Understanding the Evolution and Stability of the G-Matrix
Arnold, Stevan J.; Bürger, Reinhard; Hohenlohe, Paul A.; Ajie, Beverley C.; Jones, Adam G.
2011-01-01
The G-matrix summarizes the inheritance of multiple, phenotypic traits. The stability and evolution of this matrix are important issues because they affect our ability to predict how the phenotypic traits evolve by selection and drift. Despite the centrality of these issues, comparative, experimental, and analytical approaches to understanding the stability and evolution of the G-matrix have met with limited success. Nevertheless, empirical studies often find that certain structural features of the matrix are remarkably constant, suggesting that persistent selection regimes or other factors promote stability. On the theoretical side, no one has been able to derive equations that would relate stability of the G-matrix to selection regimes, population size, migration, or to the details of genetic architecture. Recent simulation studies of evolving G-matrices offer solutions to some of these problems, as well as a deeper, synthetic understanding of both the G-matrix and adaptive radiations. PMID:18973631
Detection Performance of Horizontal Linear Hydrophone Arrays in Shallow Water.
1980-12-15
random phase G gain G angle interval covariance matrix h processor vector H matrix matched filter; generalized beamformer I unity matrix 4 SACLANTCEN SR...omnidirectional sensor is h*Ph P G = - h [Eq. 47] G = h* Q h P s The following two sections evaluate a few examples of application of the OLP. Following the...At broadside the signal covariance matrix reduces to a dyadic: P s s*;therefore, the gain (e.g. Eq. 37) becomes tr(H* P H) Pn * -1 Q -1 Pn G ~OQp
Yu, Shan; Su, Tiantian; Wu, Huijun; Liu, Shiheng; Wang, Di; Zhao, Tianhu; Jin, Zengjun; Du, Wenbin; Zhu, Mei-Jun; Chua, Song Lin; Yang, Liang; Zhu, Deyu; Gu, Lichuan; Ma, Luyan Z
2015-12-01
Biofilms are surface-associated communities of microorganism embedded in extracellular matrix. Exopolysaccharide is a critical component in the extracellular matrix that maintains biofilm architecture and protects resident biofilm bacteria from antimicrobials and host immune attack. However, self-produced factors that target the matrix exopolysaccharides, are still poorly understood. Here, we show that PslG, a protein involved in the synthesis of a key biofilm matrix exopolysaccharide Psl in Pseudomonas aeruginosa, prevents biofilm formation and disassembles existing biofilms within minutes at nanomolar concentrations when supplied exogenously. The crystal structure of PslG indicates the typical features of an endoglycosidase. PslG mainly disrupts the Psl matrix to disperse bacteria from biofilms. PslG treatment markedly enhances biofilm sensitivity to antibiotics and macrophage cells, resulting in improved biofilm clearance in a mouse implant infection model. Furthermore, PslG shows biofilm inhibition and disassembly activity against a wide range of Pseudomonas species, indicating its great potential in combating biofilm-related complications.
Preparation, characterization and X-ray attenuation property of Gd2O3-based nanocomposites
NASA Astrophysics Data System (ADS)
Jayakumar, Sangeetha; Saravanan, T.; Philip, John
2017-11-01
In an attempt to develop an alternate to lead-based X-ray shielding material, we describe the X-ray attenuation property of nanocomposites containing Gd2O3 as nanofiller and silicone resin as matrix, prepared by a simple solution-casting technique. Gd2O3 nanoparticles of size 30 and 56 nm are used at concentrations of 25 and 2.5 wt%. The nanoparticles and the nanocomposites are characterized using X-ray diffraction (XRD) studies, small angle X-ray spectroscopy (SAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The X-ray attenuation property of nanocomposites, studied using an industrial X-ray unit, shows that nanocomposites containing nanoparticles of size 56 nm (G2) exhibit better attenuation than nanocomposites containing nanoparticles of size 30 nm (G1), which is attributed to the greater interfacial interaction between the G2 nanofillers and silicone matrix. In the case of nanocomposites containing G1 nanoparticles, the interfacial interaction between the nanofiller and the matrix is so weak that it results in pulling out of nanofillers, causing voids in the matrix, which act as X-ray transparent region, thereby reducing the overall X-ray attenuation property of G1 nanocomposites. This is further corroborated from the AFM images of the nanocomposites. The weight loss and heat flow curves of pure silicone matrix and the nanocomposites containing Gd2O3 nanoparticles of size 30 and 56 nm show the degradation of silicone resin, due to chain scission, between 403 and 622 °C. The same onset temperature (403 °C) of degradation of matrix with and without nanoparticles shows that the addition of nanofillers to the matrix does not deteriorate the thermal stability of the matrix. This confirms the thermal stability of nanocomposites. Therefore, our study shows that nanocomposites containing G2 nanoparticles are potential candidates for the development of X-ray opaque fabric material.
Chebib, Jobran; Guillaume, Frédéric
2017-10-01
Phenotypic traits do not always respond to selection independently from each other and often show correlated responses to selection. The structure of a genotype-phenotype map (GP map) determines trait covariation, which involves variation in the degree and strength of the pleiotropic effects of the underlying genes. It is still unclear, and debated, how much of that structure can be deduced from variational properties of quantitative traits that are inferred from their genetic (co) variance matrix (G-matrix). Here we aim to clarify how the extent of pleiotropy and the correlation among the pleiotropic effects of mutations differentially affect the structure of a G-matrix and our ability to detect genetic constraints from its eigen decomposition. We show that the eigenvectors of a G-matrix can be predictive of evolutionary constraints when they map to underlying pleiotropic modules with correlated mutational effects. Without mutational correlation, evolutionary constraints caused by the fitness costs associated with increased pleiotropy are harder to infer from evolutionary metrics based on a G-matrix's geometric properties because uncorrelated pleiotropic effects do not affect traits' genetic correlations. Correlational selection induces much weaker modular partitioning of traits' genetic correlations in absence then in presence of underlying modular pleiotropy. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Boyd, Peter; Fetherston, Susan M; McCoy, Clare F; Major, Ian; Murphy, Diarmaid J; Kumar, Sandeep; Holt, Jonathon; Brimer, Andrew; Blanda, Wendy; Devlin, Brid; Malcolm, R Karl
2016-09-10
A matrix-type silicone elastomer vaginal ring providing 28-day continuous release of dapivirine (DPV) - a lead candidate human immunodeficiency virus type 1 (HIV-1) microbicide compound - has recently demonstrated moderate levels of protection in two Phase III clinical studies. Here, next-generation matrix and reservoir-type silicone elastomer vaginal rings are reported for the first time offering simultaneous and continuous in vitro release of DPV and the contraceptive progestin levonorgestrel (LNG) over a period of between 60 and 180days. For matrix-type vaginal rings comprising initial drug loadings of 100, 150 or 200mg DPV and 0, 16 or 32mg LNG, Day 1 daily DPV release values were between 4132 and 6113μg while Day 60 values ranged from 284 to 454μg. Daily LNG release ranged from 129 to 684μg on Day 1 and 2-91μg on Day 60. Core-type rings comprising one or two drug-loaded cores provided extended duration of in vitro release out to 180days, and maintained daily drug release rates within much narrower windows (either 75-131μg/day or 37-66μg/day for DPV, and either 96-150μg/day or 37-57μg/day for LNG, depending on core ring configuration and ignoring initial lag release effect for LNG) compared with matrix-type rings. The data support the continued development of these devices as multi-purpose prevention technologies (MPTs) for HIV prevention and long-acting contraception. Copyright © 2016 Elsevier B.V. All rights reserved.
Conformations of n-butyl imidazole: matrix isolation infrared and DFT studies.
Ramanathan, N; Sundararajan, K; Sankaran, K
2015-03-15
Conformations of n-butyl imidazole (B-IMID) were studied using matrix isolation infrared spectroscopy by trapping in argon, xenon and nitrogen matrixes using an effusive nozzle source. The experimental studies were supported by DFT computations performed at the B3LYP/6-311++G(d,p) level. Computations identified nine unique minima for B-IMID, corresponding to conformers with tg(±)tt, tg(±)g(∓)t, tg(±)g(±)t, tg(±)tg(±), tg(±)tg(∓), tg(±)g(∓)g(∓), tg(±)g(±)g(±), tg(±)g(∓)g(±) and tg(±)g(±)g(∓) structures, given in order of increasing energy. Computations of the transition state structures connecting the higher energy conformers to the global minimum, tg(±)tt structure were carried out. The barriers for the conformer inter-conversion were found to be ∼2 kcal/mol. Natural Bond Orbital (NBO) analysis was performed to understand the reasons for conformational preferences in B-IMID. Copyright © 2014 Elsevier B.V. All rights reserved.
Lin, Tao; Liu, Sheng; Chen, Shihao; Qiu, Shuai; Rao, Zilong; Liu, Jianghui; Zhu, Shuang; Yan, Liwei; Mao, Haiquan; Zhu, Qingtang; Quan, Daping; Liu, Xiaolin
2018-06-01
Decellularized matrix hydrogels derived from tissues or organs have been used for tissue repair due to their biocompatibility, tunability, and tissue-specific extracellular matrix (ECM) components. However, the preparation of decellularized peripheral nerve matrix hydrogels and their use to repair nerve defects have not been reported. Here, we developed a hydrogel from porcine decellularized nerve matrix (pDNM-G), which was confirmed to have minimal DNA content and retain collagen and glycosaminoglycans content, thereby allowing gelatinization. The pDNM-G exhibited a nanofibrous structure similar to that of natural ECM, and a ∼280-Pa storage modulus at 10 mg/mL similar to that of native neural tissues. Western blot and liquid chromatography tandem mass spectrometry analysis revealed that the pDNM-G consisted mostly of ECM proteins and contained primary ECM-related proteins, including fibronectin and collagen I and IV). In vitro experiments showed that pDNM-G supported Schwann cell proliferation and preserved cell morphology. Additionally, in a 15-mm rat sciatic nerve defect model, pDNM-G was combined with electrospun poly(lactic-acid)-co-poly(trimethylene-carbonate)conduits to bridge the defect, which did not elicit an adverse immune response and promoted the activation of M2 macrophages associated with a constructive remodeling response. Morphological analyses and electrophysiological and functional examinations revealed that the regenerative outcomes achieved by pDNM-G were superior to those by empty conduits and closed to those using rat decellularized nerve matrix allograft scaffolds. These findings indicated that pDNM-G, with its preserved ECM composition and nanofibrous structure, represents a promising biomaterial for peripheral nerve regeneration. Decellularized nerve allografts have been widely used to treat peripheral nerve injury. However, given their limited availability and lack of bioactive factors, efforts have been made to improve the efficacy of decellularized nerve allograft for nerve regeneration, with limited success. Xenogeneic decellularized tissue matrices or hydrogels have been widely used for surgical applications owing to their ease of harvesting and low immunogenicity. Moreover, decellularized tissue matrix hydrogels show good biocompatibility and are highly tunable. In this study, we prepared a porcine decellularized nerve matrix (pDNM-G) and evaluated its potential for promoting nerve regeneration. Our results demonstrate that pDNM-G can support Schwann cell proliferation and peripheral nerve regeneration by means of residual primary extracellular matrix components and nano-fibrous structure features. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The G matrix under fluctuating correlational mutation and selection.
Revell, Liam J
2007-08-01
Theoretical quantitative genetics provides a framework for reconstructing past selection and predicting future patterns of phenotypic differentiation. However, the usefulness of the equations of quantitative genetics for evolutionary inference relies on the evolutionary stability of the additive genetic variance-covariance matrix (G matrix). A fruitful new approach for exploring the evolutionary dynamics of G involves the use of individual-based computer simulations. Previous studies have focused on the evolution of the eigenstructure of G. An alternative approach employed in this paper uses the multivariate response-to-selection equation to evaluate the stability of G. In this approach, I measure similarity by the correlation between response-to-selection vectors due to random selection gradients. I analyze the dynamics of G under several conditions of correlational mutation and selection. As found in a previous study, the eigenstructure of G is stabilized by correlational mutation and selection. However, over broad conditions, instability of G did not result in a decreased consistency of the response to selection. I also analyze the stability of G when the correlation coefficients of correlational mutation and selection and the effective population size change through time. To my knowledge, no prior study has used computer simulations to investigate the stability of G when correlational mutation and selection fluctuate. Under these conditions, the eigenstructure of G is unstable under some simulation conditions. Different results are obtained if G matrix stability is assessed by eigenanalysis or by the response to random selection gradients. In this case, the response to selection is most consistent when certain aspects of the eigenstructure of G are least stable and vice versa.
NASA Astrophysics Data System (ADS)
Lei, Yu; Du, Jinfang; Pang, Xianjuan; Wang, Haizhong; Yang, Hua; Jiang, Jinlong
2018-05-01
A solid-liquid synergetic lubricating system has been designed to develop a novel self-lubricating nickel matrix composite. The graphene-nickel (G-Ni) matrix composite with porous structure was fabricated by in situ growing graphene in bulk nickel using a powder metallurgy method. The porous structures of the composite were used to store polyalphaolefin (PAO) oil for self-lubricating. It is found that the G-Ni matrix composite under oil lubrication condition exhibited superior tribological properties as compared to pure nickel and the composite under dry sliding condition. The prestored oil was released from pores to the sliding surface forming a lubricating oil film during friction process. This lubricating oil film can protect the worn surface from severe oxidation, and help the formation and transfer of a carbon-based solid tribofilm derived from graphene and lubricating oil. This solid (graphene)-liquid (oil) synergistic lubricating mechanism is responsible for the reduction of friction coefficient and improvement of wear resistance of the in situ fabricated G-Ni matrix composite.
Combined effect of matrix cracking and stress-free edge on delamination
NASA Technical Reports Server (NTRS)
Salpekar, S. A.; Obrien, T. K.
1990-01-01
The effect of the stress-free edge on the growth of local delaminations initiating from a matrix crack in (0 sub 2/90 sub 4) sub s and (+ or - 45.90 sub 4) sub s glass epoxy laminates is investigated using 3-D finite element analysis. The presence of high interlaminar normal stresses at the intersection (corner) of the matrix crack with the stress-free edge, suggests that a mode I delamination may initiate at the corners. The strain energy release rates (G) were calculated by modeling a uniform through-width delamination and two inclined delaminations at 10.6 deg and 45 deg to the matrix crack. All components of G have high values near the free edges. The mode I component of G is high at small delamination length and becomes zero for a delamination length of one-ply thickness. The total G values near the free edge agreed well with previously derived closed form solution. The quasi-3D solutions agreed well with the 3-D interior solutions.
Combined effect of matrix cracking and stress-free edge on delamination
NASA Technical Reports Server (NTRS)
Salpekar, Satish A.; O'Brien, T. K.
1991-01-01
The effect of the stress-free edge on the growth of local delaminations initiating from a matrix crack in (O sub 2/90 sub 4) sub s and (+/- 45.90 sub 4) sub s glass epoxy laminates is investigated using 3D finite element analysis. The presence of high interlaminar normal stresses at the intersection (corner) of the matrix crack with the stress-free edge, suggests that a mode I delamination may initiate at the corners. The strain energy release rates (G) were calculated by modeling a uniform through-width delamination and two inclined delaminations at 10.6 deg and 45 deg to the matrix crack. All components of G have high values near the free edges. The mode I component of G is high at small delamination length and becomes zero for a delamination length of one-ply thickness. The total G values near the free edge agreed well with previously derived closed form solution. The quasi-3D solutions agreed well with the 3D interior solutions.
NASA Astrophysics Data System (ADS)
Gunde, R.; Ha, T.-K.; Günthard, H. H.
1990-08-01
In this paper results of consistent force field modeling (CFF) of the potential function to conversion of the gauche (g) to the trans (t) conformer of 1,2-difluoroethane (DFE) isolated in an argon matrix will be reported. Starting point are locally stable configurations gDFE:Ar 364 (defect GH1) and tDFE:Ar 364 (TH1) obtained in previous work from CFF modeling of a cube shaped Ar 364 fragment containing one DFE molecule in its center. Using the dihedral angle of DFE as an independent parameter the minimum energy path of the conversion process gDFE:Ar 364→tDFE:Ar 364 will be determined by CFF energy minimization. Determination of the minimum energy path is found to require large numbers of energy minimization steps and to lead to a rather complicated motion of the molecule with respect to the crystal fragment. Surprisingly the molecule-matrix interactions lead to a reduction of the g-t barrier by ≈500 cal/mol and to a stabilization of the trans species by ≈500 cal/mol. This finding is a consequence of a delicate interplay of matrix-molecule and matrix-matrix interactions. Calculation of the electric polarization energy (induced dipole-first-order polarization approximation) is based on extended ab initio calculations of dipole and quadrupole moments and a bond polarizability estimate of the first-order polarizability of DFE as a function of the internal rotation angle, on Fourier expansion of multipole components and use of symmetry for reduction of the order of the linear system defining the (self-consistent) induced dipole moments of all Ar atoms. Electric polarization is found to alter the potential function of the conversion process in a profound way: the g-t barrier and the t-g energy difference are increased to ≈3000 cal/mol and to ≈1500 cal/mol respectively (≈2500 and ≈530 cal/mol respectively for free DFE). Further applications of the technique developed in this work to related problems of matrix isolated molecules, e.g., vibrational matrix shifts will be discussed.
Factors associated with continuance commitment to FAA matrix teams.
DOT National Transportation Integrated Search
1993-11-01
Several organizations within the FAA employ matrix teams to achieve cross-functional coordination. Matrix team members typically represent different organizational functions required for project accomplishment (e.g., research and development, enginee...
NASA Technical Reports Server (NTRS)
Obrien, T. Kevin
1991-01-01
Constant amplitude tension-tension fatigue tests were conducted on AS4/3501-6 graphite/epoxy (02/ theta sub 2/ -(theta sub 2))sub s laminates, where theta was 15, 20, 25, or 30 degrees. Fatigue tests were conducted at a frequency of 5 Hz and an R-ratio of 0.1. Dye penetrant enhanced x-radiography was used to document the onset of matrix cracking in the central -(theta) degree plies, and the subsequent onset of local delaminations in the theta/ -(theta) interface at the intersection of the matrix cracks and the free edge, as a function of the number of fatigue cycles. Two strain energy release rate solutions for local delamination from matrix cracks were derived: one for a local delamination growing from an angle ply matrix crack with a uniform delamination growing from an angle ply matrix crack with a triangular shaped delamination area that extended only partially into the laminate width from the free edge. Plots of G(max) vs. N were generated to assess the accuracy of these G solutions. The influence of residual thermal and moisture stresses on G were also quantified. However, a detailed analysis of the G components and a mixed-mode fatigue failure criterion for this material may be needed to predict the fatigue behavior of these laminates.
Parris, George
2006-01-01
The two-stage initiation-progression model of cancer is widely accepted. Initiation appears to result most often from accumulation of damage to the DNA expressed as multiple mutations in the phenotype. Unsymmetrical chromosome segregation during mitosis of normal or mutated cells produces aneuploid cells and also contributes to the evolution of neoplasia. However, it has been pointed out (Parris GE. Med Hypotheses 2005;65:993-4 and 2006;66:76-83) that DNA damage and loss of chromosomes are much more likely to lead the mutant clones of cells to extinction than to successful expansion (e.g., an example of Muller's Ratchet). It was argued that aneuploid neoplasia represent new parasite species that successfully evolve to devour their hosts by incorporating sex-like redistribution of chromosomes through spontaneous or virus-catalyzed cell-cell fusion into their life-cycle. Spontaneous cell-cell fusion is generally blocked by the intercellular matrix to which the cells are bound via surface adhesion molecules (frequently glycoproteins, e.g., CD44). In order for progression of matrix-contained neoplasia toward clinically significant cancer to occur, the parasite cells must escape from the matrix and fuse. Release from the matrix also allows the parasite cells to invade adjacent tissues and metastasize to remote locations. Both invasion and metastasis likely involve fusion of the migrating parasite cells with fusion-prone blast cells. There are at least three pathways through which parasite cells can be liberated from the confining matrix: (i) Their adhesion molecules may be modified (e.g., by hyper-glycosylation) so that they can no longer grip the matrix. (ii) Their adhesion molecules or matrix may be saturated with other ligands (e.g., polyamines). (iii) Their adhesion molecules may be cleaved from the cell surface or the matrix itself may be cleaved (e.g., by MMPs or ADAMs). It is hypothesized that mobilization of parasite cells and cell-cell fusion go hand-in-hand in the progression of neoplasia to clinically significant cancer through invasion and metastasis. The latency between tumor recognition and exposure to mutagens and the increased incidence of cancer with age can probably be related to slow breakdown of the intercellular matrix that provides a barrier to cell-cell fusion.
Corrosion of Graphite Aluminum Metal Matrix Composites
1991-02-01
cathodic protection of G/AI MMCs resulted in overprotection 13. Overprotection resulted from a local increase in pH near cathodic sites during...34Cathodic Overprotection of SiC/6061-T6 and G/6061- T6 Aluminum Alloy Metal Matrix Composites," Scripta Metallurgica, 22 (1988) 413-418. 14. R
Microgravity processing of particulate reinforced metal matrix composites
NASA Technical Reports Server (NTRS)
Morel, Donald E.; Stefanescu, Doru M.; Curreri, Peter A.
1989-01-01
The elimination of such gravity-related effects as buoyancy-driven sedimentation can yield more homogeneous microstructures in composite materials whose individual constituents have widely differing densities. A comparison of composite samples consisting of particulate ceramics in a nickel aluminide matrix solidified under gravity levels ranging from 0.01 to 1.8 G indicates that the G force normal to the growth direction plays a fundamental role in determining the distribution of the reinforcement in the matrix. Composites with extremely uniform microstructures can be produced by these methods.
Gianola, Daniel; Fariello, Maria I.; Naya, Hugo; Schön, Chris-Carolin
2016-01-01
Standard genome-wide association studies (GWAS) scan for relationships between each of p molecular markers and a continuously distributed target trait. Typically, a marker-based matrix of genomic similarities among individuals (G) is constructed, to account more properly for the covariance structure in the linear regression model used. We show that the generalized least-squares estimator of the regression of phenotype on one or on m markers is invariant with respect to whether or not the marker(s) tested is(are) used for building G, provided variance components are unaffected by exclusion of such marker(s) from G. The result is arrived at by using a matrix expression such that one can find many inverses of genomic relationship, or of phenotypic covariance matrices, stemming from removing markers tested as fixed, but carrying out a single inversion. When eigenvectors of the genomic relationship matrix are used as regressors with fixed regression coefficients, e.g., to account for population stratification, their removal from G does matter. Removal of eigenvectors from G can have a noticeable effect on estimates of genomic and residual variances, so caution is needed. Concepts were illustrated using genomic data on 599 wheat inbred lines, with grain yield as target trait, and on close to 200 Arabidopsis thaliana accessions. PMID:27520956
NASA Astrophysics Data System (ADS)
Schwegler, Eric; Challacombe, Matt; Head-Gordon, Martin
1997-06-01
A new linear scaling method for computation of the Cartesian Gaussian-based Hartree-Fock exchange matrix is described, which employs a method numerically equivalent to standard direct SCF, and which does not enforce locality of the density matrix. With a previously described method for computing the Coulomb matrix [J. Chem. Phys. 106, 5526 (1997)], linear scaling incremental Fock builds are demonstrated for the first time. Microhartree accuracy and linear scaling are achieved for restricted Hartree-Fock calculations on sequences of water clusters and polyglycine α-helices with the 3-21G and 6-31G basis sets. Eightfold speedups are found relative to our previous method. For systems with a small ionization potential, such as graphitic sheets, the method naturally reverts to the expected quadratic behavior. Also, benchmark 3-21G calculations attaining microhartree accuracy are reported for the P53 tetramerization monomer involving 698 atoms and 3836 basis functions.
Matrix Training of Preliteracy Skills with Preschoolers with Autism
ERIC Educational Resources Information Center
Axe, Judah B.; Sainato, Diane M.
2010-01-01
Matrix training is a generative approach to instruction in which words are arranged in a matrix so that some multiword phrases are taught and others emerge without direct teaching. We taught 4 preschoolers with autism to follow instructions to perform action-picture combinations (e.g., circle the pepper, underline the deer). Each matrix contained…
An ESS maximum principle for matrix games.
Vincent, T L; Cressman, R
2000-11-01
Previous work has demonstrated that for games defined by differential or difference equations with a continuum of strategies, there exists a G-function, related to individual fitness, that must take on a maximum with respect to a virtual variable v whenever v is one of the vectors in the coalition of vectors which make up the evolutionarily stable strategy (ESS). This result, called the ESS maximum principle, is quite useful in determining candidates for an ESS. This principle is reformulated here, so that it may be conveniently applied to matrix games. In particular, we define a matrix game to be one in which fitness is expressed in terms of strategy frequencies and a matrix of expected payoffs. It is shown that the G-function in the matrix game setting must again take on a maximum value at all the strategies which make up the ESS coalition vector. The reformulated maximum principle is applicable to both bilinear and nonlinear matrix games. One advantage in employing this principle to solve the traditional bilinear matrix game is that the same G-function is used to find both pure and mixed strategy solutions by simply specifying an appropriate strategy space. Furthermore we show how the theory may be used to solve matrix games which are not in the usual bilinear form. We examine in detail two nonlinear matrix games: the game between relatives and the sex ratio game. In both of these games an ESS solution is determined. These examples not only illustrate the usefulness of this approach to finding solutions to an expanded class of matrix games, but aids in understanding the nature of the ESS as well.
Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.
2005-01-01
New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.
Chehaibi, Khouloud; Hrira, Mohamed Yahia; Nouira, Samir; Maatouk, Faouzi; Ben Hamda, Khaldoun; Slimane, Mohamed Naceur
2014-07-15
Matrix metalloproteinases (MMPs) play an important role in early atherosclerosis, extracellular matrix remodeling, plaque rupture and myocardial infarction. MMP gene polymorphisms contribute to the risk of developing cardiovascular diseases. In this study, we investigated, for the first time, the association between MMP-1-16071G/2G, MMP-12 -82A/G and MMP-12 1082A/G genotypes and haplotypes and the risk of ischemic stroke (IS) among patients with type 2 diabetes mellitus (T2DM). To examine whether these genetic polymorphisms are associated with susceptibility to IS, 196 patients with IS and 192 controls were examined by PCR-based RFLP. When the analyses were adjusted for multiple risk factors, no interaction between T2DM and MMP-1-1607 1G/2G polymorphism on the risk of ischemic stroke was found (p=0.074). However, MMP-12 polymorphisms genotypes were associated with the higher risk of IS in diabetic patients compared with total patients. The -82G-1082G haplotype of MMP-12 polymorphisms was associated with higher risk of ischemic stroke in diabetic patients [AOR=2.33; 95% CI (1.25-3.62), P=0.032]. These findings showed that there was an important joint effect of the MMP-12 polymorphisms and T2DM on the risk of IS and therefore it can be considered as a potential marker of cerebrovascular disorders in diabetic patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Aznar, Ramón; Albero, Beatriz; Sánchez-Brunete, Consuelo; Miguel, Esther; Martín-Girela, Isabel; Tadeo, José L
2017-03-01
A multiresidue method was developed for the simultaneous determination of 31 emerging contaminants (pharmaceutical compounds, hormones, personal care products, biocides, and flame retardants) in aquatic plants. Analytes were extracted by ultrasound-assisted matrix solid-phase dispersion (UA-MSPD) and determined by gas chromatography-mass spectrometry after sylilation, The method was validated for different aquatic plants (Typha angustifolia, Arundo donax, and Lemna minor) and a semiaquatic cultivated plant (Oryza sativa) with good recoveries at concentrations of 100 and 25 ng g -1 wet weight, ranging from 70 to 120 %, and low method detection limits (0.3 to 2.2 ng g -1 wet weight). A significant difference of the chromatographic response was observed for some compounds in neat solvent versus matrix extracts, and therefore, quantification was carried out using matrix-matched standards in order to overcome this matrix effect. Aquatic plants taken from rivers located at three Spanish regions were analyzed, and the compounds detected were parabens, bisphenol A, benzophenone-3, cyfluthrin, and cypermethrin. The levels found ranged from 6 to 25 ng g -1 wet weight except for cypermethrin that was detected at 235 ng g -1 wet weight in O. sativa samples.
Dang, Cuong Cao; Lefort, Vincent; Le, Vinh Sy; Le, Quang Si; Gascuel, Olivier
2011-10-01
Amino acid replacement rate matrices are an essential basis of protein studies (e.g. in phylogenetics and alignment). A number of general purpose matrices have been proposed (e.g. JTT, WAG, LG) since the seminal work of Margaret Dayhoff and co-workers. However, it has been shown that matrices specific to certain protein groups (e.g. mitochondrial) or life domains (e.g. viruses) differ significantly from general average matrices, and thus perform better when applied to the data to which they are dedicated. This Web server implements the maximum-likelihood estimation procedure that was used to estimate LG, and provides a number of tools and facilities. Users upload a set of multiple protein alignments from their domain of interest and receive the resulting matrix by email, along with statistics and comparisons with other matrices. A non-parametric bootstrap is performed optionally to assess the variability of replacement rate estimates. Maximum-likelihood trees, inferred using the estimated rate matrix, are also computed optionally for each input alignment. Finely tuned procedures and up-to-date ML software (PhyML 3.0, XRATE) are combined to perform all these heavy calculations on our clusters. http://www.atgc-montpellier.fr/ReplacementMatrix/ olivier.gascuel@lirmm.fr Supplementary data are available at http://www.atgc-montpellier.fr/ReplacementMatrix/
Structure of collagen-glycosaminoglycan matrix and the influence to its integrity and stability.
Bi, Yuying; Patra, Prabir; Faezipour, Miad
2014-01-01
Glycosaminoglycan (GAG) is a chain-like disaccharide that is linked to polypeptide core to connect two collagen fibrils/fibers and provide the intermolecular force in Collagen-GAG matrix (C-G matrix). Thus, the distribution of GAG in C-G matrix contributes to the integrity and mechanical properties of the matrix and related tissue. This paper analyzes the transverse isotropic distribution of GAG in C-G matrix. The angle of GAGs related to collagen fibrils is used as parameters to qualify the GAGs isotropic characteristic in both 3D and 2D rendering. Statistical results included that over one third of GAGs were perpendicular directed to collagen fibril with symmetrical distribution for both 3D matrix and 2D plane cross through collagen fibrils. The three factors tested in this paper: collagen radius, collagen distribution, and GAGs density, were not statistically significant for the strength of Collagen-GAG matrix in 3D rendering. However in 2D rendering, a significant factor found was the radius of collagen in matrix for the GAGs directed to orthogonal plane of Collagen-GAG matrix. Between two cross-section selected from Collagen-GAG matrix model, the plane cross through collagen fibrils was symmetrically distributed but the total percentage of perpendicular directed GAG was deducted by decreasing collagen radius. There were some symmetry features of GAGs angle distribution in selected 2D plane that passed through space between collagen fibrils, but most models showed multiple peaks in GAGs angle distribution. With less GAGs directed to perpendicular of collagen fibril, strength in collagen cross-section weakened. Collagen distribution was also a factor that influences GAGs angle distribution in 2D rendering. True hexagonal collagen packaging is reported in this paper to have less strength at collagen cross-section compared to quasi-hexagonal collagen arrangement. In this work focus is on GAGs matrix within the collagen and its relevance to anisotropy.
Interface Characteristics and the Mechanical Properties of Metal Matrix Composites.
1987-09-28
of Composites ’" 18 Appendix B Interfaces in Aluminum Metal Matrix Composites g 28 Appendix C Interface Failure in Planar Aluminum-Graphite Composites...Appendix G Residual Stresses in Composite Materials: An Overview of Measurements Used 92 Appendix H Raman Microprobe Measurements of Residual Stresses at...In addition .. to this direct electrostatic attraction, the space charge establishes an electric field of 2 S.. % ° °° % " ° " g
2015-01-01
Since the food matrix determines β-carotene availability for intestinal absorption, food matrix effects on the bioaccessibility of β-carotene from two diets were investigated in vitro and compared with in vivo data. The “mixed diet” consisted of β-carotene-rich vegetables, and the “oil diet” contained β-carotene-low vegetables with supplemental β-carotene. The application of extrinsically labeled β-carotene was also investigated. The bioaccessibility of β-carotene was 28 μg/100 μg β-carotene from the mixed diet and 53 μg/100 μg β-carotene from the oil diet. This ratio of 1.9:1 was consistent with in vivo data, where the apparent absorption was 1.9-fold higher in the oil diet than in the mixed diet. The labeled β-carotene was not equally distributed over time. In conclusion, the food matrix effects on bioaccessibility of β-carotene could be measured using an in vitro model and were consistent with in vivo data. The application of extrinsically labeled β-carotene was not confirmed. PMID:24397305
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahraman, R.; Mandell, J.F.; Deibert, M.C.
Cracking parallel to the fibers in off-axis plies is usually the initial form of damage in composite laminates. This cracking process has been associated with the (transverse) fracture toughness, defined by the critical strain energy release rate, G{sub Ic}. The measurement of G{sub Ic} provides basic information about the transverse crack resistance. In this study, the utility of the double torsion (DT) test technique to determine G{sub Ic} in a glass-ceramic matrix composite (Nicalon/CAS-II) at temperatures up to 1,000 C has been demonstrated. G{sub Ic} did decrease moderately with increasing temperature (as does the bulk matrix); however, no evidence ofmore » an interphase oxidizing effect on crack growth (parallel to the fibers) could be found. The inevitable misalignment of fibers in the material was not very efficient at bridging the crack in the DT specimens, in contrast to the significant matrix crack interactions with the fibers reported for other geometries such as double cantilever beam and flexure specimens.« less
Sharma, Shivika; Kanwar, Shamsher S; Dogra, Priyanka; Chauhan, Ghanshyam S
2015-01-01
Gallic acid (3, 4, 5- trihydroxybenzoic acid) is an important antioxidant, anti-inflammatory, and radical scavenging agent. In the present study, a purified thermo-tolerant extra-cellular lipase of Bacillus licheniformis SCD11501 was successfully immobilized by adsorption on Celite 545 gel matrix followed by treatment with a cross-linking agent, glutaraldehyde. The celite-bound lipase treated with glutaraldehyde showed 94.8% binding/retention of enzyme activity (36 U/g; specific activity 16.8 U/g matrix; relative increase in enzyme activity 64.7%) while untreated matrix resulted in 88.1% binding/retention (28.0 U/g matrix; specific activity 8.5 U/g matrix) of lipase. The celite-bound lipase was successfully used to synthesis methyl gallate (58.2%), ethyl gallate (66.9%), n-propyl gallate (72.1%), and n-butyl gallate (63.8%) at 55(o) C in 10 h under shaking (150 g) in a water-free system by sequentially optimizing various reaction parameters. The low conversion of more polar alcohols such as methanol and ethanol into their respective gallate esters might be due to the ability of these alcohols to severely remove water from the protein hydration shell, leading to enzyme inactivation. Molecular sieves added to the reaction mixture resulted in enhanced yield of the alkyl ester(s). The characterization of synthesised esters was done through fourier transform infrared (FTIR) spectroscopy and (1) H NMR spectrum analysis. © 2015 American Institute of Chemical Engineers.
Gianola, Daniel; Fariello, Maria I; Naya, Hugo; Schön, Chris-Carolin
2016-10-13
Standard genome-wide association studies (GWAS) scan for relationships between each of p molecular markers and a continuously distributed target trait. Typically, a marker-based matrix of genomic similarities among individuals ( G: ) is constructed, to account more properly for the covariance structure in the linear regression model used. We show that the generalized least-squares estimator of the regression of phenotype on one or on m markers is invariant with respect to whether or not the marker(s) tested is(are) used for building G,: provided variance components are unaffected by exclusion of such marker(s) from G: The result is arrived at by using a matrix expression such that one can find many inverses of genomic relationship, or of phenotypic covariance matrices, stemming from removing markers tested as fixed, but carrying out a single inversion. When eigenvectors of the genomic relationship matrix are used as regressors with fixed regression coefficients, e.g., to account for population stratification, their removal from G: does matter. Removal of eigenvectors from G: can have a noticeable effect on estimates of genomic and residual variances, so caution is needed. Concepts were illustrated using genomic data on 599 wheat inbred lines, with grain yield as target trait, and on close to 200 Arabidopsis thaliana accessions. Copyright © 2016 Gianola et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki-Seok; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr
In this work, poly(methyl methacrylate) (PMMA) was grafted onto amine treated multi-walled carbon nanotubes (NH-MWNTs) and the physical and rheological properties of the NH-MWNTs-g-PMMA nanocomposites were investigated. The graft reaction of NH-MWNTs and the PMMA matrix was confirmed from the change of the N{sub 1S} peaks, including those of amine oxygen and amide oxygen, by X-ray photoelectron spectroscopy (XPS). The thermal and mechanical properties of the NH-MWNT-g-PMMA nanocomposites were enhanced by the graft reaction between NH-MWNTs and PMMA matrix. In addition, the viscosity of the nanocomposites was increased with the addition of NH-MWNTs. Storage (G') and loss modulus (G'') weremore » significantly increased by increase in the NH-MWNT content compared to acid-treated MWNTs/PMMA nanocomposites. This increase was attributed to the strong interaction by the grafting reaction between NH-MWNTs and the PMMA matrix. - Graphical abstract: This describes the increase of mechanical properties in NH-MWNTs-g-PMMA hybrid composites with different NH-MWNT contents. Highlights: > Aminized carbon nanotubes are used as reinforcement for poly(methylmethacrylate). > Poly(methylmethacrylate) is grafted on aminized carbon nanotubes by thermal reaction. > Grafting of carbon nanotubes and polymer provide enhanced physical properties. > It was due to the strong interaction between carbon nanotubes and polymer matrix.« less
On-matrix derivatization for dynamic headspace sampling of nonvolatile surface residues.
Harvey, Scott D; Wahl, Jon H
2012-09-21
The goal of this study is to extend sampling by the field and laboratory emission cell (FLEC) dynamic headspace technique to applications that target nonvolatile residues. On-matrix derivatization of residues to render analytes stable and more volatile is explored to achieve this goal. Results show that on-matrix derivatizations of nerve agent hydrolysis products (monoalkyl methylphosphonic acids and methylphosphonic acid [MPA]) with diazomethane were successful on glass and painted wallboard (at the 10-μg level). It also was successful on the more difficult concrete (at the 500-μg level) and carpet (at the 20-μg level), substrates that cannot be successfully sampled using swipe techniques. Analysis of additional chemical warfare (CW)-associated residues can be approached by on-matrix derivatization with trifluoroacetic anhydride (TFAA). For example, amines (used as stabilizers or present as decomposition products of the nerve agent VX) or thiodiglycol (hydrolysis product of sulfur mustard) could be sampled as their TFAA derivatives from glass, painted wallboard, and concrete (at the 40-μg level), as well as carpet (at the 80-μg level) surfaces. Although the amine and thiodiglycol are semi-volatile and could be sampled directly, derivatization improves the recovery and chromatographic behavior of these analytes. Copyright © 2012 Elsevier B.V. All rights reserved.
Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method.
Wang, Yifeng; Dong, Meng; Guo, Mengmeng; Wang, Xia; Zhou, Jing; Lei, Jian; Guo, Chuanhang; Qin, Chaoran
2017-08-01
We present a simple and environmentally-friendly method to generate an agar/gelatin bilayer gel matrix for further biomedical applications. In this method, the thermally responsive sol-gel transitions of agar and gelatin combined with the different transition temperatures are exquisitely employed to fabricate the agar/gelatin bilayer gel matrix and achieve separate loading for various materials (e.g., drugs, fluorescent materials, and nanoparticles). Importantly, the resulting bilayer gel matrix provides two different biopolymer environments (a polysaccharide environment vs a protein environment) with a well-defined border, which allows the loaded materials in different layers to retain their original properties (e.g., magnetism and fluorescence) and reduce mutual interference. In addition, the loaded materials in the bilayer gel matrix exhibit an interesting release behavior under the control of thermal stimuli. Consequently, the resulting agar/gelatin bilayer gel matrix is a promising candidate for biomedical applications in drug delivery, controlled release, fluorescence labeling, and bio-imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Phase diagram of matrix compressed sensing
NASA Astrophysics Data System (ADS)
Schülke, Christophe; Schniter, Philip; Zdeborová, Lenka
2016-12-01
In the problem of matrix compressed sensing, we aim to recover a low-rank matrix from a few noisy linear measurements. In this contribution, we analyze the asymptotic performance of a Bayes-optimal inference procedure for a model where the matrix to be recovered is a product of random matrices. The results that we obtain using the replica method describe the state evolution of the Parametric Bilinear Generalized Approximate Message Passing (P-BiG-AMP) algorithm, recently introduced in J. T. Parker and P. Schniter [IEEE J. Select. Top. Signal Process. 10, 795 (2016), 10.1109/JSTSP.2016.2539123]. We show the existence of two different types of phase transition and their implications for the solvability of the problem, and we compare the results of our theoretical analysis to the numerical performance reached by P-BiG-AMP. Remarkably, the asymptotic replica equations for matrix compressed sensing are the same as those for a related but formally different problem of matrix factorization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liuyun, Jiang, E-mail: jlytxg@163.com; Chengdong, Xiong; Lixin, Jiang
Graphical abstract: Effect of n-HA content on the isothermal crystallization, morphology and mechanical property of n-HA/PLGA composites was studied in details. The results showed that the addition of higher content of g-n-HA was favorable to promote the crystallization better in g-n-HA/PLGA composites, but it could also cause more agglomeration in PLGA matrix, as a result of worse mechanical properties, and the addition content of 3 wt% g-n-HA to PLGA matrix was an appropriate proportion, which had the highest bending strength among these g-n-HA/PLGA composites, and it might be potential to be used in biomedical fields in future. Highlights: ► Themore » effect of n-HA content on the n-HA/PLGA composites was studied in detail. ► Isothermal crystallization, microstructure and mechanical property were studied. ► The relation between n-HA content and properties of n-HA/PLGA composite was found. ► An appropriate proportion of n-HA in n-HA/PLGA composite was obtained. - Abstract: A serials of g-n-HA/PLGA composites with surface-modified g-n-HA of 1%, 3%, 6%, 10% and 15% in weight were prepared by solution mixing. The isothermal crystallization, morphology and mechanical property of g-n-HA/PLGA composites were investigated by differential scanning calorimeter (DSC), scanning electron microscope (SEM) and electromechanical universal tester. The results showed that Avrami equation was suitable for describing the isothermal crystallization process in this system, and the crystallization rate of g-n-HA/PLGA composites containing more than 3 wt% g-n-HA was basically accord with the relational expression of T{sub 110} {sub °C} > T{sub 105°C} > T{sub 115°C} > T{sub 120°C}. Moreover, at the same Tc, crystallization rate was greatly enhanced with the increasing of g-n-HA acting as nucleate. However, the addition of higher content of g-n-HA would cause more agglomeration in PLGA matrix, so that the mechanical properties of g-n-HA/PLGA composites would gradually decrease. In conclusion, the addition of higher content of g-n-HA was favorable to promote the crystallization better in g-n-HA/PLGA composites, but it could also cause more agglomeration in PLGA matrix, result in worse mechanical properties, and the addition content of 3 wt% g-n-HA to PLGA matrix was an appropriate proportion, which had the highest bending strength among these g-n-HA/PLGA composites, and it might be potential to be used in biomedical fields in future.« less
NASA Astrophysics Data System (ADS)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2018-05-01
We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.
Careau, Vincent; Wolak, Matthew E.; Carter, Patrick A.; Garland, Theodore
2015-01-01
Given the pace at which human-induced environmental changes occur, a pressing challenge is to determine the speed with which selection can drive evolutionary change. A key determinant of adaptive response to multivariate phenotypic selection is the additive genetic variance–covariance matrix (G). Yet knowledge of G in a population experiencing new or altered selection is not sufficient to predict selection response because G itself evolves in ways that are poorly understood. We experimentally evaluated changes in G when closely related behavioural traits experience continuous directional selection. We applied the genetic covariance tensor approach to a large dataset (n = 17 328 individuals) from a replicated, 31-generation artificial selection experiment that bred mice for voluntary wheel running on days 5 and 6 of a 6-day test. Selection on this subset of G induced proportional changes across the matrix for all 6 days of running behaviour within the first four generations. The changes in G induced by selection resulted in a fourfold slower-than-predicted rate of response to selection. Thus, selection exacerbated constraints within G and limited future adaptive response, a phenomenon that could have profound consequences for populations facing rapid environmental change. PMID:26582016
Brueckner G -matrix approach for neutron-proton pairing correlations in the deformed BCS approach
NASA Astrophysics Data System (ADS)
Ha, Eunja; Cheoun, Myung-Ki; Šimkovic, F.
2015-10-01
Ground states of even-even Ge isotopes with mass number A =64 -76 have been studied in the deformed Bardeen-Cooper-Schrieffer (BCS) theory by taking neutron-proton (n p ) pairing correlations as well as neutron-neutron (n n ) and proton-proton (p p ) pairing correlations. The n p pairing has two different modes J =0 ,T =1 (isotriplet) and J =1 ,T =0 (isosinglet). In this work, the Brueckner G matrix, based on the CD-Bonn potential, has been exploited to reduce the ambiguity regarding nucleon-nucleon interactions inside nuclei compared to the results by a simple schematic phenomenological force. We found that the G matrix plays important roles to obtain reasonable descriptions of even-even nuclei compared to the schematic force. The n p pairing strength has been shown to have a clear correlation with quadrupole deformation parameter β2 for the isotopes, and affects the smearing of the Fermi surfaces of not only N =Z nuclei but also N ≠Z nuclei. In particular, the coexistence of the like particle (n n and p p ) and the n p pairing modes was found to become more salient by the G -matrix approach than by the schematic force approach.
NASA Technical Reports Server (NTRS)
Hughes-Fulford, M.; Gilbertson, V.
1999-01-01
The well-defined osteoblast line, MC3T3-E1 was used to examine fibronectin (FN) mRNA levels, protein synthesis, and extracellular FN matrix accumulation after growth activation in spaceflight. These osteoblasts produce FN extracellular matrix (ECM) known to regulate adhesion, differentiation, and function in adherent cells. Changes in bone ECM and osteoblast cell shape occur in spaceflight. To determine whether altered FN matrix is a factor in causing these changes in spaceflight, quiescent osteoblasts were launched into microgravity and were then sera activated with and without a 1-gravity field. Synthesis of FN mRNA, protein, and matrix were measured after activation in microgravity. FN mRNA synthesis is significantly reduced in microgravity (0-G) when compared to ground (GR) osteoblasts flown in a centrifuge simulating earth's gravity (1-G) field 2.5 h after activation. However, 27.5 h after activation there were no significant differences in mRNA synthesis. A small but significant reduction of FN protein was found in the 0-G samples 2.5 h after activation. Total FN protein 27.5 h after activation showed no significant difference between any of the gravity conditions, however, there was a fourfold increase in absolute amount of protein synthesized during the incubation. Using immunofluorescence, we found no significant differences in the amount or in the orientation of the FN matrix after 27.5 h in microgravity. These results demonstrate that FN is made by sera-activated osteoblasts even during exposure to microgravity. These data also suggest that after a total period of 43 h of spaceflight FN transcription, translation, or altered matrix assembly is not responsible for the altered cell shape or altered matrix formation of osteoblasts.
Delahaie, B; Charmantier, A; Chantepie, S; Garant, D; Porlier, M; Teplitsky, C
2017-08-01
The genetic variance-covariance matrix (G-matrix) summarizes the genetic architecture of multiple traits. It has a central role in the understanding of phenotypic divergence and the quantification of the evolutionary potential of populations. Laboratory experiments have shown that G-matrices can vary rapidly under divergent selective pressures. However, because of the demanding nature of G-matrix estimation and comparison in wild populations, the extent of its spatial variability remains largely unknown. In this study, we investigate spatial variation in G-matrices for morphological and life-history traits using long-term data sets from one continental and three island populations of blue tit (Cyanistes caeruleus) that have experienced contrasting population history and selective environment. We found no evidence for differences in G-matrices among populations. Interestingly, the phenotypic variance-covariance matrices (P) were divergent across populations, suggesting that using P as a substitute for G may be inadequate. These analyses also provide the first evidence in wild populations for additive genetic variation in the incubation period (that is, the period between last egg laid and hatching) in all four populations. Altogether, our results suggest that G-matrices may be stable across populations inhabiting contrasted environments, therefore challenging the results of previous simulation studies and laboratory experiments.
Constant Applied Force Stimulates Osteoblast Proliferation Via Matrix-Integrin-Signaling Pathways
NASA Technical Reports Server (NTRS)
Vercoutere, W.; Parra, M.; Roden, C.; DaCosta, M.; Wing, A.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E. A. C.
2003-01-01
Reduced weight-bearing caused by immobilization, bed-rest or microgravity leads to atrophy in mechanosensitive tissue such as muscle and bone. We hypothesize that bone tissue requires earth s gravity (1-g) for the maintenance of extracellular matrix, integrin, and kinase-mediated cell growth and survival pathways. We investigate the role of matrix-integrin signaling in bone cells using cell culture centrifugation to provide different levels of hypergravity mechanostimulation. The 10-50-g range we use also mimics physiological intermedullary pressure (1.2 - 5 kPa). 24 hours at 50-g increased primary rat osteoblast proliferation on collagen Type I and fibronectin, but not laminin or uncoated plastic. BrdU incorporation in primary osteoblasts over 24 h showed hypergravity increased the number of cells actively synthesizing DNA from about 60% at 1-g to over 90% at 25-g. Primary rat fibroblasts grown at 50-g (24 h) showed no proliferation increase, suggesting this is a tissue-specific phenomenon. These results suggest that the betal and alpha4 integrins may be involved. To further test this, we used osteocytic-like MLO-Y4 cells that showed increased proliferation at 1-g with stable expression of a betal integrin cytoplasmic tail and transmembrane domain construct. At 50-g, MLO-Y4/betal cells showed greater MAPK activation than MLO-Y4 vector controls, suggesting that betal integrin is involved in transducing mitogenic signals in response to hypergravity. Preliminary results also show that interfering with the alpha4 integrin in primary osteoblasts grown on fibronectin blocked the proliferation response. These results indicate that cells from mechanosensitive bone tissue can respond to gravity-generated forces, and this response involves specific matrix and integrin-dependent signaling pathways.
Hypergravity Stimulates Osteoblast Proliferation Via Matrix-Integrin-Signaling Pathways
NASA Technical Reports Server (NTRS)
Vercoutere, W.; Parra, M.; Roden, C.; DaCosta, M.; Wing, A.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.
2003-01-01
Extensive characterizations of the physiologic consequences of microgravity and gravity indicate that lack of weight-bearing may cause tissue atrophy through cellular and subcellular level mechanisms. We hypothesize that gravity is needed for the efficient transduction of cell growth and survival signals from the extra-cellular matrix (ECM) in mechanosensitive tissues. Recent work from our laboratory and from others shows that an increase of gravity increases bone cell growth and survival. We found that 50-g hypergravity stimulation increased osteoblast proliferation for cells grown on Collagen Type I and Fibronectin, but not on Laminin or uncoated plastic. This may be a tissue-specific response, because 50-g hypergravity stimulation caused no increase in proliferation for primary rat fibroblasts. These results combined with RT-PCR for all possible integrins indicate that beta1 integrin subunit may be involved. The osteoblast proliferation response on Collagen Type I was greater at 25-g than at 10-g or 50-g; 24-h duration of hypergravity was necessary to see an increase in proliferation. Survival was enhanced during hypergravity stimulation by the presence of matrix. Flow cytometry analysis indicated that cell cycle may be altered; BrdU incorporation in proliferating cells showed an increase in the number of actively dividing cells from about 60% at 1-g to over 90% at 25-g. To further investigate the molecular components involved, we applied fluorescence labeling of cytoskeletal and signaling molecules to cells after 2 to 30 minutes of hypergravity stimulation. While structural components did not appear to be altered, phosphorylation increased, indicating that signaling pathways may be activated. These data indicate that gravity mechanostimulation of osteoblast proliferation involves specific matrix-integrin signaling pathways which are sensitive to duration and g-level.
Kettling, Hans; Vens-Cappell, Simeon; Soltwisch, Jens; Pirkl, Alexander; Haier, Jörg; Müthing, Johannes; Dreisewerd, Klaus
2014-08-05
Mass spectrometers from the Synapt-G1/G2 family (Waters) are widely employed for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). A lateral resolution of about 50 μm is typically achieved with these instruments, that is, however, below the often desired cellular resolution. Here, we show the first MALDI-MSI examples demonstrating a lateral resolution of about ten micrometers obtained with a Synapt G2-S HDMS mass spectrometer without oversampling. This improvement became possible by laser beam shaping using a 4:1 beam expander and a circular aperture for spatial mode filtering and by replacement of the default focusing lens. We used dithranol as an effective matrix for imaging of acidic lipids such as sulfatides, gangliosides, and phosphatidylinositols in the negative ion mode. At the same time, the matrix enables MS imaging of more basic lipids in the positive ion mode. Uniform matrix coatings with crystals having average dimensions between 0.5 and 3 μm were obtained upon spraying a chloroform/methanol matrix solution. Increasing the cooling gas pressure in the MALDI ion source after adding an additional gas line was furthermore found to increase the ion abundances of labile lipids such as gangliosides. The combined characteristics are demonstrated with the MALDI-MSI analysis of fine structures in coronal mouse brain slices.
1982-10-27
are buried within * a much larger, special purpose package. We regret such omissions, but to have reached the practi- tioners in each of the diverse...sparse matrix (form PAQ ) 4. Method of solution: Distribution count sort 5. Programming language: FORTRAN g Precision: Single and double precision 7
Dasari, Aravind; Yu, Zhong-Zhen; Mai, Yiu-Wing; Yang, Mingshu
2008-04-01
The primary focus of this work is to elucidate the location and extent of exfoliation of clay on fracture (under both static and dynamic loading conditions) of melt-compounded nylon 66/clay/SEBS-g-MA ternary nanocomposites fabricated by different blending sequences. Distinct microstructures are obtained depending on the blending protocol employed. The state of exfoliation and dispersion of clay in nylon 66 matrix and SEBS-g-MA phase are quantified and the presence of clay in rubber is shown to have a negative effect on the toughness of the nanocomposites. The level of toughness enhancement of ternary nanocomposites depends on the blending protocol and the capability of different fillers to activate the plastic deformation mechanisms in the matrix. These mechanisms include: cavitation of SEBS-g-MA phase, stretching of voided matrix material, interfacial debonding of SEBS-g-MA particles, debonding of intercalated clay embedded inside the SEBS-g-MA phase, and delamination of intercalated clay platelets. Based on these results, new insights and approaches for the processing of better toughened polymer ternary nanocomposites are discussed.
Effect of matrix elasticity on the continuous foaming of food models.
Narchi, I; Vial, Ch; Djelveh, G
2008-12-01
The aim is to understand the effect of matrix elasticity on continuous foaming using food models based on glucose syrup. This was modified by adding polyacrylamide (PAA) with 2% whey protein isolate (WPI) or Tween 80 as foaming agents. Foaming was conducted in a stirred column. Rotation speed N and gas-to-liquid flow ratio (G/L) were varied. Overrun, average bubble size d (32), texture and stability were measured using densimetry, image analysis, and rheometry, respectively. Experimental results showed that 0.01% PAA did not modify the viscosity of 2% WPI models, but conferred low elastic behavior. PAA (0.05%) doubled matrix viscosity and drastically increased elasticity. The increase of elasticity became slower for further PAA addition. Foaming experiments demonstrated that theoretical overrun could not be achieved for inelastic WPI models in two cases: for high viscosity and low N, as dispersion effectiveness was reduced; for high G/L and N because of enhanced coalescence. Matrix elasticity was shown to increase overrun at constant viscosity for high G/L by enhancing interface stabilization. However, in elastic models, gas dispersion was more difficult and d (32) was higher than in inelastic fluids of similar viscosity. Finally, when the limiting step was dispersion, foaming was shown to be negatively affected by matrix elasticity.
Careau, Vincent; Wolak, Matthew E; Carter, Patrick A; Garland, Theodore
2015-11-22
Given the pace at which human-induced environmental changes occur, a pressing challenge is to determine the speed with which selection can drive evolutionary change. A key determinant of adaptive response to multivariate phenotypic selection is the additive genetic variance-covariance matrix ( G: ). Yet knowledge of G: in a population experiencing new or altered selection is not sufficient to predict selection response because G: itself evolves in ways that are poorly understood. We experimentally evaluated changes in G: when closely related behavioural traits experience continuous directional selection. We applied the genetic covariance tensor approach to a large dataset (n = 17 328 individuals) from a replicated, 31-generation artificial selection experiment that bred mice for voluntary wheel running on days 5 and 6 of a 6-day test. Selection on this subset of G: induced proportional changes across the matrix for all 6 days of running behaviour within the first four generations. The changes in G: induced by selection resulted in a fourfold slower-than-predicted rate of response to selection. Thus, selection exacerbated constraints within G: and limited future adaptive response, a phenomenon that could have profound consequences for populations facing rapid environmental change. © 2015 The Author(s).
A general parallel sparse-blocked matrix multiply for linear scaling SCF theory
NASA Astrophysics Data System (ADS)
Challacombe, Matt
2000-06-01
A general approach to the parallel sparse-blocked matrix-matrix multiply is developed in the context of linear scaling self-consistent-field (SCF) theory. The data-parallel message passing method uses non-blocking communication to overlap computation and communication. The space filling curve heuristic is used to achieve data locality for sparse matrix elements that decay with “separation”. Load balance is achieved by solving the bin packing problem for blocks with variable size.With this new method as the kernel, parallel performance of the simplified density matrix minimization (SDMM) for solution of the SCF equations is investigated for RHF/6-31G ∗∗ water clusters and RHF/3-21G estane globules. Sustained rates above 5.7 GFLOPS for the SDMM have been achieved for (H 2 O) 200 with 95 Origin 2000 processors. Scalability is found to be limited by load imbalance, which increases with decreasing granularity, due primarily to the inhomogeneous distribution of variable block sizes.
Covariance structure in the skull of Catarrhini: a case of pattern stasis and magnitude evolution.
de Oliveira, Felipe Bandoni; Porto, Arthur; Marroig, Gabriel
2009-04-01
The study of the genetic variance/covariance matrix (G-matrix) is a recent and fruitful approach in evolutionary biology, providing a window of investigating for the evolution of complex characters. Although G-matrix studies were originally conducted for microevolutionary timescales, they could be extrapolated to macroevolution as long as the G-matrix remains relatively constant, or proportional, along the period of interest. A promising approach to investigating the constancy of G-matrices is to compare their phenotypic counterparts (P-matrices) in a large group of related species; if significant similarity is found among several taxa, it is very likely that the underlying G-matrices are also equivalent. Here we study the similarity of covariance and correlation structure in a broad sample of Old World monkeys and apes (Catarrhini). We made phylogenetically structured comparisons of correlation and covariance matrices derived from 39 skull traits, ranging from between species to the superfamily level. We also compared the overall magnitude of integration between skull traits (r2) for all Catarrhini genera. Our results show that P-matrices were not strictly constant among catarrhines, but the amount of divergence observed among taxa was generally low. There was significant and positive correlation between the amount of divergence in correlation and covariance patterns among the 30 genera and their phylogenetic distances derived from a recently proposed phylogenetic hypothesis. Our data demonstrate that the P-matrices remained relatively similar along the evolutionary history of catarrhines, and comparisons with the G-matrix available for a New World monkey genus (Saguinus) suggests that the same holds for all anthropoids. The magnitude of integration, in contrast, varied considerably among genera, indicating that evolution of the magnitude, rather than the pattern of inter-trait correlations, might have played an important role in the diversification of the catarrhine skull.
ERIC Educational Resources Information Center
Freund, Philipp Alexander; Hofer, Stefan; Holling, Heinz
2008-01-01
Figural matrix items are a popular task type for assessing general intelligence (Spearman's g). Items of this kind can be constructed rationally, allowing the implementation of computerized generation algorithms. In this study, the influence of different task parameters on the degree of difficulty in matrix items was investigated. A sample of N =…
Tiezzi, Francesco; Maltecca, Christian
2015-04-02
Genomic BLUP (GBLUP) can predict breeding values for non-phenotyped individuals based on the identity-by-state genomic relationship matrix (G). The G matrix can be constructed from thousands of markers spread across the genome. The strongest assumption of G and consequently of GBLUP is that all markers contribute equally to the genetic variance of a trait. This assumption is violated for traits that are controlled by a small number of quantitative trait loci (QTL) or individual QTL with large effects. In this paper, we investigate the performance of using a weighted genomic relationship matrix (wG) that takes into consideration the genetic architecture of the trait in order to improve predictive ability for a wide range of traits. Multiple methods were used to calculate weights for several economically relevant traits in US Holstein dairy cattle. Predictive performance was tested by k-means cross-validation. Relaxing the GBLUP assumption of equal marker contribution by increasing the weight that is given to a specific marker in the construction of the trait-specific G resulted in increased predictive performance. The increase was strongest for traits that are controlled by a small number of QTL (e.g. fat and protein percentage). Furthermore, bias in prediction estimates was reduced compared to that resulting from the use of regular G. Even for traits with low heritability and lower general predictive performance (e.g. calving ease traits), weighted G still yielded a gain in accuracy. Genomic relationship matrices weighted by marker realized variance yielded more accurate and less biased predictions for traits regulated by few QTL. Genome-wide association analyses were used to derive marker weights for creating weighted genomic relationship matrices. However, this can be cumbersome and prone to low stability over generations because of erosion of linkage disequilibrium between markers and QTL. Future studies may include other sources of information, such as functional annotation and gene networks, to better exploit the genetic architecture of traits and produce more stable predictions.
NASA Astrophysics Data System (ADS)
Stafilov, Trajče; Zendelovska, Dragica; Pavlovska, Gorica; Čundeva, Katarina
2002-05-01
The interferences of Ca and Mg as matrix elements in dolomite and gypsum on Ag, Cd, Cr, Mn, Tl and Zn absorbances during their electrothermal atomic absorption spectrometric (ETAAS) determination are investigated. The results reveal that Ca and Mg do not interfere on Zn and Mn, tend to decrease absorbances of Ag, Cd and Cr, while Tl suffers the most significant influence. A flotation separation method is proposed to eliminate matrix interferences. Hydrated iron(III) oxide, Fe 2O 3· xH 2O, and iron(III) hexamethylenedithiocarbamate, Fe(HMDTC) 3, are applied as flotation collectors. The influence of hydrophobic dithiocarbamate anion, HMDTC, on flotation recoveries of each analyte is studied. The most suitable concentrations of dolomite and gypsum solutions for flotation are determined. To avoid flotation suppression due to the reaction of Ca 2+ and Mg 2+ with surfactant ions, a fit foaming agent was selected. The elements present in dolomite and gypsum as traces have been analyzed by ETAAS. Their ETAAS limits of detection following flotation are found to be 0.021 μg·g -1 for Ag, 0.019 μg·g -1 for Cd, 0.014 μg·g -1 for Cr and 0.11 μg·g -1 for Tl. The determination of Mn and Zn can be performed by flame AAS (FAAS). The limit of detection for Mn is 1.5 μg·g -1, while for Zn 0.8 μg·g -1.
Comparison of hemostatic matrix and standard hemostasis in patients undergoing primary TKA.
Comadoll, James L; Comadoll, Shea; Hutchcraft, Audrey; Krishnan, Sangeeta; Farrell, Kelly; Kreuwel, Huub T C; Bechter, Mark
2012-06-01
Bleeding after total knee arthroplasty increases the risk of pain, delayed rehabilitation, blood transfusion, and transfusion-associated complications. The authors compared pre- and postoperative decreases in hemoglobin as a surrogate for blood loss in consecutive patients treated at a single institution by the same surgeon (J.L.C.) using conventional hemostatic methods (electrocautery, suturing, or manual compression) or a gelatin and thrombin-based hemostatic matrix during total knee arthroplasty. Data were collected retrospectively by chart review. The population comprised 165 controls and 184 patients treated with hemostatic matrix. Median age was 66 years (range, 28-89 years); 66% were women. The arithmetic mean ± SD for the maximal postoperative decrease in hemoglobin was 3.18 ± 0.94 g/dL for controls and 2.19 ± 0.83 g/dL for the hemostatic matrix group. Least squares means estimates of the group difference (controls-hemostatic matrix) in the maximal decrease in hemoglobin was 0.96 g/dL (95% confidence interval, 0.77-1.14 mg/dL; P<.0001). Statistically significant covariate effects were observed for preoperative hemoglobin level (P<.0001) and body mass index (P=.0029). Transfusions were infrequent in both groups. The frequency of acceptable range of motion was high (control, 88%; hemostatic matrix, 84%). In both groups, overall mean tourniquet time was approximately 1 hour, and the most common length of stay was 3 to 5 days. No serious complications related to the hemostatic agent were observed. These data demonstrate that the use of a flowable hemostatic matrix results in less reduction in hemoglobin than the use of conventional hemostatic methods in patient undergoing total knee arthroplasty. Copyright 2012, SLACK Incorporated.
A novel color image encryption scheme using alternate chaotic mapping structure
NASA Astrophysics Data System (ADS)
Wang, Xingyuan; Zhao, Yuanyuan; Zhang, Huili; Guo, Kang
2016-07-01
This paper proposes an color image encryption algorithm using alternate chaotic mapping structure. Initially, we use the R, G and B components to form a matrix. Then one-dimension logistic and two-dimension logistic mapping is used to generate a chaotic matrix, then iterate two chaotic mappings alternately to permute the matrix. For every iteration, XOR operation is adopted to encrypt plain-image matrix, then make further transformation to diffuse the matrix. At last, the encrypted color image is obtained from the confused matrix. Theoretical analysis and experimental results has proved the cryptosystem is secure and practical, and it is suitable for encrypting color images.
Boeckx, Bram; Maes, Guido
2012-02-01
The conformational landscape of N-acetylalanine has been investigated by a theoretical and matrix-isolation FT-IR study. Optimizations of N-acetylalanine structures has been conducted at successive higher levels of theory HF/3-21G, DFT(B3LYP)/6-31++G** and MP2/6-31++G**. This resulted in three stable conformations. Among these, one conformation contains an intramolecular H-bond. The vibrational properties of these conformations were calculated and used to identify the conformations in a cryogenic argon matrix. The intensities of some bands assigned to a particular conformation were used to estimate the rotamerization constants K(r12) and K(r13) for the equilibria NAA1 NAA2 and NAA1 NAA3, respectively. The obtained experimental values were in agreement with the theoretical predictions. Copyright © 2011 Elsevier B.V. All rights reserved.
Moment inference from tomograms
Day-Lewis, F. D.; Chen, Y.; Singha, K.
2007-01-01
Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error. Copyright 2007 by the American Geophysical Union.
Moment inference from tomograms
Day-Lewis, Frederick D.; Chen, Yongping; Singha, Kamini
2007-01-01
Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error.
Polymer Grafted Nanoparticles for Designed Interfaces in Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Mohammadkhani, Mohammad
This dissertation presents the design, synthesis, and characterization of polymer nanocomposite interfaces and the property enhancement from this interface design. Through the use of reversible addition fragmentation chain transfer (RAFT) polymerization for the grafting of polymer chains to silica nanoparticles, the surface of silica nanoparticles can be manipulated to tune the properties of nanocomposites by controlling the interface between the particles and the polymer matrix. In the first part of this work, compatibility of 15 nm silica nanoparticles grafted with different alkyl methacrylates with linear low density polyethylene was investigated. SI-RAFT polymerization of hexyl, lauryl, and stearyl methacrylate on silica NPs was studied in detail and revealed living character for all these polymerizations. Composites of linear low density polyethylene filled with PHMA, PLMA, and PSMA-g-SiO2 NPs were prepared and analyzed to find the effects of side chain length on the dispersibility of particles throughout the matrix. PSMA brushes were the most "olefin-like" of the series and thus showed the highest compatibility with polyethylene. The effects of PSMA brush molecular weight and chain density on the dispersion of silica particles were investigated. Multiple characterizations such as DSC, WAXS, and SAXS were applied to study the interaction between PSMA-g-SiO2 NPs and the polyethylene matrix. In the next part, the compatibility of PSMA-g-SiO2 NPs with different molecular variables with isotactic polypropylene was investigated. Anthracene was used as a conjugated ligand to introduce to the surface of PSMA-g-SiO2 NPs to develop bimodal architecture on nanoparticles and use them in polypropylene dielectric nanocomposites. The dispersion of particles was investigated and showed that for both monomodal and bimodal particles where PSMA chains are medium density and relatively high molecular weight, they maintain an acceptable level of dispersion throughout of the matrix. Furthermore, the effects of anthracene surface modification and also level of dispersion towards improving the dielectric breakdown strength under AC and DC conditions were studied. Finally, the RAFT polymerizations of isoprene in solution and, for the first time, on the surface of silica particles using a high temperature stable trithiocarbonate RAFT agent were studied. The effects of different temperatures, initiators, and monomer feed ratios on the kinetics of the SI-RAFT polymerization were also investigated. Kinetic studies revealed that the rate of SI-RAFT polymerization increased with an increase in the density of grafted RAFT agent. Well-defined polyisoprene-grafted silica NPs (PIP-g-SiO2 NPs) were synthesized and mixed with a polyisoprene matrix to determine the compatibility and dispersion of these particles with the matrix. Hydrogenation of PIP-g-SiO2 NPs were performed using p-toluenesulfonyl hydrazide at high temperature to obtain hydrogenated (HPIP)-g-SiO2 NPs. A bimodal octadecylsilane (C18)-HPIP-g-SiO2 NPs sample was synthesized and mixed with isotactic PP matrix analyzed for the compatibility with polypropylene.
Characterization and reproducibility of HepG2 hanging drop spheroids toxicology in vitro.
Hurrell, Tracey; Ellero, Andrea Antonio; Masso, Zelie Flavienne; Cromarty, Allan Duncan
2018-02-21
Hepatotoxicity remains a major challenge in drug development despite preclinical toxicity screening using hepatocytes of human origin. To overcome some limitations of reproducing the hepatic phenotype, more structurally and functionally authentic cultures in vitro can be introduced by growing cells in 3D spheroid cultures. Characterisation and reproducibility of HepG2 spheroid cultures using a high-throughput hanging drop technique was performed and features contributing to potential phenotypic variation highlighted. Cultured HepG2 cells were seeded into Perfecta 3D® 96-well hanging drop plates and assessed over time for morphology, viability, cell cycle distribution, protein content and protein-mass profiles. Divergent aspects which were assessed included cell stocks, seeding density, volume of culture medium and use of extracellular matrix additives. Hanging drops are advantageous due to no complex culture matrix being present, enabling background free extractions for downstream experimentation. Varying characteristics were observed across cell stocks and batches, seeding density, culture medium volume and extracellular matrix when using immortalized HepG2 cells. These factors contribute to wide-ranging cellular responses and highlights concerns with respect to generating a reproducible phenotype in HepG2 hanging drop spheroids. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sun, Li; Li, Mengya; Jiang, Ying; Kong, Weibang; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan
2014-07-09
A binder-free nano sulfur-carbon nanotube composite material featured by clusters of sulfur nanocrystals anchored across the superaligned carbon nanotube (SACNT) matrix is fabricated via a facile solution-based method. The conductive SACNT matrix not only avoids self-aggregation and ensures dispersive distribution of the sulfur nanocrystals but also offers three-dimensional continuous electron pathway, provides sufficient porosity in the matrix to benefit electrolyte infiltration, confines the sulfur/polysulfides, and accommodates the volume variations of sulfur during cycling. The nanosized sulfur particles shorten lithium ion diffusion path, and the confinement of sulfur particles in the SACNT network guarantees the stability of structure and electrochemical performance of the composite. The nano S-SACNT composite cathode delivers an initial discharge capacity of 1071 mAh g(-1), a peak capacity of 1088 mAh g(-1), and capacity retention of 85% after 100 cycles with high Coulombic efficiency (∼100%) at 1 C. Moreover, at high current rates the nano S-SACNT composite displays impressive capacities of 1006 mAh g(-1) at 2 C, 960 mAh g(-1) at 5 C, and 879 mAh g(-1) at 10 C.
