Sample records for g-1 leaf dry

  1. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    PubMed

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  2. Feed intake and utilization in sheep fed graded levels of dried moringa (Moringa stenopetala) leaf as a supplement to Rhodes grass hay.

    PubMed

    Gebregiorgis, Feleke; Negesse, Tegene; Nurfeta, Ajebu

    2012-03-01

    The effects of feeding graded levels of dried moringa (Moringa stenopetala) leaf on intake, body weight gain (BWG), digestibility and nitrogen utilization were studied using male sheep (BW of 13.8 ± 0.12 kg). Six sheep were randomly allocated to each of the four treatment diets: Rhodes grass (Chloris gayana) hay offered ad libitum (T1), hay + 150 g moringa leaf (T2), hay + 300 g moringa leaf (T3), hay + 450 g moringa leaf (T4) were offered daily. A 7-day digestibility trial and an 84-day growth experiments were conducted. Dry matter (DM), organic matter (OM) and crude protein (CP) intakes increased (P < 0.05) with increasing levels of moringa leaf in the diets. Sheep fed T2, T3 and T4 diets gained (P < 0.05) 40.2, 79.1 and 110.1 g/head/day, respectively, while the control group (T1) lost weight (-13.3 g/head/day). The apparent digestibilities of DM, OM, neutral detergent fibre and acid detergent fibre were similar (P > 0.05) among treatments. The digestibility of dietary CP increased (P < 0.05) with increasing levels of moringa leaf, but there was no significant difference between T2 and T3 diets. The nitrogen (N) intake and urinary N excretion increased (P < 0.05) with increasing levels of moringa leaf. The N retention was highest (P < 0.05) for 450 g moringa leaf supplementation. The control group was in a negative N balance. Supplementing a basal diet of Rhodes grass hay with dried moringa leaves improved DM intake, BWG and N retention. It is concluded that M. stenopetala can serve as a protein supplement to low-quality grass during the dry season under smallholder sheep production system.

  3. Botanical features for identification of Gymnosporia arenicola dried leaf.

    PubMed

    Da Silva, Gustavo; Serrano, Rita; Gomes, Elsa Teixeira; Silva, Olga

    2015-11-01

    Gymnosporia arenicola Jordaan (Celastraceae) is a shrub or small tree, which naturally occurs in coastal sand dunes of Southern Mozambique and South Africa. Its dried leaf is often used in traditional medicine for the treatment of infectious and inflammatory diseases. Hereby, we present results of studies carried out according to the pharmacopoeia standards for the identification of herbal drugs, in the whole, fragmented, and powdered plant material. These results were complemented with scanning electron microscopy and histochemical techniques. The leaf microscopic analysis revealed a typical dorsiventral mesophyll with a corresponding spongy parenchyma-palisade parenchyma ratio of 0.60, anomocytic and paracytic stomata, papillate cells with a diameter of 4.00 ± 0.40 µm, multicellular uniseriate nonglandular trichomes with a length of 27.00 ± 4.10 µm and cristalliferous idioblasts containing calcium oxalate cluster crystals with a diameter of 23.04 ± 5.84 µm. The present findings demonstrate that the G. arenicola leaf has both nonglandular trichomes and hypoderm, features not previously described in the corresponding botanical section (Gymnosporia sect. Buxifoliae Jordaan). The establishment of these new botanical markers for the identification of G. arenicola leaf is essential for quality, safety and efficacy reasons. © 2015 Wiley Periodicals, Inc.

  4. Differences in Leaf Flammability, Leaf Traits and Flammability-Trait Relationships between Native and Exotic Plant Species of Dry Sclerophyll Forest

    PubMed Central

    Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.

    2013-01-01

    The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169

  5. Extraction, composition, and functional properties of dried alfalfa (Medicago sativa L.) leaf protein.

    PubMed

    Hojilla-Evangelista, Mila P; Selling, Gordon W; Hatfield, Ronald; Digman, Matthew

    2017-02-01

    Alfalfa is considered a potential feedstock for biofuels; co-products with value-added uses would enhance process viability. This work evaluated dried alfalfa leaves for protein production and describes the functional properties of the protein. Dried alfalfa leaves contained 260 g kg -1 dry basis (DB) crude protein, with albumins being the major fraction (260 g kg -1 of total protein). Alkali solubilization for 2 h at 50 °C, acid precipitation, dialysis, and freeze-drying produced a protein concentrate (600 g kg -1 DB crude protein). Alfalfa leaf protein concentrate showed moderate solubility (maximum 500 g kg -1 soluble protein from pH 5.5 to 10), excellent emulsifying properties (activity 158-219 m 2  g -1 protein, stability 17-49 min) and minimal loss of solubility during heating at pH ≥ 7.0. It is technically feasible to extract protein with desirable emulsifying and heat stability properties from dried alfalfa leaves; however, the dried form may not be a practical starting material for protein production, given the difficulty of achieving high yields and high-purity protein product. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests.

    PubMed

    Poorter, Lourens

    2009-03-01

    Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found in forests under different climatic control. Here, adult leaf and metamer traits were measured for 39 tree species from a tropical moist semi-evergreen forest (1580 mm rain yr(-1)) and 41 species from a dry deciduous forest (1160 mm yr(-1)) in Bolivia. Twenty-six functional traits were measured and related to species regeneration light requirements.Adult leaf traits were clearly associated with shade tolerance. Different, rather than stronger, shade adaptations were found for moist compared with dry forest species. Shade adaptations exclusively found in the evergreen moist forest were related to tough and persistent leaves, and shade adaptations in the dry deciduous forest were related to high light interception and water use.These results suggest that, for forests differing in rainfall seasonality, there is a shift in the relative importance of functional leaf traits and performance trade-offs that control light partitioning. In the moist evergreen forest leaf traits underlying the growth-survival trade-off are important, whereas in the seasonally deciduous forest leaf traits underlying the growth trade-off between low and high light might become important.

  7. Threshold response of mesophyll CO2 conductance to leaf hydraulics in highly transpiring hybrid poplar clones exposed to soil drying

    PubMed Central

    Pepin, Steeve

    2014-01-01

    Mesophyll conductance (g m) has been shown to impose significant limitations to net CO2 assimilation (A) in various species during water stress. Net CO2 assimilation is also limited by stomatal conductance to water (g sw), both having been shown to co-vary with leaf hydraulic conductance (K leaf). Lately, several studies have suggested a close functional link between K leaf, g sw, and g m. However, such relationships could only be circumstantial since a recent study has shown that the response of g m to drought could merely be an artefactual consequence of a reduced intercellular CO2 mole fraction (C i). Experiments were conducted on 8-week-old hybrid poplar cuttings to determine the relationship between K leaf, g sw, and g m in clones of contrasting drought tolerance. It was hypothesized that changes in g sw and K leaf in response to drought would not impact on g m over most of its range. The results show that K leaf decreased in concert with g sw as drought proceeded, whereas g m measured at a normalized C i remained relatively constant up to a g sw threshold of ~0.15mol m–2 s–1. This delayed g m response prevented a substantial decline in A at the early stage of the drought, thereby enhancing water use efficiency. Reducing the stomatal limitation of droughted plants by diminishing the ambient CO2 concentration of the air did not modify g m or K leaf. The relationship between gas exchange and leaf hydraulics was similar in both drought-tolerant and drought-sensitive clones despite their contrasting vulnerability to stem cavitation and stomatal response to soil drying. The results support the hypothesis of a partial hydraulic isolation of the mesophyll from the main transpiration pathway. PMID:24368507

  8. [Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis].

    PubMed

    Zhao, Ping; Sun, Gu-Chou; Ni, Guang-Yan; Zeng, Xiao-Ping

    2013-01-01

    In this study, measurements were made on the leaf water potential (psi1), stomatal conductance (g(s)), transpiration rate, leaf area index, and sapwood area of mature Acacia mangium, aimed to understand the relationships of the leaf hydraulic conductance (K1) with the leaf water use and photosynthetic characteristics of the A. mangium in wet season (May) and dry season (November). The ratio of sapwood area to leaf area (A(sp)/A(cl)) of the larger trees with an average height of 20 m and a diameter at breast height (DBH) of 0.26 m was 8.5% higher than that of the smaller trees with an average height of 14.5 m and a DBH of 0.19 m, suggesting that the larger trees had a higher water flux in their leaf xylem, which facilitated the water use of canopy leaf. The analysis on the vulnerability curve of the xylem showed that when the K1 decreased by 50%, the psi1 in wet season and dry season was -1.41 and -1.55 MPa, respectively, and the vulnerability of the xylem cavitation was higher in dry season than in wet season. The K1 peak value in wet season and dry season was 5.5 and 4.5 mmol x m(-2) x s(-1) x MPa(-1), and the maximum transpiration rate (T(r max)) was 3.6 and 1.8 mmol x m(-2) x s(-1), respectively. Both the K1 and T(r max), were obviously higher in wet season than in dry season. Within a day, the K1 and T(r), fluctuated many times, reflecting the reciprocated cycle of the xylem cavitation and refilling. The leaf stomatal closure occurred when the K1 declined over 50% or the psi1 reached -1.6 MPa. The g(s) would be maintained at a high level till the K1 declined over 50%. The correlation between the hydraulic conductance and photosynthetic rate was more significant in dry season than in wet season. The loss of leaf hydraulic conductance induced by seasonal change could be the causes of the decrease of T(r) and CO2 gas exchange.

  9. Stabilization of IgG1 in spray-dried powders for inhalation.

    PubMed

    Schüle, S; Schulz-Fademrecht, T; Garidel, P; Bechtold-Peters, K; Frieb, W

    2008-08-01

    The protein stabilizing capabilities of spray-dried IgG1/mannitol formulations were evaluated. The storage stability was tested at different residual moisture levels prepared by vacuum-drying or equilibration prior to storage. Vacuum-drying at 32 degrees C/0.1mbar for 24h reduced the moisture level below 1%, constituting an optimal basis for improved storage stability. The crystalline IgG1/mannitol powders with a weight ratio of 20/80 up to 40/60 failed to prevent the antibody aggregation as assessed by size exclusion chromatography during storage. Ratios of 60/40 up to 80/20 IgG1/mannitol provided superior stability of the antibody and the powders could be produced with high yields. The lower the residual moisture, the better was the stabilizing capability. An amount of 20% mannitol provided the best stabilization. Storage stability of 60/40, 70/30, and 80/20 IgG1/mannitol formulations over one year was adequate at 2-8 degrees C and 25 degrees C. Closed storage (sealed in vials) at 40 degrees C/75% RH and open storage at 25 degrees C/60% RH revealed that the stability still required optimization. The lower the protein content, the better was the powder flowability. The aerodynamic properties of powders spray-dried with 10% solids content were inadequate, as the particle size ranged between 5.1 and 7.2 microm and the fine particle fraction accounted for only 4-11%. Reduction of the solids content to 2.5% did improve the aerodynamic properties as the mass mean aerodynamic diameter was reduced to 3.6 microm and the fine particle fraction was increased to about 14%. The reduction of the solids content did not influence the storage stability significantly. Also spray-drying at higher temperatures had no significant impact on the storage stability, despite a higher tendency to form amorphous systems. In order to improve the storage stability and to maintain the good flowability of 70/30 IgG1/mannitol powder or to keep the storage stability but to improve the flowability

  10. Light-dependent leaf trait variation in 43 tropical dry forest tree species.

    PubMed

    Markesteijn, Lars; Poorter, Lourens; Bongers, Frans

    2007-04-01

    Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun-shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small trees. For each species, leaves were taken from five of the most and five of the least illuminated crowns. Trees were selected based on the percentage of the hemisphere uncovered by other crowns. We examined leaf trait variation and the relation between trait plasticity and light demand, maximum adult stature, and ontogenetic changes in crown exposure of the species. Leaf trait variation was mainly related to differences among species and to a minor extent to differences in light availability. Traits related to the palisade layer, thickness of the outer cell wall, and N(area) and P(area) had the greatest plasticity, suggesting their importance for leaf function in different light environments. Short-lived pioneers had the highest trait plasticity. Overall plasticity was modest and rarely associated with juvenile light requirements, adult stature, or ontogenetic changes in crown exposure. Dry forest tree species had a lower light-related plasticity than wet forest species, probably because wet forests cast deeper shade. In dry forests light availability may be less limiting, and low water availability may constrain leaf trait plasticity in response to irradiance.

  11. Dried-leaf Artemisia annua: A practical malaria therapeutic for developing countries?

    PubMed Central

    Weathers, Pamela J; Towler, Melissa; Hassanali, Ahmed; Lutgen, Pierre; Engeu, Patrick Ogwang

    2015-01-01

    Artemisinin from the plant Artemisia annua (A. annua) L, and used as artemisinin combination therapy (ACT), is the current best therapeutic for treating malaria, a disease that hits children and adults especially in developing countries. Traditionally, A. annua was used by the Chinese as a tea to treat “fever”. More recently, investigators have shown that tea infusions and oral consumption of the dried leaves of the plant have prophylactic and therapeutic efficacy. The presence of a complex matrix of chemicals within the leaves seems to enhance both the bioavailability and efficacy of artemisinin. Although about 1000-fold less potent than artemisinin in their antiplasmodial activity, these plant chemicals are mainly small molecules that include other artemisinic compounds, terpenes (mainly mono and sesqui), flavonoids, and polyphenolic acids. In addition, polysaccharide constituents of A. annua may enhance bioavailability of artemisinin. Rodent pharmacokinetics showed longer T1/2 and Tmax and greater Cmax and AUC in Plasmodium chabaudi-infected mice treated with A. annua dried leaves than in healthy mice. Pharmacokinetics of deoxyartemisinin, a liver metabolite of artemisinin, was more inhibited in infected than in healthy mice. In healthy mice, artemisinin serum levels were > 40-fold greater in dried leaf fed mice than those fed with pure artemisinin. Human trial data showed that when delivered as dried leaves, 40-fold less artemisinin was required to obtain a therapeutic response compared to pure artemisinin. ACTs are still unaffordable for many malaria patients, and cost estimates for A. annua dried leaf tablet production are orders of magnitude less than for ACT, despite improvements in the production capacity. Considering that for > 2000 years this plant was used in traditional Chinese medicine for treatment of fever with no apparent appearance of artemisinin drug resistance, the evidence argues for inclusion of affordable A. annua dried leaf tablets into

  12. Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest

    PubMed Central

    Fu, Pei-Li; Jiang, Yan-Juan; Wang, Ai-Ying; Brodribb, Tim J.; Zhang, Jiao-Lin; Zhu, Shi-Dan; Cao, Kun-Fang

    2012-01-01

    Background and Aims The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems. Methods A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure–volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations. Key Results It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (Dh) and higher mass-based photosynthetic rate (Am); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π0) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, Am, and dry season π0. Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, Dh, as well as dry season π0. Both wood density and leaf density were closely correlated with leaf water-stress tolerance and Am. Conclusions The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves. PMID:22585930

  13. Physicochemical Properties, Antioxidant and Anti-proliferative Capacities of Dried Leaf and Its Extract from Xao tam phan (Paramignya trimera).

    PubMed

    Nguyen, Van Tang; Sakoff, Jennette A; Scarlett, Christopher J

    2017-06-01

    Xao tam phan (Paramignya trimera) has been used for the treatment of cancer and cancer-like aliments. Among different parts of the P. trimera plant, leaf is considered as a residual part after harvesting of the root. This study aimed to determine the physiochemical properties and the antioxidant and anti-proliferative capacities of P. trimera leaf (PTL) using microwave drying for the preparation of dry sample; MeOH and microwave-assisted extraction for the preparation of crude extract; and freeze-drying for the preparation of powdered extract. The results showed that total phenolic, total flavonoid, proanthocyanidin, and saponin contents of PTL prepared by microwave drying at 450 W were 25.4 mg gallic acid equiv. (GAE), 86.3 mg rutin equiv. (RE), 5.6 mg catechin equiv. (CE), and 702.1 mg escin equiv. (EE) per gram dried sample, respectively. Gallic acid, protocatechuic acid, ellagic acid, rutin, and quercetin were identified in the PTL MeOH extract. Dried PTL displayed potent antioxidant activity, while the powdered PTL extract exhibited great anti-proliferative capacity on various cancer cell lines including MiaPaCa-2 (pancreas), HT29 (colon), A2780 (ovarian), H460 (lung), A431 (skin), Du145 (prostate), BE2-C (neuroblastoma), MCF-7 (breast), MCF-10A (normal breast), and U87, SJ-G2, and SMA (glioblastoma). Anti-proliferative capacity on pancreatic cancer cells (MiaCaPa2, BxPc3, and CFPAC1) of PTL extract (200 μg/ml) was significantly higher (P < 0.05) than those of ostruthin (20 μg/ml) and gemcitabine (50 nm), and to be comparable to the powdered P. trimera root extract and a saponin-enriched extract from quillajia bark (a commercial product). The findings from this study allow us to conclude that the PTL is a rich source of phytochemicals that possess promising antioxidant and anti-proliferative activities, therefore it shows potential as lead compounds for application in the nutraceutical, medicinal and pharmaceutical industries. © 2017 Wiley

  14. Effect of Packaging Materials on Orthosiphon Stamineus Dried-Leaf Quality During Storage

    NASA Astrophysics Data System (ADS)

    Norawanis, A. R.; Shaari, A. R.; Leng, L. Y.

    2018-03-01

    The experiment was conducted to determine the effects on the total phenolic content, antioxidant capacity, moisture content and total different color (ΔE) when the O. stamineus dried whole-leaf were packed in different packaging materials (plastic bag, paper bag and glass container) and stored under room temperature (±25 °C) and relative humidity (±65 %RH) for 8 weeks. The total phenolic compounds and antioxidant activity were measured using the Folin-Ciocalteu method and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity assay respectively, and analyzed using UV/VIS Spectrophotometer. The moisture content changes were examined using a moisture analyzer and the color changes were analyzed using colorimeter. The results showed that packing O. stamineus dried whole-leaf in different packaging materials significantly affected the herbal leaves quality. After 8 weeks of storage period, the total phenolic content and antioxidant capacity exhibited the increase values during storage. Meanwhile, the moisture content of the samples decreased by storage period for the samples packed in plastic bag and glass container. The moisture content of the samples packed in the paper bag fluctuated along the 8 weeks of storage period. The total different color (ΔE) of the O. stamineus dried whole-leaf increased by storage period. The highest changes of ΔE belonged to the samples packed in the glass container, followed by paper and plastic bags. The selection of the packaging materials can be considered as an important element to control the quality of raw herbal materials for further processing and the herbal finished products.

  15. Is leaf dry matter content a better predictor of soil fertility than specific leaf area?

    PubMed Central

    Hodgson, J. G.; Montserrat-Martí, G.; Charles, M.; Jones, G.; Wilson, P.; Shipley, B.; Sharafi, M.; Cerabolini, B. E. L.; Cornelissen, J. H. C.; Band, S. R.; Bogard, A.; Castro-Díez, P.; Guerrero-Campo, J.; Palmer, C.; Pérez-Rontomé, M. C.; Carter, G.; Hynd, A.; Romo-Díez, A.; de Torres Espuny, L.; Royo Pla, F.

    2011-01-01

    Background and Aims Specific leaf area (SLA), a key element of the ‘worldwide leaf economics spectrum’, is the preferred ‘soft’ plant trait for assessing soil fertility. SLA is a function of leaf dry matter content (LDMC) and leaf thickness (LT). The first, LDMC, defines leaf construction costs and can be used instead of SLA. However, LT identifies shade at its lowest extreme and succulence at its highest, and is not related to soil fertility. Why then is SLA more frequently used as a predictor of soil fertility than LDMC? Methods SLA, LDMC and LT were measured and leaf density (LD) estimated for almost 2000 species, and the capacity of LD to predict LDMC was examined, as was the relative contribution of LDMC and LT to the expression of SLA. Subsequently, the relationships between SLA, LDMC and LT with respect to soil fertility and shade were described. Key Results Although LD is strongly related to LDMC, and LDMC and LT each contribute equally to the expression of SLA, the exact relationships differ between ecological groupings. LDMC predicts leaf nitrogen content and soil fertility but, because LT primarily varies with light intensity, SLA increases in response to both increased shade and increased fertility. Conclusions Gradients of soil fertility are frequently also gradients of biomass accumulation with reduced irradiance lower in the canopy. Therefore, SLA, which includes both fertility and shade components, may often discriminate better between communities or treatments than LDMC. However, LDMC should always be the preferred trait for assessing gradients of soil fertility uncoupled from shade. Nevertheless, because leaves multitask, individual leaf traits do not necessarily exhibit exact functional equivalence between species. In consequence, rather than using a single stand-alone predictor, multivariate analyses using several leaf traits is recommended. PMID:21948627

  16. Is leaf dry matter content a better predictor of soil fertility than specific leaf area?

    PubMed

    Hodgson, J G; Montserrat-Martí, G; Charles, M; Jones, G; Wilson, P; Shipley, B; Sharafi, M; Cerabolini, B E L; Cornelissen, J H C; Band, S R; Bogard, A; Castro-Díez, P; Guerrero-Campo, J; Palmer, C; Pérez-Rontomé, M C; Carter, G; Hynd, A; Romo-Díez, A; de Torres Espuny, L; Royo Pla, F

    2011-11-01

    Specific leaf area (SLA), a key element of the 'worldwide leaf economics spectrum', is the preferred 'soft' plant trait for assessing soil fertility. SLA is a function of leaf dry matter content (LDMC) and leaf thickness (LT). The first, LDMC, defines leaf construction costs and can be used instead of SLA. However, LT identifies shade at its lowest extreme and succulence at its highest, and is not related to soil fertility. Why then is SLA more frequently used as a predictor of soil fertility than LDMC? SLA, LDMC and LT were measured and leaf density (LD) estimated for almost 2000 species, and the capacity of LD to predict LDMC was examined, as was the relative contribution of LDMC and LT to the expression of SLA. Subsequently, the relationships between SLA, LDMC and LT with respect to soil fertility and shade were described. Although LD is strongly related to LDMC, and LDMC and LT each contribute equally to the expression of SLA, the exact relationships differ between ecological groupings. LDMC predicts leaf nitrogen content and soil fertility but, because LT primarily varies with light intensity, SLA increases in response to both increased shade and increased fertility. Gradients of soil fertility are frequently also gradients of biomass accumulation with reduced irradiance lower in the canopy. Therefore, SLA, which includes both fertility and shade components, may often discriminate better between communities or treatments than LDMC. However, LDMC should always be the preferred trait for assessing gradients of soil fertility uncoupled from shade. Nevertheless, because leaves multitask, individual leaf traits do not necessarily exhibit exact functional equivalence between species. In consequence, rather than using a single stand-alone predictor, multivariate analyses using several leaf traits is recommended.

  17. Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest.

    PubMed

    Albert, Loren P; Wu, Jin; Prohaska, Neill; de Camargo, Plinio Barbosa; Huxman, Travis E; Tribuzy, Edgard S; Ivanov, Valeriy Y; Oliveira, Rafael S; Garcia, Sabrina; Smith, Marielle N; Oliveira Junior, Raimundo Cosme; Restrepo-Coupe, Natalia; da Silva, Rodrigo; Stark, Scott C; Martins, Giordane A; Penha, Deliane V; Saleska, Scott R

    2018-03-04

    Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus. We conducted demographic surveys of leaf age composition, and measured the age dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used these data to independently test the much-debated hypothesis - arising from satellite and tower-based observations - that leaf phenology could explain the forest-scale pattern of dry season photosynthesis. Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branches had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves. These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. Interactions between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  18. Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Loren P.; Wu, Jin; Prohaska, Neill

    Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus. We conducted demographic surveys of leaf age composition, and measured age-dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used this data to independently test the much-debated hypothesis—arising from satellite and tower-based observations—that leaf phenology could explain the forest-scale pattern of dry season photosynthesis. Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branchesmore » had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves. These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. In conclusion, interaction between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests.« less

  19. Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest

    DOE PAGES

    Albert, Loren P.; Wu, Jin; Prohaska, Neill; ...

    2018-03-04

    Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus. We conducted demographic surveys of leaf age composition, and measured age-dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used this data to independently test the much-debated hypothesis—arising from satellite and tower-based observations—that leaf phenology could explain the forest-scale pattern of dry season photosynthesis. Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branchesmore » had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves. These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. In conclusion, interaction between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests.« less

  20. [The analysis of the causes of variability of the relationship between leaf dry mass and area in plants].

    PubMed

    Vasfilov, S P

    2011-01-01

    The lamina dry mass: area ratio (LMA - Leaf Mass per Area) is a quite variable trait. Leaf dry mass consists of symplast mass (a set of all leaf protoplasts) and apoplast mass (a set of all cell walls in a leaf). The ratio between symplast and apoplast masses is positively related to any functional trait of leaf calculated per unit of dry mass. The value of this ratio is defined by cells size and their number per unit of leaf area, number of mesophyll cells layers and their differentiation between palisade and spongy ones, and also by density of cells packing. The LMA value is defined by leaf thickness and density. The extent and direction of variability in both leaf traits define the extent and direction of variability in LMA. Negative correlation between leaf thickness and density reduces the level of LMA variability. As a consequence of this correlation the following pattern emerges: the thinner a leaf, the denser it is. Changes in the traits that define the LMA value take place both within a species under the influence of environmental factors and between species that differ in leaf structure and functions. Light is the most powerful environmental factor that influences the LMA, increase in illumination leading to increase in LMA. This effect occurs during leaf growth at the expense of structural changes associated with the reduction of symplast/apoplast mass ratio. Under conditions of intense illumination, LMA may increase due to accumulation of starch. With regard to the majority of leaf functions, the mass of starch may be ascribed to apoplast. Starch accumulation in leaves is observed also under conditions of elevated CO2 concentration in the air. Under high illumination, however, LMA increases also due to increased apoplast contribution to leaf dry mass. Scarce mineral nutrition leads to LMA increase due to lowering of growth zones demands for phothosyntates and, therefore, to increase in starch content of leaves. High level of mineral nutrition during

  1. The length of the dry season may be associated with leaf scleromorphism in cerrado plants.

    PubMed

    Souza, Marcelo C; Franco, Augusto C; Haridasan, Mundayatan; Rossatto, Davi R; de Araújo, Janaína F; Morellato, Leonor P C; Habermann, Gustavo

    2015-09-01

    Despite limitations of low fertility and high acidity of the soils, the cerrado flora is the richest amongst savannas. Many cerrado woody species show sclerophyllous leaves, which might be related to the availability of water and nutrients in the soil. To better understand the function and structure of cerrado vegetation within its own variations, we compared two cerrado communities: one in its core region in central Brazil (Brasília, DF) and the other on its southern periphery (Itirapina, SP). We contrasted the length of the dry season, soil fertility rates, leaf concentrations of N, P, K, Ca and Mg and the specific leaf area (SLA) between these communities. The dry season was shorter on the periphery, where the soil was more fertile although more acidic. Plants from the periphery showed higher SLA and higher leaf concentrations of N, P, Ca and Mg. We propose that the higher SLA of plants from the periphery is related to the shorter dry season, which allows better conditions for nutrient uptake.

  2. LMI1-like genes involved in leaf margin development of Brassica napus.

    PubMed

    Ni, Xiyuan; Liu, Han; Huang, Jixiang; Zhao, Jianyi

    2017-06-01

    In rapeseed (Brassica napus L.), leaf margins are variable and can be entire, serrate, or lobed. In our previous study, the lobed-leaf gene (LOBED-LEAF 1, BnLL1) was mapped to a 32.1 kb section of B. napus A10. Two LMI1-like genes, BnaA10g26320D and BnaA10g26330D, were considered the potential genes that controlled the lobed-leaf trait in rapeseed. In the present study, these two genes and another homologous gene (BnaC04g00850D) were transformed into Arabidopsis thaliana (L.) Heynh. plants to identify their functions. All three LMI1-like genes of B. napus produced serrate leaf margins. The expression analysis indicated that the expression level of BnaA10g26320D determined the difference between lobed- and entire-leaved lines in rapeseed. Therefore, it is likely that BnaA10g26320D corresponds to BnLL1.

  3. Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest

    NASA Astrophysics Data System (ADS)

    Ali, Abebe Mohammed; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Duren, Iris van; Heiden, Uta; Heurich, Marco

    2016-03-01

    Assessments of ecosystem functioning rely heavily on quantification of vegetation properties. The search is on for methods that produce reliable and accurate baseline information on plant functional traits. In this study, the inversion of the PROSPECT radiative transfer model was used to estimate two functional leaf traits: leaf dry matter content (LDMC) and specific leaf area (SLA). Inversion of PROSPECT usually aims at quantifying its direct input parameters. This is the first time the technique has been used to indirectly model LDMC and SLA. Biophysical parameters of 137 leaf samples were measured in July 2013 in the Bavarian Forest National Park, Germany. Spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. PROSPECT was inverted using a look-up table (LUT) approach. The LUTs were generated with and without using prior information. The effect of incorporating prior information on the retrieval accuracy was studied before and after stratifying the samples into broadleaf and conifer categories. The estimated values were evaluated using R2 and normalized root mean square error (nRMSE). Among the retrieved variables the lowest nRMSE (0.0899) was observed for LDMC. For both traits higher R2 values (0.83 for LDMC and 0.89 for SLA) were discovered in the pooled samples. The use of prior information improved accuracy of the retrieved traits. The strong correlation between the estimated traits and the NIR/SWIR region of the electromagnetic spectrum suggests that these leaf traits could be assessed at canopy level by using remotely sensed data.

  4. 18O Spatial Patterns of Vein Xylem Water, Leaf Water, and Dry Matter in Cotton Leaves

    PubMed Central

    Gan, Kim Suan; Wong, Suan Chin; Yong, Jean Wan Hong; Farquhar, Graham Douglas

    2002-01-01

    Three leaf water models (two-pool model, Péclet effect, and string-of-lakes) were assessed for their robustness in predicting leaf water enrichment and its spatial heterogeneity. This was achieved by studying the 18O spatial patterns of vein xylem water, leaf water, and dry matter in cotton (Gossypium hirsutum) leaves grown at different humidities using new experimental approaches. Vein xylem water was collected from intact transpiring cotton leaves by pressurizing the roots in a pressure chamber, whereas the isotopic content of leaf water was determined without extracting it from fresh leaves with the aid of a purpose-designed leaf punch. Our results indicate that veins have a significant degree of lateral exchange with highly enriched leaf water. Vein xylem water is thus slightly, but progressively enriched in the direction of water flow. Leaf water enrichment is dependent on the relative distances from major veins, with water from the marginal and intercostal regions more enriched and that next to veins and near the leaf base more depleted than the Craig-Gordon modeled enrichment of water at the sites of evaporation. The spatial pattern of leaf water enrichment varies with humidity, as expected from the string-of-lakes model. This pattern is also reflected in leaf dry matter. All three models are realistic, but none could fully account for all of the facets of leaf water enrichment. Our findings acknowledge the presence of capacitance in the ground tissues of vein ribs and highlight the essential need to incorporate Péclet effects into the string-of-lakes model when applying it to leaves. PMID:12376664

  5. Overview of Shipyard coast line with Piers G1, G2, G3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of Shipyard coast line with Piers G-1, G-2, G-3, G-4, and G-5 in view, view facing east-southeast - U.S. Naval Base, Pearl Harbor, Pier & Quay Walls, Entrance to Dry Dock No. 2 & Repair Wharfs, east & west sides of Dry Dock No. 2 & west side of Dry Dock No. 3, Pearl City, Honolulu County, HI

  6. Leaf phenology as one important driver of seasonal changes in isoprene emission in central Amazonia

    DOE PAGES

    Alves, Eliane G.; Tota, Julio; Turnipseed, Andrew; ...

    2018-03-06

    Isoprene fluxes vary seasonally with changes in environmental factors (e.g., solar radiation and temperature) and biological factors (e.g., leaf phenology). However, our understanding of seasonal patterns of isoprene fluxes and associated mechanistic controls are still limited, especially in Amazonian evergreen forests. Here in this article, we aim to connect intensive, field-based measurements of canopy isoprene flux over a central Amazonian evergreen forest with meteorological observations and with tower-camera leaf phenology to improve understanding of patterns and causes of isoprene flux seasonality. Our results demonstrate that the highest isoprene emissions are observed during the dry and dry-to-wet transition seasons, whereas themore » lowest emissions were found during the wet-to-dry transition season. Our results also indicate that light and temperature can not totally explain the isoprene flux seasonality. Instead, the camera-derived leaf area index (LAI) of recently mature leaf-age class (e.g. leaf ages of 3–5 months) exhibits the highest correlation with observed isoprene flux seasonality (R 2=0.59, p<0.05). Attempting to better represent leaf phenology in the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1), we improved the leaf age algorithm utilizing results from the camera-derived leaf phenology that provided LAI categorized in three different leaf ages. The model results show that the observations of age-dependent isoprene emission capacity, in conjunction with camera-derived leaf age demography, significantly improved simulations in terms of seasonal variations of isoprene fluxes (R 2=0.52, p<0.05). This study highlights the importance of accounting for differences in isoprene emission capacity across canopy leaf age classes and of identifying forest adaptive mechanisms that underlie seasonal variation of isoprene emissions in Amazonia.« less

  7. Leaf phenology as one important driver of seasonal changes in isoprene emission in central Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves, Eliane G.; Tota, Julio; Turnipseed, Andrew

    Isoprene fluxes vary seasonally with changes in environmental factors (e.g., solar radiation and temperature) and biological factors (e.g., leaf phenology). However, our understanding of seasonal patterns of isoprene fluxes and associated mechanistic controls are still limited, especially in Amazonian evergreen forests. Here in this article, we aim to connect intensive, field-based measurements of canopy isoprene flux over a central Amazonian evergreen forest with meteorological observations and with tower-camera leaf phenology to improve understanding of patterns and causes of isoprene flux seasonality. Our results demonstrate that the highest isoprene emissions are observed during the dry and dry-to-wet transition seasons, whereas themore » lowest emissions were found during the wet-to-dry transition season. Our results also indicate that light and temperature can not totally explain the isoprene flux seasonality. Instead, the camera-derived leaf area index (LAI) of recently mature leaf-age class (e.g. leaf ages of 3–5 months) exhibits the highest correlation with observed isoprene flux seasonality (R 2=0.59, p<0.05). Attempting to better represent leaf phenology in the Model of Emissions of Gases and Aerosols from Nature (MEGAN 2.1), we improved the leaf age algorithm utilizing results from the camera-derived leaf phenology that provided LAI categorized in three different leaf ages. The model results show that the observations of age-dependent isoprene emission capacity, in conjunction with camera-derived leaf age demography, significantly improved simulations in terms of seasonal variations of isoprene fluxes (R 2=0.52, p<0.05). This study highlights the importance of accounting for differences in isoprene emission capacity across canopy leaf age classes and of identifying forest adaptive mechanisms that underlie seasonal variation of isoprene emissions in Amazonia.« less

  8. Energy content in dried leaf litter of some oaks and mixed mesophytic species that replace oaks

    Treesearch

    Aaron D. Stottlemeyer; G. Geoff Wang; Patrick H. Brose; Thomas A. Waldrop

    2010-01-01

    Mixed-mesophytic hardwood tree species are replacing upland oaks in vast areas of the Eastern United States deciduous forest. Some researchers have suggested that the leaf litter of mixed-mesophytic, oak replacement species renders forests less flammable where forest managers wish to restore a natural fire regime. We performed chemical analyses on dried leaf litter...

  9. Effects of sample drying and storage, and choice of extraction solvent and analysis method on the yield of birch leaf hydrolyzable tannins.

    PubMed

    Salminen, Juha-Pekka

    2003-06-01

    In this study, I investigated the effects of different methods of sample drying and storage, and the choice of extraction solvent and analysis method on the concentrations of 14 individual hydrolyzable tannins (HTs), and insoluble ellagitannins in birch (Betula pubescens) leaves. Freeze- and vacuum-drying of birch leaves were found to provide more reliable results than air- or oven-drying. Storage of leaves at -20 degrees C for 3 months before freeze-drying did not cause major changes in tannin content, although levels of 1,2,3,4,6-penta-O-galloylglucose and isostrictinin were altered. Storage of dried leaf material at -20 degrees C is preferred because 1 year storage of freeze-dried leaves at 4 degrees C and at room temperature decreased the concentration of the pedunculagin derivative, one of the main ellagitannins of birch. Furthermore, storage at room temperature increased the levels of isostrictinin and 2,3-(S)-HHDP-glucose, indicating possible HT catabolism. Of the extraction solvents tested, aqueous acetone was superior to pure acetone, or aqueous or pure methanol. The addition of 0.1% ascorbic acid into 70% acetone significantly increased the yield of ellagitannins. presumably by preventing their oxidation. By comparing the conventional rhodanine assay and the HPLC-ESI-MS assay for quantification of leaf galloylglucoses, the former tends to underestimate total concentrations of galloylglucoses in birch leaf extract. On the basis of the outcomes of all the method and solvent comparisons, their suitability for qualitative and quantitative analysis of plant HTs is discussed, emphasizing that each plant species, with its presumably unique HT composition, is likely to have a unique combination of ideal conditions for tissue preservation and extraction.

  10. Long term leaf phenology and leaf exchange strategies of a cerrado savanna community

    NASA Astrophysics Data System (ADS)

    de Camargo, Maria Gabriela G.; Costa Alberton, Bruna; de Carvalho, Gustavo H.; Magalhães, Paula A. N. R.; Morellato, Leonor Patrícia C.

    2017-04-01

    Leaf development and senescence cycles are linked to a range of ecosystem processes, affecting seasonal patterns of atmosphere-ecosystem carbon and energy exchanges, resource availability and nutrient cycling. The degree of deciduousness of tropical trees and communities depend on ecosystems characteristics such as amount of biomass, species diversity and the strength and length of the dry season. Besides defining the growing season, deciduousness can also be an indicator of species response to climate changes in the tropics, mainly because severity of dry season can intensify leaf loss. Based on seven-years of phenological observations (2005 to 2011) we describe the long-term patterns of leafing phenology of a Brazilian cerrado savanna, aiming to (i) identify leaf exchange strategies of species, quantifying the degree of deciduousness, and verify whether these strategies vary among years depending on the length and strength of the dry seasons; (ii) define the growing seasons along the years and the main drivers of leaf flushing in the cerrado. We analyzed leafing patterns of 107 species and classified 69 species as deciduous (11 species), semi-deciduous (29) and evergreen (29). Leaf exchange was markedly seasonal, as expected for seasonal tropical savannas. Leaf fall predominated in the dry season, peaking in July, and leaf flushing in the transition between dry to wet seasons, peaking in September. Leafing patterns were similar among years with the growing season starting at the end of dry season, in September, for most species. However, leaf exchange strategies varied among years for most species (65%), except for evergreen strategy, mainly constant over years. Leafing patterns of cerrado species were strongly constrained by rainfall. The length of the dry season and rainfall intensity were likely affecting the individuals' leaf exchange strategies and suggesting a differential resilience of species to changes of rainfall regime, predicted on future global

  11. Evaluation of hypolipidemic activity of leaf juice of Catharanthus roseus (Linn.) G. Donn. in guinea pigs.

    PubMed

    Patel, Yogesh; Vadgama, Vishalkumar; Baxi, Seema; Chandrabhanu; Tripathi, B

    2011-01-01

    Our aim of the study was to evaluate the hypolipidemic activity of leaf juice of Catharanthus roseus (Linn.) G. Donn. in guinea pigs. Adult guinea pigs of either sex were divided into seven groups: group 1 - normal diet; group 2 - high fat diet; group 3 and 4 - normal diet plus leaf juice of Catharanthus roseus (Linn.) G. Donn. in the dose of 0.5 and 1 mL/kg, respectively; group 5 and 6- high fat diet with leaf juice of Catharanthus roseus (Linn.) G. Donn. in the dose of 0.5 and 1 mL/kg, respectively; group 7 - high fat diet plus atorvastatin (3 mg/kg). Above diet treatment was given for six weeks and drug was given during last three weeks. Serum lipid profile (total cholesterol, triglycerides, LDL-c, VLDL-c, HDL-c) was performed in each group of animals before and at the end of six weeks. Histological study of aorta, liver and kidney was done in group 1, 2, 6 and 7 and blood cell count was done in animals that were treated juice of C. roseus (Linn.) G. Donn. before and after juice administration. Simultaneous administration of leaf juice of C. roseus (Linn.) G. Donn. in the dose of 0.5 mL/kg prevents the rise of serum lipid parameters and decreases the fatty changes in the tissue induced by high fat diet, whereas in the dose of 1 mL/kg not only counteracts the elevation, but also significantly (p < 0.05) reduces the serum level LDL-c and the ratio of total cholesterol and HDL-c. Leaf juice of C. roseus (Linn.) G. Donn. possesses significant lipid lowering and anti atherosclerotic activity.

  12. A novel method for air drying aloe leaf slices by covering with filter papers as a shrink-proof layer.

    PubMed

    Kim, S A; Baek, J H; Lee, S J; Choi, S Y; Hur, W; Lee, S Y

    2009-01-01

    To prevent the shrinkage of aloe vera slices during air drying, a method utilizing a shrink-proof layer was developed. The sample was configured of whole leaf aloe slices, where 1 side or both sides were covered with filter papers as shrink-proof layers. After air drying by varying the air temperature and the slice thickness, the drying characteristics, as well as several quality factors of the dried aloe vera leaf slices, were analyzed. In the simulation of the drying curves, the modified Page model showed the best fitness, representing a diffusion-controlled drying mechanism. Nonetheless, there was a trace of a constant-rate drying period in the samples dried by the method. Shrinkage was greatly reduced, and the rehydration ratios increased by approximately 50%. Scanning electron microscopic analysis revealed that the surface structure of original fibrous form was well sustained. FT-IR characteristics showed that the dried samples could sustain aloe polysaccharide acetylation. Furthermore, the functional properties of the dried slices including water holding capacity, swelling, and fat absorption capability were improved, and polysaccharide retention levels increased by 20% to 30%. Therefore, we concluded that application of shrink-proof layers on aloe slices provides a novel way to overcome the shrinkage problems commonly found in air drying, thereby improving their functional properties with less cost. Practical Application: This research article demonstrates a novel air drying method using shrink-proof layers to prevent the shrinkage of aloe slices. We analyzed extensively the characteristics of shrinkage mechanism and physical properties of aloe flesh gels in this drying system. We concluded that this method can be a beneficial means to retain the functional properties of dried aloe, and a potential alternative to freeze drying, which is still costly.

  13. [Effects of applying nitrogen fertilizer at different stages in ploughed furrow on dry matter production and yield of rice].

    PubMed

    Shi, Kun; Hao, Shufeng; Xie, Hongtu; Zhang, Xudong

    2002-12-01

    The effects of applying nitrogen fertilizer in ploughed furrow at different stages on dry matter production and yield of rice were studied in a field experiment in 1999. The results showed that applying N fertilizer at booting stage (BS) had better effects on dry weight (2.9 g.hill-1) of leaf, stem and whole plant than at panicle primordia formation stage (PPFS), tillering stage (TS) and regular N fertilization (RF). Meanwhile, the dry weight of leaf and sheath as well as the leaf area index (LAI, 8.9) could be maintained at a high level for a relative long time in BS treatment, compared with PPFS, TS and RF treatments. Similar phenomenon was observed in the growth velocity (0.73 g.d-1.hill-1) of stem and whole plant, and the dry weight (10434 kg.hm-2) of seed. The grain yield of rice followed the sequence of BS > or = PPFS > TS > or = RF. Thus, the optimum stage of applying N fertilizer in ploughed furrow was the booting stage.

  14. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    PubMed

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  15. Seasonal Changes in Leaf Area of Amazon Forests from Leaf Flushing and Abscission

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Knyazikhin, Y.; Xu, L.; Dickinson, R.; Fu, R.; Costa, M. H.; Ganguly, S.; Saatchi, S. S.; Nemani, R. R.; Myneni, R.

    2011-12-01

    A large increase in near-infrared (NIR) reflectance of Amazon forests during the light-rich dry season and a corresponding decrease during the light-poor wet season has been observed in satellite measurements. This has been variously interpreted as seasonal changes in leaf area resulting from net leaf flushing in the dry season and net leaf abscission in the wet season, enhanced photosynthetic activity during the dry season from flushing new leaves and as change in leaf scattering and absorption properties between younger and older leaves covered with epiphylls. Reconciling these divergent views using theory and observations is the goal of this article. The observed changes in NIR reflectance of Amazon forests could be due to similar, but small, changes in NIR leaf albedo (reflectance plus transmittance) only, from exchanging older leaves with newer ones, with total leaf area unchanged. However, this argument ignores accumulating evidence from ground-based studies of higher leaf area in the dry season relative to the wet season, seasonal changes in litterfall and does not satisfactorily explain why NIR reflectance of these forests decreases in the wet season. A more convincing explanation for the observed increase in NIR reflectance during the dry season and decrease during the wet season is one that invokes changes in both leaf area and leaf optical properties. Such an argument is consistent with known phonological behavior of tropical forests, ground-based reports of seasonal changes in leaf area, litterfall, leaf optical properties and fluxes of evapotranspiration, and thus, reconciles the various seemingly divergent views.

  16. Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission

    NASA Astrophysics Data System (ADS)

    Samanta, Arindam; Knyazikhin, Yuri; Xu, Liang; Dickinson, Robert E.; Fu, Rong; Costa, Marcos H.; Saatchi, Sassan S.; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2012-03-01

    A large increase in near-infrared (NIR) reflectance of Amazon forests during the light-rich dry season and a corresponding decrease during the light-poor wet season has been observed in satellite measurements. This increase has been variously interpreted as seasonal change in leaf area resulting from net leaf flushing in the dry season or net leaf abscission in the wet season, enhanced photosynthetic activity during the dry season from flushing new leaves and as change in leaf scattering and absorption properties between younger and older leaves covered with epiphylls. Reconciling these divergent views using theory and observations is the goal of this article. The observed changes in NIR reflectance of Amazon forests could be due to similar, but small, changes in NIR leaf albedo (reflectance plus transmittance) resulting from the exchange of older leaves for newer ones, but with the total leaf area unchanged. However, this argument ignores accumulating evidence from ground-based reports of higher leaf area in the dry season than the wet season, seasonal changes in litterfall and does not satisfactorily explain why NIR reflectance of these forests decreases in the wet season. More plausibly, the increase in NIR reflectance during the dry season and the decrease during the wet season would result from changes in both leaf area and leaf optical properties. Such change would be consistent with known phenological behavior of tropical forests, ground-based reports of seasonal changes in leaf area, litterfall, leaf optical properties and fluxes of evapotranspiration, and thus, would reconcile the various seemingly divergent views.

  17. Downregulation of net phosphorus-uptake capacity is inversely related to leaf phosphorus-resorption proficiency in four species from a phosphorus-impoverished environment.

    PubMed

    de Campos, Mariana C R; Pearse, Stuart J; Oliveira, Rafael S; Lambers, Hans

    2013-03-01

    Previous research has suggested a trade-off between the capacity of plants to downregulate their phosphorus (P) uptake capacity and their efficiency of P resorption from senescent leaves in species from P-impoverished environments. To investigate this further, four Australian native species (Banksia attenuata, B. menziesii, Acacia truncata and A. xanthina) were grown in a greenhouse in nutrient solutions at a range of P concentrations [P]. Acacia plants received between 0 and 500 µm P; Banksia plants received between 0 and 10 µm P, to avoid major P-toxicity symptoms in these highly P-sensitive species. For both Acacia species, the net P-uptake rates measured at 10 µm P decreased steadily with increasing P supply during growth. In contrast, in B. attenuata, the net rate of P uptake from a solution with 10 µm P increased linearly with increasing P supply during growth. The P-uptake rate of B. menziesii showed no significant response to P supply in the growing medium. Leaf [P] of the four species supported this finding, with A. truncata and A. xanthina showing an increase up to a saturation value of 19 and 21 mg P g(-1) leaf dry mass, respectively (at 500 µm P), whereas B. attenuata and B. menziesii both exhibited a linear increase in leaf [P], reaching 10 and 13 mg P g(-1) leaf dry mass, respectively, without approaching a saturation point. The Banksia plants grown at 10 µm P showed mild symptoms of P toxicity, i.e. yellow spots on some leaves and drying and curling of the tips of the leaves. Leaf P-resorption efficiency was 69 % (B. attenuata), 73 % (B. menziesii), 34 % (A. truncata) and 36 % (A. xanthina). The P-resorption proficiency values were 0·08 mg P g(-1) leaf dry mass (B. attenuata and B. menziesii), 0·32 mg P g(-1) leaf dry mass (A. truncata) and 0·36 mg P g(-1) leaf dry mass (A. xanthina). Combining the present results with additional information on P-remobilization efficiency and the capacity to downregulate P-uptake capacity for two other

  18. How well can spectroscopy predict leaf morphological traits in the seasonal neotropical savannas?

    NASA Astrophysics Data System (ADS)

    Streher, A. S.; McGill, B.; Morellato, P.; Silva, T. S. F.

    2017-12-01

    Variations in foliar morphological traits, quantified as leaf mass per area (LMA, g m-2) and leaf dry matter content (LDMC, g g-1), correspond to a tradeoff between investments in leaf construction costs and leaf life span. Leaf spectroscopy, the acquisition of reflected radiation along contiguous narrow spectral bands from leaves, has shown the potential to link leaf optical properties with a range of foliar traits. However, our knowledge is still limited on how well leaf traits from plants with different life forms and deciduousness strategies can be predicted from spectroscopy. To understand the relationships between leaf traits and optical properties, we investigated: 1) What are the spectral regions associated with leaf morphological traits? 2) How generalizable an optical trait model is across different life forms and leaf strategies? Five locations across cerrado and campo rupestre vegetation in Brazil were sampled during the growing season in 2017. Triplicate mature sun leaves were harvested from plants encompassing different life forms (grasses, perennial herbs, shrubs and trees), comprising 1650 individuals growing over a wide range of environmental conditions. For each individual, we determined LDMC and LMA, and took 30 spectral leaf measurements from 400 to 2500nm, using a spectrometer. We used the Random Forests (RF) algorithm to predict both morphological traits from leaf reflectance, and performed feature selection with a backward stepwise method, progressively removing variables with small importance at each iteration. Model performance was evaluated by using 10-fold cross-validation. LDMC values ranged from 0.12 to 0.67 g g-1, while LMA varied between 41.78 and 562 g m-2. The spectral bands that best explained trait variation were found within the SWIR, around 1397 nm for LDMC, and 2279 nm for LMA. Our general model explained 55.28% of LDMC variance and 55.64% of LMA variation, and the mean RMSE for the predicted values were 0.004 g g-1 and 36.99 g

  19. The estimated six-year mercury dry deposition across North America

    USGS Publications Warehouse

    Zhang, Leiming; Wu, Zhiyong; Cheng, Irene; Wright, L. Paige; Olson, Mark L.; Gay, David A.; Risch, Martin R.; Brooks, Steven; Castro, Mark S.; Conley, Gary D.; Edgerton, Eric S.; Holsen, Thomas M.; Luke, Winston; Tordon, Robert; Weiss-Penzias, Peter

    2016-01-01

    Dry deposition of atmospheric mercury (Hg) to various land covers surrounding 24 sites in North America was estimated for the years 2009 to 2014. Depending on location, multiyear mean annual Hg dry deposition was estimated to range from 5.1 to 23.8 μg m–2 yr–1 to forested canopies, 2.6 to 20.8 μg m–2 yr–1 to nonforest vegetated canopies, 2.4 to 11.2 μg m–2 yr–1 to urban and built up land covers, and 1.0 to 3.2 μg m–2 yr–1 to water surfaces. In the rural or remote environment in North America, annual Hg dry deposition to vegetated surfaces is dominated by leaf uptake of gaseous elemental mercury (GEM), contrary to what was commonly assumed in earlier studies which frequently omitted GEM dry deposition as an important process. Dry deposition exceeded wet deposition by a large margin in all of the seasons except in the summer at the majority of the sites. GEM dry deposition over vegetated surfaces will not decrease at the same pace, and sometimes may even increase with decreasing anthropogenic emissions, suggesting that Hg emission reductions should be a long-term policy sustained by global cooperation.

  20. Chemical and mechanical changes during leaf expansion of four woody species of dry Restinga woodland.

    PubMed

    Schlindwein, C C D; Fett-Neto, A G; Dillenburg, L R

    2006-07-01

    Young leaves are preferential targets for herbivores, and plants have developed different strategies to protect them. This study aimed to evaluate different leaf attributes of presumed relevance in protection against herbivory in four woody species (Erythroxylum argentinum, Lithrea brasiliensis, Myrciaria cuspidata, and Myrsine umbellata), growing in a dry restinga woodland in southern Brazil. Evaluation of leaf parameters was made through single-point sampling of leaves (leaf mass per area and leaf contents of nitrogen, carbon, and pigments) at three developmental stages and through time-course sampling of expanding leaves (area and strength). Leaves of M. umbellata showed the highest leaf mass per area (LMA), the largest area, and the longest expansion period. On the other extreme, Myrc. cuspidata had the smallest LMA and leaf size, and the shortest expansion period. Similarly to L. brasiliensis, it displayed red young leaves. None of the species showed delayed-greening, which might be related to the high-irradiance growth conditions. Nitrogen contents reduced with leaf maturity and reached the highest values in the young leaves of E. argentinum and Myrc. cuspidata and the lowest in M. umbellata. Each species seems to present a different set of protective attributes during leaf expansion. Myrciaria cuspidata appears to rely mostly on chemical defences to protect its soft leaves, and anthocyanins might play this role at leaf youth, while M. umbellata seems to invest more on mechanical defences, even at early stages of leaf growth, as well as on a low allocation of nitrogen to the leaves. The other species display intermediate characteristics.

  1. Insect herbivores associated with an evergreen tree Goniorrhachis marginata Taub. (Leguminosae: Caesalpinioideae) in a tropical dry forest.

    PubMed

    Silva, J O; Neves, F S

    2014-08-01

    Goniorrhachis marginata Taub. (Leguminosae: Caesalpinioideae) is a tree species found in Brazilian tropical dry forests that retain their leaves during the dry season. That being, we addressed the following question: i) How do insect diversity (sap-sucking and chewing), leaf herbivory and defensive traits (tannin and leaf sclerophylly) vary on the evergreen tree species G. marginata between seasons? The abundance of sap-sucking insects was higher in the dry season than in the rainy season. However, we did not verify any difference in the species richness and abundance of chewing insects between seasons. Leaf herbivory was higher in the rainy season, whereas leaf sclerophylly was higher in the dry season. However, herbivory was not related to sclerophylly. Insect herbivores likely decrease their folivory activity during the dry season due to life history patterns or changes in behaviour, possibly entering diapause or inactivity during this period. Therefore, G. marginata acts as a likely keystone species, serving as a moist refuge for the insect fauna during the dry season in tropical dry forest, and the presence of this evergreen species is crucial to conservation strategies of this threatened ecosystem.

  2. Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.

    PubMed

    Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong

    2014-01-01

    The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.

  3. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico.

    PubMed

    Roa-Fuentes, Lilia L; Templer, Pamela H; Campo, Julio

    2015-10-01

    Leaf traits are closely associated with nutrient use by plants and can be utilized as a proxy for nutrient cycling processes. However, open questions remain, in particular regarding the variability of leaf traits within and across seasonally dry tropical forests. To address this, we considered six leaf traits (specific area, thickness, dry matter content, N content, P content and natural abundance (15)N) of four co-occurring tree species (two that are not associated with N2-fixing bacteria and two that are associated with N2-fixing bacteria) and net N mineralization rates and inorganic N concentrations along a precipitation gradient (537-1036 mm per year) in the Yucatan Peninsula, Mexico. Specifically we sought to test the hypothesis that leaf traits of dominant plant species shift along a precipitation gradient, but are affected by soil N cycling. Although variation among different species within each site explains some leaf trait variation, there is also a high level of variability across sites, suggesting that factors other than precipitation regime more strongly influence leaf traits. Principal component analyses indicated that across sites and tree species, covariation in leaf traits is an indicator of soil N availability. Patterns of natural abundance (15)N in foliage and foliage minus soil suggest that variation in precipitation regime drives a shift in plant N acquisition and the openness of the N cycle. Overall, our study shows that both plant species and site are important determinants of leaf traits, and that the leaf trait spectrum is correlated with soil N cycling.

  4. Environmental modification of yield and nutrient composition of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.; Chun, C.; Brandt, W. E.; Nielsen, S. S.

    1997-01-01

    Leaf number, dry weight, and nutrient composition of Lactuca sativa L. cv. Waldmann's Green leaves were compared following 9 days of treatment in a controlled environment room under various combinations of photosynthetic photon flux (PPF:350 vs 800 micromoles m-2 s-1), atmospheric CO2 level (ambient vs 1500 micromoles mol-1), and single-strength (1X:15 mM) vs double-strength (2X:30 mM) nitrogen (N) as NO3- alone or as NH4(+) + NO3- (1:5 molar ratio). CO2 enrichment greatly enhanced leaf number under all PPF and N conditions, but increased leaf dry weight only at high PPF. Conditions favoring high photosynthesis enhanced leaf starch content 3-fold, and protein content increased as much as 64% with 2X NH4(+)+NO3-. Free sugar content was 6 to 9% of leaf dry weight for all treatment combinations, while fat was 1.5 to 3.5%. Ash content varied from 15 to 20% of leaf dry weight. Modified controlled environments can be used to enhance the nutritional content as well as the yield of crops to be used for life support in space-deployed, self-sustaining human habitats. Leaf lettuce is a useful model crop for demonstrating the potential of nutritional value added by environmental manipulation.

  5. Organismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forests.

    PubMed

    Agosta, Salvatore J; Hulshof, Catherine M; Staats, Ethan G

    2017-05-01

    The ecological effects of large-scale climate change have received much attention, but the effects of the more acute form of climate change that results from local habitat alteration have been less explored. When forest is fragmented, cut, thinned, cleared or otherwise altered in structure, local climates and microclimates change. Such changes can affect herbivores both directly (e.g. through changes in body temperature) and indirectly (e.g. through changes in host plant traits). We advance an eco-physiological framework to understand the effects of changing forests on herbivorous insects. We hypothesize that if tropical forest caterpillars are climate and resource specialists, then they should have reduced performance outside of mature forest conditions. We tested this hypothesis with a field experiment contrasting the performance of Rothschildia lebeau (Saturniidae) caterpillars feeding on the host plant Casearia nitida (Salicaceae) in two different aged and structured tropical dry forests in Area de Conservación Guanacaste, Costa Rica. Compared to more mature closed-canopy forest, in younger secondary forest we found that: (1) ambient conditions were hotter, drier and more variable; (2) caterpillar growth and development were reduced; and (3) leaves were tougher, thicker and drier. Furthermore, caterpillar growth and survival were negatively correlated with these leaf traits, suggesting indirect host-mediated effects of climate on herbivores. Based on the available evidence, and relative to mature forest, we conclude that reduced herbivore performance in young secondary forest could have been driven by changes in climate, leaf traits (which were likely climate induced) or both. However, additional studies will be needed to provide more direct evidence of cause-and-effect and to disentangle the relative influence of these factors on herbivore performance in this system. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  6. [Effects of tillage pattern on the flag leaf senescence and grain yield of winter wheat under dry farming].

    PubMed

    Huang, Ming; Wu, Jin-Zhi; Li, You-Jun; Yao, Yu-Qing; Zhang, Can-Jun; Cai, Dian-Xiong; Jin, Ke

    2009-06-01

    A field experiment was conducted to study the effects of different tillage patterns, i.e., deep plowing once, no-tillage, subsoiling, and conventional tillage, on the flag leaf senescence and grain yield of winter wheat, as well as the soil moisture and nutrient status under dry farming. No-tillage and subsoiling increased the SOD and POD activities and the chlorophyll and soluble protein contents, decreased the MDA and O2(-.) contents, and postponed the senescence of flag leaf. Under non-tillage and subsoiling, the moisture content in 0-40 cm soil layer at anthesis and grain-filling stages was decreased by 4.13% and 6.23% and by 5.50% and 9.27%, respectively, and the contents of alkali-hydrolysable N, available P, and available K in this soil layer also increased significantly, compared with those under conventional tillage. Deep plowing once decreased the moisture content and increased the nutrients contents in 0-40 cm soil layer, but the decrement and increment were not significant. The post-anthesis biomass, post-anthesis dry matter translocation rate, and grain yield under no-tillage and subsoiling were 4.34% and 4.76%, 15.56% and 13.51%, and 10.22% and 9.26% higher than those under conventional tillage, respectively. It could be concluded that no-tillage and subsoiling provided better soil conditions for the post-anthesis growth of winter wheat, under which, the flag leaf senescence postponed, post-anthesis dry matter accumulation and translocation accelerated, and grain yield increased significantly, being the feasible tillage practices in dry farming winter wheat areas.

  7. Photoperiod-H1 (Ppd-H1) Controls Leaf Size.

    PubMed

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Tondelli, Alessandro; Xu, Xin; Cattivelli, Luigi; Rossini, Laura; von Korff, Maria

    2016-09-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. © 2016 American Society of Plant Biologists. All rights reserved.

  8. Synthesis of platinum nanoparticles using dried Anacardium occidentale leaf and its catalytic and thermal applications.

    PubMed

    Sheny, D S; Philip, Daizy; Mathew, Joseph

    2013-10-01

    An environment friendly approach for the synthesis of Pt nanoparticles (NPs) using dried leaf powder of Anacardium occidentale is reported. The formation of Pt NPs is monitored using UV-Vis spectrophotometer. FTIR spectra reveal that proteins are bound to Pt nanoparticles. TEM images show irregular rod shaped particles which are crystalline. The quantity of leaf powder plays a vital role in determining the size of particles. Synthesized NPs exhibit good catalytic activity in the reduction of aromatic nitrocompound. The effective thermal conductivity of synthesized Pt/water nanofluid has been measured and found to be enhanced to a good extent. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Photoperiod-H1 (Ppd-H1) Controls Leaf Size1[OPEN

    PubMed Central

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Xu, Xin

    2016-01-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. PMID:27457126

  10. Threshold response of mesophyll CO2 conductance to leaf hydraulics in highly transpiring hybrid poplar clones exposed to soil drying.

    PubMed

    Théroux-Rancourt, Guillaume; Éthier, Gilbert; Pepin, Steeve

    2014-02-01

    Mesophyll conductance (gm) has been shown to impose significant limitations to net CO2 assimilation (A) in various species during water stress. Net CO2 assimilation is also limited by stomatal conductance to water (gsw), both having been shown to co-vary with leaf hydraulic conductance (Kleaf). Lately, several studies have suggested a close functional link between Kleaf, gsw, and gm. However, such relationships could only be circumstantial since a recent study has shown that the response of gm to drought could merely be an artefactual consequence of a reduced intercellular CO2 mole fraction (Ci). Experiments were conducted on 8-week-old hybrid poplar cuttings to determine the relationship between Kleaf, gsw, and g m in clones of contrasting drought tolerance. It was hypothesized that changes in gsw and Kleaf in response to drought would not impact on gm over most of its range. The results show that Kleaf decreased in concert with g sw as drought proceeded, whereas gm measured at a normalized Ci remained relatively constant up to a g sw threshold of ~0.15 mol m(-2) s(-1). This delayed gm response prevented a substantial decline in A at the early stage of the drought, thereby enhancing water use efficiency. Reducing the stomatal limitation of droughted plants by diminishing the ambient CO2 concentration of the air did not modify gm or Kleaf. The relationship between gas exchange and leaf hydraulics was similar in both drought-tolerant and drought-sensitive clones despite their contrasting vulnerability to stem cavitation and stomatal response to soil drying. The results support the hypothesis of a partial hydraulic isolation of the mesophyll from the main transpiration pathway.

  11. The effect of feeding bull Bali cattle kept in extensive husbandry system with concentrates contained gliricidia sepium leaf meal and banana strach tuber meal on their feed consumption and dried organic matter digestability

    NASA Astrophysics Data System (ADS)

    Fattah, S.; Sobang, Y. U. L.; Samba, F. D.; Hartati, E.; Kapa, M. M. J.; Henuk, Y. L.

    2018-02-01

    This study aimed to evaluate the effect of feeding bull Bali Cattle kept in extensive husbnadry system with concentrates contained gliricidia sepium leaf meal and banana strach tuber meal in their feed consumptions and dried organic matter digestibility. Three bull Bali cattle aged 1 - 2 years old with an initial body weight of 135.5 kg - 168.0 kg were used in this study. The three treatments used were T0 = local feeds (consisted of Leucaena leucocephala, Acasia leochophloea, and Ficus sp. leaves as commonly used by local farmers); T1 = T0 + 1 kg concentrate (contained banana strach tuber meal + gliricidia sepium leaf meal); T2 = T1 +2 kg concentrate (contained banana strach tuber meal + gliricidia sepium leaf meal). The results showed that the dry matter intake were: 2.40, 3.52, and 4.14; organic matter intake were: 2.17, 3.32, and 3.62; dry matter digestible was 64.63%, 72.45%, 77.28% and organic matter digestible was 66.79%, 74.66%, 79.33% for T0, T1, and T2, respectively. There was no effect (P>0.05) of treatments on the three parameters observed on bull Bali cattle kept in extensive husbandry system and fed with concentrates contained leaf gliricidia sepium meal and banana starch tuber meal.

  12. Maize YABBY genes drooping leaf1 and drooping leaf2 affect agronomic traits by regulating leaf architecture

    USDA-ARS?s Scientific Manuscript database

    Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...

  13. Tropical dry forest trees and lianas differ in leaf economic spectrum traits but have overlapping water-use strategies.

    PubMed

    Werden, Leland K; Waring, Bonnie G; Smith-Martin, Christina M; Powers, Jennifer S

    2018-04-01

    Tree species in tropical dry forests employ a wide range of strategies to cope with seasonal drought, including regulation of hydraulic function. However, it is uncertain if co-occurring lianas also possess a diversity of strategies. For a taxonomically diverse group of 14 tree and 7 liana species, we measured morphological and hydraulic functional traits during an unusual drought and under non-drought conditions to determine (i) if trees have different water-use strategies than lianas and (ii) if relationships among these traits can be used to better understand how tree and liana species regulate diurnal leaf water potential (Ψdiurnal). In this Costa Rican tropical dry forest, lianas and trees had overlapping water-use strategies, but differed in many leaf economic spectrum traits. Specifically, we found that both lianas and trees employed a diversity of Ψdiurnal regulation strategies, which did not differ statistically. However, lianas and trees did significantly differ in terms of certain traits including leaf area, specific leaf area, petiole length, wood vessel diameter and xylem vessel density. All liana and tree species we measured fell along a continuum of isohydric (partial) to anisohydric (strict or extreme) Ψdiurnal regulation strategies, and leaf area, petiole length, stomatal conductance and wood vessel diameter correlated with these strategies. These findings contribute to a trait-based understanding of how plants regulate Ψdiurnal under both drought stress and sufficient water availability, and underscore that lianas and trees employ a similarly wide range of Ψdiurnal regulation strategies, despite having vastly different growth forms.

  14. Evidence from Amazonian forests is consistent with isohydric control of leaf water potential.

    PubMed

    Fisher, Rosie A; Williams, Mathew; Do Vale, Raquel Lobo; Da Costa, Antonio Lola; Meir, Patrick

    2006-02-01

    Climate modelling studies predict that the rain forests of the Eastern Amazon basin are likely to experience reductions in rainfall of up to 50% over the next 50-100 years. Efforts to predict the effects of changing climate, especially drought stress, on forest gas exchange are currently limited by uncertainty about the mechanism that controls stomatal closure in response to low soil moisture. At a through-fall exclusion experiment in Eastern Amazonia where water was experimentally excluded from the soil, we tested the hypothesis that plants are isohydric, that is, when water is scarce, the stomata act to prevent leaf water potential from dropping below a critical threshold level. We made diurnal measurements of leaf water potential (psi 1), stomatal conductance (g(s)), sap flow and stem water potential (psi stem) in the wet and dry seasons. We compared the data with the predictions of the soil-plant-atmosphere (SPA) model, which embeds the isohydric hypothesis within its stomatal conductance algorithm. The model inputs for meteorology, leaf area index (LAI), soil water potential and soil-to-leaf hydraulic resistance (R) were altered between seasons in accordance with measured values. No optimization parameters were used to adjust the model. This 'mechanistic' model of stomatal function was able to explain the individual tree-level seasonal changes in water relations (r2 = 0.85, 0.90 and 0.58 for psi 1, sap flow and g(s), respectively). The model indicated that the measured increase in R was the dominant cause of restricted water use during the dry season, resulting in a modelled restriction of sap flow four times greater than that caused by reduced soil water potential. Higher resistance during the dry season resulted from an increase in below-ground resistance (including root and soil-to-root resistance) to water flow.

  15. An enhanced approach for the use of satellite-derived leaf area index values in dry deposition modeling in the Athabasca oil sands region.

    PubMed

    Davies, Mervyn; Cho, Sunny; Spink, David; Pauls, Ron; Desilets, Michael; Shen, Yan; Bajwa, Kanwardeep; Person, Reid

    2016-12-15

    In the Athabasca oil sands region (AOSR) of Northern Alberta, the dry deposition of sulphur and nitrogen compounds represents a major fraction of total (wet plus dry) deposition due to oil sands emissions. The leaf area index (LAI) is a critical parameter that affects the dry deposition of these gaseous and particulate compounds to the surrounding boreal forest canopy. For this study, LAI values based on Moderate Resolution Imaging Spectroradiometer satellite imagery were obtained and compared to ground-based measurements, and two limitations with the satellite data were identified. The satellite LAI data firstly represents one-sided LAI values that do not account for the enhanced LAI associated with needle leaf geometry, and secondly, underestimates LAI in winter-time northern latitude regions. An approach for adjusting satellite LAI values for different boreal forest cover types, as a function of time of year, was developed to produce more representative LAI values that can be used by air quality sulphur and nitrogen deposition models. The application of the approach increases the AOSR average LAI for January from 0.19 to 1.40, which represents an increase of 637%. Based on the application of the CALMET/CALPUFF model system, this increases the predicted regional average dry deposition of sulphur and nitrogen compounds for January by factors of 1.40 to 1.30, respectively. The corresponding AOSR average LAI for July increased from 2.8 to 4.0, which represents an increase of 43%. This increases the predicted regional average dry deposition of sulphur and nitrogen compounds for July by factors of 1.28 to 1.22, respectively. These findings reinforce the importance of the LAI metric for predicting the dry deposition of sulphur and nitrogen compounds. While satellite data can provide enhanced spatial and temporal resolution, adjustments are identified to overcome associated limitations. This work is considered to have application for other deposition model studies where

  16. Alfalfa leaf meal in beef steer receiving diets. Quarterly report, July 1, 1997--September 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zehnder, C.M.; DiCostanzo, A.; Smith, L.B.

    1998-06-01

    Two trials were conducted to study the effects of alfalfa leaf meal (ALM) in receiving diets of steers. In trial one, ninety-six medium frame, Angus and Angus cross steer calves (average initial weight 500 lb) were allotted to a heavy or light weight block and then randomly assigned to one of four dietary treatments for a 29-day receiving trial. In trial two, sixty medium frame, Angus and Angus cross steer calves (average initial weight 518 lb) were allotted to one of ten dietary treatments. Trial two was divided into two periods, defined as a receiving period, 29 days, and amore » step-up period, 33 days. In trial one, treatments were control (supplemental soybean meal), alfalfa leaf meal (ALM) providing 33%, 66%, or 100% of supplemental protein; the balance was soybean meal. Receiving diets were formulated to contain .54 Mcal NE{sub g} /lb dry matter, 14% crude protein, .6 % Ca and .3 % P. In study two, treatments were control (supplemental soybean meal), ALM providing 33%, 66%7 100% of supplemental protein, the balance was soybean meal and urea or a blend of ALM and blood meal (93 % ALM and 7 % blood meal) to provide supplemental protein. Each protein treatment was fed in diets consisting of cracked or whole corn. Trial two receiving diets were formulated to contain .54 Mcal NE{sub g} /lb dry matter, 14% crude protein, .6 % Ca and .3 % P, step-up diets were formulated to contain .58 Mcal NE9 /lb dry matter, 11.3% crude protein, .6 % Ca and .3 % P.« less

  17. Effects of water stress on irradiance acclimation of leaf traits in almond trees.

    PubMed

    Egea, Gregorio; González-Real, María M; Baille, Alain; Nortes, Pedro A; Conesa, María R; Ruiz-Salleres, Isabel

    2012-04-01

    Photosynthetic acclimation to highly variable local irradiance within the tree crown plays a primary role in determining tree carbon uptake. This study explores the plasticity of leaf structural and physiological traits in response to the interactive effects of ontogeny, water stress and irradiance in adult almond trees that have been subjected to three water regimes (full irrigation, deficit irrigation and rain-fed) for a 3-year period (2006-08) in a semiarid climate. Leaf structural (dry mass per unit area, N and chlorophyll content) and photosynthetic (maximum net CO(2) assimilation, A(max), maximum stomatal conductance, g(s,max), and mesophyll conductance, g(m)) traits and stem-to-leaf hydraulic conductance (K(s-l)) were determined throughout the 2008 growing season in leaves of outer south-facing (S-leaves) and inner northwest-facing (NW-leaves) shoots. Leaf plasticity was quantified by means of an exposure adjustment coefficient (ε=1-X(NW)/X(S)) for each trait (X) of S- and NW-leaves. Photosynthetic traits and K(s-l) exhibited higher irradiance-elicited plasticity (higher ε) than structural traits in all treatments, with the highest and lowest plasticity being observed in the fully irrigated and rain-fed trees, respectively. Our results suggest that water stress modulates the irradiance-elicited plasticity of almond leaves through changes in crown architecture. Such changes lead to a more even distribution of within-crown irradiance, and hence of the photosynthetic capacity, as water stress intensifies. Ontogeny drove seasonal changes only in the ε of area- and mass-based N content and mass-based chlorophyll content, while no leaf age-dependent effect was observed on ε as regards the physiological traits. Our results also indicate that the irradiance-elicited plasticity of A(max) is mainly driven by changes in leaf dry mass per unit area, in g(m) and, most likely, in the partitioning of the leaf N content.

  18. 7 CFR 28.461 - Leaf Grade 1.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf Grade 1. 28.461 Section 28.461 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.461 Leaf Grade 1. Leaf Grade 1 is leaf which is within the range represented by...

  19. 7 CFR 28.461 - Leaf Grade 1.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade 1. 28.461 Section 28.461 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.461 Leaf Grade 1. Leaf Grade 1 is leaf which is within the range represented by...

  20. 7 CFR 28.461 - Leaf Grade 1.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf Grade 1. 28.461 Section 28.461 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.461 Leaf Grade 1. Leaf Grade 1 is leaf which is within the range represented by...

  1. 7 CFR 28.461 - Leaf Grade 1.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf Grade 1. 28.461 Section 28.461 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.461 Leaf Grade 1. Leaf Grade 1 is leaf which is within the range represented by...

  2. 7 CFR 28.461 - Leaf Grade 1.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf Grade 1. 28.461 Section 28.461 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Upland Cotton § 28.461 Leaf Grade 1. Leaf Grade 1 is leaf which is within the range represented by...

  3. Digestive strategies in two species of leaf-eating land crabs (Brachyura: Gecarcinidae) in a rain forest.

    PubMed

    Greenaway, P; Raghaven, S

    1998-01-01

    Two species of herbivorous land crabs from Christmas Island, Cardisoma hirtipes and Gecarcoidea natalis, overlap in both diet and distribution. This study compared the dietary preferences and digestive capabilities of these two species on a diet of leaf litter to establish the digestive strategies each adopts and the likely degree of competition for food. C. hirtipes preferred green to yellow or brown leaves of Ficus macrophylla in short-term food-choice experiments. Brown leaves were least favoured. G. natalis showed no preference for the different leaf types and in the field ate chiefly brown and decomposing leaf litter. When fed green leaves, C. hirtipes had a low food intake (4.5+/-0.36 g kg-1 d-1) and a short retention time for food, and the readily digestible components of the diet constituted greater than 84% of the dry matter assimilated. When fed brown leaves, the intake was increased 3.3 times, but retention time remained short, and assimilation coefficients for all nutrients were low. The readily digestible fraction of the diet made the chief contribution to dry matter assimilation (69%), and hemicellulose (19%) and cellulose (21%) were also significantly used. This pattern of food intake and assimilation contrasts with that for G. natalis, which had a low intake of brown leaves and a longer retention time associated with higher nutrient assimilation, particularly of complex polysaccharides. It is suggested that through their feeding preferences and habits, these two sympatric species use opposite ends of the leaf litter quality spectrum on Christmas Island.

