance and were summarized to deliver Natura 2000 conservation status with 80% overall accuracy compared to field references. This study draws attention to the potential of LIDAR for regional-scale Essential Biodiversity variables, and also holds implications for global-scale mapping. These are (i) the use of sensor data products together with habitat-level classification, (ii) the utility of seasonal data, including for non-seasonal variables such as grassland canopy structure, and (iii) the potential of fuzzy mapping-derived class probabilities as proxies for species presence and absence.
Garcia, Fernando; Lopez, Francisco J; Cano, Carlos; Blanco, Armando
2009-01-01
Background Regulatory motifs describe sets of related transcription factor binding sites (TFBSs) and can be represented as position frequency matrices (PFMs). De novo identification of TFBSs is a crucial problem in computational biology which includes the issue of comparing putative motifs with one another and with motifs that are already known. The relative importance of each nucleotide within a given position in the PFMs should be considered in order to compute PFM similarities. Furthermore, biological data are inherently noisy and imprecise. Fuzzy set theory is particularly suitable for modeling imprecise data, whereas fuzzy integrals are highly appropriate for representing the interaction among different information sources. Results We propose FISim, a new similarity measure between PFMs, based on the fuzzy integral of the distance of the nucleotides with respect to the information content of the positions. Unlike existing methods, FISim is designed to consider the higher contribution of better conserved positions to the binding affinity. FISim provides excellent results when dealing with sets of randomly generated motifs, and outperforms the remaining methods when handling real datasets of related motifs. Furthermore, we propose a new cluster methodology based on kernel theory together with FISim to obtain groups of related motifs potentially bound by the same TFs, providing more robust results than existing approaches. Conclusion FISim corrects a design flaw of the most popular methods, whose measures favour similarity of low information content positions. We use our measure to successfully identify motifs that describe binding sites for the same TF and to solve real-life problems. In this study the reliability of fuzzy technology for motif comparison tasks is proven. PMID:19615102
Regression to fuzziness method for estimation of remaining useful life in power plant components
NASA Astrophysics Data System (ADS)
Alamaniotis, Miltiadis; Grelle, Austin; Tsoukalas, Lefteri H.
2014-10-01
Mitigation of severe accidents in power plants requires the reliable operation of all systems and the on-time replacement of mechanical components. Therefore, the continuous surveillance of power systems is a crucial concern for the overall safety, cost control, and on-time maintenance of a power plant. In this paper a methodology called regression to fuzziness is presented that estimates the remaining useful life (RUL) of power plant components. The RUL is defined as the difference between the time that a measurement was taken and the estimated failure time of that component. The methodology aims to compensate for a potential lack of historical data by modeling an expert's operational experience and expertise applied to the system. It initially identifies critical degradation parameters and their associated value range. Once completed, the operator's experience is modeled through fuzzy sets which span the entire parameter range. This model is then synergistically used with linear regression and a component's failure point to estimate the RUL. The proposed methodology is tested on estimating the RUL of a turbine (the basic electrical generating component of a power plant) in three different cases. Results demonstrate the benefits of the methodology for components for which operational data is not readily available and emphasize the significance of the selection of fuzzy sets and the effect of knowledge representation on the predicted output. To verify the effectiveness of the methodology, it was benchmarked against the data-based simple linear regression model used for predictions which was shown to perform equal or worse than the presented methodology. Furthermore, methodology comparison highlighted the improvement in estimation offered by the adoption of appropriate of fuzzy sets for parameter representation.
A combined Fuzzy and Naive Bayesian strategy can be used to assign event codes to injury narratives.
Marucci-Wellman, H; Lehto, M; Corns, H
2011-12-01
Bayesian methods show promise for classifying injury narratives from large administrative datasets into cause groups. This study examined a combined approach where two Bayesian models (Fuzzy and Naïve) were used to either classify a narrative or select it for manual review. Injury narratives were extracted from claims filed with a worker's compensation insurance provider between January 2002 and December 2004. Narratives were separated into a training set (n=11,000) and prediction set (n=3,000). Expert coders assigned two-digit Bureau of Labor Statistics Occupational Injury and Illness Classification event codes to each narrative. Fuzzy and Naïve Bayesian models were developed using manually classified cases in the training set. Two semi-automatic machine coding strategies were evaluated. The first strategy assigned cases for manual review if the Fuzzy and Naïve models disagreed on the classification. The second strategy selected additional cases for manual review from the Agree dataset using prediction strength to reach a level of 50% computer coding and 50% manual coding. When agreement alone was used as the filtering strategy, the majority were coded by the computer (n=1,928, 64%) leaving 36% for manual review. The overall combined (human plus computer) sensitivity was 0.90 and positive predictive value (PPV) was >0.90 for 11 of 18 2-digit event categories. Implementing the 2nd strategy improved results with an overall sensitivity of 0.95 and PPV >0.90 for 17 of 18 categories. A combined Naïve-Fuzzy Bayesian approach can classify some narratives with high accuracy and identify others most beneficial for manual review, reducing the burden on human coders.
NASA Astrophysics Data System (ADS)
Wu, Z.; Luo, Z.; Zhang, Y.; Guo, F.; He, L.
2018-04-01
A Modulation Transfer Function (MTF)-based fuzzy comprehensive evaluation method was proposed in this paper for the purpose of evaluating high-resolution satellite image quality. To establish the factor set, two MTF features and seven radiant features were extracted from the knife-edge region of image patch, which included Nyquist, MTF0.5, entropy, peak signal to noise ratio (PSNR), average difference, edge intensity, average gradient, contrast and ground spatial distance (GSD). After analyzing the statistical distribution of above features, a fuzzy evaluation threshold table and fuzzy evaluation membership functions was established. The experiments for comprehensive quality assessment of different natural and artificial objects was done with GF2 image patches. The results showed that the calibration field image has the highest quality scores. The water image has closest image quality to the calibration field, quality of building image is a little poor than water image, but much higher than farmland image. In order to test the influence of different features on quality evaluation, the experiment with different weights were tested on GF2 and SPOT7 images. The results showed that different weights correspond different evaluating effectiveness. In the case of setting up the weights of edge features and GSD, the image quality of GF2 is better than SPOT7. However, when setting MTF and PSNR as main factor, the image quality of SPOT7 is better than GF2.
A new intuitionism: Meaning, memory, and development in Fuzzy-Trace Theory
Reyna, Valerie F.
2014-01-01
Combining meaning, memory, and development, the perennially popular topic of intuition can be approached in a new way. Fuzzy-trace theory integrates these topics by distinguishing between meaning-based gist representations, which support fuzzy (yet advanced) intuition, and superficial verbatim representations of information, which support precise analysis. Here, I review the counterintuitive findings that led to the development of the theory and its most recent extensions to the neuroscience of risky decision making. These findings include memory interference (worse verbatim memory is associated with better reasoning); nonnumerical framing (framing effects increase when numbers are deleted from decision problems); developmental decreases in gray matter and increases in brain connectivity; developmental reversals in memory, judgment, and decision making (heuristics and biases based on gist increase from childhood to adulthood, challenging conceptions of rationality); and selective attention effects that provide critical tests comparing fuzzy-trace theory, expected utility theory, and its variants (e.g., prospect theory). Surprising implications for judgment and decision making in real life are also discussed, notably, that adaptive decision making relies mainly on gist-based intuition in law, medicine, and public health. PMID:25530822
Wang, Guochao; Wang, Jun
2017-01-01
We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.