NASA Astrophysics Data System (ADS)
Jackisch, Conrad; van Schaik, Loes; Graeff, Thomas; Zehe, Erwin
2014-05-01
Preferential flow through macropores often determines hydrological characteristics - especially regarding runoff generation and fast transport of solutes. Macropore settings may yet be very different in nature and dynamics, depending on their origin. While biogenic structures follow activity cycles (e.g. earth worms) and population conditions (e.g. roots), pedogenic and geogenic structures may depend on water stress (e.g. cracks) or large events (e.g. flushed voids between skeleton and soil pipes) or simply persist (e.g. bedrock interface). On the one hand, such dynamic site characteristics can be observed in seasonal changes in its reaction to precipitation. On the other hand, sprinkling experiments accompanied by tracers or time-lapse 3D Ground-Penetrating-Radar are suitable tools to determine infiltration patterns and macropore configuration. However, model representation of the macropore-matrix system is still problematic, because models either rely on effective parameters (assuming well-mixed state) or on explicit advection strongly simplifying or neglecting interaction with the diffusive flow domain. Motivated by the dynamic nature of macropores, we present a novel model approach for interacting diffusive and advective water, solutes and energy transport in structured soils. It solely relies on scale- and process-aware observables. A representative set of macropores (data from sprinkling experiments) determines the process model scale through 1D advective domains. These are connected to a 2D matrix domain which is defined by pedo-physical retention properties. Water is represented as particles. Diffusive flow is governed by a 2D random walk of these particles while advection may take place in the macropore domain. Macropore-matrix interaction is computed as dissipation of the advective momentum of a particle by its experienced drag from the matrix domain. Through a representation of matrix and macropores as connected diffusive and advective domains for water transport we open up double domain concepts linking porescale physics to preferential macroscale fingerprints without effective parameterisation or mixing assumptions. Moreover, solute transport, energy balance aspects and lateral heterogeneity in soil moisture distribution are intrinsically captured. In addition, macropore and matrix domain settings may change over time based on physical and stochastic observations. The representativity concept allows scaleability from plotscale to the lower mesoscale.
Exploring and Making Sense of Large Graphs
2015-08-01
and bold) are n × n ; vectors (lower-case bold) are n × 1 column vectors, and scalars (in lower-case plain font) typically correspond to strength of...graph is often denoted as |V| or n . Edges or Links: A finite set E of lines between objects in a graph. The edges represent relationships between the...Adjacency matrix of a simple, unweighted and undirected graph. Adjacency matrix: The adjacency matrix of a graph G is an n × n matrix A, whose element aij
Stable Boron Nitride Interphases for Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
1999-01-01
Ceramic matrix composites (CMC's) require strong fibers for good toughness and weak interphases so that cracks which are formed in the matrix debond and deflect around the fibers. If the fibers are strongly bonded to the matrix, CMC's behave like monolithic ceramics (e.g., a ceramic coffee cup), and when subjected to mechanical loads that induce cracking, such CMC's fail catastrophically. Since CMC's are being developed for high temperature corrosive environments such as the combustor liner for advanced High Speed Civil Transport aircraft, the interphases need to be able to withstand the environment when the matrix cracks.
Alves, Rita C; Pimentel, Filipa B; Nouws, Henri P A; Silva, Túlio H B; Oliveira, M Beatriz P P; Delerue-Matos, Cristina
2017-03-01
The extraction of Ara h 6 (a peanut allergen) from a complex chocolate-based food matrix was optimized by testing different temperatures, extraction times, and the influence of additives (NaCl and skimmed milk powder) in a total of 36 different conditions. Analyses were carried out using an electrochemical immunosensor. Three conditions were selected since they allowed the extraction of the highest levels of Ara h 6. These extractions were performed using 2g of sample and 20ml of Tris-HNO 3 (pH=8) containing: a) 0.1M NaCl and 2g of skimmed milk powder at 21°C for 60min; b) 1M NaCl and 1g of skimmed milk powder at 21°C for 60min; and c) 2g of skimmed milk powder at 60°C for 60min. Recoveries were similar or higher than 94.7%. This work highlights the importance to adjust extraction procedures regarding the target analyte and food matrix components. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalavi, Shankar B.; Panda, Rabi N., E-mail: rnp@goa.bits-pilani.ac.in; Raja, M. Manivel
2015-06-24
Thermally stable Ni nanoparticles have been embedded in mesoporous silica matrix (KIT-6) via novel chemical reduction method by using superhydride as reducing agent. X-ray diffraction (XRD) study confirms that pure and embedded Ni nanoparticles crystallize in face centered cubic (fcc) structure. Crystallite sizes of pure Ni, 4 wt% and 8 wt% Ni in silica were estimated to be 6.0 nm, 10.4 nm and 10.5 nm, respectively. Morphology and dispersion of Ni in silica matrix were studied by scanning electron microscopy (SEM). Magnetic study shows enhancement of magnetic moments of Ni nanoparticles embedded in silica matrix compared with that of pure Ni. The resultmore » has been interpreted on the basis of size reduction and magnetic exchange effects. Saturation magnetization values for pure Ni, 4 wt% and 8 wt% Ni in silica were found to be 15.77 emu/g, 5.08 emu/g and 2.00 emu/g whereas coercivity values were 33.72 Oe, 92.47 Oe and 64.70 Oe, respectively. We anticipate that the observed magnetic properties may find application as soft magnetic materials.« less
Preibsch, Heike; Baur, Astrid; Wietek, Beate M; Krämer, Bernhard; Staebler, Annette; Claussen, Claus D; Siegmann-Luz, Katja C
2015-09-01
Published national and international guidelines and consensus meetings on the use of vacuum-assisted biopsy (VAB) give different recommendations regarding the required numbers of tissue specimens depending on needle size and imaging method. To evaluate the weights of specimens obtained with different VAB needles to facilitate the translation of the required number of specimens between different breast biopsy systems and needle sizes, respectively. Five different VAB systems and seven different needle sizes were used: Mammotome® (11-gauge (G), 8-G), Vacora® (10-G), ATEC Sapphire™ (9-G), 8-G Mammotome® Revolve™, and EnCor Enspire® (10-G, 7-G). We took 24 (11-G) or 20 (7-10-G) tissue cores from a turkey breast phantom. The mean weight of a single tissue core was calculated for each needle size. A matrix, which allows the translation of the required number of tissue cores for different needle sizes, was generated. Results were compared to the true cumulative tissue weights of consecutively harvested tissue cores. The mean tissue weights obtained with the 11-G / 10-G Vacora® / 10-G Enspire® / 9-G / 8-G Original / 8-G Revolve™ / 7-G needles were 0.084 g / 0.142 g / 0.221 g / 0.121 g / 0.192 g / 0.334 g / 0.363 g, respectively. The calculated required numbers of VAB tissue cores for each needle size build the matrix. For example, the minimum calculated number of required cores according to the current German S3 guideline is 20 / 12 / 8 / 14 / 9 / 5 / 5 for needles of 11-G / 10-G Vacora® / 10-G Enspire® / 9-G / 8-G Original / 8-G Revolve™ / 7-G size. These numbers agree with the true cumulative tissue weights. The presented matrix facilitates the translation of the required number of VAB specimens between different needle sizes and thereby eases the implementation of current guidelines and consensus recommendations into clinical practice. © The Foundation Acta Radiologica 2014.
By Stuart G. Baker The program requires Mathematica 7.01.0 The key function is Classify [datalist,options] where datalist={data, genename, dataname} data ={matrix for class 0, matrix for class 1}, matrix is gene expression by specimen genename a list of names of genes, dataname ={name of data set, name of class0, name of class1} |
1994-09-01
133 v List of Tables Table Page 1. Line Item Changes in Proposed Ground TACS SSS Matrix...39 2. Percentage of Line Item Changes in Proposed SSS Matrix for G round T A C S...modified to meet Theater Air Control System requirements. The small amount of changes required to modify the aircraft matrix in order to satisfy ground
Matrix interference from Fc-Fc interactions in immunoassays for detecting human IgG4 therapeutics.
Partridge, Michael A; Karayusuf, Elif Kabuloglu; Dhulipala, Gangadhar; Dreyer, Robert; Daly, Thomas; Sumner, Giane; Pyles, Erica; Torri, Albert
2015-01-01
An assay measuring an IgG4 biotherapeutic in human serum used a drug-specific monoclonal antibody (mAb) capture reagent and an antihuman IgG4 mAb as detection reagent. However, serum IgG4 binding to the capture mAb via Fc-interactions was detected by the anti-IgG4 mAb, causing high background. Two approaches were developed to minimize background; incorporating a mild acid sample preparation step or using the Fab of the capture antibody. Either strategy improved signal:noise dramatically, increasing assay sensitivity >20-fold. Biophysical analyses of antibody domains indicated that noncovalent Fc oligomers could inhibit the background. Matrix interference from human IgG4 binding to the capture mAb was reduced with a Fab fragment of the drug-specific capture antibody or by incorporating a mild acid sample treatment into the assay.
Andersen, Wendy C; Casey, Christine R; Schneider, Marilyn J; Turnipseed, Sherri B
2015-01-01
Prior to conducting a collaborative study of AOAC First Action 2012.25 LC-MS/MS analytical method for the determination of residues of three triphenylmethane dyes (malachite green, crystal violet, and brilliant green) and their metabolites (leucomalachite green and leucocrystal violet) in seafood, a single-laboratory validation of method 2012.25 was performed to expand the scope of the method to other seafood matrixes including salmon, catfish, tilapia, and shrimp. The validation included the analysis of fortified and incurred residues over multiple weeks to assess analyte stability in matrix at -80°C, a comparison of calibration methods over the range 0.25 to 4 μg/kg, study of matrix effects for analyte quantification, and qualitative identification of targeted analytes. Method accuracy ranged from 88 to 112% with 13% RSD or less for samples fortified at 0.5, 1.0, and 2.0 μg/kg. Analyte identification and determination limits were determined by procedures recommended both by the U. S. Food and Drug Administration and the European Commission. Method detection limits and decision limits ranged from 0.05 to 0.24 μg/kg and 0.08 to 0.54 μg/kg, respectively. AOAC First Action Method 2012.25 with an extracted matrix calibration curve and internal standard correction is suitable for the determination of triphenylmethane dyes and leuco metabolites in salmon, catfish, tilapia, and shrimp by LC-MS/MS at a residue determination level of 0.5 μg/kg or below.
Zhang, Xuzhen; Zhang, Yong
2016-04-20
Poly(butylene succinate) (PBS)/polylactic acid (PLA) blends modified with dicumyl peroxide (DCP) were reinforced by PBS-g-cellulose nanocrystal (CNC) through melt mixing. PBS-g-CNC was prepared through in situ polymerization and its structure was confirmed by FTIR, (13)C NMR, XPS and GPC analysis after saponification. The morphological analysis of PBS/PLA/PBS-g-CNC composites before and after etched by CH2Cl2 shows that the addition of DCP and PBS-g-CNC could decrease the size of PBS as a dispersed phase in PLA matrix and improve the dispersion of PBS-g-CNC in both PBS and PLA phases, which could affect the crystallization and mechanical properties of composites. The crystallinity of PLA α'-phase crystal in PBS/PLA/PBS-g-CNC composites is increased obviously by the addition of PBS-g-CNC, leading to an increase of the crystallinity of the composites. PBS/PLA blends modified by DCP have high Notched Izod impact strength and moduli, and the values are increased by the addition of PBS-g-CNC. Both storage modulus and glass translation temperature of PBS/PLA blend are increased by DCP and PBS-g-CNC, which is proved by DMA results, showing a weak molecular segment mobility of PBS/PLA matrix. The addition of DCP decreases the crystallization temperature and crystallinity of PBS/PLA composite, but increases the thermal stability of composites, mostly because of the crosslink effect of DCP on PBS/PLA matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optimization of the High-Frequency Radar Sites in the Bering Strait Region
2015-02-01
and Daley 2000; Köhl and Stammer 2004) and was used extensively in dynam- ical sensitivity studies (e.g., Marotzke et al. 1999; Losch and Heimbach 2007 ...modeling (Winsor and Chapman 2004; Spall 2007 ; Watanabe and Hasumi 2009) studies suggest that Pacific waters enter the open AO through two pathways (Fig...S5 Ŵ21/2DBQT (11) is the sensitivity matrix (e.g., Köhl and Stammer 2004). By electing the trace of the covariance matrix as its norm, we employ the
MoO2 nanosheets embedded in amorphous carbon matrix for sodium-ion batteries
NASA Astrophysics Data System (ADS)
He, Hong; Man, Yuhong; Yang, Jingang; Xie, Jiale; Xu, Maowen
2017-10-01
MoO2 nanosheets embedded in the amorphous carbon matrix (MoO2/C) are successfully synthesized via a facile hydrothermal method and investigated as an anode for sodium-ion batteries. Because of the efficient ion transport channels and good volume change accommodation, MoO2/C delivers a discharge/charge capacity of 367.8/367.0 mAh g-1 with high coulombic efficiency (99.4%) after 100 cycles at a current density of 50 mA g-1.
Google matrix of the world network of economic activities
NASA Astrophysics Data System (ADS)
Kandiah, Vivek; Escaith, Hubert; Shepelyansky, Dima L.
2015-07-01
Using the new data from the OECD-WTO world network of economic activities we construct the Google matrix G of this directed network and perform its detailed analysis. The network contains 58 countries and 37 activity sectors for years 1995 and 2008. The construction of G, based on Markov chain transitions, treats all countries on equal democratic grounds while the contribution of activity sectors is proportional to their exchange monetary volume. The Google matrix analysis allows to obtain reliable ranking of countries and activity sectors and to determine the sensitivity of CheiRank-PageRank commercial balance of countries in respect to price variations and labor cost in various countries. We demonstrate that the developed approach takes into account multiplicity of network links with economy interactions between countries and activity sectors thus being more efficient compared to the usual export-import analysis. The spectrum and eigenstates of G are also analyzed being related to specific activity communities of countries.
NASA Astrophysics Data System (ADS)
Alves, Julio Cesar L.; Poppi, Ronei J.
2013-02-01
This paper reports the application of piecewise direct standardization (PDS) for matrix correction in front face fluorescence spectroscopy of solids when different excipients are used in a pharmaceutical preparation based on a mixture of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine. As verified in earlier studies, the use of different excipients and their ratio can cause a displacement, change in fluorescence intensity or band profile. To overcome this important drawback, a standardization strategy was adopted to convert all the excitation-emission fluorescence spectra into those used for model development. An excitation-emission matrix (EEM) for which excitation and emission wavelengths ranging from 265 to 405 nm and 300 to 480 nm, respectively, was used. Excellent results were obtained using unfolded partial least squares (U-PLS), with RMSEP values of 8.2 mg/g, 10.9 mg/g and 2.7 mg/g for ASA, paracetamol and caffeine, respectively, and with relative errors lesser than 5% for the three analytes.
NASA Astrophysics Data System (ADS)
Gudder, Stanley
2008-07-01
A new approach to quantum Markov chains is presented. We first define a transition operation matrix (TOM) as a matrix whose entries are completely positive maps whose column sums form a quantum operation. A quantum Markov chain is defined to be a pair (G,E) where G is a directed graph and E =[Eij] is a TOM whose entry Eij labels the edge from vertex j to vertex i. We think of the vertices of G as sites that a quantum system can occupy and Eij is the transition operation from site j to site i in one time step. The discrete dynamics of the system is obtained by iterating the TOM E. We next consider a special type of TOM called a transition effect matrix. In this case, there are two types of dynamics, a state dynamics and an operator dynamics. Although these two types are not identical, they are statistically equivalent. We next give examples that illustrate various properties of quantum Markov chains. We conclude by showing that our formalism generalizes the usual framework for quantum random walks.
On multivariate trace inequalities of Sutter, Berta, and Tomamichel
NASA Astrophysics Data System (ADS)
Lemm, Marius
2018-01-01
We consider a family of multivariate trace inequalities recently derived by Sutter, Berta, and Tomamichel. These inequalities generalize the Golden-Thompson inequality and Lieb's triple matrix inequality to an arbitrary number of matrices in a way that features complex matrix powers (i.e., certain unitaries). We show that their inequalities can be rewritten as an n-matrix generalization of Lieb's original triple matrix inequality. The complex matrix powers are replaced by resolvents and appropriate maximally entangled states. We expect that the technically advantageous properties of resolvents, in particular for perturbation theory, can be of use in applications of the n-matrix inequalities, e.g., for analyzing the performance of the rotated Petz recovery map in quantum information theory and for removing the unitaries altogether.
Dry Arthroscopy With a Retraction System for Matrix-Aided Cartilage Repair of Patellar Lesions
Sadlik, Boguslaw; Wiewiorski, Martin
2014-01-01
Several commercially available cartilage repair techniques use a natural or synthetic matrix to aid cartilage regeneration (e.g., autologous matrix–induced chondrogenesis or matrix-induced cartilage implantation). However, the use of matrix-aided techniques during conventional knee joint arthroscopy under continuous irrigation is challenging. Insertion and fixation of the matrix can be complicated by the presence of fluid and the confined patellofemoral joint space with limited access to the lesion. To overcome these issues, we developed a novel arthroscopic approach for matrix-aided cartilage repair of patellar lesions. This technical note describes the use of dry arthroscopy assisted by a minimally invasive retraction system. An autologous matrix–induced chondrogenesis procedure is used to illustrate this novel approach. PMID:24749035
Qian, Weiwei; Gao, Qiuming; Li, Zeyu; Tian, Weiqian; Zhang, Hang; Zhang, Qiang
2017-08-30
Unusual three-dimensional mesoporous carbon/reduced graphene oxide (MP-C/rGO) matrix possessing graphene nanolayer pore walls built up by three to five graphene monosheets and some carbon particles with the sizes of about 5 nm located between the graphene nanolayers was prepared by facile freeze-drying and then carbonization of the poly(vinyl alcohol) and graphene oxide mixture. The mesoporous carbonaceous MP-C/rGO sample has a high specific surface area of 661.6 m 2 g -1 , large specific pore volume of 1.54 m 3 g -1 , and focused pore size distribution of 2-10 nm. About 64 wt % sulfur could be held in the pores of the MP-C/rGO matrix. As the cathode of a Li-S battery, the MP-C/rGO/S composite showed excellent electrochemical property including a high initial specific capacity of 919 mA h g -1 at 1 C with the capacity retention ratio of 63.3% and the Coulombic efficiency above 90% after 500 cycles. Meanwhile, the initial specific capacity of 602 mA h g -1 at 5 C and remaining capacity of 391 mA h g -1 after 500 cycles with an outstanding Coulombic efficiency of 97% indicate its exceptionally stable rate performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roemelt, Michael, E-mail: michael.roemelt@theochem.rub.de
Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctionsmore » are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.« less
Kiss, Gergely; Konrad, Csaba; Doczi, Judit; Starkov, Anatoly A.; Kawamata, Hibiki; Manfredi, Giovanni; Zhang, Steven F.; Gibson, Gary E.; Beal, M. Flint; Adam-Vizi, Vera; Chinopoulos, Christos
2013-01-01
A decline in α-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20–48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ∼30% higher ADP-ATP exchange rates compared to those obtained from DLST+/− or DLD+/− littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on “in-house” mitochondrial ATP reserves.—Kiss, G., Konrad, C., Doczi, J., Starkov, A. A., Kawamata, H., Manfredi, G., Zhang, S. F., Gibson, G. E., Beal, M. F., Adam-Vizi, V., Chinopoulos, C. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation. PMID:23475850
Lyophilized mucoadhesive-dendrimer enclosed matrix tablet for extended oral delivery of albendazole.
Mansuri, Shakir; Kesharwani, Prashant; Tekade, Rakesh Kumar; Jain, Narendra Kumar
2016-05-01
Dendrimers are multifunctional carriers widely employed for delivering drugs in a variety of disease conditions including HIV/AIDS and cancer. Albendazole (ABZ) is a commonly used anthelmintic drug in human as well as veterinary medicine. In this investigation, ABZ was formulated as a "muco-dendrimer" based sustained released tablet. The mucoadhesive complex was synthesized by anchoring chitosan to fifth generation PPI dendrimer (Muco-PPI) and characterized by UV, FTIR, (1)H NMR spectroscopy and electron microscopy. ABZ was entrapped inside Muco-PPI followed by lyophilization and tableting as matrix tablet. A half-life (t1/2) of 8.06±0.15, 8.17±0.47, 11.04±0.73, 11.49±0.92, 12.52±1.04 and 16.9±1.18h was noted for ABZ (free drug), conventional ABZ tablet (F1), conventional ABZ matrix tablet (F2), PPI-ABZ complex, PPI-ABZ matrix tablet (F3) and Muco-PPI-ABZ matrix tablet (F4), respectively. Thus the novel mucoadhesive-PPI based formulation of ABZ (F4) increased the t1/2 of ABZ significantly by almost twofold as compared to the administration of free drug. The in vivo drug release data showed that the Muco-PPI based formulations have a significantly higher Cmax (2.40±0.02μg/mL) compared with orally administered free ABZ (0.19±0.07μg/mL) as well as conventional tablet (0.20±0.05μg/mL). In addition, the Muco-PPI-ABZ matrix tablet displayed increased mean residence time (MRT) and is therefore a potential candidate to appreciably improve the pharmacokinetic profile of ABZ. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Weizhou; Wang, Kai; Yan, Wei; Guo, Weihong
2017-10-01
New toughened poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate) (PET) (40/60 wt%) blends were obtained by melting with Glycidyl methacrylate grafted poly(ethylene octane) copolymer (POE-g-GMA), varying the POE-g-GMA content up to 20 wt%, in a twin-screw extruder, followed by injection molding. The influence of POE-g-GMA on the properties of the PBT/PET blends was investigated by mechanical testing, Fourier transform infrared (FT-IR) analysis, gel fractions analysis, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and scanning electronic microscopy (SEM). The mechanical testing results indicated that the incorporation of POE-g-GMA led to increases in the notched impact strength and decreases in the tensile strength, flexural strength, and flexural modulus. When POE-g-GMA content reached 20 wt%, the notched impact strength (8.0 kJ m-2) was achieved for the PBT/PET/POE-g-GMA blends. FT-IR results proved that some PBT/PET/POE-g-GMA copolymers were produced, which improved the compatibility between POE-g-GMA and the PBT/PET matrix. The extent of crosslinking was observed by gel fraction measurements. DMA results further testified chain-extending and micro-crosslink reactions occurred between POE-g-GMA and PBT/PET blends. In addition, the reactions induced by POE-g-GMA affected the crystallization behavior of PBT/PET blends obviously, as observed from DSC results. By means of SEM observation of the impact fracture surface morphology, and the discussion of the micro-crosslink reaction process between the epoxide-containing elastomers and PBT/PET matrix, the toughening mechanism was proposed to be taken into account the shear yielding of PBT/PET matrix and cavitation of elastomer particles.
Simulation of sparse matrix array designs
NASA Astrophysics Data System (ADS)
Boehm, Rainer; Heckel, Thomas
2018-04-01
Matrix phased array probes are becoming more prominently used in industrial applications. The main drawbacks, using probes incorporating a very large number of transducer elements, are needed for an appropriate cabling and an ultrasonic device offering many parallel channels. Matrix arrays designed for extended functionality feature at least 64 or more elements. Typical arrangements are square matrices, e.g., 8 by 8 or 11 by 11 or rectangular matrixes, e.g., 8 by 16 or 10 by 12 to fit a 128-channel phased array system. In some phased array systems, the number of simultaneous active elements is limited to a certain number, e.g., 32 or 64. Those setups do not allow running the probe with all elements active, which may cause a significant change in the directivity pattern of the resulting sound beam. When only a subset of elements can be used during a single acquisition, different strategies may be applied to collect enough data for rebuilding the missing information from the echo signal. Omission of certain elements may be one approach, overlay of subsequent shots with different active areas may be another one. This paper presents the influence of a decreased number of active elements on the sound field and their distribution on the array. Solutions using subsets with different element activity patterns on matrix arrays and their advantages and disadvantages concerning the sound field are evaluated using semi-analytical simulation tools. Sound field criteria are discussed, which are significant for non-destructive testing results and for the system setup.
Trenary, Heather R; Creed, Patricia A; Young, Andrea R; Mantha, Madhavi; Schwegel, Carol A; Xue, Jianping; Kohan, Michael J; Herbin-Davis, Karen; Thomas, David J; Caruso, Joseph A; Creed, John T
2012-07-01
In this study, an in vitro synthetic gastrointestinal extraction protocol was used to estimate bioaccessibility of different arsenicals present in 17 rice samples of various grain types that were collected across the United States. The across matrix average for total arsenic was 209 ng/g±153 (\\[xmacr]±2σ). The bioaccessibility estimate produced an across matrix average of 61%±19 (\\[xmacr]±2σ). The across matrix average concentrations of inorganic arsenic (iAs) and dimethylarsinic acid (DMA) were 81 ng/g±67.7 and 41 ng/g±58.1 (\\[xmacr]±2σ), respectively. This distribution of iAs concentrations in rice was combined with the distribution of consumption patterns (from WWEIA) in a Stochastic Human Exposure and Dose Simulator model to estimate population-based exposures. The mean consumption rate for the population as a whole was 15.7 g per day resulting in a 0.98 μg iAs per day exposure. The mean consumption rate for children 1-2 years old was 7 g per day resulting in a 0.48 μg iAs per day exposure. Presystemic biotransformation of DMA in rice was examined using an in vitro assay containing the anaerobic microbiota of mouse cecum. This assay indicated that DMA extracted from the rice was converted to dimethylthioarsinic acid, although a second oxygen-sulfur exchange to produce DMDTA was not observed.
NASA Astrophysics Data System (ADS)
Suharty, N. S.; Ismail, H.; Diharjo, K.; Handayani, D. S.; Lestari, W. A.
2017-07-01
Composites contain double filler material which act as reinforcement and flame retardants of recycled polypropylene (rPP)/kaolin(Kao)/palm oil empty bunch fiber (PEBF) have been succesfully prepared. The composites were synthesized through reactively solution method, using coupling agent PP-g-AA and compatibilizer DVB. The effect of double filler [Kao/PEBF] were investigated flexural strength (FS), inflammability, and morphology. Mechanical testing result in accordance to ASTM D790, the FS of rPP/DVB/PP-g-AA/Kao+ZB/PEBF composite was 48% higher than that of rPP matrix. Moreover, flexural modulus (FM) was significantly improved by 56% as compared to that of rPP matrix. The scanning electron images (SEM) shown good dispersion of [Ka/PEBF] and good filler-matrix interaction. The inflammability testing result which is tested using ASTM D635, showed that the flame resistance of rPP/DVB/PP-g-AA/Kao+ZB/PEBF composite was improve by increasing of time to ignition (TTI) about 857% and burning rate (BR) decreasing to 66% compared to the raw material rPP matrix. In the same time, the addition of 20% (w/w) PEBF as a second filler to form rPP/DVB/PP-g-AA/Kao+ZB/PEBF composites (F5) is able to increase: the FS by 17.5%, the FM by 19%, the TTI by 7.6% and the BR by 3.7% compared to the composite without PEBF (F2).
Proteomic analysis of knock-down HLA-G in invasion of human trophoblast cell line JEG-3
Liu, Haiyan; Liu, Xueyuan; Jin, Hong; Yang, Fengying; Gu, Weirong; Li, Xiaotian
2013-01-01
Previous studies showed that aberrant HLA-G expression in trophoblast cells plays important roles in trophoblast invasion; however, the mechanisms remain to be explored. In this study, we found that suppressed HLA-G expression could dramatically decrease the mRNA and protein expression levels of matrix metalloproteinase 2 and matrix metalloproteinase 9, and in the proteome assay, there were 3 identified proteins namely, prefoldin 1, eukaryotic translation elongation factor 2 and malate dehydrogenase 2, which were verified by Western blot and known to be associated with invasion, cell cycle and cell metabolism, respectively. Collectively, our study indicated a potential involvement of HLA-G in autocrine networks that may regulate prefoldin, MMPs and trophoblast invasion at the maternal-fetal interface in human pregnancy. PMID:24228107
Modeling cometary photopolarimetric characteristics with Sh-matrix method
NASA Astrophysics Data System (ADS)
Kolokolova, L.; Petrov, D.
2017-12-01
Cometary dust is dominated by particles of complex shape and structure, which are often considered as fractal aggregates. Rigorous modeling of light scattering by such particles, even using parallelized codes and NASA supercomputer resources, is very computer time and memory consuming. We are presenting a new approach to modeling cometary dust that is based on the Sh-matrix technique (e.g., Petrov et al., JQSRT, 112, 2012). This method is based on the T-matrix technique (e.g., Mishchenko et al., JQSRT, 55, 1996) and was developed after it had been found that the shape-dependent factors could be separated from the size- and refractive-index-dependent factors and presented as a shape matrix, or Sh-matrix. Size and refractive index dependences are incorporated through analytical operations on the Sh-matrix to produce the elements of T-matrix. Sh-matrix method keeps all advantages of the T-matrix method, including analytical averaging over particle orientation. Moreover, the surface integrals describing the Sh-matrix elements themselves can be solvable analytically for particles of any shape. This makes Sh-matrix approach an effective technique to simulate light scattering by particles of complex shape and surface structure. In this paper, we present cometary dust as an ensemble of Gaussian random particles. The shape of these particles is described by a log-normal distribution of their radius length and direction (Muinonen, EMP, 72, 1996). Changing one of the parameters of this distribution, the correlation angle, from 0 to 90 deg., we can model a variety of particles from spheres to particles of a random complex shape. We survey the angular and spectral dependencies of intensity and polarization resulted from light scattering by such particles, studying how they depend on the particle shape, size, and composition (including porous particles to simulate aggregates) to find the best fit to the cometary observations.
Cell cycle of matrix cells in the mouse embryo during histogenesis of telencephalon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshino, K.; Matsuzawa, T.; Murakami, U.
1973-01-01
Pregnant female mice were injected intraperitoneally with 5 mu Ci/g body weight of /sup 3/H-thymidine (spec. act. 12 mu Ci/mM) at 1:30 p.m. on day 10, 13, or 17 of gestation and were put to death at 1 or 2 hr intervals per group. Embryos were removed quickly from mothers and fixed in Bouin's solution. The prepared slides were observed microscopically. The duration of the cell cycle of the matrix cells of the telencephalon was determined by direct graphic measurement, plotting the percentage of labeled mitosis against the time after / sup 3/H-thymidine injection according to the method of Quastlermore » and Sherman. The total cell cycle times in day 10, 13, and 17 groups were 7.0, 15.5, and 26.0 hr, respectively. It was characteristic in the alteration of cell cycle of matrix cells in the telencephalon during mouse embryonic life that not only G/sub 1/ but also S phase lengthened linearly with embryonic age, and both G/sub 2/ and M phases remained constant. According to these facts, the matrix cells seemed to change cytogenetically with increase of age so as to produce different neurons that would progressively make up different layers in the neocortex. (JA)« less
Estimate of uncertainties in polarized parton distributions
NASA Astrophysics Data System (ADS)
Miyama, M.; Goto, Y.; Hirai, M.; Kobayashi, H.; Kumano, S.; Morii, T.; Saito, N.; Shibata, T.-A.; Yamanishi, T.
2001-10-01
From \\chi^2 analysis of polarized deep inelastic scattering data, we determined polarized parton distribution functions (Y. Goto et al. (AAC), Phys. Rev. D 62, 34017 (2000).). In order to clarify the reliability of the obtained distributions, we should estimate uncertainties of the distributions. In this talk, we discuss the pol-PDF uncertainties by using a Hessian method. A Hessian matrix H_ij is given by second derivatives of the \\chi^2, and the error matrix \\varepsilon_ij is defined as the inverse matrix of H_ij. Using the error matrix, we calculate the error of a function F by (δ F)^2 = sum_i,j fracpartial Fpartial ai \\varepsilon_ij fracpartial Fpartial aj , where a_i,j are the parameters in the \\chi^2 analysis. Using this method, we show the uncertainties of the pol-PDF, structure functions g_1, and spin asymmetries A_1. Furthermore, we show a role of future experiments such as the RHIC-Spin. An important purpose of planned experiments in the near future is to determine the polarized gluon distribution function Δ g (x) in detail. We reanalyze the pol-PDF uncertainties including the gluon fake data which are expected to be given by the upcoming experiments. From this analysis, we discuss how much the uncertainties of Δ g (x) can be improved by such measurements.
Visualizing the dental biofilm matrix by means of fluorescence lectin-binding analysis.
Tawakoli, Pune N; Neu, Thomas R; Busck, Mette M; Kuhlicke, Ute; Schramm, Andreas; Attin, Thomas; Wiedemeier, Daniel B; Schlafer, Sebastian
2017-01-01
The extracellular matrix is a poorly studied, yet important component of dental biofilms. Fluorescence lectin-binding analysis (FLBA) is a powerful tool to characterize glycoconjugates in the biofilm matrix. This study aimed to systematically investigate the ability of 75 fluorescently labeled lectins to visualize and quantify extracellular glycoconjugates in dental biofilms. Lectin binding was screened on pooled supragingival biofilm samples collected from 76 subjects using confocal microscopy. FLBA was then performed with 10 selected lectins on biofilms grown in situ for 48 h in the absence of sucrose. For five lectins that proved particularly suitable, stained biovolumes were quantified and correlated to the bacterial composition of the biofilms. Additionally, combinations of up to three differently labeled lectins were tested. Of the 10 lectins, five bound particularly well in 48-h-biofilms: Aleuria aurantia (AAL), Calystega sepiem (Calsepa), Lycopersicon esculentum (LEA), Morniga-G (MNA-G) and Helix pomatia (HPA). No significant correlation between the binding of specific lectins and bacterial composition was found. Fluorescently labeled lectins enable the visualization of glycoconjugates in the dental biofilm matrix. The characterization and quantification of glycoconjugates in dental biofilms require a combination of several lectins. For 48-h-biofilms grown in absence of sucrose, AAL, Calsepa, HPA, LEA, and MNA-G are recommendable.
NASA Astrophysics Data System (ADS)
Maharana, H. S.; Basu, A.
2018-03-01
Cu-ZrO2 composite coating was synthesized by pulse electrodeposition from an acidic sulfate electrolyte dispersed with nano-sized ZrO2 particles. Effects of different surfactants in different amounts on the codeposition and distribution of ZrO2 particles in the copper matrix, surface-mechanical (hardness and wear) and electrical (conductivity) properties of developed composite coatings have been thoroughly investigated. Sodium dodecyl sulfate (SDS), poly acrylic acid (PAA) and glucose have been added in the electrolyte in different concentrations as anionic, polymeric and nonionic surfactants. Obtained experimental results confirmed that addition of SDS up to 1 g/L improves the amount of codeposited ZrO2 particles in the copper matrix and surface-mechanical properties of the nanocomposite coatings. But, in case of PAA- and glucose-assisted coatings, highest amount of ZrO2 codeposition was observed in 0.5 g/L PAA and 20 g/L glucose-assisted coatings, which in turn affected the mechanical properties. Surface-mechanical properties were found to be affected by coating matrix morphology and crystallographic orientation along with embedded ZrO2 particle content. Electrical conductivity of all the deposits not only depends upon the codeposition of ZrO2 particles in the matrix but also on the microstructure and crystallographic orientation.
Curvature and gravity actions for matrix models: II. The case of general Poisson structures
NASA Astrophysics Data System (ADS)
Blaschke, Daniel N.; Steinacker, Harold
2010-12-01
We study the geometrical meaning of higher order terms in matrix models of Yang-Mills type in the semi-classical limit, generalizing recent results (Blaschke and Steinacker 2010 Class. Quantum Grav. 27 165010 (arXiv:1003.4132)) to the case of four-dimensional spacetime geometries with general Poisson structure. Such terms are expected to arise e.g. upon quantization of the IKKT-type models. We identify terms which depend only on the intrinsic geometry and curvature, including modified versions of the Einstein-Hilbert action as well as terms which depend on the extrinsic curvature. Furthermore, a mechanism is found which implies that the effective metric G on the spacetime brane {\\cal M}\\subset \\mathds{R}^D 'almost' coincides with the induced metric g. Deviations from G = g are suppressed, and characterized by the would-be U(1) gauge field.
Gente, Stéphanie; La Carbona, Stéphanie; Guéguen, Micheline
2007-03-10
Geotrichum candidum is a cheese-ripening agent with the potential to produce sulphur flavour compounds in soft cheeses. We aimed to develop an alternative test for predicting the aromatic (sulphur flavours) potential of G. candidum strains in soft cheese. Twelve strains of G. candidum with different levels of demethiolase activity (determined by a chemical method) in YEL-met (yeast extract, lactate methionine) medium were studied. We investigated cgl (cystathionine gamma lyase) gene expression after culture in three media - YEL-met, casamino acid and curd media - and then carried out sensory analysis on a Camembert cheese matrix. We found no correlation between demethiolase activity in vitro and cgl gene expression. Sensory analysis (detection of sulphur flavours) identified different aromatic profiles linked to cgl expression, but not to demethiolase activity. The RT-PCR technique described here is potentially useful for predicting the tendency of a given strain of G. candidum to develop sulphur flavours in cheese matrix. This is the first demonstration that an in vitro molecular approach could be used as a predictive test for evaluating the potential of G. candidum strains to generate sulphur compounds in situ (Camembert cheese matrix).
Microengineering as a tool to study substratum modulation and cell behaviour.
Keatch, R P; Armoogum, K; Schor, S L; Pridham, M S; Banks, K; Khor, T Y; Matthew, C
2002-01-01
This research is an investigation of the means by which geometrical parameters (e.g. area and shape) and various surface attributes (materials and surface finish) of microengineered structures can modulate cellular response. This is based on biological observations indicating that: (i) the response of tissue cells to injury is determined by the net signal transduction response elicited by soluble regulatory molecules (e.g. cytokines), (ii) common matrix constituents (e.g. collagen) directly affect cell behaviour by the same signal transduction mechanisms mediating cytokine bioactivity, (iii) cellular response to cytokines is modulated by the precise nature of the extracellular matrix to which the target cells are adherent, including its biochemical composition and physical structure.
de Oliveira, Fernanda Ataide; de Abreu, Adriana Trópia; de Oliveira Nascimento, Nathália; Froes-Silva, Roberta Eliane Santos; Antonini, Yasmine; Nalini, Hermínio Arias; de Lena, Jorge Carvalho
2017-01-01
Bees are considered the main pollinators in natural and agricultural environments. Chemical elements from honey and pollen have been used for monitoring the environment, the health of bees and the quality of their products. Nevertheless, there are not many studies on honey and pollen of native Brazilian bees. The goal of this work was to determine important chemical elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Lu and Yb) along with As, Bi, Cd, Pb, Se and In, in honey and pollen of native Brazilian bees, assessing analytical interferences from the matrix. A proposed analytical method was developed for these elements by quadrupole ICP-MS. Matrix effect was verified in honey matrix in the quantification of As, Bi and Dy; and in pollen matrix for Bi, Cd, Ce, Gd, La, Pb and Sc. The quality of the method was considered satisfactory taking into consideration the recovery rate of each element in the spiked solutions: honey matrix (91.6-103.9%) and pollen matrix (94.1-115.6%). The quantification limits of the method ranged between 0.00041 and 10.3μgL -1 for honey and 0.00041-0.095μgL -1 for pollen. The results demonstrate that the method is accurate, precise and suitable. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Parra, M.; Vercoutere, W.; Roden, C.; Banerjee, I.; Krauser, W.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.
2003-01-01
We set out to determine the molecular mechanisms involved in the proliferative response of primary rat osteoblasts to mechanical stimulation using cell culture centrifugation as a model for hypergravity. We hypothesized that this proliferative response is mediated by specific integrin/Extracellular Matrix (ECM) interactions. To investigate this question we developed a cell culture centrifuge and an automated system that performs cell fixation during hypergravity loading. We generated expression vectors for various focal adhesion and cytoskeletal proteins fused to GFP or dsRed and visualized these structures in transfected (or infected) osteoblasts. The actin cytoskeleton was also visualized using rhodamine-phalloidin staining and Focal Adhesion Kinase (FAK) levels were assessed biochemically. We observed that a 24 hour exposure to 50-g stimulated proliferation compared to the 1-g control when cells were plated on fibronectin, collagen Type I , and collagen Type IV, but not on uncoated tissue culture plastic surfaces. This proliferative response was greatest for osteoblasts grown on fibronectin (2-fold increase over 1-g control) and collagen Type I (1.4 fold increase over 1-g control), suggesting that specific matrices and integrins are involved in the signaling pathways required for proliferation. Exposing osteoblasts grown on different matrices to 10-g or 25-g showed that effects on proliferation depended on both matrix type and loading level. We found that osteoblasts exposed to a short pulse of hypergravity during adhesion spread further and had more GFP-FAK containing focal adhesions compared to their 1-g controls. While overall levels of FAK did not change, more FAK was in the active (phosphorylated) form under hypergravity than in the 1-g controls. Cytoskeletal F-actin organization into filaments was also more prominent after brief exposures to hypergravity during the first five minutes of adhesion. These results suggest that specific integrins sense hypergravity and activate distinct matrix-dependent FAK signaling pathways that can enhance proliferation. Our results also imply that brief exposures to hypergravity accelerate cell adhesion and spreading processes via the focal adhesion-signaling axis. These results support the role of the ECM/integrin-signaling axis in osteoblast response to hypergravity loading.
Zhang, Du; Su, Neil Qiang; Yang, Weitao
2017-07-20
The GW self-energy, especially G 0 W 0 based on the particle-hole random phase approximation (phRPA), is widely used to study quasiparticle (QP) energies. Motivated by the desirable features of the particle-particle (pp) RPA compared to the conventional phRPA, we explore the pp counterpart of GW, that is, the T-matrix self-energy, formulated with the eigenvectors and eigenvalues of the ppRPA matrix. We demonstrate the accuracy of the T-matrix method for molecular QP energies, highlighting the importance of the pp channel for calculating QP spectra.
Effect of EPDM-g-MAH on properties of HDPE/OBC blends
NASA Astrophysics Data System (ADS)
Li, M.; Yu, L. Y.; Li, P. F.; Bin, Y. H.; Zhang, H. J.
2017-04-01
In this paper, we take the HDPE as the matrix material, OBC as the toughening material, and EDPM-g-MAH as the compatibility agent, HDPE/OBC/EPDM-g-MAH blends were prepared by high speed mixing, melt extrusion, injection molding and so on. The effects of OBC and EPDM-g-MAH on mechanical properties, crystalline properties, fracture surface structure and rheological properties of HDPE were analyzed by universal tensile tester, melt mass flow rate test machine, DSC and SEM. Experimental results show that: with the addition of EPDM-g-MAH, the notched impact strength of the blends increased first and then decreased; HDPE/OBC blend containing 4% EPDM-g-MAH, OBC dispersion in the matrix is more uniform, particle size is significantly refined, melt flow has some improvement, Compared with HDPE/OBC blend materials, notched impact strength and elongation at break increased by 41.07% and 107.28% respectively, the toughness of the blend was greatly improved.
Barišić, Anita; Pereza, Nina; Hodžić, Alenka; Kapović, Miljenko; Peterlin, Borut; Ostojić, Saša
2017-03-01
The aim of this study was to investigate the potential association of matrix metalloproteinase 7 (MMP7) -181 A/G and MMP12 -82 A/G functional single nucleotide polymorphisms (SNP) with idiopathic recurrent spontaneous abortion (IRSA) in Slovenian reproductive couples. A case-control study was conducted on 149 couples with 3 or more consecutive idiopathic spontaneous pregnancy loses and 149 women and men with at least 2 live births and no history of pregnancy complications. Genotyping of MMP7 -181 A/G and MMP12 -82 A/G SNPs was performed using polymerase chain reaction and restriction fragment length polymorphism methods. There were no statistically significant differences in the distribution of MMP7 -181 A/G and MMP12 -82 A/G genotype, allele, or haplotype frequencies between IRSA patients and controls, as well as patients' primary and secondary IRSA. We also found no association of MMP7 -181 A/G and MMP12 -82 A/G genotypes, alleles, and haplotypes with IRSA. We found no evidence to support the association between IRSA and MMP7 -181 A/G and MMP12 -82 A/G SNPs in Slovenian reproductive couples.
EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide
PMF is a multivariate factor analysis tool that decomposes a matrix of speciated sample data into two matrices: factor contributions (G) and factor profiles (F). These factor profiles need to be interpreted by the user to identify the source types that may be contributing to the ...
Transmission Electron Microscopy of the Matrix Minerals in the Tagish Lake Carbonaceous Chondrite
NASA Technical Reports Server (NTRS)
Mikouchi, T.; Kasama, T.; Zolensky, M. E.; Tachikawa, O.
2001-01-01
We studied the Tagish Lake matrix minerals by TEM. The result shows similarities to CIs (and CRs) and differences from CMs, but its heterogeneity (e.g., carbonate abundance, saponite/serpentine ratio) suggests its complex history. Additional information is contained in the original extended abstract.
Electrical Spin Driving by g -Matrix Modulation in Spin-Orbit Qubits
NASA Astrophysics Data System (ADS)
Crippa, Alessandro; Maurand, Romain; Bourdet, Léo; Kotekar-Patil, Dharmraj; Amisse, Anthony; Jehl, Xavier; Sanquer, Marc; Laviéville, Romain; Bohuslavskyi, Heorhii; Hutin, Louis; Barraud, Sylvain; Vinet, Maud; Niquet, Yann-Michel; De Franceschi, Silvano
2018-03-01
In a semiconductor spin qubit with sizable spin-orbit coupling, coherent spin rotations can be driven by a resonant gate-voltage modulation. Recently, we have exploited this opportunity in the experimental demonstration of a hole spin qubit in a silicon device. Here we investigate the underlying physical mechanisms by measuring the full angular dependence of the Rabi frequency, as well as the gate-voltage dependence and anisotropy of the hole g factor. We show that a g -matrix formalism can simultaneously capture and discriminate the contributions of two mechanisms so far independently discussed in the literature: one associated with the modulation of the g factor, and measurable by Zeeman energy spectroscopy, the other not. Our approach has a general validity and can be applied to the analysis of other types of spin-orbit qubits.
Rajabi, Maryam; Sabzalian, Sedigheh; Barfi, Behruz; Arghavani-Beydokhti, Somayeh; Asghari, Alireza
2015-12-18
A novel, simple, fast, and miniaturized method, termed in-line micro-matrix solid-phase dispersion (in-line MMSPD), coupled with high performance liquid chromatography (HPLC) was developed for the simultaneous extraction and determination of Sudan dyes (i.e. Sudan I-IV, Sudan orange G, Sudan black B, and Sudan red G) with the aid of an experimental design strategy. In this method, a matrix solid-phase dispersion (MSPD) column including a suitable mixture of polar sorbents was inserted in the mobile phase pathway, and while the interfering compounds were retained, the analytes were eluted and entered into the analytical column. In this way, the extraction, elution, and separation of the analytes were performed sequentially. Under the optimal experimental conditions (including the amount of sample, 0.0426g; amount of dispersant phase, 0.0216g of florisil, 0.0227g of silica, 0.0141g of alumina; and blending time, 112s), the limits of detection (LODs), limits of quantification, linear dynamic ranges, and recoveries were obtained to be 0.3-15.3μgkg(-1), 1-50μgkg(-1), 50-28,000μgkg(-1), and 94.5-99.1%, respectively. The results obtained showed that determination of the selected Sudan dyes in food samples using an enough sensitive and a simple analytically validated method like in-line MMSPD may offer a suitable screening method, which could be useful for food analysis and adulteration. Copyright © 2015 Elsevier B.V. All rights reserved.
Dams, Riet; Choo, Robin E.; Lambert, Willy E.; Jones, Hendree; Huestis, Marilyn A.
2007-01-01
Interest in oral fluid as an alternative matrix for monitoring drug use is due to its ease-of-collection and non-invasiveness; however, limited data are available on the disposition of drugs into oral fluid. The objective of this research was to provide data on the presence and concentrations of heroin, cocaine and multiple metabolites in oral fluid after illicit opioid and cocaine use. Thrice weekly oral fluid specimens (N=403) from 16 pregnant opiate-dependent women were obtained with the Salivette® oral fluid collection device. Evidence of heroin (N=62) and cocaine (N=130) use was detected in oral fluid by LC-APCI-MS/MS. 6-Acetylmorphine (6-AM), heroin and morphine were the major opiates detected, with median concentrations of 5.2, 2.3, and 7.5 μg/L, respectively. Cocaine and benzoylecgonine (BE) had median concentrations of 6.4 and 3.4 μg/L. Application of the Substance Abuse Mental Health Services Administration (SAMHSA) recommended cutoffs for morphine and codeine (40 μg/L), 6-AM (4 μg/L) and cocaine and BE (8 μg/L), yielded 28 opiate- and 50 cocaine-positive specimens. Oral fluid is a promising alternative matrix to monitor opiate and cocaine use in drug testing programs. These data guide interpretation of oral fluid test results and evaluate currently proposed SAMHSA oral fluid testing cutoffs. PMID:17008030
Reflective article having a sacrificial cathodic layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabagambe, Benjamin; Buchanan, Michael J.; Scott, Matthew S.
The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate, such as glass, having a multi-layered coating thereon that includes a lead-free sacrificial cathodic layer. The sacrificial cathodic layer includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo-titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formedmore » from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating, that can be electrodeposited over the sacrificial cathodic layer.« less
Pham, T. Anh; Nguyen, Huy -Viet; Rocca, Dario; ...
2013-04-26
Inmore » a recent paper we presented an approach to evaluate quasiparticle energies based on the spectral decomposition of the static dielectric matrix. This method does not require the calculation of unoccupied electronic states or the direct diagonalization of large dielectric matrices, and it avoids the use of plasmon-pole models. The numerical accuracy of the approach is controlled by a single parameter, i.e., the number of eigenvectors used in the spectral decomposition of the dielectric matrix. Here we present a comprehensive validation of the method, encompassing calculations of ionization potentials and electron affinities of various molecules and of band gaps for several crystalline and disordered semiconductors. Lastly, we demonstrate the efficiency of our approach by carrying out G W calculations for systems with several hundred valence electrons.« less
Zhang, Dan; Wang, Xiaolin; Liu, Man; Zhang, Lina; Deng, Ming; Liu, Huichen
2015-01-01
A rapid, sensitive and accurate ICP-MS method using alternate analyte-free matrix for calibration standards preparation and a rapid direct dilution procedure for sample preparation was developed and validated for the quantification of exogenous strontium (Sr) from the drug in human serum. Serum was prepared by direct dilution (1:29, v/v) in an acidic solution consisting of nitric acid (0.1%) and germanium (Ge) added as internal standard (IS), to obtain simple and high-throughput preparation procedure with minimized matrix effect, and good repeatability. ICP-MS analysis was performed using collision cell technology (CCT) mode. Alternate matrix method by using distilled water as an alternate analyte-free matrix for the preparation of calibration standards (CS) was used to avoid the influence of endogenous Sr in serum on the quantification. The method was validated in terms of selectivity, carry-over, matrix effects, lower limit of quantification (LLOQ), linearity, precision and accuracy, and stability. Instrumental linearity was verified in the range of 1.00-500ng/mL, corresponding to a concentration range of 0.0300-15.0μg/mL in 50μL sample of serum matrix and alternate matrix. Intra- and inter-day precision as relative standard deviation (RSD) were less than 8.0% and accuracy as relative error (RE) was within ±3.0%. The method allowed a high sample throughput, and was sensitive and accurate enough for a pilot bioequivalence study in healthy male Chinese subjects following single oral administration of two strontium ranelate formulations containing 2g strontium ranelate. Copyright © 2014 Elsevier GmbH. All rights reserved.
LC-MS/MS signal suppression effects in the analysis of pesticides in complex environmental matrices.
Choi, B K; Hercules, D M; Gusev, A I
2001-02-01
The application of LC separation and mobile phase additives in addressing LC-MS/MS matrix signal suppression effects for the analysis of pesticides in a complex environmental matrix was investigated. It was shown that signal suppression is most significant for analytes eluting early in the LC-MS analysis. Introduction of different buffers (e.g. ammonium formate, ammonium hydroxide, formic acid) into the LC mobile phase was effective in improving signal correlation between the matrix and standard samples. The signal improvement is dependent on buffer concentration as well as LC separation of the matrix components. The application of LC separation alone was not effective in addressing suppression effects when characterizing complex matrix samples. Overloading of the LC column by matrix components was found to significantly contribute to analyte-matrix co-elution and suppression of signal. This signal suppression effect can be efficiently compensated by 2D LC (LC-LC) separation techniques. The effectiveness of buffers and LC separation in improving signal correlation between standard and matrix samples is discussed.
Dirac neutrinos with S4 flavor symmetry in warped extra dimensions
NASA Astrophysics Data System (ADS)
Ding, Gui-Jun; Zhou, Ye-Ling
2013-11-01
We present a warped extra dimension model with the custodial symmetry SU(2×SU(2×U(1×PLR based on the flavor symmetry S4×Z2×Z2', and the neutrinos are taken to be Dirac particles. At leading order, the democratic lepton mixing is derived exactly, and the high-dimensional operators introduce corrections of order λc to all the three lepton mixing angles such that agreement with the experimental data can be achieved. The neutrino mass spectrum is predicted to be of the inverted hierarchy and the second octant of θ23 is preferred. We suggest the modified democratic mixing, which is obtained by permuting the second and the third rows of the democratic mixing matrix, should be a good first order approximation to understanding sizable θ13 and the first octant of θ23. The constraints on the model from the electroweak precision measurements are discussed. Furthermore, we investigate the lepton mixing patterns for all the possible residual symmetries Gν and Gl in the neutrino and charged lepton sectors, respectively. For convenience, we work in the base in which m≡mlml† is diagonal, where ml is the charged lepton mass matrix. It is easy to see that the symmetry transformation matrix Gl, which is determined by the condition Gl†mGl=m, is a diagonal and non-degenerate 3×3 phase matrix. In the case that neutrinos are Majorana particles, the light neutrino mass matrix for DC mixing is of the form mνDC=UDC*diag(m1,m2,m3)UDC†. The symmetry transformations Gi, which satisfy GiTmνDCGi=mνDC, are determined to be G1=+u1u1†-u2u2†-u3u3†, G2=-u1u1†+u2u2†-u3u3† and G3=-u1u1†-u2u2†+u3u3† besides the identity transformation, where ui is the ith column of UDC. They satisfy Gi2=1, GiGj=GjGi=Gk(i≠j≠k). Consequently the symmetry group of the neutrino mass matrix mνDC is the Klein four group K4≅Z2×Z2. Denoting the underlying family symmetry group at high energies as G, then the symmetry transformations Gl and Gi should be the elements of G. In the case of G being a finite group, there should be some integers n and mi such that Gln=(=1 with n⩾3 which results from the requirement that Gl is non-degenerate. We have performed a systematic scan of the possible values of n up to n=200, we are unable to find solutions for the integers mi such that (=1, and hence the symmetry groups in these cases are infinite. Therefore we conclude that there is no discrete flavor symmetry group that contains all of the symmetries needed for the DC mixing, although one cannot rule out the possibility of a discrete group with a very large order. This is the reason why the discrete flavor symmetry origin of the DC mixing has not been proposed so far. Note that the S×S symmetry can immediately lead to the so-called democratic mass matrix in which each matrix element has the same value [53], where S and S are symmetric groups of degree three acting on the left-handed and the right-handed fermion fields respectively. However, the DC mixing cannot be uniquely determined by the democratic mass matrix, and in fact only the third row of DC mixing matrix is fixed.
Analysing generator matrices G of similar state but varying minimum determinants
NASA Astrophysics Data System (ADS)
Harun, H.; Razali, M. F.; Rahman, N. A. Abdul
2016-10-01
Since Tarokh discovered Space-Time Trellis Code (STTC) in 1998, a considerable effort has been done to improve the performance of the original STTC. One way of achieving enhancement is by focusing on the generator matrix G, which represents the encoder structure for STTC. Until now, researchers have only concentrated on STTCs of different states in analyzing the performance of generator matrix G. No effort has been made on different generator matrices G of similar state. The reason being, it is difficult to produce a wide variety of generator matrices G with diverse minimum determinants. In this paper a number of generator matrices G with minimum determinant of four (4), eight (8) and sixteen (16) of the same state (i.e., 4-PSK) have been successfully produced. The performance of different generator matrices G in term of their bit error rate and signal-to-noise ratio for a Rayleigh fading environment are compared and evaluated. It is found from the MATLAB simulation that at low SNR (<8), the BER of generator matrices G with smaller minimum determinant is comparatively lower than those of higher minimum determinant. However, at high SNR (>14) there is no significant difference between the BER of these generator matrices G.
Matrix isolation of fullerene-derived CO 2 at ambient temperature
NASA Astrophysics Data System (ADS)
Taylor, Roger; Pénicaud, Alain; Tower, Nicole J.
1998-10-01
Heating fullerene oxides, e.g. C 120O, C 70O, C 60O and C 60O 2, in a KBr matrix at 225°C under 0.2 mbar vacuum, produces a sharp IR band at 2330 cm -1 due to matrix-isolated CO 2. The band is also obtained by heating a KBr matrix of the insoluble deposits that fullerenes form on standing in air. The matrices are extremely stable and are unchanged even by prolonged heating at 225°C under vacuum. Heating a KBr matrix of the deposit from C 84 produces also a sharp stable band at 2035 cm -1 consistent with matrix-isolated C 3. Similar treatment of C 70F 38O produces matrices containing both CO 2 and CO, the latter being of lower stability.
Axial-Current Matrix Elements in Light Nuclei from Lattice QCD
NASA Astrophysics Data System (ADS)
Savage, M.; Beane, S.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Shanahan, P.; Tiburzi, B.; Wagman, M.; Winter, F.; Nplqcd Collaboration
I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chenock, T.A.Jr.; Heshmet, A.
1990-07-01
The effect of matrix material on the strength, toughness, and fracture behavior of two high temperature polyimide/carbon fiber composites has been studied and compared. The polyimide matrix resins under investigation are PMR-II-20, PMR-15. Each system was reinforced with epoxy sized Celion G30-500 carbon fabric (8HSW, 3K tow). Un-notched and notched specimens were tested under 4-point bend loading in both translaminar and crosslaminar directions.
2015-03-01
General covariance intersection covariance matrix Σ1 Measurement 1’s covariance matrix I(X) Fisher information matrix g Confidence region L Lower... information in this chapter will discuss the motivation and background of the geolocation algorithm with the scope of the applications for this research. The...algorithm is able to produce the best description of an object given the information from a set of measurements. Determining a position requires the use of a
Marzec, K M; Reva, I; Fausto, R; Proniewicz, L M
2011-05-05
In the present work, γ-terpinene (a 1,4-diene derivative) and α-phellandrene (1,3-diene derivative) were isolated in cryogenic argon matrices and their structures, vibrational spectra, and photochemistries were characterized with the aid of FTIR spectroscopy and quantum chemical calculations performed at the DFT/B3LYP/6-311++G(d,p) level of approximation. The molecules bear one conformationally relevant internal rotation axis, corresponding to the rotation of the isopropyl group. The calculations provide evidence of three minima on the potential energy surfaces of the studied molecules, where the isopropyl group assumes the trans, gauche+, and gauche- conformations (T, G+, G-). The signatures of all these conformers were identified in the experimental matrix infrared spectra, with the T forms dominating, in agreement with the theoretical predicted abundances in gas phase at room temperature. In situ UV (λ > 200 nm) irradiation of matrix-isolated α-phellandrene led to its isomerization into an open-ring species. The photoproduct was found to exhibit the ZE configuration of its backbone, which to be formed from the reactant molecule does not require extensive structural rearrangements of both the reagent and matrix. γ-Terpinene was photostable when subjected to irradiation under the same experimental conditions. In addition, the liquid compounds at room temperature were also investigated by FTIR-ATR and FT-Raman spectroscopies.
Generating Nonnormal Multivariate Data Using Copulas: Applications to SEM
ERIC Educational Resources Information Center
Mair, Patrick; Satorra, Albert; Bentler, Peter M.
2012-01-01
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo…
NASA Technical Reports Server (NTRS)
Leventis, Nicholas; Fabrizio, Eve F.; Johnston, Chris; Meador, Maryann
2004-01-01
In the search for materials with better mechanical, thermal, and electrical properties, it is becoming evident that oftentimes dispersing ceramic nanoparticles in plastics improves performance. Along these lines, chemical bonding (both covalent and noncovalent) between a filler and a polymer improves their compatibility, and thus enhances certain properties of the polymeric matrix above and beyond what is accomplished by simple doping with the filler. When a similarly sized dopant and matrix are used, elementary building blocks may also have certain distinct advantages (e.g., in catalysis). In this context, researchers at the NASA Glenn Research Center reasoned that in the extreme case, where the dopant and the matrix (e.g., a filler and a polymer) are not only sized similarly, but their relative amounts are comparable, the relative roles of the dopant and matrix can be reversed. Then, if the "filler," or a certain form thereof, possesses desirable properties of its own, such properties could be magnified by cross-linking with a polymer. We at Glenn have identified silica as such a filler in its lowest-density form, namely the silica aerogel.
Chatterjee, Niladri S; Utture, Sagar; Banerjee, Kaushik; Ahammed Shabeer, T P; Kamble, Narayan; Mathew, Suseela; Ashok Kumar, K
2016-04-01
This paper reports a selective and sensitive method for multiresidue determination of 119 chemical residues including pesticides and polyaromatic hydrocarbons (PAH) in high fatty fish matrix. The novel sample preparation method involved extraction of the target analytes from homogenized fish meat (5 g) in acetonitrile (15 mL, 1% acetic acid) after three-phase partitioning with hexane (2 mL) and the remaining aqueous layer. An aliquot (1.5 mL) of the acetonitrile layer was aspirated and subjected to two-stage dispersive solid phase extraction (dSPE) cleanup and the residues were finally estimated by gas chromatography mass spectrometry with selected reaction monitoring (GC-MS/MS). The co-eluted matrix components were identified on the basis of their accurate mass by GC with quadrupole time of flight MS. Addition of hexane during extraction and optimized dSPE cleanup significantly minimized the matrix effects. Recoveries at 10, 25 and 50 μg/kg were within 60-120% with associated precision, RSD<11%. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex
Markov, N. T.; Ercsey-Ravasz, M. M.; Ribeiro Gomes, A. R.; Lamy, C.; Magrou, L.; Vezoli, J.; Misery, P.; Falchier, A.; Quilodran, R.; Gariel, M. A.; Sallet, J.; Gamanut, R.; Huissoud, C.; Clavagnier, S.; Giroud, P.; Sappey-Marinier, D.; Barone, P.; Dehay, C.; Toroczkai, Z.; Knoblauch, K.; Van Essen, D. C.; Kennedy, H.
2014-01-01
Retrograde tracer injections in 29 of the 91 areas of the macaque cerebral cortex revealed 1,615 interareal pathways, a third of which have not previously been reported. A weight index (extrinsic fraction of labeled neurons [FLNe]) was determined for each area-to-area pathway. Newly found projections were weaker on average compared with the known projections; nevertheless, the 2 sets of pathways had extensively overlapping weight distributions. Repeat injections across individuals revealed modest FLNe variability given the range of FLNe values (standard deviation <1 log unit, range 5 log units). The connectivity profile for each area conformed to a lognormal distribution, where a majority of projections are moderate or weak in strength. In the G29 × 29 interareal subgraph, two-thirds of the connections that can exist do exist. Analysis of the smallest set of areas that collects links from all 91 nodes of the G29 × 91 subgraph (dominating set analysis) confirms the dense (66%) structure of the cortical matrix. The G29 × 29 subgraph suggests an unexpectedly high incidence of unidirectional links. The directed and weighted G29 × 91 connectivity matrix for the macaque will be valuable for comparison with connectivity analyses in other species, including humans. It will also inform future modeling studies that explore the regularities of cortical networks. PMID:23010748
Study of drug release and tablet characteristics of silicone adhesive matrix tablets.
Tolia, Gaurav; Li, S Kevin
2012-11-01
Matrix tablets of a model drug acetaminophen (APAP) were prepared using a highly compressible low glass transition temperature (T(g)) polymer silicone pressure sensitive adhesive (PSA) at various binary mixtures of silicone PSA/APAP ratios. Matrix tablets of a rigid high T(g) matrix forming polymer ethyl cellulose (EC) were the reference for comparison. Drug release study was carried out using USP Apparatus 1 (basket), and the relationship between the release kinetic parameters of APAP and polymer/APAP ratio was determined to estimate the excipient percolation threshold. The critical points attributed to both silicone PSA and EC tablet percolation thresholds were found to be between 2.5% and 5% w/w. For silicone PSA tablets, satisfactory mechanical properties were obtained above the polymer percolation threshold; no cracking or chipping of the tablet was observed above this threshold. Rigid EC APAP tablets showed low tensile strength and high friability. These results suggest that silicone PSA could eliminate issues related to drug compressibility in the formulation of directly compressed oral controlled release tablets of poorly compressible drug powder such as APAP. No routinely used excipients such as binders, granulating agents, glidants, or lubricants were required for making an acceptable tablet matrix of APAP using silicone PSA. Copyright © 2012 Elsevier B.V. All rights reserved.
Tranel, Daniel; Manzel, Kenneth; Anderson, Steven W.
2008-01-01
Patients with prefrontal damage and severe defects in decision making and emotional regulation often have a remarkable absence of intellectual impairment, as measured by conventional IQ tests such as the WAIS/WAIS-R. This enigma might be explained by shortcomings in the tests, which tend to emphasize measures of “crystallized” (e.g., vocabulary, fund of information) more than “fluid” (e.g., novel problem solving) intelligence. The WAIS-III added the Matrix Reasoning subtest to enhance measurement of fluid reasoning. In a set of four studies, we investigated Matrix Reasoning performances in 80 patients with damage to various sectors of the prefrontal cortex, and contrasted these with the performances of 80 demographically matched patients with damage outside the frontal lobes. The results failed to support the hypothesis that prefrontal damage would disproportionately impair fluid intelligence, and every prefrontal subgroup we studied (dorsolateral, ventromedial, dorsolateral + ventromedial) had Matrix Reasoning scores (as well as IQ scores more generally) that were indistinguishable from those of the brain-damaged comparison groups. Our findings do not support a connection between fluid intelligence and the frontal lobes, although a viable alternative interpretation is that the Matrix Reasoning subtest lacks construct validity as a measure of fluid intelligence. PMID:17853146
Ramos-Clamont, Gabriela; del Carmen Candia-Plata, Maria; Zamudio, Roberto Guzman; Vazquez-Moreno, Luz
2006-07-28
A new, highly acetylated agarose matrix (HA-Sepharose) was synthesized and used as a hydrophobic interaction chromatography (HIC) medium to specifically isolate immunoglobulins (Igs) from porcine serum. Recovery of Igs was in a single step and under mild conditions. HA-Sepharose adsorption was studied in terms of salt, gel acetylation time, flow rate, and protein concentration on the loading buffer. At 0.5 M Na2SO4, control with unmodified Sepharose retained a small fraction (0.70 mg/mL of matrix) of serum albumin. On the contrary HA-Sepharose retained primary Igs (IgA, IgG, and 53% of IgM) as revealed by sodium dodecyl sulphate 10% polyacrylamide gel electrophoresis (SDS-PAGE), quantitative radial immunodiffusion and immunodetection. At a flow rate of 1 mL/min, the HA-Sepharose column capacity (3.9 mg/mL of matrix) was similar to the reported capacity for the commercial thiophilic T-gel. However, HA-Sepharose showed higher recovery of IgA and IgM than the T-gel in the same salt conditions, clearly an advantage in terms of immunoglobulin recovery strategies. Acetylation changed the matrix adsorption from albumin to immunoglobulins; thus, the highly acetylated gel rendered recoveries of Igs from unprocessed porcine serum practically free of albumin.
1988-05-01
M 21 M2 I SI M1l[11 II1211 - - - M= II 2+111 I11-211 NONNEGATIVE CONE ORDERING Figure 25. The Matrix Majorant Is a Bound for the Hatrix Block Norm...the with respect to the cone of nonnegative -definite matrices. inequality (1.5) by the r x r nonnegative matrix equation Indeed, the majorant bound...t) eA-) e ea ’ A rT(" 3 ds, t> O , ju E [0 , 1] 0 J(G, )= tr (0,(6)R,) which is monotonically increasing in the nonnegative -definite G , cone with
1990-02-02
National Aero-Space Plane NTC no time counter TSS-2 Tethered Satellite System - 2 VHS variable hard sphere VSL viscous shock-layer Introduction With...required at each time step to evaluate the mass fractions Yi+’ it is shown in [21] that the matrix of this linear system is an M-matrix (see e.g. [42]), and...first rewrite system (4.7)- (4.8) under the following form, separating the time -dependent, convective, diffusive and reactive terms: VW’ + F(W)r + G(,W
Williams, D Bradley G; George, Mosotho J; Meyer, Riaan; Marjanovic, Ljiljana
2011-09-01
Significant improvements to microdrop extractions of triazine pesticides are realized by the intentional incorporation of an air bubble into the solvent microdroplet used in this microextraction technique. The increase is attributed partly to greater droplet surface area resulting from the air bubble being incorporated into the solvent droplet as opposed to it sitting thereon and partly to thin film phenomena. The method is useful at nanogram/liter levels (LOD 0.002-0.012 μg/L, LOQ 0.007-0.039 μg/L), is precise (7-12% at 10 μg/L concentration level), and is validated against certified reference materials containing 0.5 and 5.0 μg/L analyte. It tolerates water and fruit juice as matrixes without serious matrix effects. This new development brings a simple, inexpensive, and efficient preconcentration technique to bear which rivals solid phase microextraction methods.
Kirchhoff index of linear hexagonal chains
NASA Astrophysics Data System (ADS)
Yang, Yujun; Zhang, Heping
The resistance distance rij between vertices i and j of a connected (molecular) graph G is computed as the effective resistance between nodes i and j in the corresponding network constructed from G by replacing each edge of G with a unit resistor. The Kirchhoff index Kf(G) is the sum of resistance distances between all pairs of vertices. In this work, according to the decomposition theorem of Laplacian polynomial, we obtain that the Laplacian spectrum of linear hexagonal chain Ln consists of the Laplacian spectrum of path P2n+1 and eigenvalues of a symmetric tridiagonal matrix of order 2n + 1. By applying the relationship between roots and coefficients of the characteristic polynomial of the above matrix, explicit closed-form formula for Kirchhoff index of Ln is derived in terms of Laplacian spectrum. To our surprise, the Krichhoff index of Ln is approximately to one half of its Wiener index. Finally, we show that holds for all graphs G in a class of graphs including Ln.0
Primitive ultrafine matrix in ordinary chondrites
NASA Technical Reports Server (NTRS)
Rambaldi, E. R.; Fredriksson, B. J.; Fredriksson, K.
1981-01-01
Ultrafine matrix material has been concentrated by sieving and filtering disaggregated samples of six ordinary chondrites of different classes. This component(s), 'Holy Smoke' (HS), is enriched in both volatile, e.g. Na, K, Zn, Sb, and Pb, as well as refractory elements, e.g. W and REE; however, the element ratios vary greatly among the different chondrites. SEM studies show that HS contains fragile crystals, differing in composition, and apparently in gross disequilibrium not only among themselves but also with the major mineral phases and consequently thermodynamic equilibration did not occur. Thus HS must have originated from impacting bodies and/or was inherent in the 'primitive' regolith. Subsequent impact brecciation and reheating appears to have altered, to varying degrees, the original composition of this ultrafine matrix material. Recent 'cosmic dust' studies may indicate that HS still exists in the solar system. Survival of such delicate material must be considered in all theories for the origin of chondrites.
Laser diagnostics of native cervix dabs with human papilloma virus in high carcinogenic risk
NASA Astrophysics Data System (ADS)
Peresunko, O. P.; Karpenko, Ju. G.; Burkovets, D. N.; Ivashko, P. V.; Nikorych, A. V.; Yermolenko, S. B.; Gruia, Ion; Gruia, M. J.
2015-11-01
The results of experimental studies of coordinate distributions of Mueller matrix elements of the following types of cervical scraping tissue are presented: rate- low-grade - highly differentiated dysplasia (CIN1-CIN3) - adenocarcinoma of high, medium and low levels of differentiation (G1-G3). The rationale for the choice of statistical points 1-4 orders polarized coherent radiation field, transformed as a result of interaction with the oncologic modified biological layers "epithelium-stroma" as a quantitative criterion of polarimetric optical differentiation state of human biological tissues are shown here. The analysis of the obtained Mueller matrix elements and statistical correlation methods, the systematized by types studied tissues is accomplished. The results of research images of Mueller matrix elements m34 for this type of pathology as low-grade dysplasia (CIN2), the results of its statistical and correlation analysis are presented.
Tagliaferri, Vincenzo; Ucciardello, Nadia
2017-01-01
Nanocomposite coatings with highly-aligned graphite nanoplatelets in a copper matrix were successfully fabricated by electrodeposition. For the first time, the disposition and thermal conductivity of the nanofiller has been evaluated. The degree of alignment and inclination of the filling materials has been quantitatively evaluated by polarized micro-Raman spectroscopy. The room temperature values of the thermal conductivity were extracted for the graphite nanoplatelets by the dependence of the Raman G-peak frequency on the laser power excitation. Temperature dependency of the G-peak shift has been also measured. Most remarkable is the global thermal conductivity of 640 ± 20 W·m−1·K−1 (+57% of copper) obtained for the composite coating by the flash method. Our experimental results are accounted for by an effective medium approximation (EMA) model that considers the influence of filler geometry, orientation, and thermal conductivity inside a copper matrix. PMID:29068424
Optimal experimental designs for fMRI when the model matrix is uncertain.