  4. Evaluation of analgesic, antipyretic and anti-inflammatory activity on Cordia dichotoma G. Forst. Leaf.

    PubMed

    Gupta, Richa; Kaur, Jagjit

    2015-01-01

    Cordia dichotoma G. Forst. is an important medicinal plant of family Boraginaceae. Traditionally, its leaves are used to treat fever, headache, and joint pain but its medicinal activities have not been proven by research. To evaluate the analgesic, anti-inflammatory, and antipyretic activity of C. dichotoma G. Forst. leaf extract. The various extracts of leaf powder were prepared by using soxhlet apparatus. The methanol extract was selected for pharmacological study. To evaluate analgesic activity, Eddy's hot plate method, to study anti-inflammatory activity, carageenan-induced rat paw edema method, and to study antipyretic activity, yeast-induced pyrexia method was used. SD female rats (180-200 g) were used for the study. In all three tests, the methanol extract high dose (400 mg/kg) was found to be highly significant as compared to standard drug. This study proved the traditional uses of plant leaves and concluded the analgesic, anti-inflammatory, and antipyretic activity of the leaf methanol extract.

  5. Evaluation of analgesic, antipyretic and anti-inflammatory activity on Cordia dichotoma G. Forst. Leaf

    PubMed Central

    Gupta, Richa; Kaur, Jagjit

    2015-01-01

    Background: Cordia dichotoma G. Forst. is an important medicinal plant of family Boraginaceae. Traditionally, its leaves are used to treat fever, headache, and joint pain but its medicinal activities have not been proven by research. Objective: To evaluate the analgesic, anti-inflammatory, and antipyretic activity of C. dichotoma G. Forst. leaf extract. Material and Methods: The various extracts of leaf powder were prepared by using soxhlet apparatus. The methanol extract was selected for pharmacological study. To evaluate analgesic activity, Eddy's hot plate method, to study anti-inflammatory activity, carageenan-induced rat paw edema method, and to study antipyretic activity, yeast-induced pyrexia method was used. SD female rats (180-200 g) were used for the study. Results: In all three tests, the methanol extract high dose (400 mg/kg) was found to be highly significant as compared to standard drug. Conclusion: This study proved the traditional uses of plant leaves and concluded the analgesic, anti-inflammatory, and antipyretic activity of the leaf methanol extract. PMID:25598647

  6. Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies.

    PubMed

    Saura-Mas, S; Lloret, F

    2007-03-01

    Post-fire regeneration is a key process in Mediterranean shrubland dynamics, strongly determining the functional properties of the community. In this study, a test is carried out to determine whether there is co-variation between species regenerative types and functional attributes related to water use. An analysis was made of the seasonal variations in leaf relative water content (RWC), leaf dry matter content (LDMC), leaf moisture (LM) and live fine fuel moisture (LFFM) in 30 woody species of a coastal shrubland, with different post-fire regenerative strategies (seeding, resprouting or both). RWC results suggest that the studied resprouters have more efficient mechanisms to reduce water losses and maintain water supply between seasons. In contrast, seeders are more drought tolerant. LDMC is higher in resprouters over the course of the year, suggesting a more efficient conservation of nutrients. The weight of the phylogenetic constraint to understand differences between regenerative strategies tends to be important for LDMC, while it is not the case for variables such as RWC. Groups of species with different post-fire regenerative strategies (seeders and resprouters) have different functional traits related to water use. In addition to the role of phylogenetical constraints, these differences are also likely to be related to the respective life history characteristics. Therefore, the presence and abundance of species with different post-fire regenerative responses influence the functional properties of the communities.

  7. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.

    PubMed

    Kang, Jun Won; Doty, Sharon Lafferty

    2014-07-01

    Trichloroethylene (TCE), a chlorinated organic solvent, is one of the most common and widespread groundwater contaminants worldwide. Among the group of TCE-degrading aerobic bacteria, Burkholderia cepacia G4 is the best-known representative. This strain requires the addition of specific substrates, including toluene, phenol, and benzene, to induce the enzymes to degrade TCE. However, the substrates are toxic and introducing them into the soil can result in secondary contamination. In this study, poplar leaf homogenate containing natural phenolic compounds was tested for the ability to induce the growth of and TCE degradation by B. cepacia G4. The results showed that the G4 strain could grow and degrade TCE well with the addition of phytochemicals. The poplar leaf homogenate also functioned as an inducer of the toluene-ortho-monooxygenase (TOM) gene in B. cepacia G4.

  8. Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro

    NASA Astrophysics Data System (ADS)

    Natsir, H.; Wahab, A. W.; Laga, A.; Arif, A. R.

    2018-03-01

    Alpha-glucosidase is a key enzyme in the final process of breaking carbohydrates into glucose. Inhibition of α-glucosidase affected more absorption of glucose, so it can reduce hyperglycemia condition. The aims of this study is to determine the effectiveness of inhibition wet and dried Moringa oleifera leaf extract through α-glucosidase activity in vitro. The effectiveness study of inhibition on the activity of α-glucosidase enzyme obtained from white glutinous rice (Oryza sativa glutinosa) was carried out using wet and dried kelor leaf extract of 13% (w/v) with 10 mM α-D-glucopyranoside (PNPG) substrate. A positive control used 1% acarbose and substrate without addition of extract was a negative control. Inhibitory activity was measured using spectrophotometers at a wavelength of 400 nm. The result showed that the inhibition activity against α-glucosidase enzyme of dried leaf extract, wet leaf extract and acarbose was 81,39%, 83,94%, and 95,4%, respectively on pH 7,0. The effectiveness inhibition of the wet Moringa leaf extract was greater than the dried leaf extract. The findings suggest that M. oleifera leaf has the potential to be developed as an alternative food therapy for diabetics.

  9. Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest.

    PubMed

    Frosi, Gabriella; Barros, Vanessa A; Oliveira, Marciel T; Santos, Mariana; Ramos, Diego G; Maia, Leonor C; Santos, Mauro G

    2016-12-01

    In seasonal dry tropical forests, plants are subjected to severe water deficit, and the arbuscular mycorrhizal fungi (AMF) or inorganic phosphorus supply (P i ) can mitigate the effects of water deficit. This study aimed to assess the physiological performance of Poincianella pyramidalis subjected to water deficit in combination with arbuscular mycorrhizal fungi (AMF) and leaf inorganic phosphorus (P i ) supply. The experiment was conducted in a factorial arrangement of 2 water levels (+H 2 O and -H 2 O), 2 AMF levels (+AMF and -AMF) and 2P i levels (+P i and -P i ). Leaf primary metabolism, dry shoot biomass and leaf mineral nutrients were evaluated. Inoculated AMF plants under well-watered and drought conditions had higher photosynthesis and higher shoot biomass. Under drought, AMF, P i or AMF+P i plants showed metabolic improvements in photosynthesis, leaf biochemistry and higher biomass compared to the plants under water deficit without AMF or P i . After rehydration, those plants submitted to drought with AMF, P i or AMF+P i showed a faster recovery of photosynthesis compared to treatment under water deficit without AMF or P i . However, plants under the drought condition with AMF showed a higher net photosynthesis rate. These findings suggest that AMF, P i or AMF+P i increase the drought tolerance in P. pyramidalis, and AMF associations under well-watered conditions increase shoot biomass and, under drought, promoted faster recovery of photosynthesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Height is more important than light in determining leaf morphology in a tropical forest

    Treesearch

    Molly A. Cavaleri; Steven F. Oberbauer; David B. Clark; Deborah A. Clark; Michael G. Ryan

    2010-01-01

    Both within and between species, leaf physiological parameters are strongly related to leaf dry mass per area (LMA, g/m2), which has been found to increase from forest floor to canopy top in every forest where it has been measured. Although vertical LMA gradients in forests have historically been attributed to a direct phenotypic response to light, an increasing number...

  11. Comparison study on biosynthesis of silver nanoparticles using fresh and hot air oven dried IMPERATA CYLINDRICA leaf

    NASA Astrophysics Data System (ADS)

    Najmi Bonnia, Noor; Fairuzi, Afiza Ahmad; Akhir, Rabiatuladawiyah Md.; Yahya, Sabrina M.; Rani, Mohd Azri Ab; Ratim, Suzana; Rahman, Norafifah A.; Akil, Hazizan Md

    2018-01-01

    The perennial rhizomatous grass; Imperata cylindrica (I. cylindrica) has been reported rich in various phytochemicals. In present study, silver nanoparticles were synthesized from aqueous leaf extract of I. cylindrica at two different leaf conditions; fresh leaves and hot-air oven dried leaves. Biosynthesized silver nanoparticles were characterized by UV-visible spectroscopy, field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). Maximum absorption was recorded between 400 nm to 500 nm. FESEM analysis revealed that the silver nanoparticles predominantly form spherical shapes. The particles sizes were ranging from 22-37 nm. The elemental composition of the synthesized silver nanoparticles was confirmed by using energy dispersive X-ray spectroscopy (EDX) analysis. Fourier transform infrared spectroscopy (FTIR) confirmed the reducing and stabilizing actions came from biomolecules associated with I. cylindrica leaf extract. Thus in this investigation, an environmentally safe method to synthesized silver nanoparticles using local plant extract was successfully established.

  12. Alfalfa leaf meal in finishing steer diets. Quarterly report, July 1, 1997--September 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zehnder, C.M.; DiCostanzo, A.; Smith, L.B.

    1997-10-30

    Ninety-six medium frame, Angus and Angus cross steer calves (average initial weight 540 lb.) were allotted to a heavy or light weight block and then randomly assigned to one of four dietary treatments for a 167 or 189-day finishing phase, respectively. Treatments were control (supplemental soybean meal), alfalfa leaf meal (ALM) providing 33%, 66%, 100% of supplemental protein. Finishing diets were formulated to contain .61 Mcal NE{sub g}/lb dry matter, 12.5% crude protein, .6 % Ca and .3 % P. There were no significant (P >.05) effects of dietary treatments on daily gain or dry matter required /lb of gain.more » Steers fed 100 % ALM consumed more (P <.05) dry matter than steers fed either of the other three treatments. Dry matter consumption increased linearly (P >.05) with increasing ALM. There was no significant (P >.05) dietary treatment effect on marbling, KPH %, yield grade, quality grade, or liver abscesses. There was an apparent trend in reduced liver abscess incidence in steers fed 100 % ALM. Steers fed 66 % ALM had significantly (P <.05) greater backfat measurements, backfat also had a cubic effect (P <.05). Hot carcass weight had a quadratic relation (P <.05) with level of ALM. Substituting alfalfa leaf meal for soybean meal in diets of finishing steers increased DM intake, but this increase was accompanied by an increase in gain which resulted in similar feed efficiency. There may be an advantage in blending ALM and soybean meal as feed efficiency was improved when cattle were fed the blend. Also, feeding ALM may result in lower incidence of liver abscess.« less

  13. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage.

    PubMed

    Hu, Wei; Zhao, Wenqing; Yang, Jiashuo; Oosterhuis, Derrick M; Loka, Dimitra A; Zhou, Zhiguo

    2016-04-01

    The nitrogen (N) metabolism of the leaf subtending the cotton boll (LSCB) was studied with two cotton (Gossypium hirsutum L.) cultivars (Simian 3, low-K tolerant; Siza 3, low-K sensitive) under three levels of potassium (K) fertilization (K0: 0 g K2O plant(-1), K1: 4.5 K2O plant(-1) and K2: 9.0 g K2O plant(-1)). The results showed that total dry matter increased by 13.1-27.4% and 11.2-18.5% under K supply for Simian 3 and Siza 3. Boll biomass and boll weight also increased significantly in K1 and K2 treatments. Leaf K content, leaf N content and nitrate (NO3(-)) content increased with increasing K rates, and leaf N content or NO3(-) content had a significant positive correlation with leaf K content. Free amino acid content increased in the K0 treatment for both cultivars, due to increased protein degradation caused by higher protease and peptidase activities, resulting in lower protein content in the K0 treatment. The critical leaf K content for free amino acid and soluble protein content were 14 mg g(-1) and 15 mg g(-1) in Simian 3, and 17 mg g(-1) and 18 mg g(-1) in Siza 3, respectively. Nitrate reductase (NR), glutamic-oxaloace transaminase (GOT) and glutamic-pyruvic transaminase (GPT) activities increased in the K1 and K2 treatments for both cultivars, while glutamine synthetase (GS) and glutamate synthase (GOGAT) activities increased under K supply treatments only for Siza 3, and were not affected in Simian 3, indicating that this was the primary difference in nitrogen-metabolizing enzymes activities for the two cultivars with different sensitivity to low-K. Copyright © 2016. Published by Elsevier Masson SAS.

  14. Maize YABBY Genes drooping leaf1 and drooping leaf2 Regulate Plant Architecture[OPEN

    PubMed Central

    Briggs, Sarah; Bradbury, Peter J.

    2017-01-01

    Leaf architecture directly influences canopy structure, consequentially affecting yield. We discovered a maize (Zea mays) mutant with aberrant leaf architecture, which we named drooping leaf1 (drl1). Pleiotropic mutations in drl1 affect leaf length and width, leaf angle, and internode length and diameter. These phenotypes are enhanced by natural variation at the drl2 enhancer locus, including reduced expression of the drl2-Mo17 allele in the Mo17 inbred. A second drl2 allele, produced by transposon mutagenesis, interacted synergistically with drl1 mutants and reduced drl2 transcript levels. The drl genes are required for proper leaf patterning, development and cell proliferation of leaf support tissues, and for restricting auricle expansion at the midrib. The paralogous loci encode maize CRABS CLAW co-orthologs in the YABBY family of transcriptional regulators. The drl genes are coexpressed in incipient and emergent leaf primordia at the shoot apex, but not in the vegetative meristem or stem. Genome-wide association studies using maize NAM-RIL (nested association mapping-recombinant inbred line) populations indicated that the drl loci reside within quantitative trait locus regions for leaf angle, leaf width, and internode length and identified rare single nucleotide polymorphisms with large phenotypic effects for the latter two traits. This study demonstrates that drl genes control the development of key agronomic traits in maize. PMID:28698237

  15. Comparison of the New LEAF Area INDEX (LAI 3G) with the Kazahstan-Wide LEAF Area INDEX DATA SET (GGRS-LAI) over Central ASIA

    NASA Astrophysics Data System (ADS)

    Kappas, M.; Propastin, P.; Degener, J.; Renchin, T.

    2014-12-01

    Long-term global data sets of Leaf Area Index (LAI) are important for monitoring global vegetation dynamics. LAI indicating phenological development of vegetation is an important state variable for modeling land surface processes. The comparison of long-term data sets is based on two recently available data sets both derived from AVHRR time series. The LAI 3g data set introduced by Zaichun Zhu et al. (2013) is developed from the new improved third generation Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) and best-quality MODIS LAI data. The second long-term data set is based on the 8 km spatial resolution GIMMS-AVHRR data (GGRS-data set by Propastin et al. 2012). The GGRS-LAI product uses a three-dimensional physical radiative transfer model which establishes relationship between LAI, vegetation fractional cover and given patterns of surface reflectance, view-illumination conditions and optical properties of vegetation. The model incorporates a number of site/region specific parameters, including the vegetation architecture variables such as leaf angle distribution, clumping index, and light extinction coefficient. For the application of the model to Kazakhstan, the vegetation architecture variables were computed at the local (pixel) level based on extensive field surveys of the biophysical properties of vegetation in representative grassland areas of Kazakhstan. The comparison of both long-term data sets will be used to interpret their quality for scientific research in other disciplines. References:Propastin, P., Kappas, M. (2012). Retrieval of coarse-resolution leaf area index over the Republic of Kazakhstan using NOAA AVHRR satellite data and ground measurements," Remote Sensing, vol. 4, no. 1, pp. 220-246. Zaichun Zhu, Jian Bi, Yaozhong Pan, Sangram Ganguly, Alessandro Anav, Liang Xu, Arindam Samanta, Shilong Piao, Ramakrishna R. Nemani and Ranga B. Myneni (2013). Global Data Sets of Vegetation Leaf Area

  16. A novel sesquiterpene glycoside from Loquat leaf alleviates oleic acid-induced steatosis and oxidative stress in HepG2 cells.

    PubMed

    Jian, Tunyu; Wu, Yuexian; Ding, Xiaoqin; Lv, Han; Ma, Li; Zuo, Yuanyuan; Ren, Bingru; Zhao, Lei; Tong, Bei; Chen, Jian; Li, Weilin

    2018-01-01

    Loquat (Eriobotrya japonica) leaf has displayed beneficial effect on metabolic syndrome. In our previously study, total sesquiterpene glycosides (TSG) isolated from Loquat leaf exhibited therapeutic effect on Non-alcoholic fatty liver disease (NAFLD) in vivo, but the accurate active compound remains unknown. Sesquiterpene glycoside 1 (SG1) is a novel compound, which is exclusively isolated from Loquat leaf, but its biological activity has been rarely reported. The present study was designed to evaluate the pharmacological effect of SG1, the main component of TSG, in oleic acid (OA)-induced HepG2 cell model of NAFLD with its related mechanisms of action. In this study, both SG1 and TSG were found to significantly reduce the lipid deposition in the cell model. They could also decrease total cholesterol (TC), triglyceride (TG) and intracellular free fatty acid (FFA) contents. Compared with OA-treated cells, the superoxide dismutase (SOD) level increased, and the malondialdehyde (MDA) and 4-hydroxynonenal levels respectively decreased after the administration of SG1 or TSG. The high dose of SG1 (140 μg/mL) displayed a similar therapeutic effect as TSG at 200 μg/mL. Both SG1 and TSG were found to suppress the expression of cytochrome P450 2E1 (CYP2E1) and the phosphorylation of c-jun terminal kinase (JNK) and its downstream target c-Jun in OA-treated cell. These results demonstrate again that TSG are probably the main responsible chemical profiles of Loquat leaf for the treatment of NAFLD, for which it can effectively improve OA-induced steatosis and reduce oxidative stress, probably by downregulating of CYP2E1 expression and JNK/c-Jun phosphorylation, while SG1 may be the principle compound. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Bioactive screening and in vitro antioxidant assessment of Nauclea latifolia leaf decoction

    NASA Astrophysics Data System (ADS)

    Iheagwam, Franklyn Nonso; Nsedu, Emmanuel Israel; Kayode, Kazeem Oyindamola; Emiloju, Opeyemi Christianah; Ogunlana, Olubanke Olujoke; Chinedu, Shalom Nwodo

    2018-04-01

    The phytochemical constituents and antioxidant properties of Nauclea latifolia leaf decoction were investigated. Dried leaves were extracted in ethanol. Qualitative and quantitative phytochemical analysis was determined spectrometrically. The antioxidant activities were examined in vitro using 2,2-diphenyl-1-picrylhydrazyl radical, total antioxidant capacity and ferric reducing antioxidant power assays. Phytochemical screening confirmed the presence of flavonoids, alkaloids, anthocyanins, betacyanins, phenols, saponins, terpenoids, cardiac glycosides and quinones. The total lycopene, β-carotene, phenolics, flavonoid and alkaloid content were found to be 0.038 ± 0.01 mg CAE/g, 0.120 ± 0.04 mg CAE/g, 58.08 ± 0.58 mg GAE/g, 10.75 ± 0.17 mg RE/g and 0.32 ± 0.08% respectively. N. latifolia ethanol leaf extract demonstrated effective antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl with an IC50 of 2.58 ± 0.08 mg/mL compared to 0.86 ± 0.02 mg/mL and < 0.01 ± 0.01 mg/mL for butylated hydroxytoluene and ascorbic acid respectively. Total antioxidant capacity and ferric reducing antioxidant power of the extract were 73.81 ± 2.27 and 1314.45 ± 197.64 mg AAE/g respectively. Excellent positive correlations between the phenolic content and antioxidant activities of the extract were observed. The leaf of N. latifolia is of therapeutic value and may be exploited for its rich antioxidant components.

  18. Introgression of genes for cotton leaf curl virus resistance and increased fiber strength from Gossypium stocksii into upland cotton (G. hirsutum).

    PubMed

    Nazeer, W; Ahmad, S; Mahmood, K; Tipu, A L; Mahmood, A; Zhou, B

    2014-02-21

    Cotton leaf curl virus disease is a major hurdle for successful cotton production in Pakistan. There has been considerable economic loss due to this disease during the last decade. It would be desirable to have cotton varieties resistant to this disease. We explored the possibility of transferring virus resistant genes from the wild species Gossypium stocksii into MNH-786, a cultivar of G. hirsutum. Hybridization was done under field condition at the Cotton Research Station, Multan, during 2010-11. Boll shedding was controlled by application of exogenous hormones. F1 seeds were treated with 0.03% colchicine solution for 6 h and germinated. Cytological observations at peak squaring/flowering stage showed that these plants were hexaploid, having 2n = 6x = 78 chromosomes. The F1 plants showed intermediate expression for leaf size, leaf area, petiole length, bracteole number and size, bracteole area, bracteole dentation, flower size, pedicel size, and petal number and size. Moreover it possessed high fiber strength of 54.4 g/tex, which is 54% greater than that of the check variety, i.e. MNH-786 (G. hirsutum). The F1 population did not show any symptom of CLCuVD in the field, tested by grafting with CLCuVD susceptible rootstock (var. S12). We conclude that it is possible to transfer CLCuVD resistance and high fiber strength from G. stocksii to G. hirsutum.

  19. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine T(g)' in pharmaceutical lyophilization.

    PubMed

    Searles, J A; Carpenter, J F; Randolph, T W

    2001-07-01

    In a companion paper we show that the freezing of samples in vials by shelf-ramp freezing results in significant primary drying rate heterogeneity because of a dependence of the ice crystal size on the nucleation temperature during freezing.1 The purpose of this study was to test the hypothesis that post-freezing annealing, in which the product is held at a predetermined temperature for a specified duration, can reduce freezing-induced heterogeneity in sublimation rates. In addition, we test the impact of annealing on primary drying rates. Finally, we use the kinetics of relaxations during annealing to provide a simple measurement of T(g)', the glass transition temperature of the maximally freeze-concentrated amorphous phase, under conditions and time scales most appropriate for industrial lyophilization cycles. Aqueous solutions of hydroxyethyl starch (HES), sucrose, and HES:sucrose were either frozen by placement on a shelf while the temperature was reduced ("shelf-ramp frozen") or by immersion into liquid nitrogen. Samples were then annealed for various durations over a range of temperatures and partially lyophilized to determine the primary drying rate. The morphology of fully dried liquid nitrogen-frozen samples was examined using scanning electron microscopy. Annealing reduced primary drying rate heterogeneity for shelf-ramp frozen samples, and resulted in up to 3.5-fold increases in the primary drying rate. These effects were due to increased ice crystal sizes, simplified amorphous structures, and larger and more numerous holes on the cake surface of annealed samples. Annealed HES samples dissolved slightly faster than their unannealed counterparts. Annealing below T(g)' did not result in increased drying rates. We present a simple new annealing-lyophilization method of T(g)' determination that exploits this phenomenon. It can be carried out with a balance and a freeze-dryer, and has the additional advantage that a large number of candidate formulations can

  20. 7 CFR 28.511 - Leaf Grade No. 1.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf Grade No. 1. 28.511 Section 28.511 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.511 Leaf Grade No. 1. Leaf grade No. 1 shall be American Pima cotton which in...

  1. 7 CFR 28.511 - Leaf Grade No. 1.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf Grade No. 1. 28.511 Section 28.511 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.511 Leaf Grade No. 1. Leaf grade No. 1 shall be American Pima cotton which in...

  2. 7 CFR 28.511 - Leaf Grade No. 1.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf Grade No. 1. 28.511 Section 28.511 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.511 Leaf Grade No. 1. Leaf grade No. 1 shall be American Pima cotton which in...

  3. 7 CFR 28.511 - Leaf Grade No. 1.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf Grade No. 1. 28.511 Section 28.511 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.511 Leaf Grade No. 1. Leaf grade No. 1 shall be American Pima cotton which in...

  4. 7 CFR 28.511 - Leaf Grade No. 1.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf Grade No. 1. 28.511 Section 28.511 Agriculture..., TESTING, AND STANDARDS Standards Official Cotton Standards of the United States for the Leaf Grade of American Pima Cotton § 28.511 Leaf Grade No. 1. Leaf grade No. 1 shall be American Pima cotton which in...

  5. Intraspecific Relationships among Wood Density, Leaf Structural Traits and Environment in Four Co-Occurring Species of Nothofagus in New Zealand

    PubMed Central

    Richardson, Sarah J.; Allen, Robert B.; Buxton, Rowan P.; Easdale, Tomás A.; Hurst, Jennifer M.; Morse, Christopher W.; Smissen, Rob D.; Peltzer, Duane A.

    2013-01-01

    Plant functional traits capture important variation in plant strategy and function. Recent literature has revealed that within-species variation in traits is greater than previously supposed. However, we still have a poor understanding of how intraspecific variation is coordinated among different traits, and how it is driven by environment. We quantified intraspecific variation in wood density and five leaf traits underpinning the leaf economics spectrum (leaf dry matter content, leaf mass per unit area, size, thickness and density) within and among four widespread Nothofagus tree species in southern New Zealand. We tested whether intraspecific relationships between wood density and leaf traits followed widely reported interspecific relationships, and whether variation in these traits was coordinated through shared responses to environmental factors. Sample sites varied widely in environmental variables, including soil fertility (25–900 mg kg–1 total P), precipitation (668–4875 mm yr–1), temperature (5.2–12.4 °C mean annual temperature) and latitude (41–46 °S). Leaf traits were strongly correlated with one another within species, but not with wood density. There was some evidence for a positive relationship between wood density and leaf tissue density and dry matter content, but no evidence that leaf mass or leaf size were correlated with wood density; this highlights that leaf mass per unit area cannot be used as a surrogate for component leaf traits such as tissue density. Trait variation was predicted by environmental factors, but not consistently among different traits; e.g., only leaf thickness and leaf density responded to the same environmental cues as wood density. We conclude that although intraspecific variation in wood density and leaf traits is strongly driven by environmental factors, these responses are not strongly coordinated among functional traits even across co-occurring, closely-related plant species. PMID:23527041

  6. BOREAS TE-9 NSA Leaf Chlorophyll Density

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Sy, Mikailou

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. These data were collected to help provide an explanation of potential seasonal and spatial changes of leaf pigment properties in boreal forest species at the NSA. At different dates (FFC-Winter, FFC-Thaw, IFC-1, IFC-2, and IMC-3), foliage samples were collected from the upper third of the canopy for five NSA sites (YJP, OJP, OBS, UBS, and OA) near Thompson, Manitoba. Subsamples of 100 needles for black spruce, 20 needles for jack pine, and single leaf for trembling aspen were cut into pieces and immersed in a 20-mL DMF aliquot in a Nalgene test tube. The extracted foliage materials were then oven-dried at 68 C for 48 hours and weighed. Extracted leaf dry weight was converted to a total leaf area basis to express the chlorophyll content in mg/sq cm of total leaf area. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  7. Construction costs, payback times, and the leaf economics of carnivorous plants.

    PubMed

    Karagatzides, Jim D; Ellison, Aaron M

    2009-09-01

    Understanding how different plant species and functional types "invest" carbon and nutrients is a major goal of plant ecologists. Two measures of such investments are "construction costs" (carbon needed to produce each gram of tissue) and associated "payback times" for photosynthesis to recover construction costs. These measurements integrate among traits used to assess leaf-trait scaling relationships. Carnivorous plants are model systems for examining mechanisms of leaf-trait coordination, but no studies have measured simultaneously construction costs of carnivorous traps and their photosynthetic rates to determine payback times of traps. We measured mass-based construction costs (CC(mass)) and photosynthesis (A(mass)) for traps, leaves, roots, and rhizomes of 15 carnivorous plant species grown under greenhouse conditions. There were highly significant differences among species in CC(mass) for each structure. Mean CC(mass) of carnivorous traps (1.14 ± 0.24 g glucose/g dry mass) was significantly lower than CC(mass) of leaves of 267 noncarnivorous plant species (1.47 ± 0.17), but all carnivorous plants examined had very low A(mass) and thus, long payback times (495-1551 h). Our results provide the first clear estimates of the marginal benefits of botanical carnivory and place carnivorous plants at the "slow and tough" end of the universal spectrum of leaf traits.

  8. A guanine insert in OsBBS1 leads to early leaf senescence and salt stress sensitivity in rice (Oryza sativa L.).

    PubMed

    Zeng, Dong-Dong; Yang, Cheng-Cong; Qin, Ran; Alamin, Md; Yue, Er-Kui; Jin, Xiao-Li; Shi, Chun-Hai

    2018-06-01

    A rice receptor-like kinase gene OSBBS1/OsRLCK109 was identified; this gene played vital roles in leaf senescence and the salt stress response. Early leaf senescence can cause negative effects on rice yield, but the underlying molecular regulation is not fully understood. bilateral blade senescence 1 (bbs1), an early leaf senescence mutant with a premature senescence phenotype that occurs mainly performing at the leaf margins, was isolated from a rice mutant population generated by ethylmethane sulfonate (EMS) treatment. The mutant showed premature leaf senescence beginning at the tillering stage and exhibited severe symptoms at the late grain-filling stage. bbs1 showed accelerated dark-induced leaf senescence. The OsBBS1 gene was cloned by a map-based cloning strategy, and a guanine (G) insertion was found in the first exon of LOC_Os03g24930. This gene encodes a receptor-like cytoplasmic kinase and was named OsRLCK109 in a previous study. Transgenic LOC_Os03g24930 knockout plants generated by a CRISPR/Cas9 strategy exhibited similar early leaf senescence phenotypes as did the bbs1 mutant, which confirmed that LOC_Os03g24930 was the OsBBS1 gene. OsBBS1/OsRLCK109 was expressed in all detected tissues and was predominantly expressed in the main vein region of mature leaves. The expression of OsBBS1 could be greatly induced by salt stress, and the bbs1 mutant exhibited hypersensitivity to salt stress. In conclusion, this is the first identification of OsRLCKs participating in leaf senescence and playing critical roles in the salt stress response in rice (Oryza sativa L.).

  9. Leaf Area Adjustment As an Optimal Drought-Adaptation Strategy

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Beyer, F.; Thompson, S. E.; Vico, G.; Weih, M.

    2014-12-01

    Leaf phenology plays a major role in land-atmosphere mass and energy exchanges. Much work has focused on phenological responses to light and temperature, but less to leaf area changes during dry periods. Because the duration of droughts is expected to increase under future climates in seasonally-dry as well as mesic environments, it is crucial to (i) predict drought-related phenological changes and (ii) to develop physiologically-sound models of leaf area dynamics during dry periods. Several optimization criteria have been proposed to model leaf area adjustment as soil moisture decreases. Some theories are based on the plant carbon (C) balance, hypothesizing that leaf area will decline when instantaneous net photosynthetic rates become negative (equivalent to maximization of cumulative C gain). Other theories draw on hydraulic principles, suggesting that leaf area should adjust to either maintain a constant leaf water potential (isohydric behavior) or to avoid leaf water potentials with negative impacts on photosynthesis (i.e., minimization of water stress). Evergreen leaf phenology is considered as a control case. Merging these theories into a unified framework, we quantify the effect of phenological strategy and climate forcing on the net C gain over the entire growing season. By accounting for the C costs of leaf flushing and the gains stemming from leaf photosynthesis, this metric assesses the effectiveness of different phenological strategies, under different climatic scenarios. Evergreen species are favored only when the dry period is relatively short, as they can exploit most of the growing season, and only incur leaf maintenance costs during the short dry period. In contrast, deciduous species that lower maintenance costs by losing leaves are advantaged under drier climates. Moreover, among drought-deciduous species, isohydric behavior leads to lowest C gains. Losing leaves gradually so as to maintain a net C uptake equal to zero during the driest period in

  10. Growth form and seasonal variation in leaf gas exchange of Colophospermum mopane savanna trees in northwest Botswana.

    PubMed

    Veenendaal, Elmar M; Mantlana, Khanyisa B; Pammenter, Norman W; Weber, Piet; Huntsman-Mapila, Phillipa; Lloyd, Jon

    2008-03-01

    We investigated differences in physiological and morphological traits between the tall and short forms of mopane (Colophospermum mopane (Kirk ex Benth.) Kirk ex J. Léonard) trees growing near Maun, Botswana on a Kalahari sandveld overlying an impermeable calcrete duricrust. We sought to determine if differences between the two physiognomic types are attributable to the way they exploit available soil water. The tall form, which was located on deeper soil than the short form (5.5 versus 1.6 m), had a lower leaf:fine root biomass ratio (1:20 versus 1:6), but a similar leaf area index (0.9-1.0). Leaf nitrogen concentrations varied between 18 and 27 mg g(-1) and were about 20% higher in the tall form than in the short form. Maximum net assimilation rates (A sat) occurred during the rainy seasons (March-April 2000 and January-February 2001) and were similar in the tall and short forms (15-22 micromol m(-2) s(-1)) before declining to less than 10 micromol m(-2) s(-1) at the end of the rainy season in late April. As the dry season progressed, A sat, soil water content, predawn leaf water potential (Psi pd) and leaf nitrogen concentration declined rapidly. Before leaf abscission, Psi pd was more negative in the short form (-3.4 MPa) than in the tall form (-2.7 MPa) despite the greater availability of soil water beneath the short form trees. This difference appeared attributable to differences in root depth and density between the physiognomic types. Stomatal regulation of water use and carbon assimilation differed between years, with the tall form having a consistently more conservative water-use strategy as the dry season progressed than the short form.

  11. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza.

    PubMed

    Xiong, Dongliang; Flexas, Jaume; Yu, Tingting; Peng, Shaobing; Huang, Jianliang

    2017-01-01

    Leaf hydraulic conductance (K leaf ) and mesophyll conductance (g m ) both represent major constraints to photosynthetic rate (A), and previous studies have suggested that K leaf and g m is correlated in leaves. However, there is scarce empirical information about their correlation. In this study, K leaf , leaf hydraulic conductance inside xylem (K x ), leaf hydraulic conductance outside xylem (K ox ), A, stomatal conductance (g s ), g m , and anatomical and structural leaf traits in 11 Oryza genotypes were investigated to elucidate the correlation of H 2 O and CO 2 diffusion inside leaves. All of the leaf functional and anatomical traits varied significantly among genotypes. K leaf was not correlated with the maximum theoretical stomatal conductance calculated from stomatal dimensions (g smax ), and neither g s nor g smax were correlated with K x . Moreover, K ox was linearly correlated with g m and both were closely related to mesophyll structural traits. These results suggest that K leaf and g m are related to leaf anatomical and structural features, which may explain the mechanism for correlation between g m and K leaf . © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Leaf morphophysiology of a Neotropical mistletoe is shaped by seasonal patterns of host leaf phenology.

    PubMed

    Scalon, Marina Corrêa; Rossatto, Davi Rodrigo; Domingos, Fabricius Maia Chaves Bicalho; Franco, Augusto Cesar

    2016-04-01

    Several mistletoe species are able to grow and reproduce on both deciduous and evergreen hosts, suggesting a degree of plasticity in their ability to cope with differences in intrinsic host functions. The aim of this study was to investigate the influence of host phenology on mistletoe water relations and leaf gas exchange. Mistletoe Passovia ovata parasitizing evergreen (Miconia albicans) hosts and P. ovata parasitizing deciduous (Byrsonima verbascifolia) hosts were sampled in a Neotropical savanna. Photosynthetic parameters, diurnal cycles of stomatal conductance, pre-dawn and midday leaf water potential, and stomatal anatomical traits were measured during the peak of the dry and wet seasons, respectively. P. ovata showed distinct water-use strategies that were dependent on host phenology. For P. ovata parasitizing the deciduous host, water use efficiency (WUE; ratio of photosynthetic rate to transpirational water loss) was 2-fold lower in the dry season than in the wet season; in contrast, WUE was maintained at the same level during the wet and dry seasons in P. ovata parasitizing the evergreen host. Generally, mistletoe and host diurnal cycles of stomatal conductance were linked, although there were clear differences in leaf water potential, with mistletoe showing anisohydric behaviour and the host showing isohydric behaviour. Compared to mistletoes attached to evergreen hosts, those parasitizing deciduous hosts had a 1.4-fold lower stomatal density and 1.2-fold wider stomata on both leaf surfaces, suggesting that the latter suffered less intense drought stress. This is the first study to show morphophysiological differences in the same mistletoe species parasitizing hosts of different phenological groups. Our results provide evidence that phenotypical plasticity (anatomical and physiological) might be essential to favour the use of a greater range of hosts.

  13. [Biological contamination by micromycetes in dried Boletus edulis: research of aflatoxin B1, B2 G1, G2 and ochratoxin A].

    PubMed

    Lorini, C; Rossetti, F; Palazzoni, S; Comodo, N; Bonaccorsi, G

    2008-01-01

    Aim of this survey is to identify those filamentous fungi which parasite Boletus edulis and its group and check the potential presence of secondary metabolites, specifically aflatoxin B1, total aflatoxins and ochratoxin A, in order to assess the risk to consumers' health. Forty samples of dried Boletus edulis, collected by two food industries which distribute the product in many Italian regions, have been analysed. The sampling plan has been conducted from November 2005 to March 2006, collecting 50 g from each commercial category of dried Boletus edulis available in the factory at the time of sampling. All the samples have been tested by visual macroscopic and stereoscopic assays; for some samples--those referred to commercial category presumably at higher risk--we have performed cultural assays as well, typization of isolated micromycetes, extraction and quantification of aflatoxins and ochratoxin A. Mycotoxin detection has been made by HPLC, using the UNI EN 14123 and UNI EN 14132 standard methods, respectively applied to aflatoxins determination in peanuts, pistachios, figs and paprika and to ochratoxin A in barley and coffee. Non pathogenic micromycetes, common in food products, have been frequently observed in cultural assays, while Aspergillus flavus and Aspergillus niger have been found in some samples. However the concentration of aflatoxins was always under the quantification limit. The survey confirm that, if the cold chain is kept throughout the process and the distribution, Boletus edulis and analogue mycetes are not a favourable substratum for the growth and the development of moulds.

  14. 21 CFR 526.1696c - Penicillin G procaine-dihydrostreptomycin sulfate for intramammary infusion (dry cows).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... for intramammary infusion (dry cows). 526.1696c Section 526.1696c Food and Drugs FOOD AND DRUG... infusion (dry cows). (a) Specifications. Each 10 milliliters of suspension contains penicillin G procaine....200 and 556.510 of this chapter. (d) Conditions of use. Dairy cows—(1) Amount. One syringe per quarter...

  15. The Influence of Leaf Fall and Organic Carbon Availability on Nitrogen Cycling in a Headwater Stream

    NASA Astrophysics Data System (ADS)

    Thomas, S. A.; Kristin, A.; Doyle, B.; Goodale, C. L.; Gurwick, N. P.; Lepak, J.; Kulkari, M.; McIntyre, P.; McCalley, C.; Raciti, S.; Simkin, S.; Warren, D.; Weiss, M.

    2005-05-01

    The study of allochthonous carbon has a long and distinguished history in stream ecology. Despite this legacy, relatively little is known regarding the influence of leaf litter on nutrient dynamics. We conducted 15N-NO3 tracer additions to a headwater stream in upstate New York before and after autumn leaf fall to assess the influence of leaf litter on nitrogen spiraling. In addition, we amended the stream with labile dissolved organic carbon (as acetate) midway through each experiment to examine whether organic carbon availability differentially stimulated nitrogen cycling. Leaf standing stocks increased from 53 to 175 g dry mass m-2 and discharge more than tripled (6 to 20 L s-1) between the pre- and post-leaf fall period. In contrast, nitrate concentration fell from approximately 50 to less then 10 ug L-1. Despite higher discharge, uptake length was shorter following leaf fall under both ambient (250 and 72 m, respectively) and DOC amended (125 and 45 m) conditions. Uptake velocity increased dramatically following leaf fall, despite a slight decline in the areal uptake rate. Dissolved N2 gas samples were also collected to estimate denitrification rates under each experimental condition. The temporal extent of increased nitrogen retention will also be explored.

  16. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.

    PubMed

    Sack, Lawren; Scoffoni, Christine; John, Grace P; Poorter, Hendrik; Mason, Chase M; Mendez-Alonzo, Rodrigo; Donovan, Lisa A

    2013-10-01

    Leaf vein traits are implicated in the determination of gas exchange rates and plant performance. These traits are increasingly considered as causal factors affecting the 'leaf economic spectrum' (LES), which includes the light-saturated rate of photosynthesis, dark respiration, foliar nitrogen concentration, leaf dry mass per area (LMA) and leaf longevity. This article reviews the support for two contrasting hypotheses regarding a key vein trait, vein length per unit leaf area (VLA). Recently, Blonder et al. (2011, 2013) proposed that vein traits, including VLA, can be described as the 'origin' of the LES by structurally determining LMA and leaf thickness, and thereby vein traits would predict LES traits according to specific equations. Careful re-examination of leaf anatomy, published datasets, and a newly compiled global database for diverse species did not support the 'vein origin' hypothesis, and moreover showed that the apparent power of those equations to predict LES traits arose from circularity. This review provides a 'flux trait network' hypothesis for the effects of vein traits on the LES and on plant performance, based on a synthesis of the previous literature. According to this hypothesis, VLA, while virtually independent of LMA, strongly influences hydraulic conductance, and thus stomatal conductance and photosynthetic rate. We also review (i) the specific physiological roles of VLA; (ii) the role of leaf major veins in influencing LES traits; and (iii) the role of VLA in determining photosynthetic rate per leaf dry mass and plant relative growth rate. A clear understanding of leaf vein traits provides a new perspective on plant function independently of the LES and can enhance the ability to explain and predict whole plant performance under dynamic conditions, with applications towards breeding improved crop varieties.

  17. Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis

    PubMed Central

    Niinemets, Ülo

    2018-01-01

    Within-canopy variation in leaf structural and photosynthetic characteristics is a major means by which whole canopy photosynthesis is maximized at given total canopy nitrogen. As key acclimatory modifications, leaf nitrogen content (NA) and photosynthetic capacity (AA) per unit area increase with increasing light availability in the canopy and these increases are associated with increases in leaf dry mass per unit area (MA) and/or nitrogen content per dry mass and/or allocation. However, leaf functional characteristics change with increasing leaf age during leaf development and aging, but the importance of these alterations for within-canopy trait gradients is unknown. I conducted a meta-analysis based on 71 canopies that were sampled at different time periods or, in evergreens, included measurements for different-aged leaves to understand how within-canopy variations in leaf traits (trait plasticity) depend on leaf age. The analysis demonstrated that in evergreen woody species, MA and NA plasticity decreased with increasing leaf age, but the change in AA plasticity was less suggesting a certain re-acclimation of AA to altered light. In deciduous woody species, MA and NA gradients in flush-type species increased during leaf development and were almost invariable through the rest of the season, while in continuously leaf-forming species, trait gradients increased constantly with increasing leaf age. In forbs, NA plasticity increased, while in grasses, NA plasticity decreased with increasing leaf age, reflecting life form differences in age-dependent changes in light availability and in nitrogen resorption for growth of generative organs. Although more work is needed to improve the coverage of age-dependent plasticity changes in some plant life forms, I argue that the age-dependent variation in trait plasticity uncovered in this study is large enough to warrant incorporation in simulations of canopy photosynthesis through the growing period. PMID:27033356

  18. Leaf Photosynthesis and Respiration of High CO2-Grown Tobacco Plants Selected for Survival under CO2 Compensation Point Conditions 1

    PubMed Central

    Delgado, Esteban; Azcón-Bieto, Joaquim; Aranda, Xavier; Palazón, Javier; Medrano, Hipólito

    1992-01-01

    Four self-pollinated, doubled-haploid tobacco, (Nicotiana tabacum L.) lines (SP422, SP432, SP435, and SP451), selected as haploids by survival in a low CO2 atmosphere, and the parental cv Wisconsin-38 were grown from seed in a growth room kept at high CO2 levels (600-700 parts per million). The selected plants were much larger (especially SP422, SP432, and SP451) than Wisconsin-38 nine weeks after planting. The specific leaf dry weight and the carbon (but not nitrogen and sulfur) content per unit area were also higher in the selected plants. However, the chlorophyll, carotenoid, and alkaloid contents and the chlorophyll a/b ratio varied little. The net CO2 assimilation rate per unit area measured in the growth room at high CO2 was not higher in the selected plants. The CO2 assimilation rate versus intercellular CO2 curve and the CO2 compensation point showed no substantial differences among the different lines, even though these plants were selected for survival under CO2 compensation point conditions. Adult leaf respiration rates were similar when expressed per unit area but were lower in the selected lines when expressed per unit dry weight. Leaf respiration rates were negatively correlated with specific leaf dry weight and with the carbon content per unit area and were positively correlated with nitrogen and sulfur content of the dry matter. The alternative pathway was not involved in respiration in the dark in these leaves. The better carbon economy of tobacco lines selected for low CO2 survival was not apparently related to an improvement of photosynthesis rate but could be related, at least partially, to a significantly reduced respiration (mainly cytochrome pathway) rate per unit carbon. ImagesFigure 1 PMID:16668769

  19. Tadpoles of Early Breeding Amphibians are Negatively Affected by Leaf Litter From Invasive Chinese Tallow Trees

    NASA Astrophysics Data System (ADS)

    Leonard, N. E.

    2005-05-01

    As wetlands are invaded by Chinese tallow trees (Triadica sebifera), native trees are displaced and detrital inputs to amphibian breeding ponds are altered. I used a mesocosm experiment to examine the effect of Chinese tallow leaf litter on the survival to, size at, and time to metamorphosis of amphibian larvae. Fifty 1000-L cattle watering tanks were treated with 1500 g dry weight of one of five leaf litter treatments: Chinese tallow, laurel oak (Quercus laurifolia), water tupelo (Nyssa aquatica), slash pine (Pinus elliottii), or a 3:1:1:1 mixture. Each tank received 45 tadpoles of Pseudacris feriarum, Bufo terrestris, and Hyla cinerea in sequence according to their natural breeding phonologies. Every Pseudacris feriarum and Bufo terrestris tadpole exposed to Chinese tallow died prior to metamorphosis. Hyla cinerea survival in tanks with tallow-only was significantly lower than that observed for all other leaf treatments. Hyla cinerea tadpoles from tallow-only and mixed-leaf treatments were larger at metamorphosis and transformed faster than those in tanks with native leaves only. These results suggest that Chinese tallow leaf litter may negatively affect tadpoles of early breeding frogs and that Chinese tallow invasion may change the structure of amphibian communities in temporary ponds.

  20. Leaf Protein and Mineral Concentrations across the "Miracle Tree" Genus Moringa.

    PubMed

    Olson, Mark E; Sankaran, Renuka P; Fahey, Jed W; Grusak, Michael A; Odee, David; Nouman, Wasif

    2016-01-01

    The moringa tree Moringa oleifera is a fast-growing, drought-resistant tree cultivated across the lowland dry tropics worldwide for its nutritious leaves. Despite its nutritious reputation, there has been no systematic survey of the variation in leaf nutritional quality across M. oleifera grown worldwide, or of the other species of the genus. To guide informed use of moringa, we surveyed protein, macro-, and micro- nutrients across 67 common garden samples of 12 Moringa taxa, including 23 samples of M. oleifera. Moringa oleifera, M. concanensis, M. stenopetala, an M. concanensis X oleifera hybrid, and M. longituba were highest in protein, with M. ruspoliana having the highest calcium levels. A protein-dry leaf mass tradeoff may preclude certain breeding possibilities, e.g. maximally high protein with large leaflets. These findings identify clear priorities and limitations for improved moringa varieties with traits such as high protein, calcium, or ease of preparation.

  1. Artemisia annua dried leaf tablets treated malaria resistant to ACT and i.v. artesunate: Case reports.

    PubMed

    Daddy, Nsengiyumva Bati; Kalisya, Luc Malemo; Bagire, Pascal Gisenya; Watt, Robert L; Towler, Melissa J; Weathers, Pamela J

    2017-08-15

    Dried leaf Artemisia annua (DLA) has shown efficacy against Plasmodium sp. in rodent studies and in small clinical trials. Rodent malaria also showed resiliency against the evolution of artemisinin drug resistance. This is a case report of a last resort treatment of patients with severe malaria who were responding neither to artemisinin combination therapy (ACT) nor i.v. artesunate. Of many patients treated with ACTs and i.v. artesunate during the 6 mon study period, 18 did not respond and were subsequently treated with DLA Artemisia annua. Patients were given a dose of 0.5g DLA per os, twice daily for 5d. Total adult delivered dose of artemisinin was 55mg. Dose was reduced for body weight under 30kg. Clinical symptoms, e.g. fever, coma etc., and parasite levels in thick blood smears were tracked. Patients were declared cured and released from hospital when parasites were microscopically undetectable and clinical symptoms fully subsided. All patients were previously treated with Coartem® provided through Santé Rurale (SANRU) and following the regimen prescribed by WHO. Of 18 ACT-resistant severe malaria cases compassionately treated with DLA, all fully recovered. Of the 18, this report details two pediatric cases. Successful treatment of all 18 ACT-resistant cases suggests that DLA should be rapidly incorporated into the antimalarial regimen for Africa and possibly wherever else ACT resistance has emerged. Copyright © 2017. Published by Elsevier GmbH.

  2. Determining the K coefficient to leaf area index estimations in a tropical dry forest

    NASA Astrophysics Data System (ADS)

    Magalhães, Sarah Freitas; Calvo-Rodriguez, Sofia; do Espírito Santo, Mário Marcos; Sánchez Azofeifa, Gerardo Arturo

    2018-03-01

    Vegetation indices are useful tools to remotely estimate several important parameters related to ecosystem functioning. However, improving and validating estimations for a wide range of vegetation types are necessary. In this study, we provide a methodology for the estimation of the leaf area index (LAI) in a tropical dry forest (TDF) using the light diffusion through the canopy as a function of the successional stage. For this purpose, we estimated the K coefficient, a parameter that relates the normalized difference vegetation index (NDVI) to LAI, based on photosynthetically active radiation (PAR) and solar radiation. The study was conducted in the Mata Seca State Park, in southeastern Brazil, from 2012 to 2013. We defined four successional stages (very early, early, intermediate, and late) and established one optical phenology tower at one plot of 20 × 20 m per stage. Towers measured the incoming and reflected solar radiation and PAR for NDVI calculation. For each plot, we established 24 points for LAI sampling through hemispherical photographs. Because leaf cover is highly seasonal in TDFs, we determined ΔK (leaf growth phase) and K max (leaf maturity phase). We detected a strong correlation between NDVI and LAI, which is necessary for a reliable determination of the K coefficient. Both NDVI and LAI varied significantly between successional stages, indicating sensitivity to structural changes in forest regeneration. Furthermore, the K values differed between successional stages and correlated significantly with other environmental variables such as air temperature and humidity, fraction of absorbed PAR, and soil moisture. Thus, we established a model based on spectral properties of the vegetation coupled with biophysical characteristics in a TDF that makes possible to estimate LAI from NDVI values. The application of the K coefficient can improve remote estimations of forest primary productivity and gases and energy exchanges between vegetation and atmosphere

  3. Leaf Shrinkage with Dehydration: Coordination with Hydraulic Vulnerability and Drought Tolerance1[C][W][OPEN

    PubMed Central

    Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren

    2014-01-01

    Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (Kleaf). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in Kleaf at declining leaf water potential (Ψleaf). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of Kleaf with mild dehydration (i.e. the initial slope of the Kleaf versus Ψleaf curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψleaf curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions. PMID:24306532

  4. Allelopathic potential of leaf and seed of Mucuna bracteata DC. ex Kurz on Eleusine indica (L.) gaertn

    NASA Astrophysics Data System (ADS)

    Halimshah, Syamimi; Ismail B., S.; Ahmad, Wan Juliana Wan

    2015-09-01

    A study was conducted to determine the allelopathic potential of leaf and seed of Mucuna bracteata on the growth of E. indica through aqueous extract and debris (incorporated into the soil) experiment. Three concentrations of leaf and seed aqueous extract (16.7, 33.3 and 66.7 g/L) and debris (2.5, 5.0 and 10.0 g/500 g soil) of M. bracteata were used in the experiment. Complete randomized design (CRD) with three replications was applied in this experiment which was conducted twice. Results demonstrated that the leaf and seed extracts of M. bracteata exhibited higher suppression effect on the growth and germination of E. indica as the concentration increased. The leaf and seed extracts significantly reduced all measured parameters at all concentrations except for the shoot length and germination of E. indica by seed extract at 16.7 g/L which recorded insignificant reduction by 40.5% and 4% respectively. The leaf and seed debris significantly reduced the root length of E. indica at all treatments. Seed debris also showed significant reduction on the germination at all treatments and other seedling growth parameters (shoot length, fresh weight and dry weight) at 2.5 and 10.0 g/500 g soil. Meanwhile, the leaf debris demonstrated stimulation effect on the seedling growth parameters. As a whole, the leaf showed higher suppression effect in aqueous extract experiment while the seed recorded higher suppression effect in the debris experiment. Further studies need to be conducted to investigate the type of inhibition mechanism involved in both experiments.

  5. Optimization and characterization of spray-dried IgG formulations: a design of experiment approach.

    PubMed

    Faghihi, Homa; Najafabadi, Abdolhosein Rouholamini; Vatanara, Alireza

    2017-10-24

    The purpose of the present study is to optimize a spray-dried formulation as a model antibody regarding stability and aerodynamic property for further aerosol therapy of this group of macromolecules. A three-factor, three-level, Box-Behnken design was employed milligrams of Cysteine (X 1 ), Trehalose (X 2 ), and Tween 20 (X 3 ) as independent variables. The dependent variables were quantified and the optimized formulation was prepared accordingly. SEC-HPLC and FTIR-spectroscopy were conducted to evaluate the molecular and structural status of spray-dried preparations. Particle characterization of optimized sample was performed with the aid of DSC, SEM, and TSI examinations. Experimental responses of a total of 17 formulations resulted in yield values, (Y 1 ), ranging from 21.1 ± 0.2 to 40.2 ± 0.1 (%); beta-sheet content, (Y 2 ), from 66.22 ± 0.19 to 73.78 ± 0.26 (%); amount of aggregation following process, (Y 3 ), ranging from 0.11 ± 0.03 to 0.95 ± 0.03 (%); and amount of aggregation upon storage, (Y 4 ), from 0.81 ± 0.01 to 3.13 ± 0.64 (%) as dependent variables. Results-except for those of the beta sheet content-were fitted to quadratic models describing the inherent relationship between main factors. Co-application of Cysteine and Tween 20 preserved antibody molecules from molecular degradation and improved immediate and accelerated stability of spry-dried antibodies. Validation of the optimization study indicated high degree of prognostic ability of response surface methodology in preparation of stable spray-dried IgG. Graphical abstract Spray drying of IgG in the presence of Trehalose, Cysteine and Tween 20.

  6. Response of leaf and whole-tree canopy conductance to wet conditions within a mature premontane tropical forest in Costa Rica

    NASA Astrophysics Data System (ADS)

    Aparecido, L. M. T.; Miller, G. R.; Cahill, A. T.; Andrews, R.; Moore, G. W.

    2017-12-01

    Tropical water recycling and carbon storage are dependent on canopy-atmosphere dynamics, which are substantially altered when rainfall occurs. However, models only indirectly consider leaf wetness as a driving factor for carbon and water fluxes. To better understand how leaf wetness condition affects stomatal and canopy conductance to water vapor, we tested a set of widely used models for a mature tropical forest of Costa Rica with prolonged periods of wet leaves. We relied on a year of sap flux measurements from 26 trees to estimate transpiration (Ec) and multiple micrometeorological profile measurements from a 40-m tower to be used in the models. Stomatal conductance (gs) models included those proposed by Jones (1992) (gs-J), using shaded and sunlit leaf temperatures, and Monteith and Unsworth (1990) (gs-MU), using air temperature. Canopy conductance (gc) models included those proposed by McNaughton and Jarvis (1983) (gc-MJ) and Penman-Monteith (gc-PM). Between gs and gc, gc had the largest differences within models during dry periods; while estimates were most similar during wet periods. Yet, all gc and gs estimates on wet days were at least as high as on dry days, indicative of their insensitivity to leaf wetness. Shaded leaf gs averaged 26% higher than in sunlit leaves. Additionally, the highly decoupled interface (Ω>0.90) reflected multiple environmental drivers that may influence conductance (e.g. vapor pressure deficit and leaf temperature). This was also seen through large shifts of diurnal peaks of gs and gc (up to 2 hours earlier than Ec) associated with the daily variation of air temperature and net radiation. Overall, this study led to three major insights: 1) gc and gs cannot accurately be predicted under wet conditions without accounting for leaf wetness, 2) even during dry days, low vapor pressure deficits interfere with model accuracy, and 3) intermittent rain during semi-dry and wet days cause large fluctuations in gc and gs estimates. Thus, it

  7. Protective effect of dry olive leaf extract in adrenaline induced DNA damage evaluated using in vitro comet assay with human peripheral leukocytes.

    PubMed

    Cabarkapa, Andrea; Zivković, Lada; Zukovec, Dijana; Djelić, Ninoslav; Bajić, Vladan; Dekanski, Dragana; Spremo-Potparević, Biljana

    2014-04-01

    Excessive release of stress hormone adrenaline is accompanied by generation of reactive oxygen species which may cause disruption of DNA integrity leading to cancer and age-related disorders. Phenolic-rich plant product dry olive leaf extract (DOLE) is known to modulate effects of various oxidants in human cells. The aim was to evaluate the effect of commercial DOLE against adrenaline induced DNA damage in human leukocytes by using comet assay. Peripheral blood leukocytes from 6 healthy subjects were treated in vitro with three final concentrations of DOLE (0.125, 0.5, and 1mg/mL) for 30 min at 37°C under two different protocols, pretreatment and post-treatment. Protective effect of DOLE was assessed from its ability to attenuate formation of DNA lesions induced by adrenaline. Compared to cells exposed only to adrenaline, DOLE displayed significant reduction (P<0.001) of DNA damage at all three concentrations and under both experimental protocols. Pearson correlation analysis revealed a significant positive association between DOLE concentration and leukocytes DNA damage (P<0.05). Antigenotoxic effect of the extract was more pronounced at smaller concentrations. Post-treatment with 0.125 mg/mL DOLE was the most effective against adrenaline genotoxicity. Results indicate genoprotective and antioxidant properties in dry olive leaf extract, strongly supporting further explorations of its underlying mechanisms of action. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Contrasting patterns of leaf trait variation among and within species during tropical dry forest succession in Costa Rica.

    PubMed

    Derroire, Géraldine; Powers, Jennifer S; Hulshof, Catherine M; Cárdenas Varela, Luis E; Healey, John R

    2018-01-10

    A coordinated response to environmental drivers amongst individual functional traits is central to the plant strategy concept. However, whether the trait co-ordination observed at the global scale occurs at other ecological scales (especially within species) remains an open question. Here, for sapling communities of two tropical dry forest types in Costa Rica, we show large differences amongst traits in the relative contribution of species turnover and intraspecific variation to their directional changes in response to environmental changes along a successional gradient. We studied the response of functional traits associated with the leaf economics spectrum and drought tolerance using intensive sampling to analyse inter- and intra-specific responses to environmental changes and ontogeny. Although the overall functional composition of the sapling communities changed during succession more through species turnover than through intraspecific trait variation, their relative contributions differed greatly amongst traits. For instance, community mean specific leaf area changed mostly due to intraspecific variation. Traits of the leaf economics spectrum showed decoupled responses to environmental drivers and ontogeny. These findings emphasise how divergent ecological mechanisms combine to cause great differences in changes of individual functional traits over environmental gradients and ecological scales.

  9. Leaf surface traits and water storage retention affect photosynthetic responses to leaf surface wetness among wet tropical forest and semiarid savanna plants.

    PubMed

    Aparecido, Luiza M T; Miller, Gretchen R; Cahill, Anthony T; Moore, Georgianne W

    2017-10-01

    While it is reasonable to predict that photosynthetic rates are inhibited while leaves are wet, leaf gas exchange measurements during wet conditions are challenging to obtain due to equipment limitations and the complexity of canopy-atmosphere interactions in forested environments. Thus, the objective of this study was to evaluate responses of seven tropical and three semiarid savanna plant species to simulated leaf wetness and test the hypotheses that (i) leaf wetness reduces photosynthetic rates (Anet), (ii) leaf traits explain different responses among species and (iii) leaves from wet environments are better adapted for wet leaf conditions than those from drier environments. The two sites were a tropical rainforest in northern Costa Rica with ~4200 mm annual rainfall and a savanna in central Texas with ~1100 mm. Gas exchange measurements were collected under dry and wet conditions on five sun-exposed leaf replicates from each species. Additional measurements included leaf wetness duration and stomatal density. We found that Anet responses varied greatly among species, but all plants maintained a baseline of activity under wet leaf conditions, suggesting that abaxial leaf Anet was a significant percentage of total leaf Anet for amphistomatous species. Among tropical species, Anet responses immediately after wetting ranged from -31% (Senna alata (L.) Roxb.) to +21% (Zamia skinneri Warsz. Ex. A. Dietr.), while all savanna species declined (up to -48%). After 10 min of drying, most species recovered Anet towards the observed status prior to wetting or surpassed it, with the exception of Quercus stellata Wangenh., a savanna species, which remained 13% below Anet dry. The combination of leaf wetness duration and leaf traits, such as stomatal density, trichomes or wax, most likely influenced Anet responses positively or negatively. There was also overlap between leaf traits and Anet responses of savanna and tropical plants. It is possible that these species converge

  10. Evaluation of dried vegetables residues for poultry: II. Effects of feeding cabbage leaf residues on broiler performance, ileal digestibility and total tract nutrient digestibility.

    PubMed

    Mustafa, A F; Baurhoo, B

    2017-03-01

    A study was conducted to investigate the effects of partial replacing corn and soybean meal with dried cabbage leaf residues (DCR) on broiler growth performance, apparent ileal nutrient digestibility, and apparent total tract nutrient utilization. Dietary treatments include 4 levels of DCR (0, 3, 6, and 9%). Two hundred and twenty-four day-old male broilers were randomly assigned to one of 4 groups (8 cage replicates; 7 birds/cage) and grown over a 35-d experimental period. Results showed that feeding DCR had no effects on daily body weigh gain (average 53.4 g/d), daily feed intake (average 94.9 g/d), and feed conversion ratio (average 1.78 g of feed/g of gain). Inclusion of DCR reduced apparent ileal DM (quadratic effect, P < 0.001), OM (linear effect, P = 0.012), and CP (quadratic effect, P = 0.001) digestibility of younger birds (d 21) while incremental levels of DCR had no effect on apparent ileal nutrient digestibilities of older birds (d 35). Apparent total tract digestibility of DM, OM, and CP increased (linear effect, P < 0.001) as the level of DCR increased. It was concluded that the inclusion of DCR in broiler diets up to 9% had no negative impact on bird performance and apparent ileal digestibility of older birds and improved apparent total tract nutrient digestibility. © 2016 Poultry Science Association Inc.

  11. Components of a standardised olive leaf dry extract (Ph. Eur.) promote hypothiocyanite production by lactoperoxidase.

    PubMed

    Flemmig, Jörg; Rusch, Dorothea; Czerwińska, Monika Ewa; Rauwald, Hans-Wilhelm; Arnhold, Jürgen

    2014-05-01

    We investigated in vitro the ability of a standardised olive leaf dry extract (Ph. Eur.) (OLE) as well as of its single components to circumvent the hydrogen peroxide-induced inhibition of the hypothiocyanite-producing activity of lactoperoxidase (LPO). The rate of hypothiocyanite (⁻OSCN) formation by LPO was quantified by spectrophotometric detection of the oxidation of 5-thio-2-nitrobenzoic acid (TNB). By using excess hydrogen peroxide, we forced the accumulation of inactive enzymatic intermediates which are unable to promote the two-electronic oxidation of thiocyanate. Both OLE and certain extract components showed a strong LPO-reactivating effect. Thereby an o-hydroxyphenolic moiety emerged to be essential for a good reactivity with the inactive LPO redox states. This basic moiety is found in the main OLE components oleuropein, oleacein, hydroxytyrosol, caffeic acid as well as in different other constituents including the OLE flavone luteolin. As LPO is a key player in the humoral immune response, these results propose a new mode of action regarding the well-known bacteriostatic and anti-inflammatory properties of the leaf extract of Olea europaea L. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Leaf Protein and Mineral Concentrations across the “Miracle Tree” Genus Moringa

    PubMed Central

    Sankaran, Renuka P.; Fahey, Jed W.; Grusak, Michael A.; Odee, David; Nouman, Wasif

    2016-01-01

    The moringa tree Moringa oleifera is a fast-growing, drought-resistant tree cultivated across the lowland dry tropics worldwide for its nutritious leaves. Despite its nutritious reputation, there has been no systematic survey of the variation in leaf nutritional quality across M. oleifera grown worldwide, or of the other species of the genus. To guide informed use of moringa, we surveyed protein, macro-, and micro- nutrients across 67 common garden samples of 12 Moringa taxa, including 23 samples of M. oleifera. Moringa oleifera, M. concanensis, M. stenopetala, an M. concanensis X oleifera hybrid, and M. longituba were highest in protein, with M. ruspoliana having the highest calcium levels. A protein-dry leaf mass tradeoff may preclude certain breeding possibilities, e.g. maximally high protein with large leaflets. These findings identify clear priorities and limitations for improved moringa varieties with traits such as high protein, calcium, or ease of preparation. PMID:27459315

  13. 21 CFR 526.1696b - Penicillin G procaine-dihydrostreptomycin in soybean oil for intramammary infusion (dry cows).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... soybean oil for intramammary infusion (dry cows). 526.1696b Section 526.1696b Food and Drugs FOOD AND DRUG... infusion (dry cows). (a) Specifications. Each 10 milliliters of suspension contains penicillin G procaine....200 and 556.510 of this chapter. (d) Conditions of use. Dairy cows—(1) Amount. One syringe into each...

  14. Environmental drivers on leaf phenology of ironstone outcrops species under seasonal climate.

    PubMed

    Garcia, Letícia C; Barros, Fernanda V; Lemos-Filho, José P

    2017-01-01

    Banded iron formations (BIF) have a particular vegetation type and provide a good model system for testing theories related to leaf phenology, due to unique stressful environmental conditions. As a consequence of the stressful conditions of BIF environment, we hypothesize that most species would retain at least some significant canopy cover, even at the end of the dry season, independently of growth form - trees, shrubs, and sub-shrubs. Considering the strong seasonality, we also hypothesize that photoperiod and rainfall act as triggers for leaf fall and leaf flushing in these environments. The majority of the fifteen studied species had a semi-deciduous behavior and shed their leaves mainly during the dry season, with a recovery at the end of this season. In general, leaf flushing increased around the spring equinox (end of the dry season and start of the rainy season). A trade-off between leaf loss and leaf maintenance is expected in a community in which most plants are naturally selected to be semi-deciduous. Our results suggest photoperiod as a dominant factor in predicting leaf phenology.

  15. Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span

    PubMed Central

    Zhang, Jiao-Lin; Poorter, L.; Hao, Guang-You; Cao, Kun-Fang

    2012-01-01

    Background and Aims Photosynthetic thermotolerance (PT) is important for plant survival in tropical and sub-tropical savannas. However, little is known about thermotolerance of tropical and sub-tropical wild plants and its association with leaf phenology and persistence. Longer-lived leaves of savanna plants may experience a higher risk of heat stress. Foliar Ca is related to cell integrity of leaves under stresses. In this study it is hypothesized that (1) species with leaf flushing in the hot-dry season have greater PT than those with leaf flushing in the rainy season; and (2) PT correlates positively with leaf life span, leaf mass per unit area (LMA) and foliar Ca concentration ([Ca]) across woody savanna species. Methods The temperature-dependent increase in minimum fluorescence was measured to assess PT, together with leaf dynamics, LMA and [Ca] for a total of 24 woody species differing in leaf flushing time in a valley-type savanna in south-west China. Key Results The PT of the woody savanna species with leaf flushing in the hot-dry season was greater than that of those with leaf flushing in the rainy season. Thermotolerance was positively associated with leaf life span and [Ca] for all species irrespective of the time of flushing. The associations of PT with leaf life span and [Ca] were evolutionarily correlated. Thermotolerance was, however, independent of LMA. Conclusions Chinese savanna woody species are adapted to hot-dry habitats. However, the current maximum leaf temperature during extreme heat stress (44·3 °C) is close to the critical temperature of photosystem II (45·2 °C); future global warming may increase the risk of heat damage to the photosynthetic apparatus of Chinese savanna species. PMID:22875810

  16. Do we Underestimate the Importance of Leaf Size in Plant Economics? Disproportional Scaling of Support Costs Within the Spectrum of Leaf Physiognomy

    PubMed Central

    Niinemets, Ülo; Portsmuth, Angelika; Tena, David; Tobias, Mari; Matesanz, Silvia; Valladares, Fernando

    2007-01-01

    Background Broad scaling relationships between leaf size and function do not take into account that leaves of different size may contain different fractions of support in petiole and mid-rib. Methods The fractions of leaf biomass in petiole, mid-rib and lamina, and the differences in chemistry and structure among mid-ribs, petioles and laminas were investigated in 122 species of contrasting leaf size, life form and climatic distribution to determine the extent to which differences in support modify whole-lamina and whole-leaf structural and chemical characteristics, and the extent to which size-dependent support investments are affected by plant life form and site climate. Key Results For the entire data set, leaf fresh mass varied over five orders of magnitude. The percentage of dry mass in mid-rib increased strongly with lamina size, reaching more than 40 % in the largest laminas. The whole-leaf percentage of mid-rib and petiole increased with leaf size, and the overall support investment was more than 60 % in the largest leaves. Fractional support investments were generally larger in herbaceous than in woody species and tended to be lower in Mediterranean than in cool temperate and tropical plants. Mid-ribs and petioles had lower N and C percentages, and lower dry to fresh mass ratio, but greater density (mass per unit volume) than laminas. N percentage of lamina without mid-rib was up to 40 % higher in the largest leaves than the total-lamina (lamina and mid-rib) N percentage, and up to 60 % higher than whole-leaf N percentage, while lamina density calculated without mid-rib was up to 80 % less than that with the mid-rib. For all leaf compartments, N percentage was negatively associated with density and dry to fresh mass ratio, while C percentage was positively linked to these characteristics, reflecting the overall inverse scaling between structural and physiological characteristics. However, the correlations between N and C percentages and structural

  17. SEMI-ROLLED LEAF1 Encodes a Putative Glycosylphosphatidylinositol-Anchored Protein and Modulates Rice Leaf Rolling by Regulating the Formation of Bulliform Cells1[W][OA

    PubMed Central

    Xiang, Jing-Jing; Zhang, Guang-Heng; Qian, Qian; Xue, Hong-Wei

    2012-01-01

    Leaf rolling is an important agronomic trait in rice (Oryza sativa) breeding and moderate leaf rolling maintains the erectness of leaves and minimizes shadowing between leaves, leading to improved photosynthetic efficiency and grain yields. Although a few rolled-leaf mutants have been identified and some genes controlling leaf rolling have been isolated, the molecular mechanisms of leaf rolling still need to be elucidated. Here we report the isolation and characterization of SEMI-ROLLED LEAF1 (SRL1), a gene involved in the regulation of leaf rolling. Mutants srl1-1 (point mutation) and srl1-2 (transferred DNA insertion) exhibit adaxially rolled leaves due to the increased numbers of bulliform cells at the adaxial cell layers, which could be rescued by complementary expression of SRL1. SRL1 is expressed in various tissues and is expressed at low levels in bulliform cells. SRL1 protein is located at the plasma membrane and predicted to be a putative glycosylphosphatidylinositol-anchored protein. Moreover, analysis of the gene expression profile of cells that will become epidermal cells in wild type but probably bulliform cells in srl1-1 by laser-captured microdissection revealed that the expression of genes encoding vacuolar H+-ATPase (subunits A, B, C, and D) and H+-pyrophosphatase, which are increased during the formation of bulliform cells, were up-regulated in srl1-1. These results provide the transcript profile of rice leaf cells that will become bulliform cells and demonstrate that SRL1 regulates leaf rolling through inhibiting the formation of bulliform cells by negatively regulating the expression of genes encoding vacuolar H+-ATPase subunits and H+-pyrophosphatase, which will help to understand the mechanism regulating leaf rolling. PMID:22715111

  18. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange.

    PubMed

    Zhu, Junqi; Dai, Zhanwu; Vivin, Philippe; Gambetta, Gregory A; Henke, Michael; Peccoux, Anthony; Ollat, Nathalie; Delrot, Serge

    2017-12-23

    Predicting both plant water status and leaf gas exchange under various environmental conditions is essential for anticipating the effects of climate change on plant growth and productivity. This study developed a functional-structural grapevine model which combines a mechanistic understanding of stomatal function and photosynthesis at the leaf level (i.e. extended Farqhuhar-von Caemmerer-Berry model) and the dynamics of water transport from soil to individual leaves (i.e. Tardieu-Davies model). The model included novel features that account for the effects of xylem embolism (fPLC) on leaf hydraulic conductance and residual stomatal conductance (g0), variable root and leaf hydraulic conductance, and the microclimate of individual organs. The model was calibrated with detailed datasets of leaf photosynthesis, leaf water potential, xylem sap abscisic acid (ABA) concentration and hourly whole-plant transpiration observed within a soil drying period, and validated with independent datasets of whole-plant transpiration under both well-watered and water-stressed conditions. The model well captured the effects of radiation, temperature, CO2 and vapour pressure deficit on leaf photosynthesis, transpiration, stomatal conductance and leaf water potential, and correctly reproduced the diurnal pattern and decline of water flux within the soil drying period. In silico analyses revealed that decreases in g0 with increasing fPLC were essential to avoid unrealistic drops in leaf water potential under severe water stress. Additionally, by varying the hydraulic conductance along the pathway (e.g. root and leaves) and changing the sensitivity of stomatal conductance to ABA and leaf water potential, the model can produce different water use behaviours (i.e. iso- and anisohydric). The robust performance of this model allows for modelling climate effects from individual plants to fields, and for modelling plants with complex, non-homogenous canopies. In addition, the model provides a

  19. Detection of c. -32T>G (IVS1-13T>G) mutation of Pompe disease by real-time PCR in dried blood spot specimen.

    PubMed

    Bobillo Lobato, Joaquin; Sánchez Peral, Blas A; Durán Parejo, Pilar; Jiménez Jiménez, Luis M

    2013-03-15

    Pompe disease, or acid maltase deficiency, is a genetic muscle disorder caused by mutations in the gene encoding the acid alpha-glucosidase (GAA) enzyme, which is essential for the degradation of glycogen to glucose in lysosomes. The wide clinical variability is resulted from genetic heterogeneity, and many different mutations of the GAA gene have been reported. Some of these mutations are associated with specific phenotypes, such as the c. -32T>G (IVS1-13T>G) mutation seen in late-onset Pompe disease. We used a real-time PCR, after genomic DNA extraction isolated from DBS (dried blood spots) and PCR amplification. Our results successfully detected in controls and patients have been 100% concordant with sequencing results. This assay combines simple sample processing and rapid analysis and it allows to detect the patients with a milder form and slower progression of this disease with a high reliability. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Leaf phenomics: a systematic reverse genetic screen for Arabidopsis leaf mutants.

    PubMed

    Wilson-Sánchez, David; Rubio-Díaz, Silvia; Muñoz-Viana, Rafael; Pérez-Pérez, José Manuel; Jover-Gil, Sara; Ponce, María Rosa; Micol, José Luis

    2014-09-01

    The study and eventual manipulation of leaf development in plants requires a thorough understanding of the genetic basis of leaf organogenesis. Forward genetic screens have identified hundreds of Arabidopsis mutants with altered leaf development, but the genome has not yet been saturated. To identify genes required for leaf development we are screening the Arabidopsis Salk Unimutant collection. We have identified 608 lines that exhibit a leaf phenotype with full penetrance and almost constant expressivity and 98 additional lines with segregating mutant phenotypes. To allow indexing and integration with other mutants, the mutant phenotypes were described using a custom leaf phenotype ontology. We found that the indexed mutation is present in the annotated locus for 78% of the 553 mutants genotyped, and that in half of these the annotated T-DNA is responsible for the phenotype. To quickly map non-annotated T-DNA insertions, we developed a reliable, cost-effective and easy method based on whole-genome sequencing. To enable comprehensive access to our data, we implemented a public web application named PhenoLeaf (http://genetics.umh.es/phenoleaf) that allows researchers to query the results of our screen, including text and visual phenotype information. We demonstrated how this new resource can facilitate gene function discovery by identifying and characterizing At1g77600, which we found to be required for proximal-distal cell cycle-driven leaf growth, and At3g62870, which encodes a ribosomal protein needed for cell proliferation and chloroplast function. This collection provides a valuable tool for the study of leaf development, characterization of biomass feedstocks and examination of other traits in this fundamental photosynthetic organ. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. Immunoglobulin G particles manufacturing by spray drying process for pressurised metered dose inhaler formulations.