NASA Astrophysics Data System (ADS)
Wang, Guochao; Wang, Jun
2017-01-01
We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.
A new intuitionism: Meaning, memory, and development in Fuzzy-Trace Theory.
Reyna, Valerie F
2012-05-01
Combining meaning, memory, and development, the perennially popular topic of intuition can be approached in a new way. Fuzzy-trace theory integrates these topics by distinguishing between meaning-based gist representations, which support fuzzy (yet advanced) intuition, and superficial verbatim representations of information, which support precise analysis. Here, I review the counterintuitive findings that led to the development of the theory and its most recent extensions to the neuroscience of risky decision making. These findings include memory interference (worse verbatim memory is associated with better reasoning); nonnumerical framing (framing effects increase when numbers are deleted from decision problems); developmental decreases in gray matter and increases in brain connectivity; developmental reversals in memory, judgment, and decision making (heuristics and biases based on gist increase from childhood to adulthood, challenging conceptions of rationality); and selective attention effects that provide critical tests comparing fuzzy-trace theory, expected utility theory, and its variants (e.g., prospect theory). Surprising implications for judgment and decision making in real life are also discussed, notably, that adaptive decision making relies mainly on gist-based intuition in law, medicine, and public health.
Optimization of Close Range Photogrammetry Network Design Applying Fuzzy Computation
NASA Astrophysics Data System (ADS)
Aminia, A. S.
2017-09-01
Measuring object 3D coordinates with optimum accuracy is one of the most important issues in close range photogrammetry. In this context, network design plays an important role in determination of optimum position of imaging stations. This is, however, not a trivial task due to various geometric and radiometric constraints affecting the quality of the measurement network. As a result, most camera stations in the network are defined on a try and error basis based on the user's experience and generic network concept. In this paper, we propose a post-processing task to investigate the quality of camera positions right after image capturing to achieve the best result. To do this, a new fuzzy reasoning approach is adopted, in which the constraints affecting the network design are all modeled. As a result, the position of all camera locations is defined based on fuzzy rules and inappropriate stations are determined. The experiments carried out show that after determination and elimination of the inappropriate images using the proposed fuzzy reasoning system, the accuracy of measurements is improved and enhanced about 17% for the latter network.
Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system
NASA Astrophysics Data System (ADS)
Nourmohammadi, Hossein; Keighobadi, Jafar
2018-01-01
Due to weak stand-alone accuracy as well as poor run-to-run stability of micro-electro mechanical system (MEMS)-based inertial sensors, special approaches are required to integrate low-cost strap-down inertial navigation system (SINS) with global positioning system (GPS), particularly in long-term applications. This paper aims to enhance long-term performance of conventional SINS/GPS navigation systems using a fuzzy adaptive integration scheme. The main concept behind the proposed adaptive integration is the good performance of attitude-heading reference system (AHRS) in low-accelerated motions and its degradation in maneuvered or accelerated motions. Depending on vehicle maneuvers, gravity-based attitude angles can be intelligently utilized to improve orientation estimation in the SINS. Knowledge-based fuzzy inference system is developed for decision-making between the AHRS and the SINS according to vehicle maneuvering conditions. Inertial measurements are the main input data of the fuzzy system to determine the maneuvering level during the vehicle motions. Accordingly, appropriate weighting coefficients are produced to combine the SINS/GPS and the AHRS, efficiently. The assessment of the proposed integrated navigation system is conducted via real data in airborne tests.
Further studies on stability analysis of nonlinear Roesser-type two-dimensional systems
NASA Astrophysics Data System (ADS)
Dai, Xiao-Lin
2014-04-01
This paper is concerned with further relaxations of the stability analysis of nonlinear Roesser-type two-dimensional (2D) systems in the Takagi-Sugeno fuzzy form. To achieve the goal, a novel slack matrix variable technique, which is homogenous polynomially parameter-dependent on the normalized fuzzy weighting functions with arbitrary degree, is developed and the algebraic properties of the normalized fuzzy weighting functions are collected into a set of augmented matrices. Consequently, more information about the normalized fuzzy weighting functions is involved and the relaxation quality of the stability analysis is significantly improved. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed result.
Some series of intuitionistic fuzzy interactive averaging aggregation operators.
Garg, Harish
2016-01-01
In this paper, some series of new intuitionistic fuzzy averaging aggregation operators has been presented under the intuitionistic fuzzy sets environment. For this, some shortcoming of the existing operators are firstly highlighted and then new operational law, by considering the hesitation degree between the membership functions, has been proposed to overcome these. Based on these new operation laws, some new averaging aggregation operators namely, intuitionistic fuzzy Hamacher interactive weighted averaging, ordered weighted averaging and hybrid weighted averaging operators, labeled as IFHIWA, IFHIOWA and IFHIHWA respectively has been proposed. Furthermore, some desirable properties such as idempotency, boundedness, homogeneity etc. are studied. Finally, a multi-criteria decision making method has been presented based on proposed operators for selecting the best alternative. A comparative concelebration between the proposed operators and the existing operators are investigated in detail.
Bi-cooperative games in bipolar fuzzy settings
NASA Astrophysics Data System (ADS)
Hazarika, Pankaj; Borkotokey, Surajit; Mesiar, Radko
2018-01-01
In this paper, we introduce the notion of a bi-cooperative game with Bipolar Fuzzy Bi-coalitions and discuss the related properties. In many decision-making situations, players show bipolar motives while cooperating among themselves. This is modelled in both crisp and fuzzy environments. Bi-cooperative games with fuzzy bi-coalitions have already been proposed under the product order of bi-coalitions where one had memberships in [0, 1]. In the present paper, we adopt the alternative ordering: ordering by monotonicity and account for players' memberships in ?, a break from the previous formulation. This simplifies the model to a great extent. The corresponding Shapley axioms are proposed. An explicit form of the Shapley value to a particular class of such games is also obtained. Our study is supplemented with an illustrative example.
Li, Yongming; Tong, Shaocheng
2017-12-01
In this paper, an adaptive fuzzy output constrained control design approach is addressed for multi-input multioutput uncertain stochastic nonlinear systems in nonstrict-feedback form. The nonlinear systems addressed in this paper possess unstructured uncertainties, unknown gain functions and unknown stochastic disturbances. Fuzzy logic systems are utilized to tackle the problem of unknown nonlinear uncertainties. The barrier Lyapunov function technique is employed to solve the output constrained problem. In the framework of backstepping design, an adaptive fuzzy control design scheme is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.
Fuzzy Logic-Based Audio Pattern Recognition
NASA Astrophysics Data System (ADS)
Malcangi, M.
2008-11-01
Audio and audio-pattern recognition is becoming one of the most important technologies to automatically control embedded systems. Fuzzy logic may be the most important enabling methodology due to its ability to rapidly and economically model such application. An audio and audio-pattern recognition engine based on fuzzy logic has been developed for use in very low-cost and deeply embedded systems to automate human-to-machine and machine-to-machine interaction. This engine consists of simple digital signal-processing algorithms for feature extraction and normalization, and a set of pattern-recognition rules manually tuned or automatically tuned by a self-learning process.