Kao, Ming-Hung; Zhou, Lin
2017-07-15
This study concerns optimal designs for functional magnetic resonance imaging (fMRI) experiments when the model matrix of the statistical model depends on both the selected stimulus sequence (fMRI design), and the subject's uncertain feedback (e.g. answer) to each mental stimulus (e.g. question) presented to her/him. While practically important, this design issue is challenging. This mainly is because that the information matrix cannot be fully determined at the design stage, making it difficult to evaluate the quality of the selected designs. To tackle this challenging issue, we propose an easy-to-use optimality criterion for evaluating the quality of designs, and an efficient approach for obtaining designs optimizing this criterion. Compared with a previously proposed method, our approach requires a much less computing time to achieve designs with high statistical efficiencies. Copyright © 2017 Elsevier Inc. All rights reserved.
Type-III and IV interacting Weyl points
NASA Astrophysics Data System (ADS)
Nissinen, J.; Volovik, G. E.
2017-04-01
3+1-dimensional Weyl fermions in interacting systems are described by effective quasi-relativistic Green's functions parametrized by a 16-element matrix e α μ in an expansion around the Weyl point. The matrix e α μ can be naturally identified as an effective tetrad field for the fermions. The correspondence between the tetrad field and an effective quasi-relativistic metric gμν governing the Weyl fermions allows for the possibility to simulate different classes of metric fields emerging in general relativity in interacting Weyl semimetals. According to this correspondence, there can be four types of Weyl fermions, depending on the signs of the components g 00 and g 00 of the effective metric. In addition to the conventional type-I fermions with a tilted Weyl cone and type-II fermions with an overtilted Weyl cone for g 00 > 0 and, respectively, g 00 > 0 or g 00 < 0, we find additional "type-III" and "type-IV" Weyl fermions with instabilities (complex frequencies) for g 00 < 0 and g 00 > 0 or g 00 < 0, respectively. While the type-I and type-II Weyl points allow us to simulate the black hole event horizon at an interface where g 00 changes sign, the type-III Weyl point leads to effective spacetimes with closed timelike curves.
MacEwan, Matthew R; MacEwan, Sarah; Kovacs, Tamas R; Batts, Joel
2017-10-02
Wound matrix materials are used to improve the regeneration of dermal and epidermal layers in both acute and chronic wounds. Contemporary wound matrices are primarily composed of biologic materials such as processed xenogeneic and allogeneic tissues. Unfortunately, existing biologic wound matrices possess multiple limitations including poor longevity, durability, strength, and enzymatic resistance required for persistent support for new tissue formation. A fully-synthetic, resorbable electrospun material (Restrata Wound Matrix, Acera, St.Louis, Missouri ) that exhibits structural similarities to the native extracellular matrix offers a new approach to the treatment of acute and chronic wounds. This novel matrix is the first product to combine the advantages of synthetic construction (e.g. resistance to enzymatic degradation, excellent biocompatibility, strength/durability and controlled degradation) with the positive attributes of biologic materials (e.g. biomimetic architecture similar to human extracellular matrix (ECM), fibrous architecture optimized to support cellular migration and proliferation, engineered porosity to encourage tissue ingrowth and vascularization). These features allow RWM to achieve rapid and complete healing of full-thickness wounds that, in preclinical studies, is comparable to Integra Bilayer Wound Matrix (Integra LifeSciences, Plainsboro, New Jersey), a gold standard biologic material with diverse clinical indications in the wound care. Together, this review suggests that the RWM offers a unique fully-synthetic alternative to existing biologic matrices that is effective, widely available, easy to store, simple to apply and low cost.
Release from or through a wax matrix system. I. Basic release properties of the wax matrix system.
Yonezawa, Y; Ishida, S; Sunada, H
2001-11-01
Release properties from a wax matrix tablet was examined. To obtain basic release properties, the wax matrix tablet was prepared from a physical mixture of drug and wax powder (hydrogenated caster oil) at a fixed mixing ratio. Properties of release from the single flat-faced surface or curved side surface of the wax matrix tablet were examined. The applicability of the square-root time law and of Higuchi equations was confirmed. The release rate constant obtained as g/min(1/2) changed with the release direction. However, the release rate constant obtained as g/cm2 x min(1/2) was almost the same. Hence it was suggested that the release property was almost the same and the wax matrix structure was uniform independent of release surface or direction at a fixed mixing ratio. However, these equations could not explain the entire release process. The applicability of a semilogarithmic equation was not as good compared with the square-root time law or Higuchi equation. However, it was revealed that the semilogarithmic equation was available to simulate the entire release process, even though the fit was somewhat poor. Hence it was suggested that the semilogarithmic equation was sufficient to describe the release process. The release rate constant was varied with release direction. However, these release rate constants were expressed by a function of the effective surface area and initial amount, independent of the release direction.
Venkatraman, Navin; Anagnostou, Nicholas; Bliss, Carly; Bowyer, Georgina; Wright, Danny; Lövgren-Bengtsson, Karin; Roberts, Rachel; Poulton, Ian; Lawrie, Alison; Ewer, Katie; V S Hill, Adrian
2017-10-27
The use of viral vectors in heterologous prime-boost regimens to induce potent T cell responses in addition to humoral immunity is a promising vaccination strategy in the fight against malaria. We conducted an open-label, first-in-human, controlled Phase I study evaluating the safety and immunogenicity of Matrix-M adjuvanted vaccination with a chimpanzee adenovirus serotype 63 (ChAd63) prime followed by a modified vaccinia Ankara (MVA) boost eight weeks later, both encoding the malaria ME-TRAP antigenic sequence (a multiple epitope string fused to thrombospondin-related adhesion protein). Twenty-two healthy adults were vaccinated intramuscularly with either ChAd63-MVA ME-TRAP alone (n=6) or adjuvanted with 25μg (n=8) or 50μg (n=8) Matrix-M. Vaccinations appeared to be safe and generally well tolerated, with the majority of local and systemic adverse events being mild in nature. The addition of Matrix-M to the vaccine did not increase local reactogenicity; however, systemic adverse events were reported more frequently by volunteers who received adjuvanted vaccine in comparison to the control group. T cell ELISpot responses peaked at 7-days post boost vaccination with MVA ME-TRAP in all three groups. TRAP-specific IgG responses were highest at 28-days post boost with MVA ME-TRAP in all three groups. There were no differences in cellular and humoral immunogenicity at any of the time points between the control group and the adjuvanted groups. We demonstrate that Matrix-M can be safely used in combination with ChAd63-MVA ME-TRAP heterologous prime-boost immunization without any reduction in cellular or humoral immunogenicity. Clinical Trials Registration NCT01669512. Copyright © 2017 Elsevier Ltd. All rights reserved.
Acoustooptic linear algebra processors - Architectures, algorithms, and applications
NASA Technical Reports Server (NTRS)
Casasent, D.
1984-01-01
Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.
NASA Technical Reports Server (NTRS)
Mach, D. M.; Koshak, W. J.
2007-01-01
A matrix calibration procedure has been developed that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. The calibration method can be generalized to any reasonable combination of electric field measurements and aircraft. A calibration matrix is determined for each aircraft that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or deemphasized [e.g., due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate the calibration technique, data are presented from several aircraft programs (ER-2, DC-8, Altus, and Citation).
Observability Analysis of a MEMS INS/GPS Integration System with Gyroscope G-Sensitivity Errors
Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing
2014-01-01
Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously. PMID:25171122
Observability analysis of a MEMS INS/GPS integration system with gyroscope G-sensitivity errors.
Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing
2014-08-28
Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously.
NASA Technical Reports Server (NTRS)
Bielawa, R. L.
1984-01-01
The mathematical development for the expanded capabilities of the G400 rotor aeroelastic analysis was examined. The G400PA expanded analysis simulates the dynamics of all conventional rotors, blade pendulum vibration absorbers, and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. The methodology for modeling the unsteady stalled airloads of two dimensional airfoils is discussed. Formulations for calculating the rotor impedance matrix appropriate to the higher harmonic blade excitations are outlined. This impedance matrix, and the associated vibratory hub loads, are the rotor dynamic characteristic elements for use in the simplified coupled rotor/fuselage vibration analysis (SIMVIB). Updates to the development of the original G400 theory, program documentation, user instructions and information are presented.
Experimental evidence of Migfilin as a new therapeutic target of hepatocellular carcinoma metastasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gkretsi, Vasiliki, E-mail: vasso.gkretsi@gmail.com; Bogdanos, Dimitrios P.; Department of Rheumatology, School of Medicine, University of Thessaly, University Hospital of Larissa, 41110 Larissa
Migfilin is a novel cell–matrix adhesion protein known to interact with Vasodilator Stimulated Phosphoprotein (VASP) and be localized both at cell–matrix and cell–cell adhesions. To date there is nothing known about its role in hepatocellular carcinoma (HCC). As matrix is important in metastasis, we aimed to investigate the Migfilin's role in HCC metastasis using two human HCC cell lines that differ in their metastatic potential; non-invasive Alexander cells and the highly invasive HepG2 cells. We silenced Migfilin by siRNA and studied its effect on signaling and metastasis-related cellular properties. We show that Migfilin's expression is elevated in HepG2 cells andmore » its silencing leads to upregulation of actin reorganization-related proteins, namely phosphor-VASP (Ser157 and Ser239), Fascin-1 and Rho-kinase-1, promoting actin polymerization and inhibiting cell invasion. Phosphor-Akt (Ser473) is decreased contributing to the upregulation of free and phosphor-β-catenin (Ser33/37Thr41) and inducing proliferation. Migfilin elimination upregulates Extracellular Signal–regulated kinase, which increases cell adhesion in HepG2 and reduces invasiveness. This is the first study to reveal that Migfilin inhibition can halt HCC metastasis in vitro, providing the molecular mechanism involved and presenting Migfilin as potential therapeutic target against HCC metastasis. - Highlights: • Migfilin is a cell–matrix and cell–cell adhesion protein known to interact with VASP. • Nothing is known about Migfilin's role in hepatocellular carcinoma (HCC). • We eliminated Migfilin from 2 HCC cell lines and studied in vitro metastasis. • Its silencing inhibits cell invasion and promotes adhesion in HepG2 invasive cells. • We provide molecular mechanism by which Migfilin elimination halts HCC metastasis.« less
NASA Astrophysics Data System (ADS)
Čermák, Ivo; Förderer, Markus; Čermáková, Iva; Kalhofer, Stefan; Stopka-Ebeler, Helmut; Monninger, Gerold; Krätschmer, Wolfgang
1998-06-01
We have studied small carbon molecules using a matrix-isolation technique. Our experimental setup is described in detail. The carbon clusters were produced by evaporating graphite and trapping the carbon-vapor molecules in solid argon, where molecular growth could be induced by controlled matrix annealing. To identify the produced molecules, absorption spectroscopy in the ultraviolet (UV)-visible and infrared (IR) spectral ranges was applied. Additional characterization of the excited and ground states of the molecules was obtained from emission and excitation spectra. The molecules were excited by a pulsed dye laser system and the emission spectra were recorded with a high-sensitivity photodiode-array spectrometer. We present our measurements on linear C3. The à 1Πu excited state of linear C3 was populated by the electronic transition à 1Πu←X˜ 1Σg+, and the corresponding excitation spectra of the C3 fluorescence (à 1Πu→X˜ 1Σg+) and phosphorescence (ã 3Πu→X˜ 1Σg+) were studied. Comparison of excitation and absorption spectra yielded information on site effects due to the matrix environment. Emission bands in the fluorescence and phosphorescence spectra up to vibrational energies of 8500 cm-1 could be observed. The radiation lifetime of the à 1Πu excited state of C3 in solid argon was found to be shorter than 10 ns. The phosphorescence transition ã 3Πu→X˜ 1Σg+ decays in about 10 ms and its rise indicates fast vibrational relaxation within the triplet system. Our data support a linear ground state geometry for C3 also in solid argon.
A Transfer Learning Approach for Applying Matrix Factorization to Small ITS Datasets
ERIC Educational Resources Information Center
Voß, Lydia; Schatten, Carlotta; Mazziotti, Claudia; Schmidt-Thieme, Lars
2015-01-01
Machine Learning methods for Performance Prediction in Intelligent Tutoring Systems (ITS) have proven their efficacy; specific methods, e.g. Matrix Factorization (MF), however suffer from the lack of available information about new tasks or new students. In this paper we show how this problem could be solved by applying Transfer Learning (TL),…
Dispersions of Carbon nanotubes in Polymer Matrices
NASA Technical Reports Server (NTRS)
Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)
2010-01-01
Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.
Martin, Guillaume; Chapuis, Elodie; Goudet, Jérôme
2008-01-01
Neutrality tests in quantitative genetics provide a statistical framework for the detection of selection on polygenic traits in wild populations. However, the existing method based on comparisons of divergence at neutral markers and quantitative traits (Qst–Fst) suffers from several limitations that hinder a clear interpretation of the results with typical empirical designs. In this article, we propose a multivariate extension of this neutrality test based on empirical estimates of the among-populations (D) and within-populations (G) covariance matrices by MANOVA. A simple pattern is expected under neutrality: D = 2Fst/(1 − Fst)G, so that neutrality implies both proportionality of the two matrices and a specific value of the proportionality coefficient. This pattern is tested using Flury's framework for matrix comparison [common principal-component (CPC) analysis], a well-known tool in G matrix evolution studies. We show the importance of using a Bartlett adjustment of the test for the small sample sizes typically found in empirical studies. We propose a dual test: (i) that the proportionality coefficient is not different from its neutral expectation [2Fst/(1 − Fst)] and (ii) that the MANOVA estimates of mean square matrices between and among populations are proportional. These two tests combined provide a more stringent test for neutrality than the classic Qst–Fst comparison and avoid several statistical problems. Extensive simulations of realistic empirical designs suggest that these tests correctly detect the expected pattern under neutrality and have enough power to efficiently detect mild to strong selection (homogeneous, heterogeneous, or mixed) when it is occurring on a set of traits. This method also provides a rigorous and quantitative framework for disentangling the effects of different selection regimes and of drift on the evolution of the G matrix. We discuss practical requirements for the proper application of our test in empirical studies and potential extensions. PMID:18245845
Mailloux, Ryan J; Harper, Mary-Ellen
2010-07-01
Reduced nicotinamide adenine dinucleotide (NADPH) is a functionally important metabolite required to support numerous cellular processes. However, despite the identification of numerous NADPH-producing enzymes, the mechanisms underlying how the organellar pools of NADPH are maintained remain elusive. Here, we have identified glucose-6-phosphate dehydrogenase (G6PDH) as an important source of NADPH in mitochondria. Activity analysis, submitochondrial fractionation, fluorescence microscopy, and protease sensitivity assays revealed that G6PDH is localized to the mitochondrial matrix. 6-ANAM, a specific G6PDH inhibitor, depleted mitochondrial NADPH pools and increased oxidative stress revealing the importance of G6PDH in NADPH maintenance. We also show that glucose availability and differences in metabolic state modulate the enzymatic sources of NADPH in mitochondria. Indeed, cells cultured in high glucose (HG) not only adopted a glycolytic phenotype but also relied heavily on matrix-associated G6PDH as a source of NADPH. In contrast, cells exposed to low-glucose (LG) concentrations, which displayed increased oxygen consumption, mitochondrial metabolic efficiency, and decreased glycolysis, relied predominantly on isocitrate dehydrogenase (ICDH) as the principal NADPH-producing enzyme in the mitochondria. Culturing glycolytic cells in LG for 48 h decreased G6PDH and increased ICDH protein levels in the mitochondria, further pointing to the regulatory role of glucose. 2-Deoxyglucose treatment also prevented the increase of mitochondrial G6PDH in response to HG. The role of glucose in regulating enzymatic sources of mitochondrial NADPH pool maintenance was confirmed using human myotubes from obese adults with a history of type 2 diabetes mellitus (post-T2DM). Myotubes from post-T2DM participants failed to increase mitochondrial G6PDH in response to HG in contrast to mitochondria in myotubes from control participants (non-T2DM). Hence, we not only identified a matrix-associated G6PDH but also provide evidence that metabolic state/glucose availability modulate enzymatic sources of NADPH.
NASA Astrophysics Data System (ADS)
Hilbig, Reinhard; Hendrik Anken, Ralf; Weigele, Jochen
The results of the Foton-M3 mission (OmegaHab) give evidence that the otoliths of the fish form OmegaHab were larger as compared to the ground control. Additionally the shape (raphe) and morphology especially the mode of crystallization of the otoliths were affected during growth in weightlessness. The reason for these changes is assumed to originate from changes in the composition of the otolith matrix and Ca-binding proteins (OMP). The OMPs play an important role in controlling the crystallization process and additionally the morphology of crystals, determining the crystallpolymorph and the strength of the crystals. The matrix of otoliths is a complex functional structure containing several calcium-binding proteins, structural proteins and protease inhibitors. Furthermore it is composed of otolith matrix protein-1, Otolin, Otoconin, SPARC and Neuroserpin, which is a specific expression in the otolth matrix for chichlid fish. During embryonic development of the fish inner ear, these proteins show a spacial and temporal expression pattern. The formation of the inner ear -including otoliths and sensory cells -starting from the otocyst-anlage -can be subdivided in several major developmental stages e.g. the forming of the otic cavity (stage 7/8), the tetha cell or seeding stage (stage 8, 9), the development of the semicircular channels (stage 12), the transition to further daily growth (post stage15) and the development of the third otolith, asteriscus (stage 23). These developmental phases contain different constitutions or involvements of matrix proteins. We investigated the matrixprotein composition of the chichlid fish Oreochromis mossambicus and found that the otolith matrix differentiate between other fishes. In this case some matrix proteins seem to be uniform in fishes, other known matrix proteins are lacking and we have also references to new candidates for matrix proteins chichlids. In this case we investigated the expression of the matrix proteins otolith matrix protein 1, Otolin, Otoconin, SPARC and Neuroserpin during the genesis of Oeochromis mossambicus with its particular regard to the certain developmental stages of the inner ear. The profiles of these compounds were followed in experiments using hypergravity and simulated gravity and thus should be the basis for new microgravity experiments
Zhang, Zhe; Erbe, Malena; He, Jinlong; Ober, Ulrike; Gao, Ning; Zhang, Hao; Simianer, Henner; Li, Jiaqi
2015-02-09
Obtaining accurate predictions of unobserved genetic or phenotypic values for complex traits in animal, plant, and human populations is possible through whole-genome prediction (WGP), a combined analysis of genotypic and phenotypic data. Because the underlying genetic architecture of the trait of interest is an important factor affecting model selection, we propose a new strategy, termed BLUP|GA (BLUP-given genetic architecture), which can use genetic architecture information within the dataset at hand rather than from public sources. This is achieved by using a trait-specific covariance matrix ( T: ), which is a weighted sum of a genetic architecture part ( S: matrix) and the realized relationship matrix ( G: ). The algorithm of BLUP|GA (BLUP-given genetic architecture) is provided and illustrated with real and simulated datasets. Predictive ability of BLUP|GA was validated with three model traits in a dairy cattle dataset and 11 traits in three public datasets with a variety of genetic architectures and compared with GBLUP and other approaches. Results show that BLUP|GA outperformed GBLUP in 20 of 21 scenarios in the dairy cattle dataset and outperformed GBLUP, BayesA, and BayesB in 12 of 13 traits in the analyzed public datasets. Further analyses showed that the difference of accuracies for BLUP|GA and GBLUP significantly correlate with the distance between the T: and G: matrices. The new strategy applied in BLUP|GA is a favorable and flexible alternative to the standard GBLUP model, allowing to account for the genetic architecture of the quantitative trait under consideration when necessary. This feature is mainly due to the increased similarity between the trait-specific relationship matrix ( T: matrix) and the genetic relationship matrix at unobserved causal loci. Applying BLUP|GA in WGP would ease the burden of model selection. Copyright © 2015 Zhang et al.
Axial-Current Matrix Elements in Light Nuclei from Lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Martin; Shanahan, Phiala E.; Tiburzi, Brian C.
2016-12-01
I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections andmore » $$\\beta\\beta$$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $$g_A$$ that is required in nuclear many-body calculations.« less
NASA Astrophysics Data System (ADS)
Protasevich, Alexander E.; Nikitin, Andrei V.
2018-01-01
In this work, we propose an algorithm for calculating the matrix elements of the kinetic energy operator for tetrahedral molecules. This algorithm uses the dependent six-angle coordinates (6A) and takes into account the full symmetry of molecules. Unlike A.V. Nikitin, M. Rey, and Vl. G. Tyuterev who operate with the kinetic energy operator only in Radau orthogonal coordinates, we consider a general case. The matrix elements are shown to be a sum of products of one-dimensional integrals.
The S-Matrix and Acoustic Signal Structure in Simple and Compound Waveguides.
1982-12-01
RD-A125 583 THE S-MATRIX AND ACOUSTIC SIGNAL STRUCTURE IN SIMPLE- L/1 AND COMPOUND WAVEGUIDES(U) UTAH UNIV SALT LAKE CITY DEPT OF MATHEMATICS C H...WILCOX DEC 82 TSR-45 UNCLASSIFIED N6@8i4-76-C-8276 F/G 12/1 NL IEINEIIIIIIEIhllhlllllllIflllllflflflflflEN L-- U5-12 III,2,0 III.J --IL.,5 MICROCOP ...RESLUIO TETCHRNATIONA BUREA OF 20NADS16 THE S-MATRIX AND ACOUSTIC SIGNAL STRUCTURE IN SIMPLE AND COMPOUND WAVEGUIDES C. H. Wilcox Technical Simmary Report
A practical guide to density matrix embedding theory in quantum chemistry
Wouters, Sebastian; Jimenez-Hoyos, Carlos A.; Sun, Qiming; ...
2016-05-09
Density matrix embedding theory (DMET) (Knizia, G.; Chan, G. K.-L. Phys. Rev. Lett. 2012, 109, 186404) provides a theoretical framework to treat finite fragments in the presence of a surrounding molecular or bulk environment, even when there is significant correlation or entanglement between the two. In this work, we give a practically oriented and explicit description of the numerical and theoretical formulation of DMET. Here, we also describe in detail how to perform self-consistent DMET optimizations. We explore different embedding strategies with and without a self-consistency condition in hydrogen rings, beryllium rings, and a sample SN2 reaction.
The g Factors of Ground State of Ruby and Their Pressure-Induced Shifts
NASA Astrophysics Data System (ADS)
Ma, Dongping; Zhang, Hongmei; Chen, Jurong; Liu, Yanyun
1998-12-01
By using the theory of pressure-induced shifts and the eigenfunctions at normal and various pressures obtained from the diagonalization of the complete d3 energy matrix adopting C3v symmetry, g factors of the ground state of ruby and their pressure-induced shifts have been calculated. The results are in very good agreement with the experimental data. For the precise calculation of properties of the ground skate, it is necessary to take into account the effects of all the excited states by the diagonalization of the complete energy matrix. The project (Grant No. 19744001) supported by National Natural Science Foundation of China
Golestani, Reza; Sadeghi, Mehran M.
2014-01-01
Summary Imaging cellular and molecular processes associated with aneurysm expansion, dissection, and rupture can potentially transform the management of patients with thoracic and abdominal aortic aneurysm (TAA and AAA). Here, we review recent advances in molecular imaging of aortic aneurysm, focusing on imaging modalities with the greatest potential for clinical translation and application, PET, SPECT and MRI. Inflammation (e.g., with 18F-FDG, nanoparticles) and matrix remodeling (e.g., with matrix metalloproteinase-targeted tracers) are highlighted as promising targets for molecular imaging of aneurysm. Potential alternative or complementary approaches to molecular imaging for aneurysm risk stratification are briefly discussed. PMID:24381115
2010-01-01
as a biologic scaffold material. Biomaterials 28, 3587, 2007. 24. Conconi, M.T., De Coppi, P., Bellini, S., Zara , G., Sabatti, M., Marzaro, M., Zanon...full-thickness ab- dominal wall defects. Tissue Eng 12, 1929, 2006. 26. Gamba, P.G., Conconi, M.T., Lo Piccolo, R., Zara , G., Spi- nazzi, R., and
Choi, Du Hyung; Shin, Sangmun; Khoa Viet Truong, Nguyen; Jeong, Seong Hoon
2012-09-01
A robust experimental design method was developed with the well-established response surface methodology and time series modeling to facilitate the formulation development process with magnesium stearate incorporated into hydrophilic matrix tablets. Two directional analyses and a time-oriented model were utilized to optimize the experimental responses. Evaluations of tablet gelation and drug release were conducted with two factors x₁ and x₂: one was a formulation factor (the amount of magnesium stearate) and the other was a processing factor (mixing time), respectively. Moreover, different batch sizes (100 and 500 tablet batches) were also evaluated to investigate an effect of batch size. The selected input control factors were arranged in a mixture simplex lattice design with 13 experimental runs. The obtained optimal settings of magnesium stearate for gelation were 0.46 g, 2.76 min (mixing time) for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The optimal settings for drug release were 0.33 g, 7.99 min for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The exact ratio and mixing time of magnesium stearate could be formulated according to the resulting hydrophilic matrix tablet properties. The newly designed experimental method provided very useful information for characterizing significant factors and hence to obtain optimum formulations allowing for a systematic and reliable experimental design method.
Mathematical Modeling of Cancer Invasion: The Role of Membrane-Bound Matrix Metalloproteinases
Deakin, Niall E.; Chaplain, Mark A. J.
2013-01-01
One of the hallmarks of cancer growth and metastatic spread is the process of local invasion of the surrounding tissue. Cancer cells achieve protease-dependent invasion by the secretion of enzymes involved in proteolysis. These overly expressed proteolytic enzymes then proceed to degrade the host tissue allowing the cancer cells to disseminate throughout the microenvironment by active migration and interaction with components of the extracellular matrix (ECM) such as collagen. In this paper we develop a mathematical model of cancer invasion which consider the role of matrix metalloproteinases (MMPs). Specifically our model will focus on two distinct types of MMP, i.e., soluble, diffusible MMPs (e.g., MMP-2) and membrane-bound MMPs (e.g., MT1-MMP), and the roles each of these plays in cancer invasion. The implications of MMP-2 activation by MMP-14 and the tissue inhibitor of metalloproteinases-2 are considered alongside the effect the architecture of the matrix may have when applied to a model of cancer invasion. Elements of the ECM architecture investigated include pore size of the matrix, since in some highly dense collagen structures such as breast tissue, the cancer cells are unable to physically fit through a porous region, and the crosslinking of collagen fibers. In this scenario, cancer cells rely on membrane-bound MMPs to forge a path through which degradation by other MMPs and movement of cancer cells becomes possible. PMID:23565505
Analysis of delamination in cross-ply laminates initiating from impact induced matrix cracking
NASA Technical Reports Server (NTRS)
Salpekar, S. A.
1993-01-01
Two-dimensional finite element analyses of (02/90(8)/02) glass/epoxy and graphite/epoxy composite laminates were performed to investigate some of the characteristics of damage development due to an impact load. A cross section through the thickness of the laminate with fixed ends, and carrying a transverse load in the center, was analyzed. Inclined matrix cracks, such as those produced by a low-velocity impact, were modeled in the 90 deg ply group. The introduction of the matrix cracks caused large interlaminar tensile and shear stresses in the vicinity of both crack tips in the 0/90 and 90/0 interfaces, indicating that matrix cracking may give rise to delamination. The ratio of Mode I to total strain energy release rate, G(I)/G(total), at the beginning of delamination, calculated at the two (top and bottom) matrix crack tips was 60 and 28 percent, respectively, in the glass/epoxy laminate. The corresponding ratio was 97 and 77 percent in the graphite/epoxy laminate. Thus, a significant Mode I component of strain energy release rate may be present at the delamination initiation due to an impact load. The value of strain energy release rate at either crack tip increased due to an increase in the delamination length at the other crack tip and may give rise to an unstable delamination growth under constant load.
NASA Astrophysics Data System (ADS)
Schantz, Michele M.; Duewer, David L.; Parris, Reenie M.; May, Willie E.; Archer, Marcellé; Mussell, Chris; Carter, David; Konopelko, Leonid A.; Kustikov, Yury A.; Krylov, Anatoli I.; Fatina, Olga V.
2005-01-01
Ethanol is important both forensically ('drunk driving' or driving while under the influence, 'DWI', regulations) and commercially (alcoholic beverages). Blood- and breath-alcohol testing can be imposed on individuals operating private vehicles such as cars, boats, or snowmobiles, or operators of commercial vehicles like trucks, planes, and ships. The various levels of blood alcohol that determine whether these operators are considered legally impaired vary depending on the circumstances and locality. Accurate calibration and validation of instrumentation is critical in areas of forensic testing where quantitative analysis directly affects the outcome of criminal prosecutions, as is the case with the determination of ethanol in blood and breath. Additionally, the accurate assessment of the alcoholic content of beverages is a commercially important commodity. In 2002, the CCQM conducted a Key Comparison (CCQM-K27) for the determination of ethanol in aqueous matrix with nine participants. A report on this project has been approved by the CCQM and can be found at the BIPM website and in this Technical Supplement. CCQM-K27 comprised three samples, one at low mass fraction of ethanol in water (nominal concentration of 0.8 mg/g), one at high level (nominal concentration of 120 mg/g), and one wine matrix (nominal concentration of 81 mg/g). Overall agreement among eight participants using gas chromatography with flame ionization detection (GC-FID), titrimetry, isotope dilution gas chromatography/mass spectrometry (GC-IDMS), and gas chromatography-combustion-isotope ratio mass spectrometry (ID-GC-C-IRMS) was good. The ninth participant used a headspace GC-FID method that had not been validated in an earlier pilot study (CCQM-P35). A follow-on Key Comparison, CCQM-K27-Subsequent, was initiated in 2003 to accommodate laboratories that had not been ready to benchmark their methods in the original CCQM-K27 study or that wished to benchmark a different method. Four levels of ethanol in water were used in the subsequent study (nominal concentrations of 0.2 mg/g, 1 mg/g, 3 mg/g, and 60 mg/g). The three participants in the CCQM-K27-Subsequent Key Comparison demonstrated their ability to measure ethanol in aqueous matrix in the concentration range of 0.2 mg/g to 60 mg/g. Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the Mutual Recognition Arrangement (MRA).
Conformational isomerism of pyridoxal. Infrared matrix isolation and theoretical studies.
Kwiatek, Anna; Mielke, Zofia
2015-01-25
A combined matrix isolation FTIR and theoretical DFT/B3LYP/6-311++G(2p,2d) study of pyridoxal was performed. The calculations resulted in five stable PLHB conformers stabilized by intramolecular O-H⋯O bonding between phenolic OH and carbonyl C=O groups and another thirteen conformers in which OH or/and aldehyde groups are rotated by 180° around CO or/and CC bonds leading, respectively, to formation of PLO, PLA and PLOA conformers. The analysis of the spectra of the as-deposited matrix indicated that two most stable PLHB1 and PLHB2 conformers with intramolecular hydrogen bond are present in the matrix. The exposure of the PL/Ar matrix to mercury lamp radiation (λ>345 nm) induced conformational change of PLHB isomers to PLOA ones. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Aggarwal, Kanti M.
2018-03-01
The paper "Electron impact excitation of N-like ions from the ICFT R-matrix calculation" by Wang et al. [1] lacks details of calculations, presents only limited data, and has a few anomalies, as listed below.
Eros, Tibor; Grant, Evan H. Campbell
2015-01-01
Fragmentation of habitats is a critical issue in the conservation and management of stream networks across spatial scales. Although the effects of individual barriers (e.g. dams) are well documented, we argue that a more comprehensive patch–matrix landscape model will improve our understanding of fragmentation effects and improve management in riverscapes.
Huang, Yu-an; Zhou, Fang-qin; Long, Si-hua; Yang, Liu
2004-02-01
The effects on gallium atomization in the pyrolytic graphite tube imposed by different matrix modifiers and different coatings were discussed detailedly in this paper. In the presence of matrix modifier of Ni(NO3)2 the matrix interference was eliminated efficiently. The pyrolytic graphite tubes were coated differently with lanthanum, zirconium, and molybdenum to avoid producing gallium carbide. Results showed that the tube with molybdenum coating was the best. On this basis, the mechanism of gallium atomization in the molybdenum-coated pyrolytic graphite tube using Ni(NO3)2 as a matrix modifier was studied furthermore; in addition, the parameters of the operation were optimized. As a result, a new method improved in many aspects was developed to detect trace gallium in complicated sample of gangue. The outcomes of practical applications indicated that the method could satisfy the requests of analysis and that the manipulations were simple to achieve. The characteristic content, the detection limit, and the adding recoveries were 2.12 x 10(-11) g, 1.4 x 10(-10) g and 97.4%-102.7% respectively, and the relative standard deviation was less than or equal to 3.6% (n = 11).
Electroluminescence from completely horizontally oriented dye molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komino, Takeshi; Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395; Japan Science and Technology Agency, ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395
2016-06-13
A complete horizontal molecular orientation of a linear-shaped thermally activated delayed fluorescent guest emitter 2,6-bis(4-(10Hphenoxazin-10-yl)phenyl)benzo[1,2-d:5,4-d′] bis(oxazole) (cis-BOX2) was obtained in a glassy host matrix by vapor deposition. The orientational order of cis-BOX2 depended on the combination of deposition temperature and the type of host matrix. Complete horizontal orientation was obtained when a thin film with cis-BOX2 doped in a 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) host matrix was fabricated at 200 K. The ultimate orientation of guest molecules originates from not only the kinetic relaxation but also the kinetic stability of the deposited guest molecules on the film surface during film growth. Utilizing the ultimatemore » orientation, a highly efficient organic light-emitting diode with the external quantum efficiency of 33.4 ± 2.0% was realized. The thermal stability of the horizontal orientation of cis-BOX2 was governed by the glass transition temperature (T{sub g}) of the CBP host matrix; the horizontal orientation was stable unless the film was annealed above T{sub g}.« less
Wang, Zhongshan; Feng, Zhihong; Wu, Guofeng; Bai, Shizhu; Dong, Yan; Zhao, Yimin
2016-05-01
Numerous preclinical and clinical studies have focused on the periodontal regenerative functions of enamel matrix derivative (EMD), a heat-treated preparation derived from enamel matrix proteins (EMPs) of developing porcine teeth. In this study, periodontal ligament (PDL) stem cells (PDLSCs) were isolated, and the effects of EMD on the extracorporeal induction process and the characteristics of PDLSC sheets were investigated for their potential as a more effective stem-cell therapy. EMD-enhanced cell sheets could be induced by complete medium supplemented with 50 μg/mL vitamin C and 100 μg/mL EMD. The EMD-enhanced cell sheets appeared thicker and more compact than the normal PDLSC sheets, demonstrated more layers of cells (3-7 layers), secreted richer extracellular matrix (ECM), showed varying degrees of increases in mRNA expression of periodontal tissue-specific genes (COL I, POSTN), calcification-related genes (RUNX2, OPN, OCN) and a cementum tissue-specific gene (CAP), and possessed a better mineralization ability in terms of osteogenic differentiation in vitro. These EMD-enhanced cell sheets may represent a potential option for stem-cell therapy for PDL regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Callahan, John H.; Galicia, Marsha C.; Vertes, Akos
2002-09-01
Laser evaporation techniques, including matrix-assisted pulsed laser evaporation (MAPLE), are attracting increasing attention due to their ability to deposit thin layers of undegraded synthetic and biopolymers. Laser evaporation methods can be implemented in reflection geometry with the laser and the substrate positioned on the same side of the target. In some applications (e.g. direct write, DW), however, transmission geometry is used, i.e. the thin target is placed between the laser and the substrate. In this case, the laser pulse perforates the target and transfers some target material to the substrate. In order to optimize evaporation processes it is important to know the composition of the target plume and the material deposited from the plume. We used a recently introduced analytical method, atmospheric pressure matrix-assisted laser desorption ionization (AP-MALDI) to characterize the ionic components of the plume both in reflection and in transmission geometry. This technique can also be used to directly probe materials deposited on surfaces (such as glass slides) by laser evaporation methods. The test compound (small peptides, e.g. Angiotensin I, ATI or Substance P) was mixed with a MALDI matrix (α-cyano-4-hydroxycinnamic acid (CHCA), sinapinic acid (SA) or 2,5-dihydroxybenzoic acid (DHB)) and applied to the stainless steel (reflection geometry) or transparent conducting (transmission geometry) target holder. In addition to the classical dried droplet method, we also used electrospray target deposition to gain better control of crystallite size, thickness and homogeneity. The target was mounted in front of the inlet orifice of an ion trap mass spectrometer (IT-MS) that sampled the ionic components of the plume generated by a nitrogen laser. We studied the effect of several parameters, such as, the orifice to target distance, illumination geometry, extracting voltage distribution and sample preparation on the generated ions. Various analyte-matrix and matrix-matrix cluster ions were observed with relatively low abundance of the matrix ions.
NASA Astrophysics Data System (ADS)
Dahlqvist, Martti; Hotokka, Matti; Räsänen, Markku
1998-04-01
The infrared spectra of monomeric pinacol molecules (2,3-dimethyl-2,3-butanediol; (CH 3) 2C(OH)C(OH)(CH 3) 2) have been recorded in the gas phase and dilute nonpolar solutions, and in an argon matrix. The vibrational data are consistent with the intramolecularly hydrogen-bonded G-type (gauche with respect to the central C-C bond) conformers and there is no evidence for the T-type (trans with respect to the central C-C bond) conformers, which have been observed in the condensed phases. This was confirmed by studying the infrared region 835-815 cm -1, which was found to be the most indicative to show spectral changes within the type of the conformers. In this region the band of the T-type conformers (assigned to the hybridized asymmetric vibration of the central CC and CO stretching modes) disappears when going from the condensed phases to phases, where pinacol molecules are monomeric. Ab initio HF/6-311G** (MP2/6-311G**) calculations support the experimental findings; the calculated relative energies for the tGg', gGg', g'Gg', tTt, and gTg' conformers are 0.0 (0.0), 3.4 (3.4), 5.1 (5.9), 7.9 (11.3), and 12.0 (14.0) kJ mol -1, respectively. Consequently, only the G-type conformers are sufficiently populated to give rise to observable spectral lines. Both experimental findings and theoretical calculations demonstrated that the bands in the argon matrix spectrum of pinacol are due to the most stable tGg' conformer. Although the ab initio calculations predict that also the gGg' and g'Gg' conformers are present in the gas phase and in dilute nonpolar solutions their existence could not be confirmed experimentally. Hence, we conclude that the conformation sensitive bands may coincide in the spectra. The HF/6-311G** ab initio calculations for vibrational frequencies of pinacol are consistent with this conclusion, suggesting only small differences between the wavenumbers of the G-type conformers. Pinacol does not show infrared-induced photorotamerization in the low-temperature argon matrix. This is due to the high energy barrier to internal rotation around the central C-C bond as demonstrated by ab initio calculations. Assignments of the vibrational bands were made with the aid of computer animations of the ab initio calculated harmonic vibrations, common group frequencies, and analogy conclusions from related compounds. The deuterium derivatives [(CD 3) 2C(OH)C(OH)(CD 3) 2 and (CH 3) 2C(OD)C(OD)(CH 3) 2] of pinacol were also utilized even though their spectra were recorded only in the condensed phases.
Banerjee, Kaushik; Savant, Rahul H; Dasgupta, Soma; Patil, Sangram H; Oulkar, Dasharath P; Adsule, Pandurang G
2010-01-01
A multiresidue analysis method was optimized and validated for simultaneous estimation of 21 synthetic pyrethroid pesticides and their isomers in grape matrix at 10 ng/g and higher levels. The method involves extraction of a 10 g sample with 10 mL ethyl acetate, cleanup by dispersive SPE with primary-secondary amine (25 mg) sorbent, and estimation by GC/MS/MS large volume injection (LVI) through a programmed temperature vaporizer (PTV) injector. The PTV-LVI parameters of the gas chromatograph and the multiple reaction monitoring (MRM) parameters of the ion trap mass spectrometer were optimized for each compound to achieve the highest SIN. For each analyte, the unique and most abundant MRM transition was used for quantification, along with the next most abundant MRM transition for confirmatory identification. The abundance ratio of the confirmatory to quantifier MRMs was used to ensure unambiguous residue monitoring in unknown samples within a 20% tolerance range at the 10 ng/g level. The analytes were separated on a TR-5MS capillary column within a 22 min run time. The method was selective and sensitive and ensured separation of the synthetic pyrethroids from high-boiling matrix components. The LOD and LOQ of the analytes ranged between 0.5 to 3.1 and 2.5 to 10 ng/g, respectively. Linearity of solvent and matrix-matched calibrations between 2.0 and 250 ng/g was established for each compound with r2 > 0.99. Recovery at 10, 25, and 50 ng/g levels of fortification in grapes ranged within 77-115% with associated RSD values (n = 8) up to 20%.
Yang, Wei; Luo, Ruiying; Hou, Zhenhua
2016-01-01
In this work, we developed an interface modified by graphene to simultaneously improve the mechanical and frictional properties of carbon/graphene/carbon (C/G/C) composite. Results indicated that the C/G/C composite exhibits remarkably improved interfacial bonding mode, static and dynamic mechanical performance, thermal conductivity, and frictional properties in comparison with those of the C/C composite. The weight contents of carbon fibers, graphene and pyrolytic carbon are 31.6, 0.3 and 68.1 wt %, respectively. The matrix of the C/G/C composite was mainly composed of rough laminar (RL) pyrocarbon. The average hardness by nanoindentation of the C/G/C and C/C composite matrices were 0.473 and 0.751 GPa, respectively. The flexural strength (three point bending), interlaminar shear strength (ILSS), interfacial debonding strength (IDS), internal friction and storage modulus of the C/C composite were 106, 10.3, 7.6, 0.038 and 12.7 GPa, respectively. Those properties of the C/G/C composite increased by 76.4%, 44.6%, 168.4% and 22.8%, respectively, and their internal friction decreased by 42.1% in comparison with those of the C/C composite. Owing to the lower hardness of the matrix, improved fiber/matrix interface bonding strength, and self-lubricating properties of graphene, a complete friction film was easily formed on the friction surface of the modified composite. Compared with the C/C composite, the C/G/C composite exhibited stable friction coefficients and lower wear losses at simulating air-plane normal landing (NL) and rejected take-off (RTO). The method appears to be a competitive approach to improve the mechanical and frictional properties of C/C composites simultaneously. PMID:28773613
Involvement of Superoxide Dismutase in Spore Coat Assembly in Bacillus subtilis
Henriques, Adriano O.; Melsen, Lawrence R.; Moran, Charles P.
1998-01-01
Endospores of Bacillus subtilis are enclosed in a proteinaceous coat which can be differentiated into a thick, striated outer layer and a thinner, lamellar inner layer. We found that the N-terminal sequence of a 25-kDa protein present in a preparation of spore coat proteins matched that of the Mn-dependent superoxide dismutase (SOD) encoded by the sodA locus. sodA is transcribed throughout the growth and sporulation of a wild-type strain and is responsible for the SOD activity detected in total cell extracts prepared from B. subtilis. Disruption of the sodA locus produced a mutant that lacked any detectable SOD activity during vegetative growth and sporulation. The sodA mutant was not impaired in the ability to form heat- or lysozyme-resistant spores. However, examination of the coat layers of sodA mutant spores revealed increased extractability of the tyrosine-rich outer coat protein CotG. We showed that this condition was not accompanied by augmented transcription of the cotG gene in sporulating cells of the sodA mutant. We conclude that SodA is required for the assembly of CotG into the insoluble matrix of the spore and suggest that CotG is covalently cross-linked into the insoluble matrix by an oxidative reaction dependent on SodA. Ultrastructural analysis revealed that the inner coat formed by a sodA mutant was incomplete. Moreover, the outer coat lacked the characteristic striated appearance of wild-type spores, a pattern that was accentuated in a cotG mutant. These observations suggest that the SodA-dependent formation of the insoluble matrix containing CotG is largely responsible for the striated appearance of this coat layer. PMID:9573176
Kanasaki, Megumi; Vong, Sylvia; Rovira, Carlota; Kalluri, Raghu
2014-01-01
K-ras is essential for embryogenesis and its mutations are involved in human developmental syndromes and cancer. To determine the consequences of K-ras activation in urothelium, we used uroplakin-II (UPK II) promoter driven Cre recombinase mice and generated mice with mutated KrasG12D allele in the urothelium (UPK II-Cre;LSL-K-rasG12D). The UPK II-Cre;LSL-K-rasG12D mice died neonatally due to lung morphogenesis defects consisting of simplification with enlargement of terminal air spaces and dysmorphic pulmonary vasculature. A significant alteration in epithelial and vascular basement membranes, together with fragmentation of laminin, points to extracellular matrix degradation as the causative mechanism of alveolar and vascular defects. Our data also suggest that altered protease activity in amniotic fluid might be associated with matrix defects in lung of UPK II-Cre;LSL-K-rasG12. These defects resemble those observed in early stage human neonatal bronchopulmonary dysplasia (BPD), although the relevance of this new mouse model for BPD study needs further investigation. PMID:24760005
NASA Technical Reports Server (NTRS)
Bielawa, R. L.
1982-01-01
Mathematical development is presented for the expanded capabilities of the United Technologies Research Center (UTRC) G400 Rotor Aeroelastic Analysis. This expanded analysis, G400PA, simulates the dynamics of teetered rotors, blade pendulum vibration absorbers and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. Formulations are also presented for calculating the rotor impedance matrix appropriate to these higher harmonic blade excitations. This impedance matrix and the associated vibratory hub loads are intended as the rotor blade characteristics elements for use in the Simplified Coupled Rotor/Fuselage Vibration Analysis (SIMVIB). Sections are included presenting updates to the development of the original G400 theory, and material appropriate to the user of the G400PA computer program. This material includes: (1) a general descriptionof the tructuring of the G400PA FORTRAN coding, (2) a detaild description of the required input data and other useful information for successfully running the program, and (3) a detailed description of the output results.
Advances in biomimetic regeneration of elastic matrix structures
Sivaraman, Balakrishnan; Bashur, Chris A.
2012-01-01
Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960
Anatase TiO2@C composites with porous structure as an advanced anode material for Na ion batteries
NASA Astrophysics Data System (ADS)
Shi, Xiaodong; Zhang, Zhian; Du, Ke; Lai, Yanqing; Fang, Jing; Li, Jie
2016-10-01
In this paper, we propose a facile strategy to synthesize the porous structure TiO2@C composites through a two-step method, in which the precursor of MIL-125(Ti) was firstly prepared by solvent thermal method and then calcined under inert atmosphere. When employed as anodes for Na ion batteries, TiO2@C composites can exhibit a superior cyclability with a reversible sodium storage capacity of 148 mAh g-1 at the current density 0.5 A g-1 after 500 cycles and an excellent rate performance with a capacity of 88.9 mAh g-1 even the current reached to 2.5 A g-1 due to the dispersion of anatase TiO2 throughout amorphous carbon matrix and the synergistic effect between the anatase TiO2 nanocrystals and carbon matrix, which can availably enhance the electric conductivity and alleviate the volumetric variation of TiO2 during the insertion/extraction process of Na+.
NASA Astrophysics Data System (ADS)
Chen, Qiongyu; Chen, Jizhang; Zhou, Yuyang; Song, Chao; Tian, Qinghua; Xu, Junling; Wong, Ching-Ping
2018-05-01
The rational construction of heterostructured electrode materials that deliver superior performances to their individual counterparts offers an attractive strategy for supercapacitors. Herein, we anchor low-crystalline nanostructured MnO2 onto soybean stalk-derived carbon matrix through chemical activation and subsequent hydrothermal reaction. The highly porous and conductive matrix can effectively enhance pseudocapacitive kinetics of nanostructured MnO2. Therefore, the obtained nanocomposite exhibits high specific capacitance (384.9 F g-1 at a current density of 0.5 A g-1), great rate capability (185.0 F g-1 at 20 A g-1), and superior cyclability (90.7% capacitance retention after 5000 cycles). Using this nanocomposite as the positive electrode material, an asymmetric supercapacitor (ASC) is assembled, and achieves high specific energy of 34.2 Wh kg-1 and high specific power of 9.58 kW kg-1. The results of this study demonstrate great potential of combining biomass-derived porous carbon with metal oxides.
Abouali, Sara; Garakani, Mohammad Akbari; Zhang, Biao; Xu, Zheng-Long; Heidari, Elham Kamali; Huang, Jian-qiu; Huang, Jiaqiang; Kim, Jang-Kyo
2015-06-24
A facile electrospinning method with subsequent heat treatments is employed to prepare carbon nanofibers (CNFs) containing uniformly dispersed Co3O4 nanoparticles as electrodes for supercapacitors. The Co3O4/CNF electrodes with ∼68 wt % active particles deliver a remarkable capacitance of 586 F g(-1) at a current density of 1 A g(-1). When the current density is increased to 50 A g(-1), ∼66% of the original capacitance is retained. The electrodes also present excellent cyclic stability of 74% capacity retention after 2000 cycles at 2 A g(-1). These superior electrochemical properties are attributed to the uniform dispersion of active particles in the CNF matrix, which functions as a conductive support. The onionlike graphitic layers formed around the Co3O4 nanoparticles not only improve the electrical conductivity of the electrode but also prevent the separation of the nanoparticles from the carbon matrix.
Treviňo, Lucia; Contreras-Esquivel, Juan C.; Rodríguez-Herrera, Raul; Aguilar, Cristóbal Noé
2007-01-01
The influence of the physical structure of polyurethane matrix as a support in a solid state culture in tannase production and gallic acid accumulation by Aspergillus niger Aa-20 was evaluated. Three different polyurethane matrices were used as the support: continuous, semi-discontinuous and discontinuous. The highest tannase production at 2479.59 U/L during the first 12 h of culture was obtained using the discontinuous matrix. The gallic acid was accumulated at 7.64 g/L at the discontinuous matrix. The results show that the discontinuous matrix of polyurethane is better for tannase production and gallic acid accumulation in a solid state culture bioprocess than the continuous and semi-discontinuous matrices. PMID:17910122
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1985-01-01
A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T sub g and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. It was found that when the instrumented dropweight impact tester is used as a means for assessing resin toughness, the resin toughness is enhanced by the ability of the clamped specimen to deflect enough to produce sufficient membrane action to support a significant amount of the load. The results of this study indicate that crossplied composite impact resistance is very much dependent on the matrix mechanical properties.
NASA Astrophysics Data System (ADS)
Barling, J.; Shiel, A.; Weis, D.
2006-12-01
Non-spectral interferences in ICP-MS are caused by matrix elements effecting the ionisation and transmission of analyte elements. They are difficult to identify in MC-ICP-MS isotopic data because affected analyses exhibit normal mass dependent isotope fractionation. We have therefore investigated a wide range of matrix elements for both stable and radiogenic isotope systems using a Nu Plasma MC-ICP-MS. Matrix elements commonly enhance analyte sensitivity and change the instrumental mass bias experienced by analyte elements. These responses vary with element and therefore have important ramifications for the correction of data for instrumental mass bias by use of an external element (e.g. Pb and many non-traditional stable isotope systems). For Pb isotope measurements (Tl as mass bias element), Mg, Al, Ca, and Fe were investigated as matrix elements. All produced signal enhancement in Pb and Tl. Signal enhancement varied from session to session but for Ca and Al enhancement in Pb was less than for Tl while for Mg and Fe enhancement levels for Pb and Tl were similar. After correction for instrumental mass fractionation using Tl, Mg effected Pb isotope ratios were heavy (e.g. ^{208}Pb/204Pbmatrix > ^{208}Pb/204Pbtrue) for both moderate and high [Mg] while Ca effected Pb showed little change at moderate [Ca] but were light at high [Ca]. ^{208}Pb/204Pbmatrix - ^{208}Pb/204Pbtrue for all elements ranged from +0.0122 to - 0.0177. Isotopic shifts of similar magnitude are observed between Pb analyses of samples that have seen either one or two passes through chemistry (Nobre Silva et al, 2005). The double pass purified aliquots always show better reproducibility. These studies show that the presence of matrix can have a significant effect on the accuracy and reproducibility of replicate Pb isotope analyses. For non-traditional stable isotope systems (e.g. Mo(Zr), Cd(Ag)), the different responses of analyte and mass bias elements to the presence of matrix can result in del/amu for measured & mass bias corrected data that disagree outside of error. Either or both values can be incorrect. For samples, unlike experiments, the correct del/amu is not known in advance. Therefore, for sample analyses to be considered accurate, both measured and exponentially corrected del/amu should agree.
Zhang, Hang; Gao, Qiuming; Qian, Weiwei; Xiao, Hong; Li, Zeyu; Ma, Li; Tian, Xuehui
2018-06-06
A N,O-codoped hierarchical porous nanocomposite consisting of binary reduced graphene oxide and pyrolytic carbon (rGO/PC) from chitosan is fabricated. The optimized rGO/PC possesses micropores with size distribution concentrated around 1.1 nm and plenty of meso/macropores. The Brunauer-Emmett-Teller specific surface area is 480.8 m 2 g -1 , and it possesses impressively large pore volume of 2.14 cm 3 g -1 . On the basis of the synergistic effects of the following main factors: (i) the confined space effect in the hierarchical porous binary carbonaceous matrix; (ii) the anchor effects by strong chemical bonds with codoped N and O atoms; and (iii) the good flexibility and conductivity of rGO, the rGO/PC/S holding 75 wt % S exhibits high performance as Li-S battery cathode. Specific capacity of 1625 mA h g -1 can be delivered at 0.1 C (1 C = 1675 mA g -1 ), whereas 848 mA h g -1 can be maintained after 300 cycles at 1 C. Even at high rate of 5 C, 412 mA h g -1 can be restrained after 1000 cycles.
Liu, Chun; Liu, Deshuai; Wang, Yingying; Li, Yun; Li, Tao; Zhou, Zhiyou; Yang, Zhijian; Wang, Jianhua; Zhang, Qiqing
2018-02-05
In this article, we fabricated a bioactive hydrogel composed of glycol chitosan (G-CS) and oxidized hyaluronic acid (OHA) via Schiff base reaction. Cartilage extracellular matrix (ECM) particles with different concentrations were used to functionalize G-CS/OHA (S1) hydrogel. The results demonstrated that S3 (G-CS/OHA/ECM 2% w/v) hydrogel exhibited the most suitable compression strength and provided the optimal environment for proliferation of bone marrow mesenchymal stem cells (BMSCs). To assess the chondroinductivity of ECM in vitro, we compared the chondrogenesis of BMSCs in S1 (G-CS/OHA) and S3 (G-CS/OHA/ECM 2% w/v) hydrogels. The results confirmed that the higher levels of glycosaminoglycans (GAGs) and collagen type II (COL II) were accumulated in S3 hydrogel. In vivo, cartilage defects of rats generated most mature tissue within BMSCs-laden S3 hydrogel (S3/BMSCs group). The tissues were more integrative and contained higher levels of COL II and GAGs compared to the other groups. All these results suggested that the G-CS/OHA hydrogel functionalized with ECM particles is a good candidate biomaterial to be applied in cartilage tissue engineering.
Low-Density Parity-Check Code Design Techniques to Simplify Encoding
NASA Astrophysics Data System (ADS)
Perez, J. M.; Andrews, K.
2007-11-01
This work describes a method for encoding low-density parity-check (LDPC) codes based on the accumulate-repeat-4-jagged-accumulate (AR4JA) scheme, using the low-density parity-check matrix H instead of the dense generator matrix G. The use of the H matrix to encode allows a significant reduction in memory consumption and provides the encoder design a great flexibility. Also described are new hardware-efficient codes, based on the same kind of protographs, which require less memory storage and area, allowing at the same time a reduction in the encoding delay.
Anchoring Fe3O4 nanoparticles in a reduced graphene oxide aerogel matrix via polydopamine coating
Mrówczyński, Radosław; Michalak, Natalia; Załęski, Karol; Matczak, Michał; Kempiński, Mateusz; Pietralik, Zuzanna; Lewandowski, Mikołaj; Jurga, Stefan; Stobiecki, Feliks
2018-01-01
Reduced graphene oxide–magnetite hybrid aerogels attract great interest thanks to their potential applications, e.g., as magnetic actuators. However, the tendency of magnetite particles to migrate within the matrix and, ultimately, escape from the aerogel structure, remains a technological challenge. In this article we show that coating magnetite particles with polydopamine anchors them on graphene oxide defects, immobilizing the particles in the matrix and, at the same time, improving the aerogel structure. Polydopamine coating does not affect the magnetic properties of magnetite particles, making the fabricated materials promising for industrial applications. PMID:29527434
USDA-ARS?s Scientific Manuscript database
RATIONALE: Analysis of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) often relies upon sample preparation methods that result in cell lysis, e.g. bead-beating. However, Shiga toxin-producing Escherichia coli (STEC) can undergo bacteriophage...
The analytical transfer matrix method for PT-symmetric complex potential
NASA Astrophysics Data System (ADS)
Naceri, Leila; Hammou, Amine B.
2017-07-01
We have extended the analytical transfer matrix (ATM) method to solve quantum mechanical bound state problems with complex PT-symmetric potentials. Our work focuses on a class of models studied by Bender and Jones, we calculate the energy eigenvalues, discuss the critical values of g and compare the results with those obtained from other methods such as exact numerical computation and WKB approximation method.
Vrankovic, Dragoljub; Graczyk-Zajac, Magdalena; Kalcher, Constanze; Rohrer, Jochen; Becker, Malin; Stabler, Christina; Trykowski, Grzegorz; Albe, Karsten; Riedel, Ralf
2017-11-28
We demonstrate a cost-effective synthesis route that provides Si-based anode materials with capacities between 2000 and 3000 mAh·g Si -1 (400 and 600 mAh·g composite -1 ), Coulombic efficiencies above 99.5%, and almost 100% capacity retention over more than 100 cycles. The Si-based composite is prepared from highly porous silicon (obtained by reduction of silica) by encapsulation in an organic carbon and polymer-derived silicon oxycarbide (C/SiOC) matrix. Molecular dynamics simulations show that the highly porous silicon morphology delivers free volume for the accommodation of strain leading to no macroscopic changes during initial Li-Si alloying. In addition, a carbon layer provides an electrical contact, whereas the SiOC matrix significantly diminishes the interface between the electrolyte and the electrode material and thus suppresses the formation of a solid-electrolyte interphase on Si. Electrochemical tests of the micrometer-sized, glass-fiber-derived silicon demonstrate the up-scaling potential of the presented approach.
Fujii, Yosuke; Ding, Yuqi; Umezawa, Taichi; Akimoto, Takafumi; Xu, Jiawei; Uchida, Takashi; Fujino, Tatsuya
2018-01-01
Food additives generally used in carbonated drinks, such as 4-methylimidazole (4MI), caffeine (Caf?), citric acid (CA), and aspartame (Apm), were measured by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) using nanometer-sized particles of iron oxide (Fe 2 O 3 NPs). The quantification of 4MI in Coca Cola (C-cola) was carried out. In order to improve the reproducibility of the peak intensities, Fe 2 O 3 NPs loaded on ZSM5 zeolite were used as the matrix for quantification. By using 2-ethylimidazole (2EI) as the internal standard, the amount of 4MI in C-cola was determined to range from 88 to 65 μg/355 mL. The results agree with the published value (approx. 72 μg/355 mL). It was found that MALDI using Fe 2 O 3 was applicable to the quantification of 4MI in C-cola.
[Characteristics, advantages, and limits of matrix tests].
Brand, T; Wagener, K C
2017-03-01
Deterioration of communication abilities due to hearing problems is particularly relevant in listening situations with noise. Therefore, speech intelligibility tests in noise are required for audiological diagnostics and evaluation of hearing rehabilitation. This study analyzed the characteristics of matrix tests assessing the 50 % speech recognition threshold in noise. What are their advantages and limitations? Matrix tests are based on a matrix of 50 words (10 five-word sentences with same grammatical structure). In the standard setting, 20 sentences are presented using an adaptive procedure estimating the individual 50 % speech recognition threshold in noise. At present, matrix tests in 17 different languages are available. A high international comparability of matrix tests exists. The German language matrix test (OLSA, male speaker) has a reference 50 % speech recognition threshold of -7.1 (± 1.1) dB SNR. Before using a matrix test for the first time, the test person has to become familiar with the basic speech material using two training lists. Hereafter, matrix tests produce constant results even if repeated many times. Matrix tests are suitable for users of hearing aids and cochlear implants, particularly for assessment of benefit during the fitting process. Matrix tests can be performed in closed form and consequently with non-native listeners, even if the experimenter does not speak the test person's native language. Short versions of matrix tests are available for listeners with a shorter memory span, e.g., children.
Careri, M; Costa, A; Elviri, L; Lagos, J-B; Mangia, A; Terenghi, M; Cereti, A; Garoffo, L Perono
2007-11-01
A liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS-MS) method based on the detection of biomarker peptides from allergenic proteins was devised for confirming and quantifying peanut allergens in foods. Peptides obtained from tryptic digestion of Ara h 2 and Ara h 3/4 proteins were identified and characterized by LC-MS and LC-MS-MS with a quadrupole-time of flight mass analyzer. Four peptides were chosen and investigated as biomarkers taking into account their selectivity, the absence of missed cleavages, the uniform distribution in the Ara h 2 and Ara h 3/4 protein isoforms together with their spectral features under ESI-MS-MS conditions, and good repeatability of LC retention time. Because of the different expression levels, the selection of two different allergenic proteins was proved to be useful in the identification and univocal confirmation of the presence of peanuts in foodstuffs. Using rice crisp and chocolate-based snacks as model food matrix, an LC-MS-MS method with triple quadrupole mass analyzer allowed good detection limits to be obtained for Ara h 2 (5 microg protein g(-1) matrix) and Ara h 3/4 (1 microg protein g(-1) matrix). Linearity of the method was established in the 10-200 microg g(-1) range of peanut proteins in the food matrix investigated. Method selectivity was demonstrated by analyzing tree nuts (almonds, pecan nuts, hazelnuts, walnuts) and food ingredients such as milk, soy beans, chocolate, cornflakes, and rice crisp.
Tracking Matrix Effects in the Analysis of DNA Adducts of Polycyclic Aromatic Hydrocarbons
Klaene, Joshua J.; Flarakos, Caroline; Glick, James; Barret, Jennifer T.; Zarbl, Helmut; Vouros, Paul
2015-01-01
LC-MS using electrospray ionization is currently the method of choice in bio-organic analysis covering a wide range of applications in a broad spectrum of biological media. The technique is noted for its high sensitivity but one major limitation which hinders achievement of its optimal sensitivity is the signal suppression due to matrix inferences introduced by the presence of co-extracted compounds during the sample preparation procedure. The analysis of DNA adducts of common environmental carcinogens is particularly sensitive to such matrix effects as sample preparation is a multistep process which involves “contamination” of the sample due to the addition of enzymes and other reagents for digestion of the DNA in order to isolate the analyte(s). This problem is further exacerbated by the need to reach low levels of quantitation (LOQ in the ppb level) while also working with limited (2-5 μg) quantities of sample. We report here on the systematic investigation of ion signal suppression contributed by each individual step involved in the sample preparation associated with the analysis of DNA adducts of polycyclic aromatic hydrocarbon (PAH) using as model analyte dG-BaP, the deoxyguanosine adduct of benzo[a]pyrene (BaP). The individual matrix contribution of each one of these sources to analyte signal was systematically addressed as were any interactive effects. The information was used to develop a validated analytical protocol for the target biomarker at levels typically encountered in vivo using as little as 2 μg of DNA and applied to a dose response study using a metabolically competent cell line. PMID:26607319
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venderbosch, R.W.; Nelissen, J.G.L.; Peijs, A.A.J.M.
1993-12-31
The application of poly(2,6-dimethyl-1,4-phenylene ether), PPE, as a matrix material for continuous carbon fiber reinforced composites was studied. PPE is an amorphous thermoplastic exhibiting a high glass transition temperature (220 C) and outstanding mechanical properties with respect to e.g. toughness. However, due to the limited thermal stability at temperatures above T{sub g}, PPE can be regarded as an intractable polymer. Consequently, the introduction of PPE in a composite structure via a melt impregnation route is not feasible. In this investigation a solution impregnation route, using epoxy resin as a reactive solvent, was developed. During impregnation epoxy resin acts as amore » solvent which results in enhanced flow and a reduced processing temperature enabling the preparation of high quality composites, avoiding any degradation. Upon curing of the neat system, phase separation and phase inversion occurs resulting in a continuous PPE matrix filled with glassy epoxy spheres. As a result of this morphology the mechanical and thermal properties of the final material are mainly dominated by the PPE component. In composite applications, a strong influence of the polarity of the carbon fiber surface on the resulting matrix morphology was found. Upon curing, phase separation is initiated at the fiber surface resulting in an epoxy `interlayer` at the fiber surface. This phenomenon can provide a high level of interfacial adhesion. A preliminary investigation of the resulting composite materials revealed outstanding mechanical properties with respect to e.g. interlaminar toughness and strength.« less
Single and double beta decays in the A=100, A=116 and A=128 triplets of isobars
NASA Astrophysics Data System (ADS)
Suhonen, J.; Civitarese, O.
2014-04-01
In this paper we analyze the ground-state-to-ground-state two-neutrino double beta (2νββ) decays and single EC and β- decays for the A=100 (100Mo-100Tc-100Ru), A=116 (116Cd-116In-116Sn) and A=128 (128Te-128I-128Xe) triplets of isobars. We use the proton-neutron quasiparticle random-phase approximation (pnQRPA) with realistic G-matrix-derived effective interactions in very large single-particle bases. The purpose is to access the effective value of the axial-vector coupling constant gA in the pnQRPA calculations. We show that the three triplets of isobars represent systems with different characteristics of orbital occupancies and cumulative 2νββ nuclear matrix elements. Our analysis points to a considerably quenched averaged effective value of
The Contribution of Matrix Metalloproteinase-7 Promoter Genotypes in Breast Cancer in Taiwan.
Chou, An-Kuo; Hsiao, Chieh-Lun; Shih, Tzu-Ching; Wang, Hwei-Chung; Tsai, Chia-Wen; Chang, Wen-Shin; Liu, Liang-Chih; Way, Tzong-DER; Chung, Jing-Gung; Bau, DA-Tian
2017-09-01
The matrix metalloproteinase (MMP) family of enzymes are in charge of degradation of various components of the extracellular matrix and their functional genetic polymorphisms may be associated with cancer susceptibility. The functional polymorphisms in the promoter region of MMP7 (A-181G and C-153T) have been reported to influence the binding capacity of nuclear proteins and may contribute to genetic susceptibility to cancer. In this study, we focused on investigating the contribution of the genotypes of MMP7 (A-181G and C-153T) to breast cancer in Taiwan. These two polymorphisms were genotyped in 1,232 patients with breast cancer and 1,232 controls by polymerase chain reaction-restriction fragment length polymorphism methodology. The odds ratios (ORs) after adjusting for age, family history of cancer, smoking and alcohol drinking status for those carrying AG and GG genotypes at MMP7 promoter A-181G were 1.22 (95%CI=0.91-1.63, p=0.2235) and 2.84 (95%CI=1.64-7.48, p=0.0007) respectively, compared to those carrying the wild-type AA genotype. Supporting this finding, the adjusted OR for those carrying the G allele at MMP7 promoter A-181G was 1.57 (95%CI=1.29-1.93, p=0.0008), compared to those carrying the wild-type A allele. There was no polymorphic genotype at MMP7 C-153T found among any of the investigated individuals. Our findings suggest that the MMP7 A-181G polymorphisms may play a role in determining personal cancer susceptibility and GG genotype at MMP7 A-181G may serve as a biomarker for early detection and prediction of breast cancer in Taiwanese. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Han, Fang; Liu, Han
2017-02-01
Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson's sample correlation matrix. Although Pearson's sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall's tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall's tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall's tau correlation matrix and the latent Pearson's correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of "effective rank" in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a "sign subgaussian condition" which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition.
Manifold regularized matrix completion for multi-label learning with ADMM.
Liu, Bin; Li, Yingming; Xu, Zenglin
2018-05-01
Multi-label learning is a common machine learning problem arising from numerous real-world applications in diverse fields, e.g, natural language processing, bioinformatics, information retrieval and so on. Among various multi-label learning methods, the matrix completion approach has been regarded as a promising approach to transductive multi-label learning. By constructing a joint matrix comprising the feature matrix and the label matrix, the missing labels of test samples are regarded as missing values of the joint matrix. With the low-rank assumption of the constructed joint matrix, the missing labels can be recovered by minimizing its rank. Despite its success, most matrix completion based approaches ignore the smoothness assumption of unlabeled data, i.e., neighboring instances should also share a similar set of labels. Thus they may under exploit the intrinsic structures of data. In addition, the matrix completion problem can be less efficient. To this end, we propose to efficiently solve the multi-label learning problem as an enhanced matrix completion model with manifold regularization, where the graph Laplacian is used to ensure the label smoothness over it. To speed up the convergence of our model, we develop an efficient iterative algorithm, which solves the resulted nuclear norm minimization problem with the alternating direction method of multipliers (ADMM). Experiments on both synthetic and real-world data have shown the promising results of the proposed approach. Copyright © 2018 Elsevier Ltd. All rights reserved.
Choi, Seong Mi; Lee, Kyoung-Mi; Kim, Hyun Jung; Park, Ik Kyu; Kang, Hwi Ju; Shin, Hang-Cheol; Baek, Dawoon; Choi, Yoorim; Park, Kwang Hwan; Lee, Jin Woo
2018-01-15
Diabetes mellitus comprises a multiple metabolic disorder that affects millions of people worldwide and consequentially poses challenges for clinical treatment. Among the various complications, diabetic ulcer constitutes the most prevalent associated disorder and leads to delayed wound healing. To enhance wound healing capacity, we developed structurally stabilized epidermal growth factor (ST-EGF) and basic fibroblast growth factor (ST-bFGF) to overcome limitations of commercially available EGF (CA-EGF) and bFGF (CA-bFGF), such as short half-life and loss of activity after loading onto a matrix. Neither ST-EGF nor ST-bFGF was toxic, and both were more stable at higher temperatures than CA-EGF and CA-bFGF. We loaded ST-EGF and ST-bFGF onto a hyaluronate-collagen dressing (HCD) matrix, a biocompatible carrier, and tested the effectiveness of this system in promoting wound healing in a mouse model of diabetes. Wounds treated with HCD matrix loaded with 0.3 μg/cm 2 ST-EGF or 1 μg/cm 2 ST-bFGF showed a more rapid rate of tissue repair as compared to the control in type I and II diabetes models. Our results indicate that an HDC matrix loaded with 0.3 μg/cm 2 ST-EGF or 1 μg/cm 2 ST-bFGF can promote wound healing in diabetic ulcers and are suitable for use in wound dressings owing to their stability for long periods at room temperature. Various types of dressing materials loaded with growth factors, such as VEGF, EGF, and bFGF, are widely used to effect wound repair. However, such growth factor-loaded materials have several limitations for use as therapeutic agents in healing-impaired diabetic wounds. To overcome these limitations, we have developed new materials containing structurally stabilized EGF (ST-EGF) and bFGF (ST-bFGF). To confirm the wound healing capacity of newly developed materials (ST-EGF and ST-bFGF-loaded hyaluronate-collagen dressing [HCD] matrix), we applied these matrices in type I and type II diabetic wounds. Notably, these matrices were able to accelerate wound healing including re-epithelialization, neovascularization, and collagen deposition. Consequentially, these ST-EGF and ST-bFGF-loaded HCD matrix may be used as future therapeutic agents in patients with diabetic foot ulcers. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Chitteti, Brahmananda Reddy; Kacena, Melissa A; Voytik-Harbin, Sherry L; Srour, Edward F
2015-10-01
To recreate the in vivo hematopoietic cell microenvironment or niche and to study the impact of extracellular matrix (ECM) biophysical properties on hematopoietic progenitor cell (HPC) proliferation and function, mouse bone-marrow derived HPC (Lin-Sca1+cKit+/(LSK) were cultured within three-dimensional (3D) type I collagen oligomer matrices. To generate a more physiologic milieu, 3D cultures were established in both the presence and absence of calvariae-derived osteoblasts (OB). Collagen oligomers were polymerized at varying concentration to give rise to matrices of different fibril densities and therefore matrix stiffness (shear storage modulus, 50-800 Pa). Decreased proliferation and increased clonogenicity of LSK cells was associated with increase of matrix stiffness regardless of whether OB were present or absent from the 3D culture system. Also, regardless of whether OB were or were not added to the 3D co-culture system, LSK within 800 Pa collagen oligomer matrices maintained the highest percentage of Lin-Sca1+ cells as well as higher percentage of cells in quiescent state (G0/G1) compared to 50 Pa or 200Pa matrices. Collectively, these data illustrate that biophysical features of collagen oligomer matrices, specifically fibril density-induced modulation of matrix stiffness, provide important guidance cues in terms of LSK expansion and differentiation and therefore maintenance of progenitor cell function. Copyright © 2015. Published by Elsevier B.V.