    PubMed

    Carli, V; Menu-Bouaouiche, L; Cardinael, P; Benissan, L; Coquerel, G

    2018-07-01

    The objective of this work is to show the feasibility of manufacturing from a spray drying process particles containing immunoglobulin G capable of being administered by inhalation via a pressurized metered dose inhaler. Spray drying were made from aqueous solutions containing IgG and two types of excipients, mannitol and trehalose, with two ratios: 25% w/w and 75%w/w. The physicochemical and aerodynamic properties of the powders obtained were characterized just after manufacturing and after 1 month of storage at 40°C/75% RH according to criteria defined as needed to satisfy an inhaled formulation with a pressurized metered dose inhaler. Maintain of the biological activity and the structure of IgG after atomization was also tested by slot blot and circular dichroism. All spray-dried powders presented a median diameter lower than 5μm. The powders atomized with trehalose showed a solid state more stable than those atomized with mannitol. All atomized powders were in the form of wrinkled particles regardless the nature and the ratios of excipients. The results showed that the aerosolisation properties were compliant with the target, independently of the excipient used at a ratio of 25% w/w IgG-excipient. Moreover, the addition of excipient during the atomization process the denaturation of IgG was limited. This study showed that the use of trehalose as excipient could satisfy the requirements of an inhaled formulation with a pressurized metered dose inhaler. Copyright © 2018 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  2. In vitro erythrocyte membrane stabilization properties of Carica papaya L. leaf extracts

    PubMed Central

    Ranasinghe, Priyanga; Ranasinghe, Pathmasiri; Abeysekera, W. P. Kaushalya M.; Premakumara, G. A. Sirimal; Perera, Yashasvi S.; Gurugama, Padmalal; Gunatilake, Saman B.

    2012-01-01

    Background: Carica papaya L. fruit juice and leaf extracts are known to have many beneficial medical properties. Recent reports have claimed possible beneficial effects of C. papaya L. leaf juice in treating patients with dengue viral infections. This study aims to evaluate the membrane stabilization potential of C. papaya L. leaf extracts using an in vitro hemolytic assay. Materials and Methods: The study was conducted in between June and August 2010. Two milliliters of blood from healthy volunteers and patients with serologically confirmed current dengue infection were freshly collected and used in the assays. Fresh papaya leaves at three different maturity stages (immature, partly matured, and matured) were cleaned with distilled water, crushed, and the juice was extracted with 10 ml of cold distilled water. Freshly prepared cold water extracts of papaya leaves (1 ml containing 30 μl of papaya leaf extracts, 20 μl from 40% erythrocytes suspension, and 950 μl of phosphate buffered saline) were used in the heat-induced and hypotonic-induced hemolytic assays. In dose response experiments, six different concentrations (9.375, 18.75, 37.5, 75, 150, and 300 μg/ml) of freeze dried extracts of the partly matured leaves were used. Membrane stabilization properties were investigated with heat-induced and hypotonicity-induced hemolysis assays. Results: Extracts of papaya leaves of all three maturity levels showed a significant reduction in heat-induced hemolysis compared to controls (P < 0.05). Papaya leaf extracts of all three maturity levels showed more than 25% inhibition at a concentration of 37.5 μg/ml. The highest inhibition of heat-induced hemolysis was observed at 37.5 μg/ml. Inhibition activity of different maturity levels was not significantly (P < 0.05) different from one another. Heat-induced hemolysis inhibition activity did not demonstrate a linear dose response relationship. At 37.5 μg/ml concentration of the extract, a marked inhibition of

  3. In vitro erythrocyte membrane stabilization properties of Carica papaya L. leaf extracts.

    PubMed

    Ranasinghe, Priyanga; Ranasinghe, Pathmasiri; Abeysekera, W P Kaushalya M; Premakumara, G A Sirimal; Perera, Yashasvi S; Gurugama, Padmalal; Gunatilake, Saman B

    2012-10-01

    Carica papaya L. fruit juice and leaf extracts are known to have many beneficial medical properties. Recent reports have claimed possible beneficial effects of C. papaya L. leaf juice in treating patients with dengue viral infections. This study aims to evaluate the membrane stabilization potential of C. papaya L. leaf extracts using an in vitro hemolytic assay. The study was conducted in between June and August 2010. Two milliliters of blood from healthy volunteers and patients with serologically confirmed current dengue infection were freshly collected and used in the assays. Fresh papaya leaves at three different maturity stages (immature, partly matured, and matured) were cleaned with distilled water, crushed, and the juice was extracted with 10 ml of cold distilled water. Freshly prepared cold water extracts of papaya leaves (1 ml containing 30 μl of papaya leaf extracts, 20 μl from 40% erythrocytes suspension, and 950 μl of phosphate buffered saline) were used in the heat-induced and hypotonic-induced hemolytic assays. In dose response experiments, six different concentrations (9.375, 18.75, 37.5, 75, 150, and 300 μg/ml) of freeze dried extracts of the partly matured leaves were used. Membrane stabilization properties were investigated with heat-induced and hypotonicity-induced hemolysis assays. Extracts of papaya leaves of all three maturity levels showed a significant reduction in heat-induced hemolysis compared to controls (P < 0.05). Papaya leaf extracts of all three maturity levels showed more than 25% inhibition at a concentration of 37.5 μg/ml. The highest inhibition of heat-induced hemolysis was observed at 37.5 μg/ml. Inhibition activity of different maturity levels was not significantly (P < 0.05) different from one another. Heat-induced hemolysis inhibition activity did not demonstrate a linear dose response relationship. At 37.5 μg/ml concentration of the extract, a marked inhibition of hypotonicity-induced hemolysis was observed. C. papaya

  4. Effect of different drying methods on chlorophyll, ascorbic acid and antioxidant compounds retention of leaves of Hibiscus sabdariffa L.

    PubMed

    Kumar, Sandopu Sravan; Manoj, Prabhakaran; Shetty, Nandini P; Giridhar, Parvatam

    2015-07-01

    Use of the indigenous, easily accessible leafy vegetable roselle (Hibiscus sabdariffa L.) for value addition is gaining impetus as its nutritive and nutraceutical compounds are exposed by investigations. Being a perishable, storage is challenging, hence different methods of drying have been an attractive alternative for its postharvest usage in foods without much compromising its quality and antioxidant potential. Room- and freeze-dried samples were found to have best quality in terms of colour, total flavonoid content (18.53 ± 2.39 and 18.66 ± 1.06 g kg(-1) respectively), total phenolic content (17.76 ± 1.93 and 18.91 ± 0.48 g kg(-1)), chlorophyll content (1.59 ± 0.001 and 1.55 ± 0.001 g kg(-1)) and ascorbic acid content (11.11 ± 1.04 and 8.92 ± 0.94 g kg(-1)) compared with those subjected to infrared, crossflow, microwave, oven or sun drying. Samples treated by room and freeze drying retained maximum antioxidant potential as shown by the phosphomolybdate method and the 2,2-diphenyl-1-picrylhydrazyl free radical-scavenging activity and ferric-reducing antioxidant power assays. Cold water and hot water extracts showed significantly higher total phenolic content and total antioxidant activity owing to the greater solubility of phenolics and destruction of cellular components in polar solvents than in organic solvents. The data obtained show the potential for retaining quality parameters of roselle leaf under suitable drying methods. © 2014 Society of Chemical Industry.

  5. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf

    PubMed Central

    Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.

    2015-01-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  6. Microscopic evaluation and physiochemical analysis of Dillenia indica leaf

    PubMed Central

    Kumar, S; Kumar, V; Prakash, Om

    2011-01-01

    Objective To study detail microscopic evaluation and physiochemical analysis of Dillenia indica (D. indica) leaf. Methods Fresh leaf sample and dried power of the leaf were studied macroscopically and microscopically. Preliminary phytochemical investigation of plant material was done. Other WHO recommended parameters for standardizations were also performed. Results The detail microscopy revealed the presence of anomocytic stomata, unicellular trichome, xylem fibres, calcium oxalate crystals, vascular bundles, etc. Leaf constants such as stomatal number, stomatal index, vein-islet number and veinlet termination numbers were also measured. Physiochemical parameters such as ash values, loss on drying, extractive values, percentage of foreign matters, swelling index, etc. were also determined. Preliminary phytochemical screening showed the presence of steroids, terpenoids, glycosides, fatty acids, flavonoids, phenolic compounds and carbohydrates. Conclusions The microscopic and physiochemical analysis of the D. indica leaf is useful in standardization for quality, purity and sample identification. PMID:23569789

  7. Antioxidant activities of ficus glomerata (moraceae) leaf gall extracts

    PubMed Central

    Eshwarappa, Ravi Shankara Birur; Iyer, Shanthi; Subaramaihha, Sundara Rajan; Richard, S Austin; Dhananjaya, Bhadrapura Lakkappa

    2015-01-01

    An excess production or decreased scavenging of reactive oxygen species (ROS) has been implicated in the pathogenesis of diverse metabolic disorders such as diabetes, cancer, atherosclerosis and neurodegeneration. Hence the antioxidant therapy has gained an utmost importance in the treatment of such diseases linked to free radicals. The medicinal properties of plants have been investigated and explored for their potent antioxidant activities to counteract metabolic disorders. This research highlights the chemical composition and antioxidant potential of leaf gall extracts (aqueous and methanol) of Ficus glomerata (F. glomerata), which is extensively used in the preparation of traditional medications to treat various metabolic diseases. The presences of phenolics, flavonoids, phytosterols, terpenoids and reducing sugars were identified in both the extracts. In comparison to the aqueous extract, the methanol extract had the highest total phenolic and flavonoid content at 370 ± 3.2 mg of gallic acid equivalent per gram of dry weight (mg GAE/g dw) and 155 ± 3.2 mg of quercetin equivalent per gram of dry weight (mg QUE/g dw), respectively. The antioxidant activities of leaf gall extracts were examined using diphenylpicrylhydrazyl (DPPH), Nitric oxide scavenging, hydroxyl scavenging and ferric reducing power (FRAP) methods. In all the methods, the methanolic extract showed higher antioxidant potential than the aqueous extract. A higher content of both total phenolics and flavonoids were found in the methanolic extract and the significantly high antioxidant activity can be positively correlated to the high content of total polyphenols/flavonoids of the methanol extract. The results of this study confirm the folklore use of F. glomerata leaf gall extracts as a natural antioxidant and justify its ethnobotanical use. Further, the results of antioxidant properties encourage the use of F. glomerata leaf gall extracts for medicinal health, functional food and nutraceuticals

  8. Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees.

    PubMed

    Gotsch, Sybil G; Geiger, Erika L; Franco, Augusto C; Goldstein, Guillermo; Meinzer, Frederick C; Hoffmann, William A

    2010-06-01

    Water availability is a principal factor limiting the distribution of closed-canopy forest in the seasonal tropics, suggesting that forest tree species may not be well adapted to cope with seasonal drought. We studied 11 congeneric species pairs, each containing one forest and one savanna species, to test the hypothesis that forest trees have a lower capacity to maintain seasonal homeostasis in water relations relative to savanna species. To quantify this, we measured sap flow, leaf water potential (Psi(L)), stomatal conductance (g (s)), wood density, and Huber value (sapwood area:leaf area) of the 22 study species. We found significant differences in the water relations of these two species types. Leaf area specific hydraulic conductance of the soil/root/leaf pathway (G (t)) was greater for savanna species than forest species. The lower G (t) of forest trees resulted in significantly lower Psi(L) and g (s) in the late dry season relative to savanna trees. The differences in G (t) can be explained by differences in biomass allocation of savanna and forest trees. Savanna species had higher Huber values relative to forest species, conferring greater transport capacity on a leaf area basis. Forest trees have a lower capacity to maintain homeostasis in Psi(L) due to greater allocation to leaf area relative to savanna species. Despite significant differences in water relations, relationships between traits such as wood density and minimum Psi(L) were indistinguishable for the two species groups, indicating that forest and savanna share a common axis of water-use strategies involving multiple traits.

  9. The effect of filler addition and oven temperature to the antioxidant quality in the drying of Physalis angulata leaf extract obtained by subcritical water extraction

    NASA Astrophysics Data System (ADS)

    Susanti, R. F.; Natalia, Desy

    2016-11-01

    In traditional medicine, Physalis angulata which is well known as ceplukan in Indonesia, has been utilized to cure several diseases by conventional extraction in hot water. The investigation of the Swietenia mahagoni extract activity in modern medicine typically utilized organic solvents such as ethanol, methanol, chloroform and hexane in extraction. In this research, subcritical water was used as a solvent instead of organic solvent to extract the Pysalis angulata leaf part. The focus of this research was the investigation of extract drying condition in the presence of filler to preserve the quality of antioxidant in Swietenia mahagoni extract. Filler, which is inert, was added to the extract during drying to help absorb the water while protect the extract from exposure in heat during drying. The effects of filler types, concentrations and oven drying temperatures were investigated to the antioxidant quality covering total phenol and antioxidant activity. Aerosil and microcrystalline cellulose (MCC) were utilized as fillers with concentration was varied from 0-30 wt% for MCC and 0-15 wt% for aerosil. The oven drying temperature was varied from 40-60 oC. The results showed that compare to extract dried without filler, total phenol and antioxidant activity were improved upon addition of filler. The higher the concentration of filler, the better the antioxidant; however it was limited by the homogeneity of filler in the extract. Both of the variables (oven temperature and concentration) played an important role in the improvement of extract quality of Swietenia mahagoni leaf. It was related to the drying time which can be minimized to protect the deterioration of extract from heat. In addition, filler help to provide the powder form of extract instead of the typical extract form which is sticky and oily.

  10. Dissolved organic carbon biodegradability from leaf litter leachates of riparian tropical trees

    NASA Astrophysics Data System (ADS)

    Bastianoni, A.; Montoya, J. V.; Mendez, C.; Paolini, J.

    2012-04-01

    It is generally assumed that leaf litter with varying chemical composition may show different rates of mass loss, dissolved organic carbon (DOC) release, and DOC biodegradability. Leaf litter is composed of different organic compounds, which may differ in their release rates. Some authors consider leaf litter chemical quality (carbon to nitrogen ratio (C:N) and polyphenolics content) as an indicator of leaf litter mass losses and DOC released into stream water through leaching. In this research, we determined if leachate's DOC biodegradability exhibited a positive relationship with leaf litter chemical quality and leaf litter mass loss due to leaching. In order to test these hypotheses, leaf litter from six riparian tree species (Bambusa vulgaris; Castilla elastica; Artocarpus altilis; Cecropia peltata; Hura crepitans and Ficus maxima), present in the lower reaches of a fifth-order stream in northern Venezuela was collected during the dry season of 2010. To evaluate leaf litter mass loss, air-dried leaves were incubated in Milli-Q water at room temperature in the dark. After 1h, 6h, 1d, 2d, 4d, 8d and 15d, microcosms were removed from the assay to determine remaining mass. DOC biodegradability was measured using 24 h leachates that were added into a 1L glass flask containing 250mL of unfiltered stream water, 4g of stream sediment, and nutrient amendments until all incubations had equal initial DOC concentrations. Biodegradability of DOC was measured at 0, 1, 2, 5 and 7 days as the decrease in DOC concentration through time. Chemical characterization of leaf litter involved the determination of total concentrations of C, N, and poliphenolics. Three replicates were used for all analyses. Initial chemical characterization of leaf litter showed that only two species (C. elastica and A. altilis), had similar C:N ratios (~31). The other four species, showed different C and N contents but presented C:N ratios between 21 and 23. Total polyphenolics content varied greatly

  11. A New Synthetic Allotetraploid (A1A1G2G2) between Gossypium herbaceum and G. australe: Bridging for Simultaneously Transferring Favorable Genes from These Two Diploid Species into Upland Cotton

    PubMed Central

    Chen, Yu; Wang, Yingying; Chen, Jinjin; Zhang, Tianzhen; Zhou, Baoliang

    2015-01-01

    Gossypium herbaceum, a cultivated diploid cotton species (2n = 2x = 26, A1A1), has favorable traits such as excellent drought tolerance and resistance to sucking insects and leaf curl virus. G. australe, a wild diploid cotton species (2n = 2x = 26, G2G2), possesses numerous economically valuable characteristics such as delayed pigment gland morphogenesis (which is conducive to the production of seeds with very low levels of gossypol as a potential food source for humans and animals) and resistance to insects, wilt diseases and abiotic stress. Creating synthetic allotetraploid cotton from these two species would lay the foundation for simultaneously transferring favorable genes into cultivated tetraploid cotton. Here, we crossed G. herbaceum (as the maternal parent) with G. australe to produce an F1 interspecific hybrid and doubled its chromosome complement with colchicine, successfully generating a synthetic tetraploid. The obtained tetraploid was confirmed by morphology, cytology and molecular markers and then self-pollinated. The S1 seedlings derived from this tetraploid gradually became flavescent after emergence of the fifth true leaf, but they were rescued by grafting and produced S2 seeds. The rescued S1 plants were partially fertile due to the existence of univalents at Metaphase I of meiosis, leading to the formation of unbalanced, nonviable gametes lacking complete sets of chromosomes. The S2 plants grew well and no flavescence was observed, implying that interspecific incompatibility, to some extent, had been alleviated in the S2 generation. The synthetic allotetraploid will be quite useful for polyploidy evolutionary studies and as a bridge for transferring favorable genes from these two diploid species into Upland cotton through hybridization. PMID:25879660

  12. Large Drought-induced Variations in Oak Leaf Volatile Organic Compound Emissions during PINOT NOIR 2012

    EPA Pesticide Factsheets

    Leaf level oak isoprene emissions and co2/H2O exchange in the Ozarks, USABAGeron.csv is the speciated biomass displayed in Figure 1.Biomass Dry Weights.xlsx is used to convert leaf area to dry leaf biomass and is used in Figure 2.Daly Ozarks leaf ISOP.txt and MOFLUX_Isoprene Summary_refined Tcurve data.xlsx are the leaf isoprene emission rate files shown in Figure 2.Harley Aug12_Chris.xls is the leaf isoprene emission rate file shown in Figure 3.Daly Ozarks leaf.txt is the BVOC emissions file used for Figure 7 and Table 4.Drought IS.txt is the review data given in Table 2.Fig4 Aug10 2012 Harley.txt is shown in Figure 4.Fig 5 Aug14 2012 Harley.txt is shown in Figure 5.Daly Ozarks Leaf.txt is used in Fig 7.Drought IS.txt is used in Fig 8.This dataset is associated with the following publication:Geron , C., R. Daly , P. Harley, R. Rasmussen, R. Seco, A. Guenther, T. Karl, and L. Gu. Large Drought-Induced Variations in Oak Leaf Volatile Organic Compound Emissions during PINOT NOIR 2012. CHEMOSPHERE. Elsevier Science Ltd, New York, NY, USA, 146: 8-21, (2016).

  13. Experimental manipulation of leaf litter colonization by aquatic invertebrates in a third order tropical stream.

    PubMed

    Uieda, V S; Carvalho, E M

    2015-05-01

    Through a manipulative experiment, the colonization of leaf litter by invertebrates was investigated in two sections of a tropical stream (spatial scale) that differed in function of the canopy cover, one with the presence (closed area) and another without riparian vegetation (open area), during one month of the dry and one of the wet season (temporal scale). The work aimed to verify differences related to four variables: season, canopy cover, leaf type and leaf condition. Litter bags containing arboreal and herbaceous leaves (leaf type variable), non-conditioned and preconditioned (leaf condition variable) were placed at the bottom of the stream in each area (canopy cover variable) and season (dry and wet), and removed after 13-day colonization. The analysis of the remaining litter dry mass per leaf bag emphasizes differences related mainly to seasonality, canopy cover and leaf type, although leaf condition was also important when combined with those three factors. Comparing the abundance of invertebrates per treatment, there was a tendency of high predominance of Chironomidae during the dry season and greater taxa diversity and evenness during the wet season, when the water flow increase could alter the availability of microhabitats for local fauna. Even though canopy cover alone was not a significant source of variation in the abundance of invertebrates, the results showed a tendency of a combined effect of canopy cover with seasonality and leaf condition.

  14. Global Climatic Controls On Leaf Size

    NASA Astrophysics Data System (ADS)

    Wright, I. J.; Prentice, I. C.; Dong, N.; Maire, V.

    2015-12-01

    Since the 1890s it's been known that the wet tropics harbour plants with exceptionally large leaves. Yet the observed latitudinal gradient of leaf size has never been fully explained: it is still unclear which aspects of climate are most important for understanding geographic trends in leaf size, a trait that varies many thousand-fold among species. The key is the leaf-to-air temperature difference, which depends on the balance of energy inputs (irradiance) and outputs (transpirational cooling, losses to the night sky). Smaller leaves track air temperatures more closely than larger leaves. Widely cited optimality-based theories predict an advantage for smaller leaves in dry environments, where transpiration is restricted, but are silent on the latitudinal gradient. We aimed to characterize and explain the worldwide pattern of leaf size. Across 7900 species from 651 sites, here we show that: large-leaved species predominate in wet, hot, sunny environments; smaller-leaved species typify hot, sunny environments only when arid; small leaves are required to avoid freezing in high latitudes and at high elevation, and to avoid overheating in dry environments. This simple pattern was unclear in earlier, more limited analyses. We present a simple but robust, fresh approach to energy-balance modelling for both day-time and night-time leaf-to-air temperature differences, and thus risk of overheating and of frost damage. Our analysis shows night-chilling is important as well as day-heating, and simplifies leaf temperature modelling. It provides both a framework for modelling leaf size constraints, and a solution to one of the oldest conundrums in ecology. Although the path forward is not yet fully clear, because of its role in controlling leaf temperatures we suggest that climate-related leaf size constraints could usefully feature in the next generation of land ecosystem models.

  15. Lignin composition is related to xylem embolism resistance and leaf life span in trees in a tropical semiarid climate.

    PubMed

    Lima, Taysla R A; Carvalho, Ellen C D; Martins, Fernando R; Oliveira, Rafael S; Miranda, Rafael S; Müller, Caroline S; Pereira, Luciano; Bittencourt, Paulo R L; Sobczak, Jullyana C M S M; Gomes-Filho, Enéas; Costa, Rafael C; Araújo, Francisca S

    2018-05-16

    Wood properties influence the leaf life span (LL) of tree crowns. As lignin is an important component of wood and the water transport system, we investigated its relationship with embolism resistance and the LL of several tree species in a seasonally dry tropical ecosystem. We determined total lignin and the monomer contents of guaiacyl (G) and syringyl (S) and related them to wood traits and xylem vulnerability to embolism (Ψ 50 ) for the most common species of the Brazilian semiarid, locally known as Caatinga. Leaf life span was negatively related to Ψ 50 and positively related to S : G, which was negatively related to Ψ 50 . This means that greater S : G increases LL by reducing Ψ 50 . Lignin content was not correlated with any variable. We found two apparently unrelated axes of drought resistance. One axis, associated with lignin monomeric composition, increases LL in the dry season as a result of lower xylem embolism vulnerability. The other, associated with wood density and stem water content, helps leafless trees to withstand drought and allows them to resprout at the end of the dry season. The monomeric composition of lignin (S : G) is therefore an important functional wood attribute affecting several key functional aspects of tropical tree species in a semiarid climate. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  16. Characteristics and DBP formation of dissolved organic matter from leachates of fresh and aged leaf litter.

    PubMed

    Jian, Qianyun; Boyer, Treavor H; Yang, Xiuhong; Xia, Beicheng; Yang, Xin

    2016-06-01

    Dissolved organic matter (DOM) was leached from leaves of two trees commonly grown in subtropical regions, Pinus elliottii (commonly known as slash pine) and Schima superba (S. superba), and its degradation pattern and potential for forming disinfection byproducts (DBPs) were evaluated. The leaves were exposed in the field for up to one year before leaching. The DOM leached from slash pine litter contained on average 10.4 mg of dissolved organic carbon (DOC) per gram of dry weight; for S. superba the average was 37.2 mg-DOC/g-dry weight. Ultraviolet and visible light absorbance, fluorescence, and molecular weight analysis indicated that more aromatic/humic and higher molecular weight compounds are formed as leaf litter ages. A 4-component parallel factor analysis of the fluorescence data showed that the intensity of peaks related with protein-like components decreased gradually during biodegradation, while that of peaks attributed to humic-acid-like components increased continuously. Fresh slash pine leachates formed on average 40.0 μg of trihalomethane (THM) per milligram of DOC, while S. superba leachates formed 45.6 μg. THM formation showed peak values of 55.7 μg/mg DOC for slash pine and 74.9 μg/mg DOC for S. superba after 8 months of aging. The formation of haloacetonitrile (HAN) and trichloronitromethane (TCNM) increased with increasing leaf age, while chloral hydrate (CH) formation did not show such a trend. Specific UV absorbance showed some positive correlation with DBPs, but humic-acid-like and protein-like absorbance peaks correlated with CH and TCNM yields in only some leaf samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Spectroscopic determination of leaf traits using infrared spectra

    NASA Astrophysics Data System (ADS)

    Buitrago, Maria F.; Groen, Thomas A.; Hecker, Christoph A.; Skidmore, Andrew K.

    2018-07-01

    Leaf traits characterise and differentiate single species but can also be used for monitoring vegetation structure and function. Conventional methods to measure leaf traits, especially at the molecular level (e.g. water, lignin and cellulose content), are expensive and time-consuming. Spectroscopic methods to estimate leaf traits can provide an alternative approach. In this study, we investigated high spectral resolution (6612 bands) emissivity measurements from the short to the long wave infrared (1.4-16.0 μm) of leaves from 19 different plant species ranging from herbaceous to woody, and from temperate to tropical types. At the same time, we measured 14 leaf traits to characterise a leaf, including chemical (e.g., leaf water content, nitrogen, cellulose) and physical features (e.g., leaf area and leaf thickness). We fitted partial least squares regression (PLSR) models across the SWIR, MWIR and LWIR for each leaf trait. Then, reduced models (PLSRred) were derived by iteratively reducing the number of bands in the model (using a modified Jackknife resampling method with a Martens and Martens uncertainty test) down to a few bands (4-10 bands) that contribute the most to the variation of the trait. Most leaf traits could be determined from infrared data with a moderate accuracy (65 < Rcv2 < 77% for observed versus predicted plots) based on PLSRred models, while the accuracy using the whole infrared range (6612 bands) presented higher accuracies, 74 < Rcv2 < 90%. Using the full SWIR range (1.4-2.5 μm) shows similarly high accuracies compared to the whole infrared. Leaf thickness, leaf water content, cellulose, lignin and stomata density are the traits that could be estimated most accurately from infrared data (with Rcv2 above 0.80 for the full range models). Leaf thickness, cellulose and lignin were predicted with reasonable accuracy from a combination of single infrared bands. Nevertheless, for all leaf traits, a combination of a few bands yields moderate to

  18. A comparison of height growth and leaf parameters of hybrid poplar cuttings grown in ozone-fumigated atmospheres

    Treesearch

    Keith F. Jensen

    1979-01-01

    Hybrid poplar cuttings were fumigated with an ozone dosage of 15 ppm-hours. One treatment was a steady fumigation at 0.2 ppm while the second fumigation fluctuated between 0.1 and 0.3 ppm. No significant differences were found in cutting height, leaf area, leaf width, and leaf dry weight, but significant differences were found in chlorophyll content and carbohydrate...

  19. Apparent Overinvestment in Leaf Venation Relaxes Leaf Morphological Constraints on Photosynthesis in Arid Habitats1[OPEN

    PubMed Central

    de Boer, Hugo J.; Drake, Paul L.; Wendt, Erin; Price, Charles A.; Schulze, Ernst-Detlef; Turner, Neil C.; Nicolle, Dean

    2016-01-01

    Leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy ≈ 1. Although this theory is supported by observations of many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis, we assembled leaf hydraulic, morphological, and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas-exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that, as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent overinvestment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf life span, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage. PMID:27784769

  20. The influence of leaf-atmosphere NH3(g ) exchange on the isotopic composition of nitrogen in plants and the atmosphere.

    PubMed

    Johnson, Jennifer E; Berry, Joseph A

    2013-10-01

    The distribution of nitrogen isotopes in the biosphere has the potential to offer insights into the past, present and future of the nitrogen cycle, but it is challenging to unravel the processes controlling patterns of mixing and fractionation. We present a mathematical model describing a previously overlooked process: nitrogen isotope fractionation during leaf-atmosphere NH3(g ) exchange. The model predicts that when leaf-atmosphere exchange of NH3(g ) occurs in a closed system, the atmospheric reservoir of NH3(g ) equilibrates at a concentration equal to the ammonia compensation point and an isotopic composition 8.1‰ lighter than nitrogen in protein. In an open system, when atmospheric concentrations of NH3(g ) fall below or rise above the compensation point, protein can be isotopically enriched by net efflux of NH3(g ) or depleted by net uptake. Comparison of model output with existing measurements in the literature suggests that this process contributes to variation in the isotopic composition of nitrogen in plants as well as NH3(g ) in the atmosphere, and should be considered in future analyses of nitrogen isotope circulation. The matrix-based modelling approach that is introduced may be useful for quantifying isotope dynamics in other complex systems that can be described by first-order kinetics. © 2013 John Wiley & Sons Ltd.

  1. Zinc deficiency in field-grown pecan trees: changes in leaf nutrient concentrations and structure.

    PubMed

    Ojeda-Barrios, Dámaris; Abadía, Javier; Lombardini, Leonardo; Abadía, Anunciación; Vázquez, Saúl

    2012-06-01

    Zinc (Zn) deficiency is a typical nutritional disorder in pecan trees [Carya illinoinensis (Wangenh.) C. Koch] grown under field conditions in calcareous soils in North America, including northern Mexico and south-western United States. The aim of this study was to assess the morphological and nutritional changes in pecan leaves affected by Zn deficiency as well as the Zn distribution within leaves. Zinc deficiency led to decreases in leaf chlorophyll concentrations, leaf area and trunk cross-sectional area. Zinc deficiency increased significantly the leaf concentrations of K and Ca, and decreased the leaf concentrations of Zn, Fe, Mn and Cu. All nutrient values found in Zn-deficient leaves were within the sufficiency ranges, with the only exception of Zn, which was approximately 44, 11 and 9 µg g(-1) dry weight in Zn-sufficient, moderately and markedly Zn-deficient leaves, respectively. Zinc deficiency led to decreases in leaf thickness, mainly due to a reduction in the thickness of the palisade parenchyma, as well as to increases in stomatal density and size. The localisation of Zn was determined using the fluorophore Zinpyr-1 and ratio-imaging technique. Zinc was mainly localised in the palisade mesophyll area in Zn-sufficient leaves, whereas no signal could be obtained in Zn-deficient leaves. The effects of Zn deficiency on the leaf characteristics of pecan trees include not only decreases in leaf chlorophyll and Zn concentrations, but also a reduction in the thickness of the palisade parenchyma, an increase in stomatal density and pore size and the practical disappearance of Zn leaf pools. These characteristics must be taken into account to design strategies to correct Zn deficiency in pecan tree in the field. Copyright © 2012 Society of Chemical Industry.

  2. SlLAX1 is Required for Normal Leaf Development Mediated by Balanced Adaxial and Abaxial Pavement Cell Growth in Tomato.

    PubMed

    Pulungan, Sri Imriani; Yano, Ryoichi; Okabe, Yoshihiro; Ichino, Takuji; Kojima, Mikiko; Takebayashi, Yumiko; Sakakibara, Hitoshi; Ariizumi, Tohru; Ezura, Hiroshi

    2018-06-01

    Leaves are the major plant organs with a primary function for photosynthesis. Auxin controls various aspects of plant growth and development, including leaf initiation, expansion and differentiation. Unique and intriguing auxin features include its polar transport, which is mainly controlled by the AUX1/LAX and PIN gene families as influx and efflux carriers, respectively. The role of AUX1/LAX genes in root development is well documented, but the role of these genes in leaf morphogenesis remains unclear. Moreover, most studies have been conducted in the plant model Arabidopsis thaliana, while studies in tomato are still scarce. In this study, we isolated six lines of the allelic curly leaf phenotype 'curl' mutants from a γ-ray and EMS (ethyl methanesulfonate) mutagenized population. Using a map-based cloning strategy combined with exome sequencing, we observed that a mutation occurred in the SlLAX1 gene (Solyc09g014380), which is homologous to an Arabidopsis auxin influx carrier gene, AUX1 (AtAUX1). Characterization of six alleles of single curl mutants revealed the pivotal role of SlLAX1 in controlling tomato leaf flatness by balancing adaxial and abaxial pavement cell growth, which has not been reported in tomato. Using TILLING (Targeting Induced Local Lesions IN Genome) technology, we isolated an additional mutant allele of the SlLAX1 gene and this mutant showed a curled leaf phenotype similar to other curl mutants, suggesting that Solyc09g014380 is responsible for the curl phenotype. These results showed that SlLAX1 is required for normal leaf development mediated by balanced adaxial and abaxial pavement cell growth in tomato.

  3. Enhancement of Biogas Yield of Poplar Leaf by High-Solid Codigestion with Swine Manure.

    PubMed

    Wangliang, Li; Zhikai, Zhang; Guangwen, Xu

    2016-05-01

    The aim of this work was to examine the improvement of anaerobic biodegradability of organic fractions of poplar leaf from codigestion with swine manure (SM), thus biogas yield and energy recovery. When poplar leaf was used as a sole substrate, the cumulative biogas yield was low, about 163 mL (g volatile solid (VS))(-1) after 45 days of digestion with a substrate/inoculum ratio of 2.5 and a total solid (TS) of 22 %. Under the same condition, the cumulative biogas yield of poplar leaf reached 321 mL (g VS)(-1) when SM/poplar leaf ratio was 2:5 (based on VS). The SM/poplar leaf ratio can determine C/N ratio of the cosubstrate and thus has significant influence on biogas yield. When the SM/poplar leaf ratio was 2:5, C/N ratio was calculated to be 27.02, and the biogas yield in 45 days of digestion was the highest. The semi-continuous digestion of poplar leaf was carried out with the organic loading rate of 1.25 and 1.88 g VS day(-1). The average daily biogas yield was 230.2 mL (g VS)(-1) and 208.4 mL (g VS)(-1). The composition analysis revealed that cellulose and hemicellulose contributed to the biogas production.

  4. Temporal variation of biomass and productivity of Thalassia testudinum (Hydrocharitaceae) in Venezuela, Southern Caribbean.

    PubMed

    Pérez, Daisy; Guevara, Marcel; Bone, David

    2006-06-01

    Annual biomass and productivity of Thalassia testudinum were determined during a year at a seagrass bed located in the Parque Nacional Morrocoy, Venezuela. Leaf, rhizome and root biomass were determined monthly, together with short-shoot density, from February 1992 to January 1993, from nine replicated core samples. Productivity was measured using the methodology by Zieman (1974) with minor modifications, and leaf turnover rate was calculated. Leaf biomass values ranged between 101.73 dry g m(-2) in February and 178.11 dry g m(-2) in August. Productivity ranged from 1.69 dry g m(-2) d(-1) in April and October to 3.30 dry g m(-2) d(-1) in July, showing two annual peaks: one in July and one in March. The leaf turnover rate showed the highest value in June (2.41% d(-1)) and the lowest in May (1.23% d(-1)). Sampling time differences in leaf biomass, productivity and turnover rate were statistically significant. Short-shoot density values varied between 811.10 shoots m(-2) in April and 1226.08 shoots m(-2) in December, but the differences were not significant along the year. These results indicated seasonal trends for leaf biomass, productivity and turnover rate of T. testudinum in the Southern Caribbean (latitude 10 degrees N).

  5. Leaf litter production of mahogany along street and campus forest of Universitas Negeri Semarang, Indonesia

    NASA Astrophysics Data System (ADS)

    Martin, F. P.; Abdullah, M.; Solichin; Hadiyanti, L. N.; Widianingrum, K.

    2018-03-01

    The leaf litter of trees along the existing streets on campus UNNES if not managed properly will be scattered and become garbage. Leaf litter Production in UNNES campus is not known for certain. UNNES does not own mapping of leaf litter Production of dominant tree species on campus. This cause leaf waste management is not optimal yet. There is still a lot of leaf litter that is discharged (not processed) because it exceeds the capacity of the fertilizer production equipment in the compost house. Aims of this study were to examine leaf litter production of dominant trees in Universitas Negeri Semarang and evaluate the relationship between leaf litter and average rainfall. Purposive sampling method placed pouches of nylon gauze measuring 1 × 1 mm2 as litter trap container with size 1 x l m2 (10 points mounted along street and campus forest). Litter trap mounted at the height of 50 cm above ground level. Leaf litter will be taken once a week for three months to observe the litter production. The litter was then dried by the oven at 70 ° C for 48 hours to obtain constant dry weight. Based on the results of the research, it was known that Mahogany tree in UNNES campus area has the potential to produce the litter of about 10 ton/ha / 3months in campus forest area and 2.5 ton/ha / 3months along campus street. There is a significant relationship between litter production of Mahogany leaves and precipitation during August - October 2017.

  6. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.

    PubMed

    Sarciaux, J M; Mansour, S; Hageman, M J; Nail, S L

    1999-12-01

    The objective of this study was to identify critical formulation and processing variables affecting aggregation of bovine IgG during freeze-drying when no lyoprotective solute is used. Parameters examined were phosphate buffer concentration and counterion (Na versus K phosphate), added salts, cooling rate, IgG concentration, residual moisture level, and presence of a surfactant. No soluble aggregates were detected in any formulation after either freezing/thawing or freeze-drying. No insoluble aggregates were detected in any formulation after freezing, but insoluble aggregate levels were always detectable after freeze-drying. The data are consistent with a mechanism of aggregate formation involving denaturation of IgG at the ice/freeze-concentrate interface which is reversible upon freeze-thawing, but becomes irreversible after freeze-drying and reconstitution. Rapid cooling (by quenching in liquid nitrogen) results in more and larger aggregates than slow cooling on the shelf of the freeze-dryer. This observation is consistent with surface area measurements and environmental electron microscopic data showing a higher surface area of freeze-dried solids after fast cooling. Annealing of rapidly cooled solutions results in significantly less aggregation in reconstituted freeze-dried solids than in nonannealed controls, with a corresponding decrease in specific surface area of the freeze-dried, annealed system. Increasing the concentration of IgG significantly improves the stability of IgG against freeze-drying-induced aggregation, which may be explained by a smaller percentage of the protein residing at the ice/freeze-concentrate interface as IgG concentration is increased. A sodium phosphate buffer system consistently results in more turbid reconstituted solids than a potassium phosphate buffer system at the same concentration, but this effect is not attributable to a pH shift during freezing. Added salts such as NaCl or KCl contribute markedly to insoluble aggregate

  7. Effect of acid mist and air pollutants on yellow-poplar seedling height and leaf growth

    Treesearch

    Leon S. Dochinger; Keith F. Jensen; Keith F. Jensen

    1985-01-01

    One-year-old yellow-poplar seedlings were treated with acid mist at pH 2.5, 3.5, 4.5, and 5.5 either alone or in combination with 0.1 ppm 03, S02, and NO2 or NO2 plus S02. After 4 and 8 weeks of treatment, height, leaf area, and leaf and new shoot weight were determined and growth analysis variables calculated. Height, leaf area, and dry weight decreased with...

  8. FdC1 and Leaf-Type Ferredoxins Channel Electrons From Photosystem I to Different Downstream Electron Acceptors.

    PubMed

    Guan, Xiaoqian; Chen, Shuai; Voon, Chia Pao; Wong, Kam-Bo; Tikkanen, Mikko; Lim, Boon L

    2018-01-01

    Plant-type ferredoxins in Arabidopsis transfer electrons from the photosystem I to multiple redox-driven enzymes involved in the assimilation of carbon, nitrogen, and sulfur. Leaf-type ferredoxins also modulate the switch between the linear and cyclic electron routes of the photosystems. Recently, two novel ferredoxin homologs with extra C-termini were identified in the Arabidopsis genome (AtFdC1, AT4G14890; AtFdC2, AT1G32550). FdC1 was considered as an alternative electron acceptor of PSI under extreme ferredoxin-deficient conditions. Here, we showed that FdC1 could interact with some, but not all, electron acceptors of leaf-type Fds, including the ferredoxin-thioredoxin reductase (FTR), sulfite reductase (SiR), and nitrite reductase (NiR). Photoreduction assay on cytochrome c and enzyme assays confirmed its capability to receive electrons from PSI and donate electrons to the Fd-dependent SiR and NiR but not to the ferredoxin-NADP + oxidoreductase (FNR). Hence, FdC1 and leaf-type Fds may play differential roles by channeling electrons from photosystem I to different downstream electron acceptors in photosynthetic tissues. In addition, the median redox potential of FdC1 may allow it to receive electrons from FNR in non-photosynthetic plastids.

  9. FdC1 and Leaf-Type Ferredoxins Channel Electrons From Photosystem I to Different Downstream Electron Acceptors

    PubMed Central

    Guan, Xiaoqian; Chen, Shuai; Voon, Chia Pao; Wong, Kam-Bo; Tikkanen, Mikko; Lim, Boon L.

    2018-01-01

    Plant-type ferredoxins in Arabidopsis transfer electrons from the photosystem I to multiple redox-driven enzymes involved in the assimilation of carbon, nitrogen, and sulfur. Leaf-type ferredoxins also modulate the switch between the linear and cyclic electron routes of the photosystems. Recently, two novel ferredoxin homologs with extra C-termini were identified in the Arabidopsis genome (AtFdC1, AT4G14890; AtFdC2, AT1G32550). FdC1 was considered as an alternative electron acceptor of PSI under extreme ferredoxin-deficient conditions. Here, we showed that FdC1 could interact with some, but not all, electron acceptors of leaf-type Fds, including the ferredoxin-thioredoxin reductase (FTR), sulfite reductase (SiR), and nitrite reductase (NiR). Photoreduction assay on cytochrome c and enzyme assays confirmed its capability to receive electrons from PSI and donate electrons to the Fd-dependent SiR and NiR but not to the ferredoxin-NADP+ oxidoreductase (FNR). Hence, FdC1 and leaf-type Fds may play differential roles by channeling electrons from photosystem I to different downstream electron acceptors in photosynthetic tissues. In addition, the median redox potential of FdC1 may allow it to receive electrons from FNR in non-photosynthetic plastids. PMID:29670639

  10. Leaf litter dynamics and nitrous oxide emission in a Mediterranean riparian forest: implications for soil nitrogen dynamics.

    PubMed

    Bernal, S; Butturini, A; Nin, E; Sabater, F; Sabater, S

    2003-01-01

    Mediterranean riparian zones can experience severe drought periods that lead to low soil moisture content, which dramatically affects their performance as nitrate removal systems. In the Mediterranean riparian zone of this study, we determined that N2O emission was practically nil. To understand the role of forest floor processes in nitrogen retention of a Mediterranean riparian area, we studied leaf litter dynamics of two tree species, London planetree [Platanus x acerifolia (Aiton) Willd.] and alder [Alnus glutinosa (L.) Gaertn.], for two years, along with soil nitrogen mineralization rates. Annual leaf litter fall equaled 562.6 +/- 10.1 (standard error) g dry wt. m(-2), 68% of which was planetree and 32% of which was alder. The temporal distribution of litterfall showed a two-peak annual cycle, one occurring in midsummer, the other in autumn. Planetree provided the major input of organic nitrogen to the forest floor, and the amount of planetree leaves remaining on the forest floor was equivalent to approximately four years of stock. Leaf litter decomposition was three times higher for alder (decay coefficient [k] = 1.13 yr(-1)) than for planetree (k = 0.365 yr(-1)). Mineralization rates showed a seasonal pattern, with the maximum rate in summer (1.92 mg N kg(-1) d(-1)). Although the forest floor was an important sink for nitrogen due to planetree leaf accumulation, 7.5% of this leaf litter was scoured to the streambed by wind. This loss was irrelevant for alder leaves. Due to the litter quality, the forest floor of this Mediterranean riparian forest acts as a nitrogen sink.

  11. Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Knight, S. L.; Mitchell, C. A.

    1989-01-01

    Effects of different ratios incandescent (ln) to fluorescent (Fl) radiation were tested on growth of 'Waldmann's Green' leaf lettuce (Lactuca sativa L.) in a controlled environment. After 4 days of treatment, dry weight, leaf area, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic rate (Pn) were greater for plants grown at 84 rather than 16% of total irradiance (82 W m-2) from ln lamps. Although leaf dry weight and area were 12-17% greater at 84% ln after the first 8 days of treatment, there were no differences in RGR or Pn between treatments during the last 4 days. If 84% ln was compared with 50% ln, all cumulative growth parameters, RGR, NAR and Pn were greater for 84% ln during the first 4 days of treatment. However, during the second 4 days, RGR was greater for the 50% ln treatment, resulting in no net difference in leaf dry weight or area between treatments. Shifting from 84 to 50% ln radiation between the first and second 4 days of treatment increased plant dry weight, leaf area, RGR and NAR relative to those under 84% ln for 8 days continuously.

  12. Mercury in leaf litter in typical suburban and urban broadleaf forests in China.

    PubMed

    Niu, Zhenchuan; Zhang, Xiaoshan; Wang, Zhangwei; Ci, Zhijia

    2011-01-01

    To study the role of leaf litter in the mercury (Hg) cycle in suburban broadleaf forests and the distribution of Hg in urban forests, we collected leaf litter and soil from suburban evergreen and deciduous broadleaf forests and from urban forests in Beijing. The Hg concentrations in leaf litter from the suburban forests varied from 8.3 to 205.0 ng/g, with an average (avg) of (49.7 +/- 36.9) ng/g. The average Hg concentration in evergreen broadleaf forest leaf litter (50.8 + 39.4) ng/g was higher than that in deciduous broadleaf forest leaf litter (25.8 +/- 10.1) ng/g. The estimated Hg fluxes of leaf litter in suburban evergreen and deciduous broadleaf forests were 179.0 and 83.7 mg/(ha x yr), respectively. The Hg concentration in organic horizons (O horizons) ((263.1 +/- 237.2) ng/g) was higher than that in eluvial horizons (A horizons) ((83.9 +/- 52.0) ng/g). These results indicated that leaf litterfall plays an important role in transporting atmospheric mercury to soil in suburban forests. For urban forests in Beijing, the Hg concentrations in leaf litter ranged from 8.8-119.0 (avg 28.1 +/- 16.6) ng/g, with higher concentrations at urban sites than at suburban sites for each tree. The Hg concentrations in surface soil in Beijing were 32.0-25300.0 ng/g and increased from suburban sites to urban sites, with the highest value from Jingshan (JS) Park at the centre of Beijing. Therefore, the distribution of Hg in Beijing urban forests appeared to be strongly influenced by anthropogenic activities.

  13. Varying plant density and harvest time to optimize cowpea leaf yield and nutrient content

    NASA Technical Reports Server (NTRS)

    Ohler, T. A.; Nielsen, S. S.; Mitchell, C. A.

    1996-01-01

    Plant density and harvest time were manipulated to optimize vegetative (foliar) productivity of cowpea [Vigna unguiculata (L.) Walp.] canopies for future dietary use in controlled ecological life-support systems as vegetables or salad greens. Productivity was measured as total shoot and edible dry weights (DW), edible yield rate [(EYR) grams DW per square meter per day], shoot harvest index [(SHI) grams DW per edible gram DW total shoot], and yield-efficiency rate [(YER) grams DW edible per square meter per day per grams DW nonedible]. Cowpeas were grown in a greenhouse for leaf-only harvest at 14, 28, 42, 56, 84, or 99 plants/m2 and were harvested 20, 30, 40, or 50 days after planting (DAP). Shoot and edible dry weights increased as plant density and time to harvest increased. A maximum of 1189 g shoot DW/m2 and 594 g edible DW/m2 were achieved at an estimated plant density of 85 plants/m2 and harvest 50 DAP. EYR also increased as plant density and time to harvest increased. An EYR of 11 g m-2 day-1 was predicted to occur at 86 plants/m2 and harvest 50 DAP. SHI and YER were not affected by plant density. However, the highest values of SHI (64%) and YER (1.3 g m-2 day-1 g-1) were attained when cowpeas were harvested 20 DAP. The average fat and ash contents [dry-weight basis (dwb)] of harvested leaves remained constant regardless of harvest time. Average protein content increased from 25% DW at 30 DAP to 45% DW at 50 DAP. Carbohydrate content declined from 50% DW at 30 DAP to 45% DW at 50 DAP. Total dietary fiber content (dwb) of the leaves increased from 19% to 26% as time to harvest increased from 20 to 50 days.

  14. Dry olive leaf extract counteracts L-thyroxine-induced genotoxicity in human peripheral blood leukocytes in vitro.

    PubMed

    Topalović, Dijana Žukovec; Živković, Lada; Čabarkapa, Andrea; Djelić, Ninoslav; Bajić, Vladan; Dekanski, Dragana; Spremo-Potparević, Biljana

    2015-01-01

    The thyroid hormones change the rate of basal metabolism, modulating the consumption of oxygen and causing production of reactive oxygen species, which leads to the development of oxidative stress and DNA strand breaks. Olive (Olea europaea L.) leaf contains many potentially bioactive compounds, making it one of the most potent natural antioxidants. The objective of this study was to evaluate the genotoxicity of L-thyroxine and to investigate antioxidative and antigenotoxic potential of the standardized oleuropein-rich dry olive leaf extract (DOLE) against hydrogen peroxide and L-thyroxine-induced DNA damage in human peripheral blood leukocytes by using the comet assay. Various concentrations of the extract were tested with both DNA damage inducers, under two different experimental conditions, pretreatment and posttreatment. Results indicate that L-thyroxine exhibited genotoxic effect and that DOLE displayed protective effect against thyroxine-induced genotoxicity. The number of cells with DNA damage, was significantly reduced, in both pretreated and posttreated samples (P < 0.05). Comparing the beneficial effect of all tested concentrations of DOLE, in both experimental protocols, it appears that extract was more effective in reducing DNA damage in the pretreatment, exhibiting protective role against L-thyroxine effect. This feature of DOLE can be explained by its capacity to act as potent free radical scavenger.

  15. Dry Olive Leaf Extract Counteracts L-Thyroxine-Induced Genotoxicity in Human Peripheral Blood Leukocytes In Vitro

    PubMed Central

    Žukovec Topalović, Dijana; Živković, Lada; Čabarkapa, Andrea; Djelić, Ninoslav; Bajić, Vladan; Spremo-Potparević, Biljana

    2015-01-01

    The thyroid hormones change the rate of basal metabolism, modulating the consumption of oxygen and causing production of reactive oxygen species, which leads to the development of oxidative stress and DNA strand breaks. Olive (Olea europaea L.) leaf contains many potentially bioactive compounds, making it one of the most potent natural antioxidants. The objective of this study was to evaluate the genotoxicity of L-thyroxine and to investigate antioxidative and antigenotoxic potential of the standardized oleuropein-rich dry olive leaf extract (DOLE) against hydrogen peroxide and L-thyroxine-induced DNA damage in human peripheral blood leukocytes by using the comet assay. Various concentrations of the extract were tested with both DNA damage inducers, under two different experimental conditions, pretreatment and posttreatment. Results indicate that L-thyroxine exhibited genotoxic effect and that DOLE displayed protective effect against thyroxine-induced genotoxicity. The number of cells with DNA damage, was significantly reduced, in both pretreated and posttreated samples (P < 0.05). Comparing the beneficial effect of all tested concentrations of DOLE, in both experimental protocols, it appears that extract was more effective in reducing DNA damage in the pretreatment, exhibiting protective role against L-thyroxine effect. This feature of DOLE can be explained by its capacity to act as potent free radical scavenger. PMID:25789081

  16. Rapid, economical qualitative method for separation of aflatoxins B-1, B-2 & G-1, G-2 by dry column chromatography.

    PubMed

    Megalla, S E

    1983-12-01

    A good correlation of four components of aflatoxins was accomplished by using the dry column chromatography method. The decolorization process of interfering substances, by 0.01 N KOH and defatting the extract with petroleum ether yields a clean residue for DCC separation. It is clear that the dry column chromatography is a very simple and time-saving procedure for separation of aflatoxins. DCC columns are more economical than precoated 'thick layer' preparative plates and, in DCC, no large developing tanks need to be used. Hazards associated with the use of large volumes of flammable solvents are greatly reduced.

  17. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    PubMed

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  18. Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny.

    PubMed

    Pantin, Florent; Simonneau, Thierry; Muller, Bertrand

    2012-10-01

    Leaf growth is the central process facilitating energy capture and plant performance. This is also one of the most sensitive processes to a wide range of abiotic stresses. Because hydraulics and metabolics are two major determinants of expansive growth (volumetric increase) and structural growth (dry matter increase), we review the interaction nodes between water and carbon. We detail the crosstalks between water and carbon transports, including the dual role of stomata and aquaporins in regulating water and carbon fluxes, the coupling between phloem and xylem, the interactions between leaf water relations and photosynthetic capacity, the links between Lockhart's hydromechanical model and carbon metabolism, and the central regulatory role of abscisic acid. Then, we argue that during leaf ontogeny, these interactions change dramatically because of uncoupled modifications between several anatomical and physiological features of the leaf. We conclude that the control of leaf growth switches from a metabolic to a hydromechanical limitation during the course of leaf ontogeny. Finally, we illustrate how taking leaf ontogeny into account provides insights into the mechanisms underlying leaf growth responses to abiotic stresses that affect water and carbon relations, such as elevated CO2, low light, high temperature and drought. © 2012 INRA. New Phytologist © 2012 New Phytologist Trust.

  19. Large seasonal swings in leaf area of Amazon rainforests

    PubMed Central

    Myneni, Ranga B.; Yang, Wenze; Nemani, Ramakrishna R.; Huete, Alfredo R.; Dickinson, Robert E.; Knyazikhin, Yuri; Didan, Kamel; Fu, Rong; Negrón Juárez, Robinson I.; Saatchi, Sasan S.; Hashimoto, Hirofumi; Ichii, Kazuhito; Shabanov, Nikolay V.; Tan, Bin; Ratana, Piyachat; Privette, Jeffrey L.; Morisette, Jeffrey T.; Vermote, Eric F.; Roy, David P.; Wolfe, Robert E.; Friedl, Mark A.; Running, Steven W.; Votava, Petr; El-Saleous, Nazmi; Devadiga, Sadashiva; Su, Yin; Salomonson, Vincent V.

    2007-01-01

    Despite early speculation to the contrary, all tropical forests studied to date display seasonal variations in the presence of new leaves, flowers, and fruits. Past studies were focused on the timing of phenological events and their cues but not on the accompanying changes in leaf area that regulate vegetation–atmosphere exchanges of energy, momentum, and mass. Here we report, from analysis of 5 years of recent satellite data, seasonal swings in green leaf area of ≈25% in a majority of the Amazon rainforests. This seasonal cycle is timed to the seasonality of solar radiation in a manner that is suggestive of anticipatory and opportunistic patterns of net leaf flushing during the early to mid part of the light-rich dry season and net leaf abscission during the cloudy wet season. These seasonal swings in leaf area may be critical to initiation of the transition from dry to wet season, seasonal carbon balance between photosynthetic gains and respiratory losses, and litterfall nutrient cycling in moist tropical forests. PMID:17360360

  20. Study on vitamin D₂ stability in dried mushrooms during drying and storage.

    PubMed

    Sławińska, Aneta; Fornal, Emilia; Radzki, Wojciech; Skrzypczak, Katarzyna; Zalewska-Korona, Marta; Michalak-Majewska, Monika; Parfieniuk, Ewa; Stachniuk, Anna

    2016-05-15

    The main objective of this work was to determine the stability of vitamin D2 in dried mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes during storage, as well as to examine the possibility of inducing vitamin D2 production in dried mushrooms by UVB irradiation. After 1.5 year storage of dried mushrooms, the level of vitamin D2 in button mushrooms was found to be 6.90 μg/g dw, which is a 48.32% of initial level of vitamin D2. In the case of dried oyster and shiitake mushrooms there was a decrease to the level of 66.90% and 68.40%, respectively. It was determined that dried mushrooms can produce ergocalciferol under UVB irradiation. The highest content of vitamin D2 was observed in A. bisporus. Freeze-dried A. bisporus contained from 42.08 to 119.21 μg/g dw and hot-air dried mushrooms contained from 21.51 to 81.17 μg/g dw vitamin D2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Prospecting for Energy-Rich Renewable Raw Materials: Agave Leaf Case Study.

    PubMed

    Corbin, Kendall R; Byrt, Caitlin S; Bauer, Stefan; DeBolt, Seth; Chambers, Don; Holtum, Joseph A M; Karem, Ghazwan; Henderson, Marilyn; Lahnstein, Jelle; Beahan, Cherie T; Bacic, Antony; Fincher, Geoffrey B; Betts, Natalie S; Burton, Rachel A

    2015-01-01

    Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production. Agave leaf cell wall polysaccharide content was characterized by linkage analysis, non-cellulosic polysaccharides such as pectins were observed by immuno-microscopy, and leaf juice composition was determined by liquid chromatography. Agave leaves are fruit-like--rich in moisture, soluble sugars and pectin. The dry leaf fiber was composed of crystalline cellulose (47-50% w/w) and non-cellulosic polysaccharides (16-22% w/w), and whole leaves were low in lignin (9-13% w/w). Of the dry mass of whole Agave leaves, 85-95% consisted of soluble sugars, cellulose, non-cellulosic polysaccharides, lignin, acetate, protein and minerals. Juice pressed from the Agave leaves accounted for 69% of the fresh weight and was rich in glucose and fructose. Hydrolysis of the fructan oligosaccharides doubled the amount of fermentable fructose in A. tequilana leaf juice samples and the concentration of fermentable hexose sugars was 41-48 g/L. In agricultural production systems such as the tequila making, Agave leaves are discarded as waste. Theoretically, up to 4000 L/ha/yr of bioethanol could be produced from juice extracted from waste Agave leaves. Using standard Saccharomyces cerevisiae strains to ferment Agave juice, we observed ethanol yields that were 66% of the theoretical yields. These data indicate that Agave could rival currently used bioethanol feedstocks, particularly if the fermentation organisms and conditions were adapted to suit Agave leaf composition.

  2. Prospecting for Energy-Rich Renewable Raw Materials: Agave Leaf Case Study

    PubMed Central

    Corbin, Kendall R.; Byrt, Caitlin S.; Bauer, Stefan; DeBolt, Seth; Chambers, Don; Holtum, Joseph A. M.; Karem, Ghazwan; Henderson, Marilyn; Lahnstein, Jelle; Beahan, Cherie T.; Bacic, Antony; Fincher, Geoffrey B.; Betts, Natalie S.; Burton, Rachel A.

    2015-01-01

    Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production. Agave leaf cell wall polysaccharide content was characterized by linkage analysis, non-cellulosic polysaccharides such as pectins were observed by immuno-microscopy, and leaf juice composition was determined by liquid chromatography. Agave leaves are fruit-like—rich in moisture, soluble sugars and pectin. The dry leaf fiber was composed of crystalline cellulose (47–50% w/w) and non-cellulosic polysaccharides (16–22% w/w), and whole leaves were low in lignin (9–13% w/w). Of the dry mass of whole Agave leaves, 85–95% consisted of soluble sugars, cellulose, non-cellulosic polysaccharides, lignin, acetate, protein and minerals. Juice pressed from the Agave leaves accounted for 69% of the fresh weight and was rich in glucose and fructose. Hydrolysis of the fructan oligosaccharides doubled the amount of fermentable fructose in A. tequilana leaf juice samples and the concentration of fermentable hexose sugars was 41–48 g/L. In agricultural production systems such as the tequila making, Agave leaves are discarded as waste. Theoretically, up to 4000 L/ha/yr of bioethanol could be produced from juice extracted from waste Agave leaves. Using standard Saccharomyces cerevisiae strains to ferment Agave juice, we observed ethanol yields that were 66% of the theoretical yields. These data indicate that Agave could rival currently used bioethanol feedstocks, particularly if the fermentation organisms and conditions were adapted to suit Agave leaf composition. PMID:26305101

  3. Seasonal variations of gas exchange and water relations in deciduous and evergreen trees in monsoonal dry forests of Thailand.

    PubMed

    Ishida, Atsushi; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Sasrisang, Amornrat; Kaewpakasit, Kanokwan; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Gamo, Minoru; Diloksumpun, Sapit; Puangchit, Ladawan; Ishizuka, Moriyoshi

    2010-08-01

    This study compared leaf gas exchange, leaf hydraulic conductance, twig hydraulic conductivity and leaf osmotic potential at full turgor between two drought-deciduous trees, Vitex peduncularis Wall. and Xylia xylocarpa (Roxb.) W. Theob., and two evergreen trees, Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels, at the uppermost canopies in tropical dry forests in Thailand. The aims were to examine (i) whether leaf and twig hydraulic properties differ in relation to leaf phenology and (ii) whether xylem cavitation is a determinant of leaf shedding during the dry season. The variations in almost all hydraulic traits were more dependent on species than on leaf phenology. Evergreen Hopea exhibited the lowest leaf-area-specific twig hydraulic conductivity (leaf-area-specific K(twig)), lamina hydraulic conductance (K(lamina)) and leaf osmotic potential at full turgor (Ψ(o)) among species, whereas evergreen Syzygium exhibited the highest leaf-area-specific K(twig), K(lamina) and Ψ(o). Deciduous Xylia had the highest sapwood-area-specific K(twig), along with the lowest Huber value (sapwood area/leaf area). More negative osmotic Ψ(o) and leaf osmotic adjustment during the dry season were found in deciduous Vitex and evergreen Hopea, accompanied by low sapwood-area-specific K(twig). Regarding seasonal changes in hydraulics, no remarkable decrease in K(lamina) and K(twig) was found during the dry season in any species. Results suggest that leaf shedding during the dry season is not always associated with extensive xylem cavitation.

  4. Algorithm for retrieving vegetative canopy and leaf parameters from multi- and hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Borel, Christoph

    2009-05-01

    In recent years hyper-spectral data has been used to retrieve information about vegetative canopies such as leaf area index and canopy water content. For the environmental scientist these two parameters are valuable, but there is potentially more information to be gained as high spatial resolution data becomes available. We developed an Amoeba (Nelder-Mead or Simplex) based program to invert a vegetative canopy radiosity model coupled with a leaf (PROSPECT5) reflectance model and modeled for the background reflectance (e.g. soil, water, leaf litter) to a measured reflectance spectrum. The PROSPECT5 leaf model has five parameters: leaf structure parameter Nstru, chlorophyll a+b concentration Cab, carotenoids content Car, equivalent water thickness Cw and dry matter content Cm. The canopy model has two parameters: total leaf area index (LAI) and number of layers. The background reflectance model is either a single reflectance spectrum from a spectral library() derived from a bare area pixel on an image or a linear mixture of soil spectra. We summarize the radiosity model of a layered canopy and give references to the leaf/needle models. The method is then tested on simulated and measured data. We investigate the uniqueness, limitations and accuracy of the retrieved parameters on canopy parameters (low, medium and high leaf area index) spectral resolution (32 to 211 band hyperspectral), sensor noise and initial conditions.

  5. Seasonal changes in plant-water relations influence patterns of leaf display in Miombo woodlands: evidence of water conservative strategies.

    PubMed

    Vinya, Royd; Malhi, Yadvinder; Brown, Nick D; Fisher, Joshua B; Brodribb, Timothy; Aragão, Luiz E O C

    2018-06-15

    Water availability has frequently been linked to seasonal leaf display in seasonally dry ecosystems, but there have been few ecohydrological investigations of this link. Miombo woodland is a dominant seasonally dry tropical forest ecosystem type in southern Africa; however, there are few data on the relationship between seasonal dynamics in plant-water relations and patterns of leaf display for Miombo woodland. Here we investigate this relationship among nine key Miombo woodland tree species differing in drought tolerance ability and leaf phenology. Results of this study showed that seasonal patterns of leaf phenology varied significantly with seasonal changes in stem water relations among the nine species. Leaf shedding coincided with the attainment of seasonal minimum stem water potential. Leaf flush occurred following xylem rehydration at the peak of the dry season suggesting that endogenous plant factors play a pivotal role in seasonal leaf display in this forest type. Drought-tolerant deciduous species suffered significantly higher seasonal losses in xylem hydraulic conductivity than the drought-intolerant semi-evergreen tree species (P < 0.05). There was a significant and positive correlation between species drought tolerance index and species' seasonal loss in hydraulic conductivity (P < 0.05), confirming the ecological role of long-distance xylem transport in this seasonally dry tropical forest. Our results reveal that water stress in seasonally dry tropical forests selects for water conservative traits that protect the vulnerable xylem transport system. Therefore, seasonal rhythms in xylem transport dictate patterns of leaf display in seasonally dry tropical forests.

  6. Effects of pyrolysis temperature, time and leaf litter and powder coal ash addition on sludge-derived adsorbents for nitrogen oxide.

    PubMed

    Ren, Xiaoli; Liang, Baohong; Liu, Min; Xu, Xiaoyuan; Cui, Meihua

    2012-12-01

    The objective of this research was to seek a cost effective solution to prepare adsorbents for nitrogen oxide from surplus sludge. Leaf litter and powder coal ash were used as cheap and easily available additives. An adsorbent for nitrogen oxide was prepared by pyrolysis of dried sludge mixed with zinc chloride. Under optimum pyrolysis conditions of 375°C for 90 min and a zinc chloride content of 30%, the surface area of the adsorbent with leaf litter was 514.41 m(2)/g, the surface area of the adsorbent with powder coal ash was 432.34 m(2)/g, respectively, corresponding to an increase of 90.70% and 60.27% when compared to the adsorbent without the additives. The saturated adsorption quantity of the adsorbent with leaf litter reached 271 mg/g at 20°C. The results indicated that the sludge-derived adsorbent was quite promising for nitrogen oxide removal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Response of rice genotypes to weed competition in dry direct-seeded rice in India.

    PubMed

    Mahajan, Gulshan; Ramesha, Mugalodi S; Chauhan, Bhagirath S

    2014-01-01

    The differential weed-competitive abilities of eight rice genotypes and the traits that may confer such attributes were investigated under partial weedy and weed-free conditions in naturally occurring weed flora in dry direct-seeded rice during the rainy seasons of 2011 and 2012 at Ludhiana, Punjab, India. The results showed genotypic differences in competitiveness against weeds. In weed-free plots, grain yield varied from 6.6 to 8.9 t ha(-1) across different genotypes; it was lowest for PR-115 and highest for the hybrid H-97158. In partial weedy plots, grain yield and weed biomass at flowering varied from 3.6 to 6.7 t ha(-1) and from 174 to 419 g m(-2), respectively. In partial weedy plots, grain yield was lowest for PR-115 and highest for PR-120. Average yield loss due to weed competition ranged from 21 to 46% in different rice genotypes. The study showed that early canopy closure, high leaf area index at early stage, and high root biomass and volume correlated positively with competitiveness. This study suggests that some traits (root biomass, leaf area index, and shoot biomass at the early stage) could play an important role in conferring weed competitiveness and these traits can be explored for dry-seeded rice.

  8. Abscisic Acid Content, Transpiration, and Stomatal Conductance As Related to Leaf Age in Plants of Xanthium strumarium L. 1

    PubMed Central

    Raschke, Klaus; Zeevaart, Jan A. D.

    1976-01-01

    Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L. the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (±)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells. The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight. PMID:16659640

  9. Fundamental trade-offs generating the worldwide leaf economics spectrum.

    PubMed

    Shipley, Bill; Lechowicz, Martin J; Wright, Ian; Reich, Peter B

    2006-03-01

    Recent work has identified a worldwide "economic" spectrum of correlated leaf traits that affects global patterns of nutrient cycling and primary productivity and that is used to calibrate vegetation-climate models. The correlation patterns are displayed by species from the arctic to the tropics and are largely independent of growth form or phylogeny. This generality suggests that unidentified fundamental constraints control the return of photosynthates on investments of nutrients and dry mass in leaves. Using novel graph theoretic methods and structural equation modeling, we show that the relationships among these variables can best be explained by assuming (1) a necessary trade-off between allocation to structural tissues versus liquid phase processes and (2) an evolutionary tradeoff between leaf photosynthetic rates, construction costs, and leaf longevity.

  10. Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Knight, Sharon L.; Mitchell, Cary A.

    1988-01-01

    Effects of different ratios of incandescent (ln) to fluorescent (Fl) radiation were tested on growth of 'Waldmann's Green' leaf lettuce in a controlled environment. After 4 days of treatment, dry weight, leaf area, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic rate (Pn) were greater for plants grown at 84 rather than 16 percent of total irradiance (82 W/sq m) from ln lamps. Although leaf dry weight and area were 12-17 percent greater at 84 percent ln after the first 8 days of treatment, there were no differences in RGR or Pn between treatments during the last 4 days. If 84 percent ln was compared with 50 percent ln, all cumulative growth parameters, RGR, NAR and Pn were greater for 84 percent ln during the first 4 days of treatment. However, during the second 4 days, RGR was greater for the 50 percent ln treatment, resulting in no net difference in leaf dry weight or area between treatments. Shifting from 84 to 50 percent ln radiation between the first and second 4 days of treatment increased plant dry weight, leaf area, RGR and NAR relative to those under 84 percent ln for 8 days continuously.

  11. Mechanistic evaluation of Ginkgo biloba leaf extract-induced genotoxicity in L5178Y cells.

    PubMed

    Lin, Haixia; Guo, Xiaoqing; Zhang, Suhui; Dial, Stacey L; Guo, Lei; Manjanatha, Mugimane G; Moore, Martha M; Mei, Nan

    2014-06-01

    Ginkgo biloba has been used for many thousand years as a traditional herbal remedy and its extract has been consumed for many decades as a dietary supplement. Ginkgo biloba leaf extract is a complex mixture with many constituents, including flavonol glycosides and terpene lactones. The National Toxicology Program 2-year cancer bioassay found that G. biloba leaf extract targets the liver, thyroid gland, and nose of rodents; however, the mechanism of G. biloba leaf extract-associated carcinogenicity remains unclear. In the current study, the in vitro genotoxicity of G. biloba leaf extract and its eight constituents was evaluated using the mouse lymphoma assay (MLA) and Comet assay. The underlying mechanisms of G. biloba leaf extract-associated genotoxicity were explored. Ginkgo biloba leaf extract, quercetin, and kaempferol resulted in a dose-dependent increase in the mutant frequency and DNA double-strand breaks (DSBs). Western blot analysis confirmed that G. biloba leaf extract, quercetin, and kaempferol activated the DNA damage signaling pathway with increased expression of γ-H2AX and phosphorylated Chk2 and Chk1. In addition, G. biloba leaf extract produced reactive oxygen species and decreased glutathione levels in L5178Y cells. Loss of heterozygosity analysis of mutants indicated that G. biloba leaf extract, quercetin, and kaempferol treatments resulted in extensive chromosomal damage. These results indicate that G. biloba leaf extract and its two constituents, quercetin and kaempferol, are mutagenic to the mouse L5178Y cells and induce DSBs. Quercetin and kaempferol likely are major contributors to G. biloba leaf extract-induced genotoxicity.

  12. Effects of Drying Process on an IgG1 Monoclonal Antibody Using Solid-State Hydrogen Deuterium Exchange with Mass Spectrometric Analysis (ssHDX-MS).

    PubMed

    Moussa, Ehab M; Wilson, Nathan E; Zhou, Qi Tony; Singh, Satish K; Nema, Sandeep; Topp, Elizabeth M

    2018-01-03

    Lyophilization and spray drying are widely used to manufacture solid forms of therapeutic proteins. Lyophilization is used to stabilize proteins vulnerable to degradation in solution, whereas spray drying is mainly used to prepare inhalation powders or as an alternative to freezing for storing bulk drug substance. Both processes impose stresses that may adversely affect protein structure, stability and bioactivity. Here, we compared lyophilization with and without controlled ice nucleation, and spray drying for their effects on the solid-state conformation and matrix interactions of a model IgG1 monoclonal antibody (mAb). Solid-state conformation and matrix interactions of the mAb were probed using solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS), and solid-state Fourier transform infrared (ssFTIR) and solid-state fluorescence spectroscopies. mAb conformation and/or matrix interactions were most perturbed in mannitol-containing samples and the distribution of states was more heterogeneous in sucrose and trehalose samples that were spray dried. The findings demonstrate the sensitivity of ssHDX-MS to changes weakly indicated by spectroscopic methods, and support the broader use of ssHDX-MS to probe formulation and process effects on proteins in solid samples.

  13. Phytoluminographic Detection of Dynamic Variations in Leaf Gaseous Conductivity 1

    PubMed Central

    Ellenson, James L.

    1985-01-01

    Gas exchange and plant luminescence (delayed light emission) of a single red kidney bean leaf undergoing synchronous oscillations in gas exchange were recorded and analyzed. Introduction of 1.1 microliter per liter SO2 during these oscillations produced increases in plant luminescence that, when averaged over a portion of the leaf, oscillated in phase with the gas exchange oscillations. However, examination of a video record of the plant luminescence showed not only that luminescence intensities tended to be localized within discrete areas of the leaf, but that the time-dependence of luminescence intensities within these regions varied considerably from the period, amplitude, and often phase of the overall gas exchange oscillations. The video recording also showed that changes in luminescence intensities appeared to migrate across the leaf in wave-like patterns. These data are interpreted in terms of localized fluctuations in gaseous conductances of the leaf. Images Fig. 3 PMID:16664350

  14. Xylem Cavitation in the Leaf of Prunus laurocerasus and Its Impact on Leaf Hydraulics1

    PubMed Central

    Nardini, Andrea; Tyree, Melvin T.; Salleo, Sebastiano

    2001-01-01

    This paper reports how water stress correlates with changes in hydraulic conductivity of stems, leaf midrib, and whole leaves of Prunus laurocerasus. Water stress caused cavitation-induced dysfunction in vessels of P. laurocerasus. Cavitation was detected acoustically by counts of ultrasonic acoustic emissions and by the loss of hydraulic conductivity measured by a vacuum chamber method. Stems and midribs were approximately equally vulnerable to cavitations. Although midribs suffered a 70% loss of hydraulic conductance at leaf water potentials of −1.5 MPa, there was less than a 10% loss of hydraulic conductance in whole leaves. Cutting and sealing the midrib 20 mm from the leaf base caused only a 30% loss of conduction of the whole leaf. A high-pressure flow meter was used to measure conductance of whole leaves and as the leaf was progressively cut back from tip to base. These data were fitted to a model of hydraulic conductance of leaves that explained the above results, i.e. redundancy in hydraulic pathways whereby water can flow around embolized regions in the leaf, makes whole leaves relatively insensitive to significant changes in conductance of the midrib. The onset of cavitation events in P. laurocerasus leaves correlated with the onset of stomatal closure as found recently in studies of other species in our laboratory. PMID:11299351

  15. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice.

    PubMed

    Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Nawrath, Christiane; Pourkheirandish, Mohammad; Tagiri, Akemi; Hu, Yin-Gang; Sameri, Mohammad; Li, Xinrong; Zhao, Xin; Liu, Yubing; Li, Chao; Ma, Xiaoying; Wang, Aidong; Nair, Sudha; Wang, Ning; Miyao, Akio; Sakuma, Shun; Yamaji, Naoki; Zheng, Xiuting; Nevo, Eviatar

    2011-07-26

    Land plants have developed a cuticle preventing uncontrolled water loss. Here we report that an ATP-binding cassette (ABC) subfamily G (ABCG) full transporter is required for leaf water conservation in both wild barley and rice. A spontaneous mutation, eibi1.b, in wild barley has a low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. Map-based cloning revealed that Eibi1 encodes an HvABCG31 full transporter. The gene was highly expressed in the elongation zone of a growing leaf (the site of cutin synthesis), and its gene product also was localized in developing, but not in mature tissue. A de novo wild barley mutant named "eibi1.c," along with two transposon insertion lines of rice mutated in the ortholog of HvABCG31 also were unable to restrict water loss from detached leaves. HvABCG31 is hypothesized to function as a transporter involved in cutin formation. Homologs of HvABCG31 were found in green algae, moss, and lycopods, indicating that this full transporter is highly conserved in the evolution of land plants.