A fuzzy measure approach to motion frame analysis for scene detection. M.S. Thesis - Houston Univ.
NASA Technical Reports Server (NTRS)
Leigh, Albert B.; Pal, Sankar K.
1992-01-01
This paper addresses a solution to the problem of scene estimation of motion video data in the fuzzy set theoretic framework. Using fuzzy image feature extractors, a new algorithm is developed to compute the change of information in each of two successive frames to classify scenes. This classification process of raw input visual data can be used to establish structure for correlation. The algorithm attempts to fulfill the need for nonlinear, frame-accurate access to video data for applications such as video editing and visual document archival/retrieval systems in multimedia environments.
NASA Astrophysics Data System (ADS)
Hu, Xiaoxiang; Wu, Ligang; Hu, Changhua; Wang, Zhaoqiang; Gao, Huijun
2014-08-01
By utilising Takagi-Sugeno (T-S) fuzzy set approach, this paper addresses the robust H∞ dynamic output feedback control for the non-linear longitudinal model of flexible air-breathing hypersonic vehicles (FAHVs). The flight control of FAHVs is highly challenging due to the unique dynamic characteristics, and the intricate couplings between the engine and fight dynamics and external disturbance. Because of the dynamics' enormous complexity, currently, only the longitudinal dynamics models of FAHVs have been used for controller design. In this work, T-S fuzzy modelling technique is utilised to approach the non-linear dynamics of FAHVs, then a fuzzy model is developed for the output tracking problem of FAHVs. The fuzzy model contains parameter uncertainties and disturbance, which can approach the non-linear dynamics of FAHVs more exactly. The flexible models of FAHVs are difficult to measure because of the complex dynamics and the strong couplings, thus a full-order dynamic output feedback controller is designed for the fuzzy model. A robust H∞ controller is designed for the obtained closed-loop system. By utilising the Lyapunov functional approach, sufficient solvability conditions for such controllers are established in terms of linear matrix inequalities. Finally, the effectiveness of the proposed T-S fuzzy dynamic output feedback control method is demonstrated by numerical simulations.
Kwong, C. K.; Fung, K. Y.; Jiang, Huimin; Chan, K. Y.
2013-01-01
Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort. PMID:24385884
Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael
2013-01-01
Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.
Chiang, Shu-Yin; Kan, Yao-Chiang; Chen, Yun-Shan; Tu, Ying-Ching; Lin, Hsueh-Chun
2016-12-03
Ubiquitous health care (UHC) is beneficial for patients to ensure they complete therapeutic exercises by self-management at home. We designed a fuzzy computing model that enables recognizing assigned movements in UHC with privacy. The movements are measured by the self-developed body motion sensor, which combines both accelerometer and gyroscope chips to make an inertial sensing node compliant with a wireless sensor network (WSN). The fuzzy logic process was studied to calculate the sensor signals that would entail necessary features of static postures and dynamic motions. Combinations of the features were studied and the proper feature sets were chosen with compatible fuzzy rules. Then, a fuzzy inference system (FIS) can be generated to recognize the assigned movements based on the rules. We thus implemented both fuzzy and adaptive neuro-fuzzy inference systems in the model to distinguish static and dynamic movements. The proposed model can effectively reach the recognition scope of the assigned activity. Furthermore, two exercises of upper-limb flexion in physical therapy were applied for the model in which the recognition rate can stand for the passing rate of the assigned motions. Finally, a web-based interface was developed to help remotely measure movement in physical therapy for UHC.
Chiang, Shu-Yin; Kan, Yao-Chiang; Chen, Yun-Shan; Tu, Ying-Ching; Lin, Hsueh-Chun
2016-01-01
Ubiquitous health care (UHC) is beneficial for patients to ensure they complete therapeutic exercises by self-management at home. We designed a fuzzy computing model that enables recognizing assigned movements in UHC with privacy. The movements are measured by the self-developed body motion sensor, which combines both accelerometer and gyroscope chips to make an inertial sensing node compliant with a wireless sensor network (WSN). The fuzzy logic process was studied to calculate the sensor signals that would entail necessary features of static postures and dynamic motions. Combinations of the features were studied and the proper feature sets were chosen with compatible fuzzy rules. Then, a fuzzy inference system (FIS) can be generated to recognize the assigned movements based on the rules. We thus implemented both fuzzy and adaptive neuro-fuzzy inference systems in the model to distinguish static and dynamic movements. The proposed model can effectively reach the recognition scope of the assigned activity. Furthermore, two exercises of upper-limb flexion in physical therapy were applied for the model in which the recognition rate can stand for the passing rate of the assigned motions. Finally, a web-based interface was developed to help remotely measure movement in physical therapy for UHC. PMID:27918482
Will it Blend? Visualization and Accuracy Evaluation of High-Resolution Fuzzy Vegetation Maps
NASA Astrophysics Data System (ADS)
Zlinszky, A.; Kania, A.
2016-06-01
Instead of assigning every map pixel to a single class, fuzzy classification includes information on the class assigned to each pixel but also the certainty of this class and the alternative possible classes based on fuzzy set theory. The advantages of fuzzy classification for vegetation mapping are well recognized, but the accuracy and uncertainty of fuzzy maps cannot be directly quantified with indices developed for hard-boundary categorizations. The rich information in such a map is impossible to convey with a single map product or accuracy figure. Here we introduce a suite of evaluation indices and visualization products for fuzzy maps generated with ensemble classifiers. We also propose a way of evaluating classwise prediction certainty with "dominance profiles" visualizing the number of pixels in bins according to the probability of the dominant class, also showing the probability of all the other classes. Together, these data products allow a quantitative understanding of the rich information in a fuzzy raster map both for individual classes and in terms of variability in space, and also establish the connection between spatially explicit class certainty and traditional accuracy metrics. These map products are directly comparable to widely used hard boundary evaluation procedures, support active learning-based iterative classification and can be applied for operational use.
Classification of air quality using fuzzy synthetic multiplication.
Abdullah, Lazim; Khalid, Noor Dalina
2012-11-01
Proper identification of environment's air quality based on limited observations is an essential task to meet the goals of environmental management. Various classification methods have been used to estimate the change of air quality status and health. However, discrepancies frequently arise from the lack of clear distinction between each air quality, the uncertainty in the quality criteria employed and the vagueness or fuzziness embedded in the decision-making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies when describing integrated air quality conditions with respect to various pollutants. Therefore, this paper presents two fuzzy multiplication synthetic techniques to establish classification of air quality. The fuzzy multiplication technique empowers the max-min operations in "or" and "and" in executing the fuzzy arithmetic operations. Based on a set of air pollutants data carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matter (PM(10)) collected from a network of 51 stations in Klang Valley, East Malaysia, Sabah, and Sarawak were utilized in this evaluation. The two fuzzy multiplication techniques consistently classified Malaysia's air quality as "good." The findings indicated that the techniques may have successfully harmonized inherent discrepancies and interpret complex conditions. It was demonstrated that fuzzy synthetic multiplication techniques are quite appropriate techniques for air quality management.