Verjee, Sheela; Kelber, Olaf; Kolb, Christiane; Abdel-Aziz, Heba; Butterweck, Veronika
2017-03-12
The major aim of this study was to get a detailed understanding of the exposure and fate of hypericin in the Caco-2 cell system when combined with various flavonoids, mixtures of flavonoids or Hypericum perforatum extract matrix (STW3-VI). The permeation characteristics of hypericin in the absence or presence of quercetin, quercitrin, isoquercitrin, hyperoside and rutin were tested. Hypericin (5 μm) was mixed with single flavonoids (20 μm) or with different flavonoid combinations (each flavonoid 4 or 10 μm, total flavonoid concentration: 20 μm). Further, the uptake of hypericin (5 μm) in the presence of H. perforatum extract matrix (7.25, 29 and 58 μg/ml) was studied. Following application of hypericin to the apical side of the monolayer, only negligible amounts of the compound were found in the basolateral compartment. From all tested flavonoids, only quercitrin increased the basolateral amount of hypericin. Dual flavonoid combinations were not superior compared to the single combinations. The amount of hypericin in the basolateral compartment increased concentration-dependently in the presence of extract matrix (from 0 to 7.5%). Comparing the effects of various flavonoid mixtures vs the extract matrix, it can be concluded that, besides flavonoids, the extract seems to contain further compounds (e.g. phenolic acids or proanthocyanidins) which substantially improve the permeation characteristics of hypericin. © 2017 Royal Pharmaceutical Society.
Grey, L; Nguyen, B; Yang, P
2001-01-01
A liquid chromatography/electrospray/mass spectrometry (LC/ES/MS) method was developed for the analysis of glyphosate (n-phosphonomethyl glycine) and its metabolite, aminomethyl phosphonic acid (AMPA) using isotope-labelled glyphosate as a method surrogate. Optimized parameters were achieved to derivatize glyphosate and AMPA using 9-fluorenylmethyl chloroformate (FMOC-Cl) in borate buffer prior to a reversed-phase LC analysis. Method spike recovery data obtained using laboratory and real world sample matrixes indicated an excellent correlation between the recovery of the native and isotope-labelled glyphosate. Hence, the first performance-based, isotope dilution MS method with superior precision, accuracy, and data quality was developed for the analysis of glyphosate. There was, however, no observable correlation between the isotope-labelled glyphosate and AMPA. Thus, the use of this procedure for the accurate analysis of AMPA was not supported. Method detection limits established using standard U.S. Environmental Protection Agency protocol were 0.06 and 0.30 microg/L, respectively, for glyphosate and AMPA in water matrixes and 0.11 and 0.53 microg/g, respectively, in vegetation matrixes. Problems, solutions, and the method performance data related to the analysis of chlorine-treated drinking water samples are discussed. Applying this method to other environmental matrixes, e.g., soil, with minimum modifications is possible, assuring accurate, multimedia studies of glyphosate concentration in the environment and the delivery of useful multimedia information for regulatory applications.
Uniform Recovery Bounds for Structured Random Matrices in Corrupted Compressed Sensing
NASA Astrophysics Data System (ADS)
Zhang, Peng; Gan, Lu; Ling, Cong; Sun, Sumei
2018-04-01
We study the problem of recovering an $s$-sparse signal $\\mathbf{x}^{\\star}\\in\\mathbb{C}^n$ from corrupted measurements $\\mathbf{y} = \\mathbf{A}\\mathbf{x}^{\\star}+\\mathbf{z}^{\\star}+\\mathbf{w}$, where $\\mathbf{z}^{\\star}\\in\\mathbb{C}^m$ is a $k$-sparse corruption vector whose nonzero entries may be arbitrarily large and $\\mathbf{w}\\in\\mathbb{C}^m$ is a dense noise with bounded energy. The aim is to exactly and stably recover the sparse signal with tractable optimization programs. In this paper, we prove the uniform recovery guarantee of this problem for two classes of structured sensing matrices. The first class can be expressed as the product of a unit-norm tight frame (UTF), a random diagonal matrix and a bounded columnwise orthonormal matrix (e.g., partial random circulant matrix). When the UTF is bounded (i.e. $\\mu(\\mathbf{U})\\sim1/\\sqrt{m}$), we prove that with high probability, one can recover an $s$-sparse signal exactly and stably by $l_1$ minimization programs even if the measurements are corrupted by a sparse vector, provided $m = \\mathcal{O}(s \\log^2 s \\log^2 n)$ and the sparsity level $k$ of the corruption is a constant fraction of the total number of measurements. The second class considers randomly sub-sampled orthogonal matrix (e.g., random Fourier matrix). We prove the uniform recovery guarantee provided that the corruption is sparse on certain sparsifying domain. Numerous simulation results are also presented to verify and complement the theoretical results.
[In situ analysis of pathomechanisms of human intervertebral disc degeneration].
Weiler, C
2013-11-01
Low back pain is one of the major causes of pain and disability in the western world, with a constantly rising life-time prevalence of approximately 60-85 %. Degeneration of the intervertebral disc is believed to be a major cause of low back pain. Semiquantitative macroscopic and microscopic changes of the intervertebral disc were assessed and classified. Furthermore additional methods, such as immunohistochemistry, in situ hybridization and in situ zymography were used to analyze phenotypic cellular and matrix changes. We have developed and tested a practicable, valid and reliable histological classification system for lumbar discs which can serve as a morphological reference framework to allow more sophisticated molecular biological studies on the pathogenesis of ageing and degeneration of discs. Secondly, we were able to demonstrate that intrinsic (genetic) and extrinsic (e.g. overweight) factors have a profound effect on the process of disc degeneration. Cells with a notochord-like phenotype are present in a considerable fraction of adult lumbar intervertebral discs. The presence of these cells is associated with distinct features of (early) age-related disc degeneration. During the process of disc degeneration, the intervertebral disc shows a progressive and significant reduction in height due to tissue resorption. This matrix loss is related to an imbalance between matrix synthesis and degradation. During this process an inflammatory reaction takes place and resident disc cells are causatively involved. In summary, disc degeneration is a multifactorial disease with a strong intrinsic (hereditary) and extrinsic (e.g. mechanical factors) background. The process starts as early as in the second decade of life and shows high interindividual differences. The loss of regenerative capacity in the intervertebral disc is probably related to the loss of stem cells, e.g. notochord-like cells. Resident disc cells are involved in the inflammatory reaction with increased matrix degradation, resorption and reduced matrix synthesis.
Zhou, Juan; Song, Bingxin; Duan, Xiaomei; Long, Yuming; Lu, Jinfeng; Li, Zhibin; Zeng, Sian; Zhan, Qiong; Yuan, Mei; Yang, Qidong; Xia, Jian
2014-10-01
The Basigin (BSG, also known as CD147/extracellular matrix metalloproteinase inducer) belongs to the immunoglobulin superfamily (IgSF). It is a cellular receptor for cyclophilin A (CypA), and is originally known as tumor cell collagenase stimulatory factor (TCSF), which could abundantly expressed on the surface of tumor cells, haematopoietic, monocytes, epithelial endothelial cells and smooth muscle cells. Accumulating evidence showed that BSG played an important role in stimulating the secretion of matrix metalloproteinases (MMPs), which has been reported to be involved in the development of atherosclerosis. Since atherosclerosis is an important risk factor for atherosclerotic cerebral infarction (ACI), we speculate that BSG genetic polymorphisms may influence formation of atherosclerosis and then development of ACI. This study aimed to detect the potential association of the single nucleotide polymorphisms (SNP, -631 G > T, -318 G > C, 10141 G > A and 10826 G > A) of BSG gene in Hunan Han Chinese population with ACI. We genotyped 199 ACI patients and 188 matched healthy controls for the four BSG SNP by method of matrix-assisted laser desorption/ionization-time-offlight mass spectrometry (MALDI-TOF MS). Our results suggested that all the polymorphisms were observed in the subjects from Changsha area of Hunan Province. However, no significant difference was observed between the distribution of these SNP in cases and controls. Therefore, we speculate that BSG genetic polymorphisms might not be an important factor in the development of ACI in our Chinese Han population.
Chopin-Doroteo, Mario; Salgado-Curiel, Rosa M; Pérez-González, José; Marín-Santibáñez, Benjamín M; Krötzsch, Edgar
2018-06-01
Fibrin and hyaluronic acid are important components of the provisional wound matrix. Through interactions with fibroblasts, they provide biophysical cues that regulate the viscoelastic properties of the extracellular matrix. To understand the roles of fibrin and hyaluronic acid in a collagenous environment, we used fibroblast populated collagen lattices (collagen, collagen-fibrin, and collagen-hyaluronic acid). Compared with collagen and collagen-hyaluronic acid cultures, collagen-fibrin cultures showed less contraction, which is correlated with increased elastic (G') and complex (|G*|) moduli, and reduced proportions of dendritic fibroblasts, despite increased αv integrin expression. Stiffness decreased during culture in collagen-fibrin environment, meanwhile phase shift (δ) values increased, clearly associated with the rise in fibrinolytic and gelatinolytic activities. These processes changed the viscoelastic properties of the system toward G' and |G*| values observed on day 5 in collagen cultures. Although less collagen turnover was observed in collagen-fibrin cultures than in collagen and collagen-hyaluronic acid cultures, collagen neosynthesis was apparently insufficient to contribute to the overall viscoelastic properties of the system. Collagen-hyaluronic acid cultures showed very limited changes during time. Firstly, they exhibited the highest δ values, suggesting an increase in the viscous behavior due to the hygroscopic properties of hyaluronic acid. These results showed that fibrin and hyaluronic acid not only affect differently the viscoelastic properties of the culture, they can tune fibroblastic activity by regulating cell attachment and extracellular matrix remodeling. Copyright © 2018 Elsevier Ltd. All rights reserved.
Interface modification during oxidation of a glass-ceramic matrix/SiC fibre composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, A.M.; Martin-Meizoso, A.; Plucknett, K.P.
Oxidation heat treatments between 375{degrees}C and 600{degrees}C for 100 hours in air, have been performed on the calcium aluminosilicate glass-ceramic matrix/SiC fibre reinforced composite CAS/Nicalon (manufactured by Corning, USA). Using a commercial nano-indentation system to perform fibre push-down tests, the fibre-matrix interfacial debond fracture surface energy (G{sub i}) and frictional shear stress ({tau}) have been determined. Modification of interface properties, compared to the as-fabricated material, was observed at heat treatment temperatures as low as 375{degrees}C, where a significant drop in G{sub i} and an increase in {tau} were recorded. With 450{degrees}C, 525{degrees}C and 600{degrees}C heat treatments, an increase in G{submore » i} but a dramatic increase in {tau} were recorded. Under four-point flexure testing, the as fabricated and the 375{degrees}C heat treated materials displayed tough, composite behaviour with extensive fibre pull out, but at {ge}450{degrees}C, brittle failure with minimal fibre pull out, was observed. This transition from tough mechanical response to one of brittleness is due to the large increase in {tau} reducing fibre pull out to a minimum and therefore reducing the total required work of fracture. The large increases in {tau} and G{sub i} have been attributed to the oxidative removal of the lubricating, carbon interface and the compressive residual stresses across the interface.« less
Interface modification during oxidation of a glass-ceramic matrix/SiC fibre composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, A.M.; Martin-Meizoso, A.; Plucknett, K.P.
Oxidation heat treatments between 375{degrees}C and 600{degrees}C for 100 hours in air, have been performed on the calcium aluminosilicate glass-ceramic matrix/SiC fibre reinforced composite CAS/Nicalon (manufactured by Coming, USA). Using a commercial nano-indentation system to perform fibre push-down tests, the fibre-matrix interfacial debond fracture surface energy (G{sub i}) and frictional shear stress ({tau}) have been determined. Modification of interface properties, compared to the as fabricated material, was observed at heat treatment temperatures as low as 375{degrees}C, where a significant drop in G{sub i} and an increase in {tau} were recorded. With 450{degrees}C, 525{degrees}C and 600{degrees}C heat treatments, an increase inmore » G{sub i} but a dramatic increase in {tau} were recorded. Under four-point flexure testing, the as fabricated and the 375{degrees}C heat treated materials displayed tough, composite behaviour with extensive fibre pull out, but at {le}450{degrees}C, brittle failure with minimal fibre pull out, was observed. This transition from tough mechanical response to one of brittleness is due to the large increase in {tau} reducing fibre pull out to a minimum and therefore reducing the total required work of fracture. The large increases in {tau} and G{sub i} have been attributed to the oxidative removal of the lubricating, carbon interface and the compressive residual stresses across the interface.« less
Matrix effects for elemental fractionation within ICPMS: applications for U-Th-Pb geochronology
NASA Astrophysics Data System (ADS)
Chen, W.
2016-12-01
Recent development in instruments provides significant technical supports for daily, quick, money saving geochemical analyses. Laser ablation ICPMS stands out due to these reasons, especially for the U-Th-Pb isotopic dating. Matrix-matched external standardization is by far the most common approach used in U-Th-Pb dating via LA-ICPMS. However, matrix-effects between standard and sample for in-situ dating have shown to be both significant and insignificant. It remains mysterious whether a well matrix-matched standard is needed for U-Th-Pb dating by LA-ICPMS. This study provides an experimental framework for the understanding of matrix effects induced elemental fractionation for U-Th-Pb associated with ICPMS. A preliminary study on the influence of varied U, Th and Pb amounts on their fractionations has been carried out. Experimental data show that different U, Th and Pb contents result in varied 238U/206Pb and 232Th/208Pb ratios. The fractionations of U/Pb and Th/Pb increase with the increasing contents (1 ppb to 100 ppb) with a strong positive anomaly at 10 ppb. Matrixes representing minerals frequently used in dating have been investigated for the influences on U/Pb and Th/Pb fractionations, which suggest a complicated effect. Little fractionations observed between mineral pairs (e.g., monazite and apatite; zircon and perovskite; rutile and perovskite; xenotime and baddeleyite), whereas large fractionations identified for other minerals (e.g., zircon and baddeleyite; monazite and sphene; rutile and baddeleyite). Single element matrix (i.e., Si, P, Ca, Zr, Ti) has been studied to identify their effects on the fractionations. U/Pb ratio increases with the increasing Si and P contents, whereas it decreases for Zr, Ca and Ti. Th/Pb ratio increases with increasing Si contents, decreases for P and Zr, and increases first then decreases for Ca and Ti. Above all, different matrix and U, Th and Pb amounts show distinct U/Pb and Th/Pb fractionations within ICPMS. The minerals with matrix indicating similar fractionations in ICPMS can be used as suitable reference standards for each other with proper laser ablation settings via LA-ICPMS. Moreover, matched U, Th and Pb contents should be considered when using a matrix-matched standard in laser ablation analysis.
Pressoir, G; Berthaud, J
2004-02-01
To conserve the long-term selection potential of maize, it is necessary to investigate past and present evolutionary processes that have shaped quantitative trait variation. Understanding the dynamics of quantitative trait evolution is crucial to future crop breeding. We characterized population differentiation of maize landraces from the State of Oaxaca, Mexico for quantitative traits and molecular markers. Qst values were much higher than Fst values obtained for molecular markers. While low values of Fst (0.011 within-village and 0.003 among-villages) suggest that considerable gene flow occurred among the studied populations, high levels of population differentiation for quantitative traits were observed (ie an among-village Qst value of 0.535 for kernel weight). Our results suggest that although quantitative traits appear to be under strong divergent selection, a considerable amount of gene flow occurs among populations. Furthermore, we characterized nonproportional changes in the G matrix structure both within and among villages that are consequences of farmer selection. As a consequence of these differences in the G matrix structure, the response to multivariate selection will be different from one population to another. Large changes in the G matrix structure could indicate that farmers select for genes of major and pleiotropic effect. Farmers' decision and selection strategies have a great impact on phenotypic diversification in maize landraces.
Google matrix analysis of the multiproduct world trade network
NASA Astrophysics Data System (ADS)
Ermann, Leonardo; Shepelyansky, Dima L.
2015-04-01
Using the United Nations COMTRADE database [United Nations Commodity Trade Statistics Database, available at: http://comtrade.un.org/db/. Accessed November (2014)] we construct the Google matrix G of multiproduct world trade between the UN countries and analyze the properties of trade flows on this network for years 1962-2010. This construction, based on Markov chains, treats all countries on equal democratic grounds independently of their richness and at the same time it considers the contributions of trade products proportionally to their trade volume. We consider the trade with 61 products for up to 227 countries. The obtained results show that the trade contribution of products is asymmetric: some of them are export oriented while others are import oriented even if the ranking by their trade volume is symmetric in respect to export and import after averaging over all world countries. The construction of the Google matrix allows to investigate the sensitivity of trade balance in respect to price variations of products, e.g. petroleum and gas, taking into account the world connectivity of trade links. The trade balance based on PageRank and CheiRank probabilities highlights the leading role of China and other BRICS countries in the world trade in recent years. We also show that the eigenstates of G with large eigenvalues select specific trade communities.
Li, Fuqin; Shi, Lihong; Wang, Fei; Sun, Caiyuan; Kang, Di; Zhang, Yuping; Chen, Lingzhu; Hu, Deyu
2017-06-08
A QuEChERS-liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the determination of pyraclostrobin, thiophanate-methyl and its metabolite carbendazim in soil and citrus. The samples were extracted with methanol or acetonitrile, purified by primary secondary amine (PSA), then separated by LC, detected in multiple reaction monitoring (MRM) mass spectrometry mode via positive electrospray ionization. The analytes were quantified by matrix-matched standard solutions with external standard method. The limits of quantification (LOQs) of pyraclostrobin, thiophanate-methyl and carbendazim in different matrices were 5.8-7.0 μg/kg, 9.3-14.1 μg/kg and 2.1-2.6 μg/kg, respectively. For all the samples, the spiked recoveries ranged from 75.48% to 109.18%, and the relative standard deviations (RSDs) were 0.60%-5.11% ( n =5). The method is quick, easy, effective, sensitive and accurate. The matrix-matched calibration solutions can efficiently compensate matrix effects of the pyraclostrobin, thiophanate-methyl and carbendazim in LC-MS/MS analysis. The established method can be applied to the residue analysis of the real samples of soil, citrus peel, citrus pulp and citrus fruits.
NASA Astrophysics Data System (ADS)
Huang, Keke; Li, Ming; Li, Hongmei; Li, Mengwan; Jiang, You; Fang, Xiang
2016-01-01
Ambient ionization (AI) techniques have been widely used in chemistry, medicine, material science, environmental science, forensic science. AI takes advantage of direct desorption/ionization of chemicals in raw samples under ambient environmental conditions with minimal or no sample preparation. However, its quantitative accuracy is restricted by matrix effects during the ionization process. To improve the quantitative accuracy of AI, a matrix reference material, which is a particular form of measurement standard, was coupled to an AI technique in this study. Consequently the analyte concentration in a complex matrix can be easily quantified with high accuracy. As a demonstration, this novel method was applied for the accurate quantification of creatinine in serum by using extractive electrospray ionization (EESI) mass spectrometry. Over the concentration range investigated (0.166 ~ 1.617 μg/mL), a calibration curve was obtained with a satisfactory linearity (R2 = 0.994), and acceptable relative standard deviations (RSD) of 4.6 ~ 8.0% (n = 6). Finally, the creatinine concentration value of a serum sample was determined to be 36.18 ± 1.08 μg/mL, which is in excellent agreement with the certified value of 35.16 ± 0.39 μg/mL.
Fukuyama, Yuko; Funakoshi, Natsumi; Takeyama, Kohei; Hioki, Yusaku; Nishikaze, Takashi; Kaneshiro, Kaoru; Kawabata, Shin-Ichirou; Iwamoto, Shinichi; Tanaka, Koichi
2014-02-18
Glycosylation and phosphorylation are important post-translational modifications in biological processes and biomarker research. The difficulty in analyzing these modifications is mainly their low abundance and dissociation of labile regions such as sialic acids or phosphate groups. One solution in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is to improve matrices for glycopeptides, carbohydrates, and phosphopeptides by increasing the sensitivity and suppressing dissociation of the labile regions. Recently, a liquid matrix 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA), introduced by Kolli et al. in 1996, has been reported to increase sensitivity for carbohydrates or phosphopeptides, but it has not been systematically evaluated for glycopeptides. In addition, 3-AQ/CHCA enhances the dissociation of labile regions. In contrast, a liquid matrix 1,1,3,3-tetramethylguanidium (TMG, G) salt of p-coumaric acid (CA) (G3CA) was reported to suppress dissociation of sulfate groups or sialic acids of carbohydrates. Here we introduce a liquid matrix 3-AQ/CA for glycopeptides, carbohydrates, and phosphopeptides. All of the analytes were detected as [M + H](+) or [M - H](-) with higher or comparable sensitivity using 3-AQ/CA compared with 3-AQ/CHCA or 2,5-dihydroxybenzoic acid (2,5-DHB). The sensitivity was increased 1- to 1000-fold using 3-AQ/CA. The dissociation of labile regions such as sialic acids or phosphate groups and the fragmentation of neutral carbohydrates were suppressed more using 3-AQ/CA than using 3-AQ/CHCA or 2,5-DHB. 3-AQ/CA was thus determined to be an effective MALDI matrix for high sensitivity and the suppression of dissociation of labile regions in glycosylation and phosphorylation analyses.
Deshpande, Madhura; Papp, Suzanne; Schaffer, Lana; Pouyani, Tara
2015-02-01
Hydrocortisone (HC) and triiodothyronine (T3) have both been shown to be capable of independently inhibiting hyaluronate (HA, hyaluronic acid) synthesis in a self-assembled human dermal equivalent (human dermal matrix). We sought to investigate the action of these two hormones in concert on extracellular matrix formation and HA inhibition in the tissue engineered human dermal matrix. To this end, neonatal human dermal fibroblasts were cultured in defined serum-free medium for 21 days in the presence of each hormone alone, or in combination, in varying concentrations. Through a process of self-assembly, a substantial dermal extracellular matrix formed that was characterized. The results of these studies demonstrate that combinations of the hormones T3 and hydrocortisone showed significantly higher levels of hyaluronate inhibition as compared to each hormone alone in the human dermal matrix. In order to gain preliminary insight into the genes regulating HA synthesis in this system, a differential gene array analysis was conducted in which the construct prepared in the presence of 200 μg/mL HC and 0.2 nM T3 was compared to the normal construct (0.4 μg/mL HC and 20 pM T3). Using a GLYCOv4 gene chip containing approximately 1260 human genes, we observed differential expression of 131 genes. These data suggest that when these two hormones are used in concert a different mechanism of inhibition prevails and a combination of degradation and inhibition of HA synthesis may be responsible for HA regulation in the human dermal matrix. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Thomas, Jennifer L; Donnelly, Christopher C; Lloyd, Erin W; Mothershead, Robert F; Miller, Mark L
2018-03-01
An improved cleanup method has been developed for the recovery of trace levels of 12 nitro-organic explosives in soil, which is important not only for the forensic community, but also has environmental implications. A wide variety of explosives or explosive-related compounds were evaluated, including nitramines, nitrate esters, nitroaromatics, and a nitroalkane. Fortified soil samples were extracted with acetone, processed via solid phase extraction (SPE), and then analyzed by gas chromatography with electron capture detection. The following three SPE sorbents in cartridge format were compared: Empore™ SDB-XC, Oasis ® HLB, and Bond Elut NEXUS cartridges. The NEXUS cartridges provided the best overall recoveries for the 12 explosives in potting soil (average 48%) and the fastest processing times (<30min). It also rejected matrix components from spent motor oil on potting soil. The SPE method was validated by assessing limit of detection (LOD), processed sample stability, and interferences. All 12 compounds were detectable at 0.02μg explosive/gram of soil or lower in the three matrices tested (potting soil, sand, and loam) over three days. Seven explosives were stable up to seven days at 2μg/g and three were stable at 0.2μg/g, both in processed loam, which was the most challenging matrix. In the interference study, five interferences above the determined LOD for soil were detected in matrices collected across the United States and in purchased all-purpose sand, potting soil, and loam. This represented a 3.2% false positive rate for the 13 matrices processed by the screening method for interferences. The reported SPE cleanup method provides a fast and simple extraction process for separating organic explosives from matrix components, facilitating sample throughput and reducing instrument maintenance. In addition, a comparison study of the validated SPE method versus conventional syringe filtration was completed and highlighted the benefits of sample cleanup for removing matrix interferences, while also providing lower supply cost, order of magnitude lower LODs for most explosives, higher percent recoveries for complex matrices, and fewer instrument maintenance issues. Published by Elsevier B.V.
Effect of Microstructure on the Strength and Fracture Energy of Bimaterial Interfaces.
1992-12-31
Bimaterials Interfaces includes three sections: Mechanics of Interfaces, Coating Design for Composite Systems, and Mechanics of Brittle Matrix... Composites . For more details see Executive Summary. 14. SUBJECT TERM 15. NUMBER OF PAGES Effect, Microstructure, Strength, Fracture Energy, Bimatenal...The Role of Interfaces in Fiber-Reinforced Brittle A.G. Evans Matrix Composites F.W. Zok J.B. Davis Article 2. Effects of Fiber Roughness on Interface
2013-03-01
of coarser-scale materials and structures containing Kevlar fibers (e.g., yarns, fabrics, plies, lamina, and laminates ). Journal of Materials...Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar -Fiber-Reinforced Polymer-Matrix Composites M. Grujicic, B. Pandurangan, J.S...extensive set of molecular-level computational analyses regarding the role of various microstructural/morphological defects on the Kevlar fiber
Rotman Lens Sidewall Design and Optimization with Hybrid Hardware/Software Based Programming
2015-01-09
conventional MoM and stored in memory. The components of Zfar are computed as needed through a fast matrix vector multiplication ( MVM ), which...V vector. Iterative methods, e.g. BiCGSTAB, are employed for solving the linear equation. The matrix-vector multiplications ( MVMs ), which dominate...most of the computation in the solving phase, consists of calculating near and far MVMs . The far MVM comprises aggregation, translation, and
Nanocrystal dispersed amorphous alloys
NASA Technical Reports Server (NTRS)
Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)
2001-01-01
Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.
On generalized Melvin solution for the Lie algebra E_6
NASA Astrophysics Data System (ADS)
Bolokhov, S. V.; Ivashchuk, V. D.
2017-10-01
A multidimensional generalization of Melvin's solution for an arbitrary simple Lie algebra G is considered. The gravitational model in D dimensions, D ≥ 4, contains n 2-forms and l ≥ n scalar fields, where n is the rank of G. The solution is governed by a set of n functions H_s(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials (the so-called fluxbrane polynomials). The polynomials H_s(z), s = 1,\\ldots ,6, for the Lie algebra E_6 are obtained and a corresponding solution for l = n = 6 is presented. The polynomials depend upon integration constants Q_s, s = 1,\\ldots ,6. They obey symmetry and duality identities. The latter ones are used in deriving asymptotic relations for solutions at large distances. The power-law asymptotic relations for E_6-polynomials at large z are governed by the integer-valued matrix ν = A^{-1} (I + P), where A^{-1} is the inverse Cartan matrix, I is the identity matrix and P is a permutation matrix, corresponding to a generator of the Z_2-group of symmetry of the Dynkin diagram. The 2-form fluxes Φ ^s, s = 1,\\ldots ,6, are calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blau, Peter Julian; Jolly, Brian C
2009-01-01
The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB{sub 2} particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b)more » a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent.« less
Adhesion to the extracellular matrix is positively regulated by retinoic acid in HepG2 cells.
Massimi, Mara; Devirgiliis, Laura Conti
2007-02-01
In this work, we aimed to investigate the possible modulation of cell-matrix interactions by retinoic acid (RA), in view of the well-known role of the extracellular matrix (ECM) and integrins in hepatocyte differentiation and proliferation. For this purpose, we analysed the adhesion ability of HepG2 cells on different substrates in the presence and absence of RA evaluating both the expression and cellular localisation of major proteins involved in focal contacts, using Western blot and confocal microscopy. A positive and substrate-dependent effect of RA on cell-matrix adhesion was observed after long-term culture. The increased adhesiveness in the treated cells was accompanied by an enhanced expression of beta1 and alpha3 integrin subunits, together with a redistribution of beta1 receptors clustered at the basal surface. In contrast, the levels of focal adhesion kinase (FAK), paxillin and alpha-actinin were unchanged, as was the phosphorylation state of FAK. Nonetheless, a stronger association between beta1 integrin and intracytoplasmatic proteins of focal contacts was observed in coimmunoprecipitation experiments after RA treatment, suggesting improved connection with the actin cytoskeleton. These results are consistent with previously described antiproliferative and differentiative effects of RA on transformed hepatocytes, and confirm the hypothesis of a direct influence of RA on specific adhesion molecules.
Maji, Somnath; Agarwal, Tarun; Maiti, Tapas Kumar
2017-07-01
The study explored the prospects of PAMAM (generation 4) applicability in gelatin based scaffolds for skin tissue engineering. The effect of PAMAM on physico-chemical and biological characteristics of gelatin scaffolds was evaluated. Gelatin scaffolds (with/without PAMAM) were prepared by lyophilization, chemically crosslinked by glutaraldehyde and characterized for their morphology (pore size), chemical features (bond nature), water adsorption, biodegradation and biological compatibility. The study demonstrated that addition of PAMAM did not significantly alter the pore size distribution or porosity of the scaffolds. However, water adsorption potential and collagenase mediated degradation significantly enhanced over period of the study. Both the scaffolds (with/without PAMAM) were highly biocompatible and hemocompatible. PAMAM (G4) blended scaffolds showed relatively higher cellular adhesion and proliferation of both keratinocytes and fibroblasts with an improved gene expression profile of native collagen type I of fibroblasts. Moreover, expression of angiogenesis inducing genes, HIF1α and VEGF were also higher in PAMAM blended gelatin matrix. Also, PAMAM incorporated gelatin matrix showed a slower rate of drug release which confirms its suitability for therapeutic delivery during wound healing. These results clearly suggest that blending PAMAM (G4) into the matrix could provide an additional support to scaffold assisted wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Xiaolong; Wang, Xina; Feng, Xi; Zhang, Kun; Peng, Xiaoniu; Wang, Hanbin; Liu, Chunlei; Han, Yibo; Wang, Hao; Li, Quan
2017-07-12
Carbon dots (C dots, size < 10 nm) have been conventionally decorated onto semiconductor matrixes for photocatalytic H 2 evolution, but the efficiency is largely limited by the low loading ratio of the C dots on the photocatalyst. Here, we propose an inverse structure of Cd 0.5 Zn 0.5 S quantum dots (QDs) loaded onto the onionlike carbon (OLC) matrix for noble metal-free photocatalytic H 2 evolution. Cd 0.5 Zn 0.5 S QDs (6.9 nm) were uniformly distributed on an OLC (30 nm) matrix with both upconverted and downconverted photoluminescence property. Such an inverse structure allows the full optimization of the QD/OLC interfaces for effective energy transfer and charge separation, both of which contribute to efficient H 2 generation. An optimized H 2 generation rate of 2018 μmol/h/g (under the irradiation of visible light) and 58.6 μmol/h/g (under the irradiation of 550-900 nm light) was achieved in the Cd 0.5 Zn 0.5 S/OLC composite samples. The present work shows that using the OLC matrix in such a reverse construction is a promising strategy for noble metal-free solar hydrogen production.
Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa.
Sakuragi, Yumiko; Kolter, Roberto
2007-07-01
Quorum sensing (QS) has been previously shown to play an important role in the development of Pseudomonas aeruginosa biofilms (D. G. Davies et al., Science 280:295-298, 1998). Although QS regulation of swarming and DNA release has been shown to play important roles in biofilm development, regulation of genes directly involved in biosynthesis of biofilm matrix has not been described. Here, transcription of the pel operon, essential for the production of a glucose-rich matrix exopolysaccharide, is shown to be greatly reduced in lasI and rhlI mutants. Chemical complementation of the lasI mutant with 3-oxo-dodecanoyl homoserine lactone restores pel transcription to the wild-type level and biofilm formation ability. These findings thus connect QS signaling and transcription of genes responsible for biofilm matrix biosynthesis.
Determination of total mercury in seafood and other protein-rich products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landi, S.; Fagioli, F.; Locatelli, C.
1992-11-01
A previously developed wet-digestion method for the determination of total mercury in plants by cold vapor atomic absorption spectroscopy (CVAAS) was extended to the analysis of seafood and other products rich in proteins. Oxidation of matrixes is accomplished by K{sub 2}Cr{sub 2}O{sub 7} in the presence of diluted H{sub 2}SO{sub 4}; a simple air condenser is used to reflux vapors released from the boiling mixture. The original procedure (A) and 2 modifications (B and C), which differ with respect to the mode of acidification and/or digestion time and the types of condensers used, were compared for precision and accuracy bymore » means of National Institute of Standards and Technology Research Material 50 Albacore Tuna and proved to be reliable (Hg present, 0.95{plus_minus}0.1 {mu}g/g; Hg found, 0.97 {plus_minus} 0.029 {mu}g/g [A], 0.98 {plus_minus} 0.018 {mu}g/g [B], and 0.94 {plus_minus} 0.025 {mu}g/g [C]). The modified procedures were tested further in Hg recovery experiments on a variety of biological matrixes with different spiking substances and again showed good analytical characteristics (overall average recoveries = 98 {plus_minus} 5.1% for seafood and 100 {plus_minus} 3.6 for protein-rich baby foods). 22 refs., 1 fig., 5 tabs.« less
Srivastava, Priyanka; Kapoor, Rakesh; Mittal, Rama Devi
2009-01-01
Matrix metalloproteinases have a range of biological functions, including the liberation of cytokines and membrane-bound receptors, with roles in promotion of tumor invasion and angiogenesis. Several polymorphisms in MMPs have been implicated in the development of cancer as well as other diseases. Since their frequency distributions in the general North Indian population is not known the present study was conducted with the focus on MMP-1(-519) Aandgt; G, MMP-1(-1607) 1Gandgt; 2G, and MMP-7(-181) Aandgt; G gene polymorphisms. PCR-based analysis was conducted for 200 normal healthy individuals of similar ethnicity. Allelic frequencies in wild type of MMP-1(-519) Aandgt; G were 71.2% A; MMP-1(-1607) 1Gandgt; 2G 48.2% 1G; MMP-7(-181) Aandgt; G 60.7% A. The variant allele frequencies were 29% A in MMP-1(-519) Aandgt; G; 52% 2G in MMP-1(-1607) 1Gandgt; 2G; and 39.3% G in MMP-7(-181) Aandgt; G respectively. We further compared frequency distribution for these genes with various published studies in different ethnicity globally. Our results suggest that frequency in these MMP genes exhibit distinctive patterns in India that could perhaps be attributed to ethnic variation. This study is important as it can form a baseline for screening individuals who are at high risk when exposed to environmental carcinogens. More emphasis is needed on evaluating polymorphisms, alone or in combination, as modifiers of risk from relevant environmental/lifestyle exposures.
Triñanes, Sara; Casais, M Carmen; Mejuto, M Carmen; Cela, Rafael
2016-09-02
A straightforward single-step extraction method based on matrix solid-phase dispersion (MSPD), followed by high-performance liquid chromatography with hybrid quadrupole time of flight mass spectrometry (LC-QTOF-MS), was developed and optimized to determine five non-steroidal anti-inflammatory drugs (Valdecoxib, Etoricoxib, Parecoxib, Celecoxib and 2,5-Dimethylcelecoxib) in sewage sludge samples. The influence of different operational parameters on the extraction efficiency a well as in the matrix effects of the produced extracts was evaluated in detail. Under final working conditions, freeze dried samples (0.2g) were first soaked with 100μL of aqueous potassium hydroxide solution (60%, w/v), mixed with 1g of anhydrous sodium sulfate and dispersed with 1g of Florisil. This blend was transferred to the top of a polypropylene column cartridge containing 3g of silica. Analytes were recovered using 15mL of hexane/acetone (1:2, v/v) mixture. The extracts were concentrated by evaporation and reconstituted with 1mL of methanol/water (1:1, v/v), filtered and injected in the LC system. Quantification limits from 0.005 and 0.05ngg(-1) and absolute recoveries between 86 and 105% were achieved. Results indicated the presence of two of the targeted COXIBs in real samples of sewage sludge, the highest average concentration (22ngg(-1)) corresponding to celecoxib. Moreover, the screening capabilities of the LC-QTOF-MS system demonstrated that the developed MSPD extraction procedure might be useful for the selective extraction of some other pharmaceuticals (e.g. amiodarone and their metabolite N-desethylamiodarone, miconazole, clotrimazole and ketoprofen) from sludge samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Negreira, N; Rodríguez, I; Rubí, E; Cela, R
2009-07-31
A simple, inexpensive sample preparation procedure, based on the matrix solid-phase dispersion (MSPD) technique, for the determination of six UV filters: 2-ethylhexyl salicylate (EHS), 3,3,5-trimethylcyclohexyl salicylate (Homosalate, HMS), 3-(4-methylbenzylidene) camphor (4-MBC), isoamyl-p-methoxycinnamate (IAMC), 2-ethylhexyl-p-methoxycinnamate (EHMC) and octocrylene (OCR), in dust from indoor environments is presented and the influence of several operational parameters on the extraction performance discussed. Under the final working conditions, sieved samples (0.5 g) were mixed with the same amount of anhydrous sodium sulphate and dispersed with 2 g of octadecyl bonded silica (C18) in a mortar with a pestle. This blend was transferred to a polypropylene solid-phase extraction cartridge containing 2 g of activated silica, as the clean-up co-sorbent. The cartridge was first rinsed with 5 mL of n-hexane and the analytes were then recovered with 4 mL of acetonitrile. This extract was adjusted to 1 mL, filtered and the compounds were determined by gas chromatography combined with tandem mass spectrometry (GC-MS/MS). Recoveries for samples spiked at two different concentrations ranged between 77% and 99%, and the limits of quantification (LOQs) of the method between 10 and 40 ng g(-1). Analysis of settled dust from different indoor areas, including private flats, public buildings and vehicle cabins, showed that EHMC and OCR were ubiquitous in this matrix, with maximum concentrations of 15 and 41 microg g(-1), respectively. Both UV filters were also quantified in dust reference material SRM 2585 for first time. EHS, 4-MBC and IAMC were detected in some of the analyzed samples, although at lower concentrations than EHMC and OCR.
Autoantibody against matrix metalloproteinase-3 in patients with systemic sclerosis.
Nishijima, C; Hayakawa, I; Matsushita, T; Komura, K; Hasegawa, M; Takehara, K; Sato, S
2004-11-01
Systemic sclerosis (SSc) is characterized by multi-organ fibrosis with an autoimmune background. Although autoantibodies are detected frequently in SSc patients, the role of autoantibody in the development of fibrosis remains unknown. Connective tissue homeostasis is a balance between the synthesis and degradation of the extracellular matrix (ECM); ECM degradation is regulated mainly by matrix metalloproteinases (MMPs). Anti-MMP-1 antibody is suggested to inhibit MMP-1 and be involved in the development of the fibrosis in SSc. However, the accumulation of various ECM components in the tissue of SSc cannot be explained by the anti-MMP-1 antibody alone. In this study, we examined the presence or levels of antibody to MMP-3, a protein which degrades various ECM components relevant to SSc fibrosis. Enzyme-linked immunosorbent assay (ELISA) using human recombinant MMP-3 revealed that IgG anti-MMP-3 autoantibody levels were elevated significantly in the sera from SSc patients, but not in patients with active systemic lupus erythematosus or dermatomyositis. IgG and IgM anti-MMP-3 antibody levels were significantly higher in diffuse cutaneous SSc, a severe form, than those in limited cutaneous SSc. Consistently, IgG anti-MMP-3 antibody levels correlated significantly with fibrosis of the skin, lung and renal blood vessels. The presence of IgG anti-MMP-3 autoantibody in sera from SSc patients was confirmed by immunoblotting analysis. Remarkably, MMP-3 activity was inhibited by IgG anti-MMP-3 antibody. These results suggest that anti-MMP-3 antibody is a serological marker that reflects the severity of SSc and also suggest that it may contribute to the development of fibrosis by inhibiting MMP-3 activity and reducing the ECM turnover.
Belgrano, F D S; Verçoza, B R F; Rodrigues, J C F; Hatti-Kaul, R; Pereira, N
2018-04-28
Immobilization of microbial cells is a useful strategy for developing high cell density bioreactors with improved stability and productivity for production of different chemicals. Functionalization of the immobilization matrix or biofilm forming property of some strains has been utilized for achieving cell attachment. The aim of the present study was to investigate the production of exopolysaccharide (EPS) by Propionibacterium freudenreichii C.I.P 59.32 and utilize this feature for immobilization of the cells on porous glass beads for production of propionic acid. Propionibacterium freudenreichii was shown to produce both capsular and excreted EPS during batch cultivations using glucose as carbon source. Different electron microscopy techniques confirmed the secretion of EPS and formation of cellular aggregates. The excreted EPS was mainly composed of mannose and glucose in a 5·3 : 1 g g -1 ratio. Immobilization of the cells on untreated and polyethyleneimine (PEI)-treated Poraver beads in a bioreactor was evaluated. Higher productivity and yield of propionic acid (0·566 g l -1 h -1 and 0·314 g g -1 , respectively) was achieved using cells immobilized to untreated beads and EPS production reached 617·5 mg l -1 after 48 h. These results suggest an important role of EPS-producing strains for improving cell immobilization and propionic acid production. This study demonstrates the EPS-producing microbe to be easily immobilized on a solid matrix and to be used in a bioprocess. Such a system could be optimized for achieving high cell density in fermentations without the need for functionalization of the matrix. © 2018 The Society for Applied Microbiology.
Alali, Sanaz; Gribble, Adam; Vitkin, I Alex
2016-03-01
A new polarimetry method is demonstrated to image the entire Mueller matrix of a turbid sample using four photoelastic modulators (PEMs) and a charge coupled device (CCD) camera, with no moving parts. Accurate wide-field imaging is enabled with a field-programmable gate array (FPGA) optical gating technique and an evolutionary algorithm (EA) that optimizes imaging times. This technique accurately and rapidly measured the Mueller matrices of air, polarization elements, and turbid phantoms. The system should prove advantageous for Mueller matrix analysis of turbid samples (e.g., biological tissues) over large fields of view, in less than a second.
Vortex manipulation in a superconducting matrix with view on applications
NASA Astrophysics Data System (ADS)
Milošević, M. V.; Peeters, F. M.
2010-05-01
We show how a single flux quantum can be effectively manipulated in a superconducting film with a matrix of blind holes. Such a sample can serve as a basic memory element, where the position of the vortex in a k ×l matrix of pinning sites defines the desired combination of n bits of information (2n=k×l). Vortex placement is achieved by strategically applied current and the resulting position is read out via generated voltage between metallic contacts on the sample. Such a device can also act as a controllable source of a nanoengineered local magnetic field for, e.g., spintronics applications.
Method for rapid fabrication of fiber preforms and structural composite materials
Klett, James W.; Burchell, Timothy D.; Bailey, Jeffrey L.
1998-01-01
A densified carbon matrix carbon fiber composite preform is made by vacuum molding an aqueous slurry of carbon fibers and carbonizable organic powder to form a molded part. The molded part is dried in an oven at 50.degree. C. for 14 hours and hot pressed at 2000 psi at 400.degree. C. for 3 hours. The hot pressed part is carbonized at 650.degree. C. under nitrogen for 3 hours and graphitized at 2400.degree. C. to form a graphitic structure in the matrix of the densified carbon matrix carbon fiber composite preform. The densified preform has a density greater than 1.1 g/cc.
Method for rapid fabrication of fiber preforms and structural composite materials
Klett, J.W.; Burchell, T.D.; Bailey, J.L.
1998-04-28
A densified carbon matrix carbon fiber composite preform is made by vacuum molding an aqueous slurry of carbon fibers and carbonizable organic powder to form a molded part. The molded part is dried in an oven at 50 C for 14 hours and hot pressed at 2,000 psi at 400 C for 3 hours. The hot pressed part is carbonized at 650 C under nitrogen for 3 hours and graphitized at 2,400 C to form a graphitic structure in the matrix of the densified carbon matrix carbon fiber composite preform. The densified preform has a density greater than 1.1 g/cc. 12 figs.
Method for rapid fabrication of fiber preforms and structural composite materials
Klett, J.W.; Burchell, T.D.; Bailey, J.L.
1999-02-16
A densified carbon matrix carbon fiber composite preform is made by vacuum molding an aqueous slurry of carbon fibers and carbonizable organic powder to form a molded part. The molded part is dried in an oven at 50 C for 14 hours and hot pressed at 2000 psi at 400 C for 3 hours. The hot pressed part is carbonized at 650 C under nitrogen for 3 hours and graphitized at 2400 C to form a graphitic structure in the matrix of the densified carbon matrix carbon fiber composite preform. The densified preform has a density greater than 1.1 g/cc. 12 figs.
Method for rapid fabrication of fiber preforms and structural composite materials
Klett, James W.; Burchell, Timothy D.; Bailey, Jeffrey L.
1999-01-01
A densified carbon matrix carbon fiber composite preform is made by vacuum molding an aqueous slurry of carbon fibers and carbonizable organic powder to form a molded part. The molded part is dried in an oven at 50.degree. C. for 14 hours and hot pressed at 2000 psi at 400.degree. C. for 3 hours. The hot pressed part is carbonized at 650.degree. C. under nitrogen for 3 hours and graphite at 2400.degree. C. to form a graphitic structure in the matrix of the densified carbon matrix carbon fiber composite preform. The densified preform has a density greater than 1.1 g/cc.
Reinforcement of nylon 6,6/nylon 6,6 grafted nanodiamond composites by in situ reactive extrusion.
Choi, Eun-Yeob; Kim, Kiho; Kim, Chang-Keun; Kang, Eunah
2016-11-14
Nanodiamond (ND), an emerging new carbon material, was exploited to reinforce nylon 6,6 (PA66) polymer composites. Surface modified nanodiamonds with acyl chloride end groups were employed to chemically graft into PA66, enhancing the interfacial adhesion and thus the mechanical properties. The ND grafted PA66 (PA66-g-ND) reinforced PA66 composite prepared by in situ reactive extrusion exhibited increased tensile strength and modulus. The tensile strength and modulus of PA66/3 wt.% PA66-g-ND composites were enhanced by 11.6 and 20.8%, respectively when compared to those of the bare PA66 matrix. Even the PA66/pristine ND composites exhibited enhanced mechanical properties. The PA66-g-ND and the homogeneously dispersed PA66-g-ND in PA66 matrix were examined using X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy techniques. The mechanical properties and thermal conductivities of the nanodiamond incorporated PA66 composites were also explored. The enhanced mechanical properties and thermal conductivities of the PA66-g-ND/PA66 composites make them potential materials for new applications as functional engineered thermoplastics.
Reinforcement of nylon 6,6/nylon 6,6 grafted nanodiamond composites by in situ reactive extrusion
NASA Astrophysics Data System (ADS)
Choi, Eun-Yeob; Kim, Kiho; Kim, Chang-Keun; Kang, Eunah
2016-11-01
Nanodiamond (ND), an emerging new carbon material, was exploited to reinforce nylon 6,6 (PA66) polymer composites. Surface modified nanodiamonds with acyl chloride end groups were employed to chemically graft into PA66, enhancing the interfacial adhesion and thus the mechanical properties. The ND grafted PA66 (PA66-g-ND) reinforced PA66 composite prepared by in situ reactive extrusion exhibited increased tensile strength and modulus. The tensile strength and modulus of PA66/3 wt.% PA66-g-ND composites were enhanced by 11.6 and 20.8%, respectively when compared to those of the bare PA66 matrix. Even the PA66/pristine ND composites exhibited enhanced mechanical properties. The PA66-g-ND and the homogeneously dispersed PA66-g-ND in PA66 matrix were examined using X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy techniques. The mechanical properties and thermal conductivities of the nanodiamond incorporated PA66 composites were also explored. The enhanced mechanical properties and thermal conductivities of the PA66-g-ND/PA66 composites make them potential materials for new applications as functional engineered thermoplastics.
Delamination growth analysis in quasi-isotropic laminates under loads simulating low-velocity impact
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Elber, W.
1984-01-01
A geometrically nonlinear finite-element analysis was developed to calculate the strain energy released by delamination plates during impact loading. Only the first mode of deformation, which is equivalent to static deflection, was treated. Both the impact loading and delamination in the plate were assumed to be axisymmetric. The strain energy release rate in peeling, G sub I, and shear sliding, G sub II, modes were calculated using the fracture mechanics crack closure technique. Energy release rates for various delamination sizes and locations and for various plate configurations and materials were compared. The analysis indicated that shear sliding (G sub II) was the primary mode of delamination growth. The analysis also indicated that the midplane (maximum transverse shear stress plane) delamination was more critical and would grow before any other delamination of the same size near the midplane region. The delamination growth rate was higher (neutrally stable) for a low toughness (brittle) matrix and slower (stable) for high toughness matrix. The energy release rate in the peeling mode, G sub I, for a near-surface delamination can be as high as 0.5G sub II and can contribute significantly to the delamination growth.
Reinforcement of nylon 6,6/nylon 6,6 grafted nanodiamond composites by in situ reactive extrusion
Choi, Eun-Yeob; Kim, Kiho; Kim, Chang-Keun; Kang, Eunah
2016-01-01
Nanodiamond (ND), an emerging new carbon material, was exploited to reinforce nylon 6,6 (PA66) polymer composites. Surface modified nanodiamonds with acyl chloride end groups were employed to chemically graft into PA66, enhancing the interfacial adhesion and thus the mechanical properties. The ND grafted PA66 (PA66-g-ND) reinforced PA66 composite prepared by in situ reactive extrusion exhibited increased tensile strength and modulus. The tensile strength and modulus of PA66/3 wt.% PA66-g-ND composites were enhanced by 11.6 and 20.8%, respectively when compared to those of the bare PA66 matrix. Even the PA66/pristine ND composites exhibited enhanced mechanical properties. The PA66-g-ND and the homogeneously dispersed PA66-g-ND in PA66 matrix were examined using X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy techniques. The mechanical properties and thermal conductivities of the nanodiamond incorporated PA66 composites were also explored. The enhanced mechanical properties and thermal conductivities of the PA66-g-ND/PA66 composites make them potential materials for new applications as functional engineered thermoplastics. PMID:27841314
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jin-Woo; Kim, Changhyeon; Ryu, Ho-Suk
2015-09-15
Highlights: • The content of sulfur in activated carbon was controlled by solution process. • The sulfur electrode with low sulfur content shows the best performance. • The Li/S battery has capacity of 1360 mAh/g at 1 C and 702 mAh/g at 10 C. - Abstract: The content of sulfur in sulfur/activated carbon composite is controlled from 32.37 wt.% to 55.33 wt.% by a one-step solution-based process. When the sulfur content is limited to 41.21 wt.%, it can be loaded into the pores of an activated carbon matrix in a highly dispersed state. On the contrary, when the sulfur contentmore » is 55.33 wt.%, crystalline sulfur can be detected on the surface of the activated carbon matrix. The best electrochemical performance can be obtained for a sulfur electrode with the lowest sulfur content. The sulfur/activated carbon composite with 32.37 wt.% sulfur afforded the highest first discharge capacity of 1360 mAh g{sup −1} at 1 C rate and a large reversible capacity of 702 mAh g{sup −1} at 10 C (16.75 A/g)« less
Ferromagnetic resonance and magnetic properties of ALHA 81005
NASA Technical Reports Server (NTRS)
Morris, R. V.
1983-01-01
Seven chips of primarily matrix material from the Antarctic meteorite ALHA 81005 were analyzed by ferromagnetic resonance (FMR) and magnetic hysteresis techniques. The FMR spectra of two chips have a resonance at g of about 2.1 that resembles the g of about 2.1 resonance that is characteristic of lunar soils. Thus the FMR spectra are consistent with the lunar regolith being a progenitor for the matrix material. For the two chips, the FMR surface exposure (maturity) index was about 5 units, which is equivalent to a value for an immature lunar soil. The total concentration of metallic iron is on the order of 0.11 equivalent wt. pct, which is within the observed range for Apollo 16 rocks and soils.
Balaure, Paul Catalin; Andronescu, Ecaterina; Grumezescu, Alexandru Mihai; Ficai, Anton; Huang, Keng-Shiang; Yang, Chih-Hui; Chifiriuc, Carmen Mariana; Lin, Yung-Sheng
2013-01-30
This work is focused on the fabrication of a new drug delivery system based on polyanionic matrix (e.g. sodium alginate), polycationic matrix (e.g. chitosan) and silica network. The FT-IR, SEM, DTA-TG, eukaryotic cell cycle and viability, and in vitro assay of the influence of the biocomposite on the efficacy of antibiotic drugs were investigated. The obtained results demonstrated the biocompatibility and the ability of the fabricated biocomposite to maintain or improve the efficacy of the following antibiotics: piperacillin-tazobactam, cefepime, piperacillin, imipenem, gentamicin, ceftazidime against Pseudomonas aeruginosa ATCC 27853 and cefazolin, cefaclor, cefuroxime, ceftriaxone, cefoxitin, trimethoprim/sulfamethoxazole against Escherichia coli ATCC 25922 reference strains. Copyright © 2012 Elsevier B.V. All rights reserved.
Stress Corrosion Cracking Issues in Light Metals for Automotive Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Russell H.; Danielson, Michael J.; Baer, Donald R.
The Partnership for New Generation Vehicle has the goal of producing lightweight automobiles that achieve 80 mpg. To accomplish this will require liberal use of Al and Mg alloys such as AA5083 and AZ91D. The corrosion and stress corrosion of alloy AA5083 is controlled by the precipitation of the b-phase (Al3Mg2) at grain boundaries and by the precipitation of the g-phase (Mg17Al12) in AZ91D. The b-phase is anodic to the Al matrix while the g-phase is cathodic to the Mg matrix. The effects of crack propagation along grain boundaries with electrochemically active particles is a key factor in the SCCmore » performance of these materials.« less
Novel Molecular Imaging Approaches to Abdominal Aortic Aneurysm Risk Stratification
Toczek, Jakub; Meadows, Judith L.; Sadeghi, Mehran M.
2015-01-01
Selection of patients for abdominal aortic aneurysm (AAA) repair is currently based on aneurysm size, growth rate and symptoms. Molecular imaging of biological processes associated with aneurysm growth and rupture, e.g., inflammation and matrix remodeling, could improve patient risk stratification and lead to a reduction in AAA morbidity and mortality. 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and ultrasmall superparamagnetic particles of iron oxide (USPIO) magnetic resonance imaging are two novel approaches to AAA imaging evaluated in clinical trials. A variety of other tracers, including those that target inflammatory cells and proteolytic enzymes (e.g., integrin αvβ3 and matrix metalloproteinases), have proven effective in preclinical models of AAA and show great potential for clinical translation. PMID:26763279
2014-01-01
thickness abdominal wall defects. Tissue Eng 12, 1929, 2006. 7. Gamba, P.G., Conconi, M.T., Lo Piccolo, R., Zara , G., Spi nazzi, R., and Parnigotto... Zara , G., Sabatti, M., Marzaro, M., et al. Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue engineering approach to
Theoretical vibrational spectra of diformates: Diformate anion
NASA Astrophysics Data System (ADS)
Dobrowolski, Jan Cz.; Jamróz, Michał H.; Kazimirski, Jan K.; Bajdor, Krzysztof; Borowiak, Marek A.; Larsson, Ragnar
1999-05-01
The IR spectrum of the most stable diformate anion was calculated at the MP2/6-311++G(3df, 3pd), RHF/6-311++G **, and B3PW91/6-311++G ** levels. The internal coordinates were defined for the diformate anion and used in potential energy distribution (PED) analysis. The PED analysis of the theoretical spectra form the basis for elucidation of the future matrix isolation IR spectra.
Serçinoglu, Onur; Ozbek, Pemra
2018-05-25
Atomistic molecular dynamics (MD) simulations generate a wealth of information related to the dynamics of proteins. If properly analyzed, this information can lead to new insights regarding protein function and assist wet-lab experiments. Aiming to identify interactions between individual amino acid residues and the role played by each in the context of MD simulations, we present a stand-alone software called gRINN (get Residue Interaction eNergies and Networks). gRINN features graphical user interfaces (GUIs) and a command-line interface for generating and analyzing pairwise residue interaction energies and energy correlations from protein MD simulation trajectories. gRINN utilizes the features of NAMD or GROMACS MD simulation packages and automatizes the steps necessary to extract residue-residue interaction energies from user-supplied simulation trajectories, greatly simplifying the analysis for the end-user. A GUI, including an embedded molecular viewer, is provided for visualization of interaction energy time-series, distributions, an interaction energy matrix, interaction energy correlations and a residue correlation matrix. gRINN additionally offers construction and analysis of Protein Energy Networks, providing residue-based metrics such as degrees, betweenness-centralities, closeness centralities as well as shortest path analysis. gRINN is free and open to all users without login requirement at http://grinn.readthedocs.io.
NASA Astrophysics Data System (ADS)
Zhang, Xiuling; Ma, Li; Gan, Mengyu; Fu, Gang; Jin, Meng; Lei, Yao; Yang, Peishu; Yan, Maofa
2017-02-01
A facile approach to acquire electrode materials with prominent electrochemical property is pivotal to the progress of supercapacitors. 3D nitrogen-doped porous carbon matrix (PCM), with high specific surface area (SSA) up to 2720 m2 g-1, was obtained from the carbonization and activation of the nitrogen-enriched composite precursor (graphene/polyaniline). Then 3D lawn-shaped PCM/PANI composite was obtained by the simple in-situ polymerization. The morphology and structure of these resulting composites were characterized by combining SEM and TEM measurements, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) spectroscopy analyses and Raman spectroscope. The element content of all samples was evaluated using CHN analysis. The results of electrochemical testing indicated that the PCM/PANI composite displays a higher capacitance value of 527 F g-1 at 1 A g-1 compared to 338 F g-1 for pure PANI, and exhibits appreciable rate capability with a retention of 76% at 20 A g-1 as well as fine long-term cycling performance (with 88% retention of specific capacitance after 1000 cycles at 10 A g-1). Simultaneously, the excellent capacitance performance coupled with the facile synthesis of PCM/PANI indicates it is a promising electrode material for supercapacitors.
Bosco, Renato; Daeseleire, Els; Van Pamel, Els; Scariot, Valentina; Leus, Leen
2014-07-09
This paper describes a method to detect and quantitate the endogenous plant hormones (±)-2-cis-4-trans-abscisic acid, (-)-jasmonic acid, and salicylic acid by means of ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in hybrid rose leaf matrices. Deuterium-labeled [(2)H6] (+)-2-cis-4-trans-abscisic acid, [(2)H6] (±)-jasmonic acid, and [(2)H4]-salicylic acid were used as internal standards. Rose samples (10 mg) were extracted with methanol/water/acetic acid (10:89:1) and subsequently purified on an Oasis MCX 1 cm(3) Vac SPE cartridge. Performance characteristics were validated according to Commission Decision 2002/657/EC. Recovery, repeatability, and within-laboratory reproducibility were acceptable for all phytohormones tested at three different concentrations. The decision limit and detection capability for (±)-2-cis-4-trans-abscisic acid, (-)-jasmonic acid, and salicylic acid were 0.0075 and 0.015 μg/g, 0.00015 and 0.00030 μg/g, and 0.0089 and 0.018 μg/g, respectively. Matrix effects (signal suppression or enhancement) appeared to be high for all substances considered, implying the need for quantitation based on matrix-matched calibration curves.
Wang, Xiaoyan; Yu, Tailong; Chen, Guanghua; Zou, Jilong; Li, Jianzhong; Yan, Jinglong
2017-03-01
Previous studies have demonstrated that extracellular matrix (ECM) can be used in tissue engineering due to its bioactivity. However, adipose-derived ECM (A-dECM) has never been applied in bone tissue engineering, and it is unknown whether it would be beneficial to the growth of bone marrow mesenchymal stem cells (BMSCs). In this study, we produced chitosan/gelatin/A-dECM (C/G/A-dECM) scaffolds via lyophilization and crosslinking; chitosan/gelatin (C/G) scaffolds were used as controls. For the C/G/A-dECM scaffolds, the average pore size was 285.93 ± 85.39 μm; the average porosity was 90.62 ± 3.65%; the average compressive modulus was 0.87 ± 0.05 kPa; and the average water uptake ratio was 13.73 ± 1.16. In vitro, A-dECM scaffolds could promote the attachment and proliferation of BMSCs. In the same osteogenic-inducing reagent, better osteogenic differentiation could be observed for the C/G/A-dECM scaffolds than for the C/G scaffolds. Thus, we conclude that A-dECM is a promising material and that C/G/A-dECM scaffolds are a candidate for bone tissue engineering.
Djatmika, Rosalina; Hsieh, Chih-Chung; Chen, Jhih-Ming; Ding, Wang-Hsien
2016-11-15
An effective method for determining four commonly detected paraben preservatives (methyl, ethyl, propyl and butyl paraben) in marketed seafood is presented. This method employs matrix solid-phase dispersion (MSPD) before identification and quantification of the paraben preservatives via on-line acetylation gas chromatography-mass spectrometry (GC-MS). Parameters affecting the extraction efficiency of MSPD were optimized through a Box-Behnken design method. Under optimal condition, 0.5-g of freeze-dried seafood was mixed with 0.5-g of anhydrous sodium sulfate, and dispersed with 1.0-g of Florisil using vortex. After that, the blend was transferred to a glass column containing 1.5-g of silica gel+C18 (w/w, 9:1), which acted as clean-up co-sorbents. Then, target analytes were eluted with 12mL of acetonitrile. The extract was then derivatized on-line in the GC injection-port through reaction with acetic anhydride, and the identity and quantity of the target analytes were determined by the GC-MS system. The limits of quantitation (LOQs) were 0.2 to 1.0ng/g (dry weight). Preliminary results showed that the total concentrations of four selected parabens ranged from 16.7 to 44.7ng/g (dry weight). Copyright © 2016 Elsevier B.V. All rights reserved.
Environmental effects on the structure of the G-matrix.
Wood, Corlett W; Brodie, Edmund D
2015-11-01
Genetic correlations between traits determine the multivariate response to selection in the short term, and thereby play a causal role in evolutionary change. Although individual studies have documented environmentally induced changes in genetic correlations, the nature and extent of environmental effects on multivariate genetic architecture across species and environments remain largely uncharacterized. We reviewed the literature for estimates of the genetic variance-covariance (G) matrix in multiple environments, and compared differences in G between environments to the divergence in G between conspecific populations (measured in a common garden). We found that the predicted evolutionary trajectory differed as strongly between environments as it did between populations. Between-environment differences in the underlying structure of G (total genetic variance and the relative magnitude and orientation of genetic correlations) were equal to or greater than between-population differences. Neither environmental novelty, nor the difference in mean phenotype predicted these differences in G. Our results suggest that environmental effects on multivariate genetic architecture may be comparable to the divergence that accumulates over dozens or hundreds of generations between populations. We outline avenues of future research to address the limitations of existing data and characterize the extent to which lability in genetic correlations shapes evolution in changing environments. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
The localization of occluded matrix proteins in calcareous spicules of sea urchin larvae.
Seto, Jong; Zhang, Yang; Hamilton, Patricia; Wilt, Fred
2004-10-01
The sea urchin embryo forms calcareous endoskeletal spicules composed of calcite and an occluded protein matrix. Though the latter is approximately 0.1% of of the mass, the composite has substantially altered material properties, e.g., conchoidal fracture planes and increased hardness. Experiments were conducted to examine the localization of matrix proteins occluded in the mineral by use of immunocytochemistry coupled with scanning electron microscopy (SEM). The isolated, unfixed spicules were etched under relatively gentle conditions and exposed to affinity purified antibodies made against two different matrix proteins, as well as an antibody to the entire constellation of matrix proteins. Immunogold tagged secondary antibody was used to observe antibody localization in the back scatter mode of SEM. All proteins examined were very widely distributed throughout the calcite, supporting a model of the structure in which a multiprotein assemblage is woven with fine texture around microcrystalline domains of calcite. Gentle etching revealed a laminar arrangement of calcite solubility, consistent with a stepwise deposition of matrix and mineral to increase girth of the spicule.
Warren, Alexander D; Conway, Ulric; Arthur, Christopher J; Gates, Paul J
2016-07-01
The analysis of low molecular weight compounds by matrix-assisted laser desorption/ionisation mass spectrometry is problematic due to the interference and suppression of analyte ionisation by the matrices typically employed - which are themselves low molecular weight compounds. The application of colloidal graphite is demonstrated here as an easy to use matrix that can promote the ionisation of a wide range of analytes including low molecular weight organic compounds, complex natural products and inorganic complexes. Analyte ionisation with colloidal graphite is compared with traditional organic matrices along with various other sources of graphite (e.g. graphite rods and charcoal pencils). Factors such as ease of application, spectra reproducibility, spot longevity, spot-to-spot reproducibility and spot homogeneity (through single spot imaging) are explored. For some analytes, considerable matrix suppression effects are observed resulting in spectra completely devoid of matrix ions. We also report the observation of radical molecular ions [M(-●) ] in the negative ion mode, particularly with some aromatic analytes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
A General Exponential Framework for Dimensionality Reduction.
Wang, Su-Jing; Yan, Shuicheng; Yang, Jian; Zhou, Chun-Guang; Fu, Xiaolan
2014-02-01
As a general framework, Laplacian embedding, based on a pairwise similarity matrix, infers low dimensional representations from high dimensional data. However, it generally suffers from three issues: 1) algorithmic performance is sensitive to the size of neighbors; 2) the algorithm encounters the well known small sample size (SSS) problem; and 3) the algorithm de-emphasizes small distance pairs. To address these issues, here we propose exponential embedding using matrix exponential and provide a general framework for dimensionality reduction. In the framework, the matrix exponential can be roughly interpreted by the random walk over the feature similarity matrix, and thus is more robust. The positive definite property of matrix exponential deals with the SSS problem. The behavior of the decay function of exponential embedding is more significant in emphasizing small distance pairs. Under this framework, we apply matrix exponential to extend many popular Laplacian embedding algorithms, e.g., locality preserving projections, unsupervised discriminant projections, and marginal fisher analysis. Experiments conducted on the synthesized data, UCI, and the Georgia Tech face database show that the proposed new framework can well address the issues mentioned above.
Damage Accumulation in SiC/SiC Composites with 3D Architectures
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Yun, Hee-Mann; DiCarlo, James A.
2003-01-01
The formation and propagation of multiple matrix cracks in relatively dense ceramic matrix composites when subjected to increasing tensile stress is necessary for high strength and tough composites. However, the occurrence of matrix cracks at low stresses may limit the usefulness of some non-oxide composite systems when subjected to oxidizing environments for long times at stresses sufficient to cause matrix cracking. For SiC fiber-reinforced composites with two-dimensional woven architectures and chemically vapor infiltrated (CVI) SiC matrix and melt-infiltrated (MI) Si/SiC matrix composites, the matrix cracking behavior has been fairly well characterized for different fiber-types and woven architectures. It was found that the occurrence, degree, and growth of matrix cracks depends on the material properties of the composite constituents as well as other physical properties of the composite or architecture, e.g., matrix porosity and size of the fiber bundle. In this study, matrix cracking in SiC fiber reinforced, melt-infiltrated SiC composites with a 3D orthogonal architecture was determined for specimens tested in tension at room temperature. Acoustic emission (AE) was used to monitor the matrix cracking activity, which was later confirmed by microscopic examination of specimens that had failed. The determination of the exact location of AE demonstrated that initial cracking occurred in the matrix rich regions when a large z-direction fiber bundle was used. For specimens with large z-direction fiber tows, the earliest matrix cracking could occur at half the stress for standard 2D woven composites with similar constituents. Damage accumulation in 3D architecture composites will be compared to damage accumulation in 2D architecture composites and discussed with respect to modeling composite stress-strain behavior and use of these composites at elevated temperatures.
Environmentally Adaptive UXO Detection and Classification Systems
2016-04-01
probability of false alarm ( Pfa ), as well as Receiver Op- erating Characteristic (ROC) curve and confusion matrix characteristics. The results of these...techniques at a false alarm probability of Pfa = 1× 10−3. X̃ = g(X). In this case, the problem remains invariant to the group of transformations G = { g : g(X...and observed target responses as well as the probability of detection versus SNR for both detection techniques at Pfa = 1× 10−3. with N = 128 and M = 50
Pasqualone, Antonella; Gambacorta, Giuseppe; Summo, Carmine; Caponio, Francesco; Di Miceli, Giuseppe; Flagella, Zina; Marrese, Pier Paolo; Piro, Gabriella; Perrotta, Carla; De Bellis, Luigi; Lenucci, Marcello Salvatore
2016-12-15
A study was carried out to produce functional pasta by adding bran aqueous extract (BW) and bran oleoresin (BO) obtained using ultrasound and supercritical CO2, respectively, or a powdery lyophilized tomato matrix (LT). The bioactive compounds, hydrophilic and lipophilic antioxidant activity (HAA and LAA) in vitro, were evaluated. BW supplementation did not improve antioxidant activity, whilst LT pasta showed unconventional taste and odor. BO pasta had good levels of tocochromanols (2551μg/100g pasta f.w.) and carotenoids (40.2μg/100g pasta f.w.), and the highest HAA and LAA. The oleoresin altered starch swelling and gluten network, as evidenced by scanning electron microscopy, therefore BO pasta had structural characteristics poor compared with the control (4.8% vs. 3.2% cooking loss), although this difference did not affect significantly overall sensory judgment (74 vs. 79 for BO and control, respectively). BO supplementation was most effective for increasing antioxidant activity without jeopardizing pasta quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma.
Tijink, Marlon S L; Wester, Maarten; Glorieux, Griet; Gerritsen, Karin G F; Sun, Junfen; Swart, Pieter C; Borneman, Zandrie; Wessling, Matthias; Vanholder, Raymond; Joles, Jaap A; Stamatialis, Dimitrios
2013-10-01
In end stage renal disease (ESRD) waste solutes accumulate in body fluid. Removal of protein bound solutes using conventional renal replacement therapies is currently very poor while their accumulation is associated with adverse outcomes in ESRD. Here we investigate the application of a hollow fiber mixed matrix membrane (MMM) for removal of these toxins. The MMM hollow fiber consists of porous macro-void free polymeric inner membrane layer well attached to the activated carbon containing outer MMM layer. The new membranes have permeation properties in the ultrafiltration range. Under static conditions, they adsorb 57% p-cresylsulfate, 82% indoxyl sulfate and 94% of hippuric acid from spiked human plasma in 4 h. Under dynamic conditions, they adsorb on average 2.27 mg PCS/g membrane and 3.58 mg IS/g membrane in 4 h in diffusion experiments and 2.68 mg/g membrane PCS and 12.85 mg/g membrane IS in convection experiments. Based on the dynamic experiments we estimate that our membranes would suffice to remove the daily production of these protein bound solutes. Copyright © 2013 Elsevier Ltd. All rights reserved.
BetaIg-h3 is involved in the HAb18G/CD147-mediated metastasis process in human hepatoma cells.
Tang, Juan; Zhou, Hong-wei; Jiang, Jian-li; Yang, Xiang-min; Li, Yu; Zhang, Hong-xin; Chen, Zhi-nan; Guo, Wei-ping
2007-03-01
HAb18G/CD147, a new hepatoma-associated antigen cloned and screened from human hepatocellular carcinoma cDNA library, is closely correlated with metastasis process in human hepatoma cells. In the present study we aimed to identify the pivotal molecules of the HAb18G/CD147 signal transduction pathway. The investigation showed that betaig-h3, a secretory extracellular matrix (ECM) protein, was upregulated in HAb18G/CD147-expressing human hepatoma T7721 cells and was downregulated by depressing HAb18G/CD147 expression. The expression of betaig-h3, upregulated in human hepatoma cells, was positively relative to the expression of HAb18G/CD147 in different human hepatoma cell lines. By overexpressing betaig-h3 in human SMMC-7721 hepatoma cells, we discovered that betaig-h3 promoted cell adhesion, invasion, and matrix metalloproteinase (MMP) secretion potential. HAb18G/CD147-induced invasion and metastasis potential of human hepatoma cells can be attenuated by antibodies specific for betaig-h3, and no significant differences on inhibitory effects were observed among T7721 cells incubated with antibodies for betaig-h3 or HAb18G/CD147 or both types together. Taken together, our study suggests that betaig-h3, regulated by the expression of HAb18G/CD147, is involved in the HAb18G/CD147 signal transduction pathway and mediates the HAb18G/CD147-induced invasion and metastasis process of human hepatoma cells.