  16. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice

    PubMed Central

    Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Nawrath, Christiane; Pourkheirandish, Mohammad; Tagiri, Akemi; Hu, Yin-Gang; Sameri, Mohammad; Li, Xinrong; Zhao, Xin; Liu, Yubing; Li, Chao; Ma, Xiaoying; Wang, Aidong; Nair, Sudha; Wang, Ning; Miyao, Akio; Sakuma, Shun; Yamaji, Naoki; Zheng, Xiuting; Nevo, Eviatar

    2011-01-01

    Land plants have developed a cuticle preventing uncontrolled water loss. Here we report that an ATP-binding cassette (ABC) subfamily G (ABCG) full transporter is required for leaf water conservation in both wild barley and rice. A spontaneous mutation, eibi1.b, in wild barley has a low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. Map-based cloning revealed that Eibi1 encodes an HvABCG31 full transporter. The gene was highly expressed in the elongation zone of a growing leaf (the site of cutin synthesis), and its gene product also was localized in developing, but not in mature tissue. A de novo wild barley mutant named “eibi1.c,” along with two transposon insertion lines of rice mutated in the ortholog of HvABCG31 also were unable to restrict water loss from detached leaves. HvABCG31 is hypothesized to function as a transporter involved in cutin formation. Homologs of HvABCG31 were found in green algae, moss, and lycopods, indicating that this full transporter is highly conserved in the evolution of land plants. PMID:21737747

  17. A role for APETALA1/fruitfull transcription factors in tomato leaf development.

    PubMed

    Burko, Yogev; Shleizer-Burko, Sharona; Yanai, Osnat; Shwartz, Ido; Zelnik, Iris Daphne; Jacob-Hirsch, Jasmine; Kela, Itai; Eshed-Williams, Leor; Ori, Naomi

    2013-06-01

    Flexible maturation rates underlie part of the diversity of leaf shape, and tomato (Solanum lycopersicum) leaves are compound due to prolonged organogenic activity of the leaf margin. The CINCINNATA-teosinte branched1, cycloidea, PCF (CIN-TCP) transcription factor lanceolate (LA) restricts this organogenic activity and promotes maturation. Here, we show that tomato APETALA1/fruitfull (AP1/FUL) MADS box genes are involved in tomato leaf development and are repressed by LA. AP1/FUL expression is correlated negatively with LA activity and positively with the organogenic activity of the leaf margin. LA binds to the promoters of the AP1/FUL genes MBP20 and TM4. Overexpression of MBP20 suppressed the simple-leaf phenotype resulting from upregulation of LA activity or from downregulation of class I knotted like homeobox (KNOXI) activity. Overexpression of a dominant-negative form of MBP20 led to leaf simplification and partly suppressed the increased leaf complexity of plants with reduced LA activity or increased KNOXI activity. Tomato plants overexpressing miR319, a negative regulator of several CIN-TCP genes including LA, flower with fewer leaves via an SFT-dependent pathway, suggesting that miR319-sensitive CIN-TCPs delay flowering in tomato. These results identify a role for AP1/FUL genes in vegetative development and show that leaf and plant maturation are regulated via partially independent mechanisms.

  18. Identification and Characterization of Pseudocercospora pyricola Causing Leaf Spots on Aronia melanocarpa

    PubMed Central

    Park, Sung-Hee; Choi, In-Young; Seo, Kyoung-Won; Kim, Jin-Ho; Galea, Victor

    2017-01-01

    Leaf spot disease on black chokeberry (Aronia melanocarpa) was observed at several locations in Korea during 2014–2015. Leaf spots were distinct, scattered over the leaf surface and along the leaf border, subcircular to irregular and brown surrounded by a distinct dark color, and were expanded and coalesced into irregularly shaped lesions. Severely infected leaves became dry and fell off eventually. The causative agent was identified as Pseudocercospora pyricola. Morphological observations and phylogenetic analyses of multiple genes, including internal transcribed spacer, translation elongation factor 1-alpha, actin, and the large subunit ribosomal DNA were conducted. The pathogenicity test was conducted twice yielding similar results, fulfilling Koch's postulates. To our knowledge, this is the first report on P. pyricola infection of A. melanocarpa globally. PMID:28435353

  19. Identification and Characterization of Pseudocercospora pyricola Causing Leaf Spots on Aronia melanocarpa.

    PubMed

    Park, Sung-Hee; Choi, In-Young; Seo, Kyoung-Won; Kim, Jin-Ho; Galea, Victor; Shin, Hyeon-Dong

    2017-03-01

    Leaf spot disease on black chokeberry ( Aronia melanocarpa ) was observed at several locations in Korea during 2014-2015. Leaf spots were distinct, scattered over the leaf surface and along the leaf border, subcircular to irregular and brown surrounded by a distinct dark color, and were expanded and coalesced into irregularly shaped lesions. Severely infected leaves became dry and fell off eventually. The causative agent was identified as Pseudocercospora pyricola . Morphological observations and phylogenetic analyses of multiple genes, including internal transcribed spacer, translation elongation factor 1-alpha, actin, and the large subunit ribosomal DNA were conducted. The pathogenicity test was conducted twice yielding similar results, fulfilling Koch's postulates. To our knowledge, this is the first report on P. pyricola infection of A. melanocarpa globally.

  20. Final report on the safety assessment of AloeAndongensis Extract, Aloe Andongensis Leaf Juice,aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice,aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract.

    PubMed

    2007-01-01

    Plant materials derived from the Aloe plant are used as cosmetic ingredients, including Aloe Andongensis Extract, Aloe Andongensis Leaf Juice, Aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice, Aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract. These ingredients function primarily as skin-conditioning agents and are included in cosmetics only at low concentrations. The Aloe leaf consists of the pericyclic cells, found just below the plant's skin, and the inner central area of the leaf, i.e., the gel, which is used for cosmetic products. The pericyclic cells produce a bitter, yellow latex containing a number of anthraquinones, phototoxic compounds that are also gastrointestinal irritants responsible for cathartic effects. The gel contains polysaccharides, which can be acetylated, partially acetylated, or not acetylated. An industry established limit for anthraquinones in aloe-derived material for nonmedicinal use is 50 ppm or lower. Aloe-derived ingredients are used in a wide variety of cosmetic product types at concentrations of raw material that are 0.1% or less, although can be as high as 20%. The concentration of Aloe in the raw material also may vary from 100% to a low of 0.0005%. Oral administration of various anthraquinone components results in a rise in their blood concentrations, wide systemic distribution, accumulation in the liver and kidneys, and excretion in urine and feces; polysaccharide components are distributed systemically and metabolized into smaller molecules. aloe-derived material has fungicidal, antimicrobial, and antiviral activities, and has been effective in wound healing and infection treatment in animals. Aloe barbadensis (also known as Aloe vera)-derived ingredients were not toxic

  1. Measurement of Leaf Mass and Leaf Area of Oaks In A Mediterranean-climate Region For Biogenic Emission Estimation

    NASA Astrophysics Data System (ADS)

    Karlik, J.

    Given the key role played by biogenic volatile organic compounds (BVOC) in tro- pospheric chemistry and regional air quality, it is critical to generate accurate BVOC emission inventories. Because several oak species have high BVOC emission rates, and oak trees are often of large stature with corresponding large leaf masses, oaks may be the most important genus of woody plants for BVOC emissions modeling in the natural landscapes of Mediterranean-climate regions. In California, BVOC emis- sions from oaks may mix with anthropogenic emissions from urban areas, leading to elevated levels of ozone. Data for leaf mass and leaf area for a stand of native blue oaks (Quercus douglasii) were obtained through harvest and leaf removal from 14 trees lo- cated in the Sierra Nevada foothills of central California. Trees ranged in height from 4.2 to 9.9 m, with trunk diameters at breast height of 14 to 85 cm. Mean leaf mass density was 730 g m-2 for the trees and had an overall value of 310 g m-2 for the site. Consideration of the surrounding grassland devoid of trees resulted in a value of about 150 g m-2, less than half of reported values for eastern U.S. oak woodlands, but close to a reported value for oaks found in St. Quercio, Italy. The mean value for leaf area index (LAI) for the trees at this site was 4.4 m2 m-2. LAI for the site was 1.8 m2 m-2, but this value was appropriate for the oak grove only; including the surrounding open grassland resulted in an overall LAI value of 0.9 m2 m-2 or less. A volumetric method worked well for estimating the leaf mass of the oak trees. Among allometric relationships investigated, trunk circumference, mean crown radius, and crown projec- tion were well correlated with leaf mass. Estimated emission of isoprene (mg C m-2 h-1) for the site based these leaf mass data and experimentally determined emission rate was similar to that reported for a Mediterranean oak woodland in France.

  2. Drying and decontamination of raw pistachios with sequential infrared drying, tempering and hot air drying.

    PubMed

    Venkitasamy, Chandrasekar; Brandl, Maria T; Wang, Bini; McHugh, Tara H; Zhang, Ruihong; Pan, Zhongli

    2017-04-04

    Pistachio nuts have been associated with outbreaks of foodborne disease and the industry has been impacted by numerous product recalls due to contamination with Salmonella enterica. The current hot air drying of pistachios has low energy efficiency and drying rates, and also does not guarantee the microbial safety of products. In the study described herein, dehulled and water-sorted pistachios with a moisture content (MC) of 38.14% (wet basis) were dried in a sequential infrared and hot air (SIRHA) drier to <9% MC. The decontamination efficacy was assessed by inoculating pistachios with Enterococcus faecium, a surrogate of Salmonella enterica used for quality control in the almond industry. Drying with IR alone saved 105min (34.4%) of drying time compared with hot air drying. SIRHA drying of pistachios for 2h with infrared (IR) heat followed by tempering at a product temperature of 70°C for 2h and then by hot air drying shortened the drying time by 40min (9.1%) compared with drying by hot air only. This SIRHA method also reduced the E. faecium cell population by 6.1-logCFU/g kernel and 5.41-logCFU/g shell of pistachios. The free fatty acid contents of SIRHA dried pistachios were on par with that of hot air dried samples. Despite significant differences in peroxide values (PV) of pistachio kernels dried with the SIRHA method compared with hot air drying at 70°C, the PV were within the permissible limit of 5Meq/kg for edible oils. Our findings demonstrate the efficacy of SIRHA drying in achieving simultaneous drying and decontamination of pistachios. Published by Elsevier B.V.

  3. Effect of dry period dietary energy level in dairy cattle on volume, concentrations of immunoglobulin G, insulin, and fatty acid composition of colostrum.

    PubMed

    Mann, S; Leal Yepes, F A; Overton, T R; Lock, A L; Lamb, S V; Wakshlag, J J; Nydam, D V

    2016-02-01

    The objective was to investigate the effect of different dry cow feeding strategies on the volume, concentration of IgG and insulin, as well as fatty acid composition of colostrum. Our hypothesis was that different dry period diets formulated to resemble current feeding practices on commercial dairy farms and differing in plane of energy would have an effect on IgG and insulin concentration, as well as composition of fatty acid of colostrum. Animals (n=84) entering parity 2 or greater were dried off 57 d before expected parturition and fed either a diet formulated to meet, but not greatly exceed energy requirements throughout the dry period (CON), or a higher energy density diet, supplying approximately 150% of energy requirements (HI). A third group received the same diet as group CON from dry-off until 29 d before expected parturition. After this time point, from 28 d before expected parturition until calving, they received a diet formulated to supply approximately 125% of energy requirements (I-med). Concentration of IgG and insulin in colostrum were measured by radial immunodiffusion and RIA, respectively. Composition of fatty acids was determined by gas-liquid chromatography. The IgG concentration was highest in colostrum of cows in group CON [96.1 (95% CI: 83.3-108.9) g/L] and lowest in group HI [72.4 (60.3-84.5) g/L], whereas insulin concentration was highest in group HI [1,105 (960-1,250) μU/mL] and lowest in group CON [853 (700-1,007) μU/mL]. Colostrum yield did not differ between treatments and was 5.9 (4.5-7.4), 7.0 (5.6-8.4), and 7.3 (5.9-8.7) kg in groups CON, I-med, and HI, respectively. A multivariable linear regression model showed the effect of dietary treatment group on IgG concentration was independent of the effect of dry matter. Cows in groups CON, I-med, and HI had an average colostral fat percentage of 5.0 (4.1-5.9), 5.6 (4.8-6.4), and 6.0 (5.2-6.8) and an average fat yield of 289 (196-380), 406 (318-495), and 384 (295-473) g, respectively

  4. Regulation of Compound Leaf Development in Medicago truncatula by Fused Compound Leaf1, a Class M KNOX Gene[C][W

    PubMed Central

    Peng, Jianling; Yu, Jianbin; Wang, Hongliang; Guo, Yingqing; Li, Guangming; Bai, Guihua; Chen, Rujin

    2011-01-01

    Medicago truncatula is a legume species belonging to the inverted repeat lacking clade (IRLC) with trifoliolate compound leaves. However, the regulatory mechanisms underlying development of trifoliolate leaves in legumes remain largely unknown. Here, we report isolation and characterization of fused compound leaf1 (fcl1) mutants of M. truncatula. Phenotypic analysis suggests that FCL1 plays a positive role in boundary separation and proximal-distal axis development of compound leaves. Map-based cloning indicates that FCL1 encodes a class M KNOX protein that harbors the MEINOX domain but lacks the homeodomain. Yeast two-hybrid assays show that FCL1 interacts with a subset of Arabidopsis thaliana BEL1-like proteins with slightly different substrate specificities from the Arabidopsis homolog KNATM-B. Double mutant analyses with M. truncatula single leaflet1 (sgl1) and palmate-like pentafoliata1 (palm1) leaf mutants show that fcl1 is epistatic to palm1 and sgl1 is epistatic to fcl1 in terms of leaf complexity and that SGL1 and FCL1 act additively and are required for petiole development. Previous studies have shown that the canonical KNOX proteins are not involved in compound leaf development in IRLC legumes. The identification of FCL1 supports the role of a truncated KNOX protein in compound leaf development in M. truncatula. PMID:22080596

  5. Reflectance characteristics of dry plant materials

    NASA Technical Reports Server (NTRS)

    Elvidge, Christopher D.

    1987-01-01

    Chlorophyll and water obscure the absorption features of all other leaf constituents in the spectra of green leaves. The predominant near-IR and thermal IR spectral features of dry plant materials originate from lignin, cellulose, and hemicellulose. These compounds account for 80 to 98 percent of the dry weight in most plant materials.

  6. Spatial trends in leaf size of Amazonian rainforest trees

    NASA Astrophysics Data System (ADS)

    Malhado, A. C. M.; Malhi, Y.; Whittaker, R. J.; Ladle, R. J.; Ter Steege, H.; Aragão, L. E. O. C.; Quesada, C. A.; Araujo-Murakami, A.; Phillips, O. L.; Peacock, J.; Lopez-Gonzalez, G.; Baker, T. R.; Butt, N.; Anderson, L. O.; Arroyo, L.; Almeida, S.; Higuchi, N.; Killeen, T. J.; Monteagudo, A.; Neill, D.; Pitman, N.; Prieto, A.; Salomão, R. P.; Silva, N.; Vásquez-Martínez, R.; Laurance, W. F.

    2009-02-01

    Leaf size influences many aspects of tree function such as rates of transpiration and photosynthesis and, consequently, often varies in a predictable way in response to environmental gradients. The recent development of pan-Amazonian databases based on permanent botanical plots (e.g. RAINFOR, ATDN) has now made it possible to assess trends in leaf size across environmental gradients in Amazonia. Previous plot-based studies have shown that the community structure of Amazonian trees breaks down into at least two major ecological gradients corresponding with variations in soil fertility (decreasing south to northeast) and length of the dry season (increasing from northwest to south and east). Here we describe the results of the geographic distribution of leaf size categories based on 121 plots distributed across eight South American countries. We find that, as predicted, the Amazon forest is predominantly populated by tree species and individuals in the mesophyll size class (20.25-182.25 cm2). The geographic distribution of species and individuals with large leaves (>20.25 cm2) is complex but is generally characterized by a higher proportion of such trees in the north-west of the region. Spatially corrected regressions reveal weak correlations between the proportion of large-leaved species and metrics of water availability. We also find a significant negative relationship between leaf size and wood density.

  7. Impact of anatomical traits of maize (Zea mays L.) leaf as affected by nitrogen supply and leaf age on bundle sheath conductance.

    PubMed

    Retta, Moges; Yin, Xinyou; van der Putten, Peter E L; Cantre, Denis; Berghuijs, Herman N C; Ho, Quang Tri; Verboven, Pieter; Struik, Paul C; Nicolaï, Bart M

    2016-11-01

    The mechanism of photosynthesis in C 4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (g bs ), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C 4 photosynthesis to estimate g bs . The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between g bs and leaf nitrogen content (LNC) while old leaves had lower g bs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (S b ) correlated well with g bs although they were not significantly affected by LNC. As a result, the increase of g bs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on S b was responsible for differences in g bs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO 2 leakage pathway to unravel LNC and age effects further. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Natural Variation in the Flag Leaf Morphology of Rice Due to a Mutation of the NARROW LEAF 1 Gene in Oryza sativa L.

    PubMed

    Taguchi-Shiobara, Fumio; Ota, Tatsuya; Ebana, Kaworu; Ookawa, Taiichiro; Yamasaki, Masanori; Tanabata, Takanari; Yamanouchi, Utako; Wu, Jianzhong; Ono, Nozomi; Nonoue, Yasunori; Nagata, Kazufumi; Fukuoka, Shuichi; Hirabayashi, Hideyuki; Yamamoto, Toshio; Yano, Masahiro

    2015-10-01

    We investigated the natural variations in the flag leaf morphology of rice. We conducted a principal component analysis based on nine flag leaf morphology traits using 103 accessions from the National Institute of Agrobiological Sciences Core Collection. The first component explained 39% of total variance, and the variable with highest loading was the width of the flag leaf (WFL). A genome-wide association analysis of 102 diverse Japanese accessions revealed that marker RM6992 on chromosome 4 was highly associated with WFL. In analyses of progenies derived from a cross between Takanari and Akenohoshi, the most significant quantitative trait locus (QTL) for WFL was in a 10.3-kb region containing the NARROW LEAF 1 (NAL1) gene, located 0.4 Mb downstream of RM6992. Analyses of chromosomal segment substitution lines indicated that a mutation (G1509A single-nucleotide mutation, causing an R233H amino acid substitution in NAL1) was present at the QTL. This explained 13 and 20% of total variability in WFL and the distance between small vascular bundles, respectively. The mutation apparently occurred during rice domestication and spread into japonica, tropical japonica, and indica subgroups. Notably, one accession, Phulba, had a NAL1 allele encoding only the N-terminal, or one-fourth, of the wild-type peptide. Given that the Phulba allele and the histidine-type allele showed essentially the same phenotype, the histidine-type allele was regarded as malfunctional. The phenotypes of transgenic plants varied depending on the ratio of histidine-type alleles to arginine-type alleles, raising the possibility that H(233)-type products function differently from and compete with R(233)-type products. Copyright © 2015 by the Genetics Society of America.

  9. Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: integration of leaf structure, osmotic adjustment and access to multiple water sources.

    PubMed

    Nguyen, Hoa T; Meir, Patrick; Sack, Lawren; Evans, John R; Oliveira, Rafael S; Ball, Marilyn C

    2017-08-01

    Leaf structure and water relations were studied in a temperate population of Avicennia marina subsp. australasica along a natural salinity gradient [28 to 49 parts per thousand (ppt)] and compared with two subspecies grown naturally in similar soil salinities to those of subsp. australasica but under different climates: subsp. eucalyptifolia (salinity 30 ppt, wet tropics) and subsp. marina (salinity 46 ppt, arid tropics). Leaf thickness, leaf dry mass per area and water content increased with salinity and aridity. Turgor loss point declined with increase in soil salinity, driven mainly by differences in osmotic potential at full turgor. Nevertheless, a high modulus of elasticity (ε) contributed to maintenance of high cell hydration at turgor loss point. Despite similarity among leaves in leaf water storage capacitance, total leaf water storage increased with increasing salinity and aridity. The time that stored water alone could sustain an evaporation rate of 1 mmol m -2  s -1 ranged from 77 to 126 min from subspecies eucalyptifolia to ssp. marina, respectively. Achieving full leaf hydration or turgor would require water from sources other than the roots, emphasizing the importance of multiple water sources to growth and survival of Avicennia marina across gradients in salinity and aridity. © 2017 John Wiley & Sons Ltd.

  10. Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees.

    PubMed

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio

    2016-12-01

    Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm 3 cm -2 , control: 1.77 ± 0.30 mm 3 cm -2 ). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry

  11. Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees

    PubMed Central

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio

    2016-01-01

    Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm3 cm−2, control: 1.77 ± 0.30 mm3 cm−2). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry

  12. Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Tao; Rivard, Benoit; Sánchez-Azofeifa, Arturo G.; Féret, Jean-Baptiste; Jacquemoud, Stéphane; Ustin, Susan L.

    2014-01-01

    Leaf mass per area (LMA), the ratio of leaf dry mass to leaf area, is a trait of central importance to the understanding of plant light capture and carbon gain. It can be estimated from leaf reflectance spectroscopy in the infrared region, by making use of information about the absorption features of dry matter. This study reports on the application of continuous wavelet analysis (CWA) to the estimation of LMA across a wide range of plant species. We compiled a large database of leaf reflectance spectra acquired within the framework of three independent measurement campaigns (ANGERS, LOPEX and PANAMA) and generated a simulated database using the PROSPECT leaf optical properties model. CWA was applied to the measured and simulated databases to extract wavelet features that correlate with LMA. These features were assessed in terms of predictive capability and robustness while transferring predictive models from the simulated database to the measured database. The assessment was also conducted with two existing spectral indices, namely the Normalized Dry Matter Index (NDMI) and the Normalized Difference index for LMA (NDLMA). Five common wavelet features were determined from the two databases, which showed significant correlations with LMA (R2: 0.51-0.82, p < 0.0001). The best robustness (R2 = 0.74, RMSE = 18.97 g/m2 and Bias = 0.12 g/m2) was obtained using a combination of two low-scale features (1639 nm, scale 4) and (2133 nm, scale 5), the first being predominantly important. The transferability of the wavelet-based predictive model to the whole measured database was either better than or comparable to those based on spectral indices. Additionally, only the wavelet-based model showed consistent predictive capabilities among the three measured data sets. In comparison, the models based on spectral indices were sensitive to site-specific data sets. Integrating the NDLMA spectral index and the two robust wavelet features improved the LMA prediction. One of the bands

  13. Contrasting physiological effects of partial root zone drying in field-grown grapevine (Vitis vinifera L. cv. Monastrell) according to total soil water availability

    PubMed Central

    Romero, Pascual; Dodd, Ian C.; Martinez-Cutillas, Adrian

    2012-01-01

    Different spatial distributions of soil moisture were imposed on field-grown grapevines by applying the same irrigation volumes to the entire (DI; deficit irrigation) or part of the (PRD; partial root zone drying) root zone. Five treatments were applied: controls irrigated at 60% ETc (crop evapotranspiration) for the whole season (308 mm year−1); DI-1 and PRD-1 that received the same irrigation as controls before fruit set, 30% ETc from fruit set to harvest and 45% ETc post-harvest (192 mm year−1); and DI-2 and PRD-2 that were the same, except that 15% ETc was applied from fruit set to harvest (142 mm year−1). Compared with DI-1, PRD-1 maintained higher leaf area post-veraison and increased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, but decreased intrinsic gas exchange efficiency without causing differences in leaf xylem abscisic acid (ABA) concentration. Compared with DI-2, PRD-2 increased leaf xylem ABA concentration and decreased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, mainly at the beginning of PRD cycles. Distinctive PRD effects (e.g. greater stomatal closure) depended on the volumetric soil water content of the wet root zone, as predicted from a model of root-to-shoot ABA signalling. PMID:22451721

  14. Effect of molecular weight and ratio of poly ethylene glycols' derivatives in combination with trehalose on stability of freeze-dried IgG.

    PubMed

    Mohammad Zadeh, Amir Hossein; Rouholamini Najafabadi, Abdolhosein; Vatanara, Alireza; Faghihi, Homa; Gilani, Kambiz

    2017-12-01

    The influence of poly ethylene glycol (PEG) at different molecular weights (MWs) and ratios was studied on the stability of freeze-dried immune globulin G (IgG). PEGs (600-4000 Dalton) at concentrations of 0.5 and 5% W/V were applied in the presence of 40 and 60% W/W of trehalose to prepare freeze-dried IgG formulations. Size-exclusion chromatography, infra-red spectroscopy, differential scanning calorimeter, and gel electrophoresis were performed to characterize lyophilized samples. Pure IgG demonstrated the highest aggregation of 5.77 ± 0.10% after process and 12.66 ± 0.50% as well as 44.69 ± 0.50% upon 1 and 2 months of storage at 45 °C, respectively. 5% W/V of PEGs 4000 in combination with 40% W/W trehalose, significantly suppressed aggregation, 0.05 ± 0.01%, with minimum aggregation rate constant of 0.32 (1/month). The integrity of IgG molecules and secondary conformation were properly preserved in all formulations comparing native IgG. It could be concluded that appropriate concentration and MW of PEGs, prominently augmented stabilizing effect of trehalose on freeze-dried antibody through inserting additional supportive mechanisms of actions.

  15. Carbon Dioxide Metabolism in Leaf Epidermal Tissue 1

    PubMed Central

    Willmer, C. M.; Pallas, J. E.; Black, C. C.

    1973-01-01

    A number of plant species were surveyed to obtain pure leaf epidermal tissue in quantity. Commelina communis L. and Tulipa gesnariana L. (tulip) were chosen for further work. Chlorophyll a/b ratios of epidermal tissues were 2.41 and 2.45 for C. communis and tulip, respectively. Phosphoenolpyruvate carboxylase, ribulose-1,5-diphosphate carboxylase, malic enzyme, and NAD+ and NADP+ malate dehydrogenases were assayed with epidermal tissue and leaf tissue minus epidermal tissue. In both species, there was less ribulose 1,5-diphosphate than phosphoenolpyruvate carboxylase activity in epidermal tissue whether expressed on a protein or chlorophyll basis whereas the reverse was true for leaf tissue minus epidermal tissue. In both species, malic enzyme activities were higher in epidermal tissue than in the remaining leaf tissue when expressed on a protein or chlorophyll basis. In both species, NAD+ and NADP+ malate dehydrogenase activities were higher in the epidermal tissue when expressed on a chlorophyll basis; however, on a protein basis, the converse was true. Microautoradiography of C. communis epidermis and histochemical tests for keto acids suggested that CO2 fixation occurred predominantly in the guard cells. The significance and possible location of the enzymes are discussed in relation to guard cell metabolism. Images PMID:16658581

  16. 21 CFR 526.1696c - Penicillin G procaine-dihydrostreptomycin sulfate for intramammary infusion (dry cows).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Penicillin G procaine-dihydrostreptomycin sulfate... INTRAMAMMARY DOSAGE FORM NEW ANIMAL DRUGS § 526.1696c Penicillin G procaine-dihydrostreptomycin sulfate for intramammary infusion (dry cows). (a) Specifications. Each 10 milliliters of suspension contains penicillin G...

  17. 21 CFR 526.1696c - Penicillin G procaine-dihydrostreptomycin sulfate for intramammary infusion (dry cows).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Penicillin G procaine-dihydrostreptomycin sulfate... INTRAMAMMARY DOSAGE FORM NEW ANIMAL DRUGS § 526.1696c Penicillin G procaine-dihydrostreptomycin sulfate for intramammary infusion (dry cows). (a) Specifications. Each 10 milliliters of suspension contains penicillin G...

  18. 21 CFR 526.1696c - Penicillin G procaine-dihydrostreptomycin sulfate for intramammary infusion (dry cows).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Penicillin G procaine-dihydrostreptomycin sulfate... INTRAMAMMARY DOSAGE FORM NEW ANIMAL DRUGS § 526.1696c Penicillin G procaine-dihydrostreptomycin sulfate for intramammary infusion (dry cows). (a) Specifications. Each 10 milliliters of suspension contains penicillin G...

  19. 21 CFR 526.1696c - Penicillin G procaine-dihydrostreptomycin sulfate for intramammary infusion (dry cows).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Penicillin G procaine-dihydrostreptomycin sulfate... INTRAMAMMARY DOSAGE FORM NEW ANIMAL DRUGS § 526.1696c Penicillin G procaine-dihydrostreptomycin sulfate for intramammary infusion (dry cows). (a) Specifications. Each 10 milliliters of suspension contains penicillin G...

  20. Downregulation of net phosphorus-uptake capacity is inversely related to leaf phosphorus-resorption proficiency in four species from a phosphorus-impoverished environment

    PubMed Central

    de Campos, Mariana C. R.; Pearse, Stuart J.; Oliveira, Rafael S.; Lambers, Hans

    2013-01-01

    Background and Aims Previous research has suggested a trade-off between the capacity of plants to downregulate their phosphorus (P) uptake capacity and their efficiency of P resorption from senescent leaves in species from P-impoverished environments. Methods To investigate this further, four Australian native species (Banksia attenuata, B. menziesii, Acacia truncata and A. xanthina) were grown in a greenhouse in nutrient solutions at a range of P concentrations [P]. Acacia plants received between 0 and 500 µm P; Banksia plants received between 0 and 10 µm P, to avoid major P-toxicity symptoms in these highly P-sensitive species. Key Results For both Acacia species, the net P-uptake rates measured at 10 µm P decreased steadily with increasing P supply during growth. In contrast, in B. attenuata, the net rate of P uptake from a solution with 10 µm P increased linearly with increasing P supply during growth. The P-uptake rate of B. menziesii showed no significant response to P supply in the growing medium. Leaf [P] of the four species supported this finding, with A. truncata and A. xanthina showing an increase up to a saturation value of 19 and 21 mg P g−1 leaf dry mass, respectively (at 500 µm P), whereas B. attenuata and B. menziesii both exhibited a linear increase in leaf [P], reaching 10 and 13 mg P g−1 leaf dry mass, respectively, without approaching a saturation point. The Banksia plants grown at 10 µm P showed mild symptoms of P toxicity, i.e. yellow spots on some leaves and drying and curling of the tips of the leaves. Leaf P-resorption efficiency was 69 % (B. attenuata), 73 % (B. menziesii), 34 % (A. truncata) and 36 % (A. xanthina). The P-resorption proficiency values were 0·08 mg P g−1 leaf dry mass (B. attenuata and B. menziesii), 0·32 mg P g−1 leaf dry mass (A. truncata) and 0·36 mg P g−1 leaf dry mass (A. xanthina). Combining the present results with additional information on P-remobilization efficiency and the capacity to

  1. Efficacy of Moringa oleifera leaf powder as a hand-washing product: a crossover controlled study among healthy volunteers.

    PubMed

    Torondel, Belen; Opare, David; Brandberg, Bjorn; Cobb, Emma; Cairncross, Sandy

    2014-02-14

    Moringa oleifera is a plant found in many tropical and subtropical countries. Many different uses and properties have been attributed to this plant, mainly as a nutritional supplement and as a water purifier. Its antibacterial activity against different pathogens has been described in different in vitro settings. However the potential effect of this plant leaf as a hand washing product has never been studied. The aim of this study is to test the efficacy of this product using an in vivo design with healthy volunteers. The hands of fifteen volunteers were artificially contaminated with Escherichia coli. Moringa oleifera leaf powder was tested as a hand washing product and was compared with reference non-medicated liquid soap using a cross over design following an adaptation of the European Committee for Standardization protocol (EN 1499). In a second part of tests, the efficacy of the established amount of Moringa oleifera leaf powder was compared with an inert powder using the same protocol. Application of 2 and 3 g of dried Moringa oleifera leaf powder (mean log10-reduction: 2.44 ± 0.41 and 2.58 ± 0.34, respectively) was significantly less effective than the reference soap (3.00 ± 0.27 and 2.99 ± 0.26, respectively; p < 0.001). Application of the same amounts of Moringa oleifera (2 and 3 g) but using a wet preparation, was also significantly less effective than reference soap (p < 0.003 and p < 0.02, respectively). However there was no significant difference when using 4 g of Moringa oleifera powder in dried or wet preparation (mean log10-reduction: 2.70 ± 0.27 and 2.91 ± 0.11, respectively) compared with reference soap (2.97 ± 0.28). Application of calcium sulphate inert powder was significantly less effective than the 4 g of Moringa oleifera powder (p < 0.01). Four grams of Moringa oleifera powder in dried and wet application had the same effect as non-medicated soap when used for hand washing. Efficacious

  2. Efficacy of Moringa oleifera leaf powder as a hand- washing product: a crossover controlled study among healthy volunteers

    PubMed Central

    2014-01-01

    Background Moringa oleifera is a plant found in many tropical and subtropical countries. Many different uses and properties have been attributed to this plant, mainly as a nutritional supplement and as a water purifier. Its antibacterial activity against different pathogens has been described in different in vitro settings. However the potential effect of this plant leaf as a hand washing product has never been studied. The aim of this study is to test the efficacy of this product using an in vivo design with healthy volunteers. Methods The hands of fifteen volunteers were artificially contaminated with Escherichia coli. Moringa oleifera leaf powder was tested as a hand washing product and was compared with reference non-medicated liquid soap using a cross over design following an adaptation of the European Committee for Standardization protocol (EN 1499). In a second part of tests, the efficacy of the established amount of Moringa oleifera leaf powder was compared with an inert powder using the same protocol. Results Application of 2 and 3 g of dried Moringa oleifera leaf powder (mean log10-reduction: 2.44 ± 0.41 and 2.58 ± 0.34, respectively) was significantly less effective than the reference soap (3.00 ± 0.27 and 2.99 ± 0.26, respectively; p < 0.001). Application of the same amounts of Moringa oleifera (2 and 3 g) but using a wet preparation, was also significantly less effective than reference soap (p < 0.003 and p < 0.02, respectively). However there was no significant difference when using 4 g of Moringa oleifera powder in dried or wet preparation (mean log10-reduction: 2.70 ± 0.27 and 2.91 ± 0.11, respectively) compared with reference soap (2.97 ± 0.28). Application of calcium sulphate inert powder was significantly less effective than the 4 g of Moringa oleifera powder (p < 0.01). Conclusion Four grams of Moringa oleifera powder in dried and wet application had the same effect as non-medicated soap

  3. Hypolipidemic Effect of Moringa oleifera Lam Leaf Powder and its Extract in Diet-Induced Hypercholesterolemic Rats.

    PubMed

    Helmy, Shahinaz A; Morsy, Nashwa F S; Elaby, Shahenda M; Ghaly, Mohammed A A

    2017-08-01

    The leaves of Moringa oleifera Lam possess some potential medicinal value. The aim of this study was to evaluate the protective effect of M. oleifera leaf powder and its extract against hyperlipidemia in rats. Adult male albino rats were divided into six groups. The first group was fed on a basal diet that served as a negative control, whereas the others were fed on a high-fat diet (HFD) containing moringa leaf powder at 0.737% or 1.475% or administered daily with 200 or 400 mg dry moringa leaf extract/kg bw for 60 days. A positive control group was fed on the HFD. Serum indices related to lipid profile, oxidative status, and liver function were analyzed. Feeding rats on an HFD containing moringa leaf powder at 0.737% or an oral dose of its dry extract at 400 mg/kg bw alleviated the harmful elevation of cholesterol, triglycerides, low-density lipoprotein cholesterol, malondialdehyde, and the activities of alanine aminotransferase and aspartate aminotransferase in serum that were induced by the HFD. This is the first study demonstrating the hypocholesterolemic effect of M. oleifera leaf powder.

  4. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice.

    PubMed

    Li, Wen-Qiang; Zhang, Min-Juan; Gan, Peng-Fei; Qiao, Lei; Yang, Shuai-Qi; Miao, Hai; Wang, Gang-Feng; Zhang, Mao-Mao; Liu, Wen-Ting; Li, Hai-Feng; Shi, Chun-Hai; Chen, Kun-Ming

    2017-12-01

    Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI-ROLLED LEAF 1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice (Oryza sativa); however, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf-rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map-based cloning revealed that CLD1 is allelic with SRL1, and loses function in cld1 through DNA methylation. CLD1/SRL1 encodes a glycophosphatidylinositol (GPI)-anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that the loss of function of CLD1/SRL1 affects cell wall formation. Furthermore, the loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform-like epidermal cells. The defects in leaf epidermis decrease the water-retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. As a result of the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, the loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf-rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Confirmation of 1-Phenylethane-1-thiol as the Character Impact Aroma Compound in Curry Leaves and Its Behavior during Tissue Disruption, Drying, and Frying.

    PubMed

    Steinhaus, Martin

    2017-03-15

    The most odor-active compounds previously identified by application of an aroma extract dilution analysis were quantitated in freshly picked curry leaves, either by stable isotope dilution assays in combination with GC-GC-MS or by GC-FID after simultaneous extraction/fractionation. Odor activity values (OAVs) were calculated as ratios of concentrations to odor threshold values. The topmost OAVs were obtained for (3Z)-hex-3-enal (grassy; OAV 180 000), (1S)-1-phenylethane-1-thiol (sulfury, burnt; OAV 150 000), (1R)-1-phenylethane-1-thiol (sulfury, burnt; OAV 120 000), (3R)-linalool (citrusy; OAV 58 000), and myrcene (geranium leaf-like; OAV 23 000). The high OAVs calculated for its enantiomers confirmed 1-phenylethane-1-thiol as character impact compound of the typical sulfury and burnt aroma of curry leaves. The 1-phenylethane-1-thiol concentration in curry leaves decreased upon tissue disruption and drying, as well as upon frying of fresh leaves. By contrast, frying of dried leaves led to an increase of 1-phenylethane-1-thiol, indicating a yet unknown thermolabile precursor.

  6. Light-Induced Indeterminacy Alters Shade-Avoiding Tomato Leaf Morphology1[OPEN

    PubMed Central

    Chitwood, Daniel H.; Kumar, Ravi; Ranjan, Aashish; Pelletier, Julie M.; Townsley, Brad T.; Ichihashi, Yasunori; Martinez, Ciera C.; Zumstein, Kristina; Harada, John J.; Maloof, Julin N.; Sinha, Neelima R.

    2015-01-01

    Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types. PMID:26381315

  7. The light response of mesophyll conductance is controlled by structure across leaf profiles.

    PubMed

    Théroux-Rancourt, Guillaume; Gilbert, Matthew E

    2017-05-01

    Mesophyll conductance to CO 2 (g m ) may respond to light either through regulated dynamic mechanisms or due to anatomical and structural factors. At low light, some layers of cells in the leaf cross-section approach photocompensation and contribute minimally to bulk leaf photosynthesis and little to whole leaf g m (g m,leaf ). Thus, the bulk g m,leaf will appear to respond to light despite being based upon cells having an anatomically fixed mesophyll conductance. Such behaviour was observed in species with contrasting leaf structure using the variable J or stable isotope method of measuring g m,leaf . A species with bifacial structure, Arbutus × 'Marina', and an isobilateral species, Triticum durum L., had contrasting responses of g m,leaf upon varying adaxial or abaxial illumination. Anatomical observations, when coupled with the proposed model of g m,leaf to photosynthetic photon flux density (PPFD) response, successfully represented the observed gas exchange data. The theoretical and observed evidence that g m,leaf apparently responds to light has large implications for how g m,leaf values are interpreted, particularly limitation analyses, and indicates the importance of measuring g m under full light saturation. Responses of g m,leaf to the environment should be treated as an emergent property of a distributed 3D structure, and not solely a leaf area-based phenomenon. © 2016 John Wiley & Sons Ltd.

  8. Dry deposition of gaseous oxidized mercury in Western Maryland.

    PubMed

    Castro, Mark S; Moore, Chris; Sherwell, John; Brooks, Steve B

    2012-02-15

    The purpose of this study was to directly measure the dry deposition of gaseous oxidized mercury (GOM) in western Maryland. Annual estimates were made using passive ion-exchange surrogate surfaces and a resistance model. Surrogate surfaces were deployed for seventeen weekly sampling periods between September 2009 and October 2010. Dry deposition rates from surrogate surfaces ranged from 80 to 1512 pgm(-2)h(-1). GOM dry deposition rates were strongly correlated (r(2)=0.75) with the weekly average atmospheric GOM concentrations, which ranged from 2.3 to 34.1 pgm(-3). Dry deposition of GOM could be predicted from the ambient air concentrations of GOM using this equation: GOM dry deposition (pgm(-2)h(-1))=43.2 × GOM concentration-80.3. Dry deposition velocities computed using GOM concentrations and surrogate surface GOM dry deposition rates, ranged from 0.2 to 1.7 cms(-1). Modeled dry deposition rates were highly correlated (r(2)=0.80) with surrogate surface dry deposition rates. Using the overall weekly average surrogate surface dry deposition rate (369 ± 340 pg m(-2)h(-1)), we estimated an annual GOM dry deposition rate of 3.2 μg m(-2)year(-1). Using the resistance model, we estimated an annual GOM dry deposition rate of 3.5 μg m(-2)year(-1). Our annual GOM dry deposition rates were similar to the dry deposition (3.3 μg m(-2)h(-1)) of gaseous elemental mercury (GEM) at our site. In addition, annual GOM dry deposition was approximately 1/2 of the average annual wet deposition of total mercury (7.7 ± 1.9 μg m(-2)year(-1)) at our site. Total annual mercury deposition from dry deposition of GOM and GEM and wet deposition was approximately 14.4 μg m(-2)year(-1), which was similar to the average annual litterfall deposition (15 ± 2.1 μg m(-2)year(-1)) of mercury, which was also measured at our site. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. [Effect of Psidium guajava leaf extract on alpha-glucosidase activity in small intestine of diabetic mouse].

    PubMed

    Wang, Bo; Liu, Heng-Chuan; Hong, Jun-Rong; Li, Hong-Gu; Huang, Cheng-Yu

    2007-03-01

    To investigate the inhibition effect of Psidium guajava linn (PGL), a leaf water-soluble extract, on the activities of alpha-glucosidases. The PGL water-soluble extract (PGL WE) was obtained by the procedure of distilled water immersion, filtration, extracted fluid concentration and dry of Psidium guajava leaf. The diabetes of Kunming mice was induced by intraperitoneal injection of Streptozotocin (STZ). The small intestinal mucosa of diabetic mice was scraped to make the homogenate for the preparation of alpha-glucosidases. In vitro, the homogenates were incubated with sucrose and maltose. The formed glucose represented the activities of alpha-glucosidases. The Lineweaver-Burk plot was applied to determine the type of alpha-glucosidase activity inhibited. The water-soluble extract from PGL significantly inhibited, in the dose-dependent manner, the activities of alpha-glucosidase from small intestinal mucosa of diabetic mice. The PGL extract inhibition concentration (IC50) to sucrase or maltase was 1.0 g/L or 3.0 g/L respectively. The mixed inhibition type was showed to be the competitive and non-competitive inhibition. The GPL water-soluble extract possesses the potential effect of inhibition on the alpha-glucosidase activity from the small intestinal mucosa of diabetic mouse.

  10. Molecular phylogenetics and species delimitation of leaf-toed geckos (Phyllodactylidae: Phyllodactylus) throughout the Mexican tropical dry forest.

    PubMed

    Blair, Christopher; Méndez de la Cruz, Fausto R; Law, Christopher; Murphy, Robert W

    2015-03-01

    Methods and approaches for accurate species delimitation continue to be a highly controversial subject in the systematics community. Inaccurate assessment of species' limits precludes accurate inference of historical evolutionary processes. Recent evidence suggests that multilocus coalescent methods show promise in delimiting species in cryptic clades. We combine multilocus sequence data with coalescence-based phylogenetics in a hypothesis-testing framework to assess species limits and elucidate the timing of diversification in leaf-toed geckos (Phyllodactylus) of Mexico's dry forests. Tropical deciduous forests (TDF) of the Neotropics are among the planet's most diverse ecosystems. However, in comparison to moist tropical forests, little is known about the mode and tempo of biotic evolution throughout this threatened biome. We find increased speciation and substantial, cryptic molecular diversity originating following the formation of Mexican TDF 30-20million years ago due to orogenesis of the Sierra Madre Occidental and Mexican Volcanic Belt. Phylogenetic results suggest that the Mexican Volcanic Belt, the Rio Fuerte, and Isthmus of Tehuantepec may be important biogeographic barriers. Single- and multilocus coalescent analyses suggest that nearly every sampling locality may be a distinct species. These results suggest unprecedented levels of diversity, a complex evolutionary history, and that the formation and expansion of TDF vegetation in the Miocene may have influenced subsequent cladogenesis of leaf-toed geckos throughout western Mexico. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The potential impacts of climate change induced changes to tropical leaf albedo and its feedback on global climate

    NASA Astrophysics Data System (ADS)

    Doughty, C.; Shenkin, A.; Bentley, L. P.; Malhi, Y.

    2017-12-01

    Tropical forest leaf albedo plays a critical role in global climate by determining how much radiation the planet absorbs near the equator. However, little is known about how tropical leaf albedo could be affected by climate change and how any such changes in albedo could, in turn, impact global climate. Here we measure sunlit leaf albedo along two elevation temperature gradients (a 3000-meter gradient in Peru (10 plots) and a 1500 m gradient in Australia (10 plots) and along two wet to dry transects (a 2000 mm yr-1 gradient in Ghana (10 plots) and a 2000 mm yr-1 gradient in Brazil (10 plots). We found a highly significant increase in visible leaf albedo with wetness at both wet to dry gradients. We also found a marginally significant trend of increased albedo with warmer temperatures along one of the elevation gradients. Leaf albedo can also be impacted by changes in species composition, variations in interspecific variation, and changes in leaf chlorophyll concentrations. We removed the dominant two species from the basal area weighting for each plots but found no significant change, a directional change of interspecific variation could change albedo by 0.01 in the NIR, and changes in chlorophyll could decrease visible albedo by 0.005. We then simulated changes in tropical leaf albedo with a climate model and show that such changes could act as a small negative feedback on climate, but most likely will not have a large impact on future climate.

  12. Dry deposition of sulfate to Quercus rubra and Liriodendron tulipifera foliage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandenberg, J.J.

    1987-01-01

    Estimates were made of the rate of dry deposition to red oak (Quercus rubra) and tulip poplar (Liriodendron tulipifera) foliage. In the laboratory, radioactive ammonium sulfate aerosols were generated in an exposure chamber. These aerosols were dry deposited onto leaves that were sequentially washed to examine the efficacy of washing procedures in removal of surface deposits. Over 90% of dry deposited sulfate was removed after a 30 second wash duration. Laboratory procedures also estimated the magnitude of foliar sulfur that leached into leaf wash solutions. The majority of laboratory leaves demonstrated no leaching of sulfur from the internal pool. However,more » some leaves showed significant sulfur leaching. It was concluded that leaching of internal sulfur was highly leaf specific. This indicated that each leaf used in field experiments needed to be individually examined for leaching.« less

  13. Antioxidative, antimicrobial and cytotoxic effects of the phenolics of Leea indica leaf extract

    PubMed Central

    Rahman, Md. Atiar; Imran, Talha bin; Islam, Shahidul

    2012-01-01

    This study investigated the phytochemical, antioxidative, antimicrobial and cytotoxic effects of Leea indica leaf ethanol extract. Phytochemical values namely total phenolic and flavonoid contents, total antioxidant capacity, DPPH radical scavenging effect, FeCl3 reducing power, DMSO superoxide scavenging effect and Iron chelating effects were studied by established methods. Antibacterial, antifungal and cytotoxic effects were screened by disk diffusion technique, food poison technique and brine shrimp bioassay, respectively. Results showed the total phenolic content 24.00 ± 0.81 g GAE/100 g, total flavonoid content 194.68 ± 2.43 g quercetin/100 g and total antioxidant capacity 106.61 ± 1.84 g AA/100 g dry extract. Significant (P < 0.05) IC50 values compared to respective standards were recorded in DPPH radical scavenging (139.83 ± 1.40 μg/ml), FeCl3 reduction (16.48 ± 0.64 μg/ml), DMSO superoxide scavenging (676.08 ± 5.80 μg/ml) and Iron chelating (519.33 ± 16.96 μg/ml) methods. In antibacterial screening, the extract showed significant (P < 0.05) zone of inhibitions compared to positive controls Ampicillin and Tetracycline against Gram positive Bacillus subtilis, Bacillus cereus, Bacillus megaterium, and Staphylococcus aureus and Gram negative Salmonella typhi, Salmonella paratyphi, Pseudomonas aeroginosa, Shigella dysenteriae, Vibrio cholerae, and Escherichia coli. Significant minimum inhibitory concentrations compared to tetracycline were obtained against the above organisms. In antifungal assay, the extract inhibited the growth of Aspergillus flavus, Candida albicans and Fusarium equisetii by 38.09 ± 0.59, 22.58 ± 2.22, and 22.58 ± 2.22%, respectively. The extract showed a significant LC50 value compared to vincristine sulfate in cytotoxic assay. The results evidenced the potential antioxidative, antimicrobial and cytotoxic capacities of Leea inidica leaf extract to be processed for pharmaceutical use. PMID

  14. Quantitative study of Xanthosoma violaceum leaf surfaces using RIMAPS and variogram techniques.

    PubMed

    Favret, Eduardo A; Fuentes, Néstor O; Molina, Ana M

    2006-08-01

    Two new imaging techniques (rotated image with maximum averaged power spectrum (RIMAPS) and variogram) are presented for the study and description of leaf surfaces. Xanthosoma violaceum was analyzed to illustrate the characteristics of both techniques. Both techniques produce a quantitative description of leaf surface topography. RIMAPS combines digitized images rotation with Fourier transform, and it is used to detect patterns orientation and characteristics of surface topography. Variogram relates the mathematical variance of a surface with the area of the sample window observed. It gives the typical scale lengths of the surface patterns. RIMAPS detects the morphological variations of the surface topography pattern between fresh and dried (herbarium) samples of the leaf. The variogram method finds the characteristic dimensions of the leaf microstructure, i.e., cell length, papillae diameter, etc., showing that there are not significant differences between dry and fresh samples. The results obtained show the robustness of RIMAPS and variogram analyses to detect, distinguish, and characterize leaf surfaces, as well as give scale lengths. Both techniques are tools for the biologist to study variations of the leaf surface when different patterns are present. The use of RIMAPS and variogram opens a wide spectrum of possibilities by providing a systematic, quantitative description of the leaf surface topography.

  15. Prediction of leaf area in individual leaves of cherrybark oak seedlings (Quercus pagoda Raf.)

    Treesearch

    Yanfei Guo; Brian Lockhart; John Hodges

    1995-01-01

    The prediction of leaf area for cherrybark oak (Quercus pagoda Raf.) seedlings is important for studying the physiology of the species. Linear and polynomial models involving leaf length, width, fresh weight, dry weight, and internodal length were tested independently and collectively to predict leaf area. Twenty-nine cherrybark oak seedlings were...

  16. The potential of papaya leaf extract in controlling Ganoderma boninense

    NASA Astrophysics Data System (ADS)

    Tay, Z. H.; Chong, K. P.

    2016-06-01

    Basal Stem Rot (BSR) disease causes significant losses to the oil palm industry. Numerous controls have been applied in managing the disease but no conclusive result was reported. This study investigated the antifungal potential of papaya leaf extracts against Ganoderma boninense, the causal pathogen of BSR. Among the five different solvents tested in extraction of compounds from papaya leaf, methanol and acetone gave the highest yield. In vitro antifungal activity of the methanol and acetone extracts were evaluated against G. boninense using agar dilution at four concentrations: 5 mg mL-1, 15 mg mL-1, 30 mg mL-1and 45 mg mL-1. The results indicated a positive correlation between the concentration of leaf extracts and the inhibition of G. boninense. ED50 of methanol and acetone crude extracts were determined to be 32.016 mg mL-1and 65.268 mg mL-1, respectively. The extracts were later semi-purified using solid phase extraction (SPE) and the nine bioactive compounds were identified: decanoic acid, 2-methyl-, Z,Z-10-12-Hexadecadien-1-ol acetate, dinonanoin monocaprylin, 2-chloroethyl oleate, phenol,4-(1-phenylethyl)-, phenol,2,4-bis(1-phenylethyl)-, phenol-2-(1-phenylethyl)-, ethyl iso-allocholate and 1- monolinoleoylglycerol trimethylsilyl ether. The findings suggest that papaya leaf extracts have the ability to inhibit the growth of G. boninense, where a higher concentration of the extract exhibits better inhibition effects.

  17. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture

    PubMed Central

    Locke, Anna M.; Ort, Donald R.

    2014-01-01

    Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K leaf), a measure of the leaf’s water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K leaf would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g s) and leaf water potential (Ψleaf) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K leaf was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K leaf were further correlated with decreases in g s, although the relationship was not as strong as that with A. Separate experiments investigating the response of K leaf to drought demonstrated no acclimation of K leaf to drought conditions to protect against cavitation or loss of g s during drought and confirmed the effect of leaf age in K leaf observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K leaf becoming limiting to transpiration water flux. PMID:25281701

  18. Successional changes in functional composition contrast for dry and wet tropical forest.

    PubMed

    Lohbeck, Madelon; Poorter, Lourens; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Paz, Horacio; Pérez-García, Eduardo A; Romero-Pérez, I Eunice; Tauro, Alejandra; Bongers, Frans

    2013-06-01

    We tested whether and how functional composition changes with succession in dry deciduous and wet evergreen forests of Mexico. We hypothesized that compositional changes during succession in dry forest were mainly determined by increasing water availability leading to community functional changes from conservative to acquisitive strategies, and in wet forest by decreasing light availability leading to changes from acquisitive to conservative strategies. Research was carried out in 15 dry secondary forest plots (5-63 years after abandonment) and 17 wet secondary forest plots (< 1-25 years after abandonment). Community-level functional traits were represented by community-weighted means based on 11 functional traits measured on 132 species. Successional changes in functional composition are more marked in dry forest than in wet forest and largely characterized by different traits. During dry forest succession, conservative traits related to drought tolerance and drought avoidance decreased, as predicted. Unexpectedly acquisitive leaf traits also decreased, whereas seed size and dependence on biotic dispersal increased. In wet forest succession, functional composition changed from acquisitive to conservative leaf traits, suggesting light availability as the main driver of changes. Distinct suites of traits shape functional composition changes in dry and wet forest succession, responding to different environmental filters.

  19. Impact assessment of leaf pigments in selected landscape plants exposed to roadside dust.

    PubMed

    Shah, Kamran; Amin, Noor Ul; Ahmad, Imran; Ara, Gulshan

    2018-06-02

    Continuous addition of undesired effluents to the environment affects foliar surface of leaf, changes their morphology, stomata, photosynthetic pigments, and biochemical constituents which result in massive damage due to persistent nature of the pollutant. In persistent hostile environment, plants fail to grow and develop, and the effects are often extensive. In current study, landscape plants were exposed to different levels of road dust to analyze the effect on various photosynthetic pigments. Dry roadside sediments were collected through a vacuum pump and passed through filters to get fine particles less than 100 μm and sprinkled on Euphorbia milii (EM), Gardenia jasminoides (GJ), and Hibiscus rosa-sinensis (HRs) by using a hand pump, twice daily at T 1 (control), T 2 , T 3 , and T 4 (0, 2, 4, and 6 g/plant, respectively) for a period of 3 months in green house. Road sediment significantly reduces leaf pigments in landscape plants population and the effects were more severe in high level of dust deposition. Individual response of EM, GJ, and HRs to different levels of road dust was variable; however, road sediment significantly reduces leaf pigments at high dose of roadside dust deposition. EM plants exposed to 2 g/plant roadside dust showed higher chlorophyll-a, chlorophyll-b, total chlorophyll, chlorophyllide-b, and polar carotenoid contents as compared to GJ and HRs. Leaf chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, and polar carotenoid contents of EM were higher than GJ and HRs in T 3 and T 4 treatments. However HRs showed significantly higher protochlorophyllide, chlorophyllide-a, and pheophytin-b contents of leaf in T 4 group. EM was found as tolerant landscape plant followed by HRs. GJ was most vulnerable to road dust stress. Present study concludes that the entire biosynthesis of leaf pigments is in chain and interlinked together where effect of road dust on one pigment influences other pigments and their derivatives. Salient

  20. [Determination of myclobutanil 25% WG degradation dynamics in ginseng root, stem, leaf and soil by HPLC-MS/MS].

    PubMed

    Wang, Yan; Wang, Chun-Wei; Gao, Jie; Cui, Li-Li; Xu, Yun-Cheng

    2014-07-01

    A high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) method was developed for determining degradation dynamics and final residues of myclobutanil 25% WG in ginseng root, stem, leaf and soil. The samples were extracted with acetonitrile, cleaned-up with primary secondary amine (PSA) solid phase extraction cartridge, separated by Kromasil Eternity-5-C18 (2.1 mm x 150 mm, 5 microm) column with a gradient of acetonitrile and 0.1% formate in water as mobile phases, and analyzed with the multiple reaction monitoring (MRM) in positive ion mode by employing the external standard method. The average recoveries and the relative standard derivations (RSDs) of myclobutanil at the spiked level of 0.01-0.20 mg x kg(-1) were 80.9%-90.7% and 5.54%-9.29%, respectively, and the limit of quantification (LOQ) was 0.005 mg x kg(-1). The method with good reproducible, high precision and low detection limit could meet the requirements of residual analysis on ginseng production. The half-lives of myclobutanil were from 6.25 days to 9.94 days in ginseng root, stem, leaf and soil at spraying dosage of 1 152 g x hm(-2) The final residues were below 0.060 1 mg x kg(-1) in root, below 0.081 7 mg x kg(-1) in stem, 0.006 0-0.102 2 mg x kg(-1) in leaf and below 0.037 6 mg x kg(-1) in soil at spraying dosage range from 576 to 1 152 g x hm(-2). It is recommended that the MRLs of myclobutanil in dried ginseng may be suggested to be 0.10 mg x kg(-1) temporarily, and the preharvest interval was set at 35 days.

  1. Long-Term Inhibition by Auxin of Leaf Blade Expansion in Bean and Arabidopsis1

    PubMed Central

    Keller, Christopher P.; Stahlberg, Rainer; Barkawi, Lana S.; Cohen, Jerry D.

    2004-01-01

    The role of auxin in controlling leaf expansion remains unclear. Experimental increases to normal auxin levels in expanding leaves have shown conflicting results, with both increases and decreases in leaf growth having been measured. Therefore, the effects of both auxin application and adjustment of endogenous leaf auxin levels on midrib elongation and final leaf size (fresh weight and area) were examined in attached primary monofoliate leaves of the common bean (Phaseolus vulgaris) and in early Arabidopsis rosette leaves. Aqueous auxin application inhibited long-term leaf blade elongation. Bean leaves, initially 40 to 50 mm in length, treated once with α-naphthalene acetic acid (1.0 mm), were, after 6 d, approximately 80% the length and weight of controls. When applied at 1.0 and 0.1 mm, α-naphthalene acetic acid significantly inhibited long-term leaf growth. The weak auxin, β-naphthalene acetic acid, was effective at 1.0 mm; and a weak acid control, benzoic acid, was ineffective. Indole-3-acetic acid (1 μm, 10 μm, 0.1 mm, and 1 mm) required daily application to be effective at any concentration. Application of the auxin transport inhibitor, 1-N-naphthylphthalamic acid (1% [w/w] in lanolin), to petioles also inhibited long-term leaf growth. This treatment also was found to lead to a sustained elevation of leaf free indole-3-acetic acid content relative to untreated control leaves. Auxin-induced inhibition of leaf growth appeared not to be mediated by auxin-induced ethylene synthesis because growth inhibition was not rescued by inhibition of ethylene synthesis. Also, petiole treatment of Arabidopsis with 1-N-naphthylphthalamic acid similarly inhibited leaf growth of both wild-type plants and ethylene-insensitive ein4 mutants. PMID:14988474

  2. [Latitude variation mechanism of leaf traits of Metasequoia glyptostroboides in eastern coastal China].

    PubMed

    Guo, Wei Hong; Wang, Hua; Yu, Mu Kui; Wu, Tong Gui; Han, You Zhi

    2017-03-18

    We analyzed the rules of Metasequoia glyptostroboides along with latitude, including leaf length, leaf width, leaf perimeter, leaf area, ratio of leaf length to width, specific leaf area (SLA), and leaf dry mass based on eight stands growing at different latitudes in the coastal area of eastern China, as well as their relationships with climatic and soil factors. The results showed that the leaf length, leaf width and leaf perimeter increased with increasing latitude, while the leaf area and SLA firstly increased and then decreased. The mean annual temperature and annual precipitation were the major environmental factors affecting the leaf traits along latitude gradient. With the increase of soil N content, the SLA decreased firstly and then increased, while the leaf mass decreased significantly. With the increase of soil P content, the SLA increased, and the leaf mass decreased significantly.

  3. Selenium concentrations in leaf material from Astragalus oxyphysus (Diablo Locoweed) and Atriplex lentiformis (quail bush) in the interior coast ranges and the western San Joaquin Valley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izbicki, J.A.; Harms, T.F.

    1986-01-01

    Leaf material from selenium accumulating plants was collected and analyzed for selenium to obtain a relative indication of selenium concentrations in soils and identify sites suitable for further soil study. Selenium concentrations of 14 samples of leaf material from Astragalus oxyphysus ranged from 0.08 to 3.5 microg/g dry weight and had a median concentration of 0.25 microg/g. Five replicate samples of A. oxyphysus had a mean selenium concentration of 0.22 microg/g and a standard deviation of 0.07. Selenium concentrations of 17 samples of leaf material from Atriplex lentiformis ranged from 0.08 to 7.5 microg/g and had a median concentration ofmore » 0.35 microg/g. As a general guideline, the National Academy of Sciences recommends a maximum safe tolerance level of 2 microg/g of selenium in animal feeds. One sample of A. oxyphysus, collected in the Panoche Creek drainage, exceeded 2 microg/g. Three samples of A. lentiformis, collected in Klipstein Canyon, Tumey Fan, and Panoche Fan, equaled or exceeded 2 microg/g. These sites may be suitable. 34 refs., 5 figs., 2 tabs.« less

  4. Height is more important than light in determining leaf morphology in a tropical forest.

    PubMed

    Cavaleri, Molly A; Oberbauer, Steven F; Clark, David B; Clark, Deborah A; Ryan, Michael G

    2010-06-01

    Both within and between species, leaf physiological parameters are strongly related to leaf dry mass per area (LMA, g/m2), which has been found to increase from forest floor to canopy top in every forest where it has been measured. Although vertical LMA gradients in forests have historically been attributed to a direct phenotypic response to light, an increasing number of recent studies have provided evidence that water limitation in the upper canopy can constrain foliar morphological adaptations to higher light levels. We measured height, light, and LMA of all species encountered along 45 vertical canopy transects across a Costa Rican tropical rain forest. LMA was correlated with light levels in the lower canopy until approximately 18 m sample height and 22% diffuse transmittance. Height showed a remarkably linear relationship with LMA throughout the entire vertical canopy profile for all species pooled and for each functional group individually (except epiphytes), possibly through the influence of gravity on leaf water potential and turgor pressure. Models of forest function may be greatly simplified by estimating LMA-correlated leaf physiological parameters solely from foliage height profiles, which in turn can be assessed with satellite- and aircraft-based remote sensing.

  5. Genotype differences in 13C discrimination between atmosphere and leaf matter match differences in transpiration efficiency at leaf and whole-plant levels in hybrid Populus deltoides x nigra.

    PubMed

    Rasheed, Fahad; Dreyer, Erwin; Richard, Béatrice; Brignolas, Franck; Montpied, Pierre; Le Thiec, Didier

    2013-01-01

    (13) C discrimination between atmosphere and bulk leaf matter (Δ(13) C(lb) ) is frequently used as a proxy for transpiration efficiency (TE). Nevertheless, its relevance is challenged due to: (1) potential deviations from the theoretical discrimination model, and (2) complex time integration and upscaling from leaf to whole plant. Six hybrid genotypes of Populus deltoides×nigra genotypes were grown in climate chambers and tested for whole-plant TE (i.e. accumulated biomass/water transpired). Net CO(2) assimilation rates (A) and stomatal conductance (g(s) ) were recorded in parallel to: (1) (13) C in leaf bulk material (δ(13) C(lb) ) and in soluble sugars (δ(13) C(ss) ) and (2) (18) O in leaf water and bulk leaf material. Genotypic means of δ(13) C(lb) and δ(13) C(ss) were tightly correlated. Discrimination between atmosphere and soluble sugars was correlated with daily intrinsic TE at leaf level (daily mean A/g(s) ), and with whole-plant TE. Finally, g(s) was positively correlated to (18) O enrichment of bulk matter or water of leaves at individual level, but not at genotype level. We conclude that Δ(13) C(lb) captures efficiently the genetic variability of whole-plant TE in poplar. Nevertheless, scaling from leaf level to whole-plant TE requires to take into account water losses and respiration independent of photosynthesis, which remain poorly documented. © 2012 Blackwell Publishing Ltd.

  6. Calcium localization in lettuce leaves with and without tipburn: comparison of controlled-environment and field-grown plants

    NASA Technical Reports Server (NTRS)

    Barta, D. J.; Tibbitts, T. W.

    1991-01-01

    An electron microprobe was used to determine tissue concentrations of Ca across 20-mm-long leaves of 'Green Lakes' crisphead lettuce (Lactuca sativa L.) with and without tipburn injury. Concentrations within the fifth and 14th leaves, counted from the cotyledons, from plants grown under controlled-environment conditions were compared to concentrations within similar leaves obtained from plants grown under field conditions. Only the 14th leaf from plants grown under controlled-environment conditions developed tipburn. Injured areas on these leaves had Ca concentrations as low as 0.2 to 0.3 mg g-1 dry weight. Uninjured areas of tipburned leaves contained from 0.4 to 0.5 mg g-1 dry weight. Concentrations across the uninjured 14th leaf from field-grown plants averaged 1.0 mg g-1 dry weight. Amounts across the uninjured fifth leaves from both environments averaged 1.6 mg g-1 dry weight. In contrast, Mg concentrations were higher in injured leaves than in uninjured leaves and thus were negatively correlated with Ca concentrations. Magnesium concentrations averaged 4.7 mg g-1 dry weight in injured leaves compared with 3.4 mg g-1 dry weight in uninjured leaves from both environments. Magnesium concentrations were uniform across the leaf. Potassium concentrations were highest at the leaf apex and decreased toward the base and also decreased from the midrib to the margin. Potassium averaged 51 mg g-1 dry weight in injured and uninjured leaves from both environments. No significant differences in K concentration were present between injured and uninjured leaves. This study documented that deficient concentrations of Ca were present in areas of leaf tissue developing tipburn symptoms and that concentrations were significantly higher in similar areas of other leaves that had no symptoms. This study also documented that Ca concentrations were significantly lower in enclosed leaves that exhibited tipburn symptoms than in exposed leaves that did not exhibit tipburn. Also, the

  7. A Role for APETALA1/FRUITFULL Transcription Factors in Tomato Leaf Development[C][W

    PubMed Central

    Burko, Yogev; Shleizer-Burko, Sharona; Yanai, Osnat; Shwartz, Ido; Zelnik, Iris Daphne; Jacob-Hirsch, Jasmine; Kela, Itai; Eshed-Williams, Leor; Ori, Naomi

    2013-01-01

    Flexible maturation rates underlie part of the diversity of leaf shape, and tomato (Solanum lycopersicum) leaves are compound due to prolonged organogenic activity of the leaf margin. The CINCINNATA -TEOSINTE BRANCHED1, CYCLOIDEA, PCF (CIN-TCP) transcription factor LANCEOLATE (LA) restricts this organogenic activity and promotes maturation. Here, we show that tomato APETALA1/FRUITFULL (AP1/FUL) MADS box genes are involved in tomato leaf development and are repressed by LA. AP1/FUL expression is correlated negatively with LA activity and positively with the organogenic activity of the leaf margin. LA binds to the promoters of the AP1/FUL genes MBP20 and TM4. Overexpression of MBP20 suppressed the simple-leaf phenotype resulting from upregulation of LA activity or from downregulation of class I knotted like homeobox (KNOXI) activity. Overexpression of a dominant-negative form of MBP20 led to leaf simplification and partly suppressed the increased leaf complexity of plants with reduced LA activity or increased KNOXI activity. Tomato plants overexpressing miR319, a negative regulator of several CIN-TCP genes including LA, flower with fewer leaves via an SFT-dependent pathway, suggesting that miR319-sensitive CIN-TCPs delay flowering in tomato. These results identify a role for AP1/FUL genes in vegetative development and show that leaf and plant maturation are regulated via partially independent mechanisms. PMID:23771895

  8. The promoter structure differentiation of a MYB transcription factor RLC1 causes red leaf coloration in Empire Red Leaf Cotton under light.

    PubMed

    Gao, Zhenrui; Liu, Chuanliang; Zhang, Yanzhao; Li, Ying; Yi, Keke; Zhao, Xinhua; Cui, Min-Long

    2013-01-01

    The red leaf coloration of Empire Red Leaf Cotton (ERLC) (Gossypium hirsutum L.), resulted from anthocyanin accumulation in light, is a well known dominant agricultural trait. However, the underpin molecular mechanism remains elusive. To explore this, we compared the molecular biological basis of anthocyanin accumulation in both ERLC and the green leaf cotton variety CCRI 24 (Gossypium hirsutum L.). Introduction of R2R3-MYB transcription factor Rosea1, the master regulator anthocyanin biosynthesis in Antirrhinum majus, into CCRI 24 induced anthocyanin accumulation, indicating structural genes for anthocyanin biosynthesis are not defected and the leaf coloration might be caused by variation of regulatory genes expression. Expression analysis found that a transcription factor RLC1 (Red Leaf Cotton 1) which encodes the ortholog of PAP1/Rosea1 was highly expressed in leaves of ERLC but barely expressed in CCRI 24 in light. Ectopic expression of RLC1 from ERLC and CCRI 24 in hairy roots of Antirrhinum majus and CCRI 24 significantly enhanced anthocyanin accumulation. Comparison of RLC1 promoter sequences between ERLC and CCRI 24 revealed two 228-bp tandem repeats presented in ERLC with only one repeat in CCRI 24. Transient assays in cotton leave tissue evidenced that the tandem repeats in ERLC is responsible for light-induced RLC1 expression and therefore anthocyanin accumulation. Taken together, our results in this article strongly support an important step toward understanding the role of R2R3-MYB transcription factors in the regulatory menchanisms of anthocyanin accumulation in red leaf cotton under light.

  9. Rehydration of freeze-dried and convective dried boletus edulis mushrooms: effect on some quality parameters.

    PubMed

    Hernando, I; Sanjuán, N; Pérez-Munuera, I; Mulet, A

    2008-10-01

    Quality of rehydrated products is a key aspect linked to rehydration conditions. To assess the effect of rehydration temperature on some quality parameters, experiments at 20 and 70 degrees C were performed with convective dried and freeze-dried Boletus edulis mushrooms. Rehydration characteristics (through Peleg's parameter, k(1), and equilibrium moisture, W(e)), texture (Kramer), and microstructure (Cryo-Scanning Electron Microscopy) were evaluated. Freeze-dried samples absorbed water more quickly and attained higher W(e) values than convective dried ones. Convective dehydrated samples rehydrated at 20 degrees C showed significantly lower textural values (11.9 +/- 3.3 N/g) than those rehydrated at 70 degrees C (15.7 +/- 1.2 N/g). For the freeze-dried Boletus edulis, the textural values also exhibited significant differences, being 8.2 +/- 1.3 and 10.5 +/- 2.3 N/g for 20 and 70 degrees C, respectively. Freeze-dried samples showed a porous structure that allows rehydration to take place mainly at the extracellular level. This explains the fact that, regardless of temperature, freeze-dried mushrooms absorbed water more quickly and reached higher W(e) values than convective dried ones. Whatever the dehydration technique used, rehydration at 70 degrees C produced a structural damage that hindered water absorption; consequently lower W(e) values and higher textural values were attained than when rehydrating at 20 degrees C.

  10. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens).

    PubMed

    Sterck, Frank J; Zweifel, Roman; Sass-Klaassen, Ute; Chowdhury, Qumruzzaman

    2008-04-01

    Leaf specific conductivity (LSC; the ratio of stem conductivity (K(P)) to leaf area (A(L))), a measure of the hydraulic capacity of the stem to supply leaves with water, varies with soil water content. Empirical evidence for LSC responses to drought is ambiguous, because previously published results were subject to many confounding factors. We tested how LSC of similar-sized trees of the same population, under similar climatic conditions, responds to persistently wet or dry soil. Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) trees were compared between a dry site and a wet site in the Valais, an inner alpine valley in Switzerland. Soil water strongly influenced A(L) and K(P) and the plant components affecting K(P), such as conduit radius, conduit density and functional sapwood area. Trees at the dry site had lower LSC than trees with the same stem diameter at the wet site. Low LSC in trees at the dry site was associated with a smaller functional sapwood area and narrower conduits, resulting in a stronger reduction in K(P) than in A(L). These observations support the hypothesis that trees maintain a homeostatic water pressure gradient. An alternative hypothesis is that relatively high investments in leaves compared with sapwood contribute to carbon gain over an entire season by enabling rapid whole-plant photosynthesis during periods of high water availability (e.g., in spring, after rain events and during morning hours when leaf-to-air vapor pressure deficit is small). Dynamic data and a hydraulic plant growth model are needed to test how investments in leaves versus sapwood and roots contribute to transpiration and to maximizing carbon gain throughout entire growth seasons.

  11. Light Diffusion in the Tropical Dry Forest of Costa Rica

    NASA Astrophysics Data System (ADS)

    Calvo-Rodriguez, S.; Sanchez-Azofeifa, G. A.

    2016-06-01

    Leaf Area Index (LAI) has been defined as the total leaf area (one-sided) in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000) require multiple visits to the field under very specific sky conditions, making them unsuitable to operate in inaccessible areas and forests with dense vegetation, as well as areas where persistent sunny conditions are the norm like tropical dry forests. With this context, we proposed a methodology to characterize light diffusion based on NDVI and LAI measurements taken from the field in two successional stages in the tropical dry forest of Santa Rosa National Park in Costa Rica. We estimate a "K" coefficient to characterize light diffusion by the canopy, based on field NDVI measurements derived from optical phenology instruments and MODIS NDVI. From the coefficients determined, we estimated LAI values and compared them with ground measurements of LAI. In both successional stages ground measurements of LAI had no significant difference to the tower-derived LAI and the estimated LAI from MODIS NDVI.

  12. In vitro antioxidant capacity and free radical scavenging evaluation of active metabolite constituents of Newbouldia laevis ethanolic leaf extract.

    PubMed

    Habu, Josiah Bitrus; Ibeh, Bartholomew Okechukwu

    2015-03-14

    The aim of the present study was to evaluate the in vitro antioxidant and free radical scavenging capacity of bioactive metabolites present in Newbouldia laevis leaf extract. Chromatographic and spectrophotometric methods were used in the study and modified where necessary in the study. Bioactivity of the extract was determined at 10 μg/ml, 50 μg/ml, 100 μg/ml, 200 μg/ml and 400 μg/ml concentrations expressed in % inhibition. The yield of the ethanolic leaf extract of N.laevis was 30.3 g (9.93%). Evaluation of bioactive metabolic constituents gave high levels of ascorbic acid (515.53 ± 12 IU/100 g [25.7 mg/100 g]), vitamin E (26.46 ± 1.08 IU/100 g), saponins (6.2 ± 0.10), alkaloids (2.20 ± 0.03), cardiac glycosides(1.48 ± 0.22), amino acids and steroids (8.01 ± 0.04) measured in mg/100 g dry weight; moderate levels of vitamin A (188.28 ± 6.19 IU/100 g), tannins (0.09 ± 0.30), terpenoids (3.42 ± 0.67); low level of flavonoids (1.01 ± 0.34 mg/100 g) and absence of cyanogenic glycosides, carboxylic acids and aldehydes/ketones. The extracts percentage inhibition of DPPH, hydroxyl radical (OH.), superoxide anion (O2 .-), iron chelating, nitric oxide radical (NO), peroxynitrite (ONOO-), singlet oxygen (1O2), hypochlorous acid (HOCl), lipid peroxidation (LPO) and FRAP showed a concentration-dependent antioxidant activity with no significant difference with the controls. Though, IC50 of the extract showed significant difference only in singlet oxygen (1O2) and iron chelating activity when compared with the controls. The extract is a potential source of antioxidants/free radical scavengers having important metabolites which maybe linked to its ethno-medicinal use.

  13. Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf

    NASA Astrophysics Data System (ADS)

    Philip, Daizy

    2010-11-01

    This paper reports the rapid biological synthesis of spherical gold nanoparticles at room temperature using fresh/dry leaf extract of Mangifera indica. This is a simple, cost-effective, stable for long time and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au nanoparticles of size ˜20 nm and 17 nm. The nanoparticles were obtained within 2 min of addition of the extract to the solution of HAuCl 4·3H 2O and the colloid is found to be stable for more than 5 months. Smaller and more uniformly distributed particles could be obtained with dried leaf extract. The nanoparticles obtained are characterized by UV-vis, transmission electron microscopy (TEM) and X-ray diffraction (XRD). Crystalline nature of the nanoparticles in the fcc structure is confirmed by the peaks in the XRD pattern corresponding to (1 1 1), (2 0 0), (2 2 0), (3 1 1) and (2 2 2) planes, bright circular spots in the selected area electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. The possible biomolecules responsible for efficient stabilization are suggested by studying the FTIR spectrum of the sample. This environmentally benign method provides much faster synthesis and colloidal stability comparable to those of chemical reduction.

  14. Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canopy trees of Dryobalanops aromatica (Dipterocarpaceae) in a Malaysian tropical rain forest.