Towards a Fuzzy Expert System on Toxicological Data Quality Assessment.
Yang, Longzhi; Neagu, Daniel; Cronin, Mark T D; Hewitt, Mark; Enoch, Steven J; Madden, Judith C; Przybylak, Katarzyna
2013-01-01
Quality assessment (QA) requires high levels of domain-specific experience and knowledge. QA tasks for toxicological data are usually performed by human experts manually, although a number of quality evaluation schemes have been proposed in the literature. For instance, the most widely utilised Klimisch scheme1 defines four data quality categories in order to tag data instances with respect to their qualities; ToxRTool2 is an extension of the Klimisch approach aiming to increase the transparency and harmonisation of the approach. Note that the processes of QA in many other areas have been automatised by employing expert systems. Briefly, an expert system is a computer program that uses a knowledge base built upon human expertise, and an inference engine that mimics the reasoning processes of human experts to infer new statements from incoming data. In particular, expert systems have been extended to deal with the uncertainty of information by representing uncertain information (such as linguistic terms) as fuzzy sets under the framework of fuzzy set theory and performing inferences upon fuzzy sets according to fuzzy arithmetic. This paper presents an experimental fuzzy expert system for toxicological data QA which is developed on the basis of the Klimisch approach and the ToxRTool in an effort to illustrate the power of expert systems to toxicologists, and to examine if fuzzy expert systems are a viable solution for QA of toxicological data. Such direction still faces great difficulties due to the well-known common challenge of toxicological data QA that "five toxicologists may have six opinions". In the meantime, this challenge may offer an opportunity for expert systems because the construction and refinement of the knowledge base could be a converging process of different opinions which is of significant importance for regulatory policy making under the regulation of REACH, though a consensus may never be reached. Also, in order to facilitate the implementation of Weight of Evidence approaches and in silico modelling proposed by REACH, there is a higher appeal of numerical quality values than nominal (categorical) ones, where the proposed fuzzy expert system could help. Most importantly, the deriving processes of quality values generated in this way are fully transparent, and thus comprehensible, for final users, which is another vital point for policy making specified in REACH. Case studies have been conducted and this report not only shows the promise of the approach, but also demonstrates the difficulties of the approach and thus indicates areas for future development. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integration of Genetic Algorithms and Fuzzy Logic for Urban Growth Modeling
NASA Astrophysics Data System (ADS)
Foroutan, E.; Delavar, M. R.; Araabi, B. N.
2012-07-01
Urban growth phenomenon as a spatio-temporal continuous process is subject to spatial uncertainty. This inherent uncertainty cannot be fully addressed by the conventional methods based on the Boolean algebra. Fuzzy logic can be employed to overcome this limitation. Fuzzy logic preserves the continuity of dynamic urban growth spatially by choosing fuzzy membership functions, fuzzy rules and the fuzzification-defuzzification process. Fuzzy membership functions and fuzzy rule sets as the heart of fuzzy logic are rather subjective and dependent on the expert. However, due to lack of a definite method for determining the membership function parameters, certain optimization is needed to tune the parameters and improve the performance of the model. This paper integrates genetic algorithms and fuzzy logic as a genetic fuzzy system (GFS) for modeling dynamic urban growth. The proposed approach is applied for modeling urban growth in Tehran Metropolitan Area in Iran. Historical land use/cover data of Tehran Metropolitan Area extracted from the 1988 and 1999 Landsat ETM+ images are employed in order to simulate the urban growth. The extracted land use classes of the year 1988 include urban areas, street, vegetation areas, slope and elevation used as urban growth physical driving forces. Relative Operating Characteristic (ROC) curve as an fitness function has been used to evaluate the performance of the GFS algorithm. The optimum membership function parameter is applied for generating a suitability map for the urban growth. Comparing the suitability map and real land use map of 1999 gives the threshold value for the best suitability map which can simulate the land use map of 1999. The simulation outcomes in terms of kappa of 89.13% and overall map accuracy of 95.58% demonstrated the efficiency and reliability of the proposed model.
Yazdi, Mohammad; Korhan, Orhan; Daneshvar, Sahand
2018-05-09
This study aimed at establishing fault tree analysis (FTA) using expert opinion to compute the probability of an event. To find the probability of the top event (TE), all probabilities of the basic events (BEs) should be available when the FTA is drawn. In this case, employing expert judgment can be used as an alternative to failure data in an awkward situation. The fuzzy analytical hierarchy process as a standard technique is used to give a specific weight to each expert, and fuzzy set theory is engaged for aggregating expert opinion. In this regard, the probability of BEs will be computed and, consequently, the probability of the TE obtained using Boolean algebra. Additionally, to reduce the probability of the TE in terms of three parameters (safety consequences, cost and benefit), the importance measurement technique and modified TOPSIS was employed. The effectiveness of the proposed approach is demonstrated with a real-life case study.
Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.
Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko
2016-03-01
In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.
Using fuzzy logic to integrate neural networks and knowledge-based systems
NASA Technical Reports Server (NTRS)
Yen, John
1991-01-01
Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.
Saltkjel, Therese; Ingelsrud, Mari Holm; Dahl, Espen; Halvorsen, Knut
2017-08-01
This is the first part of a two-part paper that takes an explorative approach to assess crisis and austerity in European countries during the Great Recession. The ultimate aim of this two-part paper is to explore the "crisis-austerity" thesis by Stuckler and Basu and assess whether it is the interplay between austerity and crisis, rather than the current economic crisis per se, that can led to deterioration in population health. In Part I of this paper we offer one way of operationalizing crisis severity and austerity. We examine countries as specific configurations of crisis and policy responses and classify European countries into "ideal types." Cases included were 29 countries participating in the European Union Statistics on Income and Living Conditions (EU-SILC) surveys. Based on fuzzy set methodology, we constructed two fuzzy sets, "austerity" and "severe crisis." Austerity was measured by changes in welfare generosity; severe crisis was measured by changes in gross domestic product (GDP) per capita growth. In the initial phase of the Great Recession, most countries faced severe crisis combined with no austerity. From 2010-2011 onward, there was a divide between countries. Some countries consistently showed signs of austerity policies (with or without severe crisis); others consistently did not. The fuzzy set ideal-type analysis shows that the European countries position themselves, by and large, in configurations of crisis and austerity in meaningful ways that allow us to explore the "crisis-austerity" thesis by Stuckler and Basu. This exploration is the undertaking of Part II of this paper.
Fuzzy Algorithm for the Detection of Incidents in the Transport System
ERIC Educational Resources Information Center
Nikolaev, Andrey B.; Sapego, Yuliya S.; Jakubovich, Anatolij N.; Berner, Leonid I.; Stroganov, Victor Yu.
2016-01-01
In the paper it's proposed an algorithm for the management of traffic incidents, aimed at minimizing the impact of incidents on the road traffic in general. The proposed algorithm is based on the theory of fuzzy sets and provides identification of accidents, as well as the adoption of appropriate measures to address them as soon as possible. A…
Improved image retrieval based on fuzzy colour feature vector
NASA Astrophysics Data System (ADS)
Ben-Ahmeida, Ahlam M.; Ben Sasi, Ahmed Y.