New approach for assessing human perfluoroalkyl exposure via hair.
Alves, Andreia; Jacobs, Griet; Vanermen, Guido; Covaci, Adrian; Voorspoels, Stefan
2015-11-01
In the recent years hair has been increasingly used as alternative matrix in human biomonitoring (HBM) of environmental pollutants. Sampling advantages and time integration of exposure assessment seems the most attractive features of hair matrix. In the current study, a novel miniaturized method was developed and validated for measuring 15 perfluoroalkyl substances (PFAS), including perfluoro n-butanoic acid (PFBA), perfluoro n-pentanoic acid (PFPeA), perfluoro n-hexanoic acid (PFHxA), perfluoro n-heptanoic acid (PFHpA), perfluor n-octanoic acid (PFOA), perfluoro n-nonanoic acid (PFNA), perfluoro tetradecanoic acid (PFTeDA), perfluorobutane sulfonic acid (PFBS), perfluoro pentane sulfonic acid (PFPeS), perfluorohexane sulfonic acid (PFHxS), perfluoroheptane sulfonic acid (PFHpS), perfluorooctane sulfonic acid (PFOS), perfluorononane sulfonic acid (PFNS), perfluorodecane sulfonic acid (PFDS) and perfluorododecane sulfonic acid (PFDoS) in human hair by liquid chromatography tandem mass spectrometry (LC-MS/MS). After extraction using ethyl acetate, dispersive ENVI-Carb was used for clean-up. Good intra- and inter-day precision for low (LQ 5 ng/g hair) and high spike (HQ 15n g/g) levels were achieved (in general RSD <10%). The accuracy was assessed using recoveries (%), which ranged between 68-118% (LQ) and 70-121% (HQ). The instrumental limit of detection (LODi) and limit of quantification (LOQi) were between 1-4 pg/g hair and 3-13 pg/g hair, respectively. The method limit of quantification (LOQm) ranged between 6 and 301 pg/g hair. The PFAS levels were measured in 30 human hair samples indicating that the levels are low (14-1534 pg/g hair). Some PFAS were not present in any hair sample (e.g. PFHpA, PFTeDA, PFNA, PFPeS, PFHpS, PFOS and PFNS), while other PFAS were frequently detected (PFBA, PFPeA, PFHxA, PFOA, PFBS, PFHxS, PFOS, PFDS and PFDoS) in human hair. Although levels in general were low, there is evidence of higher human exposure to some analytes, such as PFBA, PFPeA, PFHxA, PFOA, PFBS, PFHxS, and PFDoS. The current study shows that hair is a suitable alternative non-invasive matrix for exposure assessment of PFAS. Copyright © 2015 Elsevier B.V. All rights reserved.
Cloete, Kevin Wesley; Ristow, Peter Gustav; Kasu, Mohaimin; D'Amato, Maria Eugenia
2017-03-01
CE equipment detects and deconvolutes mixtures containing up to six fluorescently labeled DNA fragments. This deconvolution is done by the collection software that requires a spectral calibration file. The calibration file is used to adjust for the overlap that occurs between the emission spectra of fluorescence dyes. All commercial genotyping and sequencing kits require the installation of a corresponding matrix standard to generate a calibration file. Due to the differences in emission spectrum overlap between fluorescent dyes, the application of existing commercial matrix standards to the electrophoretic separation of DNA labeled with other fluorescent dyes can yield undesirable results. Currently, the number of fluorescent dyes available for oligonucleotide labeling surpasses the availability of commercial matrix standards. Therefore, in this study we developed and evaluated a customized matrix standard using ATTO 633, ATTO 565, ATTO 550, ATTO Rho6G, and 6-FAM dyes for which no commercial matrix standard is available. We highlighted the potential genotyping errors of using an incorrect matrix standard by evaluating the relative performance of our custom dye set using six matrix standards. The specific performance of two genotyping kits (UniQTyper™ Y-10 version 1.0 and PowerPlex® Y23 System) was also evaluated using their specific matrix standards. The procedure we followed for the construction of our custom dye matrix standard can be extended to other fluorescent dyes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Han, Fang; Liu, Han
2016-01-01
Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson’s sample correlation matrix. Although Pearson’s sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall’s tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall’s tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall’s tau correlation matrix and the latent Pearson’s correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of “effective rank” in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a “sign subgaussian condition” which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition. PMID:28337068
Zhang, Liang; Lyu, Tao; Ramírez Vargas, Carlos Andrés; Arias, Carlos A; Carvalho, Pedro N; Brix, Hans
2018-09-01
Constructed wetlands (CWs) are an eco-friendly and cost-effective technology to remove organic micro-pollutants (OMPs) from wastewater. The support matrix is an important component in CWs as it has a primary role in the growth and development of plants and microbes. However, the roles of the support matrix in CWs in removing OMPs have not been systematically studied. Therefore, in this study, six common materials (sand, zeolite, blast iron slag, petcoke, polonite and crushed autoclaved aerated concrete (CAAC)) as support matrixes were firstly investigated by batch tests to explore their adsorption capacities to selected OMPs (ibuprofen, iohexol, tebuconazole and imazalil). Results showed that the adsorption capacities of the materials were low (at the level of μg/g) compared to well-known sorbents (at the level of mg/g), such as activated carbon and carbon nanotubes. Columns packed with the six materials, respectively, were then built up to study the effects of different materials on microbial community. In the medium-term study (66 days), the removal of four OMPs in all the columns increased by 2-58% from day 25 to day 66, and was mainly attributed to microbial degradation. Furthermore, Community-level physiological profiling (CLPP) analysis indicates that material presence shaped the microbial community metabolic function not only in the interstitial water but also in the biofilm. Overall, all the findings demonstrate that although the adsorption capacities of the common materials are low, they may be a driver to improve the removal of OMPs by altering microbial community function in CWs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Shu; Liu, Baomin; Yuan, Dongxing; Ma, Jian
2016-12-01
Glyphosate (GLYP) is an important herbicide which is also used as the phosphorus source for marine organisms. The wide applications of GLYP can lead to its accumulation in oceans and coastal waters, thus creating environmental issues. However, there is limited methods for detection of GLYP and its degradation product, aminomethylphosphonic acid (AMPA) in saline samples. Therefore, a simple and fast method for the quantification of GLYP and AMPA in seawater matrix has been developed based on the derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl), separation with high performance liquid chromatography (HPLC) and detection with fluorescence detector (FLD). In order to maximize sensitivity, the derivatization procedure was carefully optimized regarding concentration of FMOC-Cl, volume of borate buffer, pH of borate buffer, mixing and derivatization time. The derivatization reaction could be completed within 30min in seawater samples without any additional clean-up or desalting steps. Under the optimized conditions, the developed HPLC method showed a wide linear response (up to several mg/L, R 2 >0.99). The limits of detection were 0.60μg/L and 0.30μg/L for GLYP and AMPA in seawater matrix, respectively. The relative standard deviation was 14.0% for GLYP (1.00mg/L) and 3.1% for AMPA (100μg/L) in saline samples with three different operators (n=24). This method was applied to determine the concentration of GLYP and AMPA in seawater culture media and the recovery data indicated minimal matrix interference. Due to its simplicity, high reproducibility and successful application in seawater culture media analysis, this method is a potentially useful analytical technique for both marine research and environmental science. Copyright © 2016 Elsevier B.V. All rights reserved.
Eigenvalues of the Laplacian of a graph
NASA Technical Reports Server (NTRS)
Anderson, W. N., Jr.; Morley, T. D.
1971-01-01
Let G be a finite undirected graph with no loops or multiple edges. The Laplacian matrix of G, Delta(G), is defined by Delta sub ii = degree of vertex i and Delta sub ij = -1 if there is an edge between vertex i and vertex j. The structure of the graph G is related to the eigenvalues of Delta(G); in particular, it is proved that all the eigenvalues of Delta(G) are nonnegative, less than or equal to the number of vertices, and less than or equal to twice the maximum vertex degree. Precise conditions for equality are given.
NASA Astrophysics Data System (ADS)
Fleming, Kevin; Zschau, Jochen; Gasparini, Paolo
2014-05-01
Recent major natural disasters, such as the 2011 Tōhoku earthquake, tsunami and subsequent Fukushima nuclear accident, have raised awareness of the frequent and potentially far-reaching interconnections between natural hazards. Such interactions occur at the hazard level, where an initial hazard may trigger other events (e.g., an earthquake triggering a tsunami) or several events may occur concurrently (or nearly so), e.g., severe weather around the same time as an earthquake. Interactions also occur at the vulnerability level, where the initial event may make the affected community more susceptible to the negative consequences of another event (e.g., an earthquake weakens buildings, which are then damaged further by windstorms). There is also a temporal element involved, where changes in exposure may alter the total risk to a given area. In short, there is the likelihood that the total risk estimated when considering multiple hazard and risks and their interactions is greater than the sum of their individual parts. It is with these issues in mind that the European Commission, under their FP7 program, supported the New Multi-HAzard and MulTi-RIsK Assessment MethodS for Europe or MATRIX project (10.2010 to 12.2013). MATRIX set out to tackle multiple natural hazards (i.e., those of concern to Europe, namely earthquakes, landslides, volcanos, tsunamis, wild fires, storms and fluvial and coastal flooding) and risks within a common theoretical framework. The MATRIX work plan proceeded from an assessment of single-type risk methodologies (including how uncertainties should be treated), cascade effects within a multi-hazard environment, time-dependent vulnerability, decision making and support for multi-hazard mitigation and adaption, and an assessment of how the multi-hazard and risk viewpoint may be integrated into current decision making and risk mitigation programs, considering the existing single-hazard and risk focus. Three test sites were considered during the project: Naples, Cologne, and the French West Indies. In addition, a software platform, the MATRIX-Common IT sYstem (MATRIX-CITY), was developed to allow the evaluation of characteristic multi-hazard and risk scenarios in comparison to single-type analyses. This presentation therefore outlines the more significant outcomes of the project, in particular those dealing with the harmonization of single-type hazards, cascade event analysis, time-dependent vulnerability changes and the response of the disaster management community to the MATRIX point of view.
NASA Astrophysics Data System (ADS)
Jallu, F.; Loche, F.
2008-08-01
Within the framework of radioactive waste control, non-destructive assay (NDA) methods may be employed. The active neutron interrogation (ANI) method is now well-known and effective in quantifying low α-activity fissile masses (mainly 235U, 239Pu, 241Pu) with low densities, i.e. less than about 0.4, in radioactive waste drums of volumes up to 200 l. The PROMpt Epithermal and THErmal interrogation Experiment (PROMETHEE [F. Jallu, A. Mariani, C. Passard, A.-C. Raoux, H. Toubon, Alpha low level waste control: improvement of the PROMETHEE 6 assay system performances. Nucl. Technol. 153 (January) (2006); C. Passard, A. Mariani, F. Jallu, J. Romeyer-Dherber, H. Recroix, M. Rodriguez, J. Loridon, C. Denis, PROMETHEE: an alpha low level waste assay system using passive and active neutron measurement methods. Nucl. Technol. 140 (December) (2002) 303-314]) based on ANI has been under development since 1996 to reach the incinerating α low level waste (LLW) criterion of about 50 Bq[α] per gram of crude waste (≈50 μg Pu) in 118 l drums on the date the drums are conditioned. Difficulties arise when dealing with matrices containing neutron energy moderators such as H and neutron absorbents such as Cl. These components may have a great influence on the fissile mass deduced from the neutron signal measured by ANI. For example, the calibration coefficient measured in a 118 l drum containing a cellulose matrix (density d = 0.144 g cm -3) may be 50 times higher than that obtained in a poly-vinyl-chloride matrix ( d = 0.253 g cm -3). Without any information on the matrix, the fissile mass is often overestimated due to safety procedures and by considering the most disadvantageous calibration coefficient corresponding to the most absorbing and moderating calibration matrix. The work discussed in this paper was performed at the CEA Nuclear Measurement Laboratory in France. It concerns the development of a matrix effect correction method, which consists in identifying and quantifying the matrix components by using prompt gamma-rays following neutron capture. The method aims to refine the value of the adequate calibration coefficient used for ANI analysis. This paper presents the final results obtained for 118 l waste drums with low α-activity and low density. This paper discusses the experimental and modelling studies and describes the development of correction abacuses based on gamma-ray spectrometry signals.
Yang, Yu; Li, Liang; Yang, Hui; Li, Xiaying; Zhang, Xiujie; Xu, Junfeng; Zhang, Dabing; Jin, Wujun; Yang, Litao
2018-04-11
The accurate monitoring and quantification of genetically modified organisms (GMOs) are key points for the implementation of labeling regulations, and a certified reference material (CRM) acts as the scaleplate for quantifying the GM contents of foods/feeds and evaluating a GMO analytical method or equipment. Herein we developed a series of CRMs for transgenic rice event G6H1, which possesses insect-resistant and herbicide-tolerant traits. Three G6H1 CRMs were produced by mixing seed powders obtained from homozygous G6H1 and its recipient cultivar Xiushui 110 at mass ratios of 49.825%, 9.967%, and 4.986%. The between-bottle homogeneity and within-bottle homogeneity were thoroughly evaluated with consistent results. The potential DNA degradation in transportation and shelf life were evaluated with an expiration period of at least 12 months. The property values of three CRMs (G6H1 a , G6H1 b , G6H1 c ) were given as (49.825 ± 0.448) g/kg, (9.967 ± 1.757) g/kg, and (4.986 ± 1.274 g/kg based on mass fraction ratio, respectively. Furthermore, the three CRMs were characterized with values of (5.01 ± 0.08)%, (1.06 ± 0.22)%, and (0.53 ± 0.11)% based on the copy number ratio using the droplet digital PCR method. All results confirmed that the produced G6H1 matrix-based CRMs are of high quality with precise characterization values and can be used as calibrators in GM rice G6H1 inspection and monitoring and in evaluating new analytical methods or devices targeting the G6H1 event.
Lee, Ching-Chen; Lee, Chow-Yang
2015-06-01
The optimum maintenance conditions of the fungus-growing termite, Macrotermes gilvus (Hagen) (Blattodea: Termitidae), in the laboratory were studied. Termites were kept on a matrix of moist sand and with fungus comb as food. The survival of groups of termites was measured when maintained at different population densities by changing group size and container volume. Larger groups (≥0.6 g) were more vigorous and had significant higher survival rates than smaller groups (≤0.3 g). The population density for optimal survival of M. gilvus is 0.0025 g per container volume (ml) or 0.0169 g per matrix volume (cm(3)), i.e., 1.2 g of termites kept in a 480-ml container filled with 71 cm3 of sand. In termite groups of smaller size (i.e., 0.3 g) or groups maintained in smaller container (i.e., 100 ml) the fungus comb was overgrown with Xylaria spp., and subsequently all termites died within the study period. The insufficient number of workers for regulating the growth of unwanted fungi other than Termitomyces spp. in the fungus comb is the most likely reason. Unlike some other mound-building termite species, M. gilvus showed satisfactory survival when maintained in non-nutritious matrix (i.e., sand). There was no significant difference in the survival rate between different colonies of M. gilvus (n=5), with survival in the range of 78.5-84.4% after 4 wk. Advances in the maintenance of Macrotermes will enable researchers to study with more biological relevance many aspects of the biology, behavior, and management of this species. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Davis, W Clay; Knippel, Brad C; Cooper, Julia E; Spraul, Bryan K; Rice, Jeanette K; Smith, Dennis W; Marcus, R Kenneth
2003-05-15
A new approach for the analysis of particulate matter by radio frequency glow discharge optical emission spectrometry (rf-GD-OES) is described. Dispersion of the particles in a sol-gel sample matrix provides a convenient means of generating a thin film suitable for sputter-sampling into the discharge. Acid-catalyzed sol-gel glasses synthesized from tetramethyl orthosilicate were prepared and spun-cast on glass substrates. The resultant thin films on glass substrates were analyzed to determine the discharge operating conditions and resultant sputtering characteristics while a number of optical emission lines of the film components were monitored. Slurries of powdered standard reference materials NIST SRM 1884a (Portland Cement) and NIST SRM 2690 (Coal Fly Ash) dispersed in the sols were cast into films in the same manner. Use of the sol-gels as sample matrixes allows for background subtraction through the use of analytical blanks and may facilitate the generation of calibration curves via readily synthesized, matrix-matched analytical standards in solids analysis. Detection limits were determined for minor elements via the RSDB method to be in the range of 1-10 microg/g in Portland Cement and Coal Fly Ash samples for the elements Al, Fe, Mg, S, and Si. Values for Ca were in the range of 15-35 microg/g. This preliminary study demonstrates the possibility of incorporating various insoluble species, including ceramics and geological specimens in powder form, into a solid matrix for further analysis by either rf-GD-OES or MS.
Joshi, Prasad Ramesh; Ramanathan, N; Sundararajan, K; Sankaran, K
2015-04-09
The weak interaction between PCl3 and CH3OH was investigated using matrix isolation infrared spectroscopy and ab initio computations. In a nitrogen matrix at low temperature, the noncovalent adduct was generated and characterized using Fourier transform infrared spectroscopy. Computations were performed at B3LYP/6-311++G(d,p), B3LYP/aug-cc-pVDZ, and MP2/6-311++G(d,p) levels of theory to optimize the possible geometries of PCl3-CH3OH adducts. Computations revealed two minima on the potential energy surface, of which, the global minimum is stabilized by a noncovalent P···O interaction, known as a pnictogen bonding (phosphorus bonding or P-bonding). The local minimum corresponded to a cyclic adduct, stabilized by the conventional hydrogen bonding (Cl···H-O and Cl···H-C interactions). Experimentally, 1:1 P-bonded PCl3-CH3OH adduct in nitrogen matrix was identified, where shifts in the P-Cl modes of PCl3, O-C, and O-H modes of CH3OH submolecules were observed. The observed vibrational frequencies of the P-bonded adduct in a nitrogen matrix agreed well with the computed frequencies. Furthermore, computations also predicted that the P-bonded adduct is stronger than H-bonded adduct by ∼1.56 kcal/mol. Atoms in molecules and natural bond orbital analyses were performed to understand the nature of interactions and effect of charge transfer interaction on the stability of the adducts.
Creation of an acellular vaginal matrix for potential vaginal augmentation and cloacal repair.
Greco, K V; Jones, L G; Obiri-Yeboa, I; Ansari, T
2018-05-21
our aim was to use porcine vagina to create a vaginal matrix and test its cellular biocompatibility. vagina was harvested from pigs and de-cellularised (DC) using a combination of detergents (Triton x-100 and sodium deoxycholate) and enzymes (DNAse/RNAse). the presence of cellular material, collagen structural integrity and basement membrane proteins were assessed histologically. To address cytocompatibility, porcine adipose derived-mesenchymal stem cells (AD-MSC) were harvested from abdominal fat together with vaginal epithelial cells (VEC) and seeded onto the mucosal aspect of the vaginal scaffold. Both cells populations were seeded individually and assessed histologically at days 3 and 10. MAIN OUTCOMES/RESULTS: the combination of enzymes and detergents resulted in a totally acellular matrix with very low DNA amount (control= 97.5ng/μl ± 10.8 vs DC= 40.1 ng/μl ±0.33 p=0.02). The extra cellular matrix (ECM) showed retention of collagen fibres and elastin and a 50% retention in glycosaminoglycan content; (control= 1.18μg/mg ± 0.28 DC = 1.35μg/mg ± 0.1 p=0.03) and an intact basement membrane (positive for both laminin and collagen IV). Seeded scaffolds showed cell attachment with both AD-MSC and VEC at days 3 and 10. it is possible to generate an acellular porcine vaginal matrix capable of supporting cells to reconstruct the vagina for future pre-clinical testing, and holds promise for creating clinically relevant sized tissue for human application. Copyright © 2018. Published by Elsevier Inc.
Ponziani, Francesca Romana; Pompili, Maurizio; Di Stasio, Enrico; Zocco, Maria Assunta; Gasbarrini, Antonio; Flore, Roberto
2017-02-21
To assess the rate of matrix Gla-protein carboxylation in patients with small intestinal bacterial overgrowth (SIBO) and to decipher its association with subclinical atherosclerosis. Patients with suspected SIBO who presented with a low risk for cardiovascular disease and showed no evidence of atherosclerotic plaques were included in the study. A glucose breath test was performed in order to confirm the diagnosis of SIBO and vascular assessment was carried out by ultrasound examination. Plasma levels of the inactive form of MGP (dephosphorylated-uncarboxylated matrix Gla-protein) were quantified by ELISA and vitamin K2 intake was estimated using a food frequency questionnaire. Thirty-nine patients were included in the study. SIBO was confirmed in 12/39 (30.8%) patients who also presented with a higher concentration of dephosphorylated-uncarboxylated matrix Gla-protein (9.5 μg/L vs 4.2 μg/L; P = 0.004). Arterial stiffness was elevated in the SIBO group (pulse-wave velocity 10.25 m/s vs 7.68 m/s; P = 0.002) and this phenomenon was observed to correlate linearly with the levels of dephosphorylated-uncarboxylated matrix Gla-protein (β = 0.220, R 2 = 0.366, P = 0.03). Carotid intima-media thickness and arterial calcifications were not observed to be significantly elevated as compared to controls. SIBO is associated with reduced matrix Gla-protein activation as well as arterial stiffening. Both these observations are regarded as important indicators of subclinical atherosclerosis. Hence, screening for SIBO, intestinal decontamination and supplementation with vitamin K2 has the potential to be incorporated into clinical practice as additional preventive measures.
Topological and kinetic determinants of the modal matrices of dynamic models of metabolism
2017-01-01
Large-scale kinetic models of metabolism are becoming increasingly comprehensive and accurate. A key challenge is to understand the biochemical basis of the dynamic properties of these models. Linear analysis methods are well-established as useful tools for characterizing the dynamic response of metabolic networks. Central to linear analysis methods are two key matrices: the Jacobian matrix (J) and the modal matrix (M-1) arising from its eigendecomposition. The modal matrix M-1 contains dynamically independent motions of the kinetic model near a reference state, and it is sparse in practice for metabolic networks. However, connecting the structure of M-1 to the kinetic properties of the underlying reactions is non-trivial. In this study, we analyze the relationship between J, M-1, and the kinetic properties of the underlying network for kinetic models of metabolism. Specifically, we describe the origin of mode sparsity structure based on features of the network stoichiometric matrix S and the reaction kinetic gradient matrix G. First, we show that due to the scaling of kinetic parameters in real networks, diagonal dominance occurs in a substantial fraction of the rows of J, resulting in simple modal structures with clear biological interpretations. Then, we show that more complicated modes originate from topologically-connected reactions that have similar reaction elasticities in G. These elasticities represent dynamic equilibrium balances within reactions and are key determinants of modal structure. The work presented should prove useful towards obtaining an understanding of the dynamics of kinetic models of metabolism, which are rooted in the network structure and the kinetic properties of reactions. PMID:29267329
NASA Astrophysics Data System (ADS)
Niitsu, G. T.; Lopes, C. M. A.
2013-08-01
The purpose of this work is to evaluate the influences of fatigue and environmental conditions (-55 °C, 23 °C, and 82 °C/Wet) on the ultimate compression strength of notched carbon-fiber-reinforced poly(phenylene sulfide) composites by performing open-hole compression (OHC) tests. Analysis of the fatigue effect showed that at temperatures of -55 and 23 °C, the ultimate OHC strengths were higher for fatigued than for not-fatigued specimens; this could be attributed to fiber splitting and delamination during fatigue cycling, which reduces the stress concentration at the hole edge, thus increasing the composite strength. This effect of increasing strength for fatigued specimens was not observed under the 82 °C/Wet conditions, since the test temperature near the matrix glass transition temperature ( T g) together with moisture content resulted in matrix softening, suggesting a reduction in fiber splitting during cycling; similar OHC strengths were verified for fatigued and not-fatigued specimens tested at 82 °C/Wet. Analysis of the temperature effect showed that the ultimate OHC strengths decreased with increasing temperature. A high temperature together with moisture content (82 °C/Wet condition) reduced the composite compressive strengths, since a temperature close to the matrix T g resulted in matrix softening, which reduced the lateral support provided by the resin to the 0° fibers, leading to fiber instability failure at reduced applied loads. On the other hand, a low temperature (-55 °C) improved the compressive strength because of possible fiber-matrix interfacial strengthening, increasing the fiber contribution to compressive strength.
NASA Astrophysics Data System (ADS)
Osterrothová, Kateřina; Jehlička, Jan
2009-08-01
Raman spectroscopy using 785 nm excitation was tested as a nondestructive method for determining the presence of the potential biomarker, usnic acid, in experimentally prepared mineral matrices. Investigated samples consisting of usnic acid mixed with powdered hydrothermal minerals, gypsum and calcite were studied. Various concentrations of usnic acid in the mineral matrix were studied to determine the detection limits of this biomarker. Usnic acid was mixed with gypsum (respectively, calcite) and covered by a UV-transparent crystal of gypsum (CaSO 4·2H 2O), thereby creating artificial inclusions similar to those which could be present in Martian minerals. A Raman usnic acid signal at the concentration level as low as 1 g kg -1 was obtained in the powdered mineral matrix and 5 g kg -1 when analyzed through the monocrystal. The number of registered usnic acid key Raman bands was dependent on the particular mineral matrix. If a similar concentration of usnic acid could persist in Martian samples, then Raman spectroscopy will be able to identify it. Obtained results will aid both in situ Raman analyses on Mars and on Earth.
Temperature-dependent tensile and shear response of graphite/aluminum
NASA Technical Reports Server (NTRS)
Fujita, T.; Pindera, M. J.; Herakovich, C. T.
1987-01-01
The thermo-mechanical response of unidirectional P100 graphite fiber/6061 aluminum matrix composites was investigated at four temperatures:-150, +75, +250, and +500 F. Two types of tests, off-axis tension and losipescu shear, were used to obtain the desired properties. Good experimental-theoretical correlation was obtained for Exx, vxy, and G12. It is shown that E11 is temperature independent, but E22, v12, and G12 generally decrease with increasing temperature. Compared with rather high longitudinal strength, very low transverse strength was obtained for the graphite/aluminum. The poor transverse strength is believed to be due to the low interfacial bond strength in this material. The strength decrease significantly with increasing temperature. The tensile response at various temperatures is greatly affected by the residual stresses caused by the mismatch in the coefficients of thermal expansion of fibers and matrix. The degradation of the aluminum matrix properties at higher temperatures has a deleterious effect on composite properties. The composite has a very low coefficient of thermal expansion in the fiber direction.
NASA Astrophysics Data System (ADS)
Takano, Y.; Liou, K. N.; Kahnert, M.; Yang, P.
2013-08-01
The single-scattering properties of eight black carbon (BC, soot) fractal aggregates, composed of primary spheres from 7 to 600, computed by the geometric-optics surface-wave (GOS) approach coupled with the Rayleigh-Gans-Debye (RGD) adjustment for size parameters smaller than approximately 2, are compared with those determined from the superposition T-matrix method. We show that under the condition of random orientation, the results from GOS/RGD are in general agreement with those from T-matrix in terms of the extinction and absorption cross-sections, the single-scattering co-albedo, and the asymmetry factor. When compared with the specific absorption (m2/g) measured in the laboratory, we illustrate that using the observed radii of primary spheres ranging from 3.3 to 25 nm, the theoretical values determined from GOS/RGD for primary sphere numbers of 100-600 are within the range of measured values. The GOS approach can be effectively applied to aggregates composed of a large number of primary spheres (e.g., >6000) and large size parameters (≫2) in terms of computational efforts.
Kondo, Miwako; MacKinnon, Shawna L; Craft, Cheryl C; Matchett, Michael D; Hurta, Robert A R; Neto, Catherine C
2011-03-30
Ursolic acid and its cis- and trans-3-O-p-hydroxycinnamoyl esters have been identified as constituents of American cranberries (Vaccinium macrocarpon), which inhibit tumor cell proliferation. Since the compounds may contribute to berry anticancer properties, their content in cranberries, selected cranberry products, and three other Vaccinium species (V. oxycoccus, V. vitis-idaea and V. angustifolium) was determined by liquid chromatography-mass spectroscopy. The ability of these compounds to inhibit growth in a panel of tumor cell lines and inhibit matrix metalloproteinase (MMP) activity associated with tumor invasion and metastasis was determined in DU145 prostate tumor cells. The highest content of ursolic acid and esters was found in V. macrocarpon berries (0.460-1.090 g ursolic acid and 0.040-0.160 g each ester kg(-1) fresh weight). V. vitis-idaea and V. angustifolium contained ursolic acid (0.230-0.260 g kg(-1) ), but the esters were not detected. V. oxycoccus was lowest (0.129 g ursolic acid and esters per kg). Ursolic acid content was highest in cranberry products prepared from whole fruit. Ursolic acid and its esters inhibited tumor cell growth at micromolar concentrations, and inhibited MMP-2 and MMP-9 activity at concentrations below those previously reported for cranberry polyphenolics. Cranberries (V. macrocarpon) were the best source of ursolic acid and its esters among the fruit and products tested. These compounds may limit prostate carcinogenesis through matrix metalloproteinase inhibition. Copyright © 2011 Society of Chemical Industry.
Ji, Hongmei; Liu, Chao; Wang, Ting; Chen, Jing; Mao, Zhengning; Zhao, Jin; Hou, Wenhua; Yang, Gang
2015-12-22
Porous hierarchical architectures of few-layer MoS2 nanosheets dispersed in carbon matrix are prepared by a microwave-hydrothermal method followed by annealing treatment via using glucose as C source and structure-directing agent and (NH4 )2 MoS4 as both Mo and S sources. It is found that the morphology and size of the secondary building units (SBUs), the size and layer number of MoS2 nanosheets as well as the distribution of MoS2 nanosheets in carbon matrix, can be effectively controlled by simply adjusting the molar ratio of (NH4 )2 MoS4 to glucose, leading to the materials with a low charge-transfer resistance, many electrochemical active sites and a robust structure for an outstanding energy storage performance including a high specific capacitance (589 F g(-1) at 0.5 A g(-1) ), a good rate capability (364 F g(-1) at 20 A g(-1) ), and an excellent cycling stability (retention 104% after 2000 cycles) for application in supercapacitors. The exceptional rate capability endows the electrode with a high energy density of 72.7 Wh kg(-1) and a high power density of 12.0 kW kg(-1) simultaneously. This work presents a facile and scalable approach for synthesizing novel heterostructures of MoS2 -based electrode materials with an enhanced rate capability and cyclability for potential application in supercapacitor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of Salt Accumulation in Soil by Evaporation on Unsaturated Soil Hydraulic Properties
NASA Astrophysics Data System (ADS)
Liu, Y.; Liu, Q.
2017-12-01
Soil salinization is one type of soil degradation caused by saline groundwater evaporation. Salt accumulation in the soil will change the pore structure of soil, which should change the unsaturated soil hydraulic properties including the soil water characteristic curve (SWCC). To investigate the effect of salt accumulation on the SWCC and find the best suitable SWCC model to characterize the relationship of soil moisture and soil matrix potential, we have conducted laboratory SWCC experiments with the soil columns saturated by NaCl solution with different concentration (deionized water, 3 g/L, 15 g/L, 50 g/L, 100 g/L and 200 g/L). As the concentration of initial solution increases, the matrix potential corresponding to the same moisture increases. As the water was evaporated, the salt would precipitate in soil continuously, which would decrease the porosity of soils and increase the negative pressure of soils. With higher initial concentration, the more salt accumulation caused the more residual water content in the soils. For van Genuchten-Mualem model, the residual water contents θr were 0.0159, 0.0181, 0.0182, 0.0328, 0.0312, 0.0723, 0.0864 in the columns initially saturated by deionized water, 3 g/L, 15 g/L, 50 g/L, 100 g/L and 200 g/L, respectively. The van Genuchten-Mualem model, Fredlund-Xing model, Gardern model, Mckee-Bumb model and Brooks-Corey model were fitted by MATLAB with the experiments data, and the fitted coefficients were compared. The Fredlund-Xing model has the best fitting coefficients and the calculated value was consistent with the observed data.
Nagahara, Yukitoshi; Sekine, Hiroaki; Otaki, Mari; Hayashi, Masakazu; Murase, Norio
2016-02-01
Animal cells are generally cryopreserved in cryovials in a cell suspension state containing 5%-10% v/v dimethyl sulfoxide (DMSO) used as a cryoprotective agent. However, cryopreservation of cells in an attached state has not been intensively studied, and the effective freezing solution remains unknown. Here we determined the suitable DMSO concentration for the cryopreservation of human hepatoma HepG2 cells attached to glass and polydimethylsiloxane (PDMS) matrices coated with poly-l-lysine. With the use of the glass matrix, the rate of cell adhesion increased with the DMSO concentration up to 30% v/v in the freezing solution. In contrast, the cell-adhesion rate remained constant in the case of the PDMS matrix irrespective of the DMSO concentration between 10% v/v and 30% v/v. The viability of post-thawed cells attached to glass or PDMS matrix was also investigated. The viability was highest at the DMSO concentration of 20% v/v in the freezing solution. The DMSO concentration of 30% v/v, however, had a cytotoxic effect on the cell viability. Thus, the 20% v/v DMSO concentration was found to be most suitable for the cryopreservation of HepG2 cells in the attached state. This dose is high compared to the DMSO concentration used for the cryopreservation of cells in the suspended state. Copyright © 2015 Elsevier Inc. All rights reserved.
Association of Common Variants in MMPs with Periodontitis Risk
Li, Wenyang; Zhu, Ying; Singh, Pradeep; Ajmera, Deepal Haresh; Song, Jinlin
2016-01-01
Background. Matrix metalloproteinases (MMPs) are considered to play an important role during tissue remodeling and extracellular matrix degradation. And functional polymorphisms in MMPs genes have been reported to be associated with the increased risk of periodontitis. Recently, many studies have investigated the association between MMPs polymorphisms and periodontitis risk. However, the results remain inconclusive. In order to quantify the influence of MMPs polymorphisms on the susceptibility to periodontitis, we performed a meta-analysis and systematic review. Results. Overall, this comprehensive meta-analysis included a total of 17 related studies, including 2399 cases and 2002 healthy control subjects. Our results revealed that although studies of the association between MMP-8 −799 C/T variant and the susceptibility to periodontitis have not yielded consistent results, MMP-1 (−1607 1G/2G, −519 A/G, and −422 A/T), MMP-2 (−1575 G/A, −1306 C/T, −790 T/G, and −735 C/T), MMP-3 (−1171 5A/6A), MMP-8 (−381 A/G and +17 C/G), MMP-9 (−1562 C/T and +279 R/Q), and MMP-12 (−357 Asn/Ser), as well as MMP-13 (−77 A/G, 11A/12A) SNPs are not related to periodontitis risk. Conclusions. No association of these common MMPs variants with the susceptibility to periodontitis was found; however, further larger-scale and multiethnic genetic studies on this topic are expected to be conducted to validate our results. PMID:27194818
Multiagent Task Coordination Using a Distributed Optimization Approach
2015-09-01
positive- definite symmetric inertia matrix, C(q, q̇) ∈ <n×n is the centripetal and coriolis matrix, G(q) ∈ <n is the gravitation force vector, B(q) ∈ <n...artificial intelligence re- search are effectively integrated with the rigorous control systems analysis tools, and produced novel approximate dynamic...results are given to illustrate the effectiveness of the proposed designs. Section 7.0 concludes the report. 3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
Glueball spectra from a matrix model of pure Yang-Mills theory
NASA Astrophysics Data System (ADS)
Acharyya, Nirmalendu; Balachandran, A. P.; Pandey, Mahul; Sanyal, Sambuddha; Vaidya, Sachindeo
2018-05-01
We present variational estimates for the low-lying energies of a simple matrix model that approximates SU(3) Yang-Mills theory on a three-sphere of radius R. By fixing the ground state energy, we obtain the (integrated) renormalization group (RG) equation for the Yang-Mills coupling g as a function of R. This RG equation allows to estimate the mass of other glueball states, which we find to be in excellent agreement with lattice simulations.
Magnesium Matrix Composite Foams-Density, Mechanical Properties, and Applications
2012-07-24
to syntactic foam densities in the range 1–1.5 g/cc, which directly compete with polymer matrix composites. Their inherently high modulus, ductility ...nomenclature of these alloys A, Z, and C refer to aluminum, zinc and copper, respectively. The two letters are followed by two numbers, which correspond to...respectively [27]. Usually, the increased strength of Mg alloys due to the addition of Al or Cu comes at the expense of ductility . Addition of Zn along
NASA Astrophysics Data System (ADS)
Kamnev, Alexander A.; Tugarova, Anna V.; Dyatlova, Yulia A.; Tarantilis, Petros A.; Grigoryeva, Olga P.; Fainleib, Alexander M.; De Luca, Stefania
2018-03-01
A set of experimental data obtained by Fourier transform infrared (FTIR) spectroscopy (involving the use of samples ground and pressed with KBr, i.e. in a polar halide matrix) and by matrix-free transmission FTIR or diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic methodologies (involving measurements of thin films or pure powdered samples, respectively) were compared for several different biomacromolecular substances. The samples under study included poly-3-hydroxybutyrate (PHB) isolated from cell biomass of the rhizobacterium Azospirillum brasilense; dry PHB-containing A. brasilense biomass; pectin (natural carboxylated heteropolysaccharide of plant origin; obtained from apple peel) as well as its chemically modified derivatives obtained by partial esterification of its galacturonide-chain hydroxyl moieties with palmitic, oleic and linoleic acids. Significant shifts of some FTIR vibrational bands related to polar functional groups of all the biomacromolecules under study, induced by the halide matrix used for preparing the samples for spectroscopic measurements, were shown and discussed. A polar halide matrix used for preparing samples for FTIR measurements was shown to be likely to affect band positions not only per se, by affecting band energies or via ion exchange (e.g., with carboxylate moieties), but also by inducing crystallisation of metastable amorphous biopolymers (e.g., PHB of microbial origin). The results obtained have important implications for correct structural analyses of polar, H-bonded and/or amphiphilic biomacromolecular systems using different methodologies of FTIR spectroscopy.
Oral Supplementation with Cocoa Extract Reduces UVB-Induced Wrinkles in Hairless Mouse Skin.
Kim, Jong-Eun; Song, Dasom; Kim, Junil; Choi, Jina; Kim, Jong Rhan; Yoon, Hyun-Sun; Bae, Jung-Soo; Han, Mira; Lee, Sein; Hong, Ji Sun; Song, Dayoung; Kim, Seong-Jin; Son, Myoung-Jin; Choi, Sang-Woon; Chung, Jin Ho; Kim, Tae-Aug; Lee, Ki Won
2016-05-01
Cacao beans contain various bioactive phytochemicals that could modify the pathogeneses of certain diseases. Here, we report that oral administration of cacao powder (CP) attenuates UVB-induced skin wrinkling by the regulation of genes involved in dermal matrix production and maintenance. Transcriptome analysis revealed that 788 genes are down- or upregulated in the CP supplemented group, compared with the UVB-irradiated mouse skin controls. Among the differentially expressed genes, cathepsin G and serpin B6c play important roles in UVB-induced skin wrinkle formation. Gene regulatory network analysis also identified several candidate regulators responsible for the protective effects of CP supplementation against UVB-induced skin damage. CP also elicited antiwrinkle effects via inhibition of UVB-induced matrix metalloproteinases-1 expression in both the human skin equivalent model and human dermal fibroblasts. Inhibition of UVB-induced activator protein-1 via CP supplementation is likely to affect the expression of matrix metalloproteinases-1. CP supplementation also downregulates the expression of cathepsin G in human dermal fibroblasts. 5-(3',4'-Dihydroxyphenyl)-γ-valerolactone, a major in vivo metabolite of CP, showed effects similar to CP supplementation. These results suggest that cacao extract may offer a protective effect against photoaging by inhibiting the breakdown of dermal matrix, which leads to an overall reduction in wrinkle formation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Composite material reinforced with atomized quasicrystalline particles and method of making same
Biner, Suleyman B.; Sordelet, Daniel J.; Lograsso, Barbara K.; Anderson, Iver E.
1998-12-22
A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quaiscrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked compositehibits substantially improved yield strength, tensile strength, Young's modulus (stiffness).
NASA Astrophysics Data System (ADS)
Gillman, Edward; Rajantie, Arttu
2018-05-01
The Kibble Zurek mechanism in a relativistic ϕ4 scalar field theory in D =(1 +1 ) is studied using uniform matrix product states. The equal time two point function in momentum space G2(k ) is approximated as the system is driven through a quantum phase transition at a variety of different quench rates τQ. We focus on looking for signatures of topological defect formation in the system and demonstrate the consistency of the picture that the two point function G2(k ) displays two characteristic scales, the defect density n and the kink width dK. Consequently, G2(k ) provides a clear signature for the formation of defects and a well defined measure of the defect density in the system. These results provide a benchmark for the use of tensor networks as powerful nonperturbative nonequilibrium methods for relativistic quantum field theory, providing a promising technique for the future study of high energy physics and cosmology.
Zhou, Hongbin; Wu, Yinfang; Jin, Yan; Zhou, Jiesen; Zhang, Chao; Che, Luanqing; Jing, Jiyong; Chen, Zhihua; Li, Wen; Shen, Huahao
2013-10-02
Matrix metalloproteinase (MMP) family is considered to be associated with chronic obstructive pulmonary disease (COPD) pathogenesis, however, no consistent results have been provided by previous studies. In this report, we performed Meta analysis to investigate the association between four kinds of MMP single nucleotide polymorphisms (SNP, MMP1 -1607 1G/2G, MMP3 -1171 5A/6A, MMP9 -1562 C/T, MMP12 -82 A/G) and COPD risk from 21 studies including 4184 cases and 5716 controls. Both overall and subgroup association between SNP and COPD susceptibility were tested. There was no evident association between MMP polymorphisms and COPD susceptibility in general population. On the other hand, subgroup analysis suggested that MMP9 -1562 C/T polymorphism was related to COPD, as we found that C allele carriers were at lower risk in some subgroups stratified by lung function, age and genotype identification method, compared with TT homozygotes. Our results indicated the genotype TT might be one genetic risk factor of severe COPD.
NASA Astrophysics Data System (ADS)
Kostensalo, Joel; Suhonen, Jouni
2018-06-01
The effects of the enhancement of the axial-charge matrix element γ5 were studied in medium heavy and heavy nuclei for first-forbidden J+ ↔J- decay transitions using the nuclear shell model. Noticeable dependence on the enhancement ɛMEC of the axial-charge matrix element, as well as on the value of the axial-vector coupling constant gA was found in the spectral shapes of 93Y, 95Sr, and 97Y. The importance of the spectrum of 138Cs in the determination of gA is discussed. Half-life analyses in the A ≈ 95 and A ≈ 135 regions were done, and consistent results gA ≈ 0.90, 0.75, and 0.65, corresponding to the three enhancement scenarios ɛMEC = 1.4, 1.7, and 2.0, were obtained. Connection to the reactor-antineutrino anomaly is pointed out.
Kostant polynomials and the cohomology ring for G/B
Billey, Sara C.
1997-01-01
The Schubert calculus for G/B can be completely determined by a certain matrix related to the Kostant polynomials introduced in section 5 of Bernstein, Gelfand, and Gelfand [Bernstein, I., Gelfand, I. & Gelfand, S. (1973) Russ. Math. Surv. 28, 1–26]. The polynomials are defined by vanishing properties on the orbit of a regular point under the action of the Weyl group. For each element w in the Weyl group the polynomials also have nonzero values on the orbit points corresponding to elements which are larger in the Bruhat order than w. The main theorem given here is an explicit formula for these values. The matrix of orbit values can be used to determine the cup product for the cohomology ring for G/B, using only linear algebra or as described by Lascoux and Schützenberger [Lascoux, A. & Schützenberger, M.-P. (1982) C. R. Seances Acad. Sci. Ser. A 294, 447–450]. Complete proofs of all the theorems will appear in a forthcoming paper. PMID:11038536
Application of mathematical modeling in sustained release delivery systems.
Grassi, Mario; Grassi, Gabriele
2014-08-01
This review, presenting as starting point the concept of the mathematical modeling, is aimed at the physical and mathematical description of the most important mechanisms regulating drug delivery from matrix systems. The precise knowledge of the delivery mechanisms allows us to set up powerful mathematical models which, in turn, are essential for the design and optimization of appropriate drug delivery systems. The fundamental mechanisms for drug delivery from matrices are represented by drug diffusion, matrix swelling, matrix erosion, drug dissolution with possible recrystallization (e.g., as in the case of amorphous and nanocrystalline drugs), initial drug distribution inside the matrix, matrix geometry, matrix size distribution (in the case of spherical matrices of different diameter) and osmotic pressure. Depending on matrix characteristics, the above-reported variables may play a different role in drug delivery; thus the mathematical model needs to be built solely on the most relevant mechanisms of the particular matrix considered. Despite the somewhat diffident behavior of the industrial world, in the light of the most recent findings, we believe that mathematical modeling may have a tremendous potential impact in the pharmaceutical field. We do believe that mathematical modeling will be more and more important in the future especially in the light of the rapid advent of personalized medicine, a novel therapeutic approach intended to treat each single patient instead of the 'average' patient.
Analysis of local delaminations caused by angle ply matrix cracks
NASA Technical Reports Server (NTRS)
Salpekar, Satish A.; Obrien, T. Kevin; Shivakumar, K. N.
1993-01-01
Two different families of graphite/epoxy laminates with similar layups but different stacking sequences, (0,theta,-theta) sub s and (-theta/theta/0) sub s were analyzed using three-dimensional finite element analysis for theta = 15 and 30 degrees. Delaminations were modeled in the -theta/theta interface, bounded by a matrix crack and the stress free edge. The total strain energy release rate, G, along the delamination front was computed using three different techniques: the virtual crack closure technique (VCCT), the equivalent domain Integral (EDI) technique, and a global energy balance technique. The opening fracture mode component of the strain energy release rate, Gl, along the delamination front was also computed for various delamination lengths using VCCT. The effect of residual thermal and moisture stresses on G was evaluated.
Salient Object Detection via Structured Matrix Decomposition.
Peng, Houwen; Li, Bing; Ling, Haibin; Hu, Weiming; Xiong, Weihua; Maybank, Stephen J
2016-05-04
Low-rank recovery models have shown potential for salient object detection, where a matrix is decomposed into a low-rank matrix representing image background and a sparse matrix identifying salient objects. Two deficiencies, however, still exist. First, previous work typically assumes the elements in the sparse matrix are mutually independent, ignoring the spatial and pattern relations of image regions. Second, when the low-rank and sparse matrices are relatively coherent, e.g., when there are similarities between the salient objects and background or when the background is complicated, it is difficult for previous models to disentangle them. To address these problems, we propose a novel structured matrix decomposition model with two structural regularizations: (1) a tree-structured sparsity-inducing regularization that captures the image structure and enforces patches from the same object to have similar saliency values, and (2) a Laplacian regularization that enlarges the gaps between salient objects and the background in feature space. Furthermore, high-level priors are integrated to guide the matrix decomposition and boost the detection. We evaluate our model for salient object detection on five challenging datasets including single object, multiple objects and complex scene images, and show competitive results as compared with 24 state-of-the-art methods in terms of seven performance metrics.
Polyisoprene matrix for progesterone release: in vitro and in vivo studies.
Heredia, V; Bianco, I D; Tríbulo, H; Tríbulo, R; Seoane, M Ferro; Faudone, S; Cuffini, S L; Demichelis, N A; Schalliol, H; Beltramo, D M
2009-12-01
Latex, a polyisoprene (PI) hydrophobic elastomer, was evaluated in vitro and in vivo as a matrix for intravaginal steroid hormone delivery. Matrices containing hormone were prepared by swelling latex in chloroform that contained soluble progesterone (P4). In vitro studies demonstrate that P4 release from PI follows a zero order model during at least 100 h and depends on initial load up to 10 mg cm(-2). The release of P4 from a PI matrix was found to be two times faster than from a polydimethylsiloxane (PDMS) matrix. FT-IR and X-ray powder diffraction analysis of P4 polymorphs show that when nucleated in PDMS, the hormone crystallizes only in alpha-form while in latex, crystallizes as a mixture of alpha- and beta-form. In vivo studies show that devices with a PI matrix containing 0.5 g of P4 are effective to reach plasma levels above 1 ng ml(-1) that are needed to synchronize estrous in cattle. Altogether, the results show that PI, a vulcanized polymer with a carbon-carbon backbone, can be used as a new matrix for the intravaginal administration of progesterone with improved release profile than silicone and that the matrix can influence the crystalline state of the hormone.
Mateus, Maria-L; Rouvet, Martine; Gumy, Jean-C; Liardon, Rémy
2007-04-18
Three complementary techniques were used in this study to investigate the physical changes during wetting of roasted and ground coffee. Scanning electron microscopy (SEM) was found to provide indirect evidence of the presence of liquid water in the coffee particles. The effect of wetting on coffee closed porosity was studied by helium pycnometry, and finally, particle sizing was used to determine the swelling kinetics of coffee after wetting. Due to the solubilization of compounds, the presence of liquid water could be detected in the coffee cells by SEM. The technique was then used to investigate different water contents; for example, for roasted and ground coffee containing 1 g of water per gram of coffee on a dry basis, liquid water was present in cells only at the periphery of approximately 1.0 mm diameter particles. Coffee closed porosity decreased with increasing water content, as evidenced by pycnometry. For roasted and ground coffee containing 1 g of water per gram of coffee, results showed a closed porosity lower that 0.1 cm3/g ( approximately 20% of the closed porosity measured in dry particles). The decrease of closed porosity may be attributed to both (1) water filling cells' lumen and (2) plasticization of cell wall polymers, resulting in the matrix relaxation and increase of helium accessibility to the pores. Water binding to the matrix polymers was further investigated by calorimetric measurements. The integration of the endothermic peak of freezing water showed that approximately 0.15 g of water/g of coffee is nonfreezable water, that is, water bound to the matrix polymers. Finally, the use of particle sizing showed that the average volume of the coffee particles with 1 g of water/g of coffee increased by up to 20-23% at 10-15 min following wetting. Moisture diffusion coefficients in coffee particles [( approximately 2-3) x 10(-11) m2 s(-1)] were approximated by fitting the swelling curves with a model of diffusion. The observed results may give information about homogeneity and the physical state of water in wetted roasted coffee and thus increase the understanding of the mechanisms of molecular mass transfer during extraction.
Chen, Yu-Hsuan; Chang, Chia-Yu; Ding, Wang-Hsien
2016-11-11
A simple and effective method for determining short chain chlorinated paraffins (SCCPs) in indoor dust is presented. The method employed a modified vortex-homogenized matrix solid-phase dispersion (VH-MSPD) prior to its detection by gas chromatography - electron-capture negative-ion mass spectrometry (GC-ECNI-MS) operating in the selected-ion-monitoring (SIM) mode. Under the best extraction conditions, 0.1-g of dust sample was dispersed with 0.1-g of silica gel by using vortex (2min) instead of using a mortar and pestle (3min). After that step, the blend was transferred to a glass column containing 3-g acidic silica gel, 2-g basic silica gel, and 2-g of deactivated silica gel, used as clean-up co-sorbents. Then, target analytes were eluted with 5mL of n-hexane/dichloromethane (2:1, v/v) mixture. The extract was evaporated to dryness under a gentle stream of nitrogen. The residue was then re-dissolved in n-hexane (10μL), and subjected to GC-ECNI-MS analysis. The limits of quantitation (LOQs) ranged from 0.06 to 0.25μg/g for each SCCP congener. Precision was less than 7% for both intra- and inter-day analysis. Trueness was above 89%, which was calculated by mean extraction recovery. The VH-MSPD combined with GC-ECNI-MS was successfully applied to quantitatively detect SCCPs from various indoor dust samples, and the concentrations ranged from 1.2 to 31.2μg/g. Copyright © 2016 Elsevier B.V. All rights reserved.
MALDI Matrix Research for Biopolymers
Fukuyama, Yuko
2015-01-01
Matrices are necessary materials for ionizing analytes in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). The choice of a matrix appropriate for each analyte controls the analyses. Thus, in some cases, development or improvement of matrices can become a tool for solving problems. This paper reviews MALDI matrix research that the author has conducted in the recent decade. It describes glycopeptide, carbohydrate, or phosphopeptide analyses using 2,5-dihydroxybenzoic acid (2,5-DHB), 1,1,3,3-tetramethylguanidinium (TMG) salts of p-coumaric acid (CA) (G3CA), 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA) or 3-AQ/CA and gengeral peptide, peptide containing disulfide bonds or hydrophobic peptide analyses using butylamine salt of CHCA (CHCAB), 1,5-diaminonaphthalene (1,5-DAN), octyl 2,5-dihydroxybenzoate (alkylated dihydroxybenzoate, ADHB), or 1-(2,4,6-trihydroxyphenyl)octan-1-one (alkylated trihydroxyacetophenone, ATHAP). PMID:26819908
Microscopic Scale Simulation of the Ablation of Fibrous Materials
NASA Technical Reports Server (NTRS)
Lachaud, Jean Romain; Mansour, Nagi N.
2010-01-01
Ablation by oxidation of carbon-fiber preforms impregnated in carbonized phenolic matrix is modeled at microscopic scale. Direct numerical simulations show that the carbonized phenolic matrix ablates in volume leaving the carbon fibers exposed. This is due to the fact that the reactivity of carbonized phenolic is higher than the reactivity of carbon fibers. After the matrix is depleted, the fibers ablate showing progressive reduction of their diameter. The overall material recession occurs when the fibers are consumed. Two materials with the same carbon-fiber preform, density and chemical composition, but with different matrix distributions are studied. These studies show that at moderate temperatures (< 1000 K) the microstructure of the material influences its recession rate; a fact that is not captured by current models that are based on chemical composition only. Surprisingly, the response of these impregnated-fiber materials is weakly dependent on the microstructure at very high temperatures (e.g., Stardust peak heating conditions: 3360K).
Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor.
Zhang, Ye; Stobbe, Per; Silvander, Christian Orrego; Chotteau, Véronique
2015-11-10
Recombinant Chinese Hamster Ovary (CHO) cells producing IgG monoclonal antibody were cultivated in a novel perfusion culture system CellTank, integrating the bioreactor and the cell retention function. In this system, the cells were harbored in a non-woven polyester matrix perfused by the culture medium and immersed in a reservoir. Although adapted to suspension, the CHO cells stayed entrapped in the matrix. The cell-free medium was efficiently circulated from the reservoir into- and through the matrix by a centrifugal pump placed at the bottom of the bioreactor resulting in highly homogenous concentrations of the nutrients and metabolites in the whole system as confirmed by measurements from different sampling locations. A real-time biomass sensor using the dielectric properties of living cells was used to measure the cell density. The performances of the CellTank were studied in three perfusion runs. A very high cell density measured as 200 pF/cm (where 1 pF/cm is equivalent to 1 × 10(6)viable cells/mL) was achieved at a perfusion rate of 10 reactor volumes per day (RV/day) in the first run. In the second run, the effect of cell growth arrest by hypothermia at temperatures lowered gradually from 37 °C to 29 °C was studied during 13 days at cell densities above 100 pF/cm. Finally a production run was performed at high cell densities, where a temperature shift to 31 °C was applied at cell density 100 pF/cm during a production period of 14 days in minimized feeding conditions. The IgG concentrations were comparable in the matrix and in the harvest line in all the runs, indicating no retention of the product of interest. The cell specific productivity was comparable or higher than in Erlenmeyer flask batch culture. During the production run, the final harvested IgG production was 35 times higher in the CellTank compared to a repeated batch culture in the same vessel volume during the same time period. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ballard, S.; Hipp, J. R.; Encarnacao, A.; Young, C. J.; Begnaud, M. L.; Phillips, W. S.
2012-12-01
Seismic event locations can be made more accurate and precise by computing predictions of seismic travel time through high fidelity 3D models of the wave speed in the Earth's interior. Given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we describe a methodology for accomplishing this by exploiting the full model covariance matrix and show examples of path-dependent travel time prediction uncertainty computed from SALSA3D, our global, seamless 3D tomographic P-velocity model. Typical global 3D models have on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes Tikhonov regularization terms) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiplication methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix, we solve for the travel-time covariance associated with arbitrary ray-paths by summing the model covariance along both ray paths. Setting the paths equal and taking the square root yields the travel prediction uncertainty for the single path.
The Next Generation Focusing Lenses for Proton Beam Writing
2009-07-28
Final Report AOARD 07-4017 The Next Generation Focusing Lenses for Proton Beam Writing JA van Kan1, AA Bettiol1, T. Osipowicz2, MBH Breese3, and F...with a finely focused 2 MeV beam was used to write holes in a matrix of thick PMMA . A G-G developer was used to develop the PMMA patterns. The G-G...The deposition speed was about 1 μm of plated Au in every 5 min. When a sufficient thickness of Au had been deposited, the PMMA around the gold
Fan, Sufang; Li, Qiang; Zhang, Xiaoguang; Cui, Xiaobin; Zhang, Dongsheng; Zhang, Yan
2015-05-01
A novel fully automated method based on dual column switching using turbulent flow chromatography followed by liquid chromatography with tandem mass spectrometry was developed for the determination of aflatoxin B1 , B2 , G1 , and G2 in corn powder, edible oil, peanut butter, and soy sauce samples. After ultrasound-assisted extraction, samples were directly injected to the chromatographic system and the analytes were concentrated into the clean-up loading column. Through purge switching, the analytes were transferred to the analytical column for subsequent detection by mass spectrometry. Different types of TurboFlow(TM) columns, transfer flow rate, transfer time were optimized. The limits of detection and quantification of this method ranged between 0.2-2.0 and 0.5-4.0 μg/kg for aflatoxins in different matrixes, respectively. Recoveries of aflatoxins were in range of 83-108.1% for all samples, matrix effects were in range of 34.1-104.7%. The developed method has been successfully applied in the analysis of aflatoxin B1 , B2 , G1 , and G2 in real samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1992-01-01
The scope of this dissertation is to develop and apply x ray attenuation measurement systems that are capable of: (1) characterizing density variations in high-temperature materials, e.g., monolithic ceramics, ceramic and intermetallic matrix composites, and (2) noninvasively monitoring damage accumulation and failure sequences in ceramic matrix composites under room temperature tensile testing. This dissertation results in the development of: (1) a point scan digital radiography system, and (2) an in-situ x ray material testing system. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. Further in-situ radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction bonded silicon nitride matrix. It is concluded that pretest, in-situ, and post test x ray imaging can provide for greater understanding of ceramic matrix composite mechanical behavior.
Srivastava, Priyanka; Gangwar, Ruchika; Kapoor, Rakesh; Mittal, Rama D
2010-01-01
Matrix metalloproteinases (MMPs) contribute to tumor invasion and microenvironment, hence are associated with bladder cancer risk. We therefore, tested whether polymorphisms in MMP genes modify the risk of bladder cancer (BC) and whether smoke exposure modifies this risk. Genotyping was performed in 200 BC patients and 200 controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). MMP1-1607 2G/2G and MMP7-181 GG genotype were associated with increased risk of BC (p < 0.001; OR, 3.04; 95% CI- 1.71-5.39 and p, 0.005; OR, 2.38; 95% CI- 1.30-4.34) respectively. Smokers in BC patients showed significant increased risk for the same SNPs (p, 0.006; OR, 3.20; 95% CI- 1.40-7.31 and p, 0.009; OR, 2.85; 95% CI- 1.30-6.23 respectively). Haplotype analysis too revealed significant association with G/2G of MMP1-519-1607 (p< 0.001; OR, 2.62; 95% CI- 1.68-4.09). The 2G allele carrier (1G/2G + 2G/2G) of MMP1-1607 showed a protective effect and high recurrence free survival in Bacillus Calmette-Guérin (BCG) treated non muscle invasive BC (NMIBC) patients (log rank p, 0.030). Our data suggested that MMP1-1607 2G and MMP7-181 G allele were associated with high risk of BC, which was quite evident amongst smokers too. BCG treated NMIBC patients reflected protective effect for 2G allele carrier (1G/2G + 2G/2G) of MMP1-1607. This study provided new support for the association of MMP1-1607 and MMP7-181 in bladder cancer development, the tumorigenic effect of which was observed to be more enhanced in case of tobacco exposure.
Coloring, bleaching, and perming: influence on EtG content in hair.
Kerekes, Isabelle; Yegles, Michel
2013-08-01
Hair analysis of ethyl glucuronide (EtG) has become, beside fatty acid ethyl ester, a valuable marker for the detection of moderate and chronic excessive alcohol consumption. So far, only few studies exist about the influence of cosmetic treatment on EtG content in hair. The aim of this study was to evaluate the effect of coloring, bleaching, and perming on the concentration of this alcohol marker in hair. Studies were also performed to evaluate the chemical stability of EtG in the presence of hydrogen peroxide and ammonium thioglycolate. Six air samples were treated in vitro by the different commercial cosmetics following the suppliers' instructions. After washing, pulverization, incubation in ultrasonic bath, and solid phase extraction, EtG was determined by GC/MS-NICI after solid phase extraction and heptafluorobutyric anhydride derivatization. The results showed that samples (n = 10) treated with the coloring product did not show any important change in the EtG results. In the bleaching study (n = 23), a mean decrease of 73.5% was observed. After incubation of a solution of EtG with hydrogen peroxide (15%), a decrease of 45% was shown supporting the hypothesis of a chemical degradation of EtG and a leaching out effect from the hair matrix. In the perm treatment study (n = 23), a mean decrease of 95.7% of EtG was found. Incubation of a solution of EtG with ammonium thioglycolate (5%) showed a total decrease of EtG supporting the hypothesis of a chemical degradation. Coloring treatment did not importantly influence EtG content in hair. However, an important decrease of EtG in hair could be found after bleaching and permanent wave treatment. This decrease seems to be because of a chemical degradation of EtG, after bleaching, and a leaching out effect from the matrix. After perming, it seems to be more of a chemical degradation of EtG. These data have to be considered for the correct interpretation of EtG amounts in hair.
Hardy, I J; Cook, W G; Melia, C D
2006-03-27
The compression and compaction properties of plasticised high molecular weight USP2208 HPMC were investigated with the aim of improving tablet formation in HPMC matrices. Experiments were conducted on binary polymer-plasticiser mixtures containing 17 wt.% plasticiser, and on a model hydrophilic matrix formulation. A selection of common plasticisers, propylene glycol (PG) glycerol (GLY), dibutyl sebacate (DBS) and triacetin (TRI), were chosen to provide a range of plasticisation efficiencies. T(g) values of binary mixtures determined by Dynamic Mechanical Thermal Analysis (DMTA) were in rank order PG>GLY>DBS>TRI>unplasticised HPMC. Mean yield pressure, strain rate sensitivity (SRS) and plastic compaction energy were measured during the compression process, and matrix properties were monitored by tensile strength and axial expansion post-compression. Compression of HPMC:PG binary mixtures resulted in a marked reduction in mean yield pressure and a significant increase in SRS, suggesting a classical plasticisation of HPMC analogous to that produced by water. The effect of PG was also reflected in matrix properties. At compression pressures below 70 MPa, compacts had greater tensile strength than those from native polymer, and over the range 35 and 70 MPa, lower plastic compaction values showed that less energy was required to produce the compacts. Axial expansion was also reduced. Above 70 MPa tensile strength was limited to 3 MPa. These results suggest a useful improvement of HPMC compaction and matrix properties by PG plasticisation, with lowering of T(g) resulting in improved deformation and internal bonding. These effects were also detectable in the model formulation containing a minimal polymer content for an HPMC matrix. Other plasticisers were largely ineffective, matrix strength was poor and axial expansion high. The hydrophobic plasticisers (DBS, TRI) reduced yield pressure substantially, but were poor plasticisers and showed compaction mechanisms that could be attributed to phase separation. The effect of different plasticisers suggests that the deformation characteristics of this HPMC in the solid state is dominated by hydroxyl mediated bonding, rather than by hydrophobic interactions between methoxyl-rich regions.
2007-03-02
ceramic matrix composites (CMCs), particularly in aeroengine applications, are dependent on better understanding of their life limiting properties such as... vibration technique, ASTM C 1259 [10]), and 2.36±0.02 g/cm 3 bulk density, all estimated at ambient temperature [5,10]. A typical micrograph of the cross...It is necessary to use appropriate aeroengine environments to better describe life limiting behavior of the material in interlaminar shear. This may
1992-01-01
47 OROO I SAOoflC P- K -- 8-3 NSWC DD/TR-92/47 b~2b, Ima~I I MUCT 0 Ii I 21AW Lp MAin B-3, NSWCDD/TR-92/47 APPENDIX C CLUSTERED CRUD MATRIX The CRUD...Berkey (D2); R.D. Wiseman and R.M. Pollock (E); W. Innis (G); LC. Loeffler ( K ); H.O. Williams, B.S. Goldman and L.W. Dabbs (M); W.J. Ferreira (P...Model................. B -1 C Clustered CRUD Matrix ...................................... C-1 D Data Flow Diagrams
Directed Assembly of Quantum Dots in Diblock Copolymer Matrix
2007-08-01
behavior of a diblock copolymer, PS - b -poly(2-vinylpyridene) ( PS - b - P2VP ). Addition of 2.5-nm-diameter gold nanoparticles, functionalized with short...dispersion of variations in the relative surface coverage by short thiol-terminated PS ligands (3400 g/mol), also in a PS - b - P2VP matrix. As a result of...film of PS - b - P2VP . In that case, the particles were stabilized with tri-n-octylphosphine oxide (TOPO) ligands. When thin films were prepared from
2015-10-26
grafting block copolymer (BCP) to nanoparticles (BCP-g-NPs) to chemically match the corona of NPs with BCP matrix has resulted in a highly dispersed BCP...strategy of grafting BCP to nanoparticles in order to chemically match the corona of nanoparticles with BCP matrix has resulted in a highly dispersed...fast energy storage and discharge capabilities. However, the energy storage density of these capacitors is limited by the dielectric properties of
Monte Carlo study of exact {ital S}-matrix duality in nonsimply laced affine Toda theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beccaria, M.
The ({ital g}{sub 2}{sup (1)},{ital d}{sub 4}{sup (3)}) pair of nonsimply laced affine Toda theories is studied from the point of view of nonperturbative duality. The classical spectrum of each member is composed of two massive scalar particles. The exact {ital S}-matrix prediction for the dual behavior of the coupling-dependent mass ratio is found to be in strong agreement with Monte Carlo data. {copyright} {ital 1996 The American Physical Society.}
Effect of repulsive and attractive three-body forces on nucleus-nucleus elastic scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furumoto, T.; Sakuragi, Y.; Yamamoto, Y.
2009-10-15
The effect of the three-body force (TBF) is studied in nucleus-nucleus elastic scattering on the basis of Brueckner theory for nucleon-nucleon (NN) effective interaction (complex G matrix) in the nuclear matter. A new G matrix called CEG07 proposed recently by the present authors includes the TBF effect and reproduces a realistic saturation curve in the nuclear matter, and it is shown to well reproduce proton-nucleus elastic scattering. The microscopic optical potential for the nucleus-nucleus system is obtained by folding the G matrix with nucleon density distributions in colliding nuclei. We first analyze in detail the {sup 16}O+{sup 16}O elastic scatteringmore » at E/A=70 MeV. The observed cross sections are nicely reproduced up to the most backward scattering angles only when the TBF effect is included. The use of the frozen-density approximation (FDA) is essentially important to properly estimate the effect of the TBF in nucleus-nucleus scattering. Other prescriptions for defining the local density have also been tested, but only the FDA prescription gives a proper description of the experimental cross sections as well as the effect of the TBF. The effects of the three-body attraction and the {omega}-rearrangement term are also analyzed. The CEG07 interaction is compared with CDM3Y6, which is a reliable and successful effective density-dependent NN interaction used in the double-folding model. The CEG07 G matrix is also tested in the elastic scattering of {sup 16}O by the {sup 12}C, {sup 28}Si, and {sup 40}Ca targets at E/A=93.9 MeV, and in the elastic scattering of {sup 12}C by the {sup 12}C target at E/A=135 MeV with great success. The decisive effect of the TBF is clearly seen also in those systems. Finally, we have tested CEG07a, CEG07b, and CEG07c for the {sup 16}O+{sup 16}O system at various energies.« less
Calcium Isotope Analysis with "Peak Cut" Method on Column Chemistry
NASA Astrophysics Data System (ADS)
Zhu, H.; Zhang, Z.; Liu, F.; Li, X.
2017-12-01
To eliminate isobaric interferences from elemental and molecular isobars (e.g., 40K+, 48Ti+, 88Sr2+, 24Mg16O+, 27Al16O+) on Ca isotopes during mass determination, samples should be purified through ion-exchange column chemistry before analysis. However, large Ca isotopic fractionation has been observed during column chemistry (Russell and Papanastassiou, 1978; Zhu et al., 2016). Therefore, full recovery during column chemistry is greatly needed, otherwise uncertainties would be caused by poor recovery (Zhu et al., 2016). Generally, matrix effects could be enhanced by full recovery, as other elements might overlap with Ca cut during column chemistry. Matrix effects and full recovery are difficult to balance and both need to be considered for high-precision analysis of stable Ca isotopes. Here, we investigate the influence of poor recovery on δ44/40Ca using TIMS with the double spike technique. The δ44/40Ca values of IAPSO seawater, ML3B-G and BHVO-2 in different Ca subcats (e.g., 0-20, 20-40, 40-60, 60-80, 80-100%) with 20% Ca recovery on column chemistry display limited variation after correction by the 42Ca-43Ca double spike technique with the exponential law. Notably, δ44/40Ca of each Ca subcut is quite consistent with δ44/40Ca of Ca cut with full recovery within error. Our results indicate that the 42Ca-43Ca double spike technique can simultaneously correct both of the Ca isotopic fractionation that occurred during column chemistry and thermal ionization mass spectrometry (TIMS) determination properly, because both of the isotopic fractionation occurred during analysis follow the exponential law well. Therefore, we propose the "peak cut" method on Ca column chemistry for samples with complex matrix effects. Briefly, for samples with low Ca contents, we can add the double spike before column chemistry, and only collect the middle of the Ca eluate and abandon the both sides of Ca eluate that might overlap with other elements (e.g., K, Sr). This method would eliminate matrix effects and improve efficiency for the column chemistry.
Prospect of Bioflavonoid Fisetin as a Quadruplex DNA Ligand: A Biophysical Approach
Sengupta, Bidisha; Pahari, Biswapathik; Blackmon, Laura; Sengupta, Pradeep K.
2013-01-01
Quadruplex (G4) forming sequences in telomeric DNA and c-myc promoter regions of human DNA are associated with tumorogenesis. Ligands that can facilitate or stabilize the formation and increase the stabilization of G4 can prevent tumor cell proliferation and have been regarded as potential anti-cancer drugs. In the present study, steady state and time-resolved fluorescence measurements provide important structural and dynamical insights into the free and bound states of the therapeutically potent plant flavonoid fisetin (3,3′,4′,7-tetrahydroxyflavone) in a G4 DNA matrix. The excited state intra-molecular proton transfer (ESPT) of fisetin plays an important role in observing and understanding the binding of fisetin with the G4 DNA. Differential absorption spectra, thermal melting, and circular dichroism spectroscopic studies provide evidences for the formation of G4 DNA and size exclusion chromatography (SEC) proves the binding and 1∶1 stoichiometry of fisetin in the DNA matrix. Comparative analysis of binding in the presence of EtBr proves that fisetin favors binding at the face of the G-quartet, mostly along the diagonal loop. Time resolved fluorescence anisotropy decay analysis indicates the increase in the restrictions in motion from the free to bound fisetin. We have also investigated the fingerprints of the binding of fisetin in the antiparallel quadruplex using Raman spectroscopy. Preliminary results indicate fisetin to be a prospective candidate as a G4 ligand. PMID:23785423
Grace, Mary H.; Guzman, Ivette; Roopchand, Diana E.; Moskal, Kristin; Cheng, Diana M.; Pogrebnyak, Natasha; Raskin, Ilya; Howell, Amy; Lila, Mary Ann
2013-01-01
Defatted soy flour (DSF), soy protein isolate (SPI), hemp protein isolate (HPI), medium roast peanut flour (MPF) and pea protein isolate (PPI) stably bind and concentrate cranberry (CB) polyphenols, creating protein/polyphenol-enriched matrices. Proanthocyanidins (PAC) in the enriched matrices ranged from 20.75 mg/g (CB-HPI) to 10.68 mg/g (CB-SPI). Anthocyanins (ANC) ranged from 3.19 mg/g (CB-DSF) to 1.68 mg/g (CB-SPI), while total phenolics (TP) ranged from 37.61 mg/g (CB-HPI) to 21.29 mg/g (CB-SPI). LC-MS indicated that the enriched matrices contained all identifiable ANC, PAC and flavonols present in CB juice. Complexation with SPI stabilized and preserved the integrity of the CB polyphenolic components for at least 15 weeks at 37 °C. PAC isolated from enriched matrices demonstrated comparable anti-adhesion bioactivity to PAC isolated directly from CB juice (MIC 0.4 to 0.16 mg/mL), indicating their potential utility for maintenance of urinary tract health. Approximately 1.0 g of polyphenol-enriched matrix delivered the same amount of PAC available in one cup (300 mL) of commercial CB juice cocktail; which has been shown clinically to be the prophylactic dose for reducing recurring urinary tract infections. CB-SPI inhibited gram- positive and gram-negative bacterial growth. Nutritional and sensory analyses indicated that the targeted CB-matrix combinations have high potential for incorporation in functional food formulations. PMID:23786629
pH and Heat Resistance of the Major Celery Allergen Api g 1.