    PubMed

    Inoue, Yuta; Ichie, Tomoaki; Kenzo, Tanaka; Yoneyama, Aogu; Kumagai, Tomo'omi; Nakashizuka, Tohru

    2017-10-01

    Climate change exposes vegetation to unusual levels of drought, risking a decline in productivity and an increase in mortality. It still remains unclear how trees and forests respond to such unusual drought, particularly Southeast Asian tropical rain forests. To understand leaf ecophysiological responses of tropical rain forest trees to soil drying, a rainfall exclusion experiment was conducted on mature canopy trees of Dryobalanops aromatica Gaertn.f. (Dipterocarpaceae) for 4 months in an aseasonal tropical rain forest in Sarawak, Malaysia. The rainfall was intercepted by using a soft vinyl chloride sheet. We compared the three control and three treatment trees with respect to leaf water use at the top of the crown, including stomatal conductance (gsmax), photosynthesis (Amax), leaf water potential (predawn: Ψpre; midday: Ψmid), leaf water potential at turgor loss point (πtlp), osmotic potential at full turgor (π100) and a bulk modulus of elasticity (ε). Measurements were taken using tree-tower and canopy-crane systems. During the experiment, the treatment trees suffered drought stress without evidence of canopy dieback in comparison with the control trees; e.g., Ψpre and Ψmid decreased with soil drying. Minimum values of Ψmid in the treatment trees decreased during the experiment, and were lower than πtlp in the control trees. However, the treatment trees also decreased their πtlp by osmotic adjustment, and the values were lower than the minimum values of their Ψmid. In addition, the treatment trees maintained gs and Amax especially in the morning, though at midday, values decreased to half those of the control trees. Decreasing leaf water potential by osmotic adjustment to maintain gs and Amax under soil drying in treatment trees was considered to represent anisohydric behavior. These results suggest that D. aromatica may have high leaf adaptability to drought by regulating leaf water consumption and maintaining turgor pressure to improve its leaf

  15. SU-G-BRC-16: Theory and Clinical Implications of the Constant Dosimetric Leaf Gap (DLG) Approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumaraswamy, L; Xu, Z; Podgorsak, M

    Purpose: Commercial dose calculation algorithms incorporate a single DLG value for a given beam energy that is applied across an entire treatment field. However, the physical processes associated with beam generation and dose delivery suggest that the DLG is not constant. The aim of this study is to evaluate the variation of DLG among all leaf pairs, to quantify how this variation impacts delivered dose, and to establish a novel method to correct dose distributions calculated using the approximation of constant DLG. Methods: A 2D diode array was used to measure the DLG for all 60 leaf pairs at severalmore » points along each leaf pair travel direction. This approach was validated by comparison to DLG values measured at select points using a 0.6 cc ion chamber with the standard formalism. In-house software was developed to enable incorporation of position dependent DLG values into dose distribution optimization and calculation. The accuracy of beam delivery of both the corrected and uncorrected treatment plans was studied through gamma pass rate evaluation. A comparison of DVH statistics in corrected and uncorrected treatment plans was made. Results: The outer 20 MLC leaf pairs (1.0 cm width) have DLG values that are 0.32 mm (mean) to 0.65 mm (maximum) lower than the central leaf-pair. VMAT plans using a large number of 1 cm wide leaves were more accurately delivered (gamma pass rate increased by 5%) and dose coverage was higher (D100 increased by 3%) when the 2D DLG was modeled. Conclusion: Using a constant DLG value for a given beam energy will result in dose optimization, dose calculation and treatment delivery inaccuracies that become significant for treatment plans with high modulation complexity scores delivered with 1 cm wide leaves.« less

  16. The Arabidopsis RING-Type E3 Ligase TEAR1 Controls Leaf Development by Targeting the TIE1 Transcriptional Repressor for Degradation[OPEN

    PubMed Central

    Zhang, Jinzhe; Wei, Baoye; Yuan, Rongrong; Yu, Hao

    2017-01-01

    The developmental plasticity of leaf size and shape is important for leaf function and plant survival. However, the mechanisms by which plants form diverse leaves in response to environmental conditions are not well understood. Here, we identified TIE1-ASSOCIATED RING-TYPE E3 LIGASE1 (TEAR1) and found that it regulates leaf development by promoting the degradation of TCP INTERACTOR-CONTAINING EAR MOTIF PROTEIN1 (TIE1), an important repressor of CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, which are key for leaf development. TEAR1 contains a typical C3H2C3-type RING domain and has E3 ligase activity. We show that TEAR1 interacts with the TCP repressor TIE1, which is ubiquitinated in vivo and degraded by the 26S proteasome system. We demonstrate that TEAR1 is colocalized with TIE1 in nuclei and negatively regulates TIE1 protein levels. Overexpression of TEAR1 rescued leaf defects caused by TIE1 overexpression, whereas disruption of TEAR1 resulted in leaf phenotypes resembling those caused by TIE1 overexpression or TCP dysfunction. Deficiency in TEAR partially rescued the leaf defects of TCP4 overexpression line and enhanced the wavy leaf phenotypes of jaw-5D. We propose that TEAR1 positively regulates CIN-like TCP activity to promote leaf development by mediating the degradation of the TCP repressor TIE1. PMID:28100709

  17. 7 CFR 30.1 - Definitions of terms used in classification of leaf tobacco.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Definitions of terms used in classification of leaf... STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.1 Definitions of terms used in classification of leaf tobacco. For the...

  18. 7 CFR 30.1 - Definitions of terms used in classification of leaf tobacco.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Definitions of terms used in classification of leaf... STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.1 Definitions of terms used in classification of leaf tobacco. For the...

  19. 7 CFR 30.1 - Definitions of terms used in classification of leaf tobacco.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Definitions of terms used in classification of leaf... STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.1 Definitions of terms used in classification of leaf tobacco. For the...

  20. 7 CFR 30.1 - Definitions of terms used in classification of leaf tobacco.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Definitions of terms used in classification of leaf... STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.1 Definitions of terms used in classification of leaf tobacco. For the...

  1. 7 CFR 30.1 - Definitions of terms used in classification of leaf tobacco.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Definitions of terms used in classification of leaf... STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.1 Definitions of terms used in classification of leaf tobacco. For the...

  2. Dried venous blood samples for the detection and quantification of measles IgG using a commercial enzyme immunoassay.

    PubMed Central

    Riddell, Michaela A.; Byrnes, Graham B.; Leydon, Jennie A.; Kelly, Heath A.

    2003-01-01

    OBJECTIVES: To determine whether samples of dried venous blood (DVB) were an acceptable alternative to serum for detecting measles-specific IgG in a commercial enzyme immunoassay. METHODS: Paired samples of serum and DVB were collected from 98 suspected cases of measles and 1153 schoolchildren in Victoria, Australia. All samples were tested using the Dade Behring Enzygnost Anti-Measles-Virus/IgG immunoassay. DVB samples were eluted using either the sample buffer provided with the kit or 5% dry milk powder in phosphate-buffered saline-Tween 20. FINDINGS: DVB samples eluted by sample buffer showed significantly better linear correlation to the serum samples than did DVB samples eluted in 5% dry milk in phosphate-buffered saline-Tween 20. To improve the comparability of serum and DVB samples an adjustment factor of 1.28 was applied to the optical density (OD) values of DVB. This adjustment also enabled quantification of the titre of measles IgG in mIU/ml directly from the OD value using the alpha calculation as specified by the kit protocol. For DVB samples stored for less than six months at 4 degrees C, the assay showed an overall sensitivity of 98.4% and a specificity of 97.2% compared with the results of serum testing. CONCLUSION: These results illustrate the potential for DVB samples to be widely used with the Dade Behring enzyme immunoassay system for determining the immunity of the individual and the population to the measles virus. PMID:14758429

  3. [Standardization of the sour orange flower and leaf].

    PubMed

    Carnat, A; Carnat, A P; Fraisse, D; Lamaison, J L

    1999-09-01

    Dried flowers (1 batch) and leaves (6 batches) of sour orange Citrus aurantium L. had a similar flavonoid pattern. But the flavonoid levels of flowers were higher than those of leaves. The mean levels of the principal flavonoid compounds were respectively: total flavonoids 12.35 and 1.06%, neohesperidin 5.44 and 0.08%, naringin 1.93 and 0.06%, eriocitrin 0.38 and 0.25%. 18 batches of commercial origine were also examined for a comparative study. Specifications were proposed for a revision of the monographs "Sour orange flower" and "Sour orange leaf" of the French Pharmacopoeia.

  4. Effect of Urtica dioica Leaf Alcoholic and Aqueous Extracts on the Number and the Diameter of the Islets in Diabetic Rats.

    PubMed

    Qujeq, Durdi; Tatar, Mohsen; Feizi, Farideh; Parsian, Hadi; Sohan Faraji, Alieh; Halalkhor, Sohrab

    2013-01-01

    Urtica dioica has been known as a plant that decreases blood glucose. Despite the importance of this plant in herbal medicine, relatively little research has been down on effects of this plant on islets yet. The objective of the current study was to evaluate the effect of dried Urtica dioica leaf alcoholic and aqueous extracts on the number and the diameter of the islets and histological parameters in streptozocin-induced diabetic rats. Six rats were used in each group. Group I: Normal rats were administered saline daily for 8 weeks. Group II: Diabetic rats were administered streptozotocin, 50 mg/kg of body weight; Group III: Diabetic rats were administered dried Urtica dioica leaf aqueous extracts for 8 weeks; Group IV: Diabetic rats were administered dried Urtica dioica leaf alcoholic extracts for 8 weeks. The animals, groups of diabetic and normal, were sacrificed by ether anaesthesia. Whole pancreas was dissected. The tissue samples were formalin fixed and paraffin embedded for microscopic examination. Histologic examination and grading were carried out on hematoxylin-eosin stained sections. The effects of administration of dried Urtica dioica leaf alcoholic and aqueous extracts to diabetic rats were determined by histopathologic examination. The pancreas from control rats showed normal pancreatic islets histoarchitecture. Our results also, indicate that the pancreas from diabetic rats show injury of pancreas tissue while the pancreas from diabetic rats treated with dried Urtica dioica leaf alcoholic and aqueous extracts show slight to moderate rearrangement of islets. According to our findings, dried Urtica dioica leaf alcoholic and aqueous extracts can cause a suitable repair of pancreatic tissue in streptozocin-induced diabetic experimental model.

  5. Effect of Urtica dioica Leaf Alcoholic and Aqueous Extracts on the Number and the Diameter of the Islets in Diabetic Rats

    PubMed Central

    Qujeq, Durdi; Tatar, Mohsen; Feizi, Farideh; Parsian, Hadi; Sohan Faraji, Alieh; Halalkhor, Sohrab

    2013-01-01

    Urtica dioica has been known as a plant that decreases blood glucose. Despite the importance of this plant in herbal medicine, relatively little research has been down on effects of this plant on islets yet. The objective of the current study was to evaluate the effect of dried Urtica dioica leaf alcoholic and aqueous extracts on the number and the diameter of the islets and histological parameters in streptozocin-induced diabetic rats. Six rats were used in each group. Group I: Normal rats were administered saline daily for 8 weeks. Group II: Diabetic rats were administered streptozotocin, 50 mg/kg of body weight; Group III: Diabetic rats were administered dried Urtica dioica leaf aqueous extracts for 8 weeks; Group IV: Diabetic rats were administered dried Urtica dioica leaf alcoholic extracts for 8 weeks. The animals, groups of diabetic and normal, were sacrificed by ether anaesthesia. Whole pancreas was dissected. The tissue samples were formalin fixed and paraffin embedded for microscopic examination. Histologic examination and grading were carried out on hematoxylin-eosin stained sections. The effects of administration of dried Urtica dioica leaf alcoholic and aqueous extracts to diabetic rats were determined by histopathologic examination. The pancreas from control rats showed normal pancreatic islets histoarchitecture. Our results also, indicate that the pancreas from diabetic rats show injury of pancreas tissue while the pancreas from diabetic rats treated with dried Urtica dioica leaf alcoholic and aqueous extracts show slight to moderate rearrangement of islets. According to our findings, dried Urtica dioica leaf alcoholic and aqueous extracts can cause a suitable repair of pancreatic tissue in streptozocin-induced diabetic experimental model. PMID:24551786

  6. Alfalfa leaf meal in wintering beef cow diets. Quarterly report, July 1, 1997--September 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zehnder, C.M.; Hall, J.M.; Brown, D.B.

    1998-06-01

    One hundred dry pregnant cows (1389 lb) and twenty-four pregnant heifers (1034 lb) were assigned by calving date and body condition to one of four dietary treatments for a wintering period during their late gestation. Dietary treatments consisted of supplementing crude protein (CP) at 100 % or 120 % of the recommended intake using either soybean meal or alfalfa leaf meal (ALM) as the supplemental protein source. Cows were group fed (two replicate pens/treatment) while heifers were individually fed for the duration of the study. The study lasted 70 (early) or 85 (late) days for cows and ended when themore » first cow in each replicate calved. For heifers, the study lasted for 100 days and ended accordingly when each heifer calved. Heifers fed ALM had consumed less (P < .05) hay and corn dry matter (DM). Overall diet DM intakes were unaffected (P > .05) by protein source. Feeding 120 % of recommended protein (2.38 vs 2.07 lb/day) to heifers increased (P < .05) their rate of gain by almost .5 lb/head/day. Cows fed ALM had faster (P < .05) rates of gain when gain was measured 22 days before calving. Once cows calved, weight change was similar (P > .05) for each protein source. However, cows fed alfalfa leaf meal consumed more (P = .054) total dry matter (DM). Calving traits were not affected by protein source or intake. Wintering heifers or cows on ALM-based supplements had no detrimental effect on performance of heifers or cows or their calves at birth. Additional protein may be required by heifers to ensure that they continue gaining weight during late gestation.« less

  7. Curdlan β-1,3-Glucooligosaccharides Induce the Defense Responses against Phytophthora infestans Infection of Potato (Solanum tuberosum L. cv. McCain G1) Leaf Cells

    PubMed Central

    Li, Jing; Zhu, Li; Lu, Guangxing; Zhan, Xiao-Bei; Lin, Chi-Chung; Zheng, Zhi-Yong

    2014-01-01

    Activation of the innate immune system before the invasion of pathogens is a promising way to improve the resistance of plant against infection while reducing the use of agricultural chemicals. Although several elicitors were used to induce the resistance of potato plant to microbial pathogen infection, the role of curdlan oligosaccharide (CurdO) has not been established. In the current study, the defense responses were investigated at biochemical and proteomic levels to elucidate the elicitation effect of CurdOs in foliar tissues of potato (Solanum tuberosum L. cv. McCain G1). The results indicate that the CurdOs exhibit activation effect on the early- and late-defense responses in potato leaves. In addition, glucopentaose was proved to be the shortest active curdlan molecule based on the accumulation of H2O2 and salicylic acid and the activities of phenylalanine amino-lyase, β-1,3-glucanase and chitinase. The 2D-PAGE analysis reveals that CurdOs activate the integrated response reactions in potato cells, as a number of proteins with various functions are up-regulated including disease/defense, metabolism, transcription, and cell structure. The pathogenesis assay shows that the ratio of lesion area of potato leaf decreased from 15.82%±5.44% to 7.79%±3.03% when the plants were treated with CurdOs 1 day before the infection of Phytophthora infestans. Furthermore, the results on potato yield and induction reactions indicate that the defense responses induced by CurdOs lasted for short period of time but disappeared gradually. PMID:24816730

  8. Curdlan β-1,3-glucooligosaccharides induce the defense responses against Phytophthora infestans infection of potato (Solanum tuberosum L. cv. McCain G1) leaf cells.

    PubMed

    Li, Jing; Zhu, Li; Lu, Guangxing; Zhan, Xiao-Bei; Lin, Chi-Chung; Zheng, Zhi-Yong

    2014-01-01

    Activation of the innate immune system before the invasion of pathogens is a promising way to improve the resistance of plant against infection while reducing the use of agricultural chemicals. Although several elicitors were used to induce the resistance of potato plant to microbial pathogen infection, the role of curdlan oligosaccharide (CurdO) has not been established. In the current study, the defense responses were investigated at biochemical and proteomic levels to elucidate the elicitation effect of CurdOs in foliar tissues of potato (Solanum tuberosum L. cv. McCain G1). The results indicate that the CurdOs exhibit activation effect on the early- and late-defense responses in potato leaves. In addition, glucopentaose was proved to be the shortest active curdlan molecule based on the accumulation of H₂O₂ and salicylic acid and the activities of phenylalanine amino-lyase, β-1,3-glucanase and chitinase. The 2D-PAGE analysis reveals that CurdOs activate the integrated response reactions in potato cells, as a number of proteins with various functions are up-regulated including disease/defense, metabolism, transcription, and cell structure. The pathogenesis assay shows that the ratio of lesion area of potato leaf decreased from 15.82%±5.44% to 7.79%±3.03% when the plants were treated with CurdOs 1 day before the infection of Phytophthora infestans. Furthermore, the results on potato yield and induction reactions indicate that the defense responses induced by CurdOs lasted for short period of time but disappeared gradually.

  9. Effects of arbuscular mycorrhizal fungi and soil nutrient addition on the growth of Phragmites australis under different drying-rewetting cycles.

    PubMed

    Liang, Jin-Feng; An, Jing; Gao, Jun-Qin; Zhang, Xiao-Ya; Yu, Fei-Hai

    2018-01-01

    The frequency of soil drying-rewetting cycles is predicted to increase under future global climate change, and arbuscular mycorrhizal fungi (AMF) are symbiotic with most plants. However, it remains unknown how AMF affect plant growth under different frequencies of soil drying-rewetting cycles. We subjected a clonal wetland plant Phragmites australis to three frequencies of drying-rewetting cycles (1, 2, or 4 cycles), two nutrient treatments (with or without), and two AMF treatments (with or without) for 64 days. AMF promoted the growth of P. australis, especially in the 2 cycles of the drying-rewetting treatment. AMF had a significant positive effect on leaf mass and number of ramets in the 2 cycles of the drying-rewetting treatment with nutrient addition. In the 2 cycles of drying-rewetting treatment without nutrient addition, AMF increased leaf area and decreased belowground to aboveground biomass ratio. These results indicate that AMF may assist P. australis in coping with medium frequency of drying-rewetting cycles, and provide theoretical guidance for predicting how wetland plants respond to future global climate change.

  10. In vitro Antioxidant and Pharmacognostic Studies of Leaf Extracts of Cajanus cajan (L.) Millsp.

    PubMed

    Mahitha, B; Archana, P; Ebrahimzadeh, Md H; Srikanth, K; Rajinikanth, M; Ramaswamy, N

    2015-01-01

    Cajanus cajan (L.) Millsp is one of the second most dietary legume crops. The leaf extracts may be used as a potential source of natural antioxidant. The ash values, extractive values, total phenolic and flavonoid content, in vitro antioxidant activity of various leaf extracts as well as anatomical investigation of Cajanus cajan were carried out. Physicochemical parameters such as total, acid-insoluble and water-soluble ash values and moisture content of the leaf powder of C. cajan were found to be 9.50%, 1.40 g/100 g, 4.15 g/100 g drug and 6.72%, respectively. Percent yield of acetone, aqueous, ethanol, ethyl acetate and chloroform leaf extracts were 9.0, 10.6, 13.75, 8.7 and 5.8 g/100 g, respectively. Significant amount of phenolic and flavonoid content were observed. The results of the antioxidant activity were found to be concentration-dependent. The IC50 values for DPPH assay determined for aqueous and ethanol extracts were 0.69 and 0.79 mg/ml, respectively. Reducing power is increased with increasing amount of concentration in both aqueous and ethanol leaf extracts. The highest hydroxyl radical scavenging activity reached up to 83.67% in aqueous and 78.75% in ethanol extracts and in phosphomolybdenum assay the aqueous extract showed strong antioxidant capacity up to 55.97 nM gallic acid equivalents/g. It was found that the aqueous extract possessed highest antioxidant activity in all the assays tested. The antioxidant characteristics of leaf extracts are possibly because of the presence of polyphenols. Microscopic study showed the presence of collenchyma, fibres, xylem, phloem, epidermis, trichomes, palisade tissue, basal sheath, pith and cortex in leaf, petiole and pulvinus.

  11. The phantom leaf effect: a replication, part 1.

    PubMed

    Hubacher, John

    2015-02-01

    To replicate the phantom leaf effect and demonstrate a possible means to directly observe properties of the biological field. Thirty percent to 60% of plant leaves were amputated, and the remaining leaf sections were photographed with corona discharge imaging. All leaves were cut before placement on film. A total of 137 leaves were used. Plant leaves of 14 different species. Ninety-six phantom leaf specimens were successfully obtained; 41 specimens did not yield the phantom leaf effect. A normally undetected phantom "structure," possibly evidence of the biological field, can persist in the area of an amputated leaf section, and corona discharge can occur from this invisible structure. This protocol may suggest a testable method to study properties of conductivity and other parameters through direct observation of the complete biological field in plant leaves, with broad implications for biology and physics.

  12. Leaf morphology in Cowpea [Vigna unguiculata (L.) Walp]: QTL analysis, physical mapping and identifying a candidate gene using synteny with model legume species

    PubMed Central

    2012-01-01

    Background Cowpea [Vigna unguiculata (L.) Walp] exhibits a considerable variation in leaf shape. Although cowpea is mostly utilized as a dry grain and animal fodder crop, cowpea leaves are also used as a high-protein pot herb in many countries of Africa. Results Leaf morphology was studied in the cowpea RIL population, Sanzi (sub-globose leaf shape) x Vita 7 (hastate leaf shape). A QTL for leaf shape, Hls (hastate leaf shape), was identified on the Sanzi x Vita 7 genetic map spanning from 56.54 cM to 67.54 cM distance on linkage group 15. SNP marker 1_0910 was the most significant over the two experiments, accounting for 74.7% phenotypic variance (LOD 33.82) in a greenhouse experiment and 71.5% phenotypic variance (LOD 30.89) in a field experiment. The corresponding Hls locus was positioned on the cowpea consensus genetic map on linkage group 4, spanning from 25.57 to 35.96 cM. A marker-trait association of the Hls region identified SNP marker 1_0349 alleles co-segregating with either the hastate or sub-globose leaf phenotype. High co-linearity was observed for the syntenic Hls region in Medicago truncatula and Glycine max. One syntenic locus for Hls was identified on Medicago chromosome 7 while syntenic regions for Hls were identified on two soybean chromosomes, 3 and 19. In all three syntenic loci, an ortholog for the EZA1/SWINGER (AT4G02020.1) gene was observed and is the candidate gene for the Hls locus. The Hls locus was identified on the cowpea physical map via SNP markers 1_0910, 1_1013 and 1_0992 which were identified in three BAC contigs; contig926, contig821 and contig25. Conclusions This study has demonstrated how integrated genomic resources can be utilized for a candidate gene approach. Identification of genes which control leaf morphology may be utilized to improve the quality of cowpea leaves for vegetable and or forage markets as well as contribute to more fundamental research understanding the control of leaf shape in legumes. PMID:22691139

  13. Leaf morphology in Cowpea [Vigna unguiculata (L.) Walp]: QTL analysis, physical mapping and identifying a candidate gene using synteny with model legume species.

    PubMed

    Pottorff, Marti; Ehlers, Jeffrey D; Fatokun, Christian; Roberts, Philip A; Close, Timothy J

    2012-06-12

    Cowpea [Vigna unguiculata (L.) Walp] exhibits a considerable variation in leaf shape. Although cowpea is mostly utilized as a dry grain and animal fodder crop, cowpea leaves are also used as a high-protein pot herb in many countries of Africa. Leaf morphology was studied in the cowpea RIL population, Sanzi (sub-globose leaf shape) x Vita 7 (hastate leaf shape). A QTL for leaf shape, Hls (hastate leaf shape), was identified on the Sanzi x Vita 7 genetic map spanning from 56.54 cM to 67.54 cM distance on linkage group 15. SNP marker 1_0910 was the most significant over the two experiments, accounting for 74.7% phenotypic variance (LOD 33.82) in a greenhouse experiment and 71.5% phenotypic variance (LOD 30.89) in a field experiment. The corresponding Hls locus was positioned on the cowpea consensus genetic map on linkage group 4, spanning from 25.57 to 35.96 cM. A marker-trait association of the Hls region identified SNP marker 1_0349 alleles co-segregating with either the hastate or sub-globose leaf phenotype. High co-linearity was observed for the syntenic Hls region in Medicago truncatula and Glycine max. One syntenic locus for Hls was identified on Medicago chromosome 7 while syntenic regions for Hls were identified on two soybean chromosomes, 3 and 19. In all three syntenic loci, an ortholog for the EZA1/SWINGER (AT4G02020.1) gene was observed and is the candidate gene for the Hls locus. The Hls locus was identified on the cowpea physical map via SNP markers 1_0910, 1_1013 and 1_0992 which were identified in three BAC contigs; contig926, contig821 and contig25. This study has demonstrated how integrated genomic resources can be utilized for a candidate gene approach. Identification of genes which control leaf morphology may be utilized to improve the quality of cowpea leaves for vegetable and or forage markets as well as contribute to more fundamental research understanding the control of leaf shape in legumes.

  14. Evidence of hydraulic lift for pre-rainy season leaf out and dry-season stem water enrichment in Sclerocarya birrea, a tropical agroforestry tree

    NASA Astrophysics Data System (ADS)

    Ceperley, Natalie; Mande, Theophile; Rinaldo, Andrea; Parlange, Marc B.

    2014-05-01

    We use stable isotopes of water as tracers to follow water use by five Sclerocarya birrea trees in a catchment in South Eastern Burkina Faso interspersed with millet fields, gallery forest, Sudanian savanna, and fallow fields. Isotopic ratios were determined from water extracted from stems of the trees and sub-canopy soil of two of them, while nearby ground water, precipitation, and surface water was sampled weekly. A unique configuration of sensors connected with a wireless sensor network of meteorological stations measured sub-canopy shading, the temperature and humidity in the canopy, through-fall, and soil moisture under two of the trees. Both water extracted from sap and water extracted from soil is extremely enriched in the dry season, but drop to levels close to the ground water in February or March, which coincides with the growth of leaves. Dates of leaf out were confirmed by changes in δDH and δO18 concentrations of water, photographic documentation & pixel analysis, and analysis of sub-canopy radiation and proceeded the rise in humidity and flow that was later detected in the sub-canopy soil, the trunk of the tree (sap-flow), and atmosphere (canopy VPD). Examination of the isotopic signature suggests that size of tree plays an important role in duration and timing of this leaf-out as well as the degree of enrichment during the peak of the dry season. Further examination of the isotopic signatures of the roots suggested that the trees are performing hydraulic redistribution, or lifting the ground water and "sharing it" with the soil in the rooting zone in the dry season. The enriched level of xylem in this case is a product of water loss, and enrichment, along the travel path of the water from the roots to the tip of the stem, as evidenced by the variation according to size of tree. Vapor pressure deficit, soil water, and soil moisture interactions support this picture of interacting controls, separate from hydrologic triggers on the water movement in

  15. Fine Mapping and Candidate Gene Analysis of the Leaf-Color Gene ygl-1 in Maize

    PubMed Central

    Guan, Haiying; Xu, Xiangbo; He, Chunmei; Liu, Chunxiao; Liu, Qiang; Dong, Rui; Liu, Tieshan; Wang, Liming

    2016-01-01

    A novel yellow-green leaf mutant yellow-green leaf-1 (ygl-1) was isolated in self-pollinated progenies from the cross of maize inbred lines Ye478 and Yuanwu02. The mutant spontaneously showed yellow-green character throughout the lifespan. Meanwhile, the mutant reduced contents of chlorophyll and Car, arrested chloroplast development and lowered the capacity of photosynthesis compared with the wild-type Lx7226. Genetic analysis revealed that the mutant phenotype was controlled by a recessive nuclear gene. The ygl-1 locus was initially mapped to an interval of about 0.86 Mb in bin 1.01 on the short arm of chromosome 1 using 231 yellow-green leaf individuals of an F2 segregating population from ygl-1/Lx7226. Utilizing four new polymorphic SSR markers, the ygl-1 locus was narrowed down to a region of about 48 kb using 2930 and 2247 individuals of F2 and F3 mapping populations, respectively. Among the three predicted genes annotated within this 48 kb region, GRMZM2G007441, which was predicted to encode a cpSRP43 protein, had a 1-bp nucleotide deletion in the coding region of ygl-1 resulting in a frame shift mutation. Semi-quantitative RT-PCR analysis revealed that YGL-1 was constitutively expressed in all tested tissues and its expression level was not significantly affected in the ygl-1 mutant from early to mature stages, while light intensity regulated its expression both in the ygl-1 mutant and wild type seedlings. Furthermore, the mRNA levels of some genes involved in chloroplast development were affected in the six-week old ygl-1 plants. These findings suggested that YGL-1 plays an important role in chloroplast development of maize. PMID:27100184

  16. Leaf physico-chemical and physiological properties of maize (Zea mays L.) populations from different origins.

    PubMed

    Revilla, Pedro; Fernández, Victoria; Álvarez-Iglesias, Lorena; Medina, Eva T; Cavero, José

    2016-10-01

    In this study we evaluated the leaf surface properties of maize populations native to different water availability environments. Leaf surface topography, wettability and gas exchange performance of five maize populations from the Sahara desert, dry (south) and humid (north-western) areas of Spain were analysed. Differences in wettability, stomatal and trichome densities, surface free energy and solubility parameter values were recorded between populations and leaf sides. Leaves from the humid Spanish population with special regard to the abaxial side, were less wettable and less susceptible to polar interactions. The higher wettability and hydrophilicity of Sahara populations with emphasis on the abaxial leaf surfaces, may favour dew deposition and foliar water absorption, hence improving water use efficiency under extremely dry conditions. Compared to the other Saharan populations, the dwarf one had a higher photosynthesis rate suggesting that dwarfism may be a strategy for improving plant tolerance to arid conditions. The results obtained for different maize populations suggest that leaf surfaces may vary in response to drought, but further studies will be required to examine the potential relationship between leaf surface properties and plant stress tolerance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Carrot injury and yield response to ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, J.P.; Oshima, R.J.

    1976-11-01

    Container-grown plants of carrot (Daucus carota L.) exposed intermittently to 0.19 or 0.25 ppm ozone throughout their growth increased in plant height and total number of leaves in spite of the development of chlorotic leaves. Leaf dry weight was unaffected by ozone, but root dry matter decreased 32 to 46%. As a result, the root weight/total dry weight ration and root/shoot ratio declined significantly in the presence of ozone. A regression of root dry weight on chlorotic lead dry weight explained 35% of the root loss and predicted that 1.5 g of root tissue is lost for every g ofmore » chlorotic leaf dry weight casued by ozone injury.« less

  18. High biological variability of plastids, photosynthetic pigments and pigment forms of leaf primordia in buds.

    PubMed

    Solymosi, Katalin; Morandi, Dominique; Bóka, Károly; Böddi, Béla; Schoefs, Benoît

    2012-05-01

    To study the formation of the photosynthetic apparatus in nature, the carotenoid and chlorophyllous pigment compositions of differently developed leaf primordia in closed and opening buds of common ash (Fraxinus excelsior L.) and horse chestnut (Aesculus hippocastanum L.) as well as in closed buds of tree of heaven (Ailanthus altissima P. Mill.) were analyzed with HPLC. The native organization of the chlorophyllous pigments was studied using 77 K fluorescence spectroscopy, and plastid ultrastructure was investigated with electron microscopy. Complete etiolation, i.e., accumulation of protochlorophyllide, and absence of chlorophylls occurred in the innermost leaf primordia of common ash buds. The other leaf primordia were partially etiolated in the buds and contained protochlorophyllide (0.5-1 μg g(-1) fresh mass), chlorophyllides (0.2-27 μg g(-1) fresh mass) and chlorophylls (0.9-643 μg g(-1) fresh mass). Etio-chloroplasts with prolamellar bodies and either regular or only low grana were found in leaves having high or low amounts of chlorophyll a and b, respectively. After bud break, etioplast-chloroplast conversion proceeded and the pigment contents increased in the leaves, similarly to the greening processes observed in illuminated etiolated seedlings under laboratory conditions. The pigment contents and the ratio of the different spectral forms had a high biological variability that could be attributed to (i) various light conditions due to light filtering in the buds resulting in differently etiolated leaf primordia, (ii) to differences in the light-exposed and inner regions of the same primordia in opening buds due to various leaf folding, and (iii) to tissue-specific slight variations of plastid ultrastructure.

  19. Sap fluxes from different parts of the rootzone modulate xylem ABA concentration during partial rootzone drying and re-wetting

    PubMed Central

    Pérez-Pérez, J. G.; Dodd, I. C.

    2015-01-01

    Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. PMID:25740924

  20. Phytochemical screening and quantification of flavonoids from leaf extract of Jatropha curcas Linn.

    PubMed

    Ebuehi, O A T; Okorie, N A

    2009-01-01

    The Jatropha curcas L. (Euphorbiaceae) herb is found in SouthWest, Nigeria and other parts of West Africa, and is claimed to possess anti-hypertensive property. The phytochemical screening and flavonoid quantification of the leaf extract of Jatropha curcas Linn were studied. The phytochemical screening of the methanolic leaf extract of J. curcas L. was carried using acceptable and standard methods. The flavonoid contents of the leaf extract of Jatropha curcas L. were determined using thin layer chromatography (TLC), infrared spectroscopy (IRS) and a reversed phase high performance liquid chromatography (HPLC). The phytochemical screening of the methanolic extract of the leaves of the plant shows the presence of alkaloids, cardiac glycosides, cyanogenic glycosides, phlobatannins, tannins, flavonoids and saponins. To quantify the flavonoid contents of leaf extract of Jatropha curcas L, extracts from the plant samples where examined in a C-18 column with UV detection and isocratic elution with acetonitrile; water (45:55). Levels of flavonoids (flavones) in leaves ranged from 6:90 to 8:85 mg/g dry weight. Results indicate that the methanolic extract of the leaves of Jatropha curcas L. contains useful active ingredients which may serve as potential drug for the treatment of diseases. In addition, a combination of TLC, IRS and HPLC can be used to analyse and quantify the flavonoids present in the leaves of Jatropha curcas L.

  1. Causes and consequences of variation in conifer leaf life-span

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reich, P.B.; Koike, T.; Gower, S.T.

    1995-07-01

    Species with mutually supporting traits, such as high N{sub mass}, SLA, and A{sub mass}, and short leaf life-span, tend to inhabit either generally resource-rich environments or spatial and/or temporal microhabitats that are resource-rich in otherwise more limited habitats (e.g., {open_quotes}precipitation{close_quotes} ephemerals in warm deserts or spring ephemerals in the understory of temperate deciduous forests). In contrast, species with long leaf life-span often support foliage with low SLA, N{sub mass}, and A{sub mass}, and often grow in low-temperature limited, dry, and/or nutrient-poor environments. The contrast between evergreen and deciduous species, and the implications that emerge from such comparisons, can be consideredmore » a paradigm of modern ecological theory. However, based on the results of Reich et al. (1992) and Gower et al. (1993), coniferous species with foliage that persists for 9-10 years are likely to assimilate and allocate carbon and nutrients differently than other evergreen conifers that retain foliage for 2-3 years. Thus, attempts to contrast ecophysiological or ecosystem characteristics of evergreen versus deciduous life forms may be misleading, and pronounced differences among evergreen conifers may be ignored. Clearly, the deciduous-evergreen contrast, although useful in several ways, should be viewed from the broader perspective of a gradient in leaf life-span.« less

  2. Microwave blanching and drying characteristics of Centella asiatica (L.) urban leaves using tray and heat pump-assisted dehumidified drying.

    PubMed

    Trirattanapikul, W; Phoungchandang, S

    2014-12-01

    The appropriate stage of maturity of Centella asiatica (L.) Urban leaves was investigated. Mature leaves with large diameter contained high total phenolics and % inhibition. Microwave blanching for 30 s retained the highest total phenolics and the microwave blanching for 30 s and 45 s retained the highest % inhibition. Modified Henderson and Modified Chung-Pfost models showed the best fit to both fresh and blanched leaves for equilibrium moisture content, Xe = f(RHe, T) and equilibrium relative humidity, RHe = f(Xe, T), respectively. The Modified Page model was the most effective model in describing the leaf drying. All drying was in the falling rate period. The drying constant was related to drying air temperature using the Arrhenius model. Effective moisture diffusivities increased with increasing temperature and blanching treatments as well as dehumidification by heat pump-assisted dehumidified dryer. The heat pump-assited dehumidified drying incorporated by the microwave blanching could reduce the drying time at 40 °C by 31.2 % and increase % inhibition by 6.1 %. Quality evaluation by total phenolics, % inhibition and rehydration ratio showed the best quality for C. asiatica leaves pretreated by microwave blanching and dried at 40 °C in heat pump-assisted dehumidified dryer.

  3. Effect of fertigation through drip and micro sprinkler on plant biometric characters in cocoa (Theobroma cacao L.).

    PubMed

    Krishnamoorthy, C; Rajamani, K

    2013-12-15

    A field experiment to study the influence of fertigation of N, P and K fertilizers on biometric characters of cocoa (Theobroma cacao L.) was conducted at the Department of Spices and Plantation Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore during January 2010 to December 2011. The experiment was laid out with thirteen treatments replicated three times in a randomized block design. A phenomenal increase in growth parameters such as trunk girth, canopy spread and weight of the pruned branches removed, leaf fresh weight and leaf dry weight was observed with increasing levels of NPK as well as methods of fertilizer application in this study. Among the various treatments, fertigation with 125% 'Recommended Dose of Fertilizers' (125:50:175 g NPK plant year(-1)) as Water Soluble Fertilizers (WSF) through drip irrigation increased all vegetative growth parameters like trunk girth increment (1.62 cm), canopy spread increment (66.79 cm), leaf fresh weight (3.949 g), leaf dry weight (2.039 g), weight of the pruned branches removed (fresh weight 7.628 kg plant(-1)) and dry weight (4.650 kg plant(-1)).

  4. Psychrometric Field Measurement of Water Potential Changes following Leaf Excision 1

    PubMed Central

    Savage, Michael J.; Cass, Alfred

    1984-01-01

    In situ measurement of sudden leaf water potential changes has not been performed under field conditions. A laboratory investigation involving the measurement of leaf water potential prior to and 2 to 200 minutes after excision of citrus leaves (Citrus jambhiri) showed good linear correlation (r = 0.99) between in situ leaf psychrometer and Scholander pressure chamber measurements. Following this, a field investigation was conducted which involved psychrometric measurement prior to petiole excision and 1 minute after excision. Simultaneous pressure chamber measurements were performed on neighboring leaves prior to the time of excision and then on the psychrometer leaf about 2 minutes after excision. These data indicate that within the first 2 minutes after excision, psychrometer and pressure chamber measurements were linearly correlated (r = 0.97). Under high evaporative demand conditions, the rate of water potential decrease was between 250 and 700 kilopascals in the first minute after excision. These results show that the thermocouple psychrometer can be used as a dynamic and nondestructive field technique for monitoring leaf water potential. PMID:16663394

  5. Infrared Drying as a Quick Preparation Method for Dried Tangerine Peel

    PubMed Central

    Xu, Mingyue; Zhao, Chengying; Ahmad, Aftab; Zhang, Huijuan; Xiao, Hang

    2017-01-01

    To establish the most convenient and effective method to dry tangerine peels, different methods (sun drying, hot-air drying, freeze drying, vacuum drying, and medium- and short-wave infrared drying) were exploited. Our results indicated that medium- and short-wave infrared drying was the best method to preserve nutraceutical components; for example, vitamin C was raised to 6.77 mg/g (D.W.) from 3.39 mg/g (sun drying). Moreover, the drying time can be shortened above 96% compared with sun drying. Importantly, the efficiency of DPPH radical scavenging was enhanced from 26.66% to 55.92%. These findings would provide a reliable and time-saving methodology to produce high-quality dried tangerine peels. PMID:29348752

  6. Biogeochemical Relationships of a Subtropical Dry Forest on Karst

    Treesearch

    E. Medina; E. Cuevas; H. Marcano-Vega; E. Meléndez-Ackerman; E.H. Helmer

    2017-01-01

    Tropical dry forests on calcareous substrate constitute the main vegetation cover in many islands of the Caribbean. Dry climate and nutrient scarcity in those environments are ideal to investigate the potential role of high levels of soil calcium (Ca) in regulating plant selection and productivity. We analyzed the elemental composition of soil, loose litter, and leaf...

  7. Evaluation of leaf litter leaching kinetics through commonly-used mathematical models

    NASA Astrophysics Data System (ADS)

    Montoya, J. V.; Bastianoni, A.; Mendez, C.; Paolini, J.

    2012-04-01

    Leaching is defined as the abiotic process by which soluble compounds of the litter are released into the water. Most studies dealing with leaf litter breakdown and leaching kinetics apply the single exponential decay model since it corresponds well with the understanding of the biology of decomposition. However, during leaching important mass losses occur and mathematical models often fail in describing this process adequately. During the initial hours of leaching leaf litter experience high decay rates which are not properly modelled. Adjusting leaching losses to mathematical models has not been investigated thoroughly and the use of models assuming constant decay rates leads to inappropriate assessments of leaching kinetics. We aim to describe, assess, and compare different leaching kinetics models fitted to leaf litter mass losses from six Neotropical riparian forest species. Leaf litter from each species was collected in the lower reaches of San Miguel stream in Northern Venezuela. Air-dried leaves from each species were incubated in 250 ml of water in the dark at room temperature. At 1h, 6h, 1d, 2d, 4d, 8d and 15d, three jars were removed from the assay in a no-replacement experimental design. At each time leaves from each jar were removed and oven-dried. Afterwards, dried up leaves were weighed and remaining dry mass was determined and expressed as ash-free dry mass. Mass losses of leaf litter showed steep declines for the first two days followed by a steady decrease in mass loss. Data was fitted to three different models: single-exponential, power and rational. Our results showed that the mass loss predicted with the single-exponential model did not reflect the real data at any stage of the leaching process. The power model showed a better adjustment, but fails predicting successfully the behavior during leaching's early stages. To evaluate the performance of our models we used three criteria: Adj-R2, Akaike's Information Criteria (AIC), and residual

  8. Leaf senescence under various gravity conditions: relevance to the dynamics of plant hormones

    NASA Astrophysics Data System (ADS)

    Miyamoto, K.; Yuda, T.; Shimazu, T.; Ueda, J.

    Effects of simulated microgravity and hypergravity on the senescence of oat leaf segments excised from the primary leaves of 8-d-old green seedlings were studied using a 3-dimensional (D) clinostat as a simulator of weightlessness and a centrifuge, respectively. During the incubation with water under 1-g conditions at 25 °C in the dark, the loss of chlorophyll of the segments was found dramatically immediately after leaf excision, and leaf color completely turned to yellow after 3-d to 4-d incubation. In this case kinetin (10 μM) was effective in retarding senescence. The application of simulated microgravity conditions on a 3-D clinostat enhanced chlorophyll loss in the presence or absence of kinetin. The loss of chlorophyll was also enhanced by hypergravity conditions (ca. 8 to 16 g), but the effect was smaller than that of simulated microgravity conditions on the clinostat. Jasmonates (JAs) and abscisic acid (ABA) promoted senescence under simulated microgravity conditions on the clinostat as well as under 1-g conditions. After 2-d incubation with water or 5-d incubation with kinetin, the endogenous levels of JAs and ABA of the segments kept under simulated microgravity conditions on the clinostat remained higher than those kept under 1-g conditions. These findings suggest that physiological processes of leaf senescence and the dynamics of endogenous plant hormone levels are substantially affected by gravity.

  9. Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny.

    PubMed

    Mason, Chase M; Donovan, Lisa A

    2015-04-01

    Leaf defenses have long been studied in the context of plant growth rate, resource availability, and optimal investment theory. Likewise, one of the central modern paradigms of plant ecophysiology, the leaf economics spectrum (LES), has been extensively studied in the context of these factors across ecological scales ranging from global species data sets to temporal shifts within individuals. Despite strong physiological links between LES strategy and leaf defenses in structure, function, and resource investment, the relationship between these trait classes has not been well explored. This study investigates the relationship between leaf defenses and LES strategy across whole-plant ontogeny in three diverse Helianthus species known to exhibit dramatic ontogenetic shifts in LES strategy, focusing primarily on physical and quantitative chemical defenses. Plants were grown under controlled environmental conditions and sampled for LES and defense traits at four ontogenetic stages. Defenses were found to shift strongly with ontogeny, and to correlate strongly with LES strategy. More advanced ontogenetic stages with more conservative LES strategy leaves had higher tannin activity and toughness in all species, and higher leaf dry matter content in two of three species. Modeling results in two species support the conclusion that changes in defenses drive changes in LES strategy through ontogeny, and in one species that changes in defenses and LES strategy are likely independently driven by ontogeny. Results of this study support the hypothesis that leaf-level allocation to defenses might be an important determinant of leaf economic traits, where high investment in defenses drives a conservative LES strategy.

  10. In vitro Antioxidant and Pharmacognostic Studies of Leaf Extracts of Cajanus cajan (L.) Millsp

    PubMed Central

    Mahitha, B.; Archana, P.; Ebrahimzadeh, MD. H.; Srikanth, K.; Rajinikanth, M.; Ramaswamy, N.

    2015-01-01

    Cajanus cajan (L.) Millsp is one of the second most dietary legume crops. The leaf extracts may be used as a potential source of natural antioxidant. The ash values, extractive values, total phenolic and flavonoid content, in vitro antioxidant activity of various leaf extracts as well as anatomical investigation of Cajanus cajan were carried out. Physicochemical parameters such as total, acid-insoluble and water-soluble ash values and moisture content of the leaf powder of C. cajan were found to be 9.50%, 1.40 g/100 g, 4.15 g/100 g drug and 6.72%, respectively. Percent yield of acetone, aqueous, ethanol, ethyl acetate and chloroform leaf extracts were 9.0, 10.6, 13.75, 8.7 and 5.8 g/100 g, respectively. Significant amount of phenolic and flavonoid content were observed. The results of the antioxidant activity were found to be concentration-dependent. The IC50 values for DPPH assay determined for aqueous and ethanol extracts were 0.69 and 0.79 mg/ml, respectively. Reducing power is increased with increasing amount of concentration in both aqueous and ethanol leaf extracts. The highest hydroxyl radical scavenging activity reached up to 83.67% in aqueous and 78.75% in ethanol extracts and in phosphomolybdenum assay the aqueous extract showed strong antioxidant capacity up to 55.97 nM gallic acid equivalents/g. It was found that the aqueous extract possessed highest antioxidant activity in all the assays tested. The antioxidant characteristics of leaf extracts are possibly because of the presence of polyphenols. Microscopic study showed the presence of collenchyma, fibres, xylem, phloem, epidermis, trichomes, palisade tissue, basal sheath, pith and cortex in leaf, petiole and pulvinus. PMID:26009649

  11. Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage.

    PubMed

    Centritto, Mauro; Lauteri, Marco; Monteverdi, Maria Cristina; Serraj, Rachid

    2009-01-01

    Genotypic variations in leaf gas exchange and yield were analysed in five upland-adapted and three lowland rice cultivars subjected to a differential soil moisture gradient, varying from well-watered to severely water-stressed conditions. A reduction in the amount of water applied resulted in a significant decrease in leaf gas exchange and, subsequently, in above-ground dry mass and grain yield, that varied among genotypes and distance from the line source. The comparison between the variable J and the Delta values in recently synthesized sugars methods, yielded congruent estimations of mesophyll conductance (g(m)), confirming the reliability of these two techniques. Our data demonstrate that g(m) is a major determinant of photosynthesis (A), because rice genotypes with inherently higher g(m) were capable of keeping higher A in stressed conditions. Furthermore, A, g(s), and g(m) of water-stressed genotypes rapidly recovered to the well-watered values upon the relief of water stress, indicating that drought did not cause any lasting metabolic limitation to photosynthesis. The comparisons between the A/C(i) and corresponding A/C(c) curves, measured in the genotypes that showed intrinsically higher and lower instantaneous A, confirmed this finding. Moreover, the effect of drought stress on grain yield was correlated with the effects on both A and total diffusional limitations to photosynthesis. Overall, these data indicate that genotypes which showed higher photosynthesis and conductances were also generally more productive across the entire soil moisture gradient. The analysis of Delta revealed a substantial variation of water use efficiency among the genotypes, both on the long-term (leaf pellet analysis) and short-term scale (leaf soluble sugars analysis).

  12. Leaf Magnesium Alters Photosynthetic Response to Low Water Potentials in Sunflower 1

    PubMed Central

    Rao, I. Madhusudana; Sharp, Robert E.; Boyer, John S.

    1987-01-01

    We grew sunflower (Helianthus annuus L.) plants in nutrient solutions having nutritionally adequate but low or high Mg2+ concentrations and determined whether photosynthesis was effected as leaf water potentials (ψw) decreased. Leaf Mg contents were 3- to 4-fold higher in the plants grown in high Mg2+ concentrations (10 millimolar) than in those grown in low concentrations (0.25 millimolar). These contents were sufficient to support maximum growth, plant dry weight, and photosynthesis, and the plants appeared normal. As low ψw developed, photosynthesis was inhibited but moreso in high Mg leaves than in low Mg leaves. The effect was particularly apparent under conditions of light- and CO2-saturation, indicating that the chloroplast capacity to fix CO2 was altered. The differential inhibition observed in leaves of differing Mg contents was not observed in leaves having differing K contents, suggesting that the effect may have been specific for Mg. Because Mg2+ inhibits photophosphorylation and coupling factor activities at concentrations likely to occur as leaves dehydrate, Mg may play a role in the inhibition of chloroplast reactions at low ψw, especially in leaves such as sunflower that markedly decrease in water content as ψw decreases. Images Fig. 2 Fig. 6 PMID:16665587

  13. Drought effects on leaf abscission and leaf production in Populus clones

    Treesearch

    Stephen G. Pallardy; Julie L. Rhoads

    1997-01-01

    Leaf abscission and foliation responses to water stress were studied in potted plants of five Populus clones grown in a greenhouse. As predawn leaf water potential (Ψ1) fell to -3 MPa, drought-induced leaf abscission increased progressively to 30% for data pooled across clones. As predawn Ψ1...

  14. Analyses of the leaf, fruit and seed of Thaumatococcus daniefii (Benth.): exploring potential uses.

    PubMed

    Chinedu, Shalom Nwodo; Oluwadamisi, Adetayo Y; Popoola, Samuel T; David, Bolaji J; Epelle, Tamunotonyesia

    2014-06-01

    Thaumatococcus daniellii is an economic plant with versatile uses in Southern Nigeria. The arils attached to the seeds contain thaumatin, a non-sugar sweetener and taste modifier. This study examined the chemical constituents of the leaf, fruit and seed of T. daniellii. The fresh fruit, on weight basis, consists of 4.8% aril, 22.8% seed and 72.4% fleshy part. The leaf contained (per 100 g): 10.67 g moisture, 8.95 g ash, 17.21 g fat, 21.06 g protein, 24.61 g crude fiber 17.50 g carbohydrate, 0.10 g calcium, 0.08 g magnesium, 0.01 g iron and 0.37 g phosphorus. The fruit (fleshy part) contained 10.04 g moisture, 21.08 g ash, 0.93 g fat, 11.53 g protein, 18.43 g crude fiber, 37.27 g carbohydrate, 0.34 g calcium, 0.30 g magnesium, 0.01 g iron and 0.21 g phosphorus. The seed contained 15.15 g moisture, 11.30 g ash, 0.21 g fat, 10.36 g protein, 20.52 g crude fiber and 42.46 g carbohydrate. Terpenoids, flavonoids, alkaloids and cardiac glycosides were significantly present in both the leaf and fruit whereas phlobatannin, saponin, steroids, anthraquinones and ascorbic acid were absent. Tannin was present only in the leaf. The leaf and fruit of T. daniellii have significant nutritional and medicinal benefits. The leaf is rich in protein and fat. The fruit is a good source of minerals, particularly, calcium and magnesium; the leaf is also rich in phosphorus.

  15. Composition of antioxidants and amino acids in Stevia leaf infusions.

    PubMed

    Periche, Angela; Koutsidis, Georgios; Escriche, Isabel

    2014-03-01

    Stevia, a non-caloric natural sweetener with beneficial properties and considerable antioxidants and amino acids, is increasingly consumed as an infusion. This work evaluates the influence of the conditions (temperature: 50, 70 or 90 °C and time: 1, 5, 20 or 40 min) applied to obtain Stevia infusions, on antioxidants (total phenols, flavonoids and antioxidant activity) and amino acids. The total concentration of the eleven amino acids found was 11.70 mg/g in dried leaves and from 6.84 to 9.11 mg/g per gram of Stevia in infusions. However, infusions showed higher levels of certain amino acids (alanine, asparagine, leucine and proline), and greater values of the three antioxidant parameters in comparison with dry leaves. Temperature had more influence (minimum values at 50 °C and maximum at 90 °C) than time in the case of antioxidants. At 90 °C there were no important increases in the extraction of antioxidant compounds after 5 min; each gram of Stevia had 117 mg trolox (total antioxidant activity), 90 mg gallic acid (total phenols) and 56 mg catechin equivalents (flavonoids). Varying the temperature and time conditions no notable differences were observed in the concentrations of the majority of amino acids. However, the infusion treatment at 90 °C for 5 min was the best, as it gave the highest yield of 8 of the 11 amino acids. Therefore, with respect to the compounds analyzed in this study, the best way to obtain Stevia leaf infusions is the same as the domestic process, almost boiling water for a short time.

  16. Drying Characteristics and Water-soluble Polysaccharides Evaluation of Kidney Shape Ganoderma lucidum Drying in Air Circulation System

    NASA Astrophysics Data System (ADS)

    Prasetyo, D. J.; Jatmiko, T. H.; Poeloengasih, C. D.; Kismurtono, M.

    2017-12-01

    In this project, drying kinetic of kidney shape Ganoderma lucidum fruiting body in air circulation system was studied. The drying experiments were conducted at 40, 50 and 60°C with air flow rate of 1.3 ms-1. Samples were weighted periodically until no change in sample weight was recorded, and then the samples were analyzed for its moisture content. Four different thin-layer mathematical models (Newton, Page, Two-term, Midilli) were used and compare to evaluate the drying curves of kidney shape G. lucidum. The water-soluble polysaccharides were evaluated in order to find the best drying temperature condition. The results indicates that Midilli model was the fittest model to describe the characteristic of kidney shape G. lucidum in the air circulation drying system and temperature of 50°C was the best drying condition to get highest value of water-soluble polysaccharides.

  17. Leaf physiological versus morphological acclimation to high-light exposure at different stages of foliar development in oak.

    PubMed

    Rodríguez-Calcerrada, J; Reich, P B; Rosenqvist, E; Pardos, J A; Cano, F J; Aranda, I

    2008-05-01

    We investigated light acclimation in seedlings of the temperate oak Quercus petraea (Matt.) Liebl. and the co-occurring sub-Mediterranean oak Quercus pyrenaica Willd. Seedlings were raised in a greenhouse for 1 year in either 70 (HL) or 5.3% (LL) of ambient irradiance of full sunlight, and, in the following year, subsets of the LL-grown seedlings were transferred to HL either before leaf flushing (LL-HLBF plants) or after full leaf expansion (LL-HLAF plants). Gas exchange, chlorophyll a fluorescence, nitrogen fractions in photosynthetic components and leaf anatomy were examined in leaves of all seedlings 5 months after plants were moved from LL to HL. Differences between species in the acclimation of LL-grown plants to HL were minor. For LL-grown plants in HL, area-based photosynthetic capacity, maximum rate of carboxylation, maximum rate of electron transport and the effective photochemical quantum yield of photosystem II were comparable to those for plants grown solely in HL. A rapid change in nitrogen distribution among photosynthetic components was observed in LL-HLAF plants, which had the highest photosynthetic nitrogen-use efficiency. Increases in mesophyll thickness and dry mass per unit area governed leaf acclimation in LL-HLBF plants, which tended to have less nitrogen in photosynthetic components and a lower assimilation potential per unit of leaf mass or nitrogen than LL-HLAF plants. The data indicate that the phenological state of seedlings modified the acclimatory response of leaf attributes to increased irradiance. Morphological adaptation of leaves of LL-HLBF plants enhanced photosynthetic capacity per unit leaf area, but not per unit leaf dry mass, whereas substantial redistribution of nitrogen among photosynthetic components in leaves of LL-HLAF plants enhanced both mass- and area-based photosynthetic capacity.

  18. Stronger seasonal adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest.

    PubMed

    Maréchaux, Isabelle; Bartlett, Megan K; Iribar, Amaia; Sack, Lawren; Chave, Jérôme

    2017-01-01

    Pan-tropically, liana density increases with decreasing rainfall and increasing seasonality. This pattern has led to the hypothesis that lianas display a growth advantage over trees under dry conditions. However, the physiological mechanisms underpinning this hypothesis remain elusive. A key trait influencing leaf and plant drought tolerance is the leaf water potential at turgor loss point (π tlp ). π tlp adjusts under drier conditions and this contributes to improved leaf drought tolerance. For co-occurring Amazonian tree (n = 247) and liana (n = 57) individuals measured during the dry and the wet seasons, lianas showed a stronger osmotic adjustment than trees. Liana leaves were less drought-tolerant than trees in the wet season, but reached similar drought tolerances during the dry season. Stronger osmotic adjustment in lianas would contribute to turgor maintenance, a critical prerequisite for carbon uptake and growth, and to the success of lianas relative to trees in growth under drier conditions. © 2017 The Author(s).

  19. Regulation of Compound Leaf Development by PHANTASTICA in Medicago truncatula1[C][W][OPEN

    PubMed Central

    Ge, Liangfa; Peng, Jianling; Berbel, Ana; Madueño, Francisco; Chen, Rujin

    2014-01-01

    Plant leaves, simple or compound, initiate as peg-like structures from the peripheral zone of the shoot apical meristem, which requires class I KNOTTED-LIKE HOMEOBOXI (KNOXI) transcription factors to maintain its activity. The MYB domain protein encoded by the ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (ARP) gene, together with other factors, excludes KNOXI gene expression from incipient leaf primordia to initiate leaves and specify leaf adaxial identity. However, the regulatory relationship between ARP and KNOXI is more complex in compound-leafed species. Here, we investigated the role of ARP and KNOXI genes in compound leaf development in Medicago truncatula. We show that the M. truncatula phantastica mutant exhibited severe compound leaf defects, including curling and deep serration of leaf margins, shortened petioles, increased rachises, petioles acquiring motor organ characteristics, and ectopic development of petiolules. On the other hand, the M. truncatula brevipedicellus mutant did not exhibit visible compound leaf defects. Our analyses show that the altered petiole development requires ectopic expression of ELONGATED PETIOLULE1, which encodes a lateral organ boundary domain protein, and that the distal margin serration requires the auxin efflux protein M. truncatula PIN-FORMED10 in the M. truncatula phantastica mutant. PMID:24218492

  20. Carbon and nitrogen balance of leaf-eating sesarmid crabs ( Neoepisesarma versicolor) offered different food sources

    NASA Astrophysics Data System (ADS)

    Thongtham, Nalinee; Kristensen, Erik

    2005-10-01

    Carbon and nitrogen budgets for the leaf-eating crab, Neoepisesarma versicolor, were established for individuals living on pure leaf diets. Crabs were fed fresh (green), senescent (yellow) and partly degraded (brown) leaves of the mangrove tree Rhizophora apiculata. Ingestion, egestion and metabolic loss of carbon and nitrogen were determined from laboratory experiments. In addition, bacterial abundance in various compartments of the crabs' digestive tract was enumerated after dissection of live individuals. Ingestion and egestion rates (in terms of dry weight) were highest, while the assimilation efficiency was poorest for crabs fed on brown leaves. The low assimilation efficiency was more than counteracted by the high ingestion rate providing more carbon for growth than for crabs fed green and yellow leaves. In any case, the results show that all types of leaves can provide adequate carbon while nitrogen was insufficient to support both maintenance (yellow leaves) and growth (green, yellow and brown leaves). Leaf-eating crabs must therefore obtain supplementary nitrogen by other means in order to meet their nitrogen requirement. Three hypotheses were evaluated: (1) crabs supplement their diet with bacteria and benthic microalgae by ingesting own faeces and/or selective grazing at the sediment surface; (2) assimilation of symbiotic nitrogen-fixing bacteria in the crabs' own intestinal system; and (3) nitrogen storage following occasional feeding on animal tissues (e.g. meiofauna and carcasses). It appears that hypothesis 1 is of limited importance for N. versicolor since faeces and sediment can only supply a minor fraction of the missing nitrogen due to physical constraints on the amount of material the crabs can consume. Hypothesis 2 can be ruled out because tests showed no nitrogen fixation activity in the intestinal system of N. versicolor. It is therefore likely that leaf-eating crabs provide most of their nitrogen requirement from intracellular deposits

  1. Reflectance measurements of cotton leaf senescence altered by mepiquat chloride

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Escobar, D. E.; Rodriguez, R. R. (Principal Investigator)

    1982-01-01

    Spectrophotometric reflectance measurements were made on plant-attached leaves to evaluate growth chamber-grown cotton leaf (Gossypium hirsutum L.) senescence (chlorophyll degradation as criterion) that was delayed by mepiquat chloride (1,1-dimethylpiperidinium chloride) rates of 0, 10, 40, 70, and 100 g a.i./ha. Mepiquat chloride (MC increased both chlorophyll and leaf water contents as compared with that of untreated leaves. Reflectance was inversely and linearly correlated (r = -0.873**) with eater content at the 1.65 micrometer wavelength and was inversely correlated (r = -0.812**) with chlorophyll concentration at the 0.55 micrometer wavelength but best fit a quadratic equation. Either wavelength measurement might be useful to remotely detect cotton leaf senescence or fields of MC-treated cotton plants.

  2. Relating Stomatal Conductance to Leaf Functional Traits.

    PubMed

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  3. Effect of water stress on carbon isotope discrimination and its relationship with transpiration efficiency and specific leaf area in Cenchrus species.

    PubMed

    Dubey, Archana; Chandra, Amaresh

    2008-05-01

    Carbon isotope discrimination (CID) has been proposed in estimating transpiration efficiency (TE) in plants indirectly To identify variations for TE and specific leaf area (SLA) and their association with CID, a glasshouse experiment was conducted using six prominent species of Cenchrus. A significant increase in TE (3.50 to 3.87 g kg(-1)) and decrease in SLA (219.50 to 207.99 cm2 g(-1)) and CID (13.72 to 13.23% per hundred) was observed from well watered to stress condition. Results indicated a direct relationship of SLA with CID (r = 0.511* and 0.544*) and inverse relationship between TE and CID (r = -0.229 and -0.270) However the relationship of TE with CID was insignificant. A positive and significant relationship was visualized between TE and dry matter production in both control (r = 0.917**) and stress (0.718**) treatments. Relationships of total dry matter with SLA and CID were monitored insignificant and negative in control and positive in stress treatment indicated difference in dry matter production under two treatments. It seems that, in Cenchrus species, CID was influenced more by the photosynthetic capacity than by stomatal conductance, as indicated by its positive relationship with SLAin both control (r = 0.511) and stress (r = 0.544) conditions and negative relationship with root dry matter production under control (r = -0.921**) and stress (r = -0.919***) condition. Results showed good correspondence between CID and SLA, indicating that lines having high TE and biomass production can be exploited for their genetic improvement for drought.

  4. Larvicidal activity of Morinda citrifolia L. (Noni) (Family: Rubiaceae) leaf extract against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Shanthakumar, Shanmugam Perumal; Vincent, Savariar; Hwang, Jiang-Shiou

    2012-10-01

    Morinda citrifolia leaf extract was tested for larvicidal activity against three medically important mosquito vectors such as malarial vector Anopheles stephensi, dengue vector Aedes aegypti, and filarial vector Culex quinquefasciatus. The plant material was shade dried at room temperature and powdered coarsely. From the leaf, 1-kg powder was macerated with 3.0 L of hexane, chloroform, acetone, methanol, and water sequentially for a period of 72 h each and filtered. The yield of extracts was hexane (13.56 g), chloroform (15.21 g), acetone (12.85 g), methanol (14.76 g), and water (12.92 g), respectively. The extracts were concentrated at reduced temperature on a rotary vacuum evaporator and stored at a temperature of 4°C. The M. citrifolia leaf extract at 200, 300, 400, 500, and 600 ppm caused a significant mortality of three mosquito species. Hexane, chloroform, acetone, and water caused moderate considerable mortality; however, the highest larval mortality was methanolic extract, observed in three mosquito vectors. The larval mortality was observed after 24-h exposure. No mortality was observed in the control. The third larvae of Anopheles stephensi had values of LC(50) = 345.10, 324.26, 299.97, 261.96, and 284.59 ppm and LC(90) = 653.00, 626.58, 571.89, 505.06, and 549.51 ppm, respectively. The Aedes aegypti had values of LC(50) = 361.75, 343.22, 315.40, 277.92, and 306.98 ppm and LC(90) = 687.39, 659.02, 611.35, 568.18, and 613.25 ppm, respectively. The Culex quinquefasciatus had values of LC(50) = 382.96, 369.85, 344.34, 330.42, and 324.64 ppm and LC(90) = 726.18, 706.57, 669.28, 619.63, and 644.47 ppm, respectively. The results of the leaf extract of M. citrifolia are promising as good larvicidal activity against the mosquito vector Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. This is a new eco-friendly approach for the control of vector control programs. Therefore, this study provides first report on the larvicidal activities against three

  5. How do leaf hydraulics limit stomatal conductance at high water vapour pressure deficits?

    PubMed

    Bunce, James A

    2006-08-01

    A reduction in leaf stomatal conductance (g) with increasing leaf-to-air difference in water vapour pressure (D) is nearly ubiquitous. Ecological comparisons of sensitivity have led to the hypothesis that the reduction in g with increasing D serves to maintain leaf water potentials above those that would cause loss of hydraulic conductance. A reduction in leaf water potential is commonly hypothesized to cause stomatal closure at high D. The importance of these particular hydraulic factors was tested by exposing Abutilon theophrasti, Glycine max, Gossypium hirsutum and Xanthium strumarium to D high enough to reduce g and then decreasing ambient carbon dioxide concentration ([CO2]), and observing the resulting changes in g, transpiration rate and leaf water potential, and their reversibility. Reducing the [CO2] at high D increased g and transpiration rate and lowered leaf water potential. The abnormally high transpiration rates did not result in reductions in hydraulic conductance. Results indicate that low water potential effects on g at high D could be overcome by low [CO2], and that even lower leaf water potentials did not cause a reduction in hydraulic conductance in these well-watered plants. Reduced g at high D in these species resulted primarily from increased stomatal sensitivity to [CO2] at high D, and this increased sensitivity may mediate stomatal responses to leaf hydraulics at high D.

  6. Trends in leaf photosynthesis in historical rice varieties developed in the Philippines since 1966.

    PubMed

    Hubbart, S; Peng, S; Horton, P; Chen, Y; Murchie, E H

    2007-01-01

    Crop improvement in terms of yield is rarely linked to leaf photosynthesis. However, in certain crop plants such as rice, it is predicted that an increase in photosynthetic rate will be required to support future grain yield potential. In order to understand the relationships between yield improvement and leaf photosynthesis, controlled environment conditions were used to grow 10 varieties which were released from the International Rice Research Institute (IRRI) between 1966 and 1995 and one newly developed line. Two growth light intensities were used: high light (1500 micromol m(-2) s(-1)) and low light (300 micromol m(-2) s(-1)). Gas exchange, leaf protein, chlorophyll, and leaf morphology were measured in the ninth leaf on the main stem. A high level of variation was observed among high light-grown plants for light-saturated photosynthetic rate per unit leaf area (P(max)), stomatal conductance (g), content of ribulose bisphosphate carboxylase-oxygenase (Rubisco), and total leaf protein content. Notably, between 1966 and 1980 there was a decline in P(max), g, leaf protein, chlorophyll, and Rubisco content. Values recovered in those varieties released after 1980. This striking trend coincides with a previous published observation that grain yield in IRRI varieties released prior to 1980 correlated with harvest index whereas that for those released after 1980 correlated with biomass. P(max) showed significant correlations with both g and Rubisco content. Large differences were observed between high light- and low light-grown plants (photoacclimation). The photoacclimation 'range' for P(max) correlated with P(max) in high light-grown plants. It is concluded that (i) leaf photosynthesis may be systematically affected by breeding strategy; (ii) P(max) is a useful target for yield improvements where yield is limited by biomass production rather than partitioning; and (iii) the capacity for photoacclimation is related to high P(max) values.

  7. Chemical Composition and Water Permeability of Fruit and Leaf Cuticles of Olea europaea L.

    PubMed

    Huang, Hua; Burghardt, Markus; Schuster, Ann-Christin; Leide, Jana; Lara, Isabel; Riederer, Markus

    2017-10-11

    The plant cuticle, protecting against uncontrolled water loss, covers olive (Olea europaea) fruits and leaves. The present study describes the organ-specific chemical composition of the cuticular waxes and the cutin and compares three developmental stages of fruits (green, turning, and black) with the leaf surface. Numerous organ-specific differences, such as the total coverage of cutin monomeric components (1034.4 μg cm -2 and 630.5 μg cm -2 ) and the cuticular waxes (201.6 μg cm -2 and 320.4 μg cm -2 ) among all three fruit stages and leaves, respectively, were detected. Water permeability as the main cuticular function was 5-fold lower in adaxial leaf cuticles (2.1 × 10 -5 m s -1 ) in comparison to all three fruit stages (9.5 × 10 -5 m s -1 ). The three fruit developmental stages have the same cuticular water permeability. It is hypothesized that a higher weighted average chain length of the acyclic cuticular components leads to a considerably lower permeability of the leaf as compared to the fruit cuticle.

  8. Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance.

    PubMed

    Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren

    2014-04-01

    Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (K(leaf)). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in K(leaf) at declining leaf water potential (Ψ(leaf)). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of K(leaf) with mild dehydration (i.e. the initial slope of the K(leaf) versus Ψ(leaf) curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψ(leaf) curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions.

  9. Sap fluxes from different parts of the rootzone modulate xylem ABA concentration during partial rootzone drying and re-wetting.

    PubMed

    Pérez-Pérez, J G; Dodd, I C

    2015-04-01

    Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests.

    PubMed

    Li, Le; McCormack, M Luke; Ma, Chengen; Kong, Deliang; Zhang, Qian; Chen, Xiaoyong; Zeng, Hui; Niinemets, Ülo; Guo, Dali

    2015-09-01

    Leaf economics and hydraulic traits are critical to leaf photosynthesis, yet it is debated whether these two sets of traits vary in a fully coordinated manner or there is room for independent variation. Here, we tested the relationship between leaf economics traits, including leaf nitrogen concentration and leaf dry mass per area, and leaf hydraulic traits including stomatal density and vein density in five tropical-subtropical forests. Surprisingly, these two suites of traits were statistically decoupled. This decoupling suggests that independent trait dimensions exist within a leaf, with leaf economics dimension corresponding to light capture and tissue longevity, and the hydraulic dimension to water-use and leaf temperature maintenance. Clearly, leaf economics and hydraulic traits can vary independently, thus allowing for more possible plant trait combinations. Compared with a single trait dimension, multiple trait dimensions may better enable species adaptations to multifarious niche dimensions, promote diverse plant strategies and facilitate species coexistence. © 2015 John Wiley & Sons Ltd/CNRS.

  11. Effects of 2 fungicide formulations on microbial and macroinvertebrate leaf decomposition under laboratory conditions

    USGS Publications Warehouse

    Elskus, Adria; Smalling, Kelly L.; Hladik, Michelle; Kuivila, Kathryn

    2016-01-01

    Aquatic fungi contribute significantly to the decomposition of leaves in streams, a key ecosystem service. However, little is known about the effects of fungicides on aquatic fungi and macroinvertebrates involved with leaf decomposition. Red maple (Acer rubrum) leaves were conditioned in a stream to acquire microbes (bacteria and fungi), or leached in tap water (unconditioned) to simulate potential reduction of microbial biomass by fungicides. Conditioned leaves were exposed to fungicide formulations QUILT (azoxystrobin + propiconazole) or PRISTINE (boscalid + pyraclostrobin), in the presence and absence of the leaf shredder, Hyalella azteca (amphipods; 7-d old at start of exposures) for 14 d at 23 °C. QUILT formulation (~ 0.3 μg/L, 1.8 μg/L, 8 μg/L) tended to increase leaf decomposition by amphipods (not significant) without a concomitant increase in amphipod biomass, indicating potential increased consumption of leaves with reduced nutritional value. PRISTINE formulation (~ 33 μg/L) significantly reduced amphipod growth and biomass (p<0.05), effects similar to those observed with unconditioned controls. The significant suppressive effects of PRISTINE on amphipod growth, and the trend towards increased leaf decomposition with increasing QUILT concentration, indicate the potential for altered leaf decay in streams exposed to fungicides. Further work is needed to evaluate fungicide effects on leaf decomposition under conditions relevant to stream ecosystems, including temperature shifts and pulsed exposures to pesticide mixtures.

  12. Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest.

    PubMed

    Cai, Zhi-Quan; Schnitzer, Stefan A; Bongers, Frans

    2009-08-01

    Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in seasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO(2) assimilation per unit mass (A(mass)), nitrogen concentration (N(mass)), and delta(13)C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO(2) assimilation per unit area (A(area)), phosphorus concentration per unit mass (P(mass)), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A(area) decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana delta(13)C increased four times more than tree delta(13)C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A(mass) than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.

  13. Factors affecting the abundance of leaf-litter arthropods in unburned and thrice-burned seasonally-dry Amazonian forests.

    PubMed

    Silveira, Juliana M; Barlow, Jos; Louzada, Julio; Moutinho, Paulo

    2010-09-21

    Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance.

  14. Factors Affecting the Abundance of Leaf-Litter Arthropods in Unburned and Thrice-Burned Seasonally-Dry Amazonian Forests

    PubMed Central

    Silveira, Juliana M.; Barlow, Jos; Louzada, Julio; Moutinho, Paulo

    2010-01-01

    Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance. PMID:20877720

  15. Effects of feeding different proportions of silver leaf desmodium (Dismodium uncinatum) with banana (Musa paradisiaca) leaf on nutrient utilization in Horro sheep fed a basal diet of natural grass hay.

    PubMed

    Chali, Diriba; Nurfeta, Ajebu; Banerjee, Sandip; Eik, Lars Olav

    2018-03-02

    The objective was to evaluate feed intake, digestibility, body weight change and carcass characteristics of sheep fed a basal diet of hay supplemented with banana leaves and silver leaf desmodium. Thirty yearling lambs with an average initial body weight of 15.85 ± 1.6 kg were grouped into six blocks of five rams in each block. The treatments were: hay alone (T1), hay + 100% banana leaf (T2), hay + 67% banana leaf + 33% desmodium leaf (T3), hay + 33% banana leaf + 67% desmodium leaf (T4) and hay + 100% desmodium leaf (T5). Three hundred grams of treatment diets were offered daily on as fed basis. The feeding and digestibility trial lasted for 84 and 7 days, respectively, followed by carcass evaluation. The total dry matter (DM) intake for T3, T4 and T5 were greater (P<0.05) than those fed T1 and T2 diets. The lowest (P<0.05) organic matter (OM) intake was recorded in rams reared on T1 diet. The total crude protein (CP) intake was in the following order: T5 > T4 > T3 > T2 > T1. Rams lambs receiving supplementary diets had higher (P<0.05) DM, OM, CP, neutral detergent fiber and acid detergent fiber digestibility compared with the control diet. The empty body weight and slaughter weight was highest (P<0.05) in rams receiving T3, T4 and T5 diets. The average daily gain and feed conversion efficiency was highest (P<0.05) in rams receiving the supplementary diets. The DP on the basis of hot carcass weight linearly increased with increasing levels of desmodium. Rams reared on supplementary diet had higher (P<0.05) rib eye area compared with the control diet. In conclusion, when banana leaf is used as a supplement to poor quality grass, better response was obtained when fed in combination with desmodium.

  16. Ocimum sanctum leaf extract induces drought stress tolerance in rice

    PubMed Central

    Pandey, Veena; Ansari, M.W.; Tula, Suresh; Sahoo, R.K.; Bains, Gurdeep; Kumar, J.; Tuteja, Narendra; Shukla, Alok

    2016-01-01

    ABSTRACT Ocimum leaves are highly enriched in antioxidant components. Thus, its leaf extract, if applied in plants, is believed to efficiently scavenge ROS, thereby preventing oxidative damage under drought stress. Thus, the present study was performed in kharif 2013 and rabi 2014 season to evaluate the effect of aqueous leaf extract of Ocimum sanctum against drought stress in 2 rice genotype under glass house conditions. Here we show that various morpho- physiological (chlorophyll fluorescence, leaf rolling score, leaf tip burn, number of senesced leaves and total dry matter) and biochemical parameters (proline, malondialdehyde and superoxide dismutase content) were amended by Ocimum treatment in both the seasons. Application of Ocimum extract increased expression of dehydrin genes, while reducing expression of aquaporin genes in drought stressed rice plant. Thus, application of Ocimum leaf extract under drought stress can be suggested as a promising strategy to mitigate drought stress in economical, accessible and ecofriendly manner. PMID:26890603

  17. Remote sensing of forest canopy and leaf biochemical contents

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Matson, Pamela A.; Card, Don H.; Aber, John D.; Wessman, Carol; Swanberg, Nancy; Spanner, Michael

    1988-01-01

    Recent research on the remote sensing of forest leaf and canopy biochemical contents suggests that the shortwave IR region contains this information; laboratory analyses of dry ground leaves have yielded reliable predictive relationships between both leaf nitrogen and lignin with near-IR spectra. Attention is given to the application of these laboratory techniques to a limited set of spectra from fresh, whole leaves of conifer species. The analysis of Airborne Imaging Spectrometer data reveals that total water content variations in deciduous forest canopies appear as overall shifts in the brightness of raw spectra.