2013-03-01
One of Image indexing techniques is the Content-Based Image Retrieval which is an efficient way for retrieving images from the image database automatically based on their visual contents such as colour, texture, and shape. In this paper will be discuss how using content-based image retrieval (CBIR) method by colour feature extraction and similarity checking. By dividing the query image and all images in the database into pieces and extract the features of each part separately and comparing the corresponding portions in order to increase the accuracy in the retrieval. The proposed approach is based on the use of fuzzy sets, to overcome the problem of curse of dimensionality. The contribution of colour of each pixel is associated to all the bins in the histogram using fuzzy-set membership functions. As a result, the Fuzzy Colour Histogram (FCH), outperformed the Conventional Colour Histogram (CCH) in image retrieving, due to its speedy results, where were images represented as signatures that took less size of memory, depending on the number of divisions. The results also showed that FCH is less sensitive and more robust to brightness changes than the CCH with better retrieval recall values.
A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping
NASA Astrophysics Data System (ADS)
Feizizadeh, Bakhtiar; Shadman Roodposhti, Majid; Jankowski, Piotr; Blaschke, Thomas
2014-12-01
Landslide susceptibility mapping (LSM) is making increasing use of GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) methods. We have developed a new multi-criteria decision analysis (MCDA) method for LSM and applied it to the Izeh River basin in south-western Iran. Our method is based on fuzzy membership functions (FMFs) derived from GIS analysis. It makes use of nine causal landslide factors identified by local landslide experts. Fuzzy set theory was first integrated with an analytical hierarchy process (AHP) in order to use pairwise comparisons to compare LSM criteria for ranking purposes. FMFs were then applied in order to determine the criteria weights to be used in the development of a landslide susceptibility map. Finally, a landslide inventory database was used to validate the LSM map by comparing it with known landslides within the study area. Results indicated that the integration of fuzzy set theory with AHP produced significantly improved accuracies and a high level of reliability in the resulting landslide susceptibility map. Approximately 53% of known landslides within our study area fell within zones classified as having "very high susceptibility", with the further 31% falling into zones classified as having "high susceptibility".
A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping
Feizizadeh, Bakhtiar; Shadman Roodposhti, Majid; Jankowski, Piotr; Blaschke, Thomas
2014-01-01
Landslide susceptibility mapping (LSM) is making increasing use of GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) methods. We have developed a new multi-criteria decision analysis (MCDA) method for LSM and applied it to the Izeh River basin in south-western Iran. Our method is based on fuzzy membership functions (FMFs) derived from GIS analysis. It makes use of nine causal landslide factors identified by local landslide experts. Fuzzy set theory was first integrated with an analytical hierarchy process (AHP) in order to use pairwise comparisons to compare LSM criteria for ranking purposes. FMFs were then applied in order to determine the criteria weights to be used in the development of a landslide susceptibility map. Finally, a landslide inventory database was used to validate the LSM map by comparing it with known landslides within the study area. Results indicated that the integration of fuzzy set theory with AHP produced significantly improved accuracies and a high level of reliability in the resulting landslide susceptibility map. Approximately 53% of known landslides within our study area fell within zones classified as having “very high susceptibility”, with the further 31% falling into zones classified as having “high susceptibility”. PMID:26089577
NASA Astrophysics Data System (ADS)
Pan, Wei; Wang, Xianjia; Zhong, Yong-guang; Yu, Lean; Jie, Cao; Ran, Lun; Qiao, Han; Wang, Shouyang; Xu, Xianhao
2012-06-01
Data communication service has an important influence on e-commerce. The key challenge for the users is, ultimately, to select a suitable provider. However, in this article, we do not focus on this aspect but the viewpoint and decision-making of providers for order allocation and pricing policy when orders exceed service capacity. It is a multiple criteria decision-making problem such as profit and cancellation ratio. Meanwhile, we know realistic situations in which much of the input information is uncertain. Thus, it becomes very complex in a real-life environment. In this situation, fuzzy sets theory is the best tool for solving this problem. Our fuzzy model is formulated in such a way as to simultaneously consider the imprecision of information, price sensitive demand, stochastic variables, cancellation fee and the general membership function. For solving the problem, a new fuzzy programming is developed. Finally, a numerical example is presented to illustrate the proposed method. The results show that it is effective for determining the suitable order set and pricing policy of provider in data communication service with different quality of service (QoS) levels.
A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping.
Feizizadeh, Bakhtiar; Shadman Roodposhti, Majid; Jankowski, Piotr; Blaschke, Thomas
2014-12-01
Landslide susceptibility mapping (LSM) is making increasing use of GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) methods. We have developed a new multi-criteria decision analysis (MCDA) method for LSM and applied it to the Izeh River basin in south-western Iran. Our method is based on fuzzy membership functions (FMFs) derived from GIS analysis. It makes use of nine causal landslide factors identified by local landslide experts. Fuzzy set theory was first integrated with an analytical hierarchy process (AHP) in order to use pairwise comparisons to compare LSM criteria for ranking purposes. FMFs were then applied in order to determine the criteria weights to be used in the development of a landslide susceptibility map. Finally, a landslide inventory database was used to validate the LSM map by comparing it with known landslides within the study area. Results indicated that the integration of fuzzy set theory with AHP produced significantly improved accuracies and a high level of reliability in the resulting landslide susceptibility map. Approximately 53% of known landslides within our study area fell within zones classified as having "very high susceptibility", with the further 31% falling into zones classified as having "high susceptibility".
Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan
2013-12-01
An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.
Development of a fuzzy logic expert system for pile selection. Master's thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulshafer, M.L.
1989-01-01
This thesis documents the development of prototype expert system for pile selection for use on microcomputers. It concerns the initial selection of a pile foundation taking into account the parameters such as soil condition, pile length, loading scenario, material availability, contractor experience, and noise or vibration constraints. The prototype expert system called Pile Selection, version 1 (PS1) was developed using an expert system shell FLOPS. FLOPS is a shell based on the AI language OPS5 with many unique features. The system PS1 utilizes all of these unique features. Among the features used are approximate reasoning with fuzzy set theory, themore » blackboard architecture, and the emulated parallel processing of fuzzy production rules. A comprehensive review of the parameters used in selecting a pile was made, and the effects of the uncertainties associated with the vagueness of these parameters was examined in detail. Fuzzy set theory was utilized to deal with such uncertainties and provides the basis for developing a method for determining the best possible choice of piles for a given situation. Details of the development of PS1, including documenting and collating pile information for use in the expert knowledge data bases, are discussed.« less
NASA Astrophysics Data System (ADS)
Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok
2015-01-01
This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.
Multi Modal Anticipation in Fuzzy Space
NASA Astrophysics Data System (ADS)
Asproth, Viveca; Holmberg, Stig C.; Hâkansson, Anita
2006-06-01
We are all stakeholders in the geographical space, which makes up our common living and activity space. This means that a careful, creative, and anticipatory planning, design, and management of that space will be of paramount importance for our sustained life on earth. Here it is shown that the quality of such planning could be significantly increased with help of a computer based modelling and simulation tool. Further, the design and implementation of such a tool ought to be guided by the conceptual integration of some core concepts like anticipation and retardation, multi modal system modelling, fuzzy space modelling, and multi actor interaction.