Rib-Schmidt, Carina; Riedl, Philipp; Meisinger, Veronika; Schwaben, Luisa; Schulenborg, Thomas; Reuter, Andreas; Schiller, Dirk; Seutter von Loetzen, Christian; Rösch, Paul
2018-05-25
The major celery allergen Api g 1 is a member of the pathogenesis-related 10 class protein family. Here we aimed to investigate the impact of heat and pH on the native protein conformation required for Immunoglobulin E (IgE) recognition. Spectroscopic methods, MS and IgE binding analyses were used to study the effects of pH and thermal treatment on Api g 1.0101. Heat processing results in a loss of the native protein fold via denaturation, oligomerisation and precipitation along with a subsequent reduction of IgE recognition. The induced effects and timescales are strongly pH depended. While Api g 1 refolds partially into an IgE-binding conformation at physiological pH, acidic pH treatment leads to the formation of structurally heat resistant, IgE-reactive oligomers. Thermal processing in the presence of a celery matrix or at pH conditions close to the isoelectric point (pI = 4.63) of Api g 1.0101 results in almost instant precipitation. Our data demonstrate that Api g 1.0101 is not intrinsically susceptible to heat treatment in vitro. However, the pH and the celery matrix strongly influence the stability of Api g 1.0101 and might be the main reasons for the observed temperature lability of this important food allergen. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Empirical moments of inertia of axially asymmetric nuclei
Allmond, J. M.; Wood, J. L.
2017-02-06
We extracted empirical moments of inertia, J1, J2, J3, of atomic nuclei with E(4more » $$+\\atop{1}$$)/E(2$$+\\atop{1}$$ ) > 2.7 from experimental 2$$+\\atop{g,y}$$, energies and electric quadrupole matrix elements, determined from multi- step Coulomb excitation data, and the results are compared to expectations based on rigid and irro- tational inertial flow. Only by having the signs of the E2 matrix elements, i.e., <2$$+\\atop{g}$$ ||M (E2)||2$$+\\atop{g}$$> and <0$$+\\atop{g}$$ ||M (E2)||2$$+\\atop{g}$$> < 2$$+\\atop{g}$$ ||M (E2)||2$$+\\atop{γ}$$> <2$$+\\atop{γ}$$ ||M (E2)||0$$+\\atop{g}$$> , can a unique solution to all three components of the inertia tensor of an asymmetric top be obtained. And while the absolute moments of inertia fall between the rigid and irrotational values as expected, the relative moments of inertia appear to be qualitatively consistent with the β 2 sin 2(γ ) dependence of the Bohr Hamiltonian which originates from a SO(5) in- variance. A better understanding of inertial flow is central to improving collective models, particularly hydrodynamic-based collective models. The results suggest that a better description of collective dynamics and inertial flow for atomic nuclei is needed. The inclusion of vorticity degrees of freedom may provide a path forward. This is our first report of empirical moments of inertia for all three axes and the results should challenge both collective and microscopic descriptions of inertial flow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allmond, J. M.; Wood, J. L.
We extracted empirical moments of inertia, J1, J2, J3, of atomic nuclei with E(4more » $$+\\atop{1}$$)/E(2$$+\\atop{1}$$ ) > 2.7 from experimental 2$$+\\atop{g,y}$$, energies and electric quadrupole matrix elements, determined from multi- step Coulomb excitation data, and the results are compared to expectations based on rigid and irro- tational inertial flow. Only by having the signs of the E2 matrix elements, i.e., <2$$+\\atop{g}$$ ||M (E2)||2$$+\\atop{g}$$> and <0$$+\\atop{g}$$ ||M (E2)||2$$+\\atop{g}$$> < 2$$+\\atop{g}$$ ||M (E2)||2$$+\\atop{γ}$$> <2$$+\\atop{γ}$$ ||M (E2)||0$$+\\atop{g}$$> , can a unique solution to all three components of the inertia tensor of an asymmetric top be obtained. And while the absolute moments of inertia fall between the rigid and irrotational values as expected, the relative moments of inertia appear to be qualitatively consistent with the β 2 sin 2(γ ) dependence of the Bohr Hamiltonian which originates from a SO(5) in- variance. A better understanding of inertial flow is central to improving collective models, particularly hydrodynamic-based collective models. The results suggest that a better description of collective dynamics and inertial flow for atomic nuclei is needed. The inclusion of vorticity degrees of freedom may provide a path forward. This is our first report of empirical moments of inertia for all three axes and the results should challenge both collective and microscopic descriptions of inertial flow.« less
Golec, Barbara; Bil, Andrzej; Mielke, Zofia
2009-08-27
We have studied the structure and photochemistry of the formaldoxime−nitrous acid system (CH2NOH−HONO) by help of FTIR matrix isolation spectroscopy and ab initio methods. The MP2/6-311++G(2d,2p) calculations show stability of six isomeric CH2NOH···HONO complexes. The FTIR spectra evidence formation of two hydrogen bonded complexes in an argon matrix whose structures are determined by comparison of the experimental spectra with the calculated ones for the six stable complexes. In the matrix there is present the most stable cyclic complex with two O−H···N bonds; a strong bond is formed between the OH group of HONO and the N atom of CH2NOH and the weaker one between the OH group of CH2NOH and the N atom of HONO. In the other complex present in the matrix the OH group of formaldoxime is attached to the OH group of HONO forming an O−H···O bond. The irradiation of the CH2NOH···HONO complexes with the filtered output of the mercury lamp (λ > 345 nm) leads to the formation of formaldoxime nitrite, CH2NONO, and its two isomeric complexes with water. The main product is the CH2NONO···H2O complex in which water is hydrogen bonded to the N atom of the C═N group. The identity of the photoproducts is confirmed by both FTIR spectroscopy and MP2 or QCISD(full) calculations with the 6-311++G(2d,2p) basis set. The intermediate in this reaction is iminoxyl radical that is formed by abstraction of hydrogen atom from formaldoxime OH group by an OH radical originating from HONO photolysis.
NMR imaging of fluid exchange between macropores and matrix in eogenetic karst
Florea, L.J.; Cunningham, K.J.; Altobelli, S.
2009-01-01
Sequential time-step images acquired using nuclear magnetic resonance (NMR) show the displacement of deuterated water (D2O) by fresh water within two limestone samples characterized by a porous and permeable limestone matrix of peloids and ooids. These samples were selected because they have a macropore system representative of some parts of the eogenetic karst limestone of the Biscayne Aquifer in southeastern Florida. The macroporosity, created by the trace fossil Ophiomorpha, is principally well connected and of centimeter scale. These macropores occur in broadly continuous stratiform zones that create preferential flow layers within the hydrogeologic units of the Biscayne. This arrangement of porosity is important because in coastal areas, it could produce a preferential pathway for salt water intrusion. Two experiments were conducted in which samples saturated with D2O were placed in acrylic chambers filled with fresh water and examined with NMR. Results reveal a substantial flux of fresh water into the matrix porosity with a simultaneous loss of D 2O. Specifically, we measured rates upward of 0.001 mL/h/g of sample in static conditions, and perhaps as great as 0.07 mL/h/g of sample when fresh water continuously flows past a sample at velocities less than those found within stressed areas of the Biscayne. These experiments illustrate how fresh water and D2O, with different chemical properties, migrate within one type of matrix porosity found in the Biscayne. Furthermore, these experiments are a comparative exercise in the displacement of sea water by fresh water in the matrix of a coastal, karst aquifer since D2O has a greater density than fresh water. ?? 2008 National Ground Water Association.
Analysis of Delamination Growth from Matrix Cracks in Laminates Subjected to Bending Loads
NASA Technical Reports Server (NTRS)
Murri, G. B.; Guynn, E. G.
1986-01-01
A major source of delamination damage in laminated composite materials is from low-velocity impact. In thin composite laminates under point loads, matrix cracks develop first in the plies, and delaminations then grow from these cracks at the ply interfaces. The purpose of this study was to quantify the combined effects of bending and transverse shear loads on delamination initiation from matrix cracks. Graphite-epoxy laminates with 90 deg. plies on the outside were used to provide a two-dimensional simulation of the damage due to low-velocity impact. Three plate bending problems were considered: a 4-point bending, 3-point bending, and an end-clamped center-loaded plate. Under bending, a matrix crack will form on the tension side of the laminate, through the outer 90 deg. plies and parallel to the fibers. Delaminations will then grow in the interface between the cracked 90 deg. ply and the next adjacent ply. Laminate plate theory was used to derive simple equations relating the total strain energy release rate, G, associated with the delamination growth from a 90 deg. ply crack to the applied bending load and laminate stiffness properties. Three different lay-ups were tested and results compared. Test results verified that the delamination always formed at the interface between the cracked 90 deg. ply and the next adjacent ply. Calculated values for total G sub c from the analysis showed good agreement for all configurations. The analysis was able to predict the delamination onset load for the cases considered. The result indicated that the opening mode component (Mode I) for delamination growth from a matrix crack may be much larger than the component due to interlaminar shear (Mode II).
Ponziani, Francesca Romana; Pompili, Maurizio; Di Stasio, Enrico; Zocco, Maria Assunta; Gasbarrini, Antonio; Flore, Roberto
2017-01-01
AIM To assess the rate of matrix Gla-protein carboxylation in patients with small intestinal bacterial overgrowth (SIBO) and to decipher its association with subclinical atherosclerosis. METHODS Patients with suspected SIBO who presented with a low risk for cardiovascular disease and showed no evidence of atherosclerotic plaques were included in the study. A glucose breath test was performed in order to confirm the diagnosis of SIBO and vascular assessment was carried out by ultrasound examination. Plasma levels of the inactive form of MGP (dephosphorylated-uncarboxylated matrix Gla-protein) were quantified by ELISA and vitamin K2 intake was estimated using a food frequency questionnaire. RESULTS Thirty-nine patients were included in the study. SIBO was confirmed in 12/39 (30.8%) patients who also presented with a higher concentration of dephosphorylated-uncarboxylated matrix Gla-protein (9.5 μg/L vs 4.2 μg/L; P = 0.004). Arterial stiffness was elevated in the SIBO group (pulse-wave velocity 10.25 m/s vs 7.68 m/s; P = 0.002) and this phenomenon was observed to correlate linearly with the levels of dephosphorylated-uncarboxylated matrix Gla-protein (β = 0.220, R2 = 0.366, P = 0.03). Carotid intima-media thickness and arterial calcifications were not observed to be significantly elevated as compared to controls. CONCLUSION SIBO is associated with reduced matrix Gla-protein activation as well as arterial stiffening. Both these observations are regarded as important indicators of subclinical atherosclerosis. Hence, screening for SIBO, intestinal decontamination and supplementation with vitamin K2 has the potential to be incorporated into clinical practice as additional preventive measures. PMID:28275304
Efficacy of hemostatic matrix and microporous polysaccharide hemospheres.
Lewis, Kevin M; Atlee, Holly; Mannone, Angela; Lin, Lawrence; Goppelt, Andreas
2015-02-01
Microporous Polysaccharide Hemospheres (MPH) are a new plant-derived polysaccharide powder hemostat. Previous studies investigated MPH as a replacement to nonflowable hemostatic agents of different application techniques (e.g., oxidized cellulose, collagen); therefore, the purpose of this study was to determine if MPH is a surrogate for flowable hemostatic agents of similar handling and application techniques, specifically a flowable thrombin-gelatin hemostatic matrix. Hemostatic efficacy was compared using a heparinized porcine abrasion model mimicking a capsular tear of a parenchymal organ. MPH (ARISTA, 1 g) and hemostatic matrix (Floseal, 1 mL) were applied, according to a randomized scheme, to paired hepatic abrasions (40 lesions per group). Hemostatic success, control of bleeding, and blood loss were assessed 2, 5, and 10 min after treatment. Hemostatic success and control of bleeding were analyzed using odds ratios and blood loss using mean differences. Hemostatic matrix provided superior hemostatic success relative to MPH at 5 (odds ratio: 0.035, 95% confidence interval: 0.004-0.278) and 10 min (0.032, 0.007-0.150), provided superior control of bleeding at 5 (0.006, <0.001-0.037) and 10 min (0.009, 0.001-0.051), and had significantly less blood loss at 5 (mean difference: 0.3118 mL/min, 95% confidence interval: 0.0939-0.5296) and 10 min (0.5025, 0.2489-0.7561). These findings corroborate other MPH investigations regarding its low-level efficacy and suggest that MPH is not an appropriate surrogate for hemostatic matrix despite similar application techniques. The lack of a procoagulant within MPH may likely be the reason for its lower efficacy and need for multiple applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Computational Study of Electron-Molecule Collisions Related to Low-Temperature Plasmas.
NASA Astrophysics Data System (ADS)
Huo, Winifred M.
1997-10-01
Computational study of electron-molecule collisions not only complements experimental measurements, but can also be used to investigate processes not readily accessible experimentally. A number of ab initio computational methods are available for this type of calculations. Here we describe a recently developed technique, the finite element Z-matrix method. Analogous to the R-matrix method, it partitions the space into regions and employs real matrix elements. However, unlike the implementation of the R-matrix method commonly used in atomic and molecular physics,(C. J. Gillan, J. Tennyson, and P. G. Burke, Chapter 10 in Computational Methods for Electron-Molecule Collisions), W. M. Huo and F. A. Gianturco, Editors, Plenum, New York (1995), p. 239. the Z-matrix method is fully variational.(D. Brown and J. C. Light, J. Chem. Phys. 101), 3723 (1994). In the present implementation, a mixed basis of finite elements and Gaussians is used to represent the continuum electron, thus offering full flexibility without imposing fixed boundary conditions. Numerical examples include the electron-impact dissociation of N2 via the metastable A^3Σ_u^+ state, a process which may be important in the lower thermosphere, and the dissociation of the CF radical, a process of interest to plasma etching. To understand the dissociation pathways, large scale quantum chemical calculations have been carried out for all target states which dissociate to the lowest five limits in the case of N_2, and to the lowest two limits in the case of CF. For N_2, the structural calculations clearly show the preference for predissociation if the initial state is the ground X^1Σ_g^+ state, but direct dissociation appears to be preferable if the initial state is the A^3Σ_u^+ state. Multi-configuration SCF target functions are used in the collisional calculation,
Zhao, Qin; Xu, Jing; Yin, Jia; Feng, Yu-Qi
2015-08-19
In the present study, humic acids (HAs) were applied as both a matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and an adsorbent of magnetic solid phase extraction (MSPE) for the first time. As natural macromolecule compounds, HAs are inherently highly functionalized and contain laser energy absorbing-transferring aromatic structures. This special molecular structure made HAs a good candidate for use as a MALDI matrix in small molecule analysis. At the same time, due to its good adsorption ability, HAs was prepared as MSPE adsorbent via a simple co-mixing method, in which the commercially available HAs were directly mixed with Fe3O4 magnetic nanoparticles (MNPs) in a mortar and grinded evenly and completely. In this process, MNPs were physically wrapped and adhered to tiny HAs leading to the formation of magnetic HAs (MHAs). To verify the bi-function of the MHAs, Rhodamine B (RdB) was chosen as model compound. Our results show that the combination of MHAs-based MSPE and MALDI-TOF-MS can provide a rapid and sensitive method for the determination of RdB in chili oil. The whole analytical procedure could be completed within 30 min for simultaneous determination of more than 20 samples, and the limit of quantitation for RdB was found to be 0.02 μg/g. The recoveries in chili oil were in the range 73.8-81.5% with the RSDs less than 21.3% (intraday) and 20.3% (interday). The proposed strategy has potential applications for high-throughput analysis of small molecules in complex samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Kowal, Sebastian; Balsaa, Peter; Werres, Friedrich; Schmidt, Torsten C
2012-06-01
The development and validation of a sensitive and reliable detection method for the determination of two polar degradation products, desphenyl-chloridazon (DPC) and methyl-desphenyl-chloridazon (MDPC) in surface water, ground water and drinking water is presented. The method is based on direct large volume injection ultra-performance liquid chromatography electrospray tandem mass spectrometry. This simple but powerful analytical method for polar substances in the aquatic environment is usually hampered by varying matrix effects, depending on the nature of different water bodies. For the two examined degradation products, the matrix effects are particularly strong compared with other polar degradation products of pesticides. Therefore, matrix effects were studied thoroughly with the aim of minimising them and improving sensitivity during determination by postcolumn addition of ammonia solution as a modifier. An internal standard was used in order to compensate for remaining matrix effects. The calibration curve shows very good coefficients of correlation (0.9994 for DPC and 0.9999 for MDPC). Intraday precision values were lower than 5 % for DPC, 3 % for MDPC and the limits of detection were 10 ng/L for both substances. The method was successfully used in a national round robin test with a deviation between 3 and 8 % from target values. Finally, about 1,000 samples from different water bodies have been examined with this method in the Rhine and Ruhr region of North-Rhine-Westphalia (Germany) and in the European Union. Approximately 76 % of analysed samples contained measurable amounts of DPC at concentrations up to 8 μg/L while 53 % of the samples showed MDPC concentrations up to 2.3 μg/L.
M1 transitions in the (sdg) boson model
NASA Astrophysics Data System (ADS)
Kuyucak, S.; Morrison, I.
1988-03-01
Using the {1}/{N} expansion technique we derive expressions for β→g, γ→g and γ→γ M1 transitions in a general boson model. The M1 matrix elements in the sdg-boson model are similar in form to those in the neutron-proton IBM. Comparisons are made to some selected M1 data exhibiting collective character.
NASA Technical Reports Server (NTRS)
Prud'Homme, Robert K. (Inventor); Pan, Shuyang (Inventor); Aksay, Ilhan A. (Inventor)
2018-01-01
A nanocomposite composition having a silicone elastomer matrix having therein a filler loading of greater than 0.05 wt %, based on total nanocomposite weight, wherein the filler is functional graphene sheets (FGS) having a surface area of from 300 sq m/g to 2630 sq m2/g; and a method for producing the nanocomposite and uses thereof.
A Guide for Selecting Remedies for Subsurface Releases of Chlorinated Solvents
2011-03-01
exception of secondary permeability features (e.g., fractures , root holes, animal burrows), high displacement pressures typically preclude DNAPL from...1 to 40 percent. Fractured media with high matrix porosity are commonly encountered in sedimentary rock (e.g., limestone, dolomite , shale, and...Low Permeability .......... 21 Type III – Granular Media with Moderate to High Heterogeneity ........................ 21 Type IV - Fractured Media
NASA Technical Reports Server (NTRS)
Locci, I. E.; Noebe, R. D.; Bowman, R. R.; Miner, R. V.; Nathal, M. V.; Darolia, R.
1991-01-01
The possibility of producing NiAl reinforced with the G-phase (Ni16X6Si7), where X is Zr or Hf, has been investigated. The microstructure of these NiAl alloys have been characterized in the as-cast and annealed conditions. The G-phases are present as fine cuboidal precipitates (10 to 40 nm) and have lattice parameters almost four times that of NiAl. They are coherent with the matrix and fairly resistant to coarsening during annealing heat treatments. Segregation and nonuniform precipitate distribution observed in as-cast materials were eliminated by homogenization at temperatures near 1600 K. Slow cooling from these temperatures resulted in large plate shaped precipitates, denuded zones, and a loss of coherency in some of the large particles. Faster cooling produced a homogeneous fine distribution of cuboidal G-phase particles in the matrix. Preliminary mechanical properties for the Zr-doped alloy are presented and compared to binary single crystal NiAl. The presence of these precipitates appears to have an important strengthening effect at temperatures not less than 1000 K compared to binary NiAl single crystals.
Santos Felix, Antonio C; Novaes, Cleber G; Pires Rocha, Maísla; Barreto, George E; do Nascimento, Baraquizio B; Giraldez Alvarez, Lisandro D
2017-01-01
In this study, we have determined, using RSM (mixture design and Doehlert matrix), the optimum values of the independent variables to achieve the maximum response for the extraction of total phenolic compounds from Spondias mombin L bagasse agroindustrial residues in order to preserve their antioxidant activity. The extraction of phenolic compounds, as well as their antioxidant capacity and the capacity to scavenge ABTS, was determined by the modified DPPH method at different periods of time, temperature, velocity of rotation and solvents concentration. We observed that the optimum condition for the highest antioxidant yield was obtained using water (60.84%), acetone (30.31%), and ethanol (8.85%) at 30°C during 20 min at 50 rpm. We have also found that the maximum yield of total phenolics was 355.63 ± 9.77 (mg GAE/100 g), showing an EC 50 of 3,962.24 ± 41.20 (g fruit/g of DPPH) and 8.36 ± 0.30 (μM trolox/g fruit), which were measured using DPPH and ABTS assays. These results suggest that RSM was successfully applied for optimizing the extraction of phenolics compounds thus preserving their antioxidant activity.
Tsai, Dung-Ying; Chen, Chien-Liang; Ding, Wang-Hsien
2014-07-01
A simple and effective method for the rapid determination of five salicylate and benzophenone-type UV absorbing substances in marketed fish is described. The method involves the use of matrix solid-phase dispersion (MSPD) prior to their determination by on-line silylation gas chromatography tandem mass spectrometry (GC-MS/MS). The parameters that affect the extraction efficiency were optimized using a Box-Behnken design method. The optimal extraction conditions involved dispersing 0.5g of freeze-dried powdered fish with 1.0g of Florisil using a mortar and pestle. This blend was then transferred to a solid-phase extraction (SPE) cartridge containing 1.0g of octadecyl bonded silica (C18), as the clean-up co-sorbent. The target analytes were then eluted with 7mL of acetonitrile. The extract was derivatized on-line in the GC injection-port by reaction with a trimethylsilylating (TMS) reagent. The TMS-derivatives were then identified and quantitated by GC-MS/MS. The limits of quantitation (LOQs) were less than 0.1ng/g. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gardiner, Bruce S.; Wong, Kelvin K. L.; Joldes, Grand R.; Rich, Addison J.; Tan, Chin Wee; Burgess, Antony W.; Smith, David W.
2015-01-01
This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via cadherins, integrin basement membrane attachment, cytoskeletal mechanical properties). Particles may be given the capacity to change their properties and behaviours in response to changes in the cellular microenvironment (e.g., in response to cell-cell signalling or mechanical loadings). Each particle is in effect an ‘agent’, meaning that the agent can sense local environmental information and respond according to pre-determined or stochastic events. The behaviour of the proposed framework is exemplified through several biological problems of ongoing interest. These examples illustrate how the modelling framework allows enormous flexibility for representing the mechanical behaviour of different tissues, and we argue this is a more intuitive approach than perhaps offered by traditional continuum methods. Because of this flexibility, we believe the discrete modelling framework provides an avenue for biologists and bioengineers to explore the behaviour of tissue systems in a computational laboratory. PMID:26452000
NASA Astrophysics Data System (ADS)
Chen, Jiayuan; Wu, Xiaofeng; Liu, Ya; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Tan, Qiangqiang; Chen, Yunfa
2017-12-01
A facile template-free synthesis strategy is demonstrated to fabricate nanostructured NiO/N-doped graphene hybrid, in which NiO hollow nanospheres with hierarchically mesoporous structure are tightly anchored on N-doped graphene matrix. The mesoporous shell of NiO can not only provide sufficient electrode/electrolyte contact areas to accelerate ion diffusion and electron exchange, but also efficiently mitigate the volume change that occurs during long-time reactions. Simultaneously, the reduced graphene oxide with doping nitrogen atoms are employed as effectively conductive backbone, further enhancing the electrochemical performances. When used as anodic material for lithium ion batteries, the synergistic system delivers a reversible capacity up to 1104.6 mAh g-1 after 150 cycles at a current density of 0.08 A g-1 and 422.3 mAh g-1 at a high charging rate of 4 A g-1, which is better than those of the bare counterparts and most other NiO-based materials reported in the previous literatures. The hierarchically hollow NiO nanostructure combined with N-doped graphene matrix provides a promising candidate applied in advanced anode materials for lithium ion batteries.
Fabrication of digital rainbow holograms and 3-D imaging using SEM based e-beam lithography.
Firsov, An; Firsov, A; Loechel, B; Erko, A; Svintsov, A; Zaitsev, S
2014-11-17
Here we present an approach for creating full-color digital rainbow holograms based on mixing three basic colors. Much like in a color TV with three luminescent points per single screen pixel, each color pixel of initial image is presented by three (R, G, B) distinct diffractive gratings in a hologram structure. Change of either duty cycle or area of the gratings are used to provide proper R, G, B intensities. Special algorithms allow one to design rather complicated 3D images (that might even be replacing each other with hologram rotation). The software developed ("RainBow") provides stability of colorization of rotated image by means of equalizing of angular blur from gratings responsible for R, G, B basic colors. The approach based on R, G, B color synthesis allows one to fabricate gray-tone rainbow hologram containing white color what is hardly possible in traditional dot-matrix technology. Budgetary electron beam lithography based on SEM column was used to fabricate practical examples of digital rainbow hologram. The results of fabrication of large rainbow holograms from design to imprinting are presented. Advantages of the EBL in comparison to traditional optical (dot-matrix) technology is considered.
Gardiner, Bruce S; Wong, Kelvin K L; Joldes, Grand R; Rich, Addison J; Tan, Chin Wee; Burgess, Antony W; Smith, David W
2015-10-01
This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via cadherins, integrin basement membrane attachment, cytoskeletal mechanical properties). Particles may be given the capacity to change their properties and behaviours in response to changes in the cellular microenvironment (e.g., in response to cell-cell signalling or mechanical loadings). Each particle is in effect an 'agent', meaning that the agent can sense local environmental information and respond according to pre-determined or stochastic events. The behaviour of the proposed framework is exemplified through several biological problems of ongoing interest. These examples illustrate how the modelling framework allows enormous flexibility for representing the mechanical behaviour of different tissues, and we argue this is a more intuitive approach than perhaps offered by traditional continuum methods. Because of this flexibility, we believe the discrete modelling framework provides an avenue for biologists and bioengineers to explore the behaviour of tissue systems in a computational laboratory.
NASA Astrophysics Data System (ADS)
Belyanin, Georgy A.; Kramers, Jan D.; Andreoli, Marco A. G.; Greco, Francesco; Gucsik, Arnold; Makhubela, Tebogo V.; Przybylowicz, Wojciech J.; Wiedenbeck, Michael
2018-02-01
The stone named "Hypatia" found in the Libyan Desert Glass area of southwest Egypt is carbon-dominated and rich in microdiamonds. Previous noble gas and nitrogen isotope studies suggest an extraterrestrial origin. We report on a reconnaissance study of the carbonaceous matrix of this stone and the phases enclosed in it. This focused on areas not affected by numerous transecting fractures mostly filled with secondary minerals. The work employed scanning electron microscopy (SEM) with energy-dispersive (EDS) and wavelength-dispersive (WDS) electron microprobe (EMPA) analysis, Proton Induced X-ray Emission (PIXE) spectrometry and micro-Raman spectroscopy. We found that carbonaceous matrices of two types occur irregularly intermingled on the 50-500 μm scale: Matrix-1, consisting of almost pure carbonaceous matter, and Matrix-2, containing Fe, Ni, P and S at abundances analyzable by microprobe. Matrix-2 contains the following phases as inclusions: (i) (Fe,Ni) sulphide occurring in cloud-like concentrations of sub-μm grains, in domains of the matrix that are enriched in Fe and S. These domains have (Fe + Ni)/S (atomic) = 1.51 ± 0.24 and Ni/Fe = 0.086 ± 0.061 (both 1SD); (ii) grains up to ∼5 μm in size of moissanite (SiC); (iii) Ni-phosphide compound grains up to 60 μm across that appear cryptocrystalline or amorphous and have (Ni + Fe)/P (atomic) = 5.6. ± 1.7 and Ni/Fe = 74 ± 29 (both 1SD), where both these ratios are much higher than any known Ni-phosphide minerals; (iv) rare grains (observed only once) of graphite, metallic Al, Fe and Ag, and a phase consisting of Ag, P and I. In Matrix-2, Raman spectroscopy shows a prominent narrow diamond band at 1340 cm-1. In Matrix-1 the D and G bands of disordered carbon are dominant, but a minor diamond band is ubiquitous, accounting for the uniform hardness of the material. The D and G bands have average full width at half maximum (FWHM) values of 295 ± 19 and 115 ± 19 cm-1, respectively, and the D/G intensity ratio is 0.75 ± 0.09 (both 1SD). These values are similar to those of the most primitive solar system carbonaceous matter. The diamond phase is considered to be a product of shock. The (Fe, Ni) sulphide phase is probably pyrrhotite and a shock origin is likewise proposed for it. Moissanite is frequently associated with the Ni-phosphide phase, and a presolar origin for both is suggested. The lack of recrystallization of the Ni-phosphide phase suggests that the Hypatia stone did not experience long-lasting thermal metamorphism, in accord with the Raman D-G band characteristics. A lack of silicate matter sets the stone apart from interplanetary dust particles and known cometary material. This, along with the dual intermingled matrices internal to it, could indicate a high degree of heterogeneity in the early solar nebula.
The Oxidized Low-Density Lipoprotein Receptor Mediates Vascular Effects of Inhaled Vehicle Emissions
Lucero, JoAnn; Harman, Melissa; Madden, Michael C.; McDonald, Jacob D.; Seagrave, Jean Clare; Campen, Matthew J.
2011-01-01
Rationale: To determine vascular signaling pathways involved in inhaled air pollution (vehicular engine emission) exposure–induced exacerbation of atherosclerosis that are associated with onset of clinical cardiovascular events. Objectives: To elucidate the role of oxidized low-density lipoprotein (oxLDL) and its primary receptor on endothelial cells, the lectin-like oxLDL receptor (LOX-1), in regulation of endothelin-1 expression and matrix metalloproteinase activity associated with inhalational exposure to vehicular engine emissions. Methods: Atherosclerotic apolipoprotein E knockout mice were exposed by inhalation to filtered air or mixed whole engine emissions (250 μg particulate matter [PM]/m3 diesel + 50 μg PM/m3 gasoline exhausts) 6 h/d for 7 days. Concurrently, mice were treated with either mouse IgG or neutralizing antibodies to LOX-1 every other day. Vascular and plasma markers of oxidative stress and expression proatherogenic factors were assessed. In a parallel study, healthy human subjects were exposed to either 100 μg PM/m3 diesel whole exhaust or high-efficiency particulate air and charcoal-filtered “clean” air (control subjects) for 2 hours, on separate occasions. Measurements and Main Results: Mixed emissions exposure increased oxLDL and vascular reactive oxygen species, as well as LOX-1, matrix metalloproteinase-9, and endothelin-1 mRNA expression and also monocyte/macrophage infiltration, each of which was attenuated with LOX-1 antibody treatment. In a parallel study, diesel exhaust exposure in volunteer human subjects induced significant increases in plasma-soluble LOX-1. Conclusions: These findings demonstrate that acute exposure to vehicular source pollutants results in up-regulation of vascular factors associated with progression of atherosclerosis, endothelin-1, and matrix metalloproteinase-9, mediated through oxLDL–LOX-1 receptor signaling, which may serve as a novel target for future therapy. PMID:21493736
NASA Astrophysics Data System (ADS)
Li, Quanyi; Yang, Qi; Zhao, Yanhong; Wan, Bin
2017-10-01
Copper-supported MoO2-C composite as an integrated anode with excellent battery performance was synthesized by a facile knife coating technique followed by heat treatment in a vacuum. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal analysis, nitrogen adsorption and desorption analysis, field emission scanning microscopy (FESEM), and transmission electron microscopy (TEM). The results show the MoO2-C composite coating is comprised of a porous carbon matrix with a pore size of 1-3 nm and ultrafine MoO2 nanoparticles with a size of 5-10 nm encapsulated inside, the coating is tightly attached on the surface of copper foil, and the interface between them is free of cracks. Stable PAN-DMF-H2O system containing ammonium molybdate suitable for knife coating technique and the MoO2-C composite with ultrafine MoO2 nanoparticles encapsulated in the carbon matrix can be prepared through controlling amount of added ammonium molybdate solution. The copper-supported MoO2-C composite coating can be directly utilized as the integrated anode for lithium-ion batteries (LIBs). It delivers a capacity of 814 mA h g-1 at a current density of 100 mA g-1 after 100 cycles without apparent capacity fading. Furthermore, with increase of current densities to 200, 500, 1000, 2000, and 5000 mA g-1, it exhibits average capacities of 809, 697, 568, 383, and 188 mA h g-1. Its outstanding electrochemical performance is attributed to combined merits of integrated anode and structure with ultrafine MoO2 nanoparticles embedded in the porous carbon matrix.
Formulas for Image Factor Scores
ERIC Educational Resources Information Center
Hakstian, A. Ralph
1973-01-01
Formulas are presented in this paper for computing scores associated with factors of G, the image covariance matrix, under three conditions. The subject of the paper is restricted to "pure" image analysis. (Author/NE)
Zhang, Xiaoqing; Battiston, Kyle G; Labow, Rosalind S; Simmons, Craig A; Santerre, J Paul
2017-05-01
Tissue engineering (particularly for the case of load-bearing cardiovascular and connective tissues) requires the ability to promote the production and accumulation of extracellular matrix (ECM) components (e.g., collagen, glycosaminoglycan and elastin). Although different approaches have been attempted in order to enhance ECM accumulation in tissue engineered constructs, studies of underlying signalling mechanisms that influence ECM deposition and degradation during tissue remodelling and regeneration in multi-cellular culture systems have been limited. The current study investigated vascular smooth muscle cell (VSMC)-monocyte co-culture systems using different VSMC:monocyte ratios, within a degradable polyurethane scaffold, to assess their influence on ECM generation and degradation processes, and to elucidate relevant signalling molecules involved in this in vitro vascular tissue engineering system. It was found that a desired release profile of growth factors (e.g. insulin growth factor-1 (IGF-1)) and hydrolytic proteases (e.g. matrix-metalloproteinases 2, 9, 13 and 14 (MMP2, MMP9, MMP13 and MMP14)), could be achieved in co-culture systems, yielding an accumulation of ECM (specifically for 2:1 and 4:1 VSMC:monocyte culture systems). This study has significant implications for the tissue engineering field (including vascular tissue engineering), not only because it identified important cytokines and proteases that control ECM accumulation/degradation within synthetic tissue engineering scaffolds, but also because the established culture systems could be applied to improve the development of different types of tissue constructs. Sufficient extracellular matrix accumulation within cardiovascular and connective tissue engineered constructs is a prerequisite for their appropriate function in vivo. This study established co-culture systems with tissue specific cells (vascular smooth muscle cells (VSMCs)) and defined ratios of immune cells (monocytes) to investigate extracellular matrix (ECM) generation and degradation processes, revealing important mechanisms underlying ECM turnover during vascular tissue regeneration/remodelling. A specific growth factor (IGF-1), as well as hydrolytic proteases (e.g. MMP2, MMP9, MMP13 and MMP14), were identified as playing important roles in these processes. ECM accumulation was found to be dependent on achieving a desired release profile of these ECM-promoting and ECM-degrading factors within the multi-cellular microenvironment. The findings enhance our understanding of ECM deposition and degradation during in vitro tissue engineering and would be applicable to the repair or regeneration of a variety of tissues. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Effect of spaceflight on the extracellular matrix of skeletal muscle after a crush injury
NASA Technical Reports Server (NTRS)
Stauber, W. T.; Fritz, V. K.; Burkovskaia, T. E.; Il'ina-Kakueva, E. I.
1992-01-01
The organization and composition of the extracellular matrix were studied in the crush-injured gastrocnemius muscle of rats subjected to 0 G. After 14 days of flight on Cosmos 2044, the gastrocnemius muscle was removed and evaluated by histochemical and immunohistochemical techniques from the five injured flight rodents and various earth-based treatment groups. In general, the repair process was similar in all injured muscle samples with regard to the organization of the extracellular matrix and myofibers. Small and large myofibers were present within an expanded extracellular matrix, indicative of myogenesis and muscle regeneration. In the tail-suspended animals, a more complete repair was observed with nonenlarged area of nonmuscle cells or matrix material visible. In contrast, the muscle samples from the flight animals were less well organized and contained more macrophages and blood vessels in the repair region, indicative of a delayed repair process, but did not demonstrate any chronic inflammation. Myofiber repair did vary in muscles from the different groups, being slowest in the flight animals and most complete in the tail-suspended ones.
Kunte, Mugdha; Desai, Krutika
2017-06-01
Spirulina platensis :have been studied for several biological activities. In the current study C-phycocyanin containing protein extract (C-PC extract) of Spirulina platensis have been studied for its effect on human matrix metalloproteinases (MMP-1, MMP-2 and MMP-9) and tissue inhibitors of MMPs (TIMP-1 and TIMP-2). In the present study, breast cancer cell line (MDA-MB 231) and hepatocellular cancer cell line (HepG2) were examined for inhibition of MMPs at different levels of expression after C-PC extract treatment. Herein, we have demonstrated that C-PC extract significantly reduced activity of MMP-2 by 55.13% and MMP-9 by 57.9% in HepG2 cells at 15 μg concentration. Additionally, the treatment has reduced mRNA expression of MMP-2 and MMP-9 at 20 μg concentration by 1.65-folds and 1.66-folds respectively. The C-PC extract treatment have also downregulated a mRNA expression of TIMP-2 by 1.12 folds at 20 μg concentration in HepG2 cells. Together, these results indicate that C-PC, extract successfully inhibited MMP-2 and -9 at different levels of expression and TIMP-2 at a mRNA expression level; however, extract did not have any effect on MMP-1 expressed in MDA-MB231 and TIMP-1 expressed in HepG2 cells as well as the exact mechanism of inhibition of MMP-2, MMP-9 and TIMP-2 remained unclear.
Composite material reinforced with atomized quasicrystalline particles and method of making same
Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.
1998-12-22
A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quasicrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked composite exhibits substantially improved yield strength, tensile strength, Young`s modulus (stiffness). 3 figs.
Atomistic study of nanoprecipitates influence on plasticity and fracture of crystalline metals
NASA Astrophysics Data System (ADS)
Stegailov, Vladimir; Kuksin, Alexey; Norman, Genri; Yanilkin, Alexey
2007-06-01
The recent experimental results [G.I.Kanel et al., 2006] show the essential influence of the nanoprecipitates on spall strength of copper single crystals. In this work we address this issue by the molecular dynamics study. The models under consideration are the EAM systems of Al nanoclusters in the Cu matrix and Cu clusters in the Al matrix. We consider these two cases as the representative examples of nanocluster-matrix difference in shear strength. Three ways of the high strain rate deformation modeling are studied: hydrostatic and uniaxial strain and shock wave loading in the impactor-target model. The preexisting edge dislocation interaction with the precipitate under shear deformation is addressed. The effect of the precipitate size is considered.
Randrianjatovo, I; Girbal-Neuhauser, E; Marcato-Romain, C-E
2015-06-01
Biofilms are ecosystems of closely associated bacteria encapsulated in an extracellular matrix mainly composed of polysaccharides and proteins. A novel approach was developed for in situ quantification of extracellular proteins (ePNs) in various bacterial biofilms using epicocconone, a natural, fluorescent compound that binds amine residues of proteins. Six commercial proteins were tested for their reaction with epicocconone, and bovine serum albumin (BSA) was selected for assay optimization. The optimized protocol, performed as a microassay, allowed protein amounts as low as 0.7 μg to as high as 50 μg per well to be detected. Addition of monosaccharides or polysaccharides (glucose, dextran or alginate) to the standard BSA solutions (0 to 250 μg ml(-1)) showed little or no sugar interference up to 2000 μg ml(-1), thus providing an assessment of the specificity of epicocconone for proteins. The optimized protocol was then applied to three different biofilms, and in situ quantification of ePN showed contrasted protein amounts of 22.1 ± 3.1, 38.3 ± 7.1 and 0.3 ± 0.1 μg equivalent BSA of proteins for 48-h biofilms of Pseudomonas aeruginosa, Bacillus licheniformis and Weissella confusa, respectively. Possible interference due to global matrix compounds on the in situ quantification of proteins was also investigated by applying the standard addition method (SAM). Low error percentages were obtained, indicating a correct quantification of both the ePN and the added proteins. For the first time, a specific and sensitive assay has been developed for in situ determination of ePN produced by bacterial cells. This advance should lead to an accurate, rapid tool for further protein labelling and microscopic observation of the extracellular matrix of biofilms.
Knox, R V; Webel, S K; Swanson, M; Johnston, M E; Kraeling, R R
2017-10-01
Estrus and ovulation responses in Matrix-treated gilts may affect ovulation synchrony in response to triptorelin. In experiment 1, estrus and ovulation measures at 12h intervals after last Matrix feeding (LMF) were analyzed. For the 398 gilts that displayed estrus, 87.4% were detected on Days 6-8 after LMF. Duration of estrus was 24-60h for 85.6% of gilts and negatively correlated with interval from LMF to estrus (r=-0.53, P<0.0001). The estrus to ovulation interval was positively correlated with duration of estrus (r=0.61, P<0.0001). In experiment 2, gilts (n=96) received intravaginal treatment with 2mL of gel containing placebo (Control) at 96h, 200μg of triptorelin at 96h (TRP96), 120h (TRP120) or 144h (TRP144) after LMF. Estrus measures did not differ (P>0.10) among treatments. The proportion of gilts ovulating 32-56h after treatment was greater for TRP120 and TRP144 (P<0.01) compared to other treatments. The treatment to ovulation intervals for all triptorelin treatments were shorter (P<0.001) than Control. In experiment 3, gilts (n=86) received placebo (Control), 100μg (TRP100), 200μg (TRP200), or 400μg (TRP400) of triptorelin at 120h after LMF. There was no effect of treatment (P>0.10) on estrus or on interval from LMF to estrus. The proportion of gilts ovulating by 40, 48 and 56h after treatment increased (P<0.05) with triptorelin compared to Control. Our results indicate that gilts receiving 100-400μg of triptorelin at 120h after LMF had the greatest ovulation synchrony 24-48h following treatment. These studies provide important information for developing a procedure for a single insemination in synchronized gilts. Copyright © 2017 Elsevier B.V. All rights reserved.
Fate of LCFA in the co-digestion of cow manure, food waste and discontinuous addition of oil.
Neves, L; Oliveira, R; Alves, M M
2009-12-01
Different concentrations of oily waste were added in a discontinuous mode and recurrently to anaerobic continuous stirred tank reactors fed with cow manure and food waste. Four continuous stirred tank reactors were run in parallel. A control reactor (R1) received no additional oil and R2, R3 and R4 received increasing concentrations of oil in two different experimental approaches. First, the lipids composition was forced to change suddenly, in three moments, without changing the total chemical oxygen demand (COD) fed to the reactors. The only long chain fatty acid (LCFA) detected onto the R1 solid matrix was palmitic acid (C16:0). Nevertheless in the solid matrix of R2, R3 and R4C16:0 and stearic acid were detected. For occasional increase in the oil concentration up to 7.7gCOD(oil)/L(reactor) (55% Oil(COD)/Total(COD)) no statistical differences were detected between the reactors, in terms of methane production, effluent soluble COD, effluent volatile fatty acids and total and volatile solids removal. Therefore this experiment allowed to conclude that cow manure-food waste co-digestion presents sufficient buffer capacity to endure solid-associated LCFA concentration up to 20-25gCOD-LCFA/kgTS. In a second experiment higher concentrations of oil were added, raising occasionally the concentration in the reactors to 9, 12, 15 and 18gCOD(oil)/L(reactor). All pulses had a positive effect in methane production, with the exception of the highest oil pulse concentration, that persistently impaired the reactor performance. This experiment demonstrates that threshold values for LCFA and C16:0 accumulation onto the solid matrix, of about 180-220gCOD-LCFA/kgTS and 120-150gCOD-C16:0/kgTS, should not be surpassed in order to prevent persistent reactor failure, as occurs in some full scale co-digestion plants.
1993-04-02
1977) 97. 3 W. Wieswieler, E. Fitzer, G . Nagel, and H. Jager, Thin Solid Film, 148 (1987) 93. 4 T. A. Chernyshova , L. I. Kobelova, J. Mater. Scl., 20...AD-A267 023 I[E[gh ’Temperature kdvanced Structural (Composites Rensselaer Polytechnic Institute , \\ G Troy, N. Y. 12180-3590 - Final Report -- Book 2...thermodynamic data (heats of forma- ,(T p, comp.) °+p, comp.) (1) tion, absolute entropies, heat capacities) of reactants where g ’ is the chemical
Conformers, infrared spectrum and UV-induced photochemistry of matrix-isolated furfuryl alcohol.
Araujo-Andrade, C; Gómez-Zavaglia, A; Reva, I D; Fausto, R
2012-03-08
The infrared spectra of furfuryl alcohol (2-furanmethanol, FFA) were investigated for FFA monomers isolated in low-temperature argon matrices. The structural interpretation of the obtained experimental spectra was assisted by analysis of the molecule's conformational landscape. According to the DFT(B3LYP)/6-311++G(d,p) calculations, five different minimum energy structures were found on the potential energy surface of the molecule. They can be defined by the orientation of the OCCO and CCOH dihedral angles: GG', GG, TG, TT, GT (G = +gauche, G' = -gauche, T = trans) and have a symmetry equivalent configuration: GG' = G'G, GG = G'G', TG = TG', GT = G'T. When zero-point energies are taken into account, only three (GG', GG, and TT) out of the five unique minima correspond to stable structures. The most stable conformer GG' (OCCO, 72.7°; CCOH, -59.3°), which in gas phase at room temperature accounts for ∼65% of the total population, was the only form isolated in the argon matrices at 14 K. The other two relevant forms convert into conformer GG' during matrix deposition. The low temperature glassy and crystalline states of FFA were also obtained and their infrared spectra assigned, suggesting the sole existence of the GG' conformer also in these phases. The photochemical behavior of FFA induced in situ, by tunable UV-laser, was also studied. The longest wavelength resulting in photochemical changes in the structure of the irradiated sample was found to be λ = 229 nm. Such UV irradiation of the matrix-isolated FFA led to production of formaldehyde and different isomeric C(4)H(4)O species. Cycloprop-2-ene-1-carbaldehyde and buta-2,3-dienal (two conformers) are the main initial C(4)H(4)O photoproducts formed upon short-time excitation at λ = 229 nm. But-3-ynal (two conformers) was the principal photoproduct resulting from prolonged excitation at λ= 229 nm, being consumed upon irradiation at shorter wavelengths (λ < 227.5 nm). Vinyl ketene is produced from FFA in the trans conformation and undergoes isomerization to the cis form upon irradiation at λ < 227.5 nm. Cyclopropene, propyne, allene, and CO were also identified in the irradiated matrices (in particular at the later stages of irradiation), suggesting that the photoproduced aldehydes partially decarbonylate during the performed photochemical experiments.
NASA Astrophysics Data System (ADS)
Muxworthy, Adrian R.; Bland, Phillip A.; Davison, Thomas M.; Moore, James; Collins, Gareth S.; Ciesla, Fred J.
2017-10-01
We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low ( 6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low-velocity collisions can generate significant matrix temperatures, as pore-space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat-sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero-porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.
Skogman, Malena Elise; Vuorela, Pia Maarit; Fallarero, Adyary
2012-09-01
Despite that three types of assays (measuring biofilm viability, biomass, or matrix) are described to assess anti-biofilm activity, they are rarely used together. As infections can easily reappear if the matrix is not affected after antibiotic treatments, our goal was to explore the simultaneous effects of antibiotics on the viability, biomass and matrix of Staphylococcus aureus biofilms (ATCC 25923). Viability and biomass were quantified using resazurin and crystal violet staining sequentially in the same plate, while matrix staining was conducted with a wheat germ agglutinin-Alexa Fluor 488 fluorescent conjugate. Establishment of the detection limits and linearity ranges allowed concluding that all three methods were able to estimate biofilm formation in a similar fashion. In a susceptibility study with 18-h biofilms, two model compounds (penicillin G and ciprofloxacin) caused a reduction on the viability and biomass accompanied by an increase or not changed levels of the matrix, respectively. This response pattern was also proven for S. aureus Newman, S. epidermidis and E. coli biofilms. A classification of antibiotics based on five categories according to their effects on viability and matrix has been proposed earlier. Our data suggests a sixth group, represented by penicillin, causing decrease in bacterial viability but showing stimulatory effects on the matrix. Further, if effects on the matrix are not taken into account, the long-term chemotherapeutic effect of antibiotics can be jeopardized in spite of the positive effects on biofilms viability and biomass. Thus, measuring all these three endpoints simultaneously provide a more complete and accurate picture.
Cerqueira, Maristela B R; Guilherme, Juliana R; Caldas, Sergiane S; Martins, Manoel L; Zanella, Renato; Primel, Ednei G
2014-07-01
A modified version of the QuEChERS method has been evaluated for the determination of 21 pharmaceuticals and 6 personal care products (PPCPs) in drinking-water sludge samples by employing ultra high liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The performance of the method was evaluated through linearity, recovery, precision (intra-day), method detection and quantification limits (MDL and MQL) and matrix effect. The calibration curves prepared in acetonitrile and in the matrix extract showed a correlation coefficient ranging from 0.98 to 0.99. MQLs values were on the ng g(-1) order of magnitude for most compounds. Recoveries between 50% and 93% were reached with RSDs lower than 10% for most compounds. Matrix effect was almost absent with values lower than 16% for 93% of the compounds. By coupling a quick and simple extraction called QuEChERS with the UPLC-MS/MS analysis, a method that is both selective and sensitive was obtained. This methodology was successfully applied to real samples and caffeine and benzophenone-3 were detected in ng g(-1) levels. Copyright © 2014 Elsevier Ltd. All rights reserved.
Noegrohati, Sri; Hernadi, Elan; Asviastuti, Syanti
2018-06-01
Production of red flesh dragon fruit (Hylocereus polyrhizus) was hampered by Colletotrichum sp. Pre-harvest application of azoxystrobin and difenoconazole mixture is recommended, therefore, a selective and sensitive multi residues analytical method is required in monitoring and evaluating the commodity's safety. LC-MS/MS is a well-established analytical technique for qualitative and quantitative determination in complex matrices. However, this method is hurdled by co-eluted coextractives interferences. This work evaluated the pH effect of acetate buffered and citrate buffered QuEChERS sample preparation in their effectiveness of matrix effect reduction. Citrate buffered QuEChERS proved to produce clean final extract with relative matrix effect 0.4%-0.7%. Method validation of the selected sample preparation followed by LC-MS/MS for whole dragon fruit, flesh and peel matrices fortified at 0.005, 0.01, 0.1 and 1 g/g showed recoveries 75%-119%, intermediate repeatability 2%-14%. The expanded uncertainties were 7%-48%. Based on the international acceptance criteria, this method is valid.
Salami, Souad; Rondeau-Mouro, Corinne; Barhoum, Myriam; van Duynhoven, John; Mariette, François
2014-09-01
The dynamics of rigid dendrimer and flexible PEG probes in sodium caseinate dispersions and acid gels, including both translational diffusion and rotational diffusion, were studied by NMR. Above the onset of the close-packing limit (C ∼ 10 g/100 g H2 O), translational diffusion of the probe depended on its flexibility and on the fluctuations of the matrix chains. The PEG probe diffused more rapidly than the spherical dendrimer probe of corresponding hydrodynamic radius. The greater conformational flexibility of PEG facilitated its motion through the crowded casein matrix. Rotational diffusion was, however, substantially less hindered than the translational diffusion and depended on the local protein-probe friction which became high when the casein concentration increased. The coagulation of the matrix led to the formation of large voids, which resulted in an increase in the translational diffusion of the probes, whereas the rotational diffusion of the probes was retarded in the gel, which could be attributed to the immobilized environment surrounding the probe. Quantitative information from PFG-NMR and SEM micrographs have been combined for characterizing microstructural details in SC acid gels. © 2014 Wiley Periodicals, Inc.
Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment
Xiao, Yun; Ahadian, Samad
2017-01-01
Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell–matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them. PMID:27405960
[Fusion implants of carbon fiber reinforced plastic].
Früh, H J; Liebetrau, A; Bertagnoli, R
2002-05-01
Carbon fiber reinforced plastics (CFRP) are used in the medical field when high mechanical strength, innovative design, and radiolucency (see spinal fusion implants) are needed. During the manufacturing process of the material CFRP carbon fibers are embedded into a resin matrix. This resin material could be thermoset (e.g., epoxy resin EPN/DDS) or thermoplastic (e.g., PEAK). CFRP is biocompatible, radiolucent, and has higher mechanical capabilities compared to other implant materials. This publication demonstrates the manufacturing process of fusion implants made of a thermoset matrix system using a fiber winding process. The material has been used clinically since 1994 for fusion implants of the cervical and lumbar spine. The results of the fusion systems CORNERSTONE-SR C (cervical) and UNION (lumbar) showed no implant-related complications. New implant systems made of this CFRP material are under investigation and are presented.
MoSi2-Base Composite for Engine Applications
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G.; Nathal, Michael V.
1997-01-01
The intermetallic compound MoSi2 has long been known as a high temperature material that has excellent oxidation resistance and electrical/thermal conductivity. Also its low cost, high melting point (2023 C), relatively low density (6.2 g/cm versus 8 g/cm for current engine materials), and ease of machining make it an attractive structural material. However, the use of MoSi2 has been hindered because of the brittle nature of the material at low temperatures, inadequate creep resistance at high temperatures, accelerated oxidation (also known as 'pest' oxidation) at temperatures between approximately 400 and 500 C, and a coefficient of thermal expansion (CTE) that is relatively high in comparison to potential reinforcing fibers such as SiC. This CTE mismatch between the fiber and the matrix resulted in severe matrix cracking during thermal cycling.
Bolong, Wu; Fengxia, Zhang; Xiaoning, Ma; Fengjuan, Zhou; Brunelle, Sharon L
2016-01-01
A potentiometric method for determination of chloride was validated against AOAC Standard Method Performance Requirement (SMPR(®)) 2014.015. Ten AOAC Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN) matrixes, including National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1849a, were tested in duplicate on 6 independent days. The repeatability (RSDr) ranged from 0.43 to 1.34%, and the intermediate reproducibility (RSDiR) ranged from 0.80 to 3.04%. All results for NIST SRM 1849a were within the range of the certified concentration (701 ± 17 mg/100 g). Recovery was demonstrated with two overspike levels, 50 and 100%, in the 10 SPIFAN matrixes. Samples were tested in duplicate on 3 different days, and all results were within the SMPR requirement of 95 to 105%. The LOQs of the method for powdered products and ready-to-feed or reconstituted products were 20 mg/100 g and 2.2 mg/100 mL, respectively. A wide analytical range from the LOQ to 99.5% chlorine content can be reached with an appropriate dilution factor, but in practice, the upper analytical value observed in routine matrix testing was approximately 1080 mg/100 g in skim milk powder. This is a rapid, simple, and reliable chlorine-testing method applicable to infant formula, adult nutritionals, and ingredients used in these dairy-based products, such as skim milk powder, desalted whey powder, whey protein powder, and whole milk powder.
Rombaldi, Caroline; de Oliveira Arias, Jean Lucas; Hertzog, Gabriel Ianzer; Caldas, Sergiane Souza; Vieira, João P; Primel, Ednei Gilberto
2015-06-01
The use of golden mussel shells as a solid support in vortex-assisted matrix solid-phase dispersion (MSPD) was evaluated for the first time for extraction of residues of 11 pesticides and nine pharmaceutical and personal care products from mussel tissue samples. After they had been washed, dried, and milled, the mussel shells were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, and Brunauer-Emmett-Teller analysis. The MSPD procedure with analysis by liquid chromatography-tandem mass spectrometry allowed the determination of target analytes at trace concentrations (nanograms per gram), with mean recoveries ranging from 61 to 107 % and relative standard deviations lower than 18 %. The optimized method consisted of dispersion of 0.5 g of mussel tissue, 0.5 g of NaSO4, and 0.5 g of golden mussel shell for 5 min, and subsequent extraction with 5 mL of ethyl acetate. The matrix effect was evaluated, and a low effect was found for all compounds. The results showed that mussel shell is an effective material and a less expensive material than materials that have traditionally been used, i.e., it may be used in the MSPD dispersion step during the extraction of pesticides and pharmaceutical and personal care products from golden mussel tissues. Graphical Abstract Vortex-assited matrix solid-phase dispersion for extraction of 11 pesticides and 9 PPCPs care products from mussel tissue samples.
Zhou, Joseph ZiQi; Waszkuc, Ted; Mohammed, Felicia
2008-01-01
Single laboratory validation of a method for determination of glucosamine in raw materials and dietary supplements containing glucosamine sulfate and/or glucosamine hydrochloride by with high-performance liquid Chromatography FMOC-Su derivatization. Tests with 2 blank matrixes containing SAMe, vitamin C, citric acid, chondroitin sulfates, methylsulfonylmethane, lemon juice concentrate, and other potential interferents showed the method to be selective and specific. Eight calibration curves prepared over 7 working days indicated excellent reproducibility with the linear range at least over 2.0–150 μg/mL, and determination coefficients >0.9999. Average spike recovery from the blank matrix (n = 8 over 2 days) was 93.5, 99.4, and 100.4% at respective spike levels of 15,100, and 150%, and from the sample matrix containing glucosamine (n = 3) was 99.9 and 102.8% at respective levels of 10 and 40%, with relative standard deviations <0.9%. The method was also applied to 12 various glucosamine finished products and raw materials. The stability tests confirmed that glucosamine–FMOC-Su derivative once formed is stable at room temperature for at least 5 days. Limit of quantitation was 1 μg/mL and limit of detection was 0.3 μg/mL. The method is ready to proceed for the collaborative study. PMID:15493664
Polymorphism of matrix metalloproteinase genes (MMP1 and MMP3) in patients with varicose veins.
Kurzawski, M; Modrzejewski, A; Pawlik, A; Droździk, M
2009-07-01
Several risk factors for varicose veins have been identified: female gender, combined with obesity and pregnancy, occupations requiring standing for long periods, sedentary lifestyle, history of deep-vein thrombosis and family history. However, no specific gene variants related to a wide prevalence of varicosities in general population have been identified. Extracellular matrix composition, predominantly maintained by matrix metalloproteinases (MMPs), may affect the vein-wall structure, which may lead to dilation of vessels and cause varicosities. MMP-1 (tissue collagenase I) and MMP-3 (stromelysin I) expression was found to be raised in varicose veins compared with normal vessels. Therefore, a study was conducted to evaluate a potential association between MMP1 and MMP3 promoter polymorphisms and a risk of varicose veins. Genotyping for the presence of the polymorphisms -1607dupG (rs1799750) in MMP1 and -1171dupA (rs3025058) in the MMP3 promoter region was performed using PCR and restriction-fragment length polymorphism assays in a group of 109 patients diagnosed with varicose veins and 112 healthy controls. The frequencies of the MMP1 and MMP3 alleles (minor allele frequency 0.440 in patients vs. 0.451 in the controls for MMP1-1607*G and 0.514 vs. 0.469 for MMP3-1171*dupA, respectively) and of genotypes did not differ significantly between patients and controls. The MMP1-1607dupG and MMP3-1171dupA promoter polymorphisms are not valuable markers of susceptibility for varicose veins.
Numerical examination of the factors controlling DNAPL migration through a single fracture.
Reynolds, D A; Kueper, B H
2002-01-01
The migration of five dense nonaqueous phase liquids (DNAPLs) through a single fracture in a clay aquitard was numerically simulated with the use of a compositional simulator. The effects of fracture aperture, fracture dip, matrix porosity, and matrix organic carbon content on the migration of chlorobenzene, 1,2-dichloroethylene, trichloroethylene, tetra-chloroethylene, and 1,2-dibromoethane were examined. Boundary conditions were chosen such that DNAPL entry into the system was allowed to vary according to the stresses applied. The aperture is the most important factor of those studied controlling the migration rate of DNAPL through a single fracture embedded in a clay matrix. Loss of mass to the matrix through diffusion does not significantly retard the migration rate of the DNAPL, particularly in larger aperture fractures (e.g., 50 microm). With time, the ratio of diffusive loss to the matrix to DNAPL flux into the fracture approaches an asymptotic value lower than unity. The implication is that matrix diffusion cannot arrest the migration of DNAPL in a single fracture. The complex relationships between density, viscosity, and solubility that, to some extent, govern the migration of DNAPL through these systems prevent accurate predictions without the use of numerical models. The contamination potential of the migrating DNAPL is significantly increased through the transfer of mass to the matrix. The occurrence of opposite concentration gradients within the matrix can cause dissolved phase contamination to exist in the system for more than 1000 years after the DNAPL has been completely removed from the fracture.
Miyamoto, Hiroshi; Endo, Hirotoshi; Hashimoto, Naoki; Limura, Kurin; Isowa, Yukinobu; Kinoshita, Shigeharu; Kotaki, Tomohiro; Masaoka, Tetsuji; Miki, Takumi; Nakayama, Seiji; Nogawa, Chihiro; Notazawa, Atsuto; Ohmori, Fumito; Sarashina, Isao; Suzuki, Michio; Takagi, Ryousuke; Takahashi, Jun; Takeuchi, Takeshi; Yokoo, Naoki; Satoh, Nori; Toyohara, Haruhiko; Miyashita, Tomoyuki; Wada, Hiroshi; Samata, Tetsuro; Endo, Kazuyoshi; Nagasawa, Hiromichi; Asakawa, Shuichi; Watabe, Shugo
2013-10-01
In molluscs, shell matrix proteins are associated with biomineralization, a biologically controlled process that involves nucleation and growth of calcium carbonate crystals. Identification and characterization of shell matrix proteins are important for better understanding of the adaptive radiation of a large variety of molluscs. We searched the draft genome sequence of the pearl oyster Pinctada fucata and annotated 30 different kinds of shell matrix proteins. Of these, we could identified Perlucin, ependymin-related protein and SPARC as common genes shared by bivalves and gastropods; however, most gastropod shell matrix proteins were not found in the P. fucata genome. Glycinerich proteins were conserved in the genus Pinctada. Another important finding with regard to these annotated genes was that numerous shell matrix proteins are encoded by more than one gene; e.g., three ACCBP-like proteins, three CaLPs, five chitin synthase-like proteins, two N16 proteins (pearlins), 10 N19 proteins, two nacreins, four Pifs, nine shematrins, two prismalin-14 proteins, and 21 tyrosinases. This diversity of shell matrix proteins may be implicated in the morphological diversity of mollusc shells. The annotated genes reported here can be searched in P. fucata gene models version 1.1 and genome assembly version 1.0 ( http://marinegenomics.oist.jp/pinctada_fucata ). These genes should provide a useful resource for studies of the genetic basis of biomineralization and evaluation of the role of shell matrix proteins as an evolutionary toolkit among the molluscs.
Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando
2018-01-26
The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure before Meaning: Sentence Processing, Plausibility, and Subcategorization
Kizach, Johannes; Nyvad, Anne Mette; Christensen, Ken Ramshøj
2013-01-01
Natural language processing is a fast and automatized process. A crucial part of this process is parsing, the online incremental construction of a syntactic structure. The aim of this study was to test whether a wh-filler extracted from an embedded clause is initially attached as the object of the matrix verb with subsequent reanalysis, and if so, whether the plausibility of such an attachment has an effect on reaction time. Finally, we wanted to examine whether subcategorization plays a role. We used a method called G-Maze to measure response time in a self-paced reading design. The experiments confirmed that there is early attachment of fillers to the matrix verb. When this attachment is implausible, the off-line acceptability of the whole sentence is significantly reduced. The on-line results showed that G-Maze was highly suited for this type of experiment. In accordance with our predictions, the results suggest that the parser ignores (or has no access to information about) implausibility and attaches fillers as soon as possible to the matrix verb. However, the results also show that the parser uses the subcategorization frame of the matrix verb. In short, the parser ignores semantic information and allows implausible attachments but adheres to information about which type of object a verb can take, ensuring that the parser does not make impossible attachments. We argue that the evidence supports a syntactic parser informed by syntactic cues, rather than one guided by semantic cues or one that is blind, or completely autonomous. PMID:24116101
Structure before meaning: sentence processing, plausibility, and subcategorization.
Kizach, Johannes; Nyvad, Anne Mette; Christensen, Ken Ramshøj
2013-01-01
Natural language processing is a fast and automatized process. A crucial part of this process is parsing, the online incremental construction of a syntactic structure. The aim of this study was to test whether a wh-filler extracted from an embedded clause is initially attached as the object of the matrix verb with subsequent reanalysis, and if so, whether the plausibility of such an attachment has an effect on reaction time. Finally, we wanted to examine whether subcategorization plays a role. We used a method called G-Maze to measure response time in a self-paced reading design. The experiments confirmed that there is early attachment of fillers to the matrix verb. When this attachment is implausible, the off-line acceptability of the whole sentence is significantly reduced. The on-line results showed that G-Maze was highly suited for this type of experiment. In accordance with our predictions, the results suggest that the parser ignores (or has no access to information about) implausibility and attaches fillers as soon as possible to the matrix verb. However, the results also show that the parser uses the subcategorization frame of the matrix verb. In short, the parser ignores semantic information and allows implausible attachments but adheres to information about which type of object a verb can take, ensuring that the parser does not make impossible attachments. We argue that the evidence supports a syntactic parser informed by syntactic cues, rather than one guided by semantic cues or one that is blind, or completely autonomous.
Bustamante-Vargas, Cindy Elena; de Oliveira, Débora; Valduga, Eunice; Venquiaruto, Luciana Dornelles; Paroul, Natalia; Backes, Geciane Toniazzo; Dallago, Rogério Marcos
2016-07-01
Pectinases catalyze the degradation of pectic substances and are used in several processes, mainly in food and textile industries. In this study, a biomimetic matrix of alginate/gelatin/calcium oxalate (AGOCa) was synthesized for the in situ immobilization via encapsulation of crude pectinase from Aspergillus niger ATCC 9642, obtaining an immobilization efficiency of about 61.7 %. To determine the performance of AGOCa matrix, this was compared to control matrices of alginate/calcium oxalate (AOxal) and alginate/water (ACa). By the evaluation of pH and temperature effects on the enzyme activity, it was observed an increase on pectinolytic activity for both three tested matrices with an increase on pH and temperature. The kinetic parameters for pectinase immobilized in the three matrices were determined using citric pectin as substrate. Values of K m of 0.003, 0.0013, and 0.0022 g mL(-1) and V max of 3.85, 4.32, and 3.17 μmol min(-1) g(-1) for AGOCa, AOxal, and ACa matrices were obtained, respectively. After 33 days of storage, the pectinase immobilized in the three different matrices kept its initial activity, but that immobilized in AGOCa presented high stability to the storage with a relative activity of about 160 %. The enzyme immobilized in AGOCa, AOxal, and ACa could be used in 10, 8, and 7 cycles, respectively, keeping 40 % of its initial activity.
Pilolli, Rosa; De Angelis, Elisabetta; Monaci, Linda
2018-02-13
In recent years, mass spectrometry (MS) has been establishing its role in the development of analytical methods for multiple allergen detection, but most analyses are being carried out on low-resolution mass spectrometers such as triple quadrupole or ion traps. In this investigation, performance provided by a high resolution (HR) hybrid quadrupole-Orbitrap™ MS platform for the multiple allergens detection in processed food matrix is presented. In particular, three different acquisition modes were compared: full-MS, targeted-selected ion monitoring with data-dependent fragmentation (t-SIM/dd2), and parallel reaction monitoring. In order to challenge the HR-MS platform, the sample preparation was kept as simple as possible, limited to a 30-min ultrasound-aided protein extraction followed by clean-up with disposable size exclusion cartridges. Selected peptide markers tracing for five allergenic ingredients namely skim milk, whole egg, soy flour, ground hazelnut, and ground peanut were monitored in home-made cookies chosen as model processed matrix. Timed t-SIM/dd2 was found the best choice as a good compromise between sensitivity and accuracy, accomplishing the detection of 17 peptides originating from the five allergens in the same run. The optimized method was validated in-house through the evaluation of matrix and processing effects, recoveries, and precision. The selected quantitative markers for each allergenic ingredient provided quantification of 60-100 μg ingred /g allergenic ingredient/matrix in incurred cookies.
McGuire, Jacob D.; Walker, Mary P.; Dusevich, Vladimir; Wang, Yong; Gorski, Jeff P.
2015-01-01
Although mature enamel is predominantly composed of mineral, a previously uncharacterized organic matrix layer remains in the post-eruptive tissue that begins at the dentin enamel junction and extends 200–300 µm towards the outer tooth surface. Identification of the composition of this layer has been hampered by its insolubility; however, we have developed a single step method to isolate the organic enamel matrix relatively intact. After dissociative dissolution of the matrix with SDS and urea, initial characterization by Western blotting and gel zymography indicates the presence of type IV and type VII basement membrane collagens and active matrix metalloproteinase-20. When combined with data from transgenic knockout mice and from human mutations, these data suggest that the enamel organic matrix (EOM) and dentin enamel junction may have a structural and functional relationship with basement membranes, e.g. skin. To clarify this relationship, we hypothesize a “foundation” model which proposes that components of the EOM form a support structure that stabilizes the crystalline enamel layer, and bonds it to the underlying dentin along the dentin enamel junction. Since we have also co-localized an active matrix metalloproteinase to this layer, our hypothesis suggests that, under pathologic conditions, MMP-mediated degradation of the EOM could destabilize the enamel–dentin interface. PMID:25158177
Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.