  18. Effect of salt concentrations and drying methods on the quality and formation of histamine in dried milkfish (Chanos chanos).

    PubMed

    Hwang, Chiu-Chu; Lin, Chia-Min; Kung, Hsien-Feng; Huang, Ya-Ling; Hwang, Deng-Fwu; Su, Yi-Cheng; Tsai, Yung-Hsiang

    2012-11-15

    The effects of salt concentrations (0-15.0%) and drying methods on the quality of dried milkfish were studied. The results showed that the levels of aerobic plate counts, total coliform, water activity, moisture contents, total volatile basic nitrogen (TVBN) and thiobarbituric acid (TBA) of the dried milkfish samples prepared with the same drying method decreased with increased salt concentrations. The samples prepared with the cold-air drying method had better quality in term of lower TVBN and TBA values than those of samples prepared with other drying methods. The histamine contents in all samples, except two, prepared with various salt concentrations by different drying methods were less than 1.9 mg/100 g. Two unsalted samples prepared with hot-air drying at 35 °C and sun drying methods were found to contain histamine at levels of 249.7 and 67.4 mg/100 g, respectively, which were higher than the potential hazard level of 50 mg/100 g. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Step changes in leaf oil accumulation via iterative metabolic engineering.

    PubMed

    Vanhercke, Thomas; Divi, Uday K; El Tahchy, Anna; Liu, Qing; Mitchell, Madeline; Taylor, Matthew C; Eastmond, Peter J; Bryant, Fiona; Mechanicos, Anna; Blundell, Cheryl; Zhi, Yao; Belide, Srinivas; Shrestha, Pushkar; Zhou, Xue-Rong; Ral, Jean-Philippe; White, Rosemary G; Green, Allan; Singh, Surinder P; Petrie, James R

    2017-01-01

    Synthesis and accumulation of plant oils in the entire vegetative biomass offers the potential to deliver yields surpassing those of oilseed crops. However, current levels still fall well short of those typically found in oilseeds. Here we show how transcriptome and biochemical analyses pointed to a futile cycle in a previously established Nicotiana tabacum line, accumulating up to 15% (dry weight) of the storage lipid triacylglycerol in leaf tissue. To overcome this metabolic bottleneck, we either silenced the SDP1 lipase or overexpressed the Arabidopsis thaliana LEC2 transcription factor in this transgenic background. Both strategies independently resulted in the accumulation of 30-33% triacylglycerol in leaf tissues. Our results demonstrate that the combined optimization of de novo fatty acid biosynthesis, storage lipid assembly and lipid turnover in leaf tissue results in a major overhaul of the plant central carbon allocation and lipid metabolism. The resulting further step changes in oil accumulation in the entire plant biomass offers the possibility of delivering yields that outperform current oilseed crops. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Peach leaf responses to soil and cement dust pollution.

    PubMed

    Maletsika, Persefoni A; Nanos, George D; Stavroulakis, George G

    2015-10-01

    Dust pollution can negatively affect plant productivity in hot, dry and with high irradiance areas during summer. Soil or cement dust were applied on peach trees growing in a Mediterranean area with the above climatic characteristics. Soil and cement dust accumulation onto the leaves decreased the photosynthetically active radiation (PAR) available to the leaves without causing any shade effect. Soil and mainly cement dust deposition onto the leaves decreased stomatal conductance, photosynthetic and transpiration rates, and water use efficiency due possibly to stomatal blockage and other leaf cellular effects. In early autumn, rain events removed soil dust and leaf functions partly recovered, while cement dust created a crust partially remaining onto the leaves and causing more permanent stress. Leaf characteristics were differentially affected by the two dusts studied due to their different hydraulic properties. Leaf total chlorophyll decreased and total phenol content increased with dust accumulation late in the summer compared to control leaves due to intense oxidative stress. The two dusts did not cause serious metal imbalances to the leaves, except of lower leaf K content.

  1. Development of a distributed air pollutant dry deposition modeling framework

    Treesearch

    Satoshi Hirabayashi; Charles N. Kroll; David J. Nowak

    2012-01-01

    A distributed air pollutant dry deposition modeling systemwas developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry...

  2. Bioefficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Naresh Kumar, Arjunan; Vincent, Savariar; Hwang, Jiang-Shiou

    2012-02-01

    The present study was carried out to establish the properties of Carica papaya leaf extract and bacterial insecticide, spinosad on larvicidal and pupicidal activity against the chikungunya vector, Aedes aegypti. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. C. papaya leaf was washed with tap water and shade-dried at room temperature. An electrical blender powdered the dried plant materials (leaves). The powder (500 g) of the leaf was extracted with 1.5 l of organic solvents of methanol for 8 h using a Soxhlet apparatus and then filtered. The crude leaf extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure; however, the highest larval and pupal mortality was found in the leaf extract of methanol C. papaya against the first- to fourth-instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 440.65 ppm, respectively, and bacterial insecticide, spinosad against the first to fourth instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 93.44 ppm, respectively. Moreover, combined treatment of values of LC(50) = I instar was 55.77 ppm, II instar was 65.77 ppm, III instar was 76.36 ppm, and IV instar was 92.78 ppm, and pupae was 107.62 ppm, respectively. No mortality was observed in the control. The results that the leaves extract of C. papaya and bacterial insecticide, Spinosad is promising as good larvicidal and pupicidal properties of against chikungunya vector, A. aegypti. This is an ideal eco-friendly approach for the control of chikungunya vector, A. aegypti as target species of vector control programs.

  3. Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum.

    PubMed

    Golob, Aleksandra; Stibilj, Vekoslava; Nečemer, Marijan; Kump, Peter; Kreft, Ivan; Hočevar, Anja; Gaberščik, Alenka; Germ, Mateja

    2018-03-01

    Plants of the genus Fagopyrum contain high levels of crystalline calcium oxalate (CaOx) deposits, or druses, that can affect the leaf optical properties. As selenium has been shown to modify the uptake and accumulation of metabolically important elements such as calcium, we hypothesised that the numbers of druses can be altered by selenium treatment, and this would affect the leaf optical properties. Tartary buckwheat (Fagopyrum tataricum Gaertn.) was grown outdoors in an experimental field. At the beginning of flowering, plants were foliarly sprayed with sodium selenate solution at 10 mg selenium L -1 or only with water. Plant morphological, biochemical, physiological and optical properties were examined, along with leaf elemental composition and content. Se spraying did not affect leaf biochemical and functional properties. However, it increased leaf thickness and the contents of Se in the leaves, and decreased the density of calcium oxalate druses in the leaves. Except Se content, Se spraying did not affect contents of other elements in leaves, including total calcium per dry mass of leaf tissue. Redundancy analysis showed that of all parameters tested, only the calcium oxalate druses parameters were significant in explaining the variability of the leaf reflectance and transmittance spectra. The density of CaOx druses positively correlated with the reflectance in the blue, green, yellow and UV-B regions of the spectrum, while the area of CaOx druses per mm 2 of leaf transection area positively correlated with the transmittance in the green and yellow regions of the spectrum. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. [Effects of different colored plastic film mulching and planting density on dry matter accumulation and yield of spring maize.

    PubMed

    Zhang, Lin Lin; Sun, Shi Jun; Chen, Zhi Jun; Jiang, Hao; Zhang, Xu Dong; Chi, Dao Cai

    2018-01-01

    plant density treatments. The combination of black film mulching and density of 82500 plants·hm -2 significantly improved the water use efficiency of maize, which increased by 4.6%-40.9% compared with other treatments. In addition, it increased yield by 3.0%-39.7% compared with other treatments. At heading stage, the correlation between the dry matter amount of stalk and leaf and the yield and yield components was the biggest. Decreasing 1 kg·hm -2 dry matter amount of stalk and leaf would decrease the population yield by almost 0.79 kg·hm -2 . Decreasing 10% dry matter amount of stalk and leaf would decrease the yield by almost 10%. Based on increasing plant density, black film mulching was beneficial for increasing the dry matter accumulation and improving grain yield and water use efficiency of spring maize.

  5. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma.

    PubMed

    Zeng, Lanting; Zhou, Ying; Fu, Xiumin; Mei, Xin; Cheng, Sihua; Gui, Jiadong; Dong, Fang; Tang, Jinchi; Ma, Shengzhou; Yang, Ziyin

    2017-12-15

    The raw materials used to make oolong tea (Camellia sinensis) are a combination of leaf and stem. Oolong tea made from leaf and stem is thought to have a more aromatic smell than leaf-only tea. However, there is no available evidence to support the viewpoint. In this study, sensory evaluation and detailed characterization of emitted and internal volatiles (not readily emitted, but stored in samples) of dry oolong teas and infusions indicated that the presence of stem did not significantly improve the total aroma characteristics. During the enzyme-active processes, volatile monoterpenes and theanine were accumulated more abundantly in stem than in leaf, while jasmine lactone, indole, and trans-nerolidol were lower in stem than in leaf. Tissue-specific aroma-related gene expression and availability of precursors of aroma compounds resulted in different aroma distributions in leaf and stem. This study presents the first determination of the contribution of stem to oolong tea aroma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Leaf wetness distribution within a potato crop

    NASA Astrophysics Data System (ADS)

    Heusinkveld, B. G.

    2010-07-01

    The Netherlands has a mild maritime climate and therefore the major interest in leaf wetness is associated with foliar plant diseases. During moist micrometeorological conditions (i.e. dew, fog, rain), foliar fungal diseases may develop quickly and thereby destroy a crop quickly. Potato crop monocultures covering several hectares are especially vulnerable to such diseases. Therefore understanding and predicting leaf wetness in potato crops is crucial in crop disease control strategies. A field experiment was carried out in a large homogeneous potato crop in the Netherlands during the growing season of 2008. Two innovative sensor networks were installed as a 3 by 3 grid at 3 heights covering an area of about 2 hectares within two larger potato crops. One crop was located on a sandy soil and one crop on a sandy peat soil. In most cases leaf wetting starts in the top layer and then progresses downward. Leaf drying takes place in the same order after sunrise. A canopy dew simulation model was applied to simulate spatial leaf wetness distribution. The dew model is based on an energy balance model. The model can be run using information on the above-canopy wind speed, air temperature, humidity, net radiation and within canopy air temperature, humidity and soil moisture content and temperature conditions. Rainfall was accounted for by applying an interception model. The results of the dew model agreed well with the leaf wetness sensors if all local conditions were considered. The measurements show that the spatial correlation of leaf wetness decreases downward.

  7. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying.

    PubMed

    Popova, Antoaneta V; Rausch, Saskia; Hundertmark, Michaela; Gibon, Yves; Hincha, Dirk K

    2015-10-01

    The accumulation of Late Embryogenesis Abundant (LEA) proteins in plants is associated with tolerance against stresses such as freezing and desiccation. Two main functions have been attributed to LEA proteins: membrane stabilization and enzyme protection. We have hypothesized previously that LEA7 from Arabidopsis thaliana may stabilize membranes because it interacts with liposomes in the dry state. Here we show that LEA7, contrary to this expectation, did not stabilize liposomes during drying and rehydration. Instead, it partially preserved the activity of the enzyme lactate dehydrogenase (LDH) during drying and freezing. Fourier-transform infrared (FTIR) spectroscopy showed no evidence of aggregation of LDH in the dry or rehydrated state under conditions that lead to complete loss of activity. To approximate the complex influence of intracellular conditions on the protective effects of a LEA protein in a convenient in-vitro assay, we measured the activity of two Arabidopsis enzymes (glucose-6-P dehydrogenase and ADP-glucose pyrophosphorylase) in total soluble leaf protein extract (Arabidopsis soluble proteome, ASP) after drying and rehydration or freezing and thawing. LEA7 partially preserved the activity of both enzymes under these conditions, suggesting its role as an enzyme protectant in vivo. Further FTIR analyses indicated the partial reversibility of protein aggregation in the dry ASP during rehydration. Similarly, aggregation in the dry ASP was strongly reduced by LEA7. In addition, mixtures of LEA7 with sucrose or verbascose reduced aggregation more than the single additives, presumably through the effects of the protein on the H-bonding network of the sugar glasses. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The impact of thermal treatment on the stability of freeze-dried amorphous pharmaceuticals: II. Aggregation in an IgG1 fusion protein.

    PubMed

    Wang, Bingquan; Cicerone, Marcus T; Aso, Yukio; Pikal, Michael J

    2010-02-01

    The objective of this research was to investigate the impact of thermal treatment on storage stability of an IgG1 fusion protein. IgG1 protein formulations were prepared by freeze-drying the protein with sucrose. Some samples were used as controls, and others were subjected to a further heat treatment (annealing). The protein structure was investigated with Fourier transform infrared spectroscopy (FTIR), and protein aggregation was monitored with size exclusion HPLC. Enthalpy recovery was studied using DSC, and global mobility represented by the structural relaxation time constant (tau(beta)) was characterized by a thermal activity monitor (TAM). The local mobility of the protein system was monitored by both (13)C solid-state NMR and neutron backscattering. Annealing increased the storage stability of the protein, as shown by the smaller aggregation rate and less total aggregation at the end of a storage period. The structural relaxation time constant of an annealed sample was significantly higher than the unannealed control sample, suggesting a decrease in global mobility of the protein system upon annealing. However, annealing does not significantly impact the protein secondary structure or the local mobility. Given the similar protein native structure and specific surface area, the improved stability upon annealing is mainly a result of reduced global molecular mobility. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  9. Immunomodulatory Effect of Gymnema sylvestre (R.Br.) Leaf Extract: An In Vitro Study in Rat Model.

    PubMed

    Singh, Vineet Kumar; Dwivedi, Padmanabh; Chaudhary, B R; Singh, Ramesh

    2015-01-01

    Gymnema sylvestre Wild R.Br (family: Asclepidaceae) is a valuable medicinal plant used in folk medicine to treat diabetes, obesity, asthma etc. in India for antiquity. Diabetes mellitus is a syndrome characterized immunologically by lymphocyte apoptosis and reduced cell-mediated and humoral immunity. Modulation of immune responses to alleviate diseases has been of interest, and traditional herbal medicines may play an important role in this regard. In this study, we aim to evaluate the immunomodulatory potential of methanolic extract of G. sylvestre leaf using rat model. HPLC analysis of leaf extract was carried out for gymnemic acid. The method involves the initial hydrolysis of gymnemic acids, the active ingredients, to a common aglycone followed by the quantitative estimation of gymnemagenin, using gymnemagenin as reference standard. Gymnemic acid content was 2.40% (w/w) in G. sylvestre leaf extract. In vitro immunomodulatory activity of the methanolic extract of G. sylvestre leaf (1-200μg/ml) was evaluated by gauging its effects on nitroblue tetrazolium reduction and nitrite release in rat peritoneal macrophages and on mitogen (ConA, PHA and LPS) induced splenic lymphocyte proliferation. G. sylvestre leaf extract showed significant (<0.05) enhancement in NO and ROS generation in macrophages and in proliferation of lymphocytes in dose dependent manner. EC50 value was 3.10, 3.75 and 2.68 μg/ml for NBT reduction, nitrite release and lymphoproliferation, respectively. Potential effect was observed at 100 μg/ml in NO and ROS generation in macrophages and 20 μg/ml in lymphocyte proliferation. G. sylvestre leaf extract stimulates macrophage reactivity, increasing the level of activity even higher when combined with PMA or LPS. These findings suggest the presence of active compounds, gymnemic acid, in methanolic extract of G. sylvestre leaf that stimulates both myeloid and lymphoid components of immune system, and therefore can restore the innate immune function

  10. Immunomodulatory Effect of Gymnema sylvestre (R.Br.) Leaf Extract: An In Vitro Study in Rat Model

    PubMed Central

    Dwivedi, Padmanabh; Chaudhary, B. R.

    2015-01-01

    Gymnema sylvestre Wild R.Br (family: Asclepidaceae) is a valuable medicinal plant used in folk medicine to treat diabetes, obesity, asthma etc. in India for antiquity. Diabetes mellitus is a syndrome characterized immunologically by lymphocyte apoptosis and reduced cell-mediated and humoral immunity. Modulation of immune responses to alleviate diseases has been of interest, and traditional herbal medicines may play an important role in this regard. In this study, we aim to evaluate the immunomodulatory potential of methanolic extract of G. sylvestre leaf using rat model. HPLC analysis of leaf extract was carried out for gymnemic acid. The method involves the initial hydrolysis of gymnemic acids, the active ingredients, to a common aglycone followed by the quantitative estimation of gymnemagenin, using gymnemagenin as reference standard. Gymnemic acid content was 2.40% (w/w) in G. sylvestre leaf extract. In vitro immunomodulatory activity of the methanolic extract of G. sylvestre leaf (1–200μg/ml) was evaluated by gauging its effects on nitroblue tetrazolium reduction and nitrite release in rat peritoneal macrophages and on mitogen (ConA, PHA and LPS) induced splenic lymphocyte proliferation. G. sylvestre leaf extract showed significant (<0.05) enhancement in NO and ROS generation in macrophages and in proliferation of lymphocytes in dose dependent manner. EC50 value was 3.10, 3.75 and 2.68μg/ml for NBT reduction, nitrite release and lymphoproliferation, respectively. Potential effect was observed at 100 μg/ml in NO and ROS generation in macrophages and 20 μg/ml in lymphocyte proliferation. G. sylvestre leaf extract stimulates macrophage reactivity, increasing the level of activity even higher when combined with PMA or LPS. These findings suggest the presence of active compounds, gymnemic acid, in methanolic extract of G. sylvestre leaf that stimulates both myeloid and lymphoid components of immune system, and therefore can restore the innate immune function

  11. [Micrococcus sp.--the pathogen of leaf necrosis of horse-chestnuts (Aesculus L.) in Kiev].

    PubMed

    Iakovleva, L M; Makhinia, L V; Shcherbina, T N; Ogorodnik, L E

    2013-01-01

    A group of phytopathogenic bacteria was isolated from patterns of drying horse-chestnuts (Aesculus L.), which grow in Kyiv. The properties of slowly growing, highly aggressive microorganisms have been described in the paper. They grow up on the 8-10th day after sowing. The investigated microorganisms form very small (0.5-1 mm in diameter) colonies on the potato agar. Bacteria are protuberant, shining, smooth with flat edges, they are pale yellow, yellow, or pink. The bacteria are Gram-positive, spherical, are disposed in smears singly, in pairs, as accumulations, or netting. They are aerobes, do not form spores, are not mobile. They are inert in respect of different sources of carbon. They reduce nitrates, do not dilute gelatin, do not hydrolyze starch, do not release hydrogen sulphide and indole. The bacteria are catalase-positive, oxidase-negative. They do not cause potato and carrot rot. They lose quickly their viability under the laboratory conditions. The saturated acids C 14:0; C 15:0; C16:0; C18:0 have been revealed in the composition of cellular fatty acids. Microorganisms are identified as Micrococcus sp. Under artificial inoculation this highly aggressive pathogen causes drying of the horse-chestnut buds and necrosis, which occupies 1/3-1/2 of the leaf plate. A wide zone of chlorosis, surrounding necrosis, may occupy the whole leaf surface. The infected leaves use to twist up from the top (apex) or along a midrib and to dry.

  12. Effect of amino acids on the stability of spray freeze-dried immunoglobulin G in sugar-based matrices.

    PubMed

    Emami, Fakhrossadat; Vatanara, Alireza; Najafabadi, Abdolhosein Rouholamini; Kim, Yejin; Park, Eun Ji; Sardari, Soroush; Na, Dong Hee

    2018-07-01

    The purpose of this study was to prepare spray freeze-dried particles of immunoglobulin G (IgG) using various combinations of trehalose and different amino acids (leucine, phenylalanine, arginine, cysteine, and glycine), and investigate the effect of the amino acids on the stability of IgG during the spray freeze-drying (SFD) process and storage. The morphology and structural integrity of the processed particles were evaluated by physical and spectroscopic techniques. SFD-processed IgG without any excipient resulted in the formation of aggregates corresponding to approximately 14% of IgG. In contrast, IgG formulations stabilized using an optimal level of leucine, phenylalanine, or glycine in the presence of trehalose displayed aggregates <2.2%. In particular, phenylalanine combined with trehalose was most effective in stabilizing IgG against shear, freezing, and dehydration stresses during SFD. Arginine and cysteine were destabilizers displaying aggregation and fragmentation of IgG, respectively. Aggregation and fragmentation were evaluated by dynamic light scattering, ultraviolet spectrophotometry, size-exclusion chromatography, and microchip capillary gel electrophoresis. The IgG formulations prepared with leucine, phenylalanine, or glycine in the presence of trehalose showed good stability after storage at 40 °C and 75% relative humidity for 2 months. Thus, a combination of the excipients trehalose and uncharged, nonpolar amino acids appears effective for production of stable SFD IgG formulations. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Fatty acid composition and oxidative stability of breast meat from broiler chickens supplemented with Moringa oleifera leaf meal over a period of refrigeration.

    PubMed

    Nkukwana, T T; Muchenje, V; Masika, P J; Hoffman, L C; Dzama, K; Descalzo, A M

    2014-01-01

    Effects of diets supplemented with or without Moringa oleifera leaf meal (MOLM) on fatty acid (FA) composition and oxidative stability of broiler breast meat during refrigerated storage was determined. Dietary treatments (T) were as follows: T1, positive control, 668g/ton Salinomycin and 500g/ton Albac; T2, T3 and T4 contained graded levels of MOLM at 1%, 3% and 5% of dry matter (DM) intake, respectively; and T5, a negative control (0% additives). Oxidative stability was evaluated by thiobarbituric acid reactive substances (TBARS) on day (D) 1-8 of storage at 4°C; and FA analysis was done on samples obtained on D1 and D8. Significant effects on TBARS were noted on day (D) 1, 3, 4 and 7; increased with increasing storage time, and with increase in MOLM supplementation. Highest (P<0.05) C18:0 and C15:0 levels were noted on D1 in T2; C20:0 in T4 on D8; C20:2, C20:3n6 and C22:6n3 in T2; C18:3n6 and P/S ratio in T4 on D1; and n-3 in T3. Thus, despite the high SFA content, additive supplementation of M. oleifera leaf meal up to 5% of the bird's DMI improved the FA profile and reduced lipid oxidation in broiler breast meat. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Modification of yield and chlorophyll content in leaf lettuce by HPS radiation and nitrogen treatments.

    PubMed

    Mitchell, C A; Leakakos, T; Ford, T L

    1991-11-01

    This study evaluated the potential of high photosynthetic photon flux (PPF) from high-pressure sodium (HPS) lamps, alone or in combination with metal halide (MH) plus quartz iodide (QI) incandescent lamps, to support lettuce growth, with or without N supplementation. Varying exposures to radiation from combined HPS, MH, and QI lamps influenced dry weight gain and photosynthetic pigment content of hydroponically grown Black-Seeded Simpson' lettuce (Lactuca sativa L.) seedlings. Cumulative leaf dry weight declined with increasing exposure, up to 20 hours per day, to 660 micromoles m-2 s-1 of photosynthetically active radiation (PAR) from HPS lamps concomitant with constant 20 hours per day of 400 micromoles m-2 s-1 from MH + QI lamps. Leaves progressively yellowed with increasing exposure to radiation from the three-lamp combination, corresponding to lower specific chlorophyll content but not to specific carotenoid content. Lettuce grown under 20-hour photoperiods of 400, 473, or 668 micromoles m-2 s-1 from HPS radiation alone had the highest leaf dry weight at a PPF of 473 micromoles m-2 s-1. Chlorophyll, but not carotenoid specific content, decreased with each incremental increase in PPF from HPS lamps. Doubling the level of N in nutrient solution and supplying it as a combination of NH4+ and NO3- partially ameliorated adverse effects of high PPF on growth and pigment content relative to treatments using single-strength N as NO3-.

  15. Dry powder inhalers of gentamicin and leucine: formulation parameters, aerosol performance and in vitro toxicity on CuFi1 cells.

    PubMed

    Aquino, R P; Prota, L; Auriemma, G; Santoro, A; Mencherini, T; Colombo, G; Russo, P

    2012-04-15

    The high hygroscopicity of gentamicin (G) as raw material hampers the production of respirable particles during aerosol generation and prevents its direct use as powder for inhalation in patients suffering from cystic fibrosis (CF). Therefore, this research aimed to design a new dry powder formulation of G studying dispersibility properties of an aminoacid, L-leucine (leu), and appropriate process conditions. Spray-dried powders were characterized as to water uptake, particle size distribution, morphology and stability, in correlation with process parameters. Aerodynamic properties were analyzed both by Single Stage Glass Impinger and Andersen Cascade Impactor. Moreover, the potential cytotoxicity on bronchial epithelial cells bearing a CFTR F508/F508 mutant genotype (CuFi1) were tested. Results indicated that leu may improve the aerosol performance of G-dried powders. The maximum fine particle fraction (FPF) of about 58.3% was obtained when water/isopropyl alcohol 7:3 system and 15-20% (w/w) of leu were used, compared to a FPF value of 13.4% for neat G-dried powders. The enhancement of aerosol efficiency was credited both to the improvement of the powder flowability, caused by the dispersibility enhancer (aminoacid), and to the modification of the particle surface due to the influence of the organic co-solvent on drying process. No significant degradation of the dry powder was observed up to 6 months of storage. Moreover, particle engineering did not affect either the cell viability or cell proliferation of CuFi1 over a 24 h period. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Leaf gas exchange of understory spruce-fir saplings in relict cloud forests, southern Appalachian Mountains, USA.

    PubMed

    Reinhardt, Keith; Smith, William K

    2008-01-01

    The southern Appalachian spruce-fir (Picea rubens Sarg. and Abies fraseri (Pursh) Poir.) forest is found only on high altitude mountain tops that receive copious precipitation ( > 2000 mm year(-1)) and experience frequent cloud immersion. These high-elevation, temperate rain forests are immersed in clouds on approximately 65% of the total growth season days and for 30-40% of a typical summer day, and cloud deposition accounts for up to 50% of their annual water budget. We investigated environmental influences on understory leaf gas exchange and water relations at two sites: Mt. Mitchell, NC (MM; 35 degrees 45'53'' N, 82 degrees 15'53'' W, 2028 m elevation) and Whitetop Mtn., VA (WT; 36 degrees 38'19'' N, 81 degrees 36'19'' W, 1685 m elevation). We hypothesized that the cool, moist and cloudy conditions at these sites exert a strong influence on leaf gas exchange. Maximum photosynthesis (A(max)) varied between 1.6 and 4.0 micromol CO(2) m(-2) s(-1) for both spruce and fir and saturated at irradiances between approximately 200 and 400 micromol m(-2) s(-1) at both sites. Leaf conductance (g) ranged between 0.05 and 0.25 mol m(-2) s(-1) at MM and between 0.15 and 0.40 mol m(-2) s(-1) at WT and was strongly associated with leaf-to-air vapor pressure difference (LAVD). At both sites, g decreased exponentially as LAVD increased, with an 80-90% reduction in g between 0 and 0.5 kPa. Predawn leaf water potentials remained between -0.25 and -0.5 MPa for the entire summer, whereas late afternoon values declined to between -1.25 and -1.75 MPa by late summer. Thus, leaf gas exchange appeared tightly coupled to the response of g to LAVD, which maintained high water status, even at the relatively low LAVD of these cloud forests. Moreover, the cloudy, humid environment of these refugial forests appears to exert a strong influence on tree leaf gas exchange and water relations. Because global climate change is predicted to increase regional cloud ceiling levels, more research on

  17. Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions

    PubMed Central

    Yin, Xinyou

    2012-01-01

    To understand the physiological basis of genetic variation and resulting quantitative trait loci (QTLs) for photosynthesis in a rice (Oryza sativa L.) introgression line population, 13 lines were studied under drought and well-watered conditions, at flowering and grain filling. Simultaneous gas exchange and chlorophyll fluorescence measurements were conducted at various levels of incident irradiance and ambient CO2 to estimate parameters of a model that dissects photosynthesis into stomatal conductance (g s), mesophyll conductance (g m), electron transport capacity (J max), and Rubisco carboxylation capacity (V cmax). Significant genetic variation in these parameters was found, although drought and leaf age accounted for larger proportions of the total variation. Genetic variation in light-saturated photosynthesis and transpiration efficiency (TE) were mainly associated with variation in g s and g m. One previously mapped major QTL of photosynthesis was associated with variation in g s and g m, but also in J max and V cmax at flowering. Thus, g s and g m, which were demonstrated in the literature to be responsible for environmental variation in photosynthesis, were found also to be associated with genetic variation in photosynthesis. Furthermore, relationships between these parameters and leaf nitrogen or dry matter per unit area, which were previously found across environmental treatments, were shown to be valid for variation across genotypes. Finally, the extent to which photosynthesis rate and TE can be improved was evaluated. Virtual ideotypes were estimated to have 17.0% higher photosynthesis and 25.1% higher TE compared with the best genotype investigated. This analysis using introgression lines highlights possibilities of improving both photosynthesis and TE within the same genetic background. PMID:22888131

  18. Cloning, Expression, and Characterization of Sorbitol Transporters from Developing Sour Cherry Fruit and Leaf Sink Tissues1

    PubMed Central

    Gao, Zhifang; Maurousset, Laurence; Lemoine, Remi; Yoo, Sang-Dong; van Nocker, Steven; Loescher, Wayne

    2003-01-01

    The acyclic polyol sorbitol is a primary photosynthetic product and the principal photosynthetic transport substance in many economically important members of the family Rosaceace (e.g. almond [Prunus dulcis (P. Mill.) D.A. Webber], apple [Malus pumila P. Mill.], cherry [Prunus spp.], peach [Prunus persica L. Batsch], and pear [Pyrus communis]). To understand key steps in long-distance transport and particularly partitioning and accumulation of sorbitol in sink tissues, we have cloned two sorbitol transporter genes (PcSOT1 and PcSOT2) from sour cherry (Prunus cerasus) fruit tissues that accumulate large quantities of sorbitol. Sorbitol uptake activities and other characteristics were measured by heterologous expression of PcSOT1 and PcSOT2 in yeast (Saccharomyces cerevisiae). Both genes encode proton-dependent, sorbitol-specific transporters with similar affinities (Km sorbitol of 0.81 mm for PcSOT1 and 0.64 mm for PcSOT2). Analyses of gene expression of these transporters, however, suggest different roles during leaf and fruit development. PcSOT1 is expressed throughout fruit development, but especially when growth and sorbitol accumulation rates are highest. In leaves, PcSOT1 expression is highest in young, expanding tissues, but substantially less in mature leaves. In contrast, PcSOT2 is mainly expressed only early in fruit development and not in leaves. Compositional analyses suggest that transport mediated by PcSOT1 and PcSOT2 plays a major role in sorbitol and dry matter accumulation in sour cherry fruits. Presence of these transporters and the high fruit sorbitol concentrations suggest that there is an apoplastic step during phloem unloading and accumulation in these sink tissues. Expression of PcSOT1 in young leaves before completion of the transition from sink to source is further evidence for a role in determining sink activity. PMID:12692316

  19. Effect of polyethylene glycol 4000 supplementation on the performance of yearling male Pedi goats fed dietary mixture levels of Acacia karroo leaf meal and Setaria verticillata grass hay.

    PubMed

    Brown, David; Ng'ambi, Jones W

    2017-06-01

    Eighteen yearling male Pedi goats weighing 21.7 ± 3.1 kg were used in a 42-day trial in a 2 (Acacia karroo leaf meal levels) × 3 (levels of PEG 4000) factorial arrangement in a completely randomized design to determine PEG 4000 supplementation levels for optimal productivity of indigenous Pedi goats fed different mixture levels of A. karroo leaf meal and Setaria verticillata (L.) P.Beauv. grass hay. Each goat was supplemented with 0, 23 or 30 g of PEG 4000 per day in addition to dietary mixture of A. karroo and S. verticillata hay. Polyethylene glycol 4000 supplementation had no effect (P > 0.05) on nutrient intake of goats. However, a diet × PEG (P < 0.05) was observed for intake of all nutrients studied. Dry matter, OM, NDF and ADF intakes per goat were optimized at PEG 4000 supplementation levels of 19.62, 19.62, 19.61 and 19.53 g/goat/day, respectively, for diets containing 20% A. karroo leaf meal. Polyethylene glycol 4000 supplementation had no effect (P > 0.05) on the apparent digestibility of all nutrients. The dietary inclusion level of A. karroo leaf meal at 20% improved (P < 0.05) DM, OM, CP, NDF and ADF digestibility of goats. Crude protein digestibility was optimized at a PEG 4000 supplementation level of 15.78 g/goat/day. Dietary mixture level and PEG 4000 supplementation had no effect (P > 0.05) on final weights of Pedi goats. Similar results were observed for blood urea and glucose concentrations of yearling male Pedi goats. However, daily body weight gain was higher (P < 0.05) in goats fed 50% A. karroo leaf meal than those on 20% inclusion level. Polyethylene glycol 4000 has potential to improve the feeding value of tanninifeorus A. karroo leaf meal.

  20. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light.

    PubMed

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m(-2)⋅s(-1) irradiance for a 16 h⋅d(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation.

  1. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light

    PubMed Central

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m−2⋅s−1 irradiance for a 16 h⋅d−1 photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (Amax) and photosynthetic rate (Pn) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. Pn and Amax under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between Pn and shoot dry weight accumulation. PMID:27014285

  2. Storage and stability of IgG and IgM monoclonal antibodies dried on filter paper and utility in Neisseria meningitidis serotyping by Dot-blot ELISA.

    PubMed

    Ferraz, Aline S; Belo, Elza F T; Coutinho, Ligia M C C; Oliveira, Ana P; Carmo, Andréia M S; Franco, Daniele L; Ferreira, Tatiane; Yto, André Y; Machado, Marta S F; Scola, Monica C G; De Gaspari, Elizabeth

    2008-03-06

    A simple filter paper method was developed for, the transport and storage of monoclonal antibodies (Mabs) at room temperature or -20 degrees C after spotting on filter paper, for subsequent serotyping of outer membrane antigens of N.meningitidis by dot-blot ELISA. Monoclonal antibodies (Mabs) were spotted within a 0.5-1 cm diameter area of Whatman grade 903 paper, which were stored individually at room temperature or at -20 degrees C. These MAbs were stored and analyzed after periods of one week, 4 weeks, 12 months, or 13 years in the case of frozen Mab aliquots, or after 4 weeks at -20 degrees C or at room temperature (RT) in the case of Mabs dried on filter paper strips. Assays were performed in parallel using dot-blot ELISA. In addition to the MAbs specific for serotyping class 1, 2 or 3, we used a larger number of Mabs for polysaccharides, lipooligosaccharides (LOS), class 5 and cross-reactive antigens for native outer membrane of N.meningitidis. The Mabs dried on filter paper were eluted with phosphate-buffered saline (PBS) containing 0.2% gelatin. Mabs of the isotypes IgG and IgM dried on filter papers were not affected by duration of storage. The detection by serotyping Mabs was generally consistent for dried filter paper MAb samples stored frozen for over 1 year at -20 degrees C, and although decreased reactive antibody titers were found after storage, this did not interfere with the specificity of the Mabs used after 13 years as dry spots on filter paper. The use of filter paper is an inexpensive and convenient method for collecting, storing, and transporting Mab samples for serotyping studies. In addition, the samples occupy little space and can be readily transported without freezing. The efficiency of using immunoglobulin G (IgG) or M (IgM) eluted was found to be consistent with measurement of IgG or IgM titers in most corresponding, ascites Mabs stored frozen for over 1 year. The application of meningococcal typing methods and designations depend on

  3. Evaluation of Methane from Sisal Leaf Residue and Palash Leaf Litter

    NASA Astrophysics Data System (ADS)

    Arisutha, S.; Baredar, P.; Deshpande, D. M.; Suresh, S.

    2014-12-01

    The aim of this study is to evaluate methane production from sisal leaf residue and palash leaf litter mixed with different bulky materials such as vegetable market waste, hostel kitchen waste and digested biogas slurry in a laboratory scale anaerobic reactor. The mixture was prepared with 1:1 proportion. Maximum methane content of 320 ml/day was observed in the case of sisal leaf residue mixed with vegetable market waste as the feed. Methane content was minimum (47 ml/day), when palash leaf litter was used as feed. This was due to the increased content of lignin and polyphenol in the feedstock which were of complex structure and did not get degraded directly by microorganisms. Sisal leaf residue mixtures also showed highest content of volatile fatty acids (VFAs) as compared to palash leaf litter mixtures. It was observed that VFA concentration in the digester first increased, reached maximum (when pH was minimum) and then decreased.

  4. Effects of Insect-Proof Net Cultivation, Rice-Duck Farming, and Organic Matter Return on Rice Dry Matter Accumulation and Nitrogen Utilization

    PubMed Central

    Liu, Xin; Xu, Guochun; Wang, Qiangsheng; Hang, Yuhao

    2017-01-01

    Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11–4.28 and 4.78–7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52–3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48–4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26–9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield. PMID:28174589

  5. Genetic Dissection of Leaf Development in Brassica rapa Using a Genetical Genomics Approach1[W

    PubMed Central

    Xiao, Dong; Wang, Huange; Basnet, Ram Kumar; Zhao, Jianjun; Lin, Ke; Hou, Xilin; Bonnema, Guusje

    2014-01-01

    The paleohexaploid crop Brassica rapa harbors an enormous reservoir of morphological variation, encompassing leafy vegetables, vegetable and fodder turnips (Brassica rapa, ssp. campestris), and oil crops, with different crops having very different leaf morphologies. In the triplicated B. rapa genome, many genes have multiple paralogs that may be regulated differentially and contribute to phenotypic variation. Using a genetical genomics approach, phenotypic data from a segregating doubled haploid population derived from a cross between cultivar Yellow sarson (oil type) and cultivar Pak choi (vegetable type) were used to identify loci controlling leaf development. Twenty-five colocalized phenotypic quantitative trait loci (QTLs) contributing to natural variation for leaf morphological traits, leaf number, plant architecture, and flowering time were identified. Genetic analysis showed that four colocalized phenotypic QTLs colocalized with flowering time and leaf trait candidate genes, with their cis-expression QTLs and cis- or trans-expression QTLs for homologs of genes playing a role in leaf development in Arabidopsis (Arabidopsis thaliana). The leaf gene BRASSICA RAPA KIP-RELATED PROTEIN2_A03 colocalized with QTLs for leaf shape and plant height; BRASSICA RAPA ERECTA_A09 colocalized with QTLs for leaf color and leaf shape; BRASSICA RAPA LONGIFOLIA1_A10 colocalized with QTLs for leaf size, leaf color, plant branching, and flowering time; while the major flowering time gene, BRASSICA RAPA FLOWERING LOCUS C_A02, colocalized with QTLs explaining variation in flowering time, plant architectural traits, and leaf size. Colocalization of these QTLs points to pleiotropic regulation of leaf development and plant architectural traits in B. rapa. PMID:24394778

  6. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).

    PubMed

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E

    2013-07-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.

  7. Leaf water content and palisade cell size.

    PubMed

    Canny, M J; Huang, C X

    2006-01-01

    The palisade cell sizes in leaves of Eucalyptus pauciflora were estimated in paradermal sections of cryo-fixed leaves imaged in the cryo-scanning electron microscope, as a quantity called the cell area fraction (CAF). Cell sizes were measured in detached leaves as a function of leaf water content, in intact leaves in the field during a day"s transpiration as a function of balance pressure of adjacent leaves, and on leaf disks equilibrated with air of relative humidities from 100 to 58%. Values of CAF ranged from 0.82 at saturation to approx. 0.3 in leaves dried to a relative water content (RWC) of 0.5, and in the field to approx. 0.58 at 15 bar (1.5 MPa) balance pressure. At a CAF of 0.58, the moisture content of the cell walls is in equilibrium with air at 90% relative humidity, which is the estimated relative humidity in the intercellular spaces. It is shown that at this moisture content, the cell walls could be exerting a pressure of approx. 50 bar on the cell contents.

  8. SU-F-T-350: Continuous Leaf Optimization (CLO) for IMRT Leaf Sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, T; Chen, M; Jiang, S

    Purpose: To study a new step-and-shoot IMRT leaf sequencing model that avoids the two main pitfalls of conventional leaf sequencing: (1) target fluence being stratified into a fixed number of discrete levels and/or (2) aperture leaf positions being restricted to a discrete set of locations. These assumptions induce error into the sequence or reduce the feasible region of potential plans, respectively. Methods: We develop a one-dimensional (single leaf pair) methodology that does not make assumptions (1) or (2) that can be easily extended to a multi-row model. The proposed continuous leaf optimization (CLO) methodology takes in an existing set ofmore » apertures and associated intensities, or solution “seed,” and improves the plan without the restrictiveness of 1or (2). It then uses a first-order descent algorithm to converge onto a locally optimal solution. A seed solution can come from models that assume (1) and (2), thus allowing the CLO model to improve upon existing leaf sequencing methodologies. Results: The CLO model was applied to 208 generated target fluence maps in one dimension. In all cases for all tested sequencing strategies, the CLO model made improvements on the starting seed objective function. The CLO model also was able to keep MUs low. Conclusion: The CLO model can improve upon existing leaf sequencing methods by avoiding the restrictions of (1) and (2). By allowing for more flexible leaf positioning, error can be reduced when matching some target fluence. This study lays the foundation for future models and solution methodologies that can incorporate continuous leaf positions explicitly into the IMRT treatment planning model. Supported by Cancer Prevention & Research Institute of Texas (CPRIT) - ID RP150485.« less

  9. Bud Composition, Branching Patterns and Leaf Phenology in Cerrado Woody Species

    PubMed Central

    DAMASCOS, M. A.; PRADO, C. H. B. A.; RONQUIM, C. C.

    2005-01-01

    • Background and Aims Plants have complex mechanisms of aerial biomass exposition, which depend on bud composition, the period of the year in which shoot extension occurs, branching pattern, foliage persistence, herbivory and environmental conditions. • Methods The influence of water availability and temperature on shoot growth, the bud composition, the leaf phenology, and the relationship between partial leaf fall and branching were evaluated over 3 years in Cerrado woody species Bauhinia rufa (BR), Leandra lacunosa (LL) and Miconia albicans (MA). • Key Results Deciduous BR preformed organs in buds and leaves flush synchronously at the transition from the dry to the wet season. The expansion time of leaves is <1 month. Main shoots (first-order axis, A1 shoots) extended over 30 d and they did not branch. BR budding and foliage unfolds were brought about independently of inter-annual rainfall variations. By contrast, in LL and MA evergreen species, the shoot extension rate and the neoformation of aerial organs depended on rainfall. Leaf emergence was continuous for 2–6 months and lamina expansion took place over 1–4 months. The leaf life span was 5–20 months and the main A1 shoot extension happened over 122–177 d. Both evergreen species allocated biomass to shoots, leaves or flowers continuously during the year, branching in the middle of the wet season to form second-order (A2 shoots) and third-order (A3 shoots) axis in LL and A2 shoots in MA. Partial shed of A1 shoot leaves would facilitate a higher branching intensity A2 shoot production in LL than in MA. MA presented a longer leaf life span, produced a lower percentage of A2 shoots but had a higher meristem persistence on A1 and A2 shoots than LL. • Conclusions It was possible to identify different patterns of aerial growth in Cerrado woody species defined by shoot-linked traits such as branching pattern, bud composition, meristem persistence and leaf phenology. These related traits must be

  10. DEFECTIVE KERNEL1 (DEK1) Regulates Cell Walls in the Leaf Epidermis1

    PubMed Central

    Amanda, Dhika; Ingram, Gwyneth C.

    2016-01-01

    The plant epidermis is crucial to survival, regulating interactions with the environment and controlling plant growth. The phytocalpain DEFECTIVE KERNEL1 (DEK1) is a master regulator of epidermal differentiation and maintenance, acting upstream of epidermis-specific transcription factors, and is required for correct cell adhesion. It is currently unclear how changes in DEK1 lead to cellular defects in the epidermis and the pathways through which DEK1 acts. We have combined growth kinematic studies, cell wall analysis, and transcriptional analysis of genes downstream of DEK1 to determine the cause of phenotypic changes observed in DEK1-modulated lines of Arabidopsis (Arabidopsis thaliana). We reveal a novel role for DEK1 in the regulation of leaf epidermal cell wall structure. Lines with altered DEK1 activity have epidermis-specific changes in the thickness and polysaccharide composition of cell walls that likely underlie the loss of adhesion between epidermal cells in plants with reduced levels of DEK1 and changes in leaf shape and size in plants constitutively overexpressing the active CALPAIN domain of DEK1. Calpain-overexpressing plants also have increased levels of cellulose and pectins in epidermal cell walls, and this is correlated with the expression of several cell wall-related genes, linking transcriptional regulation downstream of DEK1 with cellular effects. These findings significantly advance our understanding of the role of the epidermal cell walls in growth regulation and establish a new role for DEK1 in pathways regulating epidermal cell wall deposition and remodeling. PMID:27756823

  11. Genetic variation for leaf morphology, leaf structure and leaf carbon isotope discrimination in European populations of black poplar (Populus nigra L.).

    PubMed

    Guet, Justine; Fabbrini, Francesco; Fichot, Régis; Sabatti, Maurizio; Bastien, Catherine; Brignolas, Franck

    2015-08-01

    To buffer against the high spatial and temporal heterogeneity of the riparian habitat, riparian tree species, such as black poplar (Populus nigra L.), may display a high level of genetic variation and phenotypic plasticity for functional traits. Using a multisite common garden experiment, we estimated the relative contribution of genetic and environmental effects on the phenotypic variation expressed for individual leaf area, leaf shape, leaf structure and leaf carbon isotope discrimination (Δ(13)C) in natural populations of black poplar. Twenty-four to 62 genotypes were sampled in nine metapopulations covering a latitudinal range from 48 °N to 42 °N in France and in Italy and grown in two common gardens at Orléans (ORL) and at Savigliano (SAV). In the two common gardens, substantial genetic variation was expressed for leaf traits within all metapopulations, but its expression was modulated by the environment, as attested by the genotype × environment (G × E) interaction variance being comparable to or even greater than genetic effects. For LA, G × E interactions were explained by both changes in genotype ranking between common gardens and increased variation in SAV, while these interactions were mainly attributed to changes in genotype ranking for Δ(13)C. The nine P. nigra metapopulations were highly differentiated for LA, as attested by the high coefficient of genetic differentiation (QST = 0.50 at ORL and 0.51 at SAV), and the pattern of metapopulation differentiation was highly conserved between the two common gardens. In contrast, they were moderately differentiated for Δ(13)C (QST = 0.24 at ORL and 0.25 at SAV) and the metapopulation clustering changed significantly between common gardens. Our results evidenced that the nine P. nigra metapopulations present substantial genetic variation and phenotypic plasticity for leaf traits, which both represent potentially significant determinants of populations' capacities to respond, on a short-term basis and

  12. Volatile composition and sensory profile of Cantharellus cibarius Fr. as affected by drying method.

    PubMed

    Politowicz, Joanna; Lech, Krzysztof; Sánchez-Rodríguez, Lucía; Szumny, Antoni; Carbonell-Barrachina, Ángel A

    2017-12-01

    In this work, the influence of different drying methods on the aroma composition and sensory quality of chanterelle mushrooms (Cantharellus cibarius Fr.) was evaluated. The drying methods tested were convective drying (CD), freeze drying (FD), vacuum microwave drying (VMD) and a combination of convective pre-drying and vacuum microwave finish drying (CPD-VMFD). Analyses of fresh and dried chanterelle samples by HS-SPME and GC/MS and GC-FID showed the presence of 39 volatile compounds at different concentrations. The most abundant compounds in fresh chanterelle were 1-hexanol (33.4 μg per 100 g dry basis (db)), 1-octen-3-ol (80.2 μg per 100 g db) and 2-octen-1-ol (19.3 μg per 100 g db). The results showed that fresh and dried chanterelle contained very low levels of aroma compounds; however, the highest contents of volatile compounds were found in samples after (i) CD at 80 °C (129 μg per 100 g db), (ii) CPD-VMFD at 70 °C-480/240 W (136 μg per 100 g db) and (iii) CPD-VMFD at 80 °C-480/240 W (136 μg per 100 g db). The best dehydration methods, which resulted in high contents of volatile compounds and appropriate sensory quality, according to descriptive sensory analysis and PCA tools, were CD at 70 and 80 °C. Besides, these methods led to spongy dried mushrooms with high intensities of fresh, mushroom ID, with proper color and without intense shrinkage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. High-Throughput Phenotyping of Maize Leaf Physiological and Biochemical Traits Using Hyperspectral Reflectance1[OPEN

    PubMed Central

    Yendrek, Craig R.; Tomaz, Tiago; Montes, Christopher M.; Cao, Youyuan; Morse, Alison M.; Brown, Patrick J.; McIntyre, Lauren M.; Leakey, Andrew D.B.

    2017-01-01

    High-throughput, noninvasive field phenotyping has revealed genetic variation in crop morphological, developmental, and agronomic traits, but rapid measurements of the underlying physiological and biochemical traits are needed to fully understand genetic variation in plant-environment interactions. This study tested the application of leaf hyperspectral reflectance (λ = 500–2,400 nm) as a high-throughput phenotyping approach for rapid and accurate assessment of leaf photosynthetic and biochemical traits in maize (Zea mays). Leaf traits were measured with standard wet-laboratory and gas-exchange approaches alongside measurements of leaf reflectance. Partial least-squares regression was used to develop a measure of leaf chlorophyll content, nitrogen content, sucrose content, specific leaf area, maximum rate of phosphoenolpyruvate carboxylation, [CO2]-saturated rate of photosynthesis, and leaf oxygen radical absorbance capacity from leaf reflectance spectra. Partial least-squares regression models accurately predicted five out of seven traits and were more accurate than previously used simple spectral indices for leaf chlorophyll, nitrogen content, and specific leaf area. Correlations among leaf traits and statistical inferences about differences among genotypes and treatments were similar for measured and modeled data. The hyperspectral reflectance approach to phenotyping was dramatically faster than traditional measurements, enabling over 1,000 rows to be phenotyped during midday hours over just 2 to 4 d, and offers a nondestructive method to accurately assess physiological and biochemical trait responses to environmental stress. PMID:28049858

  14. Relative Water Content, Bidirectional Reflectance and Bidirectional Transmittance of the Interior of Detached Leaves During Dry Down.

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2015-01-01

    Remotely sensing the water status of plants and the water content of canopies remain long-term goals of remote sensing research [1]. Estimates of canopy water content commonly involve measurements in the 900nm to 2000nm portion of the optical spectrum [1]. We have used optical polarization techniques to remove leaf surface reflection and to demonstrate that the visible light reflected by the interior of green healthy corn leaves measured in situ inversely depends upon the leaf relative water content (RWC) [2]. In the research reported here, we again used optical polarization techniques in order to remove the leaf surface reflection from our measurements. This allowed us to monitor the interiors of detached corn leaf samples during leaf dry down measuring for each sample the RWC, bidirectional spectral reflectance and bidirectional spectral transmittance over the wavelength range 450nm to 2,500nm. Our new results like our earlier results show light scattered by the leaf interior measured in the visible wavelength region generally increased as leaf RWC decreased. However, the spectral character and the much improved signal noise of our new results shows the RWC-linked visible light scattering changes are due to leaf structural changes. Our new results show that scattering changes that occur with changing leaf RWC are not attributable to molecular configuration changes in cellular pigments.

  15. Screening of anti-HIV-1 inophyllums by HPLC-DAD of Calophyllum inophyllum leaf extracts from French Polynesia Islands.

    PubMed

    Laure, Frédéric; Raharivelomanana, Phila; Butaud, Jean-François; Bianchini, Jean-Pierre; Gaydou, Emile M

    2008-08-22

    Various pyranocoumarins, calophyllolide, inophyllums B, C, G(1), G(2) and P, from Calophyllum inophyllum (Clusiaceae) leaves of French Polynesia (Austral, Marquesas, Society and Tuamotu archipelagos) have been determined in 136 leaf extracts using a high pressure liquid chromatography-UV-diode array detection (HPLC-UV-DAD) technique. Results show a wide range in chemical composition within trees growing on eighteen islands. The use of multivariate statistical analyses (PCA) shows geographical distribution of inophyllums and indicate those rich in HIV-1 active (+)-inophyllums. Inophyllum B and P contents (0.0-39.0 and 0.0-21.8 mg kg(-1), respectively) confirm the chemodiversity of this species within the large area of French Polynesia. The study suggests the presence of interesting chemotypes which could be used as plant source for anti-HIV-1 drugs.

  16. Tree growth rates in an Amazonian evergreen forest: seasonal patterns and correlations with leaf phenology

    NASA Astrophysics Data System (ADS)

    Wu, J.; Silva Campos, K.; Prohaska, N.; Ferreira, M. L.; Nelson, B. W.; Saleska, S. R.; da Silva, R.

    2014-12-01

    Metabolism and phenology of tropical forests significantly influence global dynamics of climate, carbon and water. However, there is still lack of mechanistic understanding of the controls on tropical forest metabolism, particularly at individual tree level. In this study, we are interested in investigating (1) what is the seasonal pattern of woody growth for tropical trees and (2) what is the mechanistic controls onwoody growth at individual level?To explore the above questions,we use two data sources from an evergreen tropical forest KM67 site (near Santarem, Brazil). They are: (1) image time series from a tower mounted RGB imaging system, with images recordedin10 minutes interval since October 2013.Images near local noon homogeneous diffuse lighting were selectedfor leaf phenologymonitoring; (2) ground based bi-weekly biometry survey (via dendrometry band technique) for 25 trees from random sampling since September 2013. 12 among 25 trees are within the tower mounted camera image view. Our preliminary resultsdemonstrate that 20 trees among 25 trees surveyed significantly increase woody growth (or "green up") in dry season. Our results also find thatamong those 20 trees, 12 trees reaches the maximum woody increment rate in late dry season with a mean DBH (Diameter at Breast Height) around 30 cm,while 8 trees reaching the maximum in the middle of wet season, with a mean DBH around 90 cm. This study,though limited in the sample size, mightprovide another line of evidence that Amazon rainforests "green up" in dry season. As for mechanistic controls on tropical tree woody control, we hypothesize both climate and leaf phenology control individual woody growth. We would like to link both camera based leaf phenology and climate data in the next to explorethe reason as to the pattern found in this study that bigger trees might have different seasonal growth pattern as smaller trees.

  17. A Rice PECTATE LYASE-LIKE Gene Is Required for Plant Growth and Leaf Senescence1[OPEN

    PubMed Central

    Leng, Yujia; Yang, Yaolong; Ren, Deyong; Dai, Liping; Wang, Yuqiong; Chen, Long; Tu, Zhengjun; Gao, Yihong; Zhu, Li; Hu, Jiang; Gao, Zhenyu; Guo, Longbiao; Lin, Yongjun

    2017-01-01

    To better understand the molecular mechanisms behind plant growth and leaf senescence in monocot plants, we identified a mutant exhibiting dwarfism and an early-senescence leaf phenotype, termed dwarf and early-senescence leaf1 (del1). Histological analysis showed that the abnormal growth was caused by a reduction in cell number. Further investigation revealed that the decline in cell number in del1 was affected by the cell cycle. Physiological analysis, transmission electron microscopy, and TUNEL assays showed that leaf senescence was triggered by the accumulation of reactive oxygen species. The DEL1 gene was cloned using a map-based approach. It was shown to encode a pectate lyase (PEL) precursor that contains a PelC domain. DEL1 contains all the conserved residues of PEL and has strong similarity with plant PelC. DEL1 is expressed in all tissues but predominantly in elongating tissues. Functional analysis revealed that mutation of DEL1 decreased the total PEL enzymatic activity, increased the degree of methylesterified homogalacturonan, and altered the cell wall composition and structure. In addition, transcriptome assay revealed that a set of cell wall function- and senescence-related gene expression was altered in del1 plants. Our research indicates that DEL1 is involved in both the maintenance of normal cell division and the induction of leaf senescence. These findings reveal a new molecular mechanism for plant growth and leaf senescence mediated by PECTATE LYASE-LIKE genes. PMID:28455404

  18. Chemical composition, angiotensin-converting enzyme-inhibitory activity and antioxidant activities of few-flower wild rice (Zizania latifolia Turcz.).

    PubMed

    Qian, Bingjun; Luo, Yali; Deng, Yun; Cao, Linkui; Yang, Hongshun; Shen, Yongpei; Ping, Jian

    2012-01-15

    The chemical compositions of the stem and leaf sheath of few-flower wild rice were analysed. In addition, their extracts were evaluated for diphenylpicrylhydrazyl (DPPH) free radical-scavenging activity, ferric-reducing antioxidant power and angiotensin-converting enzyme (ACE)-inhibitory activity, since these are important properties of sources of nutraceuticals or functional foods. The stems contained more ascorbic acid (0.06 g kg(-1) fresh weight), protein (28.18 g kg(-1) dry weight (DW)), reducing sugars (308.54 g kg(-1) DW), water-soluble pectin (20.63 g kg(-1) DW), Na(2) CO(3) -soluble pectin (44.14 g kg(-1) DW), K (8 g kg(-1) dry matter (DM), S (6 g kg(-1) DM) and P (5 g kg(-1) DM) but less starch, total dietary fibre, Si, Na and Ca than the leaf sheaths. The DPPH free radical-scavenging IC(50) values of the stem and leaf sheath extracts were 19.28 and 21.22 mg mL(-1) respectively. In addition, the ACE-inhibitory IC(50) value of the stem extracts was 38.54 mg mL(-1). Both the stem and leaf sheath extracts exhibited good antioxidant properties, while good ACE-inhibitory activity was detected only in the phosphate buffer solution extracts of the stem. Few-flower wild rice could be processed into formula feeds for fish, poultry, etc. or functional foods for persons with high blood pressure. Copyright © 2011 Society of Chemical Industry.

  19. Volatile composition and sensory profile of shiitake mushrooms as affected by drying method.

    PubMed

    Politowicz, Joanna; Lech, Krzysztof; Lipan, Leontina; Figiel, Adam; Carbonell-Barrachina, Ángel A

    2018-03-01

    One of the best preservation method for long-term storage is drying. In this work, the influence of different drying methods on aroma and sensory profile of shiitake mushroom was evaluated. The drying methods tested were: convective drying (CD), freeze-drying (FD), vacuum-microwave drying (VMD), and a combination of convective pre-drying and vacuum-microwave finish-drying (CPD-VMFD). The volatile composition of fresh and dried shiitake mushrooms was analysed by SPME, GC-MS and GC-FID, and showed the presence of 71 volatile compounds, most of them present in all dried samples but with quantitative variation. The major volatile compounds in fresh shiitake were 1-octen-3-ol (20.2%), 2-octanone (20.7%), 1,2,4-trithiolane (9.8%), and 1,2,3,5,6-pentathiepane (8.2%). Drying of shiitake mushrooms caused significant losses of C8 compounds and cyclic sulfur compounds, such as 1,2,4-trithiolane (V31) and 1,2,4,5-tetrathiane (V57). Samples dried at CD 80 °C implied a relative short drying time (120 min), had the highest contents of total volatiles (1594 μg 100 g -1 ) and cyclic sulfur compounds (e.g. V57 126 μg 100 g -1 ), and the highest intensity of most of the key positive sensory attributes, such as inner colour (7.0), fresh shiitake flavour (6.7), and sponginess (6.2). The best dehydration methods, resulting in the highest total concentrations of volatile compounds and high intensity of key sensory attributes were FD (if vacuum and liquid nitrogen facilities are available) and CD at 80 °C (for companies with vacuum and liquid nitrogen facilities). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Leaf primordium size specifies leaf width and vein number among row-type classes in barley.

    PubMed

    Thirulogachandar, Venkatasubbu; Alqudah, Ahmad M; Koppolu, Ravi; Rutten, Twan; Graner, Andreas; Hensel, Goetz; Kumlehn, Jochen; Bräutigam, Andrea; Sreenivasulu, Nese; Schnurbusch, Thorsten; Kuhlmann, Markus

    2017-08-01

    Exploring genes with impact on yield-related phenotypes is the preceding step to accomplishing crop improvements while facing a growing world population. A genome-wide association scan on leaf blade area (LA) in a worldwide spring barley collection (Hordeum vulgare L.), including 125 two- and 93 six-rowed accessions, identified a gene encoding the homeobox transcription factor, Six-rowed spike 1 (VRS1). VRS1 was previously described as a key domestication gene affecting spike development. Its mutation converts two-rowed (wild-type VRS1, only central fertile spikelets) into six-rowed spikes (mutant vrs1, fully developed fertile central and lateral spikelets). Phenotypic analyses of mutant and wild-type leaves revealed that mutants had an increased leaf width with more longitudinal veins. The observed significant increase of LA and leaf nitrogen (%) during pre-anthesis development in vrs1 mutants also implies a link between wider leaf and grain number, which was validated from the association of vrs1 locus with wider leaf and grain number. Histological and gene expression analyses indicated that VRS1 might influence the size of leaf primordia by affecting cell proliferation of leaf primordial cells. This finding was supported by the transcriptome analysis of mutant and wild-type leaf primordia where in the mutant transcriptional activation of genes related to cell proliferation was detectable. Here we show that VRS1 has an independent role on barley leaf development which might influence the grain number. © 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  1. Photosynthetic capacity and dry mass partitioning in dwarf and semi-dwarf wheat (Triticum aestivum L.)

    NASA Technical Reports Server (NTRS)

    Bishop, D. L.; Bugbee, B. G.

    1998-01-01

    Efficient use of space and high yields are critical for long-term food production aboard the International Space Station. The selection of a full dwarf wheat (less than 30 cm tall) with high photosynthetic and yield potential is a necessary prerequisite for growing wheat in the controlled, volume-limited environments available aboard long-term spaceflight missions. This study evaluated the photosynthetic capacity and carbon partitioning of a full-dwarf wheat cultivar, Super Dwarf, which is routinely used in spaceflight studies aboard U.S. space shuttle and NASA/Mir missions and made comparisons with other dwarf and semi-dwarf wheat cultivars utilized in other ground-based studies in plant space biology. Photosynthetic capacity of the flag leaf in two dwarf (Super Dwarf, BB-19), and three semi-dwarf (Veery-10, Yecora Rojo, IBWSN 199) wheat cultivars (Triticum aestivum L.) was assessed by measuring: net maximum photosynthetic rate, RuBP carboxylation efficiency, chlorophyll concentration and flag leaf area. Dry mass partitioning of carbohydrates to the leaves, sheaths, stems and ear was also assessed. Plants were grown under controlled environmental conditions in three replicate studies: slightly enriched CO2 (370 micromoles mol-1), high photosynthetic photon flux (1000 micromoles m-2 s-1; 58 mol m-2 d-1) for a 16 h photoperiod, 22/15 degrees C day/night temperatures, ample nutrients and water provided by one-half strength Hoagland's nutrient solution (Hoagland and Arnon, 1950). Photosynthetic capacity of the flag leaf was determined at anthesis using net CO2 exchange rate versus internal CO2 concentration curves measured under saturating light (2000 micromoles m-2 s-1) and CO2 (1000 micromoles mol-1). Dwarf wheat cultivars had greater photosynthetic capacities than the taller semi-dwarfs, they averaged 20% higher maximum net photosynthetic rates compared to the taller semi-dwarfs, but these higher rates occurred only at anthesis, had slightly greater carboxylation

  2. Intraspecific trait variation and the leaf economics spectrum across resource gradients and levels of organization.

    PubMed

    Fajardo, Alex; Siefert, Andrew

    2018-05-01

    Understanding patterns of functional trait variation across environmental gradients offers an opportunity to increase inference in the mechanistic causes of plant community assembly. The leaf economics spectrum (LES) predicts global tradeoffs in leaf traits and trait-environment relationships, but few studies have examined whether these predictions hold across different levels of organization, particularly within species. Here, we asked (1) whether the main assumptions of the LES (expected trait relationships and shifts in trait values across resource gradients) hold at the intraspecific level, and (2) how within-species trait correlations scale up to interspecific or among-community levels. We worked with leaf traits of saplings of woody species growing across light and soil N and P availability gradients in temperate rainforests of southern Chile. We found that ITV accounted for a large proportion of community-level variation in leaf traits (e.g., LMA and leaf P) and played an important role in driving community-level shifts in leaf traits across environmental gradients. Additionally, intraspecific leaf trait relationships were generally consistent with interspecific and community-level trait relationships and with LES predictions-e.g., a strong negative intraspecific LMA-leaf N correlation-although, most trait relationships varied significantly among species, suggesting idiosyncrasies in the LES at the intraspecific level. © 2018 by the Ecological Society of America.

  3. Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance.

    PubMed

    Markesteijn, Lars; Poorter, Lourens; Bongers, Frans; Paz, Horacio; Sack, Lawren

    2011-07-01

    Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K(s) ) and leaf (K(l) ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K(l) with drought tolerance, we found a strong, negative correlation between K(l) and species' shade tolerance. Across species, K(s) and K(l) were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  4. Leaf structural and photosynthetic characteristics, and biomass allocation to foliage in relation to foliar nitrogen content and tree size in three Betula species.

    PubMed

    Niinemets, Ulo; Portsmuth, Angelika; Truus, Laimi

    2002-02-01

    Young trees 0.03-1.7 m high of three coexisting Betula species were investigated in four sites of varying soil fertility, but all in full daylight, to separate nutrient and plant size controls on leaf dry mass per unit area (MA), light-saturated foliar photosynthetic electron transport rate (J) and the fraction of plant biomass in foliage (F(L)). Because the site effect was generally non-significant in the analyses of variance with foliar nitrogen content per unit dry mass (N(M)) as a covariate, N(M) was used as an explaining variable of leaf structural and physiological characteristics. Average leaf area (S) and dry mass per leaf scaled positively with N(M) and total tree height (H) in all species. Leaf dry mass per unit area also increased with increasing H, but decreased with increasing N(M), whereas the effects were species-specific. Increases in plant size led to a lower and increases in N(M) to a greater FL and total plant foliar area per unit plant biomass (LAR). Thus, the self-shading probably increased with increasing N(M) and decreased with increasing H. Nevertheless, the whole-plant average M(A), as well as M(A) values of topmost fully exposed leaves, correlated with N(M) and H in a similar manner, indicating that scaling of MA with N(M) and H did not necessarily result from the modified degree of within-plant shading. The rate of photosynthetic electron transport per unit dry mass (J(M)) scaled positively with N(M), but decreased with increasing H and M(A). Thus, increases in M(A) with tree height and decreasing nitrogen content not only resulted in a lower plant foliar area (LAR = F(L)/M(A)), but also led to lower physiological activity of unit foliar biomass. The leaf parameters (J(M), N(M) and M(A)) varied threefold, but the whole-plant characteristic FL varied 20-fold and LAR 30-fold, indicating that the biomass allocation was more plastically adjusted to different plant internal nitrogen contents and to tree height than the foliar variables. Our

  5. Leaf Structural and Photosynthetic Characteristics, and Biomass Allocation to Foliage in Relation to Foliar Nitrogen Content and Tree Size in Three Betula Species

    PubMed Central

    NIINEMETS, ÜLO; PORTSMUTH, ANGELIKA; TRUUS, LAIMI

    2002-01-01

    Young trees 0·03–1·7 m high of three coexisting Betula species were investigated in four sites of varying soil fertility, but all in full daylight, to separate nutrient and plant size controls on leaf dry mass per unit area (MA), light‐saturated foliar photosynthetic electron transport rate (J) and the fraction of plant biomass in foliage (FL). Because the site effect was generally non‐significant in the analyses of variance with foliar nitrogen content per unit dry mass (NM) as a covariate, NM was used as an explaining variable of leaf structural and physiological characteristics. Average leaf area (S) and dry mass per leaf scaled positively with NM and total tree height (H) in all species. Leaf dry mass per unit area also increased with increasing H, but decreased with increasing NM, whereas the effects were species‐specific. Increases in plant size led to a lower and increases in NM to a greater FL and total plant foliar area per unit plant biomass (LAR). Thus, the self‐shading probably increased with increasing NM and decreased with increasing H. Nevertheless, the whole‐plant average MA, as well as MA values of topmost fully exposed leaves, correlated with NM and H in a similar manner, indicating that scaling of MA with NM and H did not necessarily result from the modified degree of within‐plant shading. The rate of photosynthetic electron transport per unit dry mass (JM) scaled positively with NM, but decreased with increasing H and MA. Thus, increases in MA with tree height and decreasing nitrogen content not only resulted in a lower plant foliar area (LAR = FL/MA), but also led to lower physiological activity of unit foliar biomass. The leaf parameters (JM, NM and MA) varied threefold, but the whole‐plant characteristic FL varied 20‐fold and LAR 30‐fold, indicating that the biomass allocation was more plastically adjusted to different plant internal nitrogen contents and to tree height than the foliar variables. Our results

  6. Spectrometric Estimation of Total Nitrogen Concentration in Douglas-Fir Foliage

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Billow, Christine R.; Peterson, David L. (Technical Monitor)

    1995-01-01

    Spectral measurements of fresh and dehydrated Douglas-fir foliage, from trees cultivated under three fertilization treatments, were acquired with a laboratory spectrophotometer. The slope (first-derivative) of the fresh- and dry-leaf absorbance spectra at locations near known protein absorption features was strongly correlated with total nitrogen (TN) concentration of the foliage samples. Particularly strong correlation was observed between the first-derivative spectra in the 2150-2170 nm region and TN, reaching a local maximum in the fresh-leaf spectra of -0.84 at 2 160 nm. Stepwise regression was used to generate calibration equations relating first derivative spectra from fresh, dry/intact, and dry/ground samples to TN concentration. Standard errors of calibration were 1.52 mg g-1 (fresh), 1.33 (dry/intact), and 1.20 (dry/ground), with goodness-of-fit 0.94 and greater. Cross-validation was performed with the fresh-leaf dataset to examine the predictive capability of the regression method; standard errors of prediction ranged from 1.47 - 2.37 mg g(exp -1) across seven different validation sets, prediction goodness of fit ranged from .85-.94, and wavelength selection was fairly insensitive to the membership of the calibration set. All regressions in this study tended to select wavelengths in the 2100-2350 nm region, with the primary selection in the 2142-2172 nm region. The study provides positive evidence concerning the feasibility of assessing TN status of fresh-leaf samples by spectrometric means. We assert that the ability to extract biochemical information from fresh-leaf spectra is a necessary but insufficient condition regarding the use of remote sensing for canopy-level biochemical estimation.

  7. Differential metabolomic analysis of the potential antiproliferative mechanism of olive leaf extract on the JIMT-1 breast cancer cell line.

    PubMed

    Barrajón-Catalán, Enrique; Taamalli, Amani; Quirantes-Piné, Rosa; Roldan-Segura, Cristina; Arráez-Román, David; Segura-Carretero, Antonio; Micol, Vicente; Zarrouk, Mokhtar

    2015-02-01

    A new differential metabolomic approach has been developed to identify the phenolic cellular metabolites derived from breast cancer cells treated with a supercritical fluid extracted (SFE) olive leaf extract. The SFE extract was previously shown to have significant antiproliferative activity relative to several other olive leaf extracts examined in the same model. Upon SFE extract incubation of JIMT-1 human breast cancer cells, major metabolites were identified by using HPLC coupled to electrospray ionization quadrupole-time-of-flight mass spectrometry (ESI-Q-TOF-MS). After treatment, diosmetin was the most abundant intracellular metabolite, and it was accompanied by minor quantities of apigenin and luteolin. To identify the putative antiproliferative mechanism, the major metabolites and the complete extract were assayed for cell cycle, MAPK and PI3K proliferation pathways modulation. Incubation with only luteolin showed a significant effect in cell survival. Luteolin induced apoptosis, whereas the whole olive leaf extract incubation led to a significant cell cycle arrest at the G1 phase. The antiproliferative activity of both pure luteolin and olive leaf extract was mediated by the inactivation of the MAPK-proliferation pathway at the extracellular signal-related kinase (ERK1/2). However, the flavone concentration of the olive leaf extract did not fully explain the strong antiproliferative activity of the extract. Therefore, the effects of other compounds in the extract, probably at the membrane level, must be considered. The potential synergistic effects of the extract also deserve further attention. Our differential metabolomics approach identified the putative intracellular metabolites from a botanical extract that have antiproliferative effects, and this metabolomics approach can be expanded to other herbal extracts or pharmacological complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Comparative effects of dried plum and dried apple on bone in postmenopausal women.

    PubMed

    Hooshmand, Shirin; Chai, Sheau C; Saadat, Raz L; Payton, Mark E; Brummel-Smith, Kenneth; Arjmandi, Bahram H

    2011-09-01

    Aside from existing drug therapies, certain lifestyle and nutritional factors are known to reduce the risk of osteoporosis. Among the nutritional factors, dried plum or prunes (Prunus domestica L.) is the most effective fruit in both preventing and reversing bone loss. The objective of the present study was to examine the extent to which dried plum reverses bone loss in osteopenic postmenopausal women. We recruited 236 women, 1-10 years postmenopausal, not on hormone replacement therapy or any other prescribed medication known to influence bone metabolism. Qualified participants (n 160) were randomly assigned to one of the two treatment groups: dried plum (100 g/d) or dried apple (comparative control). Participants received 500 mg Ca plus 400 IU (10 μg) vitamin D daily. Bone mineral density (BMD) of lumbar spine, forearm, hip and whole body was assessed at baseline and at the end of the study using dual-energy X-ray absorptiometry. Blood samples were collected at baseline, 3, 6 and 12 months to assess bone biomarkers. Physical activity recall and 1-week FFQ were obtained at baseline, 3, 6 and 12 months to examine physical activity and dietary confounders as potential covariates. Dried plum significantly increased BMD of ulna and spine in comparison with dried apple. In comparison with corresponding baseline values, only dried plum significantly decreased serum levels of bone turnover markers including bone-specific alkaline phosphatase and tartrate-resistant acid phosphatase-5b. The findings of the present study confirmed the ability of dried plum in improving BMD in postmenopausal women in part due to suppressing the rate of bone turnover.

  9. Brassinosteroid insensitive 1-associated kinase 1 (OsI-BAK1) is associated with grain filling and leaf development in rice.