Intelligent control based on fuzzy logic and neural net theory
NASA Technical Reports Server (NTRS)
Lee, Chuen-Chien
1991-01-01
In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.
A neural network architecture for implementation of expert systems for real time monitoring
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.
1991-01-01
Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.
NASA Astrophysics Data System (ADS)
Tognetti, Eduardo S.; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.
2015-01-01
The problem of state feedback control design for discrete-time Takagi-Sugeno (TS) (T-S) fuzzy systems is investigated in this paper. A Lyapunov function, which is quadratic in the state and presents a multi-polynomial dependence on the fuzzy weighting functions at the current and past instants of time, is proposed.This function contains, as particular cases, other previous Lyapunov functions already used in the literature, being able to provide less conservative conditions of control design for TS fuzzy systems. The structure of the proposed Lyapunov function also motivates the design of a new stabilising compensator for Takagi-Sugeno fuzzy systems. The main novelty of the proposed state feedback control law is that the gain is composed of matrices with multi-polynomial dependence on the fuzzy weighting functions at a set of past instants of time, including the current one. The conditions for the existence of a stabilising state feedback control law that minimises an upper bound to the ? or ? norms are given in terms of linear matrix inequalities. Numerical examples show that the approach can be less conservative and more efficient than other methods available in the literature.
Fuzzy probabilistic design of water distribution networks
NASA Astrophysics Data System (ADS)
Fu, Guangtao; Kapelan, Zoran
2011-05-01
The primary aim of this paper is to present a fuzzy probabilistic approach for optimal design and rehabilitation of water distribution systems, combining aleatoric and epistemic uncertainties in a unified framework. The randomness and imprecision in future water consumption are characterized using fuzzy random variables whose realizations are not real but fuzzy numbers, and the nodal head requirements are represented by fuzzy sets, reflecting the imprecision in customers' requirements. The optimal design problem is formulated as a two-objective optimization problem, with minimization of total design cost and maximization of system performance as objectives. The system performance is measured by the fuzzy random reliability, defined as the probability that the fuzzy head requirements are satisfied across all network nodes. The satisfactory degree is represented by necessity measure or belief measure in the sense of the Dempster-Shafer theory of evidence. An efficient algorithm is proposed, within a Monte Carlo procedure, to calculate the fuzzy random system reliability and is effectively combined with the nondominated sorting genetic algorithm II (NSGAII) to derive the Pareto optimal design solutions. The newly proposed methodology is demonstrated with two case studies: the New York tunnels network and Hanoi network. The results from both cases indicate that the new methodology can effectively accommodate and handle various aleatoric and epistemic uncertainty sources arising from the design process and can provide optimal design solutions that are not only cost-effective but also have higher reliability to cope with severe future uncertainties.
Mouzé-Amady, Marc; Raufaste, Eric; Prade, Henri; Meyer, Jean-Pierre
2013-01-01
The aim of this study was to assess mental workload in which various load sources must be integrated to derive reliable workload estimates. We report a new algorithm for computing weights from qualitative fuzzy integrals and apply it to the National Aeronautics and Space Administration -Task Load indeX (NASA-TLX) subscales in order to replace the standard pair-wise weighting technique (PWT). In this paper, two empirical studies were reported: (1) In a laboratory experiment, age- and task-related variables were investigated in 53 male volunteers and (2) In a field study, task- and job-related variables were studied on aircrews during 48 commercial flights. The results found in this study were as follows: (i) in the experimental setting, fuzzy estimates were highly correlated with classical (using PWT) estimates; (ii) in real work conditions, replacing PWT by automated fuzzy treatments simplified the NASA-TLX completion; (iii) the algorithm for computing fuzzy estimates provides a new classification procedure sensitive to various variables of work environments and (iv) subjective and objective measures can be used for the fuzzy aggregation of NASA-TLX subscales. NASA-TLX, a classical tool for mental workload assessment, is based on a weighted sum of ratings from six subscales. A new algorithm, which impacts on input data collection and computes weights and indexes from qualitative fuzzy integrals, is evaluated through laboratory and field studies. Pros and cons are discussed.
A hybrid learning method for constructing compact rule-based fuzzy models.
Zhao, Wanqing; Niu, Qun; Li, Kang; Irwin, George W
2013-12-01
The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature.
Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.
Jiménez, Fernando; Sánchez, Gracia; Juárez, José M
2014-03-01
This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case-based reasoning) obtaining with ENORA a classification rate of 0.9298, specificity of 0.9385, and sensitivity of 0.9364, with 14.2 interpretable fuzzy rules on average. Our proposal improves the accuracy and interpretability of the classifiers, compared with other non-evolutionary techniques. We also conclude that ENORA outperforms niched pre-selection and NSGA-II algorithms. Moreover, given that our multi-objective evolutionary methodology is non-combinational based on real parameter optimization, the time cost is significantly reduced compared with other evolutionary approaches existing in literature based on combinational optimization. Copyright © 2014 Elsevier B.V. All rights reserved.
Determining rules for closing customer service centers: A public utility company's fuzzy decision
NASA Technical Reports Server (NTRS)
Dekorvin, Andre; Shipley, Margaret F.; Lea, Robert N.
1992-01-01
In the present work, we consider the general problem of knowledge acquisition under uncertainty. Simply stated, the problem reduces to the following: how can we capture the knowledge of an expert when the expert is unable to clearly formulate how he or she arrives at a decision? A commonly used method is to learn by examples. We observe how the expert solves specific cases and from this infer some rules by which the decision may have been made. Unique to our work is the fuzzy set representation of the conditions or attributes upon which the expert may possibly base his fuzzy decision. From our examples, we infer certain and possible fuzzy rules for closing a customer service center and illustrate the importance of having the decision closely relate to the conditions under consideration.
Method study on fuzzy-PID adaptive control of electric-hydraulic hitch system
NASA Astrophysics Data System (ADS)
Li, Mingsheng; Wang, Liubu; Liu, Jian; Ye, Jin
2017-03-01
In this paper, fuzzy-PID adaptive control method is applied to the control of tractor electric-hydraulic hitch system. According to the characteristics of the system, a fuzzy-PID adaptive controller is designed and the electric-hydraulic hitch system model is established. Traction control and position control performance simulation are carried out with the common PID control method. A field test rig was set up to test the electric-hydraulic hitch system. The test results showed that, after the fuzzy-PID adaptive control is adopted, when the tillage depth steps from 0.1m to 0.3m, the system transition process time is 4s, without overshoot, and when the tractive force steps from 3000N to 7000N, the system transition process time is 5s, the system overshoot is 25%.
Modelling and management of subjective information in a fuzzy setting
NASA Astrophysics Data System (ADS)
Bouchon-Meunier, Bernadette; Lesot, Marie-Jeanne; Marsala, Christophe
2013-01-01
Subjective information is very natural for human beings. It is an issue at the crossroad of cognition, semiotics, linguistics, and psycho-physiology. Its management requires dedicated methods, among which we point out the usefulness of fuzzy and possibilistic approaches and related methods, such as evidence theory. We distinguish three aspects of subjectivity: the first deals with perception and sensory information, including the elicitation of quality assessment and the establishment of a link between physical and perceived properties; the second is related to emotions, their fuzzy nature, and their identification; and the last aspect stems from natural language and takes into account information quality and reliability of information.