1996-01-01
A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Kim, Jo-Il; Noh, Joo-Yoon; Kim, Mira; Park, Jong-Min; Song, Hyun-Woo; Kang, Min-Jung; Pyun, Jae-Chul
2017-08-01
Newborn screening for diagnosis of phenylketonuria, homocystinuria, and maple syrup urine disease have been conducted by analyzing the concentration of target amino acids using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) based on parylene-matrix chip. Parylene-matrix chip was applied to MALDI-ToF MS analysis reducing the matrix peaks significantly at low mass-to-charge ratio range (m/z < 500). Reproducibility of inter-spot and intra-spot analyses of amino acids was less than 10%. Methanol extraction was adopted for simple and rapid sample preparation of serum before mass spectrometric analysis showing 13.3 to 45% of extraction efficiency. Calibration curves for diagnosis of neonatal metabolic disorders were obtained by analyzing methanol-extracted serum spiked with target amino acids using MALDI-ToF MS. They showed good linearity (R 2 > 0.98) and the LODs were ranging from 9.0 to 22.9 μg/mL. Effect of proteins in serum was estimated by comparing MALDI-ToF mass spectra of amino acids-spiked serum before and after the methanol extraction. Interference of other amino acids on analysis of target analyte was determined to be insignificant. From these results, MALDI-ToF MS based on parylene-matrix chip could be applicable to medical diagnosis of neonatal metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Final report on CCQM-K27.2: Second Subsequent study: determination of ethanol in aqueous media
NASA Astrophysics Data System (ADS)
Schantz, Michele M.; Parris, Reenie M.; May, Willie E.; Rosso, Adriana; Puglisi, Celia; Marques Rodrigues Caixeiro, Janaína; Massiff, Gabriela; Camacho Frías, Evangelina; Pérez Urquiza, Melina; Archer, Marcellé; Visser, M. S.; deVos, Betty-Jayne
2013-01-01
Ethanol is important both forensically ('drunk driving' or driving while under the influence, 'DWI', regulations) and commercially (alcoholic beverages). Blood- and breath-alcohol testing can be imposed on individuals operating private vehicles such as cars, boats or snowmobiles, or operators of commercial vehicles like trucks, planes and ships. The various levels of blood alcohol that determine whether these operators are considered legally impaired vary depending on the circumstances and locality. Accurate calibration and validation of instrumentation is critical in areas of forensic testing where quantitative analysis directly affects the outcome of criminal prosecutions, as is the case with the determination of ethanol in blood and breath. Additionally, the accurate assessment of the alcoholic content of beverages is a commercially important commodity. In 2002, the CCQM conducted a key comparison (CCQM-K27) for the determination of ethanol in aqueous matrix with nine participants. A report on this project has been approved by the CCQM and can be found at the BIPM website. CCQM-K27 comprised three samples, one at low mass fraction of ethanol in water (nominal concentration of 0.8 mg/g), one at high level (nominal concentration of 120 mg/g) and one wine matrix (nominal concentration of 81 mg/g). Overall agreement among eight participants using gas chromatography with flame ionization detection (GC-FID), titrimetry, isotope dilution gas chromatography/mass spectrometry (GC-IDMS) and gas chromatography-combustion-isotope ratio mass spectrometry (ID-GC-C-IRMS) was good. The ninth participant used a headspace GC-FID method that had not been validated in an earlier pilot study (CCQM-P35). A follow-on key comparison, CCQM-K27-Subsequent, was initiated in 2003 to accommodate laboratories that had not been ready to benchmark their methods in the original CCQM-K27 study or that wished to benchmark a different method. Four levels of ethanol in water were used in the subsequent study (nominal concentrations of 0.2 mg/g, 1 mg/g, 3 mg/g and 60 mg/g). The three participants in the CCQM-K27-Subsequent key comparison demonstrated their ability to measure ethanol in aqueous matrix in the concentration range of 0.2 mg/g to 60 mg/g. A report on this project has been approved by the CCQM and can be found at the BIPM website. A second follow-on key comparison, CCQM-K27.2 Second Subsequent, was initiated in 2006 to accommodate laboratories that had not been ready to benchmark their methods in the previous two CCQM-K27 studies. Two levels of ethanol in water were used in the second subsequent study ranging in concentration between 0.5 mg/g and 4 mg/g. Four of the five participants in the CCQM-K27.2 Second Subsequent key comparison demonstrated their ability to measure ethanol in aqueous matrix in that concentration range. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
ERIC Educational Resources Information Center
Rushton, J. Philippe
2004-01-01
First, I describe why intelligence (Spearman's "g") can only be fully understood through "r-K" theory, which places it into an evolutionary framework along with brain size, longevity, maturation speed, and several other life-history traits. The "r-K" formulation explains why IQ predicts longevity and also why the gap in mortality rates between…
USDA-ARS?s Scientific Manuscript database
The objective of this study was to provide initial results in an application of single-step genomic BLUP with a genomic relationship matrix (G^-1APY) calculated using the Algorithm of Proven and Young (APY) to 305-day protein yield for US Holsteins. Two G^-1APY were tested; one was from 139,057 geno...
Rocha, Beatriz Rodrigues; Gombar, Flavia Meirelles; Barcellos, Leilane Maria; Costa, Waldemar Silva; Barcellos Sampaio, Francisco Jose; Ramos, Cristiane Fonte
2011-01-01
Patients who have had pelvic radiotherapy as part of their cancer therapy may develop subsequent urinary bladder effects such as hyperactive bladder, incontinence, and dysuria. Therefore, the goal of this study was to evaluate whether glutamine supplementation could prevent collagen expression damage in healthy urinary bladder caused by radiotherapy. Fifteen adult Wistar rats were separated into a control group that received food and water ad libitum (C group), an irradiated group that received a single pelvic radiation dose of 1164 cGy (I group), and an irradiated group supplemented with l-glutamine every day during the entire experimental period (0.65 g/kg of body weight; I+G group). All animals were sacrificed 15 d after irradiation. The extracellular matrix and muscle were quantified by a morphometric method. Picro Sirius Red was used to visualize the different collagen types. Reverse transcription-polymerase chain reaction and immunohistochemistry were used to determine collagen type I and III expressions. The extracellular matrix (C group 36.84±4.37, I group 31.64±5.00, I+G group 35.53±2.60, P=0.0001), muscle (C group 36.43±6.15, I group 29.39±7.08, I+G group 31.38±3.14, P=0.0001), and gene expressions of collagen type I (C group 1.067±0.31, I group 0.579±0.17, I+G group 1.816±0.66, P=0.0009) and type III (C group 0.99±0.28, I group 0.54±0.13, I+G group 1.07±0.28, P=0.0080) were decreased in the I group. Apart from muscle, glutamine supplementation prevented these alterations. Immunohistochemistry and Picro Sirius Red showed similar results. Supplementation with l-glutamine seems to prevent bladder wall damage in relation to extracellular matrix volumetric density and collagen expression. These results suggest that glutamine supplementation could be efficient in protecting healthy tissues from the adverse effects of radiotherapy. Copyright © 2011. Published by Elsevier Inc.
Pizzutti, Ionara R; de Kok, Andre; Dickow Cardoso, Carmem; Reichert, Bárbara; de Kroon, Marijke; Wind, Wouter; Weber Righi, Laís; Caiel da Silva, Rosselei
2012-08-17
In this study, a new gas chromatography-mass spectrometry (GC-MS) method, using the very selective negative chemical ionization (NCI) mode, was developed and applied in combination with a modified acetonitrile-based extraction method (QuEChERS) for the analysis of a large number of pesticide residues (51 pesticides, including isomers and degradation products) in green coffee beans. A previously developed integrated sample homogenization and extraction method for both pesticides and mycotoxins analysis was used. An homogeneous slurry of green milled coffee beans and water (ratio 1:4, w/w) was prepared and extracted with acetonitrile/acetic acid (1%), followed by magnesium sulfate addition for phase separation. Aliquots from this extract could be used directly for LC-MS/MS analysis of mycotoxins and LC-amenable pesticides. For GC-MS analysis, a further clean-up was necessary. C18- and PSA-bonded silica were tested as dispersive solid-phase extraction (d-SPE) sorbents, separate and as a mixture, and the best results were obtained using C18-bonded silica. For the optimal sensitivity and selectivity, GC-MS detection in the NCI-selected ion monitoring (SIM) mode had to be used to allow the fast analysis of the difficult coffee bean matrix. The validation was performed by analyzing recovery samples at three different spike concentrations, 10, 20 and 50 μg kg(-1), with 6 replicates (n=6) at each concentration. Linearity (r(2)) of calibration curves, estimated instrument and method limits of detection and limits of quantification (LOD(i), LOD(m), LOQ(i) and LOQ(m), respectively), accuracy (as recovery %), precision (as RSD%) and matrix effects (%) were determined for each individual pesticide. From the 51 analytes (42 parent pesticides, 4 isomers and 5 degradation products) determined by GC-MS (NCI-SIM), approximately 76% showed average recoveries between 70-120% and 75% and RSD ≤ 20% at the lowest spike concentration of 10 μg kg(-1), the target method LOQ. For the spike concentrations of 20 and 50 μg kg(-1), the recoveries and RSDs were even better. The validated LOQ(m) was 10, 20 and 50 μg kg(-1) for respectively 33, 3 and 6 of the analytes studied. For five compounds, the European Union method performance requirements for the validation of a quantitative method (average recoveries between 70-120% and repeatability RSD ≤ 20%) were not achieved and 4 problematic pesticides (captan, captafol, folpet and dicofol) could not be detected as their parent compound, but only via their degradation products. Although the matrix effect (matrix-enhanced detector response) was high for all pesticides studied, the matrix interference was minimal, due to the high selectivity obtained with the GC-NCI-MS detection. Matrix-matched calibration for applying the method in routine analysis is recommended for reliable quantitative results. Copyright © 2012 Elsevier B.V. All rights reserved.
Alexandre, Bergé; Barbara, Giroud; Laure, Wiest; Bruno, Domenjoud; Adriana, Gonzalez-Ospina; Emmanuelle, Vulliet
2016-06-10
Discharges of surfactants from wastewater treatment plants are often considered as the principal vector of pollution into the environment. The analysis of complex matrices, such as urban wastewater, suspended solids and biological sludge requires careful preparation of the sample to obtain a sensitive, selective and reproducible analysis. A simple, fast, effective and multi-residue method based on the SPE (water) and QuEChERS (solid matrices) approaches using synthetic matrices for validation and quantification, has been developed for the determination of 16 surfactants in wastewater, suspended solids and biological sludge. This work resulted in an innovative method that was validated to detect and assess several classes of surfactants such as quaternary ammonium compounds, betaïns, alkylphenols and their ethoxylated or sulfated derivatives in urban wastewater and solid matrices. The optimised extraction method exhibited recoveries comprised between 83% and 120% for all the tested compounds in the dissolved matrix and between 50% and 109% for particulate matrix. The limits of quantification of all compounds were comprised between 0.1 and 1.0μg/L for dissolved matrix and between 2 and 1000ng/g (dry weight) in particulate matrix. Linearity was assessed for all compounds within the [LOQ-250LOQ] range. Confidence intervals were also computed in real matrices with less than 15% margin of error for all studied surfactants. This work has confirmed, first and foremost, that surfactants are indeed highly concentrated in urban wastewater. As expected, linear alkylbenzene sulfonates were present at significant concentrations (up to 1-2mg/L). In addition, although biological processing results in significant removal of the total pollution, the residual concentrations at output of WWTP remain significant (up to 100μg/L). Copyright © 2016 Elsevier B.V. All rights reserved.
Orthogonal bases of invariants in tensor models
NASA Astrophysics Data System (ADS)
Diaz, Pablo; Rey, Soo-Jong
2018-02-01
Representation theory provides an efficient framework to count and classify invariants in tensor models of (gauge) symmetry G d = U( N 1) ⊗ · · · ⊗ U( N d ) . We show that there are two natural ways of counting invariants, one for arbitrary G d and another valid for large rank of G d . We construct basis of invariant operators based on the counting, and compute correlators of their elements. The basis associated with finite rank of G d diagonalizes two-point function. It is analogous to the restricted Schur basis used in matrix models. We comment on future directions for investigation.
Decision Support Tools for Munitions Response Performance Prediction and Risk Assessment
2013-01-01
with G, the forward modeling matrix, implicitly dependent on target location. The least squares model estimate is then given by m̂ = ( GTG )−1GTdobs = G...dobs (6) with (7) G† = ( GTG )−1GT denoting the pseudo-inverse. When inverting observed field data for a sensor with tri-axial transmit and receive coils...ities can be expressed as cov(L̂) =β G†(r) cov(d) (G†(r))T βT =β G†(r) Geq α cov(L) α T GTeq (G †(r))T βT (53) where the pseudo-inverse is G† = ( GTG )−1G
Effect of flexibility of grafted polymer on the morphology and property of nanosilica/PVC composites
NASA Astrophysics Data System (ADS)
Zhu, Aiping; Cai, Aiyun; Zhou, Weidong; Shi, Zhehua
2008-04-01
In this study, poly(methyl methacrylate)-grafted-nanosilica (PMMA-g-silica) and a copolymer of styrene (St), n-butyl acrylate (BA) and acrylic acid (AA)-grafted-nanosilica (PSBA-g-silica) hybrid nanoparticles were prepared by using a heterophase polymerization technique in an aqueous system. The grafted polymers made up approximately 50 wt.% of the resulted hybrid nanoparticles which showed a spherical and well-dispersed morphology. The silica hybrid nanoparticles were subsequently used as fillers in a poly(vinyl chloride) (PVC) matrix to fabricate PVC nanocomposite. Morphology study of PVC nanocomposites revealed that both PMMA- and PSBA-grafted-silica had an adhesive interface between the silica and PVC. The tensile strength and elongation to break were found to be improved significantly in comparison with that of untreated nanosilica/PVC composites. Finally our results clearly demonstrated that the properties (e.g. chain flexibility, composition) of the grafted polymer in the hybrid nanoparticles could significantly affect the dispersion behavior of hybrid nanoparticles in PVC matrix, dynamic mechanical thermal properties and mechanical properties of the resulted PVC composites.
Analysis of the performance of a wireless optical multi-input to multi-output communication system.
Bushuev, Denis; Arnon, Shlomi
2006-07-01
We investigate robust optical wireless communication in a highly scattering propagation medium using multielement optical detector arrays. The communication setup consists of synchronized multiple transmitters that send information to a receiver array and an atmospheric propagation channel. The mathematical model that best describes this scenario is multi-input to multi-output communication through stochastic slow changing channels. In this model, signals from m transmitters are received by n receiver-detectors. The channel transfer function matrix is G, and its size is n x m. G(i,j) is the transfer function from transmitter i to detector j, and m > or = n. We adopt a quasi-stationary approach in which the channel time variation has a negligible effect on communication performance over a burst. The G matrix is calculated on the basis of the optical transfer function of the atmospheric channel (composed of aerosol and turbulence elements) and the receiver's optics. In this work we derive a performance model using environmental data, such as documented turbulence and aerosol models and noise statistics. We also present the results of simulations conducted for the proposed detection algorithm.
Ceramic superconductor/metal composite materials employing the superconducting proximity effect
Holcomb, Matthew J.
2002-01-01
Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.
Corrêa, Mônica G; Gomes Campos, Mirella L; Marques, Marcelo Rocha; Bovi Ambrosano, Glaucia Maria; Casati, Marcio Z; Nociti, Francisco H; Sallum, Enilson A
2014-07-01
Psychologic stress and clinical hypercortisolism have been related to direct effects on bone metabolism. However, there is a lack of information regarding the outcomes of regenerative approaches under the influence of chronic stress (CS). Enamel matrix derivative (EMD) has been used in periodontal regenerative procedures, resulting in improvement of clinical parameters. Thus, the aim of this histomorphometric study is to evaluate the healing of periodontal defects after treatment with EMD under the influence of CS in the rat model. Twenty Wistar rats were randomly assigned to two groups; G1: CS (restraint stress for 12 hours/day) (n = 10), and G2: not exposed to CS (n = 10). Fifteen days after initiation of CS, fenestration defects were created at the buccal aspect of the first mandibular molar of all animals from both groups. After the surgeries, the defects of each animal were randomly assigned to two subgroups: non-treated control and treated with EMD. The animals were euthanized 21 days later. G1 showed less bone density (BD) compared to G2. EMD provided an increased defect fill (DF) in G1 and higher BD and new cementum formation (NCF) in both groups. The number of tartrate-resistant acid phosphatase-positive osteoclasts was significantly higher in G1 when compared to G2 and in EMD-treated sites of both groups. CS may produce a significant detrimental effect on BD. EMD may provide greater DF compared to non-treated control in the presence of CS and increased BD and NCF in the presence or absence of CS.
Atomic photoionization in a strong magnetic field
NASA Astrophysics Data System (ADS)
Greene, C. H.
1983-10-01
The photoionization of hydrogen atoms in a strong magnetic field is formulated as a multichannel problem by representing the asymptotic electron-wave function in cylindrical coordinates. Departures from cylindrical symmetry close to the nucleus are incorporated by an R-matrix treatment at short range, which then merges with standard quantum-defect procedures. The R-matrix calculation utilizes the eigenchannel approach, recast in noniterative form. At the field strength treated here, B = 4.7 x 10 to the 9th G, the photoionization cross section displays narrow 'autoionizing' resonances near the excited Landau thresholds.
NASA Astrophysics Data System (ADS)
Maneu, J.; Parreño, A.; Ramos, A.
2018-05-01
A one-meson exchange model including the ground state of the pseudoscalar octet is used to describe the weak two-body interactions responsible for the decay of {}{{Λ }{{Λ }}}{}6{{H}}{{e}}. Strong interaction effects are taken into account by a microscopic study based on the solution of G-matrix and T-matrix equations for the initial and final interacting pairs respectively. Results for the decay induced by {{Λ }}{{Λ }}\\to {{Λ }}N({{Σ }}N) transitions are given.
1992-03-01
the ith row of I<. The preconditioned matrix K is thus a stochastic matrix, and by the Perron - Frobenius theorem (e.g., Horn and Johnson, 1989), K...now be determined. For equations (10) and (11) to be real, the radical must be nonnegative . This condition on d defines the index zero threshold...ddhsi: sfl] [r;I,r;I] . Since h/lh is positive-definite, (3.2) shows that a , and 13, are nonnegative . This fact can be used t~ test a candidates
Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun
2014-09-09
A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.
Kaith, B S; Jindal, R; Jana, A K; Maiti, M
2010-09-01
In this paper, corn starch based green composites reinforced with graft copolymers of Saccharum spontaneum L. (Ss) fiber and methyl methacrylates (MMA) and its mixture with acrylamide (AAm), acrylonitrile (AN), acrylic acid (AA) were prepared. Resorcinol-formaldehyde (Rf) was used as the cross-linking agent in corn starch matrix and different physico-chemical, thermal and mechanical properties were evaluated. The matrix and composites were found to be thermally more stable than the natural corn starch backbone. Further the matrix and composites were subjected for biodegradation studies through soil composting method. Different stages of biodegradation were evaluated through FT-IR and scanning electron microscopic (SEM) techniques. S. spontaneum L fiber-reinforced composites were found to exhibit better tensile strength. On the other hand Ss-g-poly (MMA) reinforced composites showed maximum compressive strength and wear resistance than other graft copolymers reinforced composite and the basic matrix. (c) 2010 Elsevier Ltd. All rights reserved.
Jabłońska-Trypuć, Agata; Matejczyk, Marzena; Rosochacki, Stanisław
2016-01-01
The main group of enzymes responsible for the collagen and other protein degradation in extracellular matrix (ECM) are matrix metalloproteinases (MMPs). Collagen is the main structural component of connective tissue and its degradation is a very important process in the development, morphogenesis, tissue remodeling, and repair. Typical structure of MMPs consists of several distinct domains. MMP family can be divided into six groups: collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other non-classified MMPs. MMPs and their inhibitors have multiple biological functions in all stages of cancer development: from initiation to outgrowth of clinically relevant metastases and likewise in apoptosis and angiogenesis. MMPs and their inhibitors are extensively examined as potential anticancer drugs. MMP inhibitors can be divided into two main groups: synthetic and natural inhibitors. Selected synthetic inhibitors are in clinical trials on humans, e.g. synthetic peptides, non-peptidic molecules, chemically modified tetracyclines, and bisphosphonates. Natural MMP inhibitors are mainly isoflavonoids and shark cartilage.
New Phenomena in NC Field Theory and Emergent Spacetime Geometry
NASA Astrophysics Data System (ADS)
Ydri, Badis
2010-10-01
We give a brief review of two nonperturbative phenomena typical of noncommutative field theory which are known to lead to the perturbative instability known as the UV-IR mixing. The first phenomena concerns the emergence/evaporation of spacetime geometry in matrix models which describe perturbative noncommutative gauge theory on fuzzy backgrounds. In particular we show that the transition from a geometrical background to a matrix phase makes the description of noncommutative gauge theory in terms of fields via the Weyl map only valid below a critical value g*. The second phenomena concerns the appearance of a nonuniform ordered phase in noncommutative scalar φ4 field theory and the spontaneous symmetry breaking of translational/rotational invariance which happens even in two dimensions. We argue that this phenomena also originates in the underlying matrix degrees of freedom of the noncommutative field theory. Furthermore it is conjectured that in addition to the usual WF fixed point at θ = 0 there must exist a novel fixed point at θ = ∞ corresponding to the quartic hermitian matrix model.
Ding, Yuqi; Kawakita, Kento; Xu, Jiawei; Akiyama, Kazuhiko; Fujino, Tatsuya
2015-08-04
Smectite, a synthetic inorganic polymer with a saponite structure, was subjected to matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Typical organic matrix molecules 2,4,6-trihydroxyacetophenone (THAP) and 2,5-dihydroxybenzoic acid (DHBA) were intercalated into the layer spacing of cation-exchanged smectite, and the complex was used as a new matrix for laser desorption/ionization mass spectrometry. Because of layer spacing limitations, only a small analyte that could enter the layer and bind to THAP or DHBA could be ionized. This was confirmed by examining different analyte/matrix preparation methods and by measuring saccharides with different molecular sizes. Because of the homogeneous distribution of THAP molecules in the smectite layer spacing, high reproducibility of the analyte peak intensity was achieved. By using isotope-labeled (13)C6-d-glucose as the internal standard, quantitative analysis of monosaccharides in pretreated human plasma sample was performed, and the value of 8.6 ± 0.3 μg/mg was estimated.
In Situ Gold Nanoparticle Gradient Formation in a 3D Meso- and Macroporous Polymer Matrix.
Penders, Jelle; Rajasekharan, Anand K; Hulander, Mats; Andersson, Martin
2017-08-01
Herein, the development and characterization of a 3D gradient structure of gold nanoparticles is described. The gradient of gold nanoparticles is made in situ in a macroporous nonionic block copolymer hydrogel matrix, through gold ion diffusion control. The polymer provides a matrix for diffusion of gold ions, acts as a template for controlling nanoparticle growth, and facilitates the in situ reduction of gold ions to gold nanoparticles. A clear gradient in gold nanoparticles is observed across the 3D space of the polymer matrix using scanning electron microscopy, fluorescence microscopy, atomic force microscopy, and thermogravimetric analysis. The particle gradient is further functionalized with both hydrophobic and hydrophilic groups via thiol-gold linkage to demonstrate the ability to form gradients with different chemical functionalities. Using additive manufacturing, the polymer can also be printed as a porous network with possible applications for 3D cell culturing in, e.g., biomaterials research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Confinement of anomalous liquids in nanoporous matrices.
Strekalova, Elena G; Luo, Jiayuan; Stanley, H Eugene; Franzese, Giancarlo; Buldyrev, Sergey V
2012-09-07
Using molecular dynamics simulations, we investigate the effects of different nanoconfinements on complex liquids-e.g., colloids or protein solutions-with density anomalies and a liquid-liquid phase transition (LLPT). In all the confinements, we find a strong depletion effect with a large increase in liquid density near the confining surface. If the nanoconfinement is modeled by an ordered matrix of nanoparticles, we find that the anomalies are preserved. On the contrary, if the confinement is modeled by a disordered matrix of nanoparticles, we find a drastically different phase diagram: the LLPT shifts to lower pressures and temperatures, and the anomalies become weaker, as the disorder increases. We find that the density heterogeneities induced by the disordered matrix are responsible for the weakening of the LLPT and the disappearance of the anomalies.
Generating Nonnormal Multivariate Data Using Copulas: Applications to SEM.
Mair, Patrick; Satorra, Albert; Bentler, Peter M
2012-07-01
This article develops a procedure based on copulas to simulate multivariate nonnormal data that satisfy a prespecified variance-covariance matrix. The covariance matrix used can comply with a specific moment structure form (e.g., a factor analysis or a general structural equation model). Thus, the method is particularly useful for Monte Carlo evaluation of structural equation models within the context of nonnormal data. The new procedure for nonnormal data simulation is theoretically described and also implemented in the widely used R environment. The quality of the method is assessed by Monte Carlo simulations. A 1-sample test on the observed covariance matrix based on the copula methodology is proposed. This new test for evaluating the quality of a simulation is defined through a particular structural model specification and is robust against normality violations.
NASA Astrophysics Data System (ADS)
Xu, Wenwen; Wu, Fengqi; Zhao, Yanying; Zhou, Ran; Wang, Huigang; Zheng, Xuming; Ni, Bukuo
2017-03-01
The isotropic and anisotropic Raman spectra of acetone and deuterated acetone isolated in an argon matrix have been recorded for the understanding of noncoincidence effect (NCE) phenomenon. According to the matrix isolated Raman spectra and DFT calculations, we proposed aggregated model for the explanations of the acetone C=O vibration NCE phenomenon and its concentration effect. The experimental data were in consistence with the DFT calculations performed at the B3LYP-D3/6-311 G (d,p) levels based on the proposed model. The experimental identification of the monomer, dimer and trimer are reported here, and the dynamic of the transformation from monomer to aggregated structure can be easily controlled by tuning annealing temperature.
NASA Astrophysics Data System (ADS)
Hipp, J. R.; Encarnacao, A.; Ballard, S.; Young, C. J.; Phillips, W. S.; Begnaud, M. L.
2011-12-01
Recently our combined SNL-LANL research team has succeeded in developing a global, seamless 3D tomographic P-velocity model (SALSA3D) that provides superior first P travel time predictions at both regional and teleseismic distances. However, given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we show a methodology for accomplishing this by exploiting the full model covariance matrix. Our model has on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes Tikhonov regularization terms) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiply methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix we solve for the travel-time covariance associated with arbitrary ray-paths by integrating the model covariance along both ray paths. Setting the paths equal gives variance for that path. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Hipp, J. R.; Ballard, S.; Begnaud, M. L.; Encarnacao, A. V.; Young, C. J.; Phillips, W. S.
2015-12-01
Recently our combined SNL-LANL research team has succeeded in developing a global, seamless 3D tomographic P- and S-velocity model (SALSA3D) that provides superior first P and first S travel time predictions at both regional and teleseismic distances. However, given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we describe a methodology for accomplishing this by exploiting the full model covariance matrix and show examples of path-dependent travel time prediction uncertainty computed from our latest tomographic model. Typical global 3D SALSA3D models have on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes a prior model covariance constraint) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiplication methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix, we solve for the travel-time covariance associated with arbitrary ray-paths by summing the model covariance along both ray paths. Setting the paths equal and taking the square root yields the travel prediction uncertainty for the single path.
Liu, Chenhui; Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong
2016-05-01
Multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has been successfully applied in the rapid and high-precision measurement for sulfur isotope ratios in recent years. During the measurement, the presence of matrix elements would affect the instrumental mass bias for sulfur and these matrix-induced effects have aroused a lot of researchers' interest. However, these studies have placed more weight on highlighting the necessity for their proposed correction protocols (e.g., chemical purification and matrix-matching) while less attention on the key property of the matrix element gives rise to the matrix effects. In this study, four groups of sulfate solutions, which have different concentrations of sulfur (0.05-0.60mM) but a constant sequence of atomic calcium/sulfur ratios (0.1-50), are investigated under wet (solution) and dry (desolvation) plasma conditions to make a detailed evaluation on the matrix effects from calcium on sulfur isotope measurement. Based on a series of comparative analyses, we indicated that, the matrix effects of calcium on both measured sulfur isotope ratios and detected (32)S signal intensities are dependent mainly on the absolute calcium concentration rather than its relative concentration ratio to sulfur (i.e., atomic calcium/sulfur ratio). Also, for the same group of samples, the matrix effects of calcium under dry plasma condition are much more significant than that of wet plasma. This research affords the opportunity to realize direct and relatively precise sulfur isotope measurement for evaporite gypsum, and further provides some suggestions with regard to sulfur isotope analytical protocols for sedimentary pore water. Copyright © 2016 Elsevier B.V. All rights reserved.
A test of the hypothesis that correlational selection generates genetic correlations.
Roff, Derek A; Fairbairn, Daphne J
2012-09-01
Theory predicts that correlational selection on two traits will cause the major axis of the bivariate G matrix to orient itself in the same direction as the correlational selection gradient. Two testable predictions follow from this: for a given pair of traits, (1) the sign of correlational selection gradient should be the same as that of the genetic correlation, and (2) the correlational selection gradient should be positively correlated with the value of the genetic correlation. We test this hypothesis with a meta-analysis utilizing empirical estimates of correlational selection gradients and measures of the correlation between the two focal traits. Our results are consistent with both predictions and hence support the underlying hypothesis that correlational selection generates a genetic correlation between the two traits and hence orients the bivariate G matrix. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment.
Anderson, Alexander R A; Weaver, Alissa M; Cummings, Peter T; Quaranta, Vito
2006-12-01
Emergence of invasive behavior in cancer is life-threatening, yet ill-defined due to its multifactorial nature. We present a multiscale mathematical model of cancer invasion, which considers cellular and microenvironmental factors simultaneously and interactively. Unexpectedly, the model simulations predict that harsh tumor microenvironment conditions (e.g., hypoxia, heterogenous extracellular matrix) exert a dramatic selective force on the tumor, which grows as an invasive mass with fingering margins, dominated by a few clones with aggressive traits. In contrast, mild microenvironment conditions (e.g., normoxia, homogeneous matrix) allow clones with similar aggressive traits to coexist with less aggressive phenotypes in a heterogeneous tumor mass with smooth, noninvasive margins. Thus, the genetic make-up of a cancer cell may realize its invasive potential through a clonal evolution process driven by definable microenvironmental selective forces. Our mathematical model provides a theoretical/experimental framework to quantitatively characterize this selective pressure for invasion and test ways to eliminate it.
Furusawa, Naoto
2006-09-01
A technique is presented for the economical, routine, and quantitative analysis of contamination by dichloro-diphenyl-trichloroethanes (DDTs) [pp'-DDT, pp'-dichlorodiphenyl dichloroethylene, and pp'-dichlorodiphenyl dichloreothane in beef tallow and chicken fat samples, based on their separation using matrix solid-phase dispersion (MSPD) extraction with Toyobo-KF, an activated carbon fiber. Toyobo-KF is a newly applied MSPD sorbent, and it is followed by reversed-phase high-performance liquid chromatography (HPLC) with a photodiode array detector. The resulting analytical performance parameters [recoveries of spiked DDTs (0.1, 0.2, and 0.4 microg/g) > or = 81%, with relative standard deviations of < or = 8% (n = 5), and quantitation limits < or = 0.03 microg/g], with minimal handling and cost-efficiency, indicate that the present MSPD-HPLC method may be a useful tool for routine monitoring of DDT contamination in meat.
Benchmarks for single-phase flow in fractured porous media
NASA Astrophysics Data System (ADS)
Flemisch, Bernd; Berre, Inga; Boon, Wietse; Fumagalli, Alessio; Schwenck, Nicolas; Scotti, Anna; Stefansson, Ivar; Tatomir, Alexandru
2018-01-01
This paper presents several test cases intended to be benchmarks for numerical schemes for single-phase fluid flow in fractured porous media. A number of solution strategies are compared, including a vertex and two cell-centred finite volume methods, a non-conforming embedded discrete fracture model, a primal and a dual extended finite element formulation, and a mortar discrete fracture model. The proposed benchmarks test the schemes by increasing the difficulties in terms of network geometry, e.g. intersecting fractures, and physical parameters, e.g. low and high fracture-matrix permeability ratio as well as heterogeneous fracture permeabilities. For each problem, the results presented are the number of unknowns, the approximation errors in the porous matrix and in the fractures with respect to a reference solution, and the sparsity and condition number of the discretized linear system. All data and meshes used in this study are publicly available for further comparisons.
Unravelling radiative energy transfer in solid-state lighting
NASA Astrophysics Data System (ADS)
Melikov, Rustamzhon; Press, Daniel Aaron; Ganesh Kumar, Baskaran; Sadeghi, Sadra; Nizamoglu, Sedat
2018-01-01
Today, a wide variety of organic and inorganic luminescent materials (e.g., phosphors, quantum dots, etc.) are being used for lighting and new materials (e.g., graphene, perovskite, etc.) are currently under investigation. However, the understanding of radiative energy transfer is limited, even though it is critical to understand and improve the performance levels of solid-state lighting devices. In this study, we derived a matrix approach that includes absorption, reabsorption, inter-absorption and their iterative and combinatorial interactions for one and multiple types of fluorophores, which is simplified to an analytical matrix. This mathematical approach gives results that agree well with the measured spectral and efficiency characteristics of color-conversion light-emitting diodes. Moreover, it also provides a deep physical insight by uncovering the entire radiative interactions and their contribution to the output optical spectrum. The model is universal and applicable for all kinds of fluorophores.
Kumar, Sanjeev; Park, Sun Hee; Cieply, Benjamin; Schupp, Jane; Killiam, Elizabeth; Zhang, Fan; Rimm, David L.; Frisch, Steven M.
2011-01-01
Detachment of epithelial cells from matrix or attachment to an inappropriate matrix engages an apoptotic response known as anoikis, which prevents metastasis. Cellular sensitivity to anoikis is compromised during the oncogenic epithelial-to-mesenchymal transition (EMT), through unknown mechanisms. We report here a pathway through which EMT confers anoikis resistance. NRAGE (neurotrophin receptor-interacting melanoma antigen) interacted with a component of the E-cadherin complex, ankyrin-G, maintaining NRAGE in the cytoplasm. Oncogenic EMT downregulated ankyrin-G, enhancing the nuclear localization of NRAGE. The oncogenic transcriptional repressor protein TBX2 interacted with NRAGE, repressing the tumor suppressor gene p14ARF. P14ARF sensitized cells to anoikis; conversely, the TBX2/NRAGE complex protected cells against anoikis by downregulating this gene. This represents a novel pathway for the regulation of anoikis by EMT and E-cadherin. PMID:21746881
Xie, Hang; Lin, Zhengshi; Mosier, Philip D; Desai, Umesh R; Gao, Yamei
2013-01-01
G88R emerged as a compensatory mutation in matrix protein 1 (M1) of influenza virus A/WSN/33 when its nuclear localization signal (NLS) was disrupted by R101S and R105S substitutions. The resultant M1 triple mutant M(NLS-88R) regained replication efficiency in vitro while remaining attenuated in vivo with the potential of being a live vaccine candidate. To understand why G88R was favored by the virus as a compensatory change for the NLS loss and resultant replication deficiency, three more M1 triple mutants with an alternative G88K, G88V, or G88E change in addition to R101S and R105S substitutions in the NLS were generated. Unlike the other M1 triple mutants, M(NLS-88R) replicated more efficiently in vitro and in vivo. The G88R compensatory mutation not only restored normal functions of M1 in the presence of a disrupted NLS but also resulted in a strong association of M1 with viral ribonucleoprotein. Under a transmission electron microscope, only the M1 layer of the M(NLS-88R) virion exhibited discontinuous fingerprint-like patterns with average thicknesses close to that of wild-type A/WSN/33. Computational modeling suggested that the compensatory G88R change could reestablish the integrity of the M1 layer through new salt bridges between adjacent M1 subunits when the original interactions were interrupted by simultaneous R101S and R105S replacements in the NLS. Our results suggested that restoring the normal functions of M1 was crucial for efficient virus replication.
Zeng, Lingxing; Liu, Renpin; Han, Lei; Luo, Fenqiang; Chen, Xi; Wang, Jianbiao; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng
2018-04-03
In this work, an Si/SiO 2 -ordered-mesoporous carbon (Si/SiO 2 -OMC) nanocomposite was initially fabricated through a magnesiothermic reduction strategy by using a two-dimensional bicontinuous mesochannel of SiO 2 -OMC as a precursor, combined with an NaOH etching process, in which crystal Si/amorphous SiO 2 nanoparticles were encapsulated into the OMC matrix. Not only can such unique porous crystal Si/amorphous SiO 2 nanoparticles uniformly dispersed in the OMC matrix mitigate the volume change of active materials during the cycling process, but they can also improve electrical conductivity of Si/SiO 2 and facilitate the Li + /Na + diffusion. When applied as an anode for lithium-ion batteries (LIBs), the Si/SiO 2 -OMC composite displayed superior reversible capacity (958 mA h g -1 at 0.2 A g -1 after 100 cycles) and good cycling life (retaining a capacity of 459 mA h g -1 at 2 A g -1 after 1000 cycles). For sodium-ion batteries (SIBs), the composite maintained a high capacity of 423 mA h g -1 after 100 cycles at 0.05 A g -1 and an extremely stable reversible capacity of 190 mA h g -1 was retained even after 500 cycles at 1 A g -1 . This performance is one of the best long-term cycling properties of Si-based SIB anode materials. The Si/SiO 2 -OMC composites exhibited great potential as an alternative material for both lithium- and sodium-ion battery anodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yin, Li-Yan; Calhoun, Jason H.; Thomas, Jacob K.; Shapiro, Stuart; Schmitt-Hoffmann, Anne
2008-01-01
The pharmacokinetics and distribution into bone tissue of ceftobiprole in uninfected New Zealand White rabbits were determined after subcutaneous administration of the prodrug ceftobiprole medocaril. Serum exposure (maximum concentration of the drug in serum, trough concentration, area under the concentration-time curve) to ceftobiprole at 20 and 80 mg/kg was dose proportional, and there was no accumulation of ceftobiprole following repeated (every 6 h [q6h]) injections of the antibiotic. Ceftobiprole titers in the tibial matrix and marrow were 3.2 ± 1.3 μg/g and 11.2 ± 6.5 μg/g, respectively, in uninfected animals treated with 20 mg/kg of the antibiotic and 13.4 ± 7.3 μg/g and 66.3 ± 43.2 μg/g, respectively, in uninfected animals treated with 80 mg/kg of the antibiotic. No differences in ceftobiprole titers were observed between right and left tibiae for either bone matrix or marrow. The efficacies of 4 weeks of treatment with ceftobiprole (40 mg/kg administered subcutaneously [s.c.] q6h), vancomycin (30 mg/kg administered s.c. q12h), or linezolid (60 mg/kg administered orally q8h) were compared, using a rabbit model of methicillin-resistant Staphylococcus aureus tibial osteomyelitis. After treatment with ceftobiprole, the bacterial titers in all infected left tibiae from evaluable rabbits were below the level of detection, whereas only 73% of infected left tibiae from vancomycin- or linezolid-treated animals had bacterial titers below the level of detection; the mean titers of ceftobiprole were 3 to 5 times higher in infected left tibiae than in uninfected right tibiae. These results indicate that ceftobiprole provided effective parenteral treatment of osteomyelitis in this rabbit model. PMID:18332175
Dahane, S; Martínez Galera, M; Marchionni, M E; Socías Viciana, M M; Derdour, A; Gil García, M D
2016-05-15
This paper reports the first application of the silica based mesoporous material MCM-41 as a sorbent in solid phase extraction, to pre-concentrate pharmaceuticals of very different polarity (atenolol, nadolol, pindolol, timolol, bisoprolol, metoprolol, betaxolol, ketoprofen, naproxen, ibuprofen, diclofenac, tolfenamic acid, flufenamic acid and meclofenamic acid) in surface waters. The analytes were extracted from 100mL water samples at pH 2.0 (containing 10(-3) mol/L of sodium chloride) by passing the solution through a cartridge filled with 100 mg of MCM-41. Following elution, the pharmaceuticals were determined by micro-liquid chromatography and triple quadrupole-mass spectrometry. Two selected reaction monitoring transitions were monitored per compound, the most intense one being used for quantification and the second one for confirmation. Matrix effect was found in real waters for most analytes and was overcome using the standard addition method, which compared favorably with the matrix matched calibration method. The detection limits in solvent (acetonitrile:water 10:90, v/v) ranged from 0.01 to 1.48 μg/L and in real water extracts from 0.10 to 3.85 μg/L (0.001-0.0385 μg/L in the water samples). The quantitation limits in solvent were in the range 0.02-4.93 μg/L, whereas in real water extracts were between 0.45 and 10.00 μg/L (0.0045 and 0.1000 μg/L in the water samples). When ultrapure water samples were spiked at two concentration levels of each pharmaceutical (0.1 and 0.2 μg/L) and quantified using solvent based calibration graphs, recoveries were near 100%. However, recoveries for most pharmaceuticals were comparable or better than de described above, when river water samples (spiked at the same concentration levels) were quantified by the standard addition method and slightly worse using the matrix matched calibration method. Five real samples (two rivers, one dam and two fountain water samples) were analyzed by the developed method, atenolol, timolol, betaxolol, nadolol and diclofenac being found in some of them, at levels higher than their quantitation limits. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Altunay, Nail
2018-01-01
The current study reports, for the first time, the development of a new analytical method employing ultrasound assisted-cloud point extraction (UA-CPE) for the extraction of CH3Hg+ and Hg2 + species from fish samples. Detection and quantification of mercury species were performed at 550 nm by spectrophotometry. The analytical variables affecting complex formation and extraction efficiency were extensively evaluated and optimized by univariate method. Due to behave 14-fold more sensitive and selective of thiophene 2,5-dicarboxylic acid (H2TDC) to Hg2 + ions than CH3Hg+ in presence of mixed surfactant, Tween 20 and SDS at pH 5.0, the amounts of free Hg2 + and total Hg were spectrophotometrically established at 550 nm by monitoring Hg2 + in the pretreated- and extracted-fish samples in ultrasonic bath to speed up extraction using diluted acid mixture (1:1:1, v/v, 4 mol L- 1 HNO3, 4 mol L- 1 HCl, and 0.5 mol L- 1 H2O2), before and after pre-oxidation with permanganate in acidic media. The amount of CH3Hg+ was calculated from difference between total Hg and Hg2 + amounts. The UA-CPE method showed to be suitable for the extraction and determination of mercury species in certified reference materials. The results were in a good agreement (with Student's t-test at 95% confidence limit) with the certified values, and the relative standard deviation was lower than 3.2%. The limits of detection have been 0.27 and 1.20 μg L- 1, for Hg2 + from aqueous calibration solutions and matrix-matched calibration solutions spiked before digestion, respectively, while it is 2.43 μg L- 1 for CH3Hg+ from matrix-matched calibration solutions. A significant matrix effect was not observed from comparison of slopes of both calibration curves, so as to represent the sample matrix. The method was applied to fish samples for speciation analysis of Hg2 + and CH3Hg+. In terms of speciation, while total Hg is detected in range of 2.42-32.08 μg kg- 1, the distribution of mercury in fish were in range of 0.7-11.06 μg kg- 1 for CH3Hg+ and in range of 1.72-24.56 μg kg- 1 for Hg2 +.
Varanasi, Venu G; Odatsu, Tetsurou; Bishop, Timothy; Chang, Joyce; Owyoung, Jeremy; Loomer, Peter M
2016-10-01
Bioactive glasses release ions, those enhance osteoblast collagen matrix synthesis and osteogenic marker expression during bone healing. Collagen matrix density and osteogenic marker expression depend on osteogenic transcription factors, (e.g., Osterix (OSX)). We hypothesize that enhanced expression and formation of collagen by Si(4+) depends on enhanced expression of OSX transcription. Experimental bioactive glass (6P53-b) and commercial Bioglass(TM) (45S5) were dissolved in basal medium to make glass conditioned medium (GCM). ICP-MS analysis was used to measure bioactive glass ion release rates. MC3T3-E1 cells were cultured for 20 days, and gene expression and extracellular matrix collagen formation was analyzed. In a separate study, siRNA was used to determine the effect of OSX knockdown on impacting the effect of Si(4+) on osteogenic markers and matrix collagen formation. Each bioactive glass exhibited similar ion release rates for all ions, except Mg(2+) released by 6P53-b. Gene expression results showed that GCM markedly enhanced many osteogenic markers, and 45S5 GCM showed higher levels of expression and collagen matrix fiber bundle density than 6P53-b GCM. Upon knockdown of OSX transcription, collagen type 5, alkaline phosphatase, and matrix density were not enhanced as compared to wild type cells. This study illustrates that the enhancement of elongated collagen fiber matrix formation by Si(±) depends on OSX transcription. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2604-2615, 2016. © 2016 Wiley Periodicals, Inc.
Analytical representation of dynamical quantities in G W from a matrix resolvent
NASA Astrophysics Data System (ADS)
Gesenhues, J.; Nabok, D.; Rohlfing, M.; Draxl, C.
2017-12-01
The power of the G W formalism is, to a large extent, based on the explicit treatment of dynamical correlations in the self-energy. This dynamics is taken into account by calculating the energy dependence of the screened Coulomb interaction W , followed by a convolution with the Green's function G . In order to obtain the energy dependence of W the prevalent methods are plasmon-pole models and numerical integration techniques. In this paper, we discuss an alternative approach, in which the energy-dependent screening is calculated by determining the resolvent, which is set up from a matrix representation of the dielectric function. On the one hand, this refrains from a numerical energy convolution and allows one to actually write down the energy dependence of W explicitly (like in the plasmon-pole models). On the other hand, the method is at least as accurate as the numerical approaches due to its multipole nature. We discuss the theoretical setup in some detail, give insight into the computational aspects, and present results for Si, C, GaAs, and LiF. Finally, we argue that the analytic representability is not only useful for educational purposes but may also be of avail for the development of theory that goes beyond G W .
NASA Astrophysics Data System (ADS)
Santos Felix, Antonio C.; Novaes, Cleber G.; Pires Rocha, Maísla; Barreto, George E.; do Nascimento, Baraquizio B.; Giraldez Alvarez, Lisandro D.
2017-12-01
In this study, we have determined, using RSM (mixture design and Doehlert matrix), the optimum values of the independent variables to achieve the maximum response for the extraction of total phenolic compounds from Spondias mombin L bagasse agroindustrial residues, preserving its antioxidant activity. The assessment with reference to the extraction of phenolic compounds, as well as their capacity to scavenge ABTS and the antioxidant capacity, determined by the modified DPPH method were investigated based on distinct combinations of time, temperature, velocity of rotation and solvents concentration. It was investigated that the optimum condition for the highest antioxidant yield was obtained using water (60.84%), acetone (30.31%) and ethanol (8.85%) at 30 ºC during 20 min at 50 rpm. We have found that the maximum yield of total phenolics was 355.63 ± 9.77 (mg GAE/100 g), showing an EC50 of 3962.24 ± 41.20 (g fruit/g of DPPH) and 8.36 ± 0.30 (µM trolox/g fruit), which were measured using DPPH and ABTS assays. These results suggest that RSM was successfully applied for optimizing the extraction of phenolics compounds preserving its antioxidant activity. This method does not require expensive reagents or high quantities of organic solvents.
de Castro, Ana; Concheiro, Marta; Shakleya, Diaa M.; Huestis, Marilyn A.
2011-01-01
A validated method for quantifying methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine, cocaine, benzoylecgonine, 6-acetylmorphine, morphine, and codeine in human placenta by liquid chromatography–ion trap mass spectrometry is described. Specimens (1 g) were homogenized and subjected to solid-phase extraction. Chromatographic separation was performed on a Synergi Polar RP column with a gradient of 0.1% formic acid and acetonitrile. The method was linear from 10 to 2000 ng/g for methadone and 2.5 to 500 ng/g for other analytes. Limits of detection were 0.25–2.5 ng/g, imprecisions < 9.1%CV, analytical recoveries 84.4–113.3%, extraction efficiencies > 46%, matrix effects −8.0–129.9%, and process efficiencies 24.2–201.0%. Method applicability was demonstrated by analysis of five placenta specimens from opioid-dependent women receiving methadone pharmacotherapy, with methadone doses ranging from 65 to 95 mg on the day of delivery. These are the first data on placenta concentrations of methadone and metabolites after controlled drug administration. Detection of other common drugs of abuse in placenta will also improve our knowledge of the usefulness of this matrix for detecting in utero drug exposure and studying disposition of drugs in the maternal-fetal dyad. PMID:19671243
Santos Felix, Antonio C.; Novaes, Cleber G.; Pires Rocha, Maísla; Barreto, George E.; do Nascimento, Baraquizio B.; Giraldez Alvarez, Lisandro D.
2018-01-01
In this study, we have determined, using RSM (mixture design and Doehlert matrix), the optimum values of the independent variables to achieve the maximum response for the extraction of total phenolic compounds from Spondias mombin L bagasse agroindustrial residues in order to preserve their antioxidant activity. The extraction of phenolic compounds, as well as their antioxidant capacity and the capacity to scavenge ABTS, was determined by the modified DPPH method at different periods of time, temperature, velocity of rotation and solvents concentration. We observed that the optimum condition for the highest antioxidant yield was obtained using water (60.84%), acetone (30.31%), and ethanol (8.85%) at 30°C during 20 min at 50 rpm. We have also found that the maximum yield of total phenolics was 355.63 ± 9.77 (mg GAE/100 g), showing an EC50 of 3,962.24 ± 41.20 (g fruit/g of DPPH) and 8.36 ± 0.30 (μM trolox/g fruit), which were measured using DPPH and ABTS assays. These results suggest that RSM was successfully applied for optimizing the extraction of phenolics compounds thus preserving their antioxidant activity. PMID:29354632
Adedipe, Oluwatosin E; Johanningsmeier, Suzanne D; Truong, Van-Den; Yencho, G Craig
2016-03-02
This study investigated the ability of near-infrared spectroscopy (NIRS) to predict acrylamide content in French-fried potato. Potato flour spiked with acrylamide (50-8000 μg/kg) was used to determine if acrylamide could be accurately predicted in a potato matrix. French fries produced with various pretreatments and cook times (n = 84) and obtained from quick-service restaurants (n = 64) were used for model development and validation. Acrylamide was quantified using gas chromatography-mass spectrometry, and reflectance spectra (400-2500 nm) of each freeze-dried sample were captured on a Foss XDS Rapid Content Analyzer-NIR spectrometer. Partial least-squares (PLS) discriminant analysis and PLS regression modeling demonstrated that NIRS could accurately detect acrylamide content as low as 50 μg/kg in the model potato matrix. Prediction errors of 135 μg/kg (R(2) = 0.98) and 255 μg/kg (R(2) = 0.93) were achieved with the best PLS models for acrylamide prediction in Russet Norkotah French-fried potato and multiple samples of unknown varieties, respectively. The findings indicate that NIRS can be used as a screening tool in potato breeding and potato processing research to reduce acrylamide in the food supply.
Bone development in black ducks as affected by dietary toxaphene
Mehrle, P.M.; Finley, M.T.; Ludke, J.L.; Mayer, F.L.; Kaiser, T.E.
1979-01-01
Black ducks, Anas rubripes, were exposed to dietary toxaphene concentrations of 0, 10, or 50 μg/g of food for 90 days prior to laying and through the reproductive season. Toxaphene did not affect reproduction or survival, but reduced growth and impaired backbone development in ducklings. Collagen, the organic matrix of bone, was decreased significantly in cervical vertebrae of ducklings fed 50 μg/g, and calcium conentrations increased in vertebrae of ducklings fed 10 or 50 μg/g. The effects of toxaphene were observed only in female ducklings. In contrast to effects on vertebrae, toxaphene exposure did not alter tibia development. Toxaphene residues in carcasses of these ducklings averaged slightly less than the dietary levels.
Techniques for Accelerating Iterative Methods for the Solution of Mathematical Problems
1989-07-01
m, we can find a solu ion to the problem by using generalized inverses. Hence, ;= Ih.i = GAi = G - where G is of the form (18). A simple choice for V...have understood why I was not available for many of their activities and not home many of the nights. Their love is forever. I have saved the best for...Xk) Extrapolation applied to terms xP through Xk F Operator on x G Iteration function Ik Identity matrix of rank k Solution of the problem or the limit
Algorithms for Nonlinear Least-Squares Problems
1988-09-01
O -,i(x) 2 , where each -,(x) is a smooth function mapping Rn to R. J - The m x n Jacobian matrix of f. ... x g - The gradient of the nonlinear least...V211f(X*)I112~ l~ l) J(xk)T J(xk) 2 + O(k - X*) For more convergence results and detailed convergence analysis for the Gauss-Newton method, see, e. g ...for a class of nonlinear least-squares problems that includes zero-residual prob- lems. The function Jt is the pseudo-inverse of Jk (see, e. g
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary Garland
This data set shows the different loading capacities of Media #1 and Media #2 in a high and low salt content brine matrix at different liquid to solid ratio's. These data sets are shaker bath tests on media #1 and media #2 in brine's #1 and #2 at 500mL-.5g(1000-1 ratio), 150mL-.75g(200-1 ratio), and 150mL-2.5g(60-1 ratio) at ambient temperature.
Ex Vivo Growth of Bioengineered Ligaments and Other Tissues
NASA Technical Reports Server (NTRS)
Altman, Gregory; Kaplan, David L.; Martin, Ivan; Vunjak-Novakovic, Gordana
2005-01-01
A method of growing bioengineered tissues for use in surgical replacement of damaged anterior cruciate ligaments has been invented. An anterior cruciate ligament is one of two ligaments (the other being the posterior cruciate ligament) that cross in the middle of a knee joint and act to prevent the bones in the knee from sliding forward and backward relative to each other. Anterior cruciate ligaments are frequently torn in sports injuries and traffic accidents, resulting in pain and severe limitations on mobility. By making it possible to grow replacement anterior cruciate ligaments that structurally and functionally resemble natural ones more closely than do totally synthetic replacements, the method could create new opportunities for full or nearly full restoration of functionality in injured knees. The method is also adaptable to the growth of bioengineered replacements for other ligaments (e.g., other knee ligaments as well as those in the hands, wrists, and elbows) and to the production of tissues other than ligaments, including cartilage, bones, muscles, and blood vessels. The method is based on the finding that the histomorphological properties of a bioengineered tissue grown in vitro from pluripotent cells within a matrix are affected by the direct application of mechanical force to the matrix during growth generation. This finding provides important new insights into the relationships among mechanical stress, biochemical and cell-immobilization methods, and cell differentiation, and is applicable to the production of the variety of tissues mentioned above. Moreover, this finding can be generalized to nonmechanical (e.g., chemical and electromagnetic) stimuli that are experienced in vivo by tissues of interest and, hence, the method can be modified to incorporate such stimuli in the ex vivo growth of replacements for the various tissues mentioned above. In this method, a three-dimensional matrix made of a suitable material is seeded with pluripotent stem cells. The patient s bone-marrow stromal cells are preferably used as the pluripotent cells in this method. Suitable matrix materials are materials to which cells can adhere for example, collagen type I. The seeded matrix is attached to anchors at opposite ends and then the cells in the matrix are cultured under conditions appropriate for the growth and regeneration of cells. Suitable anchor materials are materials to which the matrix can attach; examples include demineralized bone and Goinopra coral that has been treated to convert its calcium carbonate to calcium phosphate.
Botero-Coy, A M; Marín, J M; Ibáñez, M; Sancho, J V; Hernández, F
2012-03-01
Monitoring pesticide residues in tropical fruits is of great interest for many countries, e.g., from South America, that base an important part of their economy on the exportation of these products. In this work, a LC-MS/MS multi-residue method using a triple quadrupole analyzer has been developed for around 30 pesticides in seven Colombian tropical fruits of high commercial value for domestic and international markets (uchuva, tamarillo, granadilla, gulupa, maracuya, papaya, and pithaya). After sample extraction with acetonitrile, an aliquot of the extract was diluted with water and directly injected into the HPLC-MS/MS system (electrospray interface) without any cleanup step. The formation of sodium adducts-of poor fragmentation-was minimized using 0.1% formic acid in the mobile phase, which favored the formation of the protonated molecule. However, the addition of ammonium acetate made the formation of the ammonium adducts in some particular cases possible, avoiding the presence of the sodium adducts. The highest sensitivity was observed in positive electrospray ionization for the wide majority of pesticides, with a few exceptions for acidic compounds that gave better response in the negative mode (e.g., 2,4-D, fluazinan). Thus, simultaneous acquisition on the positive/negative mode was applied. Two MS/MS transitions were acquired for each compound to ensure a reliable quantification and identification of the compounds detected in samples, although for malathion a third transition was acquired due to the presence of interfering isobaric compounds in the sample extracts. A detailed study of matrix effects was made by a comparison of standards in solvent and in matrix. Both ionization suppression and ionization enhancement were observed depending on the analyte/matrix combination tested. Correction of matrix effects was made by the application of calibration in matrix. Three matrices were selected (uchuva, maracuya, gulupa) to perform matrix calibration in the analysis of all seven fruit varieties studied. The method was validated by recovery experiments in samples spiked at two levels (0.05 and 0.5 mg/kg). The data were satisfactory for the wide majority of analyte/matrix combinations, with most recoveries between 70% and 110% and the RSD below 15%. Several samples collected from the market were finally analyzed. Positive findings were confirmed by evaluating the experimental Q/q ratios and retention times, and comparing them with those of reference standards.
How bacteria hack the matrix and dodge the bullets of immunity.
Paulsson, Magnus; Riesbeck, Kristian
2018-06-30
Haemophilus influenzae , Moraxella catarrhalis and Pseudomonas aeruginosa are common Gram-negative pathogens associated with an array of pulmonary diseases. All three species have multiple adhesins in their outer membrane, i.e. surface structures that confer the ability to bind to surrounding cells, proteins or tissues. This mini-review focuses on proteins with high affinity for the components of the extracellular matrix such as collagen, laminin, fibronectin and vitronectin. Adhesins are not structurally related and may be lipoproteins, transmembrane porins or large protruding trimeric auto-transporters. They enable bacteria to avoid being cleared together with mucus by attaching to patches of exposed extracellular matrix, or indirectly adhering to epithelial cells using matrix proteins as bridging molecules. As more adhesins are being unravelled, it is apparent that bacterial adhesion is a highly conserved mechanism, and that most adhesins target the same regions on the proteins of the extracellular matrix. The surface exposed adhesins are prime targets for new vaccines and the interactions between proteins are often possible to inhibit with interfering molecules, e.g heparin. In conclusion, this highly interesting research field of microbiology has unravelled host-pathogen interactions with high therapeutic potential. Copyright ©ERS 2018.
Immunochemical analytical methods for the determination of peanut proteins in foods.
Whitaker, Thomas B; Williams, Kristina M; Trucksess, Mary W; Slate, Andrew B
2005-01-01
Peanut proteins can cause allergenic reactions that can result in respiratory and circulatory effects in the body sometimes leading to shock and death. The determination of peanut proteins in foods by analytical methods can reduce the risk of serious reactions in the highly sensitized individual by allowing for the detection of these proteins in a food at various stages of the manufacturing process. The method performance of 4 commercially available enzyme-linked immunosorbent assay (ELISA) kits was evaluated for the detection of peanut proteins in milk chocolate, ice cream, cookies, and breakfast cereals: ELISA-TEK Peanut Protein Assay, now known as "Bio-Kit" for peanut proteins, from ELISA Technologies Inc.; Veratox for Peanut Allergens from Neogen Corp.; RIDASCREEN Peanut Kit from R-Biopharm GmbH; and ProLisa from Canadian Food Technology Ltd. The 4 test kits were evaluated for accuracy (recovery) and precision using known concentrations of peanut or peanut proteins in the 4 food matrixes. Two different techniques, incurred and spiked, were used to prepare samples with 4 known concentrations of peanut protein. Defatted peanut flour was added in the incurred samples, and water-soluble peanut proteins were added in the spiked samples. The incurred levels were 0.0, 10, 20, and 100 microg whole peanut per g food; the spiked levels were 0.0, 5, 10, and 20 microg peanut protein per g food. Performance varied by test kit, protein concentration, and food matrix. The Veratox kit had the best accuracy or lowest percent difference between measured and incurred levels of 15.7% when averaged across all incurred levels and food matrixes. Recoveries associated with the Veratox kit varied from 93 to 115% for all food matrixes except cookies. Recoveries for all kits were about 50% for cookies. The analytical precision, as measured by the variance, increased with an increase in protein concentration. However, the coefficient of variation (CV) was stable across the 4 incurred protein levels and was 7.0% when averaged across the 4 food matrixes and analytical kits. The R-Biopharm test kit had the best precision or a CV of 4.2% when averaged across all incurred levels and food matrixes. Because measured protein values varied by test kit and food matrix, a method was developed to normalize or transform measured protein concentrations to an adjusted protein value that was equal to the known protein concentration. The normalization method adjusts measured protein values to equal the true protein value regardless of the type test kit or type food matrix.
Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor.
Gonzalez-Gil, G; Lens, P N; Van Aelst, A; Van As, H; Versprille, A I; Lettinga, G
2001-08-01
The metabolic properties and ultrastructure of mesophilic aggregates from a full-scale expanded granular sludge bed reactor treating brewery wastewater are described. The aggregates had a very high methanogenic activity on acetate (17.19 mmol of CH(4)/g of volatile suspended solids [VSS].day or 1.1 g of CH(4) chemical oxygen demand/g of VSS.day). Fluorescent in situ hybridization using 16S rRNA probes of crushed granules showed that 70 and 30% of the cells belonged to the archaebacterial and eubacterial domains, respectively. The spherical aggregates were black but contained numerous whitish spots on their surfaces. Cross-sectioning these aggregates revealed that the white spots appeared to be white clusters embedded in a black matrix. The white clusters were found to develop simultaneously with the increase in diameter. Energy-dispersed X-ray analysis and back-scattered electron microscopy showed that the whitish clusters contained mainly organic matter and no inorganic calcium precipitates. The white clusters had a higher density than the black matrix, as evidenced by the denser cell arrangement observed by high-magnification electron microscopy and the significantly higher effective diffusion coefficient determined by nuclear magnetic resonance imaging. High-magnification electron microscopy indicated a segregation of acetate-utilizing methanogens (Methanosaeta spp.) in the white clusters from syntrophic species and hydrogenotrophic methanogens (Methanobacterium-like and Methanospirillum-like organisms) in the black matrix. A number of physical and microbial ecology reasons for the observed structure are proposed, including the advantage of segregation for high-rate degradation of syntrophic substrates.
Preparation and release study of Triclosan in polyethylene/Triclosan anti-bacterial blend.
Kamalipour, Jamshid; Masoomi, Mahmood; Khonakdar, Hossein Ali; Razavi, Seyed Mohammad Reza
2016-09-01
In this study, medium density polyethylene (MDPE) incorporated with Triclosan antibacterial substance has been prepared and Triclosan release rate was investigated. The crystallinity level and matrix polarity, as two significant parameters in antibacterial release control, were studied. Triclosan, a well-established widespread antibacterial agent, was incorporated into medium density polyethylene (MDPE) and Maleic anhydride grafted polyethylene (PE-g-MA) was used to change the polarity of the MDPE matrix. A masterbatch of 10wt% Triclosan incorporated with the MDPE and various PE-g-MA concentrations were prepared using an internal mixer. Then the masterbatch was diluted in the MDPE matrix to produce compounds with 0.1, 0.5, and1wt% Triclosan via twin screw extruder. The compounds were molded by compression molding method and then were cooled in three different cooling rate methods: isothermal cooling (I), quenching (Q),and moderate 5-10°C/min cooling rate (M). Cooling rate effects on crystallinity level were investigated applying sample density measurement. UV-vis absorption spectroscopy was used to probe the release of Triclosan. Antibacterial properties of the compounds against Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus were measured. The results showed that by addition of PE-g-MA, Triclosan release rate was increased. It was confirmed that the sample crystallinity was decreased by the cooling rate enhancement. The results also showed that quenched samples indicated higher release of Triclosan. Cooling rate reduction and raising the polarity increased the release of Triclosan and improved the antibacterial properties of the compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
Cluster Structure of Anaerobic Aggregates of an Expanded Granular Sludge Bed Reactor
Gonzalez-Gil, G.; Lens, P. N. L.; Van Aelst, A.; Van As, H.; Versprille, A. I.; Lettinga, G.
2001-01-01
The metabolic properties and ultrastructure of mesophilic aggregates from a full-scale expanded granular sludge bed reactor treating brewery wastewater are described. The aggregates had a very high methanogenic activity on acetate (17.19 mmol of CH4/g of volatile suspended solids [VSS]·day or 1.1 g of CH4 chemical oxygen demand/g of VSS·day). Fluorescent in situ hybridization using 16S rRNA probes of crushed granules showed that 70 and 30% of the cells belonged to the archaebacterial and eubacterial domains, respectively. The spherical aggregates were black but contained numerous whitish spots on their surfaces. Cross-sectioning these aggregates revealed that the white spots appeared to be white clusters embedded in a black matrix. The white clusters were found to develop simultaneously with the increase in diameter. Energy-dispersed X-ray analysis and back-scattered electron microscopy showed that the whitish clusters contained mainly organic matter and no inorganic calcium precipitates. The white clusters had a higher density than the black matrix, as evidenced by the denser cell arrangement observed by high-magnification electron microscopy and the significantly higher effective diffusion coefficient determined by nuclear magnetic resonance imaging. High-magnification electron microscopy indicated a segregation of acetate-utilizing methanogens (Methanosaeta spp.) in the white clusters from syntrophic species and hydrogenotrophic methanogens (Methanobacterium-like and Methanospirillum-like organisms) in the black matrix. A number of physical and microbial ecology reasons for the observed structure are proposed, including the advantage of segregation for high-rate degradation of syntrophic substrates. PMID:11472948
Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM).
Gao, Hao; Yu, Hengyong; Osher, Stanley; Wang, Ge
2011-11-01
We propose a compressive sensing approach for multi-energy computed tomography (CT), namely the prior rank, intensity and sparsity model (PRISM). To further compress the multi-energy image for allowing the reconstruction with fewer CT data and less radiation dose, the PRISM models a multi-energy image as the superposition of a low-rank matrix and a sparse matrix (with row dimension in space and column dimension in energy), where the low-rank matrix corresponds to the stationary background over energy that has a low matrix rank, and the sparse matrix represents the rest of distinct spectral features that are often sparse. Distinct from previous methods, the PRISM utilizes the generalized rank, e.g., the matrix rank of tight-frame transform of a multi-energy image, which offers a way to characterize the multi-level and multi-filtered image coherence across the energy spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms of the spectral curves for base materials, with which the restoration of the multi-energy image becomes the reconstruction of the energy-independent material composition matrix. In other words, the PRISM utilizes prior knowledge on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base materials. Furthermore, we develop an accurate and fast split Bregman method for the PRISM and demonstrate the superior performance of the PRISM relative to several competing methods in simulations.
The impact of various scaffold components on vascularized bone constructs.
Eweida, Ahmad; Schulte, Matthias; Frisch, Oliver; Kneser, Ulrich; Harhaus, Leila
2017-06-01
Bone tissue engineering is gaining more interest in the field of craniofacial surgery where continuous efforts are being made to improve the outcomes via modulation of the scaffold components. In an in vitro three dimensional (3D) culture, the effect of bone morphogenic protein 2 (BMP2, 60 μg/ml) and the effect of different cell seeding densities (0.25, 0.5, and 1 × 104) of rat mesenchymal stem cells seeded on nanocrystalline hydroxyapatite in silica gel matrix (Nanobone ® ) on the cell viability and differentiation were studied. Alkaline phosphatase and viability assays were performed at day 7, day 14, and day 21 to assess the differentiation and the relative fraction of viable cells in the 3D cell cultures. In a subsequent in vivo study, we examined the effect of axial vascularization, the scaffold's particle size and the nature of the matrix (collagen type I vs. diluted fibrin) on vascularization and tissue generation in vascularized bone construct in rats. Regarding vascularization, we compared constructs vascularized randomly by extrinsic vascularization from the periphery of the implanted construct with others vascularized axially via an implanted arteriovenous loop (AVL). Regarding the particle size, we compared constructs having a scaffold particle size of 0.2 mm (powder) with other constructs having a particle size of 2 × 0.6 mm (granules). Regarding the matrix we compared constructs having a collagen matrix with others having a fibrin matrix. Various groups were compared regarding the amount of tissue generation, vascularization, and cellular proliferation. The initial seeding density had a temporary and minimal effect on the overall osteogenic differentiation of the cells. On the contrary, adding BMP2 in a concentration of 60 μg/ml over one week led to an overall enhanced osteogenic differentiation despite depressed cell viability. Axial vascularization was mandatory for efficient tissue formation and vascularization of the bone construct. Collagen matrix and a smaller particle size provided more favorable results in terms of vascularization and tissue formation than diluted fibrin and larger Nanobone particles. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Mu, Zhaobin; Feng, Xiaoxiao; Zhang, Yun; Zhang, Hongyan
2016-02-01
A multi-residue method based on modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample preparation, followed by liquid chromatography tandem mass spectrometry (LC-MS/MS), was developed and validated for the determination of three selected fungicides (propiconazole, pyraclostrobin, and isopyrazam) in seven animal origin foods. The overall recoveries at the three spiking levels of 0.005, 0.05, and 0.5 mg kg(-1) spanned between 72.3 and 101.4% with relative standard deviation (RSD) values between 0.7 and 14.9%. The method shows good linearity in the concentrations between 0.001 and 1 mg L(-1) with the coefficient of determination (R (2)) value >0.99 for each target analyte. The limit of detections (LODs) for target analytes were between 0.04 and 1.26 μg kg(-1), and the limit of quantifications (LOQs) were between 0.13 and 4.20 μg kg(-1). The matrix effect for each individual compound was evaluated through the study of ratios of the areas obtained in solvent and matrix standards. The optimized method provided a negligible matrix effect for propiconazole within 20%, whereas for pyraclostrobin and isopyrazam, the matrix effect was relatively significant with a maximum value of 49.8%. The developed method has been successfully applied to the analysis of 210 animal origin samples obtained from 16 provinces of China. The results suggested that the developed method was satisfactory for trace analysis of three fungicides in animal origin foods.
Glazer, Lilah; Roth, Ziv; Weil, Simy; Aflalo, Eliahu D; Khalaila, Isam; Sagi, Amir
2015-10-14
Chitin is a major component of arthropod cuticles, where it forms a three-dimensional network that constitutes the scaffold upon which cuticles form. The chitin fibers that form this network are closely associated with specific structural proteins, while the cuticular matrix contains many additional structural, enzymatic and other proteins. We study the crayfish gastrolith as a simple model for the assembly of calcified cuticular structures, with particular focus on the proteins involved in this process. The present study integrates a gastrolith-forming epithelium transcriptomic library with data from mass spectrometry analysis of proteins extracted from the gastrolith matrix to obtain a near-complete picture of gastrolith protein content. Using native protein separation we identified 24 matrix proteins, of which 14 are novel. Further analysis led to discovery of three putative protein complexes, all containing GAP 65 the most abundant gastrolith structural protein. Using immunological methods we further studied the role of GAP 65 in the gastrolith matrix and forming epithelium, as well as in the newly identified protein complexes. We propose that gastrolith matrix construction is a sequential process in which protein complexes are dynamically assembled and disassembled around GAP 65, thus changing their functional properties to perform each step in the construction process. The scientific interest on which this study is based arises from three main features of gastroliths: (1) Gastroliths possess partial analogy to cuticles both in structural and molecular properties, and may be regarded, with the appropriate reservations (see Introduction), as simple models for cuticle assembly. At the same time, gastroliths are terminally assembled during a well-defined period, which can be controlled in the laboratory, making them significantly easier to study than cuticles. (2) Gastroliths, like the crayfish exoskeleton, contain stable amorphous calcium carbonate (ACC) rather than crystalline calcite. The biological mechanism for the stabilization of a naturally unstable, but at the same time biologically highly available, calcium carbonate polymorph is of great interest from the pharmaceutical point of view. (3) The gastrolith organic matrix is based on a highly structured chitin network that interacts with a variety of substances. This biologically manipulated, biodegradable structure is in itself of biotechnological and pharmaceutical potential. A growing body of evidence indicates that proteins play central roles in all above aspects of gastrolith construction. This study offers the first comprehensive screening of gastrolith proteins, and we believe that the analysis presented in this work can not only help reveal basic biological questions regarding assembly of mineralized and non-mineralized cuticular structures, but may also serve as basis for applied research in the fields of agriculture (e.g. cuticle-based pest management), health (e.g. bioavailable calcium supplements and biodegradable drug carriers) and materials science (e.g. non-toxic scaffolds for water purification). Copyright © 2015. Published by Elsevier B.V.
Zhang, Wen; Hu, Zhaochu; Günther, Detlef; Liu, Yongsheng; Ling, Wenli; Zong, Keqing; Chen, Haihong; Gao, Shan
2016-12-15
In situ Pb isotope data of sulfide samples measured by LA-MC-ICP-MS provide valuable geochemical information for studies of the origin and evolution of ore deposits. However, the severe isobaric interference of 204 Hg on 204 Pb and the lack of matrix-matched sulfide reference materials limit the precision of Pb isotopic analyses for Hg-rich sulfides. In this study, we observe that Hg forms vapor and can be completely removed from sample aerosol particles produced by laser ablation using a gas exchange device. Additionally, this device does not influence the signal intensities of Pb isotopes. The within-run precision, the external reproducibility and the analytical accuracy are significantly improved for the Hg-rich sulfide samples using this mercury-vapor-removing device. Matrix effects are observed when using silicate glass reference materials as the external standards to assess the relationship of mass fractionation factors between Tl and Pb in sulfide samples, resulting in a maximum deviation of ∼0.20% for 20x Pb/ 204 Pb. Matrix-matched reference materials are therefore required for the highly precise and accurate Pb isotope analyses of sulfide samples. We investigated two sulfide samples, MASS-1 (the Unites States Geological Survey reference materials) and Sph-HYLM (a natural sphalerite), as potential candidates. Repeated analyses of the two proposed sulfide reference materials by LA-MC-ICP-MS yield good external reproducibility of <0.04% (RSD, k = 2) for 20x Pb/ 206 Pb and <0.06% (RSD, k = 2) for 20x Pb/ 204 Pb with the exception of 20x Pb/ 204 Pb in MASS-1, which provided an external reproducibility of 0.24% (RSD, k = 2). Because the concentration of Pb in MASS-1 (76 μg g -1 ) is ∼5.2 times lower than that in Sph-HYLM (394 ± 264 μg g -1 ). The in situ analytical results of MASS-1 and Sph-HYLM are consistent with the values obtained by solution MC-ICP-MS, demonstrating the reliability and robustness of our analytical protocol. Copyright © 2016 Elsevier B.V. All rights reserved.