    PubMed

    Khew, Choy-Yuen; Teo, Chin-Jit; Chan, Wai-Sun; Wong, Hann-Ling; Namasivayam, Parameswari; Ho, Chai-Ling

    2015-06-15

    Brassinosteroid Insensitive 1 (BRI1)-Associated Kinase I (BAK1) has been reported to interact with BRI1 for brassinosteroid (BR) perception and signal transduction that regulate plant growth and development. The aim of this study is to investigate the functions of a rice OsBAK1 homologue, designated as OsI-BAK1, which is highly expressed after heading. Silencing of OsI-BAK1 in rice plants produced a high number of undeveloped green and unfilled grains compared to the untransformed plants. Histological analyses demonstrated that embryos were either absent or retarded in their development in these unfilled rice grains of OsI-BAK1 RNAi plants. Down regulation of OsI-BAK1 caused a reduction in cell number and enlargement in leaf bulliform cells. Furthermore, transgenic rice plants overexpressing OsI-BAK1 were demonstrated to have corrugated and twisted leaves probably due to increased cell number that caused abnormal bulliform cell structure which were enlarged and plugged deep into leaf epidermis. The current findings suggest that OsI-BAK1 may play an important role in the developmental processes of rice grain filling and leaf cell including the bulliform cells. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Assessment of Agroforestry Trees in Dry-land Savanna Supports Ecohydrologic Separation

    NASA Astrophysics Data System (ADS)

    Ceperley, Natalie; Mande, Theophile; Van de Giesen, Nick; Tyler, Scott; Parlange, Marc

    2016-04-01

    We use stable isotopes of water to demonstrate the ecohydrologic separation, or the plant controlled compartmentalization, of different water sources in a catchment in South Eastern Burkina Faso. We analyze water extracted from the groundwater, stream water, precipitation, perched aquifer, xylem water of agroforestry trees, and sub-canopy soil water over a 6 year period to explore how the separation affects different components of the system over time. The ratio between deuterium and O18 allows us to assess whether the water that plants use is the same as the water that recharges the aquifer and runs off in the stream. Water extracted from the tree at leaf out in February corresponded to deuterium and O18 concentrations of the groundwater, a drop from its dry season, enriched, levels which mimicked the soil water. Examination of the isotopic signature suggests that the size of tree plays an important role in duration and timing of this leaf-out as well as the degree of enrichment during the peak of the dry season. Dates of leaf out were confirmed by analyzing sub-canopy radiation and photographs. Water extracted from roots suggests that the trees are performing hydraulic redistribution, or lifting the ground water and 'sharing it' with the rooting zone soil during the dry season. The enriched level of xylem, in this case, is a product of water loss and enrichment along the travel path of the water from the roots to the tip of the branch, as evidenced by the variation according to size of tree. Vapor pressure deficit, sap flow, soil water, and soil moisture interactions support this picture of interacting controls, separate from hydrologic triggers on the water movement in the tree. A second round of sampling focused on the leaf out period by extracting and analyzing stem water from throughout the canopy during the leaf out. Simultaneous large eddy correlation revealed high levels of latent energy flux, even during the dry season. Our isotope analysis allowed us to

  11. In vitro antioxidant evaluation and total phenolics of methanolic leaf extracts of Nyctanthes arbor-tristis L.

    PubMed

    Michael, J Savarimuthu; Kalirajan, A; Padmalatha, C; Singh, A J A Ranjit

    2013-09-01

    To investigate the in vitro antioxidant activity and total phenolic content of the methanolic leaf extract of Nyctanthes arbor-tristis L. (NA). The sample was tested using five in vitro antioxidant methods (1, 1-diphenyl-2-picryl hydrazine radical scavenging activity (DPPH), hydroxyl radical-scavenging activity (-OH), nitric oxide scavenging activity (NO), superoxide radical-scavenging activity, and total antioxidant activity) to evaluate the in vitro antioxidant potential of NA and the total phenolic content (Folin-Ciocalteu method). The extract showed good free radical scavenging property which was calculated as an IC50 value. IC50 (Half maximal inhibitory concentration) of the methanolic extract was found to be 57.93 μg·mL(-1) for DPPH, 98.61 μg·mL(-1) for -OH, 91.74 μg·mL(-1) for NO, and 196.07 μg·mL(-1) for superoxide radical scavenging activity. Total antioxidant capacity of the extract was found to be (1198 ± 24.05) mg ascorbic acid for the methanolic extract. Free radical scavenging activity observed in the extracts of NA showed a concentration-dependent reaction. The in vitro scavenging tested for free radicals was reported to be due to high phenolic content in the leaf extract. The leaf extract of NA showed the highest total phenolic content with a value of 78.48 ± 4.2 equivalent mg TAE/g (tannic acid equivalent). N. arbor-tristis leaf extract exhibited potent free radical scavenging activity. The finding suggests that N. arbor-tristis leaves could be a potential source of natural antioxidant. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  12. Enemy release and plant invasion: patterns of defensive traits and leaf damage in Hawaii.

    PubMed

    Funk, Jennifer L; Throop, Heather L

    2010-04-01

    Invasive species may be released from consumption by their native herbivores in novel habitats and thereby experience higher fitness relative to native species. However, few studies have examined release from herbivory as a mechanism of invasion in oceanic island systems, which have experienced particularly high loss of native species due to the invasion of non-native animal and plant species. We surveyed putative defensive traits and leaf damage rates in 19 pairs of taxonomically related invasive and native species in Hawaii, representing a broad taxonomic diversity. Leaf damage by insects and pathogens was monitored in both wet and dry seasons. We found that native species had higher leaf damage rates than invasive species, but only during the dry season. However, damage rates across native and invasive species averaged only 2% of leaf area. Native species generally displayed high levels of structural defense (leaf toughness and leaf thickness, but not leaf trichome density) while native and invasive species displayed similar levels of chemical defenses (total phenolics). A defense index, which integrated all putative defense traits, was significantly higher for native species, suggesting that native species may allocate fewer resources to growth and reproduction than do invasive species. Thus, our data support the idea that invasive species allocate fewer resources to defense traits, allowing them to outperform native species through increased growth and reproduction. While strong impacts of herbivores on invasion are not supported by the low damage rates we observed on mature plants, population-level studies that monitor how herbivores influence recruitment, mortality, and competitive outcomes are needed to accurately address how herbivores influence invasion in Hawaii.

  13. Porous Carbon with Willow-Leaf-Shaped Pores for High-Performance Supercapacitors.

    PubMed

    Shi, Yanhong; Zhang, Linlin; Schon, Tyler B; Li, Huanhuan; Fan, Chaoying; Li, Xiaoying; Wang, Haifeng; Wu, Xinglong; Xie, Haiming; Sun, Haizhu; Seferos, Dwight S; Zhang, Jingping

    2017-12-13

    A novel kind of biomass-derived, high-oxygen-containing carbon material doped with nitrogen that has willow-leaf-shaped pores was synthesized. The obtained carbon material has an exotic hierarchical pore structure composed of bowl-shaped macropores, willow-leaf-shaped pores, and an abundance of micropores. This unique hierarchical porous structure provides an effective combination of high current densities and high capacitance because of a pseudocapacitive component that is afforded by the introduction of nitrogen and oxygen dopants. Our synthetic optimization allows further improvements in the performance of this hierarchical porous carbon (HPC) material by providing a high degree of control over the graphitization degree, specific surface area, and pore volume. As a result, a large specific surface area (1093 m 2 g -1 ) and pore volume (0.8379 cm 3 g -1 ) are obtained for HPC-650, which affords fast ion transport because of its short ion-diffusion pathways. HPC-650 exhibits a high specific capacitance of 312 F g -1 at 1 A g -1 , retaining 76.5% of its capacitance at 20 A g -1 . Moreover, it delivers an energy density of 50.2 W h kg -1 at a power density of 1.19 kW kg -1 , which is sufficient to power a yellow-light-emitting diode and operate a commercial scientific calculator.

  14. Callus induction of leaf explant Piper betle L. Var Nigra with combination of plant growth regulators indole-3-acetic acid (IAA), benzyl amino purin (BAP) and kinetin

    NASA Astrophysics Data System (ADS)

    Junairiah, Zuraidassanaaz, Nabilah Istighfari; Izdihar, Fairuz Nabil; Manuhara, Yosephine Sri Wulan

    2017-09-01

    The purpose of this research was to determine the combination of plant growth regulators IAA, BAP and kinetin towards callus induction and growth of leaf explants Piper betle L. VarNigra. Explants from leaf of Piper betle L. VarNigra was cultured on MS medium with 24 treatment combinations of plant growth regulators IAA and BAP and 24 treatment combinations of plant growth regulators IAA and kinetin with 0.0;0.5;1.0;1.5;2.0 mg/L concentration respectively, the observed variable were the length of time the formation of callus, callus morphology, fresh and dry weight of callus. The results of this research showed that the combination of growth regulators IAA with BAP and kinetin had effects on leaf growth of Piper betle L. VarNigra. During 8 weeks observation, it indicated that the combination of concentration IAA 0.5 mg/L and BAP 2.0 mg/L showed fastest callus formation at 8.5 days. Combination of concentration IAA 1.0 mg/L and BAP 1.5 mg/L showed the highest of fresh weight at 0.6596 grams, and the highest dry weight was obtained from the combination of concentration IAA 0.5 mg/L and BAP 0.5 mg/L at 0.0727 grams. Combination of concentration IAA 1.0 mg/L and kinetin 1.5 mg/L had the highest of fresh weight at 0.2972 grams and the highest dry weight at 0.1660 grams. Callus of Piper betle L. VarNigra had two textures, that were compact and friable, and also showed various kind of colors, like white, greenish white, yellowish white, tanned white, brown and black. Based on this research, that concentration IAA 1.0 mg/L and 1.5 mg/L kinetin was the best combination for induction of callus from leaf of Piper betle L. Var Nigra.

  15. Ecohydrology of the wetland-forestland interface: hydrophobicity in leaf litter and its potential effect on surface evaporation

    NASA Astrophysics Data System (ADS)

    Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hurley, Alexander

    2017-04-01

    Riparian wetlands represent an important ecotone at the interface of peatlands and forests within the Western Boreal Plain of Canada. Water storage and negative feedbacks to evaporation in these systems is crucial for the conservation and redistribution of water during dry periods and providing ecosystem resilience to disturbance. Litter cover can alter the relative importance of the physical processes that drive soil evaporation. Negative feedbacks to drying are created as the hydrophysical properties of the litter and soil override atmospheric controls on evaporation in dry conditions, subsequently dampening the effects of external forcings on the wetland moisture balance. In this study, water repellency in leaf litter has been shown to significantly correlate with surface-atmosphere interactions, whereby severely hydrophobic leaf litter is linked to the highest surface resistances to evaporation, and therefore lowest instantaneous evaporation. Decreasing moisture is associated with increasing hydrophobicity, which may reduce the evaporative flux further as the dry hydrophobic litter creates a hydrological disconnect between soil moisture and the atmosphere. In contrast, hydrophilic litter layers exhibited higher litter moistures, which is associated with reduced resistances to evaporation and enhanced evaporative fluxes. Water repellency of the litter layer has a greater control on evaporation than the presence or absence of litter itself. Litter removal had no significant effect on instantaneous evaporation or surface resistance to evaporation except under the highest evaporation conditions, where litter layers produced higher resistance values than bare peat soils. However, litter removal modified the dominant physical controls on evaporation: moisture loss in plots with leaf litter was driven by leaf and soil hydrophysical properties. Contrastingly, bare peat soils following litter removal exhibited cooler, wetter surfaces and were more strongly correlated to

  16. JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis

    PubMed Central

    Yu, Juan; Zhang, Yixiang; Di, Chao; Zhang, Qunlian; Zhang, Kang; Wang, Chunchao; You, Qi; Yan, Hong; Dai, Susie Y.; Yuan, Joshua S; Xu, Wenying; Su, Zhen

    2016-01-01

    JASMONATE ZIM-domain (JAZ) proteins play important roles in plant defence and growth by regulating jasmonate signalling. Through data mining, we discovered that the JAZ7 gene was up-regulated in darkness. In the dark, the jaz7 mutant displayed more severe leaf yellowing, quicker chlorophyll degradation, and higher hydrogen peroxide accumulation compared with wild-type (WT) plants. The mutant phenotype of dark-induced leaf senescence could be rescued in the JAZ7-complemented and -overexpression lines. Moreover, the double mutants of jaz7 myc2 and jaz7 coi1 exhibited delayed leaf senescence. We further employed GeneChip analysis to study the molecular mechanism. Some key genes down-regulated in the triple mutant myc2 myc3 myc4 were up-regulated in the jaz7 mutant under darkness. The Gene Ontology terms ‘leaf senescence’ and ‘cell death’ were significantly enriched in the differentially expressed genes. Combining the genetic and transcriptomic analyses together, we proposed a model whereby darkness can induce JAZ7, which might further block MYC2 to suppress dark-induced leaf senescence. In darkness, the mutation of JAZ7 might partially liberate MYC2/MYC3/MYC4 from suppression, leading the MYC proteins to bind to the G-box/G-box-like motifs in the promoters, resulting in the up-regulation of the downstream genes related to indole-glucosinolate biosynthesis, sulphate metabolism, callose deposition, and JA-mediated signalling pathways. In summary, our genetic and transcriptomic studies established the JAZ7 protein as an important regulator in dark-induced leaf senescence. PMID:26547795

  17. Rosmarinic acid content in antidiabetic aqueous extract of Ocimum canum sims grown in Ghana.

    PubMed

    Berhow, Mark A; Affum, Andrews Obeng; Gyan, Ben A

    2012-07-01

    Rosmarinic acid (RA) is an important antioxidant polyphenol that is found in a variety of spices and herbs, including Ocimum canum Sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O. canum are used as an antidiabetic herbal medicine in Ghana. Analytical thin-layer chromatography was used to examine the composition of the polyphenols in leaf extracts. The polyphenol content in the aqueous and methanol extracts from the leaf, as determined by the Folin-Ciocalteu method, were 314 and 315 mg gallic acid equivalent/g leaf sample, respectively. The total flavonoid concentration as determined by the aluminum(III) chloride method was 135 mg catechin equivalent/g leaf sample. High-performance liquid chromatography coupled to an electrospray Quadrupole time-of-flight mass spectrometer was also used to determine the polyphenol fingerprint profile in the leaf extracts of O. canum. Although the average RA concentration in the O. canum leaf extracts from Ghana was 1.69 mg/g dry weight (reported values range from 0.01 to 99.62 mg/g dry weight), this polyphenol was still a prominent peak in addition to caffeic acid derivatives.

  18. [Preparation of freeze - drying control materials of IgG antibody against Schistosoma japonicum for immunodetection kits].

    PubMed

    Jin, Huang; Chun-Lian, Tang; Zu-Wu, Tu; Li, Tang; Ke-Hui, Zhang; Qian, Li; Jun, Ye

    2018-04-18

    To prepare freeze-drying control materials of IgG antibody against Schistosoma japonicum for detection kits. The serum samples of schistosomiasis patients from endemic areas and normal people without history of schistosome infection or contact with infested water in Hubei Province were collected. All the sera were detected by the method approved by China Food and Drug Administration and selected for preparation of quality control samples. Totally twelve positive quality control materials, ten negative quality control materials, and one sensitive and one precision quality control materials were screened. According to the positive serum level, the positive degrees of quality control materials were divided into strong, medium and weak levels. The stability could be valid for one year. The freeze-drying quality control materials of IgG antibody against S. japonicum for detection kits are prepared. They are easy to use and have good stability, and therefore, they may meet the requirement of quality control for the detection of schistosomiasis diagnostics kits.

  19. Drying effect on flavonoid composition and antioxidant activity of immature kumquat.

    PubMed

    Lou, Shyi-Neng; Lai, Yi-Chun; Huang, Jia-De; Ho, Chi-Tang; Ferng, Lin-Huei A; Chang, Yung-Chung

    2015-03-15

    A seven flavonoids in hot water extract of immature kumquat (Citrus japonica var. margarita) were identified and quantified (mg/100g fresh fruit): 3',5'-di-C-β-glucopyranosylphloretin (DGPP, 285.9 ± 2.9 mg/100g), acacetin 8-C-neohesperidoside (margaritene, 136.2 ± 2.6 mg/100g), acacetin 6-C-neohesperidoside (isomargaritene, 119.1 ± 1.8 mg/100g), fortunellin (acacetin 7-O-neohesperidoside, 28.5 ± 0.7 mg/100g), apigenin 8-C-neohesperidoside (16.9 ± 0.1mg/100g), poncirin (isosakuranetin 7-O-neohesperidoside, 5.1 ± 0.1mg/100g), and rhoifolin (apigenin 7-O-neohesperidoside, 2.0 ± 0.1mg/100g). When immature kumquat was dried at 110 and 130°C for 0.5h, the antioxidant activity, total phenolic content and identified flavonoids increased. The UV absorbance of browning products of immature kumquat dried at 130°C for 1.5h increased dramatically, while the identified flavonoids decreased. Therefore, it was concluded that drying below 130°C for 1.0 h, could release phenolic compounds, which resulted in the increasing antioxidant activity. Drying at 130°C for 1.5h, it might be due to the effect of formed browning products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan.

    PubMed

    Taylaran, Renante D; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-07-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20-30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf-air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.

  1. A Rapid Leaf-Disc Sampler for Psychrometric Water Potential Measurements 1

    PubMed Central

    Wullschleger, Stan D.; Oosterhuis, Derrick M.

    1986-01-01

    An instrument was designed which facilitates faster and more accurate sampling of leaf discs for psychrometric water potential measurements. The instrument consists of an aluminum housing, a spring-loaded plunger, and a modified brass-plated cork borer. The leaf-disc sampler was compared with the conventional method of sampling discs for measurement of leaf water potential with thermocouple psychrometers on a range of plant material including Gossypium hirsutum L., Zea mays L., and Begonia rex-cultorum L. The new sampler permitted a leaf disc to be excised and inserted into the psychrometer sample chamber in less than 7 seconds, which was more than twice as fast as the conventional method. This resulted in more accurate determinations of leaf water potential due to reduced evaporative water losses. The leaf-disc sampler also significantly reduced sample variability between individual measurements. This instrument can be used for many other laboratory and field measurements that necessitate leaf disc sampling. PMID:16664879

  2. Leaf transpiration efficiency in corn varieties grown at elevated carbon dioxide

    USDA-ARS?s Scientific Manuscript database

    Higher leaf transpiration efficiency (TE) without lower photosynthesis has been identified in some varieties of corn in field tests, and could be a useful trait to improve yield under dry conditions without sacrificing yield under favorable conditions. However, because the carbon dioxide concentrat...

  3. Freeze-Drying of Plant Tissue Containing HBV Surface Antigen for the Oral Vaccine against Hepatitis B

    PubMed Central

    Milczarek, Magdalena; Pajtasz-Piasecka, Elżbieta; Wietrzyk, Joanna

    2014-01-01

    The aim of this study was to develop a freeze-drying protocol facilitating successful processing of plant material containing the small surface antigen of hepatitis B virus (S-HBsAg) while preserving its VLP structure and immunogenicity. Freeze-drying of the antigen in lettuce leaf tissue, without any isolation or purification step, was investigated. Each process step was consecutively evaluated and the best parameters were applied. Several drying profiles and excipients were tested. The profile of 20°C for 20 h for primary and 22°C for 2 h for secondary drying as well as sucrose expressed efficient stabilisation of S-HBsAg during freeze-drying. Freezing rate and postprocess residual moisture were also analysed as important factors affecting S-HBsAg preservation. The process was reproducible and provided a product with VLP content up to 200 µg/g DW. Assays for VLPs and total antigen together with animal immunisation trials confirmed preservation of antigenicity and immunogenicity of S-HBsAg in freeze-dried powder. Long-term stability tests revealed that the stored freeze-dried product was stable at 4°C for one year, but degraded at elevated temperatures. As a result, a basis for an efficient freeze-drying process has been established and a suitable semiproduct for oral plant-derived vaccine against HBV was obtained. PMID:25371900

  4. Infrared Drying as a Potential Alternative to Convective Drying for Biltong Production.

    PubMed

    Cherono, Kipchumba; Mwithiga, Gikuru; Schmidt, Stefan

    2016-06-03

    Two infrared systems set at an intensity of 4777 W/m 2 with peak emission wavelengths of 2.5 and 3.5 µm were used to produce biltong by drying differently pre-treated meat. In addition to meat texture and colour, the microbial quality of the biltong produced was assessed by quantifying viable heterotrophic microorganisms using a most probable number (MPN) method and by verifying the presence of presumptive Escherichia coli in samples produced using infrared and conventional convective drying. The two infrared drying systems reduced the heterotrophic microbial burden from 5.11 log 10 MPN/g to 2.89 log 10 MPN/g (2.5 µm) and 3.42 log 10 MPN/g (3.5 µm), respectively. The infrared systems achieved an up to one log higher MPN/g reduction than the convective system. In biltong samples produced by short wavelength (2.5 µm) infrared drying, E. coli was not detectable. This study demonstrates that the use of short wavelength infrared drying is a potential alternative to conventional convective drying by improving the microbiological quality of biltong products while at the same time delivering products of satisfactory quality.

  5. Vertical leaf area distribution, light transmittance, and application of the Beer-Lambert Law in four mature hardwood stands in the southern Appalachians

    Treesearch

    James M. Vose; Neal H. Sullivan; Barton D. Clinton; Paul V. Bolstad

    1995-01-01

    We quantified stand leaf area index and vertical leaf area distribution, and developed canopy extinction coefficients (k), in four mature hardwood stands. Leaf area index, calculated from litter fall and specific leaf area (cm²·g-1), ranged from 4.3 to 5.4 m²·m-2. In three of the four stands, leaf area was distributed in...

  6. Response of carnation (Dianthus caryophyllus) cultivars to different postharvest preservatives.

    PubMed

    Adugna, Biniam; Belew, Derbew; Kassa, Negussie

    2013-10-01

    Experiments were conducted to assess the effect of selected pulsing solutions on the days to flower bud shrinkage, leaf wilting and petal edge drying occurrence of carnation cultivars (Green-Go and Galy). The pulsing solutions used for this investigation were Silver Thiosulfate (STS) (0.2, 0.6, 1 mM) and also ethanol (6, 8, 10%), both received equal amount of sucrose (10%). Besides, to simulate the actual practice of the farm (0.4 mM Silver Thiosulfate (STS) plus 0.3 mM T.O.G) was used as a standard control. Senescence symptoms such as flower bud shrinkage, petal edge drying and leaf wilting were monitored. The results obtained showed that 1 mM STS plus 25 g sucrose achieved rapid petal edge drying for Green-Go cultivar. On the other hand, positive effects were also observed in days to flower bud shrinkage extended by 6 mM Silver Thiosulfate (STS) plus 25 g sucrose and being in par with 8% ethanol plus 25 g sucrose for Green-Go cultivar. Subsequently, the standard control, 0.6 mM Silver Thiosulfate (STS) plus 25 g sucrose and 8% ethanol plus 25 g sucrose attended comparable increment on the days to leaf wilting occurrences.

  7. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests

    USGS Publications Warehouse

    Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott

    2016-01-01

    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.

  8. Alpha-glucosidase Inhibitory and Antioxidant Potential of Antidiabetic Herb Alternanthera sessilis: Comparative Analyses of Leaf and Callus Solvent Fractions.

    PubMed

    Chai, Tsun-Thai; Khoo, Chee-Siong; Tee, Chong-Siang; Wong, Fai-Chu

    2016-01-01

    Alternanthera sessilis is a medicinal herb which is consumed as vegetable and used as traditional remedies of various ailments in Asia and Africa. This study aimed to investigate the antiglucosidase and antioxidant activity of solvent fractions of A. sessilis leaf and callus. Leaf and callus methanol extracts were fractionated to produce hexane, chloroform, ethyl acetate, butanol, and water fractions. Antiglucosidase and 1,1-diphenyl-2-picrylhydrazyl scavenging activities as well as total phenolic (TP), total flavonoid (TF), and total coumarin (TC) contents were evaluated. Lineweaver-Burk plot analysis was performed on leaf and callus fractions with the strongest antiglucosidase activity. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractions. Callus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractions. LEF and CEF were identified as noncompetitive and competitive α-glucosidase inhibitors, respectively. LEF and CEF had greater antiglucosidase activity than acarbose. Leaf fractions had higher phytochemical contents than callus fractions. LEF had the highest TP, TF, and TC contents. Antiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. LEF had potent antiglucosidase activity and concurrent antioxidant activity. CEF had the highest antiglucosidase activity among all fractions. Callus culture is a promising tool for enhancing production of potent α-glucosidase inhibitors. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractionsCallus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg

  9. Response of Leaf Water Potential, Stomatal Resistance, and Leaf Rolling to Water Stress

    PubMed Central

    O'Toole, John C.; Cruz, Rolando T.

    1980-01-01

    Numerous studies have associated increased stomatal resistance with response to water deficit in cereals. However, consideration of change in leaf form seems to have been neglected. The response of adaxial and abaxial stomatal resistance and leaf rolling in rice to decreasing leaf water potential was investigated. Two rice cultivars were subjected to control and water stress treatments in a deep (1-meter) aerobic soil. Concurrent measurements of leaf water potential, stomatal resistance, and degree of leaf rolling were made through a 29-day period after cessation of irrigation. Kinandang Patong, an upland adapted cultivar, maintained higher dawn and midday leaf water potential than IR28, a hybrid selected in irrigated conditions. This was not explained by differences in leaf diffusive resistance or leaf rolling, and is assumed to result from a difference in root system extent. Stomatal resistance increased more on the abaxial than the adaxial leaf surface in both cultivars. This was associated with a change in leaf form or rolling inward of the upper leaf surface. Both responses, increased stomatal resistance and leaf rolling, were initiated in a similar leaf water potential range (−8 to −12 bars). Leaves of IR28 became fully rolled at leaf water potential of about −22 bars; however, total leaf diffusive resistance was only about 4 to 5 seconds per centimeter (conductance 0.25 to 0.2 centimeter per second) at that stage. Leaf diffusive resistance and degree of leaf rolling were linearly related to leaf water potential. Thus, leaf rolling in rice may be used as an estimate of the other two less obvious effects of water deficit. PMID:16661206

  10. Influence of Water Relations and Temperature on Leaf Movements of Rhododendron Species 1

    PubMed Central

    Nilsen, Erik Tallak

    1987-01-01

    Rhododendron maximum L. and R. Catawbiense L. are subcanopy evergreen shrubs of the eastern United States deciduous forest. Field measurements of climate factors and leaf movements of these species indicated a high correlation between leaf temperature and leaf curling; and between leaf water potential and leaf angle. Laboratory experiments were performed to isolate the influence of temperature and cellular water relations on leaf movements. Significant differences were found between the patterns of temperature induction of leaf curling in the two species. Leaves of the species which curled at higher temperatures (R. catawbiense) also froze at higher leaf temperatures. However, in both cases leaf curling occurred at leaf temperatures two to three degrees above the leaf freezing point. Pressure volume curves indicated that cellular turgor loss was associated with a maximum of 45% curling while 100% or more curling occurred in field leaves which still had positive cell turgor. Moisture release curves indicated that 70% curling requires a loss of greater than 60% of symplastic water which corresponds to leaf water potentials far below those experienced in field situations. Conversely, most laboratory induced changes in leaf angle could be related to leaf cell turgor loss. PMID:16665296

  11. Field measurements of dry deposition to spruce foliage and petri dishes in the Black Forest, F.R.G.

    USGS Publications Warehouse

    Shanley, J.B.

    1989-01-01

    Dry deposition fluxes Ca2+, Mg2+, K+, Mn2+, Pb2+ and SO42- to spruce foliage and petri dishes were measured in two high-elevation sites (>900 m) in the southern Black Forest, F.R.G., during 12 periods (2-7 days, each) from mid-September to mid-November, 1983, In situ extraction of deposited material from small spruce branches allowed repeated use of the same foliar collecting surfaces for a direct comparison of deposition between periods. Fluxes were corrected for leaching of internally cycled constituents using factors determined from serial extraction experiments. The ratio of flux to petri dishes vs foliage (P/F) was >1.0 for Ca2+, Pb2+ and SO42-, and somewhat 900 m) in the southern Black Forest, F.R.G., during 12 periods (2-7 days, each) from mid-September to mid-November, 1983. The ratio of flux to petri dishes vs foliage (P/F) was >1.0 for Ca2+, Pb2+, and SO42-, and somewhat <1.0 but more constant for Mg2+. Temporal variations in dry deposition fluxes at an exposed site near the industrialized Rhine Valley correlated with variations in total air particulate concentrations at a nearby air quality station. Deposition rates were comparable in magnitude but different in temporal pattern at a remote site in the Black Forest interior. Fluxes at each site reached a minimum during the period of 4-9 November when a regional air inversion confined pollutants to the Rhine Valley below the study sites. High fluxes accompanied the inversion break-up.

  12. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm.

    PubMed

    Koch, George W; Sillett, Stephen C; Antoine, Marie E; Williams, Cameron B

    2015-02-01

    Structural and physiological changes that occur as trees grow taller are associated with increased hydraulic constraints on leaf gas exchange, yet it is unclear if leaf-level constraints influence whole-tree growth as trees approach their maximum size. We examined variation in leaf physiology, leaf area to sapwood area ratio (L/S), and annual aboveground growth across a range of tree heights in Eucalyptus regnans. Leaf photosynthetic capacity did not differ among upper crown leaves of individuals 61.1-92.4 m tall. Maximum daily and integrated diurnal stomatal conductance (g s) averaged 36 and 34% higher, respectively, in upper crown leaves of ~60-m-tall, 80-year-old trees than in ~90-m-tall, 300-year-old trees, with larger differences observed on days with a high vapor pressure deficit (VPD). Greater stomatal regulation in taller trees resulted in similar minimum daily leaf water potentials (Ψ L) in shorter and taller trees over a broad range of VPDs. The long-term stomatal limitation on photosynthesis, as inferred from leaf δ (13)C composition, was also greater in taller trees. The δ (13)C of wood indicated that the bulk of photosynthesis used to fuel wood production in the main trunk and branches occurred in the upper crown. L/S increased with tree height, especially after accounting for size-independent variation in crown structure across 27 trees up to 99.8 m tall. Despite greater stomatal limitation of leaf photosynthesis in taller trees, total L explained 95% of the variation in annual aboveground biomass growth among 15 trees measured for annual biomass growth increment in 2006. Our results support a theoretical model proposing that, in the face of increasing hydraulic constraints with height, whole-tree growth is maximized by a resource trade-off that increases L to maximize light capture rather than by reducing L/S to sustain g s.

  13. Modeling seasonal surface temperature variations in secondary tropical dry forests

    NASA Astrophysics Data System (ADS)

    Cao, Sen; Sanchez-Azofeifa, Arturo

    2017-10-01

    Secondary tropical dry forests (TDFs) provide important ecosystem services such as carbon sequestration, biodiversity conservation, and nutrient cycle regulation. However, their biogeophysical processes at the canopy-atmosphere interface remain unknown, limiting our understanding of how this endangered ecosystem influences, and responds to the ongoing global warming. To facilitate future development of conservation policies, this study characterized the seasonal land surface temperature (LST) behavior of three successional stages (early, intermediate, and late) of a TDF, at the Santa Rosa National Park (SRNP), Costa Rica. A total of 38 Landsat-8 Thermal Infrared Sensor (TIRS) data and the Surface Reflectance (SR) product were utilized to model LST time series from July 2013 to July 2016 using a radiative transfer equation (RTE) algorithm. We further related the LST time series to seven vegetation indices which reflect different properties of TDFs, and soil moisture data obtained from a Wireless Sensor Network (WSN). Results showed that the LST in the dry season was 15-20 K higher than in the wet season at SRNP. We found that the early successional stages were about 6-8 K warmer than the intermediate successional stages and were 9-10 K warmer than the late successional stages in the middle of the dry season; meanwhile, a minimum LST difference (0-1 K) was observed at the end of the wet season. Leaf phenology and canopy architecture explained most LST variations in both dry and wet seasons. However, our analysis revealed that it is precipitation that ultimately determines the LST variations through both biogeochemical (leaf phenology) and biogeophysical processes (evapotranspiration) of the plants. Results of this study could help physiological modeling studies in secondary TDFs.

  14. Antimutagenic and anticarcinogenic effects of betel leaf extract against the tobacco-specific nitrosamine 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK).

    PubMed

    Bhide, S V; Padma, P R; Amonkar, A J

    1991-01-01

    Earlier studies showed that betel leaf inhibits the mutagenic action of standard mutagens like benzo[a]pyrene and dimethylbenz[a]anthracene. Since tobacco-specific nitrosamines are the major carcinogens present in unburnt forms of tobacco, we studied the effect of an extract of betel leaf on the mutagenic and carcinogenic actions of one of the most potent, 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK). Betel-leaf extract and hydroxychavicol suppressed the mutagenicity of NNK in both the Ames and the micronucleus test. In studies in mice, betel-leaf extract reduced the tumorigenic effects of NNK by 25%. Concurrent treatment with the extract also inhibited the decreases in levels of vitamin A in liver and plasma induced by NNK. Betel leaf thus has protective effects against the mutagenic, carcinogenic and adverse metabolic effects of NNK in mice.

  15. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production1

    PubMed Central

    Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi

    2015-01-01

    Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. PMID:26438788

  16. Leaf protein and mineral concentrations across the "miracle tree" genus Moringa

    USDA-ARS?s Scientific Manuscript database

    The moringa tree Moringa oleifera is a fast-growing, drought-resistant tree cultivated across the lowland dry tropics worldwide for its nutritious leaves. Despite its nutritious reputation, there has been no systematic survey of the variation in leaf nutritional quality across M. oleifera grown worl...

  17. Solvent-free dry powder coating process for low-cost manufacturing of LiNi1/3Mn1/3Co1/3O2 cathodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Al-Shroofy, Mohanad; Zhang, Qinglin; Xu, Jiagang; Chen, Tao; Kaur, Aman Preet; Cheng, Yang-Tse

    2017-06-01

    We report a solvent-free dry powder coating process for making LiNi1/3Mn1/3Co1/3O2 (NMC) positive electrodes in lithium-ion batteries. This process eliminates volatile organic compound emission and reduces thermal curing time from hours to minutes. A mixture of NMC, carbon black, and poly(vinylidene difluoride) was electrostatically sprayed onto an aluminum current collector, forming a uniformly distributed electrode with controllable thickness and porosity. Charge/discharge cycling of the dry-powder-coated electrodes in lithium-ion half cells yielded a discharge specific capacity of 155 mAh g-1 and capacity retention of 80% for more than 300 cycles when the electrodes were tested between 3.0 and 4.3 V at a rate of C/5. The long-term cycling performance and durability of dry-powder coated electrodes are similar to those made by the conventional wet slurry-based method. This solvent-free dry powder coating process is a potentially lower-cost, higher-throughput, and more environmentally friendly manufacturing process compared with the conventional wet slurry-based electrode manufacturing method.

  18. Growth and yield characteristics of 'Waldmann's Green' leaf lettuce under different photon fluxes from metal halide or incandescent + fluorescent radiation

    NASA Technical Reports Server (NTRS)

    Knight, Sharon L.; Mitchell, Cary A.

    1988-01-01

    Growth of 'Waldmann's Green' leaf lettuce under metal halide radiation was compared with that under In = Fl at the same photosynthetic photon flux (920 micromol/s/sq m) to evaluate the influence of lamp type on growth. No differences in leaf dry weight, leaf area, relative growth rate or photosynthesis occurred after 8 days of exposure to these radiation treatments for 20 h/day.

  19. Simplified methods for screening cowpea cultivars for manganese leaf-tissue tolerance. [Vigna unguiculata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wissemeier, A.H.; Horst, W.J.

    In cowpea (Vigna unguiculata (L.) Walp.) dark brown speckles on old leaves are typical symptoms of Mn toxicity and indicate Mn sensitivity of leaf tissue. Induction and subsequent quantification of brown Mn speckles in leaf tissues were used to screen cowpea cultivars for Mn leaf-tissue tolerance using three different techniques: (i) leaf cuttings cultured for 22 days in solution culture with 20 {mu}M MnSO{sub 4}, (ii) leaf rings mounted on leaves of intact plants and filled with 500 {mu}M MnSO{sub 4} for 5 days, and (iii) leaf disks floated for 3 days on 500 {mu}M MnSO{sub 4}. Density of brownmore » speckles differed considerably among the six cultivars tested, and was not related to the Mn concentrations of the leaf tissues. There were close relationships between genotypic Mn-toxicity symptom expression and depression of dry matter production of the cultivars at high Mn supply in a long-term sand culture experiment. The floating leaf-disk method is particularly suited for screening large numbers of cowpea cultivars for Mn leaf-tissue tolerance because it requires only 3 days. The ranking of the cultivars for Mn tolerance was highly correlated to Mn tolerance of intact plants.« less

  20. Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis.

    PubMed

    Li, Xiaojie; Han, Liping; Zhao, Yanying; You, Zhenzhen; Dong, Hansong; Zhang, Chunling

    2014-03-01

    Hpa1 is a harpin protein produced by Xanthomonas oryzae, an important bacterial pathogen of rice, and has the growth-promoting activity in plants. To understand the molecular basis for the function of Hpa1, we generated an inactive variant protein, Hpa1 delta NT, by deleting the nitroxyl-terminal region of the Hpa1 sequence and compared Hpa1 delta NT with the full-length protein in terms of the effects on vegetative growth and related physiological responses in Arabidopsis. When Hpa1 was applied to plants, it acted to enhance the vegetative growth but did not affect the floral development. Enhanced plant growth was accompanied by induced expression of growth-promoting genes in plant leaves. The growth-promoting activity of Hpa1 was further correlated with a physiological consequence shown as promoted leaf photosynthesis as a result of facilitated CO2 conduction through leaf stomata and mesophyll cells. On the contrary, plant growth, growth-promoting gene expression, and the physiological consequence changed little in response to the Hpa1 delta NT treatment. These analyses suggest that Hpa1 requires the nitroxyl-terminus to facilitate CO2 transport inside leaf cells and promote leaf photosynthesis and vegetative growth of the plant.

  1. Sweet potato SPAP1 is a typical aspartic protease and participates in ethephon-mediated leaf senescence.

    PubMed

    Chen, Hsien-Jung; Huang, Yu-Hsuan; Huang, Guan-Jhong; Huang, Shyh-Shyun; Chow, Te-Jin; Lin, Yaw-Huei

    2015-05-15

    Plant aspartic proteases are generally divided into three categories: typical, nucellin-like, and atypical aspartic proteases based on their gene and protein structures. In this report, a full-length cDNA SPAP1 was cloned from sweet potato leaves, which contained 1515 nucleotides (504 amino acids) and exhibited high amino acid sequence identity (ca. 51-72%) with plant typical aspartic proteases, including tomato LeAspP, potato StAsp, and wheat WAP2. SPAP1 also contained conserved DTG and DSG amino acid residues within its catalytic domain and plant specific insert (PSI) at the C-terminus. The cDNA corresponding to the mature protein (starting from the 66th to 311th amino acid residues) without PSI domain was constructed with pET30a expression vector for fusion protein and antibody production. RT-PCR and protein blot hybridization showed that SPAP1 expression level was the highest in L3 mature leaves, then gradually declined until L5 completely yellow leaves. Ethephon, an ethylene-releasing compound, also enhanced SPAP1 expression at the time much earlier than the onset of leaf senescence. Exogenous application of SPAP1 fusion protein promoted ethephon-induced leaf senescence, which could be abolished by pre-treatment of SPAP1 fusion protein with (a) 95 °C for 5 min, (b) aspartic protease inhibitor pepstatin A, and (c) anti-SPAP1 antibody, respectively. Exogenous SPAP1 fusion protein, whereas, did not significantly affect leaf senescence under dark. These data conclude that sweet potato SPAP1 is a functional typical aspartic protease and participates in ethephon-mediated leaf senescence. The SPAP1-promoted leaf senescence and its activity are likely not associated with the PSI domain. Interaction of ethephon-inducible components for effective SPAP1 promotion on leaf senescence is also suggested. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Rapid Leaf Deployment Strategies in a Deciduous Savanna

    PubMed Central

    2016-01-01

    Deciduous plants avoid the costs of maintaining leaves in the unfavourable season, but carry the costs of constructing new leaves every year. Deciduousness is therefore expected in ecological situations with pronounced seasonality and low costs of leaf construction. In our study system, a seasonally dry tropical savanna, many trees are deciduous, suggesting that leaf construction costs must be low. Previous studies have, however, shown that nitrogen is limiting in this system, suggesting that leaf construction costs are high. Here we examine this conundrum using a time series of soil moisture availability, leaf phenology and nitrogen distribution in the tree canopy to illustrate how trees resorb nitrogen before leaf abscission and use stored reserves of nitrogen and carbon to construct new leaves at the onset of the growing season. Our results show that trees deployed leaves shortly before and in anticipation of the first rains with its associated pulse of nitrogen mineralisation. Our results also show that trees rapidly constructed a full canopy of leaves within two weeks of the first rains. We detected an increase in leaf nitrogen content that corresponded with the first rains and with the movement of nitrogen to more distal branches, suggesting that stored nitrogen reserves are used to construct leaves. Furthermore the stable carbon isotope ratios (δ13C) of these leaves suggest the use of stored carbon for leaf construction. Our findings suggest that the early deployment of leaves using stored nitrogen and carbon reserves is a strategy that is integrally linked with the onset of the first rains. This strategy may confer a competitive advantage over species that deploy leaves at or after the onset of the rains. PMID:27310398

  3. The effect of leaf size on the microwave backscattering by corn

    NASA Technical Reports Server (NTRS)

    Paris, J. F.

    1986-01-01

    Attema and Ulaby (1978) proposed the cloud model to predict the microwave backscattering properties of vegetation. This paper describes a modification in which the biophysical properties and microwave properties of vegetation are related at the level of the individual scatterer (e.g., the leaf or the stalk) rather than at the level of the aggregated canopy (e.g., the green leaf area index). Assuming that the extinction cross section of an average leaf was proportional to its water content, that a power law relationship existed between the backscattering cross section of an average green corn leaf and its area, and that the backscattering coefficient of the surface was a linear function of its volumetric soil moisture content, it is found that the explicit inclusion of the effects of corn leaf size in the model led to an excellent fit between the observed and predicted backscattering coefficients. Also, an excellent power law relationship existed between the backscattering cross section of a corn leaf and its area.

  4. Influence of Freeze-Drying and Oven-Drying Post Blanching on the Nutrient Composition of the Edible Insect Ruspolia differens.

    PubMed

    Fombong, Forkwa Tengweh; Van Der Borght, Mik; Vanden Broeck, Jozef

    2017-09-16

    The longhorn grasshopper, Ruspolia differens (Serville), plays an important role as a food source across Sub-Saharan Africa, where it is consumed as a delicacy in both rural and urban areas. The effect of two drying methods (freeze-drying and oven-drying), employed after blanching, on the proximate, fatty acid and mineral composition of the two most common morphs was determined. Ruspolia differens grasshoppers were harvested in Uganda and Kenya from wild swarms during the rainy periods of November-December 2016. Based on cuticular coloration, we identified three morphs, green, brown and purple, which occurred at a ratio of 65:33:2, respectively. Results indicated that these insects have a high lipid content of 36%, as well as significant protein levels ranging between 33% and 46% dry matter. Oleic acid (44%) and palmitic acid (28%) were the two most abundant fatty acids; while the presence of arachidonic acid (0.6%) and docosahexaenoic acid (0.21%) suggests that Ruspolia differens is also a source of polyunsaturated fatty acids. The observed amino acid profile showed similar trends in all morphs, and all essential amino acids were present. Calcium (896-1035 mg/100 g), potassium (779-816 mg/100 g) and phosphorus (652-685 mg/100 g) were quite high among the minerals. The presence of the trace elements iron (217-220 mg/100 g), zinc (14.2-14.6 mg/100 g), manganese (7.4-8.3 mg/100 g) and copper (1.66 mg/100 g) suggests that inclusion of these grasshoppers in human diets may aid in combatting micronutrient deficiencies. Oven-drying Ruspolia differens delivered the same nutritional quality as freeze-drying. Hence, both drying approaches can be adequately used to formulate insect-based food products without noticeable nutritional changes.

  5. Influence of Freeze-Drying and Oven-Drying Post Blanching on the Nutrient Composition of the Edible Insect Ruspolia differens

    PubMed Central

    Fombong, Forkwa Tengweh; Van Der Borght, Mik; Vanden Broeck, Jozef

    2017-01-01

    The longhorn grasshopper, Ruspolia differens (Serville), plays an important role as a food source across Sub-Saharan Africa, where it is consumed as a delicacy in both rural and urban areas. The effect of two drying methods (freeze-drying and oven-drying), employed after blanching, on the proximate, fatty acid and mineral composition of the two most common morphs was determined. Ruspolia differens grasshoppers were harvested in Uganda and Kenya from wild swarms during the rainy periods of November–December 2016. Based on cuticular coloration, we identified three morphs, green, brown and purple, which occurred at a ratio of 65:33:2, respectively. Results indicated that these insects have a high lipid content of 36%, as well as significant protein levels ranging between 33% and 46% dry matter. Oleic acid (44%) and palmitic acid (28%) were the two most abundant fatty acids; while the presence of arachidonic acid (0.6%) and docosahexaenoic acid (0.21%) suggests that Ruspolia differens is also a source of polyunsaturated fatty acids. The observed amino acid profile showed similar trends in all morphs, and all essential amino acids were present. Calcium (896–1035 mg/100 g), potassium (779–816 mg/100 g) and phosphorus (652–685 mg/100 g) were quite high among the minerals. The presence of the trace elements iron (217–220 mg/100 g), zinc (14.2–14.6 mg/100 g), manganese (7.4–8.3 mg/100 g) and copper (1.66 mg/100 g) suggests that inclusion of these grasshoppers in human diets may aid in combatting micronutrient deficiencies. Oven-drying Ruspolia differens delivered the same nutritional quality as freeze-drying. Hence, both drying approaches can be adequately used to formulate insect-based food products without noticeable nutritional changes. PMID:28926949

  6. Dry Season Impact on Physiological Functioning of Two Tropical Tree Species in the Daintree Rainforest, Northeast Australia

    NASA Astrophysics Data System (ADS)

    Cernusak, L. A.; Dempsey, R.; Cheesman, A.; Meir, P.; Laurance, S.

    2016-12-01

    We measured leaf gas exchange, leaf biochemistry, and stem growth in two tropical tree species in the Daintree rainforest. The site experiences an average dry season length of three months, with global climate change predictions indicating that this could increase. Of the two studied species, Elaeocarpus angustifolius is wide-spread and early-successional, whereas Endiandra microneura is locally endemic and late-successional. Measurements started in 2014 and ended in 2015, thus encompassing the 2014 dry season. Upper canopy foliage was accessed from a 48 m tall canopy crane. Photosynthetic rates were higher during the wet season in Elaeocarpus than in Endiandra, consistent with its pioneering habit. Elaeocarpus showed larger reductions in both photosynthesis and stomatal conductance in response to the dry season than did Endiandra. Dry season depression of photosynthesis was associated with reduced intercellular carbon dioxide concentrations in Endiandra, but not in Elaeocarpus, indicating a role for photo-inhibition in restricting photosynthesis during the dry season in the early successional species, but not in the late successional species. Consistently, Endiandra invested more heavily in photoprotective and anti-oxidative compounds in its upper canopy foliage than did Elaeocarpus. Stem growth rates were four-fold higher in Elaeocarpus than in Endiandra during the wet season, reflecting the successional status of the two species. Stem growth slowed in both species in response to the dry season, and all but ceased by the late dry season. With the onset of the early wet season, stem growth increased markedly, and Elaeocarpus again maintained much faster growth than Endiandra. Overall, our results indicate that at the leaf level, biochemical and physiological processes associated with photosynthesis were more vulnerable to dry season stress in Elaeocarpus than in Endiandra; however, at the whole-plant level, our measurements and the geographic distribution of

  7. Hydrolysis of various thai agricultural biomasses using the crude enzyme from Aspergillus aculeatus iizuka FR60 isolated from soil

    PubMed Central

    Boonmee, Atcha

    2012-01-01

    In this study, forty-two fungi from soil were isolated and tested for their carboxymethyl cellulase (CMCase) and xylanase activities. From all isolates, the fungal isolate FR60, which was identified as Aspergillus aculeatus Iizuka, showed high activities in both CMCase and xylanase with 517 mU/mg protein and 550 mU/mg protein, respectively. The crude enzyme from A. aculeatus Iizuka FR60 could hydrolyze several agricultural residues such as corncob, and sweet sorghum leaf and stalk at comparable rates with respect to the tested commercial enzymes and with a maximum rate in rice hull hydrolysis (29 μg sugar g-1 dry weight substrate mg-1 enzyme hr-1). The highest amount of glucose was obtained from corncob by using the crude enzyme from A. aculeatus Iizuka FR60 (10.1 g/100 g dry substrate). From overall enzymatic treatment results, the lowest sugar yield was from rice hulls treatment (1.6 g/100 g dry weight) and the highest amount of reducing sugar was obtained from rice straw treatment (15.3 g/100 g dry weight). Among tested agricultural wastes, rice hull could not be effectively hydrolyzed by enzymes, whereas sugarcane leaf and stalk, and peanut shell could be effectively hydrolyzed (30-31% total sugar comparing with total sugar yield from acid treatment). PMID:24031852

  8. Coordination of leaf structure and gas exchange along a height gradient in a tall conifer.

    PubMed

    Woodruff, D R; Meinzer, F C; Lachenbruch, B; Johnson, D M

    2009-02-01

    The gravitational component of water potential and frictional resistance during transpiration lead to substantial reductions in leaf water potential (Psi(l)) near the tops of tall trees, which can influence both leaf growth and physiology. We examined the relationships between morphological features and gas exchange in foliage collected near the tops of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees of different height classes ranging from 5 to 55 m. This sampling allowed us to investigate the effects of tree height on leaf structural characteristics in the absence of potentially confounding factors such as irradiance, temperature, relative humidity and branch length. The use of cut foliage for measurement of intrinsic gas-exchange characteristics allowed identification of height-related trends without the immediate influences of path length and gravity. Stomatal density, needle length, needle width and needle area declined with increasing tree height by 0.70 mm(-2) m(-1), 0.20 mm m(-1), 5.9 x 10(-3) mm m(-1) and 0.012 mm(2) m(-1), respectively. Needle thickness and mesophyll thickness increased with tree height by 4.8 x 10(-2) mm m(-1) and 0.74 microm m(-1), respectively. Mesophyll conductance (g(m)) and CO(2) assimilation in ambient [CO(2)] (A(amb)) decreased by 1.1 mmol m(-2) s(-1) per m and 0.082 micromol m(-2) s(-1) per m increase in height, respectively. Mean reductions in g(m) and A(amb) of foliage from 5 to 55 m were 47% and 42%, respectively. The observed trend in A(amb) was associated with g(m) and several leaf anatomic characteristics that are likely to be determined by the prevailing vertical tension gradient during foliar development. A linear increase in foliar delta(13)C values with height (0.042 per thousand m(-1)) implied that relative stomatal and mesophyll limitations of photosynthesis in intact shoots increased with height. These data suggest that increasing height leads to both fixed structural constraints on leaf gas exchange and

  9. Anti-proliferation and Apoptosis Induction of Aqueous Leaf Extract of Carica papaya L. on Human Breast Cancer Cells MCF-7.

    PubMed

    Zuhrotun Nisa, Fatma; Astuti, Mary; Murdiati, Agnes; Mubarika Haryana, Sofia

    2017-01-01

    Breast cancer is the most frequently diagnosed cancer in women. Chemotherapy is the main method of breast cancer treatment but there are side effects. Carica papaya leaves is vegetable foods consumed by most people of Indonesia have potential as anticancer. The aim of this study was to investigate anti-proliferative and apoptotic induced effect of aqueous papaya leaves extracts on human breast cancer cell lines MCF-7. Inhibitory on cell proliferation was measured by MTT assay while apoptosis induction was measured using Annexin V. The results showed that papaya leaf can inhibit the proliferation of human breast cancer cells MCF-7 with IC50 in 1319.25 μg mL-1. The IC50 values of papaya leaf extract was higher than the IC50 value quercetin and doxorubicin. Papaya leaf extract can also induce apoptosis of breast cancer cells MCF-7 about 22.54% for concentration 659.63 μg mL-1 and about 20.73% for concentration 329.81 μg mL-1. The percentage of cell apoptosis of papaya leaf extract lower than doxorubicin but higher than quercetin. This study indicated that papaya leaf extract have potential as anticancer through mechanism anti-proliferation and apoptosis induction.

  10. Variation in levels of some leaf enzymes.

    PubMed

    Downton, J; Slatyer, R O

    1971-03-01

    Several procedures were compared for efficiency in the extraction of certain leaf enzymes (phosphoenolpyruvate carboxylase, ribulose 1,5-diphosphate carboxylase and malate dehydrogenase) in Atriplex hastata (a "C3" species exhibiting conventional photosynthetic metabolism), and in A. spongiosa (a "C4" species in which the initial photosynthetic products are C4 dicarboxylic acids). Glycolate oxidase was also assayed in some cases, and Atriplex nummularia and Sorghum bicolor were also used as test material. A simple procedure, involving a mortar and pestle grind with carborundum added to the grinding mixture, was found to be as effective as glass bead grind procedures. In addition, it was more rapid and showed less variability with different operations.Using the carborundum grind procedure, sources of variability in enzyme activity in apparently uniform leaves were compared, as were effects of time of day, leaf age and storage procedure. In general, if apparently uniform leaves could be selected, variability in levels of enzyme activity appeared to be relatively small, not exceeding about 12%. Time of day also appeared to be relatively unimportant for the enzymes examined. However, the ontogentic status of the plant was found to be an important source of variability. Leaf age was also a major source of variability where the activity was expressed on a fresh weight basis, but specific activity (i.e. activity expressed on a protein basis) was relatively constant, at least with the range of species and leaf ages examined here.Storage of fresh samples in liquid nitrogen for 24 h, prior to extraction and assay, led to only a small reduction in activity, but substantial changes occurred if storage was in dry ice or in ice and also where extracts were stored in a deep freeze.

  11. Litter Breakdown and Microbial Succession on Two Submerged Leaf Species in a Small Forested Stream

    PubMed Central

    Newman, Molli M.; Liles, Mark R.; Feminella, Jack W.

    2015-01-01

    Microbial succession during leaf breakdown was investigated in a small forested stream in west-central Georgia, USA, using multiple culture-independent techniques. Red maple (Acer rubrum) and water oak (Quercus nigra) leaf litter were incubated in situ for 128 days, and litter breakdown was quantified by ash-free dry mass (AFDM) method and microbial assemblage composition using phospholipid fatty acid analysis (PLFA), ribosomal intergenic spacer analysis (RISA), denaturing gradient gel electrophoresis (DGGE), and bar-coded next-generation sequencing of 16S rRNA gene amplicons. Leaf breakdown was faster for red maple than water oak. PLFA revealed a significant time effect on microbial lipid profiles for both leaf species. Microbial assemblages on maple contained a higher relative abundance of bacterial lipids than oak, and oak microbial assemblages contained higher relative abundance of fungal lipids than maple. RISA showed that incubation time was more important in structuring bacterial assemblages than leaf physicochemistry. DGGE profiles revealed high variability in bacterial assemblages over time, and sequencing of DGGE-resolved amplicons indicated several taxa present on degrading litter. Next-generation sequencing revealed temporal shifts in dominant taxa within the phylum Proteobacteria, whereas γ-Proteobacteria dominated pre-immersion and α- and β-Proteobacteria dominated after 1 month of instream incubation; the latter groups contain taxa that are predicted to be capable of using organic material to fuel further breakdown. Our results suggest that incubation time is more important than leaf species physicochemistry in influencing leaf litter microbial assemblage composition, and indicate the need for investigation into seasonal and temporal dynamics of leaf litter microbial assemblage succession. PMID:26098687

  12. Analyzing the performance of PROSPECT model inversion based on different spectral information for leaf biochemical properties retrieval

    NASA Astrophysics Data System (ADS)

    Sun, Jia; Shi, Shuo; Yang, Jian; Du, Lin; Gong, Wei; Chen, Biwu; Song, Shalei

    2018-01-01

    Leaf biochemical constituents provide useful information about major ecological processes. As a fast and nondestructive method, remote sensing techniques are critical to reflect leaf biochemistry via models. PROSPECT model has been widely applied in retrieving leaf traits by providing hemispherical reflectance and transmittance. However, the process of measuring both reflectance and transmittance can be time-consuming and laborious. Contrary to use reflectance spectrum alone in PROSPECT model inversion, which has been adopted by many researchers, this study proposes to use transmission spectrum alone, with the increasing availability of the latter through various remote sensing techniques. Then we analyzed the performance of PROSPECT model inversion with (1) only transmission spectrum, (2) only reflectance and (3) both reflectance and transmittance, using synthetic datasets (with varying levels of random noise and systematic noise) and two experimental datasets (LOPEX and ANGERS). The results show that (1) PROSPECT-5 model inversion based solely on transmission spectrum is viable with results generally better than that based solely on reflectance spectrum; (2) leaf dry matter can be better estimated using only transmittance or reflectance than with both reflectance and transmittance spectra.

  13. Facile approach to synthesis the curly leaf-like Nano-sheets of g-C3N4 with enhanced photocatalytic ability

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiren; Li, Kebin; Muhmood, Tahir; Xia, Mingzhu; Wang, Fengyun

    2018-03-01

    Exfoliation of porous g-C3N4 has been proved a very effective way to prepare g-C3N4 nanosheets (2D layered materials). Here, we present an environment-friendly, high-efficiency and easy scale-up preparation method of curly leaf-like g-C3N4 nanosheets (CL-CN) by liquid-phase exfoliation of honeycomb-like porous g-C3N4 (HP-CN). Two-dimensional curly nanosheets have induced excellent physicochemical properties, i.e. large surface area, high fluorescence quantum efficiency, wide band gap and good water-dispersibility. The photocatalytic performance of CL-CN in degradation of RhB under visible light is much better than that of honeycomb-like porous g-C3N4 and bulk g-C3N4. The improved photocatalytic performance of CL-CN is well explained by the improved physicochemical properties and photocatalytic mechanism. In addition, CL-CN being a 2D layered material with excellent photoluminescence characteristic and non-toxic behavior can be widely applied in bio-medicine, bio-imaging and biosensors field.

  14. Genetic mapping of the LOBED LEAF 1 (ClLL1) gene to a 127.6-kb region in watermelon (Citrullus lanatus L.)

    PubMed Central

    Wei, Chunhua; Chen, Xiner; Wang, Zhongyuan; Liu, Qiyan; Li, Hao; Zhang, Yong; Ma, Jianxiang; Yang, Jianqiang

    2017-01-01

    The lobed leaf character is a unique morphologic trait in crops, featuring many potential advantages for agricultural productivity. Although the majority of watermelon varieties feature lobed leaves, the genetic factors responsible for lobed leaf formation remain elusive. The F2:3 leaf shape segregating population offers the opportunity to study the underlying mechanism of lobed leaf formation in watermelon. Genetic analysis revealed that a single dominant allele (designated ClLL1) controlled the lobed leaf trait. A large-sized F3:4 population derived from F2:3 individuals was used to map ClLL1. A total of 5,966 reliable SNPs and indels were identified genome-wide via a combination of BSA and RNA-seq. Using the validated SNP and indel markers, the location of ClLL1 was narrowed down to a 127.6-kb region between markers W08314 and W07061, containing 23 putative ORFs. Expression analysis via qRT-PCR revealed differential expression patterns (fold-changes above 2-fold or below 0.5-fold) of three ORFs (ORF3, ORF11, and ORF18) between lobed and non-lobed leaf plants. Based on gene annotation and expression analysis, ORF18 (encoding an uncharacterized protein) and ORF22 (encoding a homeobox-leucine zipper-like protein) were considered as most likely candidate genes. Furthermore, sequence analysis revealed no polymorphisms in cDNA sequences of ORF18; however, two notable deletions were identified in ORF22. This study is the first report to map a leaf shape gene in watermelon and will facilitate cloning and functional characterization of ClLL1 in future studies. PMID:28704497

  15. Genetic mapping of the LOBED LEAF 1 (ClLL1) gene to a 127.6-kb region in watermelon (Citrullus lanatus L.).

    PubMed

    Wei, Chunhua; Chen, Xiner; Wang, Zhongyuan; Liu, Qiyan; Li, Hao; Zhang, Yong; Ma, Jianxiang; Yang, Jianqiang; Zhang, Xian

    2017-01-01

    The lobed leaf character is a unique morphologic trait in crops, featuring many potential advantages for agricultural productivity. Although the majority of watermelon varieties feature lobed leaves, the genetic factors responsible for lobed leaf formation remain elusive. The F2:3 leaf shape segregating population offers the opportunity to study the underlying mechanism of lobed leaf formation in watermelon. Genetic analysis revealed that a single dominant allele (designated ClLL1) controlled the lobed leaf trait. A large-sized F3:4 population derived from F2:3 individuals was used to map ClLL1. A total of 5,966 reliable SNPs and indels were identified genome-wide via a combination of BSA and RNA-seq. Using the validated SNP and indel markers, the location of ClLL1 was narrowed down to a 127.6-kb region between markers W08314 and W07061, containing 23 putative ORFs. Expression analysis via qRT-PCR revealed differential expression patterns (fold-changes above 2-fold or below 0.5-fold) of three ORFs (ORF3, ORF11, and ORF18) between lobed and non-lobed leaf plants. Based on gene annotation and expression analysis, ORF18 (encoding an uncharacterized protein) and ORF22 (encoding a homeobox-leucine zipper-like protein) were considered as most likely candidate genes. Furthermore, sequence analysis revealed no polymorphisms in cDNA sequences of ORF18; however, two notable deletions were identified in ORF22. This study is the first report to map a leaf shape gene in watermelon and will facilitate cloning and functional characterization of ClLL1 in future studies.

  16. Deer predation on leaf miners via leaf abscission

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kazuo; Sugiura, Shinji

    2008-03-01

    The evergreen oak Quercus gilva Blume sheds leaves containing mines of the leaf miner Stigmella sp. (Lepidoptera: Nepticulidae) earlier than leaves with no mines in early spring in Nara, central Japan. The eclosion rates of the leaf miner in abscised and retained leaves were compared in the laboratory to clarify the effects of leaf abscission on leaf miner survival in the absence of deer. The leaf miner eclosed successfully from both fallen leaves and leaves retained on trees. However, sika deer ( Cervus nippon centralis Kishida) feed on the fallen mined leaves. Field observations showed that deer consume many fallen leaves under Q. gilva trees, suggesting considerable mortality of leaf miners due to deer predation via leaf abscission. This is a previously unreported relationship between a leaf miner and a mammalian herbivore via leaf abscission.

  17. Satellite passive microwave remote sensing for estimating diurnal variation of leaf water content, as a proxy of evapotranspiration, in the Dry Chaco Forest, Argentina

    NASA Astrophysics Data System (ADS)

    Barraza Bernadas, V.; Grings, F.; Ferrazzoli, P.; Carbajo, A.; Fernandez, R.; Karszenbaum, H.

    2012-12-01

    Evapotranspiration (ET) is a key component of water cycle, which is strongly linked with environmental condition and vegetation functioning. Since it is very difficult to robustly estimate it from remote sensing data at regional scale it is usually inferred from other proxies using water balance. This work describes a procedure to estimate ET in a dry forest by monitoring diurnal variation of leaf water content (LWC), using multitemporal passive microwave remote sensing observations. Hourly observations provide the opportunity to monitor repetitive diurnal variations of passive microwave observations, which can only be accounted by changes in LWC (which is itself related to water vapor that enters to the atmosphere from land surface). To this end, we calculated the vegetation frequency index (FI) as FI= 2*(TBKa-TBX)/ ((TBKa +TBX)), where TBKa and TBX indicate brightness temperatures at 37 and 10.6 GHz respectively. There is both theoretical and experimental evidence that link this index to microwave to LWC. The index was computed for vertical polarization, because it presents higher correlation with vegetation state. At diurnal temporal scale, changes in LWC are commonly very small. Nevertheless, it was previously shown that passive remote sensing data (FI computed using Ku and Ka bands) acquired at different hours can be used to estimate the seasonal changes in ET. In this work, we present a procedure based on the hourly changes of FI, which are interpreted as changes in LWC. In order to present a quantitative estimation, the discrete forest model described in (Ferrazzoli and Guerriero, 1996) has been used to simulate the variations of FI with LWC. To illustrate the procedure, AMSR-E and WINDSAT data from 2007-2009 at X and Ka bands were used, and up to four observations per day at four different local times (2.30 am, 7.00 am, 2.30 pm and 7.00 pm) were analyzed. The region addressed is the area of the Dry Chaco forest located in Bermejo River Basin in Argentina

  18. Determination of total phenolic content and antioxidant activitity of methanol extract of Maranta arundinacea L fresh leaf and tuber

    NASA Astrophysics Data System (ADS)

    Kusbandari, A.; Susanti, H.

    2017-11-01

    Maranta arundinacea L is one of herbaceous plants in Indonesia which have flavonoid content. Flavonoids has antioxidants activity by inhibition of free radical oxidation reactions. The study aims were to determination total phenolic content and antioxidant activity of methanol extract of fresh leaf and tuber of M. arundinacea L by UV-Vis spectrophotometer. The methanol extracts were obtained with maceration and remaseration method of fresh leaves and tubers. The total phenolic content was assayed with visible spectrophotometric using Folin Ciocalteau reagent. The antioxidant activity was assayed with 1,1-diphenyl-2-picrilhidrazil (DPPH) compared to gallic acid. The results showed that methanol extract of tuber and fresh leaf of M. arundinacea L contained phenolic compound with total phenolic content (TPC) in fresh tuber of 3.881±0.064 (% GAE) and fresh leaf is 6.518±0.163 (% b/b GAE). IC50 value from fresh tuber is 1.780±0.0005 μg/mL and IC50 fresh leaf values of 0.274±0.0004 μg/mL while the standard gallic acid is IC50 of 0.640±0.0002 μg/mL.

  19. Comparison of the Dye Method with the Thermocouple Psychrometer for Measuring Leaf Water Potentials 1

    PubMed Central

    Knipling, Edward B.; Kramer, Paul J.

    1967-01-01

    The dye method for measuring water potential was examined and compared with the thermocouple psychrometer method in order to evaluate its usefulness for measuring leaf water potentials of forest trees and common laboratory plants. Psychrometer measurements are assumed to represent the true leaf water potentials. Because of the contamination of test solutions by cell sap and leaf surface residues, dye method values of most species varied about 1 to 5 bars from psychrometer values over the leaf water potential range of 0 to −30 bars. The dye method is useful for measuring changes and relative values in leaf potential. Because of species differences in the relationships of dye method values to true leaf water potentials, dye method values should be interpreted with caution when comparing different species or the same species growing in widely different environments. Despite its limitations the dye method has a usefulness to many workers because it is simple, requires no elaborate equipment, and can be used in both the laboratory and field. PMID:16656657

  20. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan

    PubMed Central

    Taylaran, Renante D.; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-01-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20–30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf–air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production. PMID:21527630

  1. Growth temperature modulates the spatial variability of leaf morphology and chemical elements within crowns of climatically divergent Acer rubrum genotypes.

    PubMed

    Shahba, Mohamed A; Bauerle, William L

    2009-07-01

    Our understanding of leaf acclimation in relation to temperature of fully grown or juvenile tree crowns is mainly based on research involving spatially uncontrolled growth temperature. In this study, we test the hypothesis that leaf morphology and chemical elements are modulated by within-crown growth temperature differences. We ask whether within-species variation can influence acclimation to elevated temperatures. Within-crown temperature dependence of leaf morphology, carbon and nitrogen was examined in two genotypes of Acer rubrum L. (red maple) from different latitudes, where the mean annual temperature varies between 7.2 and 19.4 degrees C. Crown sections were grown in temperature-controlled chambers at three daytime growth temperatures (25, 33 and 38 degrees C). Leaf growth and resource acquisition were measured at regular intervals over long-term (50 days) controlled daytime growth temperatures. We found significant intraspecific variation in temperature dependence of leaf carbon and nitrogen accumulation between genotypes. Additionally, there was evidence that leaf morphology depended on inherited adaptation. Leaf dry matter and nitrogen content decreased as growth temperature was elevated above 25 degrees C in the genotype native to the cooler climate, whereas they remained fairly constant in response to temperature in the genotype native to the warmer climate. Specific leaf area (SLA) was correlated positively to leaf nitrogen content in both genotypes. The SLA and the relative leaf dry matter content (LM), on the other hand, were correlated negatively to leaf thickness. However, intraspecific variation in SLA and LM versus leaf thickness was highly significant. Intraspecific differences in leaf temperature response between climatically divergent genotypes yielded important implications for convergent evolution of leaf adaptation. Comparison of our results with those of previous studies showed that leaf carbon allocation along a vertical temperature

  2. Pathogenesis-related protein expression in the apoplast of wheat leaves protected against leaf rust following application of plant extracts.

    PubMed

    Naz, Rabia; Bano, Asghari; Wilson, Neil L; Guest, David; Roberts, Thomas H

    2014-09-01

    Leaf rust (Puccinia triticina) is a major disease of wheat. We tested aqueous leaf extracts of Jacaranda mimosifolia (Bignoniaceae), Thevetia peruviana (Apocynaceae), and Calotropis procera (Apocynaceae) for their ability to protect wheat from leaf rust. Extracts from all three species inhibited P. triticina urediniospore germination in vitro. Plants sprayed with extracts before inoculation developed significantly lower levels of disease incidence (number of plants infected) than unsprayed, inoculated controls. Sprays combining 0.6% leaf extracts and 2 mM salicylic acid with the fungicide Amistar Xtra at 0.05% (azoxystrobin at 10 μg/liter + cyproconazole at 4 μg/liter) reduced disease incidence significantly more effectively than sprays of fungicide at 0.1% alone. Extracts of J. mimosifolia were most active, either alone (1.2%) or in lower doses (0.6%) in combination with 0.05% Amistar Xtra. Leaf extracts combined with fungicide strongly stimulated defense-related gene expression and the subsequent accumulation of pathogenesis-related (PR) proteins in the apoplast of inoculated wheat leaves. The level of protection afforded was significantly correlated with the ability of extracts to increase PR protein expression. We conclude that pretreatment of wheat leaves with spray formulations containing previously untested plant leaf extracts enhances protection against leaf rust provided by fungicide sprays, offering an alternative disease management strategy.

  3. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance.

    PubMed

    Drake, John E; Tjoelker, Mark G; Vårhammar, Angelica; Medlyn, Belinda E; Reich, Peter B; Leigh, Andrea; Pfautsch, Sebastian; Blackman, Chris J; López, Rosana; Aspinwall, Michael J; Crous, Kristine Y; Duursma, Remko A; Kumarathunge, Dushan; De Kauwe, Martin G; Jiang, Mingkai; Nicotra, Adrienne B; Tissue, David T; Choat, Brendan; Atkin, Owen K; Barton, Craig V M

    2018-06-01

    Heatwaves are likely to increase in frequency and intensity with climate change, which may impair tree function and forest C uptake. However, we have little information regarding the impact of extreme heatwaves on the physiological performance of large trees in the field. Here, we grew Eucalyptus parramattensis trees for 1 year with experimental warming (+3°C) in a field setting, until they were greater than 6 m tall. We withheld irrigation for 1 month to dry the surface soils and then implemented an extreme heatwave treatment of 4 consecutive days with air temperatures exceeding 43°C, while monitoring whole-canopy exchange of CO 2 and H 2 O, leaf temperatures, leaf thermal tolerance, and leaf and branch hydraulic status. The heatwave reduced midday canopy photosynthesis to near zero but transpiration persisted, maintaining canopy cooling. A standard photosynthetic model was unable to capture the observed decoupling between photosynthesis and transpiration at high temperatures, suggesting that climate models may underestimate a moderating feedback of vegetation on heatwave intensity. The heatwave also triggered a rapid increase in leaf thermal tolerance, such that leaf temperatures observed during the heatwave were maintained within the thermal limits of leaf function. All responses were equivalent for trees with a prior history of ambient and warmed (+3°C) temperatures, indicating that climate warming conferred no added tolerance of heatwaves expected in the future. This coordinated physiological response utilizing latent cooling and adjustment of thermal thresholds has implications for tree tolerance of future climate extremes as well as model predictions of future heatwave intensity at landscape and global scales. © 2018 John Wiley & Sons Ltd.

  4. Modified Anaerobic Digestion Model No.1 for dry and semi-dry anaerobic digestion of solid organic waste.

    PubMed

    Liotta, Flavia; Chatellier, Patrice; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco

    2015-01-01

    The role of total solids (TS) content in anaerobic digestion of selected complex organic matter, e.g. rice straw and food waste, was investigated. A range of TS from wet (4.5%) to dry (23%) was evaluated. A modified version of the Anaerobic Digestion Model No.1 for a complex organic substrate is proposed to take into account the effect of the TS content on anaerobic digestion. A linear function that correlates the kinetic constants of three specific processes (i.e. disintegration, acetate and propionate up-take) was included in the model. Results of biomethanation and volatile fatty acids production tests were used to calibrate the proposed model. Model simulations showed a good agreement between numerical and observed data.

  5. Leaf Phenology of Amazonian Canopy Trees as Revealed by Spectral and Physiochemical Measurements

    NASA Astrophysics Data System (ADS)

    Chavana-Bryant, C.; Gerard, F. F.; Malhi, Y.; Enquist, B. J.; Asner, G. P.

    2013-12-01

    The phenological dynamics of terrestrial ecosystems reflect the response of the Earth's biosphere to inter- and intra-annual dynamics of climatic and hydrological regimes. Some Dynamic Global Vegetation Models (GDVMs) have predicted that by 2050 the Amazon rainforest will begin to dieback (Cox et al. 2000, Nature) or that the ecosystem will become unsustainable (Salazar et al. 2007, GRL). One major component in DGVMs is the simulation of vegetation phenology, however, modelers are challenged with the estimation of tropical phenology which is highly complex. Current modeled phenology is based on observations of temperate vegetation and accurate representation of tropical phenology is long overdue. Remote sensing (RS) data are a key tool in monitoring vegetation dynamics at regional and global scales. Of the many RS techniques available, time-series analysis of vegetation indices (VIs) has become the most common approach in monitoring vegetation phenology (Samanta et al. 2010, GRL; Bradley et al. 2011, GCB). Our research focuses on investigating the influence that age related variation in the spectral reflectance and physiochemical properties of leaves may have on VIs of tropical canopies. In order to do this, we collected a unique leaf and canopy phenological dataset at two different Amazonian sites: Inselberg, French Guyana (FG) and Tambopata, Peru (PE). Hyperspectral reflectance measurements were collected from 4,102 individual leaves sampled to represent different leaf ages and vertical canopy positions (top, mid and low canopy) from 20 different canopy tree species (8 in FG and 12 in PE). These leaf spectra were complemented with 1) leaf physical measurements: fresh and dry weight, area and thickness, LMA and LWC and 2) leaf chemical measurements: %N, %C, %P, C:N and d13C. Canopy level observations included top-of-canopy reflectance measurements obtained using a multispectral 16-band radiometer, leaf demography (tot. number and age distribution) and branch

  6. Quantification of the effects of architectural traits on dry mass production and light interception of tomato canopy under different temperature regimes using a dynamic functional–structural plant model

    PubMed Central

    Chen, Tsu-Wei; Nguyen, Thi My Nguyet; Kahlen, Katrin; Stützel, Hartmut

    2014-01-01

    There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.) as a model crop, a dynamic functional–structural plant model (FSPM) was constructed, parameterized, and evaluated to analyse the effects of temperature on architectural traits, which strongly influence canopy light interception and shoot dry mass. The FSPM predicted the organ growth, organ size, and shoot dry mass over time with high accuracy (>85%). Analyses of this FSPM showed that, in comparison with the reference canopy, shoot dry mass may be affected by leaf angle by as much as 20%, leaf curvature by up to 7%, the leaf length:width ratio by up to 5%, internode length by up to 9%, and curvature ratios and leaf arrangement by up to 6%. Tomato canopies at low temperature had higher canopy density and were more clumped due to higher leaf area and shorter internodes. Interestingly, dry mass production and light interception of the clumped canopy were more sensitive to changes in architectural traits. The complex interactions between architectural traits, canopy light interception, dry mass production, and environmental conditions can be studied by the dynamic FSPM, which may serve as a tool for designing a canopy structure which is ‘ideal’ in a given environment. PMID:25183746

  7. Leaf shape: genetic controls and environmental factors.

    PubMed

    Tsukaya, Hirokazu

    2005-01-01

    In recent years, many genes have been identified that are involved in the developmental processes of leaf morphogenesis. Here, I review the mechanisms of leaf shape control in a model plant, Arabidopsis thaliana, focusing on genes that fulfill special roles in leaf development. The lateral, two-dimensional expansion of leaf blades is highly dependent on the determination of the dorsoventrality of the primordia, a defining characteristic of leaves. Having a determinate fate is also a characteristic feature of leaves and is controlled by many factors. Lateral expansion is not only controlled by general regulators of cell cycling, but also by the multi-level regulation of meristematic activities, e.g., specific control of cell proliferation in the leaf-length direction, in leaf margins and in parenchymatous cells. In collaboration with the polarized control of leaf cell elongation, these redundant and specialized regulating systems for cell cycling in leaf lamina may realize the elegantly smooth, flat structure of leaves. The unified, flat shape of leaves is also dependent on the fine integration of cell proliferation and cell enlargement. Interestingly, while a decrease in the number of cells in leaf primordia can trigger a cell volume increase, an increase in the number of cells does not trigger a cell volume decrease. This phenomenon is termed compensation and suggests the existence of some systems for integration between cell cycling and cell enlargement in leaf primordia via cell-cell communication. The environmental adjustment of leaf expansion to light conditions and gravity is also summarized.

  8. Metabolic Adaptation, a Specialized Leaf Organ Structure and Vascular Responses to Diurnal N2 Fixation by Nostoc azollae Sustain the Astonishing Productivity of Azolla Ferns without Nitrogen Fertilizer.

    PubMed

    Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A; Tazelaar, Anne O E; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan; Bolger, Anthony; Usadel, Björn; Weber, Andreas P M; Schluepmann, Henriette

    2017-01-01

    Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N 2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf pockets and belong to the fastest growing plants. Experimental production reported here demonstrated N-fertilizer independent production of nitrogen-rich biomass with an annual yield potential per ha of 1200 kg -1 N fixed and 35 t dry biomass. 15 N 2 fixation peaked at noon, reaching 0.4 mg N g -1 dry weight h -1 . Azolla ferns therefore merit consideration as protein crops in spite of the fact that little is known about the fern's physiology to enable domestication. To gain an understanding of their nitrogen physiology, analyses of fern diel transcript profiles under differing nitrogen fertilizer regimes were combined with microscopic observations. Results established that the ferns adapted to the phototrophic N 2 -fixing symbionts N. azollae by (1) adjusting metabolically to nightly absence of N supply using responses ancestral to ferns and seed plants; (2) developing a specialized xylem-rich vasculature surrounding the leaf-pocket organ; (3) responding to N-supply by controlling transcripts of genes mediating nutrient transport, allocation and vasculature development. Unlike other non-seed plants, the Azolla fern clock is shown to contain both the morning and evening loops; the evening loop is known to control rhythmic gene expression in the vasculature of seed plants and therefore may have evolved along with the vasculature in the ancestor of ferns and seed plants.