Analyses of S-Box in Image Encryption Applications Based on Fuzzy Decision Making Criterion
NASA Astrophysics Data System (ADS)
Rehman, Inayatur; Shah, Tariq; Hussain, Iqtadar
2014-06-01
In this manuscript, we put forward a standard based on fuzzy decision making criterion to examine the current substitution boxes and study their strengths and weaknesses in order to decide their appropriateness in image encryption applications. The proposed standard utilizes the results of correlation analysis, entropy analysis, contrast analysis, homogeneity analysis, energy analysis, and mean of absolute deviation analysis. These analyses are applied to well-known substitution boxes. The outcome of these analyses are additional observed and a fuzzy soft set decision making criterion is used to decide the suitability of an S-box to image encryption applications.
Fuzzy set methods for object recognition in space applications
NASA Technical Reports Server (NTRS)
Keller, James M.
1992-01-01
Progress on the following tasks is reported: feature calculation; membership calculation; clustering methods (including initial experiments on pose estimation); and acquisition of images (including camera calibration information for digitization of model). The report consists of 'stand alone' sections, describing the activities in each task. We would like to highlight the fact that during this quarter, we believe that we have made a major breakthrough in the area of fuzzy clustering. We have discovered a method to remove the probabilistic constraints that the sum of the memberships across all classes must add up to 1 (as in the fuzzy c-means). A paper, describing this approach, is included.
Hybrid modeling of nitrate fate in large catchments using fuzzy-rules
NASA Astrophysics Data System (ADS)
van der Heijden, Sven; Haberlandt, Uwe
2010-05-01
Especially for nutrient balance simulations, physically based ecohydrological modeling needs an abundance of measured data and model parameters, which for large catchments all too often are not available in sufficient spatial or temporal resolution or are simply unknown. For efficient large-scale studies it is thus beneficial to have methods at one's disposal which are parsimonious concerning the number of model parameters and the necessary input data. One such method is fuzzy-rule based modeling, which compared to other machine-learning techniques has the advantages to produce models (the fuzzy-rules) which are physically interpretable to a certain extent, and to allow the explicit introduction of expert knowledge through pre-defined rules. The study focuses on the application of fuzzy-rule based modeling for nitrate simulation in large catchments, in particular concerning decision support. Fuzzy-rule based modeling enables the generation of simple, efficient, easily understandable models with nevertheless satisfactory accuracy for problems of decision support. The chosen approach encompasses a hybrid metamodeling, which includes the generation of fuzzy-rules with data originating from physically based models as well as a coupling with a physically based water balance model. For the generation of the needed training data and also as coupled water balance model the ecohydrological model SWAT is employed. The conceptual model divides the nitrate pathway into three parts. The first fuzzy-module calculates nitrate leaching with the percolating water from soil surface to groundwater, the second module simulates groundwater passage, and the final module replaces the in-stream processes. The aim of this modularization is to create flexibility for using each of the modules on its own, for changing or completely replacing it. For fuzzy-rule based modeling this can explicitly mean that the re-training of one of the modules with newly available data will be possible without problem, while the module assembly does not have to be modified. Apart from the concept of hybrid metamodeling first results are presented for the fuzzy-module for nitrate passage through the unsaturated zone.
Study on some useful Operators for Graph-theoretic Image Processing
NASA Astrophysics Data System (ADS)
Moghani, Ali; Nasiri, Parviz
2010-11-01
In this paper we describe a human perception based approach to pixel color segmentation which applied in color reconstruction by numerical method associated with graph-theoretic image processing algorithm typically in grayscale. Fuzzy sets defined on the Hue, Saturation and Value components of the HSV color space, provide a fuzzy logic model that aims to follow the human intuition of color classification.
Automatic rule generation for high-level vision
NASA Technical Reports Server (NTRS)
Rhee, Frank Chung-Hoon; Krishnapuram, Raghu
1992-01-01
A new fuzzy set based technique that was developed for decision making is discussed. It is a method to generate fuzzy decision rules automatically for image analysis. This paper proposes a method to generate rule-based approaches to solve problems such as autonomous navigation and image understanding automatically from training data. The proposed method is also capable of filtering out irrelevant features and criteria from the rules.
NASA Astrophysics Data System (ADS)
Chen, Ting-Yu
2012-06-01
This article presents a useful method for relating anchor dependency and accuracy functions to multiple attribute decision-making (MADM) problems in the context of Atanassov intuitionistic fuzzy sets (A-IFSs). Considering anchored judgement with displaced ideals and solution precision with minimal hesitation, several auxiliary optimisation models have proposed to obtain the optimal weights of the attributes and to acquire the corresponding TOPSIS (the technique for order preference by similarity to the ideal solution) index for alternative rankings. Aside from the TOPSIS index, as a decision-maker's personal characteristics and own perception of self may also influence the direction in the axiom of choice, the evaluation of alternatives is conducted based on distances of each alternative from the positive and negative ideal alternatives, respectively. This article originates from Li's [Li, D.-F. (2005), 'Multiattribute Decision Making Models and Methods Using Intuitionistic Fuzzy Sets', Journal of Computer and System Sciences, 70, 73-85] work, which is a seminal study of intuitionistic fuzzy decision analysis using deduced auxiliary programming models, and deems it a benchmark method for comparative studies on anchor dependency and accuracy functions. The feasibility and effectiveness of the proposed methods are illustrated by a numerical example. Finally, a comparative analysis is illustrated with computational experiments on averaging accuracy functions, TOPSIS indices, separation measures from positive and negative ideal alternatives, consistency rates of ranking orders, contradiction rates of the top alternative and average Spearman correlation coefficients.
Badawi, A M; Derbala, A S; Youssef, A M
1999-08-01
Computerized ultrasound tissue characterization has become an objective means for diagnosis of liver diseases. It is difficult to differentiate diffuse liver diseases, namely cirrhotic and fatty liver by visual inspection from the ultrasound images. The visual criteria for differentiating diffused diseases are rather confusing and highly dependent upon the sonographer's experience. This often causes a bias effects in the diagnostic procedure and limits its objectivity and reproducibility. Computerized tissue characterization to assist quantitatively the sonographer for the accurate differentiation and to minimize the degree of risk is thus justified. Fuzzy logic has emerged as one of the most active area in classification. In this paper, we present an approach that employs Fuzzy reasoning techniques to automatically differentiate diffuse liver diseases using numerical quantitative features measured from the ultrasound images. Fuzzy rules were generated from over 140 cases consisting of normal, fatty, and cirrhotic livers. The input to the fuzzy system is an eight dimensional vector of feature values: the mean gray level (MGL), the percentile 10%, the contrast (CON), the angular second moment (ASM), the entropy (ENT), the correlation (COR), the attenuation (ATTEN) and the speckle separation. The output of the fuzzy system is one of the three categories: cirrhosis, fatty or normal. The steps done for differentiating the pathologies are data acquisition and feature extraction, dividing the input spaces of the measured quantitative data into fuzzy sets. Based on the expert knowledge, the fuzzy rules are generated and applied using the fuzzy inference procedures to determine the pathology. Different membership functions are developed for the input spaces. This approach has resulted in very good sensitivities and specificity for classifying diffused liver pathologies. This classification technique can be used in the diagnostic process, together with the history information, laboratory, clinical and pathological examinations.