Potassium Stable Isotopic Compositions Measured by High-Resolution MC-ICP-MS
NASA Technical Reports Server (NTRS)
Morgan, Leah E.; Lloyd, Nicholas S.; Ellam, Robert M.; Simon, Justin I.
2012-01-01
Potassium isotopic (K-41/K-39) compositions are notoriously difficult to measure. TIMS measurements are hindered by variable fractionation patterns throughout individual runs and too few isotopes to apply an internal spike method for instrumental mass fractionation corrections. Internal fractionation corrections via the K-40/K-39 ratio can provide precise values but assume identical K-40/K-39 ratios (e.g. 0.05% (1sigma) in [1]); this is appropriate in some cases (e.g. identifying excess K-41) but not others (e.g., determining mass fractionation effects and metrologically traceable isotopic abundances). SIMS analyses have yielded measurements with 0.25% precisions (1sigma) [2]. ICP-MS analyses are significantly affected by interferences from molecular species such as Ar-38H(+) and Ar-40H(+) and instrument mass bias. Single collector ICP-MS instruments in "cold plasma" mode have yielded uncertainties as low as 2% (1sigma, e.g. [3]). Although these precisions may be acceptable for some concentration determinations, they do not resolve isotopic variation in terrestrial materials. Here we present data from a series of measurements made on the Thermo Scientific NEPTUNE Plus multi-collector ICP-MS that demonstrate the ability to make K-41/K-39 ratio measurements with 0.07% precisions (1sigma). These data, collected on NIST K standards, indicate the potential for MC-ICP-MS measurements to look for K isotopic variations at the sub-permil level. The NEPTUNE Plus can sufficiently resolve 39K and 41K from the interfering 38ArH+ and 40ArH+ peaks in wet cold plasma and high-resolution mode. Measurements were made on small but flat, interference-free, plateaus (ca. 50 ppm by mass width for K-41). Although ICP-MS does not yield accurate K-41/K-39 values due to significant instrumental mass fractionation (ca. 6%), this bias can be sufficiently stable over the time required for several measurements so that relative K-41/K-39 values can be precisely determined via sample-standard bracketing. As cold plasma conditions can amplify matrix effects, experiments were conducted to test the matrix tolerance of measurements; the use of clean, matrix-matched samples and standards is critical. Limitations of the cold-plasma high-resolution MC-ICP-MS methodology with respect to matrix tolerance are discussed and compared with the limitations of TIMS methodologies.
GenoMatrix: A Software Package for Pedigree-Based and Genomic Prediction Analyses on Complex Traits.
Nazarian, Alireza; Gezan, Salvador Alejandro
2016-07-01
Genomic and pedigree-based best linear unbiased prediction methodologies (G-BLUP and P-BLUP) have proven themselves efficient for partitioning the phenotypic variance of complex traits into its components, estimating the individuals' genetic merits, and predicting unobserved (or yet-to-be observed) phenotypes in many species and fields of study. The GenoMatrix software, presented here, is a user-friendly package to facilitate the process of using genome-wide marker data and parentage information for G-BLUP and P-BLUP analyses on complex traits. It provides users with a collection of applications which help them on a set of tasks from performing quality control on data to constructing and manipulating the genomic and pedigree-based relationship matrices and obtaining their inverses. Such matrices will be then used in downstream analyses by other statistical packages. The package also enables users to obtain predicted values for unobserved individuals based on the genetic values of observed related individuals. GenoMatrix is available to the research community as a Windows 64bit executable and can be downloaded free of charge at: http://compbio.ufl.edu/software/genomatrix/. © The American Genetic Association. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Model Development for Risk Assessment of Driving on Freeway under Rainy Weather Conditions
Cai, Xiaonan; Wang, Chen; Chen, Shengdi; Lu, Jian
2016-01-01
Rainy weather conditions could result in significantly negative impacts on driving on freeways. However, due to lack of enough historical data and monitoring facilities, many regions are not able to establish reliable risk assessment models to identify such impacts. Given the situation, this paper provides an alternative solution where the procedure of risk assessment is developed based on drivers’ subjective questionnaire and its performance is validated by using actual crash data. First, an ordered logit model was developed, based on questionnaire data collected from Freeway G15 in China, to estimate the relationship between drivers’ perceived risk and factors, including vehicle type, rain intensity, traffic volume, and location. Then, weighted driving risk for different conditions was obtained by the model, and further divided into four levels of early warning (specified by colors) using a rank order cluster analysis. After that, a risk matrix was established to determine which warning color should be disseminated to drivers, given a specific condition. Finally, to validate the proposed procedure, actual crash data from Freeway G15 were compared with the safety prediction based on the risk matrix. The results show that the risk matrix obtained in the study is able to predict driving risk consistent with actual safety implications, under rainy weather conditions. PMID:26894434
Moussa, Ehab M; Wilson, Nathan E; Zhou, Qi Tony; Singh, Satish K; Nema, Sandeep; Topp, Elizabeth M
2018-01-03
Lyophilization and spray drying are widely used to manufacture solid forms of therapeutic proteins. Lyophilization is used to stabilize proteins vulnerable to degradation in solution, whereas spray drying is mainly used to prepare inhalation powders or as an alternative to freezing for storing bulk drug substance. Both processes impose stresses that may adversely affect protein structure, stability and bioactivity. Here, we compared lyophilization with and without controlled ice nucleation, and spray drying for their effects on the solid-state conformation and matrix interactions of a model IgG1 monoclonal antibody (mAb). Solid-state conformation and matrix interactions of the mAb were probed using solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS), and solid-state Fourier transform infrared (ssFTIR) and solid-state fluorescence spectroscopies. mAb conformation and/or matrix interactions were most perturbed in mannitol-containing samples and the distribution of states was more heterogeneous in sucrose and trehalose samples that were spray dried. The findings demonstrate the sensitivity of ssHDX-MS to changes weakly indicated by spectroscopic methods, and support the broader use of ssHDX-MS to probe formulation and process effects on proteins in solid samples.
Scarano, S; Scuffi, C; Mascini, M; Minunni, M
2011-11-30
Only few papers deal with Surface Plasmon Resonance imaging (SPRi) direct detection on complex matrices, limiting the biosensor application to real analytical problems. In this work a SPRi biosensor for anti-bovine IgG detection in untreated human bodily fluids, i.e. diluted human serum and milk, was developed. Enhanced levels of cow's milk antibodies in children's serum are suspected for their possible correlation with Type 1 diabetes during childhood and their detection in real samples was up to now performed by classical immunoassays based on indirect detection. The biosensor was optimised in standard samples and then in untreated human milk for anti-bovine IgG direct detection. The key novelty of the work is the evaluation of matrix effect by applying to real samples an experimental and ex ante method previously developed for SPRi signal sampling in standard solutions, called "Data Analyzer"; it punctually visualises and analyses the behaviour of receptor spots of the array, to select only spot areas with the best specific vs. unspecific signal values. In this way, benefits provide by SPRi image analysis are exploited here to quantify and minimise drawbacks due to the matrix effect, allowing to by-pass every matrix pre-treatment except dilution. Copyright © 2011 Elsevier B.V. All rights reserved.
Chebassier, Nathalie; El Houssein, Ouijja; Viegas, Isabelle; Dréno, Brigitte
2004-08-01
Matrix metalloproteinase (MMP)-2 and MMP-9 are involved in keratinocyte migration and granulation tissue remodeling during wound healing. Thermal water cures are sometimes proposed as complementary treatment for accelerating healing of wounds resulting from burns and/or surgery, but their mechanisms of action remain unknown. Some thermal waters are rich in trace elements such as boron and manganese. Interestingly, clinical studies have shown the beneficial effects of trace elements such as boron and manganese for human wound healing. To try to specify the role of trace elements in cutaneous healing, the present study investigated the effects of these trace elements on the production of MMP-2 and MMP-9 by normal human keratinocytes cultured in vitro. Immunohistochemistry and Western blot showed that intracellular MMP-9 expression in keratinocytes was induced when incubated for 6 h with boron at 10 micro g/ml or manganese at 0.2 micro g/ml. Moreover, gelatin zymography on keratinocyte supernatants showed an increase of gelatinase secretion after 24 h of incubation of keratinocytes with boron or manganese, regardless of concentration. Gelatinase secretion was not associated with keratinocyte proliferation induced by trace elements. Thus, our results suggest that boron and manganese could play a role in the clinical efficiency of thermal water on wound healing.
Stanford, K; Reuter, T; Gilroyed, B H; McAllister, T A
2015-04-01
To investigate impact of sporulation and compost temperatures on feasibility of composting for disposal of carcasses contaminated with Bacillus anthracis. Two strains of B. cereus, 805 and 1391, were sporulated at either 20 or 37°C (Sporulation temperature, ST) and 7 Log10 CFU g(-1) spores added to autoclaved manure in nylon bags (pore size 50 μm) or in sealed vials. Vials and nylon bags were embedded into compost in either a sawdust or manure matrix each containing 16 bovine mortalities (average weight 617 ± 33 kg), retrieved from compost at intervals over 217 days and survival of B. cereus spores assessed. A ST of 20°C decreased spore survival by 1·4 log10 CFU g(-1) (P < 0·05) compared to a 37°C ST. Spore survival was strain dependent. Compost temperatures >55°C reduced spore survival (P < 0·05) and more frequently occurred in the sawdust matrix. Sporulation and compost temperatures were key factors influencing survival of B. cereus spores in mortality compost. Composting may be most appropriate for the disposal of carcasses infected with B. anthracis at ambient temperatures ≤20°C under thermophillic composting conditions (>55°C). © 2015 The Society for Applied Microbiology.
Jakóbik-Kolon, Agata; Milewski, Andrzej; Dydo, Piotr; Witczak, Magdalena; Bok-Badura, Joanna
2018-02-23
The fast and simple method for total chlorine determination in polyglycerols using low resolution inductively coupled plasma mass spectrometry (ICP-MS) without the need for additional equipment and time-consuming sample decomposition was evaluated. Linear calibration curve for 35 Cl isotope in the concentration range 20-800 µg/L was observed. Limits of detection and quantification equaled to 15 µg/L and 44 µg/L, respectively. This corresponds to possibility of detection 3 µg/g and determination 9 µg/g of chlorine in polyglycerol using studied conditions (0.5% matrix-polyglycerol samples diluted or dissolved with water to an overall concentration of 0.5%). Matrix effects as well as the effect of chlorine origin have been evaluated. The presence of 0.5% (m/m) of matrix species similar to polyglycerol (polyethylene glycol-PEG) did not influence the chlorine determination for PEGs with average molecular weights (MW) up to 2000 Da. Good precision and accuracy of the chlorine content determination was achieved regardless on its origin (inorganic/organic). High analyte recovery level and low relative standard deviation values were observed for real polyglycerol samples spiked with chloride. Additionally, the Combustion Ion Chromatography System was used as a reference method. The results confirmed high accuracy and precision of the tested method.
Release of hydrogen from nanoconfined hydrides by application of microwaves
NASA Astrophysics Data System (ADS)
Sanz-Moral, Luis Miguel; Navarrete, Alexander; Sturm, Guido; Link, Guido; Rueda, Miriam; Stefanidis, Georgios; Martín, Ángel
2017-06-01
The release of hydrogen from solid hydrides by thermolysis can be improved by nanoconfinement of the hydride in a suitable micro/mesoporous support, but the slow heat transfer by conduction through the support can be a limitation. In this work, a C/SiO2 mesoporous material has been synthesized and employed as matrix for nanoconfinement of hydrides. The matrix showed high surface area and pore volume (386 m2/g and 1.41 cm3/g), which enabled the confinement of high concentrations of hydride. Furthermore, by modification of the proportion between C and SiO2, the dielectric properties of the complex could be modified, making it susceptible to microwave heating. As with this heating method the entire sample is heated simultaneously, the heat transfer resistances associated to conduction were eliminated. To demonstrate this possibility, ethane 1,2-diaminoborane (EDAB) was embedded on the C/SiO2 matrix at concentrations ranging from 11 to 31%wt using a wet impregnation method, and a device appropriate for hydrogen release from this material by application of microwaves was designed with the aid of a numerical simulation. Hydrogen liberation tests by conventional heating and microwaves were compared, showing that by microwave heating hydrogen release can be initiated and stopped in shorter times.
Wang, Siwei; Liu, Yanping; Sun, Haibin; DU, Lanjuan; Xu, Nengli
2018-01-08
An effective method was developed for the determination of two major fungicides including myclobutanil and difenoconazole residues in pollen and honey of litchi by modified QuEChERS-high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The pollen and honey samples were all extracted by acetonitrile, the pollen samples were cleaned-up by 0.9 g anhydrous magnesium sulfate (MgSO 4 ), 0.15 g primary secondary amine (PSA) and 0.15 g C 18 ; the honey samples were cleaned-up by 0.9 g MgSO 4 and 0.15 g PSA. The 0.1% (v/v) formic acid aqueous solution-acetonitrile (25:75, v/v) were used as the mobile phases. The extracts were separated on a Poroshell-120 EC-C 18 chromatographic column, the positive electrospray ion (ESI + ) source and selected ion monitoring (SIM) mode were used. The analytes were quantified by the matrix matching standard solutions. The matrix matched standard solutions of myclobutanil and difenoconazole showed good linearities in the range of 1-100 μg/L, and the correlation coefficients ( r 2 ) were all above 0.9990. The limits of detection (LODs) of myclobutanil and difenoconazole were 0.25 μg/kg and 0.50 μg/kg, respectively. The limits of quantification (LOQs) of myclobutanil and difenoconazole were 0.83 μg/kg and 1.7 μg/kg, respectively. The average recoveries of myclobutanil and difenoconazole in pollen and honey samples were 87.0%-95.2% and 90.1%-96.4% with the relative standard deviations of 1.2%-3.6% and 0.7%-4.1%, respectively. The method is quick, easy and sensitive, and it is suitable for the rapid determination and trace analysis of myclobutanil and difenoconazole in pollens and honeys of litchi. The method can provide data support for the exposure risk assessment of bees and other pollination insects.
Pedersen, Gabriel Kristian; Höschler, Katja; Øie Solbak, Sara Marie; Bredholt, Geir; Pathirana, Rishi Delan; Afsar, Aram; Breakwell, Lucy; Nøstbakken, Jane Kristin; Raae, Arnt Johan; Brokstad, Karl Albert; Sjursen, Haakon; Zambon, Maria; Cox, Rebecca Jane
2014-07-31
Influenza H5N1 virus constitutes a pandemic threat and development of effective H5N1 vaccines is a global priority. Anti-influenza antibodies directed towards the haemagglutinin (HA) define a correlate of protection. Both antibody concentration and avidity may be important for virus neutralization and resolving influenza disease. We conducted a phase I clinical trial of a virosomal H5N1 vaccine adjuvanted with the immunostimulating complex Matrix M™. Sixty adults were intramuscularly immunized with two vaccine doses (21 days apart) of 30 μg HA alone or 1.5, 7.5 or 30 μg HA adjuvanted with Matrix M™. Serum H5 HA1-specific antibodies and virus neutralization were determined at days 0, 21, 42, 180 and 360 and long-term memory B cells at day 360 post-vaccination. The binding of the HA specific antibodies was measured by avidity NaSCN-elution ELISA and surface plasmon resonance (SPR). The H5 HA1-specific IgG response peaked after the second dose (day 42), was dominated by IgG1 and IgG3 and was highest in the adjuvanted vaccine groups. IgG titres correlated significantly with virus neutralization at all time points (Spearman r≥0.66, p<0.0001). By elution ELISA, serum antibody avidity was highest at days 180 and 360 post vaccination and did not correlate with virus neutralization. Long-lasting H5 HA1-specific memory B cells produced high IgG antibody avidity similar to serum IgG. Maturation of serum antibody avidity continued up to day 360 after influenza H5N1 vaccination. Virus neutralization correlated with serum H5 HA1-specific IgG antibody concentrations and not antibody avidity. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rajaram, H.; Arshadi, M.
2016-12-01
In-situ chemical oxidation (ISCO) is an effective strategy for remediation of DNAPL contamination in fractured rock. During ISCO, an oxidant (e.g. permanganate) is typically injected through fractures and is consumed by bimolecular reactions with DNAPLs such as TCE and natural organic matter in the fracture and the adjacent rock matrix. Under these conditions, moving reaction fronts form and propagate along the fracture and into the rock matrix. The propagation of these reaction fronts is strongly influenced by the heterogeneity/discontinuity across the fracture-matrix interface (advective transport dominates in the fractures, while diffusive transport dominates in the rock matrix). We present analytical solutions for the concentrations of the oxidant, TCE and natural organic matter; and the propagation of the reaction fronts in a fracture-matrix system. Our approximate analytical solutions assume advection and reaction dominate over diffusion/dispersion in the fracture and neglect the latter. Diffusion and reaction with both TCE and immobile natural organic matter in the rock matrix are considered. The behavior of the reaction-diffusion equations in the rock matrix is posed as a Stefan problem where the diffusing oxidant reacts with both diffusing (TCE) and immobile (natural organic matter) reductants. Our analytical solutions establish that the reaction fronts propagate diffusively (i.e. as the square root of time) in both the matrix and the fracture. Our analytical solutions agree very well with numerical simulations for the case of uniform advection in the fracture. We also present extensions of our analytical solutions to non-uniform flows in the fracture by invoking a travel-time transformation. The non-uniform flow solutions are relevant to field applications of ISCO. The approximate analytical solutions are relevant to a broad class of reactive transport problems in fracture-matrix systems where moving reaction fronts occur.
Williams, Rachel C; Skelton, Andrew J; Todryk, Stephen M; Rowan, Andrew D; Preshaw, Philip M; Taylor, John J
2016-01-01
Gingival fibroblast-mediated extracellular matrix remodelling is implicated in the pathogenesis of periodontitis, yet the stimuli that regulate this response are not fully understood. The immunoregulatory adipokine leptin is detectable in the gingiva, human gingival fibroblasts express functional leptin receptor mRNA and leptin is known to regulate extracellular matrix remodelling responses in cardiac fibroblasts. We therefore hypothesised that leptin would enhance matrix metalloproteinase secretion in human gingival fibroblasts. We used in vitro cell culture to investigate leptin signalling and the effect of leptin on mRNA and protein expression in human gingival fibroblasts. We confirmed human gingival fibroblasts expressed cell surface leptin receptor, found leptin increased matrix metalloproteinase-1, -3, -8 and -14 expression in human gingival fibroblasts compared to unstimulated cells, and observed that leptin stimulation activated MAPK, STAT1/3 and Akt signalling in human gingival fibroblasts. Furthermore, leptin synergised with IL-1 or the TLR2 agonist pam2CSK4 to markedly enhance matrix metalloproteinase-1 and -3 production by human gingival fibroblasts. Signalling pathway inhibition demonstrated ERK was required for leptin-stimulated matrix metalloproteinase-1 expression in human gingival fibroblasts; whilst ERK, JNK, p38 and STAT3 were required for leptin+IL-1- and leptin+pam2CSK4-induced matrix metalloproteinase-1 expression. A genome-wide expression array and gene ontology analysis confirmed genes differentially expressed in leptin+IL-1-stimulated human gingival fibroblasts (compared to unstimulated cells) were enriched for extracellular matrix organisation and disassembly, and revealed that matrix metalloproteinase-8 and -12 were also synergistically upregulated by leptin+IL-1 in human gingival fibroblasts. We conclude that leptin selectively enhances the expression and secretion of certain matrix metalloproteinases in human gingival fibroblasts, and suggest that gingival fibroblasts may have an ECM-degrading phenotype during conditions of hyperleptinaemia (e.g., obesity, type 2 diabetes mellitus, exogenous leptin therapy).
Williams, Rachel C.; Skelton, Andrew J.; Todryk, Stephen M.; Rowan, Andrew D.; Preshaw, Philip M.; Taylor, John J.
2016-01-01
Introduction Gingival fibroblast-mediated extracellular matrix remodelling is implicated in the pathogenesis of periodontitis, yet the stimuli that regulate this response are not fully understood. The immunoregulatory adipokine leptin is detectable in the gingiva, human gingival fibroblasts express functional leptin receptor mRNA and leptin is known to regulate extracellular matrix remodelling responses in cardiac fibroblasts. We therefore hypothesised that leptin would enhance matrix metalloproteinase secretion in human gingival fibroblasts. Methods and Results We used in vitro cell culture to investigate leptin signalling and the effect of leptin on mRNA and protein expression in human gingival fibroblasts. We confirmed human gingival fibroblasts expressed cell surface leptin receptor, found leptin increased matrix metalloproteinase-1, -3, -8 and -14 expression in human gingival fibroblasts compared to unstimulated cells, and observed that leptin stimulation activated MAPK, STAT1/3 and Akt signalling in human gingival fibroblasts. Furthermore, leptin synergised with IL-1 or the TLR2 agonist pam2CSK4 to markedly enhance matrix metalloproteinase-1 and -3 production by human gingival fibroblasts. Signalling pathway inhibition demonstrated ERK was required for leptin-stimulated matrix metalloproteinase-1 expression in human gingival fibroblasts; whilst ERK, JNK, p38 and STAT3 were required for leptin+IL-1- and leptin+pam2CSK4-induced matrix metalloproteinase-1 expression. A genome-wide expression array and gene ontology analysis confirmed genes differentially expressed in leptin+IL-1-stimulated human gingival fibroblasts (compared to unstimulated cells) were enriched for extracellular matrix organisation and disassembly, and revealed that matrix metalloproteinase-8 and -12 were also synergistically upregulated by leptin+IL-1 in human gingival fibroblasts. Conclusions We conclude that leptin selectively enhances the expression and secretion of certain matrix metalloproteinases in human gingival fibroblasts, and suggest that gingival fibroblasts may have an ECM-degrading phenotype during conditions of hyperleptinaemia (e.g., obesity, type 2 diabetes mellitus, exogenous leptin therapy). PMID:26829555
BSR: B-spline atomic R-matrix codes
NASA Astrophysics Data System (ADS)
Zatsarinny, Oleg
2006-02-01
BSR is a general program to calculate atomic continuum processes using the B-spline R-matrix method, including electron-atom and electron-ion scattering, and radiative processes such as bound-bound transitions, photoionization and polarizabilities. The calculations can be performed in LS-coupling or in an intermediate-coupling scheme by including terms of the Breit-Pauli Hamiltonian. New version program summaryTitle of program: BSR Catalogue identifier: ADWY Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWY Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computers on which the program has been tested: Microway Beowulf cluster; Compaq Beowulf cluster; DEC Alpha workstation; DELL PC Operating systems under which the new version has been tested: UNIX, Windows XP Programming language used: FORTRAN 95 Memory required to execute with typical data: Typically 256-512 Mwords. Since all the principal dimensions are allocatable, the available memory defines the maximum complexity of the problem No. of bits in a word: 8 No. of processors used: 1 Has the code been vectorized or parallelized?: no No. of lines in distributed program, including test data, etc.: 69 943 No. of bytes in distributed program, including test data, etc.: 746 450 Peripherals used: scratch disk store; permanent disk store Distribution format: tar.gz Nature of physical problem: This program uses the R-matrix method to calculate electron-atom and electron-ion collision processes, with options to calculate radiative data, photoionization, etc. The calculations can be performed in LS-coupling or in an intermediate-coupling scheme, with options to include Breit-Pauli terms in the Hamiltonian. Method of solution: The R-matrix method is used [P.G. Burke, K.A. Berrington, Atomic and Molecular Processes: An R-Matrix Approach, IOP Publishing, Bristol, 1993; P.G. Burke, W.D. Robb, Adv. At. Mol. Phys. 11 (1975) 143; K.A. Berrington, W.B. Eissner, P.H. Norrington, Comput. Phys. Comm. 92 (1995) 290].
Random Matrix Theory and Econophysics
NASA Astrophysics Data System (ADS)
Rosenow, Bernd
2000-03-01
Random Matrix Theory (RMT) [1] is used in many branches of physics as a ``zero information hypothesis''. It describes generic behavior of different classes of systems, while deviations from its universal predictions allow to identify system specific properties. We use methods of RMT to analyze the cross-correlation matrix C of stock price changes [2] of the largest 1000 US companies. In addition to its scientific interest, the study of correlations between the returns of different stocks is also of practical relevance in quantifying the risk of a given stock portfolio. We find [3,4] that the statistics of most of the eigenvalues of the spectrum of C agree with the predictions of RMT, while there are deviations for some of the largest eigenvalues. We interpret these deviations as a system specific property, e.g. containing genuine information about correlations in the stock market. We demonstrate that C shares universal properties with the Gaussian orthogonal ensemble of random matrices. Furthermore, we analyze the eigenvectors of C through their inverse participation ratio and find eigenvectors with large ratios at both edges of the eigenvalue spectrum - a situation reminiscent of localization theory results. This work was done in collaboration with V. Plerou, P. Gopikrishnan, T. Guhr, L.A.N. Amaral, and H.E Stanley and is related to recent work of Laloux et al.. 1. T. Guhr, A. Müller Groeling, and H.A. Weidenmüller, ``Random Matrix Theories in Quantum Physics: Common Concepts'', Phys. Rep. 299, 190 (1998). 2. See, e.g. R.N. Mantegna and H.E. Stanley, Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, England, 1999). 3. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series'', Phys. Rev. Lett. 83, 1471 (1999). 4. V. Plerou, P. Gopikrishnan, T. Guhr, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Random Matrix Theory Analysis of Diffusion in Stock Price Dynamics, preprint
Higashikawa, Fábio S; Cayuela, Maria Luz; Roig, Asunción; Silva, Carlos A; Sánchez-Monedero, Miguel A
2013-11-01
Solid phase microextraction (SPME) is a fast, cheap and solvent free methodology widely used for environmental analysis. A SPME methodology has been optimized for the analysis of VOCs in a range of matrices covering different soils of varying textures, organic matrices from manures and composts from different origins, and biochars. The performance of the technique was compared for the different matrices spiked with a multicomponent VOC mixture, selected to cover different VOC groups of environmental relevance (ketone, terpene, alcohol, aliphatic hydrocarbons and alkylbenzenes). VOC recovery was dependent on the nature itself of the VOC and the matrix characteristics. The SPME analysis of non-polar compounds, such as alkylbenzenes, terpenes and aliphatic hydrocarbons, was markedly affected by the type of matrix as a consequence of the competition for the adsorption sites in the SPME fiber. These non-polar compounds were strongly retained in the biochar surfaces limiting the use of SPME for this type of matrices. However, this adsorption capacity was not evident when biochar had undergone a weathering/aging process through composting. Polar compounds (alcohol and ketone) showed a similar behavior in all matrices, as a consequence of the hydrophilic characteristics, affected by water content in the matrix. SPME showed a good performance for soils and organic matrices especially for non-polar compounds, achieving a limit of detection (LD) and limit of quantification (LQ) of 0.02 and 0.03 ng g(-1) for non-polar compounds and poor extraction for more hydrophilic and polar compounds (LD and LQ higher 310 and 490 ng g(-1)). The characteristics of the matrix, especially pH and organic matter, had a marked impact on SPME, due to the competition of the analytes for active sites in the fiber, but VOC biodegradation should not be discarded in matrices with active microbial biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.
van der Heijden, R T; Heijnen, J J; Hellinga, C; Romein, B; Luyben, K C
1994-01-05
Measurements provide the basis for process monitoring and control as well as for model development and validation. Systematic approaches to increase the accuracy and credibility of the empirical data set are therefore of great value. In (bio)chemical conversions, linear conservation relations such as the balance equations for charge, enthalpy, and/or chemical elements, can be employed to relate conversion rates. In a pactical situation, some of these rates will be measured (in effect, be calculated directly from primary measurements of, e.g., concentrations and flow rates), as others can or cannot be calculated from the measured ones. When certain measured rates can also be calculated from other measured rates, the set of equations, the accuracy and credibility of the measured rates can indeed be improved by, respectively, balancing and gross error diagnosis. The balanced conversion rates are more accurate, and form a consistent set of data, which is more suitable for further application (e.g., to calculate nonmeasured rates) than the raw measurements. Such an approach has drawn attention in previous studies. The current study deals mainly with the problem of mathematically classifying the conversion rates into balanceable and calculable rates, given the subset of measured rates. The significance of this problem is illustrated with some examples. It is shown that a simple matrix equation can be derived that contains the vector of measured conversion rates and the redundancy matrix R. Matrix R plays a predominant role in the classification problem. In supplementary articles, significance of the redundancy matrix R for an improved gross error diagnosis approach will be shown. In addition, efficient equations have been derived to calculate the balanceable and/or calculable rates. The method is completely based on matrix algebra (principally different from the graph-theoretical approach), and it is easily implemented into a computer program. (c) 1994 John Wiley & Sons, Inc.
Chavda, H.V.; Patel, M.S.; Patel, C.N.
2012-01-01
The objective of the present study was to design an oral controlled drug delivery system for sparingly soluble diclofenac sodium (DCL) using guar gum as triple-layer matrix tablets. Matrix tablet granules containing 30% (D1), 40% (D2) or 50% (D3) of guar gum were prepared by the conventional wet granulation technique. Matrix tablets of diclofenac sodium were prepared by compressing three layers one by one. Centre layer of sandwich like structure was incorporated with matrix granules containing DCL which was covered on either side by guar gum granule layers containing either 70, 80 or 87% of guar gum as release retardant layers. The tablets were evaluated for hardness, thickness, drug content, and drug release studies. To ascertain the kinetics of drug release, the dissolution profiles were fitted to various mathematical models. The in vitro drug release from proposed system was best explained by the Hopfenberg model indicating that the release of drug from tablets displayed heterogeneous erosion. D3G3, containing 87% of guar gum in guar gum layers and 50% of guar gum in DCL matrix granule layer was found to provide the release rate for prolonged period of time. The results clearly indicate that guar gum could be a potential hydrophilic carrier in the development of oral controlled drug delivery systems. PMID:23181081
Monaghan, Michael; Browne, Shane; Schenke-Layland, Katja; Pandit, Abhay
2014-04-01
Directing appropriate extracellular matrix remodeling is a key aim of regenerative medicine strategies. Thus, antifibrotic interfering RNA (RNAi) therapy with exogenous microRNA (miR)-29B was proposed as a method to modulate extracellular matrix remodeling following cutaneous injury. It was hypothesized that delivery of miR-29B from a collagen scaffold will efficiently modulate the extracellular matrix remodeling response and reduce maladaptive remodeling such as aggressive deposition of collagen type I after injury. The release of RNA from the scaffold was assessed and its ability to silence collagen type I and collagen type III expression was evaluated in vitro. When primary fibroblasts were cultured with scaffolds doped with miR-29B, reduced levels of collagen type I and collagen type III mRNA expression were observed for up to 2 weeks of culture. When the scaffolds were applied to full thickness wounds in vivo, reduced wound contraction, improved collagen type III/I ratios and a significantly higher matrix metalloproteinase (MMP)-8: tissue inhibitor of metalloproteinase (TIMP)-1 ratio were detected when the scaffolds were functionalized with miR-29B. Furthermore, these effects were significantly influenced by the dose of miR-29B in the collagen scaffold (0.5 versus 5 μg). This study shows a potential of combining exogenous miRs with collagen scaffolds to improve extracellular matrix remodeling following injury.
Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2011-01-01
A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Specification of matrix cleanup goals in fractured porous media.
Rodríguez, David J; Kueper, Bernard H
2013-01-01
Semianalytical transient solutions have been developed to evaluate what level of fractured porous media (e.g., bedrock or clay) matrix cleanup must be achieved in order to achieve compliance of fracture pore water concentrations within a specified time at specified locations of interest. The developed mathematical solutions account for forward and backward diffusion in a fractured porous medium where the initial condition comprises a spatially uniform, nonzero matrix concentration throughout the domain. Illustrative simulations incorporating the properties of mudstone fractured bedrock demonstrate that the time required to reach a desired fracture pore water concentration is a function of the distance between the point of compliance and the upgradient face of the domain where clean groundwater is inflowing. Shorter distances correspond to reduced times required to reach compliance, implying that shorter treatment zones will respond more favorably to remediation than longer treatment zones in which back-diffusion dominates the fracture pore water response. For a specified matrix cleanup goal, compliance of fracture pore water concentrations will be reached sooner for decreased fracture spacing, increased fracture aperture, higher matrix fraction organic carbon, lower matrix porosity, shorter aqueous phase decay half-life, and a higher hydraulic gradient. The parameters dominating the response of the system can be measured using standard field and laboratory techniques. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.
Jaeger, Sébastien; Thieffry, Denis
2017-01-01
Abstract Transcription factor (TF) databases contain multitudes of binding motifs (TFBMs) from various sources, from which non-redundant collections are derived by manual curation. The advent of high-throughput methods stimulated the production of novel collections with increasing numbers of motifs. Meta-databases, built by merging these collections, contain redundant versions, because available tools are not suited to automatically identify and explore biologically relevant clusters among thousands of motifs. Motif discovery from genome-scale data sets (e.g. ChIP-seq) also produces redundant motifs, hampering the interpretation of results. We present matrix-clustering, a versatile tool that clusters similar TFBMs into multiple trees, and automatically creates non-redundant TFBM collections. A feature unique to matrix-clustering is its dynamic visualisation of aligned TFBMs, and its capability to simultaneously treat multiple collections from various sources. We demonstrate that matrix-clustering considerably simplifies the interpretation of combined results from multiple motif discovery tools, and highlights biologically relevant variations of similar motifs. We also ran a large-scale application to cluster ∼11 000 motifs from 24 entire databases, showing that matrix-clustering correctly groups motifs belonging to the same TF families, and drastically reduced motif redundancy. matrix-clustering is integrated within the RSAT suite (http://rsat.eu/), accessible through a user-friendly web interface or command-line for its integration in pipelines. PMID:28591841
Probabilistic Simulation for Combined Cycle Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Applications of Black Scholes Complexity Concepts to Combat Modelling
2009-03-01
Lauren, G C McIntosh, N D Perry and J Moffat, Chaos 17, 2007. 4 Lanchester Models of Warfare Volumes 1 and 2, J G Taylor, Operations Research Society...transformation matrix A Lanchester Equation solution parameter bi Dependent model variables b(x,t) Variable variance rate B Lanchester Equation solution...distribution. The similarity between this equation and the Lanchester Equations (equation 1) is clear. This suggests an obvious solution to the question of
Design of Ultra-High Temperature Ceramics for Improved Performance
2009-02-28
e.g., grain boundary chemistry or change in impurity concentrations) or physical (e.g., residual stress) effects. 600 co 500 a. oi400 c CD i...SA037 Effects of oxygen content on the properties of supcr-high-teiiiperature resistant Si-AI- C fibers D.f. Zhao (National University of Defense...of Technology, China) 15:05 S A034 Oxyacetylene ablation behavior of carbon fibers reinforced carbon matrix and ultra-high temperature
Extension of modified power method to two-dimensional problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Peng; Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919; Lee, Hyunsuk
2016-09-01
In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. Themore » stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem. - Graphical abstract:.« less
Method of making metal matrix composites reinforced with ceramic particulates
Cornie, James A.; Kattamis, Theodoulos; Chambers, Brent V.; Bond, Bruce E.; Varela, Raul H.
1989-01-01
Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys.
Using a multifrontal sparse solver in a high performance, finite element code
NASA Technical Reports Server (NTRS)
King, Scott D.; Lucas, Robert; Raefsky, Arthur
1990-01-01
We consider the performance of the finite element method on a vector supercomputer. The computationally intensive parts of the finite element method are typically the individual element forms and the solution of the global stiffness matrix both of which are vectorized in high performance codes. To further increase throughput, new algorithms are needed. We compare a multifrontal sparse solver to a traditional skyline solver in a finite element code on a vector supercomputer. The multifrontal solver uses the Multiple-Minimum Degree reordering heuristic to reduce the number of operations required to factor a sparse matrix and full matrix computational kernels (e.g., BLAS3) to enhance vector performance. The net result in an order-of-magnitude reduction in run time for a finite element application on one processor of a Cray X-MP.
Method of making metal matrix composites reinforced with ceramic particulates
Cornie, J.A.; Kattamis, T.; Chambers, B.V.; Bond, B.E.; Varela, R.H.
1989-08-01
Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys. 2 figs.
Bioplastic composite foam prepared from poly(lactic acid) and natural wood flour
NASA Astrophysics Data System (ADS)
Suwannakas, Pokkes; Petrchwattana, Nawadon; Covavisaruch, Sirijutaratana
2016-03-01
The major drawbacks of Poly(lactic acid) (PLA) bioplastic are its cost and brittleness. This study aims to reduce the cost by foaming PLA reinforced with wood flour. A series of PLA/ natural fiber (WF) composite was prepared by using WF of selected conifers up to 5 wt%; each composite formulation was then foamed using 2 wt% of Azodicarbonamide (ADC) as chemical foaming agent. ADC effectively reduced the density of PLA and the PLA/WF composite foam by about 45% to 0.64 g/cm3 from 1.24 g/cm3 of neat PLA and 1.26 g/cm3 of PLA/WF composites when 2 wt% ADC was applied. Mechanical behaviors in terms of compressive and impact properties were investigated. With the presence of WF, the compressive stress increased with the WF content due to the good interfacial adhesion between the PLA matrix and the WF. This was verified by microscopic observation, leading to efficient stress transfer at the interface between PLA matrix and the WF. The presence of WF raised the specific compressive modulus and strength of PLA/WF composites to around 0.94 GPa.cm3/g and 2.65 MPa.cm3/g but foaming the PLA or the PLA/WF composites led to a dramatic reduction of the compressive modulus to 0.2-0.4 GPa.cm3/g, implying that the PLA and the PLA/WF foams had become softened. This was evidently observed in the significant reduction of hardness coupled with the vast drop of stress required to compressively deform the foams.
NASA Astrophysics Data System (ADS)
Sajnóg, Adam; Hanć, Anetta; Makuch, Krzysztof; Koczorowski, Ryszard; Barałkiewicz, Danuta
2016-11-01
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for in-situ quantitative analysis of oral mucosa of patients before and after implantation with titanium implants and a closing screw based on Ti6Al4V alloy. Two calibration strategies were applied, both were based on matrix matched solid standards with analytes addition. A novel approach was the application of powdered egg white proteins as a matrix material which have a similar composition to the examined tissue. In the another approach, certified reference material Bovine Muscle ERM-BB184 was used. The isotope 34S was found to be the most appropriate as an internal standard since it is homogenously distributed in the examined tissues and resulted in lower relative standard deviation values of signal of analytes of interest. Other isotopes (13C, 26Mg, 43Ca) were also evaluated as potential internal standards. The analytical performance parameters and microwave digestion of solid standards followed by solution nebulization ICP-MS analysis proved that both calibration methods are fit for their intended purpose. The LA-ICP-MS analysis on the surface of tissues after the implantation process revealed an elevated content of elements in comparison to the control group. Analytes are distributed inhomogeneously and display local maximal content of Ti up to ca. 900 μg g- 1, Al up to ca. 760 μg g- 1 and for V up to 160 μg g- 1.
Gutiérrez Valencia, Tania M; García de Llasera, Martha P
2011-09-28
A miniaturized method based on matrix solid-phase dispersion coupled to solid phase extraction and high performance liquid chromatography with diode array detection (MSPD-SPE-HPLC/DAD) was developed for the trace simultaneous determination of the following organophosphorus pesticides (OPPs) in bovine tissue: parathion-methyl, fenitrothion, parathion, chlorfenvinphos, diazinon, ethion, fenchlorphos, chlorpyrifos and carbophenothion. To perform the coupling between MSPD and SPE, 0.05 g of sample was dispersed with 0.2 g of C(18) silica sorbent and packed into a stainless steel cartridge containing 0.05 g of silica gel in the bottom. After a clean-up of high and medium polarity interferences with water and an acetonitrile:water mixture, the OPPs were desorbed from the MSPD cartridge with pure acetonitrile and directly transferred to a dynamic mixing chamber for dilution with water and preconcentration into an SPE 20 mm × 2.0 mm I.D. C(18) silica column. Subsequently, the OPPs were eluted on-line with the chromatographic mobile phase to the analytical column and the diode array detector for their separation and detection, respectively. The method was validated and yielded recovery values between 91% and 101% and precision values, expressed as relative standard deviations (RSD), which were less than or equal to 12%. Linearity was good and ranged from 0.5 to 10 μg g(-1), and the limits of detection of the OPPs were in the range of 0.04-0.25 μg g(-1). The method was satisfactorily applied to the analysis of real samples and is recommended for food control, research efforts when sample amounts are limited, and laboratories that have ordinary chromatographic instrumentation. Copyright © 2011 Elsevier B.V. All rights reserved.
Corrêa, M G; Gomes Campos, M L; Marques, M R; Ambrosano, G M B; Casati, M Z; Nociti, F H; Sallum, E A
2016-02-01
Alcohol intake may interfere with bone metabolism; however, there is a lack of information about the outcomes of regenerative approaches in the presence of alcohol intake. Enamel matrix derivative (EMD) has been used in periodontal regenerative procedures resulting in improvement of clinical parameters. Thus, the aim of this histomorphometric study is to evaluate the healing of periodontal defects after treatment with EMD under the influence of alcohol intake. Twenty Wistar rats were randomly assigned to two groups: G1 = alcohol intake (n = 10) and G2 = non-exposed to alcohol intake (n = 10). Thirty days after initiation of alcohol intake, fenestration defects were created at the buccal aspect of the first mandibular molar of all animals from both groups. After the surgeries, the defects of each animal were randomly assigned to two subgroups: non-treated control and treated with EMD. The animals were killed 21 d later. G1 showed less defect fill for non-treated controls. Bone density (BD) and new cementum formation were lower for G1 when compared to G2, for EMD-treated and non-treated sites. EMD treatment resulted in greater BD and new cementum formation in both groups and defect fill was not significantly different between groups in the EMD-treated sites. The number of tartrate-resistant acid phosphatase-positive osteoclasts was significantly higher in G1 when compared to G2 and in EMD-treated sites of both groups. Alcohol intake may produce a significant detrimental effect on BD and new cementum formation, even in sites treated with EMD. A limited positive effect may be expected after EMD treatment under this condition. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kowalewska, Zofia; Ruszczyńska, Anna; Bulska, Ewa
2005-03-01
Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system, (ii) mineralization in a closed microwave system, (iii) combustion in hydrogen-oxygen flame in the Wickbold's apparatus, (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g - 1 in procedures i-v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g - 1 in procedures i-iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50-110 ng g - 1 in crude oil, < 0.4-6 ng g - 1 in gasoline, < 0.5-2 ng g - 1 in atmospheric oil, < 6-100 ng g - 1 in heavy vacuum oil and 140-300 ng g - 1 in distillation residue.
Bhusal, Prabhat; Sharma, Manisha; Harrison, Jeff; Procter, Georgina; Andrews, Gavin; Jones, David S; Hill, Andrew G; Svirskis, Darren
2017-09-01
An efficient and cost-effective quantification procedure for lidocaine by HPLC has been developed to estimate lidocaine from an EVA matrix, plasma, peritoneal fluid and intra-articular fluid (IAF). This method guarantees the resolution of lidocaine from the degradation products obtained from alkaline and oxidative stress. Chromatographic separation of lidocaine was achieved with a retention time of 7 min using a C18 column with a mobile phase comprising acetonitrile and potassium dihydrogen phosphate buffer (pH 5.5; 0.02 M) in the ratio of 26:74 at a flow rate of 1 mL min-1 with detection at 230 nm. Instability of lidocaine was observed to an oxidizing (0.02% H2O2) and alkaline environments (0.1 M NaOH). The calibration curve was found to be linear within the concentration range of 0.40-50.0 μg/mL. Intra-day and inter-day accuracy ranged between 95.9% and 99.1%, with precision (% RSD) below 6.70%. The limit of quantification and limit of detection were 0.40 μg/mL and 0.025 μg/mL, respectively. The simple extraction method described enabled the quantification of lidocaine from an EVA matrix using dichloromethane as a solvent. The assay and content uniformity of lidocaine within an EVA matrix were 103 ± 3.60% and 100 ± 2.60%, respectively. The ability of this method to quantify lidocaine release from EVA films was also demonstrated. Extraction of lidocaine from plasma, peritoneal fluid and IAF followed by HPLC analysis confirmed the utility of this method for ex vivo and in vivo studies where the calibration plot was found to be linear from 1.60 to 50.0 μg/mL. © Crown copyright 2017.
Association of matrix metalloproteinase-7 (-181A/G) promoter polymorphism in chronic pancreatitis.
Manjari, K Sri; Jyothy, A; Kumar, P Shravan; Prabhakar, B; Nallari, Pratibha; Venkateshwari, A
2014-11-01
Chronic pancreatitis is progressive and irreversible destruction of the pancreas. Matrix metalloproteinase-7 (MMP-7) is a secreted matrilysin, which contributes to angiogenesis and breakdown of basement membranes of pancreatic tissues. The present study was aimed to investigate the association of MMP-7 -181A/G (rs11568818) gene promoter polymorphism in patients with chronic pancreatitis. A total of 100 chronic pancreatitis patients and 150 unrelated healthy individuals were included in this case control study. The genotyping of the MMP-7 gene (- 181 A/G) (rs11568818) was carried out based on PCR-RFLP. The serum levels of MMP-7 were determined by ELISA. Association between genotypes and chronic pancreatitis was examined by odds ratio (OR) with 95% confidence interval (CI). The frequencies of the genotypes in promoter of MMP-7 were AA 49 per cent, AG 25 per cent and GG 26 per cent in chronic pancreatitis patients and AA 53 per cent, AG 38 per cent and GG 9 per cent in control subjects. Frequency of MMP-7 -181GG genotype and - 181G allele was significantly associated with chronic pancreatitis compared to healthy subjects [OR = 1.58 (95% CI: 1.06 -2.36), p =0.019]. There was no significant difference in the serum MMP-7 levels in the patients compared to control subjects. The present study revealed a significant association of MMP-7 -181A/G (rs11568818) GG genotype with chronic pancreatitis patients, indicating its possible association with the disease.
Antibacterial and wound healing analysis of gelatin/zeolite scaffolds.
Ninan, Neethu; Muthiah, Muthunarayanan; Bt Yahaya, Nur Aliza; Park, In-Kyu; Elain, Anne; Wong, Tin Wui; Thomas, Sabu; Grohens, Yves
2014-03-01
In this article, gelatin/copper activated faujasites (CAF) composite scaffolds were fabricated by lyophilisation technique for promoting partial thickness wound healing. The optimised scaffold with 0.5% (w/w) of CAF, G (0.5%), demonstrated pore size in the range of 10-350 μm. Agar disc diffusion tests verified the antibacterial role of G (0.5%) and further supported that bacterial lysis was due to copper released from the core of CAF embedded in the gelatin matrix. The change in morphology of bacteria as a function of CAF content in gelatin scaffold was studied using SEM analysis. The confocal images revealed the increase in mortality rate of bacteria with increase in concentration of incorporated CAF in gelatin matrix. Proficient oxygen supply to needy cells is a continuing hurdle faced by tissue engineering scaffolds. The dissolved oxygen measurements revealed that CAF embedded in the scaffold were capable of increasing oxygen supply and thereby promote cell proliferation. Also, G (0.5%) exhibited highest cell viability on NIH 3T3 fibroblast cells which was mainly attributed to the highly porous architecture and its ability to enhance oxygen supply to cells. In vivo studies conducted on Sprague Dawley rats revealed the ability of G (0.5%) to promote skin regeneration in 20 days. Thus, the obtained data suggest that G (0.5%) is an ideal candidate for wound healing applications. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Nuclear transition matrix elements for neutrinoless double-β decay of 76Ge and 82Se isotopes
NASA Astrophysics Data System (ADS)
Rath, P. K.
2017-10-01
Within mechanisms involving light and heavy Majorana neutrinos, the nuclear transition matrix elements (NTMEs) for the neutrinoless double-β decay of 76Ge and 82Se isotopes are calculated. Uncertainties in the average NTMEs M¯ (0 v ) and M¯ (0 N ) due to the exchange of light and heavy Majorana neutrinos, respectively, turn out to be about 10% and 37%, respectively. Limits on the effective mass of light Majorana neutrino
NASA Astrophysics Data System (ADS)
Li, Fanqun; Qin, Furong; Zhang, Kai; Fang, Jing; Lai, Yanqing; Li, Jie
2017-09-01
Facile and sustainable route is developed to convert biomass into hierarchically porous carbon matrix cooperating with highly conductive graphene. By tailoring the porosity of the carbon matrix to promote fast mass transfer and cooperating highly conductive interconnected graphene frameworks to accelerate the electron transport, the carbon sulfur cathodes simultaneously achieve high areal and gravimetric sulfur loading/content (6 mg cm-2/67 wt%) and deliver outstanding electrochemical performance. After 100 cyclic discharge-charge test at the current density of 0.2 C, the reversible capacity maintains at 707 mA h g-1.
Pressure Vessel with Impact and Fire Resistant Coating and Method of Making Same
NASA Technical Reports Server (NTRS)
DeLay, Thomas K. (Inventor)
2005-01-01
An impact and fire resistant coating laminate is provided which serves as an outer protective coating for a pressure vessel such as a composite overwrapped vessel with a metal lining. The laminate comprises a plurality of fibers (e.g., jute twine or other, stronger fibers) which are wound around the pressure vessel and an epoxy matrix resin for the fibers. The epoxy matrix resin including a plurality of microspheres containing a temperature responsive phase change material which changes phase in response to exposure thereof to a predetermined temperature increase so as to afford increased insulation and hear absorption.
Pressure vessel with impact and fire resistant coating and method of making same
NASA Technical Reports Server (NTRS)
DeLay, Thomas K. (Inventor)
2005-01-01
An impact and fire resistant coating laminate is provided which serves as an outer protective coating for a pressure vessel such as a composite overwrapped vessel with a metal lining. The laminate comprises a plurality of fibers (e.g., jute twine or other, stronger fibers) which are wound around the pressure vessel and an epoxy matrix resin for the fibers. The epoxy matrix resin including a plurality of microspheres containing a temperature responsive phase change material which changes phase in response to exposure thereof to a predetermined temperature increase so as to afford increased insulation and heat absorption.
Optimizing dentin bond durability: strategies to prevent hydrolytic degradation of the hybrid layer
Tjäderhane, Leo; Nascimento, Fabio D.; Breschi, Lorenzo; Mazzoni, Annalisa; Tersariol, Ivarne L.S.; Geraldeli, Saulo; Tezvergil-Mutluay, Arzu; Carrilho, Marcela; Carvalho, Ricardo M.; Tay, Franklin R.; Pashley, David H.
2014-01-01
Objectives Endogenous dentin collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, are responsible for the time-related hydrolysis of collagen matrix of the hybrid layers. As the integrity of the collagen matrix is essential for the preservation of long-term dentin bond strength, inhibition or inactivation of endogenous dentin proteases is necessary for durable resin-bonded composite resin restorations. Methods Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. Several tentative approaches to prevent enzyme function either directly or indirectly have been proposed in the literature. Results Chlorhexidine, a general inhibitor of both MMPs and cysteine cathepsins, applied before primer/adhesive application is the most tested method. In general, these experiments have shown that enzyme inhibition is a promising scheme to improve hybrid layer preservation and bond strength durability. Other enzyme inhibitors, e.g. enzyme-inhibiting monomers and antimicrobial compounds, may be considered promising alternatives that would allow more simple clinical application than chlorhexidine. Cross-linking collagen and/or dentin organic matrix-bound enzymes could render hybrid layer organic matrix resistant to degradation, and complete removal of water from the hybrid layer with ethanol wet bonding or biomimetic remineralization should eliminate hydrolysis of both collagen and resin components. Significance Identification of the enzymes responsible for the hydrolysis of hybrid layer collagen and understanding their function has prompted several innovative approaches to retain the hybrid layer integrity and strong dentin bonding. The ultimate goal, prevention of collagen matrix degradation with techniques and commercially available materials that are simple and effective in clinical settings may be achievable in several ways, and will likely become reality in the near future. PMID:23953737
Shen, Qing; Yang, Mei; Li, Linqiu; Cheung, Hon-Yeung
2014-12-10
Phospholipids possess important physiological, structural and nutritional functions in biological systems. This study described a solid-phase extraction (SPE) method, employing graphene and titanium dioxide (G/TiO2) nanocomposite as sorbent, for the selective isolation and enrichment of phospholipids from avocado (Persea americana Mill.). Based on the principal that the phosphoryl group in the phospholipid can interact with TiO2 via a bridging bidentate mode, an optimum condition was established for SPE, and was successfully applied to prepare avocado samples. The extracts were monitored by matrix-assisted laser desorption ionization time-of-flight/tandem mass spectrometry (MALDI-TOF/MS) in both positive-ion and negative-ion modes. Results showed that phospholipids could be efficiently extracted in a clean manner by G/TiO2 based SPE. In addition, the signals of phospholipids were enhanced while the noise was reduced. Some minor peaks became more obvious. In conclusion, the nanocomposite material of G/TiO2 was proved to be a promising sorbent for selective separation of phospholipids from crude lipid extract. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Lee, Dae Young; Choi, Soo-Im; Han, Se Hee; Lee, Ye-Joo; Choi, Jong-Gil; Lee, Young-Seob; Choi, Je Hun; Lee, Seung-Eun; Kim, Geum-Soog
2016-08-18
Pseudoshikonin I, the new bioactive constituent of Lithospermi radix, was isolated from this methanol extract by employing reverse-phase medium-pressure liquid chromatography (MPLC) using acetonitrile/water solvent system as eluents. The chemical structure was determined based on spectroscopic techniques, including 1D NMR (¹H, (13)C, DEPT), 2D NMR (gCOSY, gHMBC, gHMQC), and QTOF/MS data. In this study, we demonstrated the effect of pseudoshikonin I on matrix-metalloproteinase (MMPs) activation and expression in interleukin (IL)-1β-induced SW1353 chondrosarcoma cells. MMPs are considered important for the maintenance of the extracellular matrix. Following treatment with PS, active MMP-1, -2, -3, -9, -13 and TIMP-2 were quantified in the SW1353 cell culture supernatants using a commercially available ELISA kit. The mRNA expression of MMPs in SW1353 cells was measured by RT-PCR. Pseudoshikonin I treatment effectively protected the activation on all tested MMPs in a dose-dependent manner. TIMP-2 mRNA expression was significantly upregulated by pseudoshikonin I treatment. Overall, we elucidated the inhibitory effect of pseudoshikonin on MMPs, and we suggest its use as a potential novel anti-osteoarthritis agent.
SAS molecular tests Salmonella detection kit. Performance tested method 021202.
Bapanpally, Chandra; Montier, Laura; Khan, Shah; Kasra, Akif; Brunelle, Sharon L
2014-01-01
The SAS Molecular tests Salmonella Detection method, a Loop-mediated Isothermal Amplification method, performed as well as or better than the U.S. Department of Agriculture-Food Safety Inspection Service Microbiology Laboratory Guidebook and the U.S. Food and Drug Administration Bacteriological Analytical Manual reference methods for ground beef, beef trim, ground turkey, chicken carcass rinses, bagged mixed lettuce, and fresh spinach. The ground beef (30% fat, 25 g test portion), poultry matrixes and leafy greens were validated in a 6-7 h enrichment, and ground beef (30% fat, 375 g composite test portion) and beef trim (375 g composite test portion) were validated in a 16-20 h enrichment. The method performance for meat and leafy green matrixes was shown to be acceptable under conditions of co-enrichment with Escherichia coli 0157. Thus, after a short 6-7 h co-enrichment step, ground beef, beef trim, lettuce, and spinach can be tested for both Salmonella and E. coli O157. Inclusivity and exclusivity testing revealed no false negatives and no false positives among the 100 Salmonella serovars and 30 non-Salmonella species examined. The method was shown to be robust when enrichment time, DNA extract hold time, and DNA volume were varied.
de Carvalho, Pedro Henrique Viana; Prata, Vanessa de Menezes; Alves, Péricles Barreto; Navickiene, Sandro
2009-01-01
A simple and effective extraction method based on matrix solid-phase dispersion was developed for acephate, chlorpropham, pyrimicarb, bifenthrin, tetradifon, and phosalone in leaves of the medicinal plant Cordia salicifolia, whose extracts are commercialized in Brazil as diuretic, appetite suppressant, and weight loss products. The determination method was GC/MS with selected-ion monitoring. Different parameters of the method were evaluated, such as type of solid phase (C18, alumina, silica gel, and Florisil) and the amount of solid phase and eluent (dichloromethane, ethyl acetate, chloroform, and cyclohexane). The best results were obtained using 0.5 g herb sample, 0.5 g neutral alumina as the dispersant sorbent, 0.5 g C18 as the cleanup sorbent, and cyclohexane-dichloromethane (3 + 1, v/v) as the eluting solvent. The method was validated using herb samples fortified with pesticides at different concentration levels (0.3, 0.5, and 1.0 mg/kg). Average recoveries (seven replicates) ranged from 67.7 to 129.9%, with relative standard deviations between 6.3 and 26%. Detection and quantitation limits for the herb ranged from 0.10 to 0.15 and 0.15 to 0.25 mg/kg, respectively.
Stabilization of pH in solid-matrix hydroponic systems
NASA Technical Reports Server (NTRS)
Frick, J.; Mitchell, C. A.
1993-01-01
2-[N-morpholino]ethanesulfonic acid (MES) buffer or Amberlite DP-1 (cation-exchange resin beads) were used to stabilize substrate pH of passive-wicking, solid-matrix hydroponic systems in which small canopies of Brassica napus L. (CrGC 5-2, genome : ACaacc) were grown to maturity. Two concentrations of MES (5 or 10 mM) were included in Hoagland 1 nutrient solution. Alternatively, resin beads were incorporated into the 2 vermiculite : 1 perlite (v/v) growth medium at 6% or 12% of total substrate volume. Both strategies stabilized pH without toxic side effects on plants. Average seed yield rates for all four pH stabilization treatments (13.3 to 16.9 g m-2 day-1) were about double that of the control (8.2 g m-2 day-1), for which there was no attempt to buffer substrate pH. Both the highest canopy seed yield rate (16.9 g m-2 day-1) and the highest shoot harvest index (19.5%) occurred with the 6% resin bead treatment, even though the 10 mM MES and 12% bead treatments maintained pH within the narrowest limits. The pH stabilization methods tested did not significantly affect seed oil and protein contents.
Stattin, Eva-Lena; Wiklund, Fredrik; Lindblom, Karin; Önnerfjord, Patrik; Jonsson, Björn-Anders; Tegner, Yelverton; Sasaki, Takako; Struglics, André; Lohmander, Stefan; Dahl, Niklas; Heinegård, Dick; Aspberg, Anders
2010-01-01
Osteochondritis dissecans is a disorder in which fragments of articular cartilage and subchondral bone dislodge from the joint surface. We analyzed a five-generation family in which affected members had autosomal-dominant familial osteochondritis dissecans. A genome-wide linkage analysis identified aggrecan (ACAN) as a prime candidate gene for the disorder. Sequence analysis of ACAN revealed heterozygosity for a missense mutation (c.6907G > A) in affected individuals, resulting in a p.V2303M amino acid substitution in the aggrecan G3 domain C-type lectin, which mediates interactions with other proteins in the cartilage extracellular matrix. Binding studies with recombinant mutated and wild-type G3 proteins showed loss of fibulin-1, fibulin-2, and tenascin-R interactions for the V2303M protein. Mass spectrometric analyses of aggrecan purified from patient cartilage verified that V2303M aggrecan is produced and present in the tissue. Our results provide a molecular mechanism for the etiology of familial osteochondritis dissecans and show the importance of the aggrecan C-type lectin interactions for cartilage function in vivo. PMID:20137779
Evaluation of two fast and easy methods for pesticide residue analysis in fatty food matrixes.
Lehotay, Steven J; Mastovská, Katerina; Yun, Seon Jong
2005-01-01
Two rapid methods of sample preparation and analysis of fatty foods (e.g., milk, eggs, and avocado) were evaluated and compared for 32 pesticide residues representing a wide range of physicochemical properties. One method, dubbed the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method for pesticide residue analysis, entailed extraction of 15 g sample with 15 mL acetonitrile (MeCN) containing 1% acetic acid followed by addition of 6 g anhydrous magnesium sulfate and 1.5 g sodium acetate. After centrifugation, 1 mL of the buffered MeCN extract underwent a cleanup step (in a technique known as dispersive solid-phase extraction) using 50 mg each of C18 and primary secondary amine sorbents plus 150 mg MgSO4. The second method incorporated a form of matrix solid-phase dispersion (MSPD), in which 0.5 g sample plus 2 g C18 and 2 g anhydrous sodium sulfate was mixed in a mortar and pestle and added above a 2 g Florisil column on a vacuum manifold. Then, 5 x 2 mL MeCN was used to elute the pesticide analytes from the sample into a collection tube, and the extract was concentrated to 0.5 mL by evaporation. Extracts in both methods were analyzed concurrently by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. The recoveries of semi-polar and polar pesticides were typically 100% in both methods (except that basic pesticides, such as thiabendazole and imazalil, were not recovered in the MSPD method), but recovery of nonpolar pesticides decreased as fat content of the sample increased. This trend was more pronounced in the QuEChERS method, in which case the most lipophilic analyte tested, hexachlorobenzene, gave 27 +/- 1% recovery (n=6) in avocado (15% fat) with a<10 ng/g limit of quantitation.
Aspects géométriques et intégrables des modèles de matrices aléatoires
NASA Astrophysics Data System (ADS)
Marchal, Olivier
2010-12-01
This thesis deals with the geometric and integrable aspects associated with random matrix models. Its purpose is to provide various applications of random matrix theory, from algebraic geometry to partial differential equations of integrable systems. The variety of these applications shows why matrix models are important from a mathematical point of view. First, the thesis will focus on the study of the merging of two intervals of the eigenvalues density near a singular point. Specifically, we will show why this special limit gives universal equations from the Painlevé II hierarchy of integrable systems theory. Then, following the approach of (bi) orthogonal polynomials introduced by Mehta to compute partition functions, we will find Riemann-Hilbert and isomonodromic problems connected to matrix models, making the link with the theory of Jimbo, Miwa and Ueno. In particular, we will describe how the hermitian two-matrix models provide a degenerate case of Jimbo-Miwa-Ueno's theory that we will generalize in this context. Furthermore, the loop equations method, with its central notions of spectral curve and topological expansion, will lead to the symplectic invariants of algebraic geometry recently proposed by Eynard and Orantin. This last point will be generalized to the case of non-hermitian matrix models (arbitrary beta) paving the way to "quantum algebraic geometry" and to the generalization of symplectic invariants to "quantum curves". Finally, this set up will be applied to combinatorics in the context of topological string theory, with the explicit computation of an hermitian random matrix model enumerating the Gromov-Witten invariants of a toric Calabi-Yau threefold.
NASA Astrophysics Data System (ADS)
Telfeyan, Katherine; Ware, S. Doug; Reimus, Paul W.; Birdsell, Kay H.
2018-02-01
Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.
PRANC: Program for Analyzing Nonlinear Circuits.
1980-05-01
NAMES: so2 9 C ALL VARIlABLE NAMIES AND ARRAYS AS DEFINED IN SUB-PROGRAM *92P s0 204 c * zot. . Gzp 100 C * CZp 110 C****~*******.****.********a...G2P 120 c GZP 130 COMPLEX CHAT(M?.I),E TCS1),X(iS1),EUALS(l) GZP 140 DIMENSION NPORT(.1). EM:AT(M.1) CZP 150 COMMON /ENOS/ NCOP...IvJ) GZP 240 104 CONTINUE- CZP 250 RE -1 URN GEP 260 C, G-P 270 10S FORMAT (1H1,29HOPEN CIRCUIT IMPEDANCE MATRIX) G.Zp 280 103 FORNIAT (lX,2H3-(#,4
Computational and Matrix Isolation Studies of (2- and 3-Furyl)methylene
1994-01-01
ynal, (Appendix 3) Simple HF calculations using the 6-31 G basis set + ZPE (zero point energy correction applied) predict 2.2 to be more stable in both...QCISD(T)/6-31 1 G** + ZPE predict the triplet to more stable by 2.9 Kcal/mol. However, calculations using MP4SDTQ/6-31 1 G + ZPE predict the singlet to...calculated frequencies were scaled by a factor of 0.9. 53 Table 2.30 Calculated ZPE for 2-Oxabicyclo(3.1.0]hexa-3,5-diene.a Zero Point Energy 49.9 (KcaVmol
Kunitake, Jennie A M R; Choi, Siyoung; Nguyen, Kayla X; Lee, Meredith M; He, Frank; Sudilovsky, Daniel; Morris, Patrick G; Jochelson, Maxine S; Hudis, Clifford A; Muller, David A; Fratzl, Peter; Fischbach, Claudia; Masic, Admir; Estroff, Lara A
2018-04-01
Microcalcifications (MCs) are routinely used to detect breast cancer in mammography. Little is known, however, about their materials properties and associated organic matrix, or their correlation to breast cancer prognosis. We combine histopathology, Raman microscopy, and electron microscopy to image MCs within snap-frozen human breast tissue and generate micron-scale resolution correlative maps of crystalline phase, trace metals, particle morphology, and organic matrix chemical signatures within high grade ductal carcinoma in situ (DCIS) and invasive cancer. We reveal the heterogeneity of mineral-matrix pairings, including punctate apatitic particles (<2 µm) with associated trace elements (e.g., F, Na, and unexpectedly Al) distributed within the necrotic cores of DCIS, and both apatite and spheroidal whitlockite particles in invasive cancer within a matrix containing spectroscopic signatures of collagen, non-collagen proteins, cholesterol, carotenoids, and DNA. Among the three DCIS samples, we identify key similarities in MC morphology and distribution, supporting a dystrophic mineralization pathway. This multimodal methodology lays the groundwork for establishing MC heterogeneity in the context of breast cancer biology, and could dramatically improve current prognostic models. Copyright © 2017 Elsevier Inc. All rights reserved.
Conversion of the luminescence of laser dyes in opal matrices to stimulated emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alimov, O K; Basiev, T T; Orlovskii, Yu V
The luminescence and laser characteristics of a synthetic opal matrix filled with organic dyes are studied upon excitation by nanosecond laser pulses. The appearance of stimulated emission in a partially ordered scattering medium is investigated. It is shown that if the luminescence spectrum of a dye (oxazine-17) is located far outside the photonic bandgap of the opal matrix, stimulated emission along a preferential direction in the (111) plane is observed when pumping exceeds a threshold even without an external optical cavity. The stimulated emission spectrum is considerably narrower than the luminescence spectrum and consists of several narrow lines located withinmore » the dye luminescence band. If the luminescence spectrum of a dye (rhodamine 6G) overlaps with the photonic bandgap of the opal matrix, a different picture is observed. The loss of radiation in the matrix leads to the red shift of the luminescence spectrum, while the stimulated emission as in the case of oxazine-17 lies is observed within the luminescence band. (active media, lasers, and amplifiers)« less
Matrix isolation infrared spectra and photochemistry of hydantoin.
Ildiz, Gulce Ogruc; Nunes, Cláudio M; Fausto, Rui
2013-01-31
Hydantoin (C(3)H(4)N(2)O(2), 2,4-imidazolidinedione) was isolated in argon matrix at 10 K and its infrared spectrum and unimolecular photochemistry were investigated. The molecular structure of the compound was studied both at the DFT(B3LYP) and MP2 levels of approximation with valence triple- and quadruple-ζ basis sets (6-311++G(d,p); cc-pVQZ). It was concluded that the minima in the potential energy surfaces of the molecule correspond to C(1) symmetry structures. However, the energy barrier separating the two-equivalent-by-symmetry minima stays below their zero-point energy, which makes the C(s) symmetry structure, which separates the two minima, the experimentally relevant one. The electronic structure of the molecule was studied in detail by performing the Natural Bond Orbital analysis of its electronic configuration within the DFT(B3LYP)/cc-pVQZ space. The infrared spectrum of the matrix isolated compound was fully assigned also with help of the theoretically predicted spectrum. Upon irradiation at λ = 230 nm, matrix-isolated hydantoin was found to photofragment into isocyanic acid, CO, and methylenimine.
Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers.
Wu, Guo-min; Liu, Di; Liu, Gui-feng; Chen, Jian; Huo, Shu-ping; Kong, Zhen-wu
2015-01-01
Thermoset nanocomposites were prepared from a waterborne terpene-maleic ester type epoxy resin (WTME) and cellulose nanowhiskers (CNWs). The curing behaviors of WTME/CNWs nanocomposites were measured with rotational rheometer. The results show that the storage modulus (G') of WTME/CNWs nanocomposites increased with the increase of CNWs content. Observations by scanning electron microscopy (SEM) demonstrate that the incorporation of CNWs in WTME matrix caused microphase separation and destroyed the compactness of the matrix. This effect leads to the glass transition temperatures (Tg) of WTME/CNWs nanocomposites slightly decrease with the increase of CNWs content, which were confirmed by both DSC and DMA tests. The mechanical properties of WTME/CNWs nanocomposites were investigated by tensile testing. The Yong's modulus (E) and tensile strength (σb) of the nanocomposites were significantly reinforced by the addition of CNWs. These results indicate that CNWs exhibit excellent reinforcement effect on WTME matrix, due to the formation and increase of interfacial interaction by hydrogen bonds between CNWs nano-filler and the WTME matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.
Representation learning via Dual-Autoencoder for recommendation.
Zhuang, Fuzhen; Zhang, Zhiqiang; Qian, Mingda; Shi, Chuan; Xie, Xing; He, Qing
2017-06-01
Recommendation has provoked vast amount of attention and research in recent decades. Most previous works employ matrix factorization techniques to learn the latent factors of users and items. And many subsequent works consider external information, e.g., social relationships of users and items' attributions, to improve the recommendation performance under the matrix factorization framework. However, matrix factorization methods may not make full use of the limited information from rating or check-in matrices, and achieve unsatisfying results. Recently, deep learning has proven able to learn good representation in natural language processing, image classification, and so on. Along this line, we propose a new representation learning framework called Recommendation via Dual-Autoencoder (ReDa). In this framework, we simultaneously learn the new hidden representations of users and items using autoencoders, and minimize the deviations of training data by the learnt representations of users and items. Based on this framework, we develop a gradient descent method to learn hidden representations. Extensive experiments conducted on several real-world data sets demonstrate the effectiveness of our proposed method compared with state-of-the-art matrix factorization based methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Metheniti, Maria Evangelia; Frontistis, Zacharias; Ribeiro, Rui S; Silva, Adrián M T; Faria, Joaquim L; Gomes, Helder T; Mantzavinos, Dionissios
2017-10-06
An advanced oxidation process comprising an iron-containing magnetic carbon xerogel (CX/Fe) and persulfate was tested for the degradation of propyl paraben (PP), a contaminant of emerging concern, in various water matrices. Moreover, the effect of 20 kHz ultrasound or light irradiation on process performance was evaluated. The pseudo-first order degradation rate of PP was found to increase with increasing SPS concentration (25-500 mg/L) and decreasing PP concentration (1690-420 μg/L) and solution pH (9-3). Furthermore, the effect of water matrix on kinetics was detrimental depending on the complexity (i.e., wastewater, river water, bottled water) and the concentration of matrix constituents (i.e., humic acid, chloride, bicarbonate). The simultaneous use of CX/Fe and ultrasound as persulfate activators resulted in a synergistic effect, with the level of synergy (between 35 and 50%) depending on the water matrix. Conversely, coupling CX/Fe with simulated solar or UVA irradiation resulted in a cumulative effect in experiments performed in ultrapure water.
Durante, Miriana; Lenucci, Marcello S; D'Amico, Leone; Piro, Gabriella; Mita, Giovanni
2014-04-01
In this work a process for obtaining high vitamin E and carotenoid yields by supercritical carbon dioxide (SC-CO₂) extraction from pumpkin (Cucurbita moschata Duch.) is described. The results show that the use of a vacuum oven-dried [residual moisture (∼8%)] and milled (70 mesh sieve) pumpkin flesh matrix increased SC-CO₂ extraction yields of total vitamin E and carotenoids of ∼12.0- and ∼8.5-fold, respectively, with respect to the use of a freeze-dried and milled flesh matrix. The addition of milled (35 mesh) pumpkin seeds as co-matrix (1:1, w/w) allowed a further ∼1.6-fold increase in carotenoid yield, besides to a valuable enrichment of the extracted oil in vitamin E (274 mg/100 g oil) and polyunsaturated fatty acids. These findings encourage further studies in order to scale up the process for possible industrial production of high quality bioactive ingredients from pumpkin useful in functional food or cosmeceutical formulation. Copyright © 2013 Elsevier Ltd. All rights reserved.