The selection of construction sub-contractors using the fuzzy sets theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krzemiński, Michał
The paper presents the algorithm for the selection of sub-contractors. Main area of author’s interest is scheduling flow models. The ranking task aims at execution time as short as possible Brigades downtime should also be as small as possible. These targets are exposed to significant obsolescence. The criteria for selection of subcontractors will not be therefore time and cost, it is assumed that all those criteria be meet by sub-contractors. The decision should be made in regard to factors difficult to measure, to assess which is the perfect application of fuzzy sets theory. The paper will present a set ofmore » evaluation criteria, the part of the knowledge base and a description of the output variable.« less
A fuzzy set preference model for market share analysis
NASA Technical Reports Server (NTRS)
Turksen, I. B.; Willson, Ian A.
1992-01-01
Consumer preference models are widely used in new product design, marketing management, pricing, and market segmentation. The success of new products depends on accurate market share prediction and design decisions based on consumer preferences. The vague linguistic nature of consumer preferences and product attributes, combined with the substantial differences between individuals, creates a formidable challenge to marketing models. The most widely used methodology is conjoint analysis. Conjoint models, as currently implemented, represent linguistic preferences as ratio or interval-scaled numbers, use only numeric product attributes, and require aggregation of individuals for estimation purposes. It is not surprising that these models are costly to implement, are inflexible, and have a predictive validity that is not substantially better than chance. This affects the accuracy of market share estimates. A fuzzy set preference model can easily represent linguistic variables either in consumer preferences or product attributes with minimal measurement requirements (ordinal scales), while still estimating overall preferences suitable for market share prediction. This approach results in flexible individual-level conjoint models which can provide more accurate market share estimates from a smaller number of more meaningful consumer ratings. Fuzzy sets can be incorporated within existing preference model structures, such as a linear combination, using the techniques developed for conjoint analysis and market share estimation. The purpose of this article is to develop and fully test a fuzzy set preference model which can represent linguistic variables in individual-level models implemented in parallel with existing conjoint models. The potential improvements in market share prediction and predictive validity can substantially improve management decisions about what to make (product design), for whom to make it (market segmentation), and how much to make (market share prediction).
GPU-based relative fuzzy connectedness image segmentation.
Zhuge, Ying; Ciesielski, Krzysztof C; Udupa, Jayaram K; Miller, Robert W
2013-01-01
Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. The most common FC segmentations, optimizing an [script-l](∞)-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.
GPU-based relative fuzzy connectedness image segmentation
Zhuge, Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W.
2013-01-01
Purpose: Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an ℓ∞-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology. PMID:23298094
NASA Technical Reports Server (NTRS)
Nieten, Joseph L.; Burke, Roger
1992-01-01
The System Diagnostic Builder (SDB) is an automated software verification and validation tool using state-of-the-art Artificial Intelligence (AI) technologies. The SDB is used extensively by project BURKE at NASA-JSC as one component of a software re-engineering toolkit. The SDB is applicable to any government or commercial organization which performs verification and validation tasks. The SDB has an X-window interface, which allows the user to 'train' a set of rules for use in a rule-based evaluator. The interface has a window that allows the user to plot up to five data parameters (attributes) at a time. Using these plots and a mouse, the user can identify and classify a particular behavior of the subject software. Once the user has identified the general behavior patterns of the software, he can train a set of rules to represent his knowledge of that behavior. The training process builds rules and fuzzy sets to use in the evaluator. The fuzzy sets classify those data points not clearly identified as a particular classification. Once an initial set of rules is trained, each additional data set given to the SDB will be used by a machine learning mechanism to refine the rules and fuzzy sets. This is a passive process and, therefore, it does not require any additional operator time. The evaluation component of the SDB can be used to validate a single software system using some number of different data sets, such as a simulator. Moreover, it can be used to validate software systems which have been re-engineered from one language and design methodology to a totally new implementation.
The detection of 4 vital signs of in-patients Using fuzzy database
NASA Astrophysics Data System (ADS)
Haris Rangkuti, A.; Erlisa Rasjid, Zulfany
2014-03-01
Actually in order to improve in the performance of the Hospital's administrator, by serve patients effectively and efficiently, the role of information technology become the dominant support. Especially when it comes to patient's conditions, such that it will be reported to a physician as soon as possible, including monitoring the patient's conditions regularly. For this reason it is necessary to have a Hospital Monitoring Information System, that is able to provide information about the patient's condition which is based on the four vital signs, temperature, blood pressure, pulse, and respiration. To monitor the 4 vital signs, the concept of fuzzy logic is used, where the vital signs number approaches 1 then the patient is close to recovery, and on the contrary, when the vital signs number approaches 0 then the patient still has problems. This system also helps nurses to provide answers to the relatives of patients, who wants to know the development of the patient's condition, including the recovery percentage based on the average of Fuzzy max from the 4 vital signs. Using Fuzzy-based monitoring system, the monitoring of the patient's condition becomes simpler and easier.
NASA Astrophysics Data System (ADS)
Mohamad, Daud; Shaharani, Saidatull Akma; Kamis, Nor Hanimah
2017-08-01
The concept of Z-number which was introduced by Zadeh in 2010 has captured attention by many due to its enormous applications in the area of Computing with Words (CWW). A Z-number is an ordered pair of fuzzy numbers, (A, R), where A essentially plays the role of fuzzy restriction which is a real-valued uncertain variable and R is a measure of reliability of the first component. Besides its theoretical development, Z-numbers have been successfully applied to decision making problems under uncertain environment. In any decision making evaluation using Z-number, ideally the final outcome of the calculation should also be in Z-number. A question will arise: how do we order the Z-numbers so that the preference of the alternatives can be ranked appropriately? In this paper, we propose a method of ordering the Z-number via the transformation of the Z-numbers to fuzzy numbers. The Z-number will then be ranked using a ranking fuzzy number method. The proposed method will be tested in several combinations of Z-numbers to investigate its effectiveness. The effect of different values of A and R towards the ordering of Z-numbers is analyzed and discussed.
NASA Astrophysics Data System (ADS)
Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Thangaraj, P.
2013-02-01
This paper addresses the problem of passivity analysis issue for a class of fuzzy bidirectional associative memory (BAM) neural networks with Markovian jumping parameters and time varying delays. A set of sufficient conditions for the passiveness of the considered fuzzy BAM neural network model is derived in terms of linear matrix inequalities by using the delay fractioning technique together with the Lyapunov function approach. In addition, the uncertainties are inevitable in neural networks because of the existence of modeling errors and external disturbance. Further, this result is extended to study the robust passivity criteria for uncertain fuzzy BAM neural networks with time varying delays and uncertainties. These criteria are expressed in the form of linear matrix inequalities (LMIs), which can be efficiently solved via standard numerical software. Two numerical examples are provided to demonstrate the effectiveness of the obtained results.
Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control
NASA Astrophysics Data System (ADS)
Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed
2012-12-01
In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.