  9. Two Measurement Methods of Leaf Dry Matter Content Produce Similar Results in a Broad Range of Species

    PubMed Central

    Vaieretti, María Victoria; Díaz, Sandra; Vile, Denis; Garnier, Eric

    2007-01-01

    Background and Aims Leaf dry matter content (LDMC) is widely used as an indicator of plant resource use in plant functional trait databases. Two main methods have been proposed to measure LDMC, which basically differ in the rehydration procedure to which leaves are subjected after harvesting. These are the ‘complete rehydration’ protocol of Garnier et al. (2001, Functional Ecology 15: 688–695) and the ‘partial rehydration’ protocol of Vendramini et al. (2002, New Phytologist 154: 147–157). Methods To test differences in LDMC due to the use of different methods, LDMC was measured on 51 native and cultivated species representing a wide range of plant families and growth forms from central-western Argentina, following the complete rehydration and partial rehydration protocols. Key Results and Conclusions The LDMC values obtained by both methods were strongly and positively correlated, clearly showing that LDMC is highly conserved between the two procedures. These trends were not altered by the exclusion of plants with non-laminar leaves. Although the complete rehydration method is the safest to measure LDMC, the partial rehydration procedure produces similar results and is faster. It therefore appears as an acceptable option for those situations in which the complete rehydration method cannot be applied. Two notes of caution are given for cases in which different datasets are compared or combined: (1) the discrepancy between the two rehydration protocols is greatest in the case of high-LDMC (succulent or tender) leaves; (2) the results suggest that, when comparing many studies across unrelated datasets, differences in the measurement protocol may be less important than differences among seasons, years and the quality of local habitats. PMID:17353207

  10. Inhibition of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) by Gelidium elegans Using Alternative Drying and Extraction Conditions in 3T3-L1 and RAW 264.7 Cells.

    PubMed

    Jeon, Hui-Jeon; Choi, Hyeon-Son; Lee, Ok-Hwan; Jeon, You-Jin; Lee, Boo-Yong

    2012-06-01

    Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans.

  11. Inhibition of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) by Gelidium elegans Using Alternative Drying and Extraction Conditions in 3T3-L1 and RAW 264.7 Cells

    PubMed Central

    Jeon, Hui-Jeon; Choi, Hyeon-Son; Lee, OK-Hwan; Jeon, You-Jin; Lee, Boo-Yong

    2012-01-01

    Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans. PMID:24471073

  12. Light Spectrum Related Responses of 1-g and Clino-Rotated Cress

    NASA Astrophysics Data System (ADS)

    Rakleviciene, D.; Svegzdiene, D.; Losinska, R.

    2008-06-01

    Growth and positioning of cress on a 50-rpm horizontal clinostat in response to blue (450 nm), red (660 nm) and far red (735 nm) light spectral components and their combinations (red & far red or blue & red & far red) were estimated and compared with cress grown in the usual vertical position with and without illumination. No gravity-related alterations have been determined in the elongation of dark-grown hypocotyls, though leaves slightly responded to clino-rotation. Impact of light of 450, 660 and 735 nm wavelengths applied at a comparatively low density of the photon flux (5, 13, 0.8-1 μmol m-2s-1, respectively) had a stronger inhibiting effect on the elongation of hypocotyls on clinostat than at 1 g. Growth of 1-g petioles responded to light spectrum which was not the case with clino-rotated ones. However, radial expansion of cells in palisade and spongy mesophyll tissues of clino-rotated laminas was promoted under combined blue & red & far red illumination (50 μmol·m-2s-1). Gravity-dependent alteration of the positioning of leaf petioles and laminas was suppressed by light. The obtained data confirm the interactions between responses of cress seedlings induced by changed gravity and by spectral components of light.

  13. Impact of casing damaging on aflatoxin B1 concentration during the ripening of dry-fermented meat sausages.

    PubMed

    Pleadin, Jelka; Kovačević, Dragan; Perković, Irena

    2015-01-01

    The aim of this article is to investigate the impact of casing damaging on the formation of aflatoxin B1 (AFB1) during the ripening of dry-fermented meat sausages. The level of AFB1 contamination was determined in 24 samples using the ELISA immunoassay throughout a six-month production period. While with intact casing samples no contamination was observed throughout the whole production process, in damaged casing samples AFB1 was detected in the ripening end-stages in the range of 1.62-4.49 μg/kg. The results showed that casing damaging occurring during long-term ripening of dry-fermented sausages can cause AFB1 contamination, possibly arising on the grounds of diffusion of this mycotoxin from the product surface to its interior.

  14. Quality improvement by batch vacuum distillation and physicochemical characterization of clove leaf oil in Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Alighiri, D.; Eden, W. T.; Cahyono, E.; Supardi, K. I.

    2018-03-01

    Clove leaf oil is one of the essential oils which have high economic value and produced in considerable amount in Indonesia. As many as 60% of clove oil produced by Indonesia has exported to many countries in the world. Musuk and Ringinlarik Village, Boyolali District, Central Java Province is one of the areas in Indonesia which became the primary supplier of Indonesian clove leaf oil. Although, the quality of the resulting yield is still low because it uses a simple distillation kettle in the form of the iron plate or used the drum. The clove leaf oil produced by steam distillation from the dry whole leaves of the clove tree. The color of the oil is brownish black and dirty with the odor are fresh distilled, spicy, warm, and terpenic. The specific gravity at 25 °C of 1.529, the refractive index at 20 °C of 1.030, and based on GC-MS analysis, eugenol levels only 68% and caryophyllene is too high, i.e., 20%. The quality of clove leaf oil produced does not meet the specifications of international market standards. This work aimed to improve the quality of Indonesian clove leaf oil. The purifications done in this research was used by batch vacuum distillation with mode operation at vacuum -76 cmHg and reflux ratios 5:1. Clove leaf oil produced by using this method has a better physicochemical characterization, i.e., the appearance that is yellow to pale color with the odor is spicy, woody, warm, and terpenic. The specific gravity at 25 °C of 1.533, the refractive index at 20 °C of 1.038, and eugenol and caryophyllene contents has yielded 80.58% and 10%, respectively. By The enhancement quality of clove leaf oil by batch vacuum distillation, these oil is already meet international standards and income of clove leaf oil grower in Musuk and Ringinlarik Village, Boyolali District, Central Java Province, Indonesia could be increased.

  15. Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico.

    PubMed

    Blair, Christopher; Jiménez Arcos, Victor H; Mendez de la Cruz, Fausto R; Murphy, Robert W

    2013-01-01

    Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and Dest. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.

  16. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice.

    PubMed

    Jiao, Bin-Bin; Wang, Jian-Jun; Zhu, Xu-Dong; Zeng, Long-Jun; Li, Qun; He, Zu-Hua

    2012-01-01

    Leaf senescence, a type of programmed cell death (PCD) characterized by chlorophyll degradation, is important to plant growth and crop productivity. It emerges that autophagy is involved in chloroplast degradation during leaf senescence. However, the molecular mechanism(s) involved in the process is not well understood. In this study, the genetic and physiological characteristics of the rice rls1 (rapid leaf senescence 1) mutant were identified. The rls1 mutant developed small, yellow-brown lesions resembling disease scattered over the whole surfaces of leaves that displayed earlier senescence than those of wild-type plants. The rapid loss of chlorophyll content during senescence was the main cause of accelerated leaf senescence in rls1. Microscopic observation indicated that PCD was misregulated, probably resulting in the accelerated degradation of chloroplasts in rls1 leaves. Map-based cloning of the RLS1 gene revealed that it encodes a previously uncharacterized NB (nucleotide-binding site)-containing protein with an ARM (armadillo) domain at the carboxyl terminus. Consistent with its involvement in leaf senescence, RLS1 was up-regulated during dark-induced leaf senescence and down-regulated by cytokinin. Intriguingly, constitutive expression of RLS1 also slightly accelerated leaf senescence with decreased chlorophyll content in transgenic rice plants. Our study identified a previously uncharacterized NB-ARM protein involved in PCD during plant growth and development, providing a unique tool for dissecting possible autophagy-mediated PCD during senescence in plants.

  17. Phenotypic regulation of the sphingosine 1-phosphate receptor miles apart by G protein-coupled receptor kinase 2.

    PubMed

    Burczyk, Martina; Burkhalter, Martin D; Blätte, Tamara; Matysik, Sabrina; Caron, Marc G; Barak, Lawrence S; Philipp, Melanie

    2015-01-27

    The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1 phosphate receptor 2 (S1p2) produces a mutation, miles apart m(93) (mil(m93)), that not only disrupts signaling but also impairs heart field migration. We hypothesized that constitutive S1p2 desensitization is the underlying cause of this strong zebrafish developmental defect. We observed in cell assays that the wild-type S1p2 receptor is at the cell surface whereas in distinct contrast the S1p2 R150H receptor is found in intracellular vesicles, blocking G protein but not arrestin signaling activity. Surface S1p2 R150H expression could be restored by inhibition of G protein-coupled receptor kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued cardia bifida. The ability of reduced GRK2 activity to reverse a developmental phenotype associated with constitutive desensitization supports efforts to genetically or pharmacologically target this kinase in diseases involving biased GPCR signaling.

  18. Phenotypic Regulation of the Sphingosine 1-Phosphate Receptor Miles Apart by G Protein-Coupled Receptor Kinase 2

    PubMed Central

    2016-01-01

    The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1 phosphate receptor 2 (S1p2) produces a mutation, miles apart m93 (milm93), that not only disrupts signaling but also impairs heart field migration. We hypothesized that constitutive S1p2 desensitization is the underlying cause of this strong zebrafish developmental defect. We observed in cell assays that the wild-type S1p2 receptor is at the cell surface whereas in distinct contrast the S1p2 R150H receptor is found in intracellular vesicles, blocking G protein but not arrestin signaling activity. Surface S1p2 R150H expression could be restored by inhibition of G protein-coupled receptor kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued cardia bifida. The ability of reduced GRK2 activity to reverse a developmental phenotype associated with constitutive desensitization supports efforts to genetically or pharmacologically target this kinase in diseases involving biased GPCR signaling. PMID:25555130

  19. Effects of artificial enclosure of young lettuce leaves on tipburn incidence and leaf calcium concentration

    NASA Technical Reports Server (NTRS)

    Barta, D. J.; Tibbitts, T. W.

    1986-01-01

    The young developing leaves of 20-day-old lettuce plants (Lactuca sativa L. 'Buttercrunch') were enclosed by aluminized polyethylene sheaths to decrease transpiration and reduce Ca transport. The plants were grown in recirculating solution culture system using a modified half-strength Hoagland's solution under cool-white fluorescent lamps with a photosynthetic photon flux of 350 micromoles s-1 m-2 in a 16:8-hr (light:dark) period. Air temperature and humidity were 20 degrees C and 65%, respectively. After 4 days of enclosure, 53% of the inner leavers (leaves one to 3 cm in length) were tipburned. After the same period, less than 1% of the inner leaves on control plants were tipburned. The concentration of Ca in enclosed inner leaves was 0.63 mg g-1 dry weight, compared to 1.48 mg g-1 dry weight in inner leaves that were not enclosed. The Ca concentration in transpiring outer leaves of all plants was 9.9 mg g-1 dry weight. The Mg concentration in enclosed inner leaves was 2.25 mg g-1 dry weight, compared to 2.34 mg g-1 dry weight in inner leaves that were not enclosed. This research documents that enclosures of leaves at the growing point, as would occur with normal head development, is sufficient to create a limiting concentration of Ca in the enclosed tissue and encourage tipburn development.

  20. Antihyperlipidemic effect of a Rhamnus alaternus leaf extract in Triton-induced hyperlipidemic rats and human HepG2 cells.

    PubMed

    Tacherfiout, Mustapha; Petrov, Petar D; Mattonai, Marco; Ribechini, Erika; Ribot, Joan; Bonet, M Luisa; Khettal, Bachra

    2018-05-01

    The Mediterranean buckthorn, Rhamnus alaternus L., is a plant used in traditional medicine in Mediterranean countries. We aimed at characterizing its phenolic compounds and explore potential antihyperlipidemic activity of this plant. The profile of phenolic compounds in R. alaternus leaf crude methanolic extract (CME) and its liquid-liquid extraction-derived fractions were analyzed by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS 2 ). Effects of CME on: circulating lipids in rats with Triton WR-1339-induced hyperlipidemia, intracellular lipid accumulation and expression of genes of fatty acid metabolism in human hepatoma HepG2 cells, and adipogenesis in the 3T3-L1 murine adipocyte cell model were assessed. The HPLC/ESI-MS 2 analytical profile revealed a total of fifteen compounds, of which eleven were identified. Oral CME administration decreased blood levels of cholesterol and triacylglycerols in hyperlipidemic rats (by 60% and 70%, respectively, at 200 mg CME/kg). In HepG2 cells, CME exposure dose-dependently decreased intracellular lipids and up-regulated gene expression of carnitine palmitoyltransferase 1 involved in fatty acid oxidation. In the 3T3-L1 model, CME favored preadipocyte proliferation and adipogenesis, pointing to positive effects on adipose tissue expandability. These results suggest novel uses of R. alaternus by showing that its leaves are rich in flavonoids and flavonoid derivatives with an antihyperlipidemic effect in vivo and in hepatic cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    PubMed

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Effect of decapitation and nutrient applications on shoot branching, yield, and accumulation of secondary metabolites in leaves of Stevia rebaudiana Bertoni.

    PubMed

    Pal, Probir Kumar; Prasad, Ramdeen; Pathania, Vijaylata

    2013-11-15

    The axillary buds of stevia (Stevia rebaudiana Bertoni) often remain dormant for a long time and sometimes remain dormant permanently until the plants enter into the reproductive stage. The present study was conducted to ascertain whether decapitation and foliar fertilization enhance the productivity and quality of stevia through breaking the apical dominance and increasing physiological activities. Ten treatment combinations comprising two cultural operations (non-decapitation and decapitation) and five foliar spray treatments (water spray control, KNO3 @ 5.0gL(-1), Ca(NO3)2 @ 4.06gL(-1), CuSO4·5H2O 2.0gL(-1) and (NH4)6Mo7O24 @ 1.0gL(-1)) were applied. The decapitation of apical buds of stevia increased the branches and increased dry leaf yield by 13 and 17% compared with non-decapitation during 2010 and 2011, respectively, without affecting quality. Foliar application of nutrient solutions also exerted a considerable effect on growth parameters, yield attributes and chlorophyll content, and significantly (P=0.05) higher dry leaf yield ranging from 8 to 26% over the control. Among the foliar spray treatments, KNO3 @ 5.0gL(-1) and Ca (NO3)2 4.06gL(-1) were found most effective in dry leaf yield. Thus, the decapitation of apical buds and foliar application of KNO3 and Ca (NO3)2 could enhance the productivity of stevia through improving the growth of axillary buds and physiological activities. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Response of barley to grasshopper defoliation in interior Alaska: dry matter and grain yield.

    PubMed

    Begna, Sultan H; Fielding, Dennis J

    2005-12-01

    Barley, Hordeum vulgare L., is well adapted to subarctic Alaska growing conditions, but little is known about its response to grasshopper defoliation. A field experiment was conducted to study dry matter and grain yield in response to a combination of grasshopper defoliation and weeds in 2002 and 2003 near Delta Junction, AK (63 degrees 55' N, 145 degrees 20' W). Barley plants at third to fourth leaf stage were exposed to a combination of two levels of weeds (present or absent) and four densities of grasshoppers (equivalent to 0, 25, 50, and 75 grasshoppers per m2) of third to fourth instars of Melanoplus sanguinipes (F). Dry matter accumulation by the barley plants was determined at three times during the growing seasons: approximately 10 d after introduction of the grasshoppers, shortly after anthesis, and at maturity. Dry matter accumulation and grain yield were much lower in 2003 than in 2002, probably due to very low levels of soil moisture early in the growing season of 2003. Head clipping accounted for a greater portion of yield loss in 2003 than in 2002. The percentage of reduction in harvestable yield due to grasshoppers remained fairly constant between years (1.9 and 1.4 g per grasshopper per m2 in 2002 and 2003, respectively) despite a large difference in overall yield. Examination of the yield components suggest that yields were reduced by the early season drought in 2003 primarily through fewer seeds per head, whereas grasshoppers in both years reduced average seed weight, but not numbers of seeds.

  4. Asynchronous response of tropical forest leaf phenology to seasonal and el Niño-driven drought.

    PubMed

    Pau, Stephanie; Okin, Gregory S; Gillespie, Thomas W

    2010-06-25

    The Hawaiian Islands are an ideal location to study the response of tropical forests to climate variability because of their extreme isolation in the middle of the Pacific, which makes them especially sensitive to El Niño-Southern Oscillation (ENSO). Most research examining the response of tropical forests to drought or El Niño have focused on rainforests, however, tropical dry forests cover a large area of the tropics and may respond very differently than rainforests. We use satellite-derived Normalized Difference Vegetation Index (NDVI) from February 2000-February 2009 to show that rainforests and dry forests in the Hawaiian Islands exhibit asynchronous responses in leaf phenology to seasonal and El Niño-driven drought. Dry forest NDVI was more tightly coupled with precipitation compared to rainforest NDVI. Rainforest cloud frequency was negatively correlated with the degree of asynchronicity (Delta(NDVI)) between forest types, most strongly at a 1-month lag. Rainforest green-up and dry forest brown-down was particularly apparent during the 2002-003 El Niño. The spatial pattern of NDVI response to the NINO 3.4 Sea Surface Temperature (SST) index during 2002-2003 showed that the leeward side exhibited significant negative correlations to increased SSTs, whereas the windward side exhibited significant positive correlations to increased SSTs, most evident at an 8 to 9-month lag. This study demonstrates that different tropical forest types exhibit asynchronous responses to seasonal and El Niño-driven drought, and suggests that mechanisms controlling dry forest leaf phenology are related to water-limitation, whereas rainforests are more light-limited.

  5. Asynchronous Response of Tropical Forest Leaf Phenology to Seasonal and El Niño-Driven Drought

    PubMed Central

    Pau, Stephanie; Okin, Gregory S.; Gillespie, Thomas W.

    2010-01-01

    The Hawaiian Islands are an ideal location to study the response of tropical forests to climate variability because of their extreme isolation in the middle of the Pacific, which makes them especially sensitive to El Niño-Southern Oscillation (ENSO). Most research examining the response of tropical forests to drought or El Niño have focused on rainforests, however, tropical dry forests cover a large area of the tropics and may respond very differently than rainforests. We use satellite-derived Normalized Difference Vegetation Index (NDVI) from February 2000-February 2009 to show that rainforests and dry forests in the Hawaiian Islands exhibit asynchronous responses in leaf phenology to seasonal and El Niño-driven drought. Dry forest NDVI was more tightly coupled with precipitation compared to rainforest NDVI. Rainforest cloud frequency was negatively correlated with the degree of asynchronicity (ΔNDVI) between forest types, most strongly at a 1-month lag. Rainforest green-up and dry forest brown-down was particularly apparent during the 2002–003 El Niño. The spatial pattern of NDVI response to the NINO 3.4 Sea Surface Temperature (SST) index during 2002–2003 showed that the leeward side exhibited significant negative correlations to increased SSTs, whereas the windward side exhibited significant positive correlations to increased SSTs, most evident at an 8 to 9-month lag. This study demonstrates that different tropical forest types exhibit asynchronous responses to seasonal and El Niño-driven drought, and suggests that mechanisms controlling dry forest leaf phenology are related to water-limitation, whereas rainforests are more light-limited. PMID:20593034

  6. Quality of pomegranate pomace as affected by drying method.

    PubMed

    Cano-Lamadrid, Marina; Lech, Krzysztof; Calín-Sánchez, Ángel; Rosas-Burgos, Ema Carina; Figiel, Adam; Wojdyło, Aneta; Wasilewska, Malwina; Carbonell-Barrachina, Ángel A

    2018-03-01

    During the industrial manufacturing of pomegranate juice, large amounts of pomace are produced. The aim of this work was to find the effective method to dry pomegranate pomace to open new commercial applications for this co-product. The effects of three drying methods: (i) convective drying (CD) at 50, 60, and 70 °C; (ii) vacuum microwave drying (VMD) at 240, 360, and 480 W, and (iii) a combined method (CPD-VMFD); convective pre-drying (60 °C) followed by vacuum microwave finish drying (360 W), on drying kinetics and quality of PomP (pomegranate pomace obtained after preparing pomegranate juice by squeezing only arils) were evaluated. The shortest treatments were VMD at 240 and 360 W (52 and 33 min, respectively); besides, these treatments led to interesting values of the green-red coordinate, a *, (12.2 and 4.1, respectively), total phenolic content (4.0 and 4.1 mg eq gallic acid g -1  dry weight, respectively), and antioxidant activity (30.8 and 29.0 µmol g -1  dry weight, respectively). On the other hand, this study demonstrated that this co-product is a rich source of punicic acid (average value = 66.4%), being a good opportunity for the pharmaceutical and nutraceutical industries. Moreover, no significant changes in the fatty acid profile was observed as affected by the drying treatments, and no off-flavors were generated by any of the drying methods.

  7. Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome.

    PubMed

    Kazi, S; Shultz, J; Afzal, J; Johnson, J; Njiti, V N; Lightfoot, D A

    2008-05-01

    Soybean [Glycine max (L.) Merr.] cultivars show differences in their resistance to both the leaf scorch and root rot of sudden death syndrome (SDS). The syndrome is caused by root colonization by Fusarium virguliforme (ex. F. solani f. sp. glycines). Root susceptibility combined with reduced leaf scorch resistance has been associated with resistance to Heterodera glycines HG Type 1.3.6.7 (race 14) of the soybean cyst nematode (SCN). In contrast, the rhg1 locus underlying resistance to Hg Type 0 was found clustered with three loci for resistance to SDS leaf scorch and one for root infection. The aims of this study were to compare the inheritance of resistance to leaf scorch and root infection in a population that segregated for resistance to SCN and to identify the underlying quantitative trait loci (QTL). "Hartwig", a cultivar partially resistant to SDS leaf scorch, F. virguliforme root infection and SCN HG Type 1.3.6.7 was crossed with the partially susceptible cultivar "Flyer". Ninety-two F5-derived recombinant inbred lines and 144 markers were used for map development. Four QTL found in earlier studies were confirmed. One contributed resistance to leaf scorch on linkage group (LG) C2 (Satt277; P = 0.004, R2 = 15%). Two on LG G underlay root infection at R8 (Satt038; P = 0.0001 R2 = 28.1%; Satt115; P = 0.003, R2 = 12.9%). The marker Satt038 was linked to rhg1 underlying resistance to SCN Hg Type 0. The fourth QTL was on LG D2 underlying resistance to root infection at R6 (Satt574; P = 0.001, R2 = 10%). That QTL was in an interval previously associated with resistance to both SDS leaf scorch and SCN Hg Type 1.3.6.7. The QTL showed repulsion linkage with resistance to SCN that may explain the relative susceptibility to SDS of some SCN resistant cultivars. One additional QTL was discovered on LG G underlying resistance to SDS leaf scorch measured by disease index (Satt130; P = 0.003, R2 = 13%). The loci and markers will provide tagged alleles with which to improve

  8. Leaf Extracts of Selected Gardening Trees Can Attenuate Quorum Sensing and Pathogenicity of Pseudomonas aeruginosa PAO1.

    PubMed

    Niu, Kaimin; Kuk, Min; Jung, Haein; Chan, Kokgan; Kim, Sooki

    2017-09-01

    An increasing concern on resistance to multiple-antibiotics has led to the discovery of novel agents and the establishment of new precaution strategy. Numerous plant sources have been widely studied to reduce virulence of pathogenic bacteria by interfering cell-to-cell based communication called quorum sensing (QS). Leaf extracts of 17 gardening trees were collected and investigated for their anti-QS effects using a sensor strain Chromobacterium violaceum CV026. Methanolic extracts of K4 ( Acer palmatum ), K9 ( Acer pseudosieboldianum ) and K13 ( Cercis chinensis ) leaves were selected for further experiments based on their antagonism effect on QS without inhibiting C. violaceum CV026 growth. Subsequently, the leaf extracts on QS-mediated virulence of Pseudomonas aeruginosa PAO1 involved in biofilm formation, motility, bioluminescence, pyocyanin production, QS molecules production, and Caenorhabditis elegans killing activity were evaluated. The biofilm formation ability and swarming motility of P. aeruginosa PAO1 were decreased approximately 50% in the presence of these leaf extracts at a concentration of 1 mg/mL. The expression level of lecA::lux of P. aeruginosa PAO1 and pyocyanin production were also reduced. The three leaf extracts also decreased autoinducer (AI) production in P. aeruginosa PAO1 without direct degradation, suggesting that AI synthesis might have been suppressed by these extracts. The three leaf extracts also showed anti-infection activity in C. elegans model. Taken together, these results suggest that methanolic leaf extracts of K4, K9 and K13 have the potential to attenuate the virulence of P. aeruginosa PAO1.

  9. Using the conservative nature of fresh leaf surface density to measure foliar area

    NASA Astrophysics Data System (ADS)

    Castillo, Omar S.; Zaragoza, Esther M.; Alvarado, Carlos J.; Barrera, Maria G.; Dasgupta-Schubert, Nabanita

    2014-10-01

    For a herbaceous species, the inverse of the fresh leaf surface density, the Hughes constant, is nearly conserved. We apply the Hughes constant to develop an absolute method of leafarea measurement that requires no regression fits, prior calibrations or oven-drying. The Hughes constant was determined in situ using a known geometry and weights of a sub-set obtained from the fresh leaves whose areas are desired. Subsequently, the leaf-areas (at any desired stratification level), were derived by utilizing the Hughes constant and the masses of the fresh leaves. The proof of concept was established for leaf-discs of the plants Mandevilla splendens and Spathiphyllum wallisii. The conservativeness of the Hughes constant over individual leaf-zones and different leaftypes from the leaves of each species was quantitatively validated. Using the globally averaged Hughes constant for each species, the leaf-area of these and additional co-species plants, were obtained. The leaf-area-measurement-by-mass was cross-checked with standard digital image analysis. There were no statistically significant differences between the leaf-area-measurement-by-mass and the digital image analysis measured leaf-areas and the linear correlation between the two methods was very good. Leaf-areameasurement- by-mass was found to be rapid and simple with accuracies comparable to the digital image analysis method. The greatly reduced cost of leaf-area-measurement-by-mass could be beneficial for small agri-businesses in developing countries.

  10. 7 CFR 29.1162 - Leaf (B Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color intensity...

  11. 7 CFR 29.1162 - Leaf (B Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color intensity...

  12. Column chromatography isolation of nicotine from tobacco leaf extract (Nicotiana tabaccum L.)

    NASA Astrophysics Data System (ADS)

    Fathi, Raden Muhammad; Fauzantoro, Ahmad; Rahman, Siti Fauziyah; Gozan, Misri

    2018-02-01

    Restrictions on the use of dried tobacco leaf for cigarette production must be accompanied by the development of non-cigarette alternative products that are made from tobacco leaves. One of the alternative that can be done is to use the nicotine compound in tobacco leaf extract as medical product, such as Parkinson's medication or to be used as active substance in biopesticide. Nicotine was isolated using column chromatography method with the variation of mobile phase mixture ratio (petroleum ether and ethanol), started from 8:2, 6:4, 4:6, 2:8, to 0:10. All of the chromatographic fraction from each mobile phase's ratio was then tested qualitatively using thin layer chromatography (TLC) and also quantitatively using HPLC instrument. The column chromatography process could isolate 4.006% of nicotine compound from 4.19% tobacco leaf extract's nicotine. It is also known that ethanol is a good solution to be used as chromatography's mobile phase for nicotine isolation from tobacco leaf extract.

  13. Leaf ontogeny of Schinus molle L. plants under cadmium contamination: the meristematic origin of leaf structural changes.

    PubMed

    Pereira, Marcio Paulo; Corrêa, Felipe Fogaroli; de Castro, Evaristo Mauro; de Oliveira, Jean Paulo Vitor; Pereira, Fabricio José

    2017-11-01

    Previous works show the development of thicker leaves on tolerant plants growing under cadmium (Cd 2+ ) contamination. The aim of this study was to evaluate the Cd 2+ effects on the leaf meristems of the tolerant species Schinus molle. Plants were grown in nutrient solution containing 0, 10, and 50 μM of Cd 2+ . Anatomical analysis was performed on leaf primordia sampled at regular time intervals. Under the lowest Cd 2+ level (10 μM), increased ground meristem thickness, diameter of the cells, cell elongation rate, and leaf dry mass were found. However, 50 μM of Cd 2+ reduced all these variables. In addition, the ground meristem cells became larger when exposed to any Cd 2+ level. The epidermis, palisade parenchyma, and vascular tissues developed earlier in Cd 2+ -exposed leaves. The modifications found on the ground meristem may be related to the development of thicker leaves on S. molle plants exposed to low Cd 2+ levels. Furthermore, older leaves showed higher Cd 2+ content when compared to the younger ones, preventing the Cd 2+ toxicity to these leaves. Thus, low Cd 2+ concentrations change the ground meristem structure and function reflecting on the development of thicker and enhanced leaves.

  14. The TIE1 Transcriptional Repressor Links TCP Transcription Factors with TOPLESS/TOPLESS-RELATED Corepressors and Modulates Leaf Development in Arabidopsis[W

    PubMed Central

    Tao, Qing; Guo, Dongshu; Wei, Baoye; Zhang, Fan; Pang, Changxu; Jiang, Hao; Zhang, Jinzhe; Wei, Tong; Gu, Hongya; Qu, Li-Jia; Qin, Genji

    2013-01-01

    Leaf size and shape are mainly determined by coordinated cell division and differentiation in lamina. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors are key regulators of leaf development. However, the mechanisms that control TCP activities during leaf development are largely unknown. We identified the TCP Interactor containing EAR motif protein1 (TIE1), a novel transcriptional repressor, as a major modulator of TCP activities during leaf development. Overexpression of TIE1 leads to hyponastic and serrated leaves, whereas disruption of TIE1 causes epinastic leaves. TIE1 is expressed in young leaves and encodes a transcriptional repressor containing a C-terminal EAR motif, which mediates interactions with the TOPLESS (TPL)/TOPLESS-RELATED (TPR) corepressors. In addition, TIE1 physically interacts with CIN-like TCPs. We propose that TIE1 regulates leaf size and morphology by inhibiting the activities of TCPs through recruiting the TPL/TPR corepressors to form a tertiary complex at early stages of leaf development. PMID:23444332

  15. How to pattern a leaf.

    PubMed

    Bolduc, N; O'Connor, D; Moon, J; Lewis, M; Hake, S

    2012-01-01

    Leaf development presents a tremendous resource for tackling the question of patterning in biology. Leaves can be simple or highly dissected. They may have elaborated parts such as the tendrils of a pea leaf or the rolled blade of a carnivorous pitcher plant. Despite the variation in size, shape, and function, all leaves initiate in the same manner: from the flanks of a meristem. The maize leaf is useful for analysis of patterning due to the wealth of mutants and the distinct tissues along the proximal distal axis. The blade is distal, the sheath is proximal, and the ligule forms at the blade/sheath boundary. Establishment of this boundary involves the transcription factors LIGULELESS1 and LIGULELESS2 and the kinase LIGULELESS NARROW. The meristem-specific protein KNOTTED1 (KN1) binds and modulates the lg2 gene. Given the localization of KN1 at the proximal end of the leaf from the time of inception, we hypothesize that KN1 has a role in establishing the very proximal end of the leaf, whereas an auxin maximum guides the growing distal tip.

  16. Use of a commercial ELISA for the detection of measles-specific immunoglobulin G (IgG) in dried blood spots collected from children living in low-resource settings.

    PubMed

    Colson, K Ellicott; Potter, Alan; Conde-Glez, Carlos; Hernandez, Bernardo; Ríos-Zertuche, Diego; Zúñiga-Brenes, Paola; Iriarte, Emma; Mokdad, Ali H

    2015-09-01

    Seroepidemiological monitoring of population immunity to vaccine-preventable diseases is critical to prevent future outbreaks. Dried blood spots (DBS), drops of capillary blood dried on filter paper, are an affordable, minimally invasive alternative to venipuncture for collecting blood in field settings. However, few proven methods exist to analyze DBS for the presence of protective antibodies. This study validates a novel technique for measuring measles-specific immunoglobulin G (IgG) in capillary DBS using a commercial ELISA. The predictive performance of a new method for analyzing DBS was tested by comparing matched serum and DBS samples from 50 children. The accuracy, precision, and reliability of the procedure were evaluated, and the optimal cut points to classify positive and negative samples were determined. The method was then applied to 1,588 DBS collected during a large survey of children in Mexico and Nicaragua. Measles-specific IgG in serum samples were 62% negative, 10% equivocal, and 28% positive. In comparisons with matched serum, DBS results were 100% sensitive and 96 · 8% specific, and agreed in 46 of 50 (92%) cases. The inter-assay and intra-assay coefficients of variation from kit-provided controls were greater than desired (24.8% and 8.4%, respectively). However, in predictive simulations the average misclassification was only 3.9%. Procedures were found to be acceptable to surveyors and participants. Analyzing DBS collected in low-resources settings is a feasible and accurate means of measuring population immunity to measles and should be used to generate objective measures of health status and health system performance. © 2015 Wiley Periodicals, Inc.

  17. Effects of herbal ointment containing the leaf extracts of Madeira vine (Anredera cordifolia (Ten.) Steenis) for burn wound healing process on albino rats.

    PubMed

    Yuniarti, Wiwik Misaco; Lukiswanto, Bambang Sektiari

    2017-07-01

    Skin burn is a health problem that requires fast and accurate treatment. If not well-treated, the burn will cause various damaging conditions for the patient. The leaf extract of Madeira vine ( Anredera cordifolia (Ten.) Steenis), or popularly known as Binahong in Indonesia, has been used to treat various diseases. The purpose of this research is to determine the effects of leaf extracts of Madeira vine ( A. cordifolia (Ten.) Steenis) on skin burn healing process in rats as an animal model. In this research, there were four treatment groups: G0, G1, G2, and G3, each consisting of five rats. All these rats were given skin burns, using hot metal plates. Then, sulfadiazine was given to G0, 2.5% leaf extract of Madeira vine was given to G1, 5% extract was given to G2, and 10% extract was given to G3, for straight 14 days topically, 3 times a day. At the end of the treatment period, skin excisions were conducted, and histopathological examination was carried out. Microscopic observation on the wound healing process on the collagen deposition, polymorphonuclear infiltration, angiogenesis, and fibrosis showed that G2 had a significant difference with G0, G1, and G3 (p<0.05), while group G0 was significantly different from G1 and G3 (p<0.05). The better burn healing process on G2 allegedly because of the activity of flavonoid, saponin, and tannin, contained in the Madeira vine, which have the antioxidant, anti-inflammatory, and antibacterial effects. The ointment from the 5% leaf extract of Madeira vine ( A. cordifolia (Ten.) Steenis) has been proven to be effective to be used for topical burn therapy.

  18. Effects of herbal ointment containing the leaf extracts of Madeira vine (Anredera cordifolia (Ten.) Steenis) for burn wound healing process on albino rats

    PubMed Central

    Yuniarti, Wiwik Misaco; Lukiswanto, Bambang Sektiari

    2017-01-01

    Aim: Skin burn is a health problem that requires fast and accurate treatment. If not well-treated, the burn will cause various damaging conditions for the patient. The leaf extract of Madeira vine (Anredera cordifolia (Ten.) Steenis), or popularly known as Binahong in Indonesia, has been used to treat various diseases. The purpose of this research is to determine the effects of leaf extracts of Madeira vine (A. cordifolia (Ten.) Steenis) on skin burn healing process in rats as an animal model. Materials and Methods: In this research, there were four treatment groups: G0, G1, G2, and G3, each consisting of five rats. All these rats were given skin burns, using hot metal plates. Then, sulfadiazine was given to G0, 2.5% leaf extract of Madeira vine was given to G1, 5% extract was given to G2, and 10% extract was given to G3, for straight 14 days topically, 3 times a day. At the end of the treatment period, skin excisions were conducted, and histopathological examination was carried out. Result: Microscopic observation on the wound healing process on the collagen deposition, polymorphonuclear infiltration, angiogenesis, and fibrosis showed that G2 had a significant difference with G0, G1, and G3 (p<0.05), while group G0 was significantly different from G1 and G3 (p<0.05). The better burn healing process on G2 allegedly because of the activity of flavonoid, saponin, and tannin, contained in the Madeira vine, which have the antioxidant, anti-inflammatory, and antibacterial effects. Conclusion: The ointment from the 5% leaf extract of Madeira vine (A. cordifolia (Ten.) Steenis) has been proven to be effective to be used for topical burn therapy. PMID:28831227

  19. Roles of miR319 and TCP Transcription Factors in Leaf Development1[OPEN

    PubMed Central

    2017-01-01

    Sophisticated regulation of gene expression, including microRNAs (miRNAs) and their target genes, is required for leaf differentiation, growth, and senescence. The impact of miR319 and its target TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR (TCP) genes on leaf development has been extensively investigated, but the redundancies of these gene families often interfere with the evaluation of their function and regulation in the developmental context. Here, we present the genetic evidence of the involvement of the MIR319 and TCP gene families in Arabidopsis (Arabidopsis thaliana) leaf development. Single mutations in MIR319A and MIR319B genes moderately inhibited the formation of leaf serrations, whereas double mutations increased the extent of this inhibition and resulted in the formation of smooth leaves. Mutations in MIR319 and gain-of-function mutations in the TCP4 gene conferred resistance against miR319 and impaired the cotyledon boundary and leaf serration formation. These mutations functionally associated with CUP-SHAPED COTYLEDON genes, which regulate the cotyledon boundary and leaf serration formation. In contrast, loss-of-function mutations in miR319-targeted and nontargeted TCP genes cooperatively induced the formation of serrated leaves in addition to changes in the levels of their downstream gene transcript. Taken together, these findings demonstrate that the MIR319 and TCP gene families underlie robust and multilayer control of leaf development. This study also provides a framework toward future researches on redundant miRNAs and transcription factors in Arabidopsis and crop plants. PMID:28842549

  20. Leaf economics spectrum-productivity relationships in intensively grazed pastures depend on dominant species identity.

    PubMed

    Mason, Norman W H; Orwin, Kate; Lambie, Suzanne; Woodward, Sharon L; McCready, Tiffany; Mudge, Paul

    2016-05-01

    Plant functional traits are thought to drive variation in primary productivity. However, there is a lack of work examining how dominant species identity affects trait-productivity relationships. The productivity of 12 pasture mixtures was determined in a 3-year field experiment. The mixtures were based on either the winter-active ryegrass (Lolium perenne) or winter-dormant tall fescue (Festuca arundinacea). Different mixtures were obtained by adding forb, legume, and grass species that differ in key leaf economics spectrum (LES) traits to the basic two-species dominant grass-white clover (Trifolium repens) mixtures. We tested for correlations between community-weighted mean (CWM) trait values, functional diversity, and productivity across all plots and within those based on either ryegrass or tall fescue. The winter-dormant forb species (chicory and plantain) had leaf traits consistent with high relative growth rates both per unit leaf area (high leaf thickness) and per unit leaf dry weight (low leaf dry matter content). Together, the two forb species achieved reasonable abundance when grown with either base grass (means of 36% and 53% of total biomass, respectively, with ryegrass tall fescue), but they competed much more strongly with tall fescue than with ryegrass. Consequently, they had a net negative impact on productivity when grown with tall fescue, and a net positive effect when grown with ryegrass. Strongly significant relationships between productivity and CWM values for LES traits were observed across ryegrass-based mixtures, but not across tall fescue-based mixtures. Functional diversity did not have a significant positive effect on productivity for any of the traits. The results show dominant species identity can strongly modify trait-productivity relationships in intensively grazed pastures. This was due to differences in the intensity of competition between dominant species and additional species, suggesting that resource-use complementarity is a

  1. Open sun drying of green bean: influence of pretreatments on drying kinetics, colour and rehydration capacity

    NASA Astrophysics Data System (ADS)

    İsmail, Osman; Kantürk Figen, Aysel; Pişkin, Sabriye

    2017-04-01

    Green bean ( Phaseolus Vulgaris L), classified under legume family, is a primary source of dietary protein in human diets especially in the agricultural countries. Green bean is susceptible to rapid deterioration because of their high moisture content and in order to prevent and present the green bean drying process is applied. In this study, effects of pretreatments on drying kinetics, colour and rehydration capacity of green bean were investigated. It was observed that the pretreatment affected the drying time. The shortest drying times were obtained from pretreated samples with blanched. Drying times were determined as 47, 41 and 29 h for natural, salted and blanch, respectively. The results showed that pretreatment and ambient temperature significantly ( P = 0.05) affected the drying rate and the drying time. The effective moisture diffusivity was determined by using Fick's second law and was found to be range between 3.15 × 10-10 and 1.2 × 10-10 m2/s for the pre-treated and natural green bean samples. The rehydration values were obtained 2.75, 2.71, 2.29 (g water/g dry matter) for the blanched, salted and natural samples. The effective diffusion coefficients were calculated using the data collected during the falling rate period and the experimental data are fitted to seven thin layer drying models which found in the literature. The Logarithmic model was found to best describe the drying behavior of fresh green beans under open air sun. Rehydration time and color parameters had been determined in order to improve the quality of dried green bean. Regarding with rehydration time and colour data, the best results were obtained at blanched drying conditions.

  2. SOA formation potential of emissions from soil and leaf litter.

    PubMed

    Faiola, Celia L; Vanderschelden, Graham S; Wen, Miao; Elloy, Farah C; Cobos, Douglas R; Watts, Richard J; Jobson, B Thomas; Vanreken, Timothy M

    2014-01-21

    Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 μg-C m(-2) h(-1). The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and α-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Thus, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation.

  3. SOA formation potential of emissions from soil and leaf litter

    DOE PAGES

    Faiola, Celia L.; VanderSchelden, Graham S.; Wen, Miao; ...

    2013-12-13

    Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 μg-C m –2 h –1. The composition of the SOA producedmore » was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and α-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Furthermore, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation.« less

  4. Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of Upland cotton (Gossypium hirsutum L.).

    PubMed

    Andres, Ryan J; Coneva, Viktoriya; Frank, Margaret H; Tuttle, John R; Samayoa, Luis Fernando; Han, Sang-Won; Kaur, Baljinder; Zhu, Linglong; Fang, Hui; Bowman, Daryl T; Rojas-Pierce, Marcela; Haigler, Candace H; Jones, Don C; Holland, James B; Chitwood, Daniel H; Kuraparthy, Vasu

    2017-01-03

    Leaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D 1 ), which is responsible for the major leaf shapes in cotton. The l-D 1 locus is not only of agricultural importance in cotton, but through pioneering chimeric and morphometric studies, it has contributed to fundamental knowledge about leaf development. Here we show that an HD-Zip transcription factor homologous to the LATE MERISTEM IDENTITY1 (LMI1) gene of Arabidopsis is the causal gene underlying the l-D 1 locus. The classical okra leaf shape allele has a 133-bp tandem duplication in the promoter, correlated with elevated expression, whereas an 8-bp deletion in the third exon of the presumed wild-type normal allele causes a frame-shifted and truncated coding sequence. Our results indicate that subokra is the ancestral leaf shape of tetraploid cotton that gave rise to the okra allele and that normal is a derived mutant allele that came to predominate and define the leaf shape of cultivated cotton. Virus-induced gene silencing (VIGS) of the LMI1-like gene in an okra variety was sufficient to induce normal leaf formation. The developmental changes in leaves conferred by this gene are associated with a photosynthetic transcriptomic signature, substantiating its use by breeders to produce a superior cotton ideotype.

  5. Total phenolics content, anthocyanins, and dietary fiber content of apple pomace powders produced by vacuum-belt drying.

    PubMed

    Yan, Huitong; Kerr, William L

    2013-04-01

    Apple pomace is a waste material from apple juice processing, and contains significant amounts of dietary fiber and phytochemicals. Many of these compounds may be degraded post-pressing and during drying operations. Continuous vacuum-belt drying (VBD) was studied as a means of drying and maintaining quality of apple pomace. The color and chemical properties of samples dried by vacuum-belt drying at different temperatures were evaluated including total phenolics content (TPC), monomeric anthocyanins (TMA) and dietary fiber content (TDF). VBD powders were pale golden yellow, and those dried at 80°C did not differ in L*, a* and b* values from freeze-dried powders. VBD pomace had 44.9 to 51.9 g gallic acid equivalents kg(-1) TPC, with greatest retention for pomace dried at 80 and 95°C. TPC for pomace dried at 80 or 95°C was not significantly different from that for freeze-dried pomace. TMA levels (74.0 mg C3G kg(-1), where C3G is cyanidine 3-O-glucoside equivalents) were highest in pomace vacuum dried at 80°C. TDF ranged from 442 to 495 g kg(-1) in vacuum-dried pomace and was not significantly different from TDF of freeze-dried poamce (480 g kg(-1)). In all cases, TPC, TMA and TDF were higher in VBD pomace than in freeze-dried whole apple, while VBD pomace prepared at 80 or 95°C had fiber and phytochemical levels similar to freeze-dried powders. © 2012 Society of Chemical Industry.

  6. Mass transfer parameters of celeriac during vacuum drying

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2017-04-01

    An accurate prediction of moisture transfer parameters is very important for efficient mass transfer analysis, accurate modelling of drying process, and better designing of new dryers and optimization of existing drying process. The present study aimed to investigate the influence of temperature (e.g., 55, 65 and 75 °C) and chamber pressure (e.g., 0.1, 3, 7, 10, 13 and 17 kPa) on effective diffusivity and convective mass transfer coefficient of celeriac slices during vacuum drying. The obtained Biot number indicated that the moisture transfer in the celeriac slices was controlled by both internal and external resistance. The effective diffusivity obtained to be in the ranges of 7.5231 × 10-10-3.8015 × 10-9 m2 s-1. The results showed that the diffusivity increased with increasing temperature and decreasing pressure. The mass transfer coefficient values varied from 4.6789 × 10-7 to 1.0059 × 10-6 m s-1, and any increment in drying temperature and pressure caused an increment in the coefficient.

  7. Leaf Surface Effects on Retrieving Chlorophyll Content from Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Qiu, Feng; Chen, JingMing; Ju, Weimin; Wang, Jun; Zhang, Qian

    2017-04-01

    Light reflected directly from the leaf surface without entering the surface layer is not influenced by leaf internal biochemical content. Leaf surface reflectance varies from leaf to leaf due to differences in the surface roughness features and is relatively more important in strong absorption spectral regions. Therefore it introduces dispersion of data points in the relationship between biochemical concentration and reflectance (especially in the visible region). Separation of surface from total leaf reflection is important to improve the link between leaf pigments content and remote sensing data. This study aims to estimate leaf surface reflectance from hyperspectral remote sensing data and retrieve chlorophyll content by inverting a modified PROSPECT model. Considering leaf surface reflectance is almost the same in the visible and near infrared spectral regions, a surface layer with a reflectance independent of wavelength but varying from leaf to leaf was added to the PROSPECT model. The specific absorption coefficients of pigments were recalibrated. Then the modified model was inverted on independent datasets to check the performance of the model in predicting the chlorophyll content. Results show that differences in estimated surface layer reflectance of various species are noticeable. Surface reflectance of leaves with epicuticular waxes and trichomes is usually higher than other samples. Reconstruction of leaf reflectance and transmittance in the 400-1000 nm wavelength region using the modified PROSPECT model is excellent with low root mean square error (RMSE) and bias. Improvements for samples with high surface reflectance (e.g. maize) are significant, especially for high pigment leaves. Moreover, chlorophyll retrieved from inversion of the modified model is consequently improved (RMSE from 5.9-13.3 ug/cm2 with mean value 8.1 ug/cm2, while mean correlation coefficient is 0.90) compared to results of PROSPECT-5 (RMSE from 9.6-20.2 ug/cm2 with mean value 13.1

  8. Assessing soybean leaf area and leaf biomass by spectral measurements

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Tucker, C. J.; Fan, C. J.

    1979-01-01

    Red and photographic infrared spectral radiances were correlated with soybean total leaf area index, green leaf area index, chlorotic leaf area index, green leaf biomass, chlorotic leaf biomass, and total biomass. The most significant correlations were found to exist between the IR/red radiance ratio data and green leaf area index and/or green leaf biomass (r squared equals 0.85 and 0.86, respectively). These findings demonstrate that remote sensing data can supply information basic to soybean canopy growth, development, and status by nondestructive determination of the green leaf area or green leaf biomass.

  9. Physicochemical properties of whole fruit plum powders obtained using different drying technologies.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Lech, Krzysztof; Łysiak, Grzegorz P; Figiel, Adam

    2016-09-15

    Physicochemical quality parameters of plum powders obtained by applying conventional drying methods and their combination devised to process plums were evaluated. The effect of freeze-drying (FD), vacuum drying (VD), convective drying (CD), microwave-vacuum drying (MVD) and combination of convective pre-drying and microwave finish-drying (CPD-MVFD) affected physical (bulk density, porosity, colour, solubility) and chemical (polyphenolic compounds determined by UPLC and antioxidant capacity by TEAC ABTS and FRAP methods) properties of plum powders. The MVD at 1.2 W g(-1) and a novel combination for plum powders production - CPD-MVFD at 70 °C/1.2 W g(-1) allowed the best preservation of phenolic compounds and increased the efficiency of production. Results obtained support the use of MVD and its combination for better quality of dried plum products. The study proved that the determination of the browning index and HMF level (formed via Maillard reaction) might be good tool for monitoring the thermal processing of plum powders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Dual role of betel leaf extract on thyroid function in male mice.

    PubMed

    Panda, S; Kar, A

    1998-12-01

    The effects of betel leaf extract (0.10, 0.40, 0.80 and 2.0 g kg-1 day-1 for 15 days) on the alterations in thyroid hormone concentrations. lipid peroxidation (LPO) and on the activities of superoxide dismutase (SOD) and catalase (CAT) were investigated in male Swiss mice. Administration of betel leaf extract exhibited a dual role, depending on the different doses. While the lowest dose decreased thyroxine (T4) and increased serum triiodothyronine (T3) concentrations, reverse effects were observed at two higher doses. Higher doses also increased LPO with a concomitant decrease in SOD and CAT activities. However, with the lowest dose most of these effects were reversed. These findings suggest that betel leaf can be both stimulatory and inhibitory to thyroid function, particularly for T3 generation and lipid peroxidation in male mice, depending on the amount consumed.

  11. Leaf ontogeny and demography explain photosynthetic seasonality in Amazon evergreen forests

    NASA Astrophysics Data System (ADS)

    Wu, J.; Albert, L.; Lopes, A. P.; Restrepo-Coupe, N.; Hayek, M.; Wiedemann, K. T.; Guan, K.; Stark, S. C.; Prohaska, N.; Tavares, J. V.; Marostica, S. F.; Kobayashi, H.; Ferreira, M. L.; Campos, K.; Silva, R. D.; Brando, P. M.; Dye, D. G.; Huxman, T. E.; Huete, A. R.; Nelson, B. W.; Saleska, S. R.

    2015-12-01

    Photosynthetic seasonality couples the evolutionary ecology of plant leaves to large-scale rhythms of carbon and water exchanges that are important feedbacks to climate. However, the extent, magnitude, and controls on photosynthetic seasonality of carbon-rich tropical forests are poorly resolved, controversial in the remote sensing literature, and inadequately represented in most earth system models. Here we show that ecosystem-scale phenology (measured by photosynthetic capacity), rather than environmental seasonality, is the primary driver of photosynthetic seasonality at four Amazon evergreen forests spanning gradients in rainfall seasonality, forest composition, and flux seasonality. We further demonstrate that leaf ontogeny and demography explain most of this ecosystem phenology at two central Amazon evergreen forests, using a simple leaf-cohort canopy model that integrates eddy covariance-derived CO2 fluxes, novel near-surface camera-detected leaf phenology, and ground observations of litterfall and leaf physiology. The coordination of new leaf growth and old leaf divestment (litterfall) during the dry season shifts canopy composition towards younger leaves with higher photosynthetic efficiency, driving large seasonal increases (~27%) in ecosystem photosynthetic capacity. Leaf ontogeny and demography thus reconciles disparate observations of forest seasonality from leaves to eddy flux towers to satellites. Strategic incorporation of such whole-plant coordination processes as phenology and ontogeny will improve ecological, evolutionary and earth system theories describing tropical forests structure and function, allowing more accurate representation of forest dynamics and feedbacks to climate in earth system models.

  12. Antioxidant activity of Syzygium cumini leaf gall extracts

    PubMed Central

    Eshwarappa, Ravi Shankara Birur; Iyer, Raman Shanthi; Subbaramaiah, Sundara Rajan; Richard, S Austin; Dhananjaya, Bhadrapura Lakkappa

    2014-01-01

    Introduction: Free radicals are implicated in several metabolic diseases and the medicinal properties of plants have been explored for their potent antioxidant activities to counteract metabolic disorders. This research highlights the chemical composition and antioxidant potential of leaf gall extracts (aqueous and methanol) of Syzygium cumini (S. cumini), which have been extensively used in traditional medications to treat various metabolic diseases. Methods: The antioxidant activities of leaf gall extracts were examined using diphenylpicrylhydrazyl (DPPH), nitric oxide scavenging, hydroxyl scavenging and ferric reducing power (FRAP) methods. Results: In all the methods, the methanolic extract showed higher antioxidant potential than the standard ascorbic acid. The presence of phenolics, flavonoids, phytosterols, terpenoids, and reducing sugars was identified in both the extracts. When compared, the methanol extract had the highest total phenolic and flavonoid contents at 474±2.2 mg of GAE/g d.w and 668±1.4 mg of QUE/g d.w, respectively. The significant high antioxidant activity can be positively correlated to the high content of total polyphenols/flavonoids of the methanol extract. Conclusion: The present study confirms the folklore use of S. cumini leaves gall extracts as a natural antioxidant and justifies its ethnobotanical use. Further, the result of antioxidant properties encourages the use of S. cumini leaf gall extracts for medicinal health, functional food and nutraceuticals applications. PMID:25035854

  13. Reading the leaves: A comparison of leaf rank and automated areole measurement for quantifying aspects of leaf venation1

    PubMed Central

    Green, Walton A.; Little, Stefan A.; Price, Charles A.; Wing, Scott L.; Smith, Selena Y.; Kotrc, Benjamin; Doria, Gabriela

    2014-01-01

    The reticulate venation that is characteristic of a dicot leaf has excited interest from systematists for more than a century, and from physiological and developmental botanists for decades. The tools of digital image acquisition and computer image analysis, however, are only now approaching the sophistication needed to quantify aspects of the venation network found in real leaves quickly, easily, accurately, and reliably enough to produce biologically meaningful data. In this paper, we examine 120 leaves distributed across vascular plants (representing 118 genera and 80 families) using two approaches: a semiquantitative scoring system called “leaf ranking,” devised by the late Leo Hickey, and an automated image-analysis protocol. In the process of comparing these approaches, we review some methodological issues that arise in trying to quantify a vein network, and discuss the strengths and weaknesses of automatic data collection and human pattern recognition. We conclude that subjective leaf rank provides a relatively consistent, semiquantitative measure of areole size among other variables; that modal areole size is generally consistent across large sections of a leaf lamina; and that both approaches—semiquantitative, subjective scoring; and fully quantitative, automated measurement—have appropriate places in the study of leaf venation. PMID:25202646

  14. Leaf micromorphology of four medicinal ferns species in Tasik Chini, Pahang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurnida, M. K., E-mail: nurnidakamal@gmail.com; Noraini, T.; Ruzi, A. R.

    A leaf micromorphology study was conducted on four selected medicinal ferns species in Tasik Chini, Pahang. The four chosen species were Adiantum latifolium Lam., Lygodium flexuosum (L.) Sw., Lygodium microphyllum (Cav.) R. Br. and Tectaria singaporeana (Wall.) Ching. The objective of this study is to identify the leaf micromorphological characteristics that can be used as supportive scientific data especially in authentification of medicinal ferns species. The procedures involved such as dehydration, critical point drying, gold coated and examination under scanning electron microscope. Results in this study have shown some similarities and variations in the leaf micromorphological characteristics such as presencemore » of cuticular striation, type of epicuticular waxes, structural feature of stomata and also in the presence or absence and type of trichomes. Four types of epicuticular waxes and only one type of trichome were observed, that were specific for some species. As a conclusion, the results of this study definitely proven that leaf micromorphology can be used for species authentification and might useful as preliminary scientific data for future references and further study.« less

  15. Response of rice cultivars to rates of nitrogen and potassium application in field and pot conditions.

    PubMed

    Bahmaniar, M A; Ranjbar, G A

    2007-05-01

    Nitrogen and potassium are the yield-limiting nutrients in rice production regions of Iran. Use of N and K efficient cultivars is an important complementary strategy in improving rice yield, increasing the quality properties of rice grains and reducing cost of production. In order to consider the effects of different amounts of N and K application on rice (Oryza sativa L.) yield and yield components in pot and field conditions these experiments were undertaken in 2004 at Sari Agricultural Station, Iran. Four levels of N (0, 50, 100 and 150 Kg N ha(-1) in field and 0, 0.6, 1.2 and 1.8 g N pot(-1) in pot) corresponding with four levels of K (0, 75, 150 and 225 kg K2O ha(-1) in field and 0, 0.5, 1 and 1.5 g K2O pot(-1) in pot) were applied in a split-factorial plot design with three replications in both pot and field experiments, variously. Grain yield, number of grain per panicle, number of tiller, plant height, length of flag leaf, total and shoot dry matter, 1000 grain weight and harvest index have been increased by N application in field conditions. However, in pot conditions grain yield, number of grain per panicle, number of tiller, plant height, width of flag leaf, total and shoot dry matter, leaf nitrogen contents and harvest index have significantly been increased (p < or = 0.05). Potassium application in field conditions has significantly affected on all characteristics but 1000 grain weight and leaf N and K contents. Simultaneous application of N and K have increasingly affected on grain yield, plant height, shoot dry matter and harvest index in field conditions and on plant height, length of flag leaf and shoot dry matter in pot conditions (p < or = 0.05).

  16. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups.

    PubMed

    Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D

    1998-05-01

    Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P < 0.0001). At any given SLA, R d-mass rises with increasing N mass and/or decreasing leaf life-span; and at any level of N mass , R d

  17. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups

    Treesearch

    Peter B. Reich; Michael B. Walters; David S. Ellsworth; [and others; [Editor’s note: James M.. Vose is the SRS co-author for this publication.

    1998-01-01

    Based on prior evidence of coordinated multiple leaf trait scaling, the authors hypothesized that variation among species in leaf dark respiration rate (Rd) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (Amax). However, it is not known whether such scaling, if it exists, is...

  18. Panax ginseng Leaf Extracts Exert Anti-Obesity Effects in High-Fat Diet-Induced Obese Rats.

    PubMed

    Lee, Seul-Gi; Lee, Yoon-Jeong; Jang, Myeong-Hwan; Kwon, Tae-Ryong; Nam, Ju-Ock

    2017-09-10

    Recent studies have reported that the aerial parts of ginseng contain various saponins, which have anti-oxidative, anti-inflammatory, and anti-obesity properties similar to those of ginseng root. However, the leaf extracts of Korean ginseng have not yet been investigated. In this study, we demonstrate the anti-obesity effects of green leaf and dried leaf extracts (GL and DL, respectively) of ginseng in high-fat diet (HFD)-induced obese rats. The administration of GL and DL to HFD-induced obese rats significantly decreased body weight (by 96.5% and 96.7%, respectively), and epididymal and abdominal adipose tissue mass. Furthermore, DL inhibited the adipogenesis of 3T3-L1 adipocytes through regulation of the expression of key adipogenic regulators, such as peroxisome proliferator-activated receptor (PPAR)-γ and CCAAT/enhancer-binding protein (C/EBP)-α. In contrast, GL had little effect on the adipogenesis of 3T3-L1 adipocytes but greatly increased the protein expression of PPARγ compared with that in untreated cells. These results were not consistent with an anti-obesity effect in the animal model, which suggested that the anti-obesity effect of GL in vivo resulted from specific factors released by other organs, or from increased energy expenditure. To our knowledge, these findings are the first evidence for the anti-obesity effects of the leaf extracts of Korean ginseng in vivo.

  19. Effects of Changing Stomatal Width in A Red Pine Forest on Soil Water Content, Leaf Water Potential, Bole Diameter, and Growth

    PubMed Central

    Turner, Neil C.; Waggoner, Paul E.

    1968-01-01

    Spraying a 16 meter tall stand of red pine (Pinus resinosa Ait.) with 10−3 m phenylmercuric acetate in early June and again in mid-July resulted in the water use between June 1 and October 25 being reduced by almost 10%. It was demonstrated that this was caused by an increase in the leaf resistance with partial stomatal closure, which reduced absolute water potential in the needles by 1 to 3 bars in the middle of the day. Smaller demands were made upon the reserves of water in the bole of the tree as shown by the smaller bole contraction in the treated trees. Although needle length and dry weight were unaffected by the spray, radial growth was reduced by approximately 32%. The dependence of leaf resistance on light intensity is shown, and its independence from leaf water potential discussed. PMID:16656870

  20. Leaf-IT: An Android application for measuring leaf area.

    PubMed

    Schrader, Julian; Pillar, Giso; Kreft, Holger

    2017-11-01

    The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.

  1. New approach for dry formulation techniques for rhizobacteria

    NASA Astrophysics Data System (ADS)

    Elchin, A. A.; Mashinistova, A. V.; Gorbunova, N. V.; Muratov, V. S.; Kydralieva, K. A.; Jorobekova, Sh. J.

    2009-04-01

    Two beneficial Pseudomonas isolates selected from rhizosphere of abundant weed - couch-grass Elytrigia repens L. Nevski have been found to have biocontrol activity. An adequate biocontrol effect requires high yield and long stability of the bacterial preparation [1], which could be achieved by an effective and stable formulation. This study was aimed to test various approaches to dry formulation techniques for Pseudomonas- based preparations. To reach this goal, two drying formulation techniques have been tested: the first one, spray drying and the second, low-temperature contact-convective drying in fluidized bed. The optimal temperature parameters for each technique were estimated. Main merits of the selected approach to dry technique are high yield, moderate specific energy expenditures per 1 kg of evaporated moisture, minimal time of contact of the drying product with drying agent. The technological process for dry formulation included the following stages: the obtaining of cell liquids, the low-temperature concentrating and the subsequent drying of a concentrate. The preliminary technological stages consist in cultivation of the rhizobacteria cultures and concentrating the cell liquids. The following requirements for cultivation regime in laboratory conditions were proposed: optimal temperatures are 26-28°С in 3 days, concentration of viable cells in cell liquid makes 1010-1011 cell/g of absolutely dry substance (ADS). For concentrating the cell liquids the method of a vacuum evaporation, which preserves both rhizobacteria cells and the secondary metabolites of cell liquid, has been used. The process of concentrating was conducted at the minimum possible temperature, i.e. not above 30-33°С. In this case the concentration of viable cells has decreased up to 109-1010 cell/g of ADS. For spray drying the laboratory up-dated drier BUCHI 190, intended for the drying of thermolabile products, was used. The temperatures of an in- and outcoming air did not exceed

  2. Effect of Hot Water Blanching Time and Drying Temperature on the Thin Layer Drying Kinetics of and Anthocyanin Degradation in Black Carrot (Daucus carota L.) Shreds.

    PubMed

    Garba, Umar; Kaur, Sawinder; Gurumayum, Sushma; Rasane, Prasad

    2015-09-01

    This study was conducted to investigate the effect of blanching treatment (98 °C for 3 and 6 min) and air drying temperature of 40, 50 and 60 °C on the thin layer drying characteristics such as drying time, drying rate constant, effective moisture diffusivity and activation energy, as well as on anthocyanin content of black carrot shreds. It was observed that drying temperature affected the drying rate but blanching did not have an effect on drying time. Three thin layer drying models, i.e. Page, Lewis and Henderson-Pabis were evaluated. The goodness of these models was evaluated based on the coefficient of determination (R 2 ), root mean square error, reduced chi square (χ 2 ) and standard error. Page model showed the best fit to the drying data. The effective diffusivity ranges of 1.4·10 -9 to 2.6·10 -9 m 2 /s, 1.3·10 -9 to 2.1·10 -9 m 2 /s and 1.5·10 -9 to 2.2·10 -9 m 2 /s after 3 or 6 min of blanching and control samples respectively were calculated using Fick's second law. The activation energy of 37.5, 26.0 and 34.6 kJ/(mol·K) of the control samples and samples blanched for 3 or 6 min respectively was determined from the Arrhenius plot. The blanching treatment affected the anthocyanin content to a great extent. The anthocyanin content of (231.7±2.9) and (278.8±7.8) mg per 100 g was recorded in samples blanched for 3 and 6 min and then dried at 60 °C, and (153.0±4.3) and (247.0±5.5) mg per 100 g was recorded at 40 °C as compared to the control of (580.1±1.3) at 60 °C and (466.7±1.1) mg per 100 g at 40 °C.

  3. Anti-hepatitis B virus activity of Boehmeria nivea leaf extracts in human HepG2.2.15 cells

    PubMed Central

    WEI, JINGCHEN; LIN, LIANKU; SU, XIAOJIAN; QIN, SHAOYAN; XU, QING; TANG, ZUNIAN; DENG, YAN; ZHOU, YUEHAN; HE, SONGQING

    2014-01-01

    Boehmeria nivea (Linn.) Gaudich of the Urticaceae family is a perennial ratoon herbal plant, the root of which is used in traditional Chinese medicine and possesses a variety of pharmacological properties. The 20% ethanol Boehmeria nivea root extract was shown to exert an anti-hepatitis B virus (HBV) effect in vitro and in vivo; however, whether the Boehmeria nivea leaf (BNL) extract possesses similar properties has not been determined. In this study, we aimed to investigate the anti-HBV effects of the BNL extract in HepG2.2.15 cells transfected with human HBV DNA. Our results demonstrated that the secretion of HBsAg and HBeAg was reduced in HepG2.2.15 cells treated with the BNL extract, without any recorded cytotoxic effects. In addition, the chloroform fraction (CF) and ethyl acetate fraction (EAF) of BNL were shown to be more potent compared to the other fractions: CF (100 mg/l) inhibited the secretion of HBsAg by 94.00±1.78% [inhibitory concentration 50 (IC50) = 20.92 mg/l] and that of HBeAg by 100.19±0.35% (IC50=19.67 mg/l) after 9 days of treatment. Similarly, EAF (200 mg/l) inhibited the secretion of HBsAg by 89.95±2.26% (IC50=39.90 mg/l) and that of HBeAg by 98.90±1.42% (IC50=36.45 mg/l). Furthermore, we observed that the content of HBV DNA in the medium secreted by the HepG2.2.15 cells was significantly decreased under CF (100 mg/l) or EAF (200 mg/l) treatment. Thus, we concluded that the BNL extracts exhibited anti-HBV activity, with CF and EAF being the most potent among the fractions. PMID:24649087

  4. Anti-hepatitis B virus activity of Boehmeria nivea leaf extracts in human HepG2.2.15 cells.

    PubMed

    Wei, Jingchen; Lin, Lianku; Su, Xiaojian; Qin, Shaoyan; Xu, Qing; Tang, Zunian; Deng, Yan; Zhou, Yuehan; He, Songqing

    2014-01-01

    Boehmeria nivea (Linn.) Gaudich of the Urticaceae family is a perennial ratoon herbal plant, the root of which is used in traditional Chinese medicine and possesses a variety of pharmacological properties. The 20% ethanol Boehmeria nivea root extract was shown to exert an anti-hepatitis B virus (HBV) effect in vitro and in vivo ; however, whether the Boehmeria nivea leaf (BNL) extract possesses similar properties has not been determined. In this study, we aimed to investigate the anti-HBV effects of the BNL extract in HepG2.2.15 cells transfected with human HBV DNA. Our results demonstrated that the secretion of HBsAg and HBeAg was reduced in HepG2.2.15 cells treated with the BNL extract, without any recorded cytotoxic effects. In addition, the chloroform fraction (CF) and ethyl acetate fraction (EAF) of BNL were shown to be more potent compared to the other fractions: CF (100 mg/l) inhibited the secretion of HBsAg by 94.00±1.78% [inhibitory concentration 50 (IC 50 ) = 20.92 mg/l] and that of HBeAg by 100.19±0.35% (IC 50 =19.67 mg/l) after 9 days of treatment. Similarly, EAF (200 mg/l) inhibited the secretion of HBsAg by 89.95±2.26% (IC 50 =39.90 mg/l) and that of HBeAg by 98.90±1.42% (IC 50 =36.45 mg/l). Furthermore, we observed that the content of HBV DNA in the medium secreted by the HepG2.2.15 cells was significantly decreased under CF (100 mg/l) or EAF (200 mg/l) treatment. Thus, we concluded that the BNL extracts exhibited anti-HBV activity, with CF and EAF being the most potent among the fractions.

  5. Trade-offs between seed and leaf size (seed-phytomer-leaf theory): functional glue linking regenerative with life history strategies … and taxonomy with ecology?

    PubMed

    Hodgson, John G; Santini, Bianca A; Montserrat Marti, Gabriel; Royo Pla, Ferran; Jones, Glynis; Bogaard, Amy; Charles, Mike; Font, Xavier; Ater, Mohammed; Taleb, Abdelkader; Poschlod, Peter; Hmimsa, Younes; Palmer, Carol; Wilson, Peter J; Band, Stuart R; Styring, Amy; Diffey, Charlotte; Green, Laura; Nitsch, Erika; Stroud, Elizabeth; Romo-Díez, Angel; de Torres Espuny, Lluis; Warham, Gemma

    2017-11-10

    While the 'worldwide leaf economics spectrum' (Wright IJ, Reich PB, Westoby M, et al. 2004. The worldwide leaf economics spectrum. Nature : 821-827) defines mineral nutrient relationships in plants, no unifying functional consensus links size attributes. Here, the focus is upon leaf size, a much-studied plant trait that scales positively with habitat quality and components of plant size. The objective is to show that this wide range of relationships is explicable in terms of a seed-phytomer-leaf (SPL) theoretical model defining leaf size in terms of trade-offs involving the size, growth rate and number of the building blocks (phytomers) of which the young shoot is constructed. Functional data for 2400+ species and English and Spanish vegetation surveys were used to explore interrelationships between leaf area, leaf width, canopy height, seed mass and leaf dry matter content (LDMC). Leaf area was a consistent function of canopy height, LDMC and seed mass. Additionally, size traits are partially uncoupled. First, broad laminas help confer competitive exclusion while morphologically large leaves can, through dissection, be functionally small. Secondly, leaf size scales positively with plant size but many of the largest-leaved species are of medium height with basally supported leaves. Thirdly, photosynthetic stems may represent a functionally viable alternative to 'small seeds + large leaves' in disturbed, fertile habitats and 'large seeds + small leaves' in infertile ones. Although key elements defining the juvenile growth phase remain unmeasured, our results broadly support SPL theory in that phytometer and leaf size are a product of the size of the initial shoot meristem (≅ seed mass) and the duration and quality of juvenile growth. These allometrically constrained traits combine to confer ecological specialization on individual species. Equally, they appear conservatively expressed within major taxa. Thus, 'evolutionary canalization' sensu Stebbins (Stebbins GL

  6. The δ18O of Atmospheric Water Vapour is Recorded in the Oxygen Isotope Ratios of Leaf water and Organic Molecules at High Relative Humidity

    NASA Astrophysics Data System (ADS)

    Lehmann, M. M.; Goldsmith, G. R.; Schmid, L.; Siegwolf, R. T.; Gessler, A.; Saurer, M.

    2016-12-01

    The oxygen stable isotope ratios (δ18O) of water and organic molecules in plants hold information about plant physiology, ecohydrology, and environmental conditions. For instance, the δ18O ratio of leaf water reflects both the δ18O ratios of water in the soil and in the atmosphere. This water, which is incorporated into organic molecules at the time of synthesis, thus serves to record the environment in which the plant was growing. However, how δ18O of atmospheric water vapour affects the δ18O ratio of organic molecules remains poorly understood. In order to investigate the effects of fog and rain (e.g. high atmospheric water availability) on δ18O ratios of leaf water and organic molecules, we exposed oak tree saplings (Quercus robur) in wet and dry soil treatments to 18O-depleted water vapour at ca. 90% relative humidity for 5 h. We harvested plant material over 24 h to trace the movement of the isotopic label in water and organics throughout the plant from the leaves to the stem. The atmospheric water vapour caused a strong 18O-depletion in leaf and xylem water, as well as in leaf carbohydrates, with the most negative ratios observed at the end of the fogging. Moreover, the label was clearly observed in twig and stem phloem carbohydrates following a short delay. A detailed compound-specific isotope analysis of the leaf carbohydrates revealed that the label caused an 18O-depletion in fructose, glucose, and sucrose. Quercitol, an oak-specific alditol, did not show 18O-depletion. Clear soil moisture treatment effects were only observed for twig phloem carbohydrates, with a stronger 18O-depletion in wet plants than in dry plants, suggesting retarded leaf-to-phloem sugar export in trees under drought. We demonstrate that labelling with 18O-depleted water is a potential tool to trace the movement and incorporation of oxygen stable isotopes in plants. We clearly show that changes in δ18O of atmospheric water vapour are quickly imprinted on leaf water and

  7. Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of Upland cotton (Gossypium hirsutum L.)

    PubMed Central

    Andres, Ryan J.; Coneva, Viktoriya; Frank, Margaret H.; Tuttle, John R.; Samayoa, Luis Fernando; Han, Sang-Won; Kaur, Baljinder; Zhu, Linglong; Fang, Hui; Bowman, Daryl T.; Rojas-Pierce, Marcela; Haigler, Candace H.; Jones, Don C.; Holland, James B.; Chitwood, Daniel H.; Kuraparthy, Vasu

    2017-01-01

    Leaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D1), which is responsible for the major leaf shapes in cotton. The l-D1 locus is not only of agricultural importance in cotton, but through pioneering chimeric and morphometric studies, it has contributed to fundamental knowledge about leaf development. Here we show that an HD-Zip transcription factor homologous to the LATE MERISTEM IDENTITY1 (LMI1) gene of Arabidopsis is the causal gene underlying the l-D1 locus. The classical okra leaf shape allele has a 133-bp tandem duplication in the promoter, correlated with elevated expression, whereas an 8-bp deletion in the third exon of the presumed wild-type normal allele causes a frame-shifted and truncated coding sequence. Our results indicate that subokra is the ancestral leaf shape of tetraploid cotton that gave rise to the okra allele and that normal is a derived mutant allele that came to predominate and define the leaf shape of cultivated cotton. Virus-induced gene silencing (VIGS) of the LMI1-like gene in an okra variety was sufficient to induce normal leaf formation. The developmental changes in leaves conferred by this gene are associated with a photosynthetic transcriptomic signature, substantiating its use by breeders to produce a superior cotton ideotype. PMID:27999177

  8. Allelopathic activity and chemical constituents of walnut (Juglans regia) leaf litter in walnut-winter vegetable agroforestry system.

    PubMed

    Wang, Qian; Xu, Zheng; Hu, Tingxing; Rehman, Hafeez Ur; Chen, Hong; Li, Zhongbin; Ding, Bo; Hu, Hongling

    2014-01-01

    Walnut agroforestry systems have many ecological and economic benefits when intercropped with cool-season species. However, decomposing leaf litter is one of the main sources of allelochemicals in such systems. In this study, lettuce (Lactuca sativa var. angustata) was grown in the soil incorporated with walnut leaf litter to assess its allelopathic activity. Lettuce growth and physiological processes were inhibited by walnut leaf litter, especially during early growth stage (1-2 euphylla period) or with large amount of litter addition. The plants treated by small amount of leaf litter recovered their growth afterwards, while the inhibition for 180 g leaf litter persisted until harvest. Twenty-eight compounds were identified in the leaf litter, and several of them were reported to be phytotoxic, which may be responsible for the stress induced by walnut leaf litter. Thus, for highest economic value of vegetables such as lettuce, excessive incorporation of leaf litter should be discouraged.

  9. Effects of inert dust on olive (Olea europaea L.) leaf physiological para.

    PubMed

    Nanos, George D; Ilias, Ilias F

    2007-05-01

    Cement factories are major pollutants for the surrounding areas. Inert dust deposition has been found to affect photosynthesis, stomatal functioning and productivity. Very few studies have been conducted on the effects of cement kiln dust on the physiology of perennial fruit crops. Our goal was to study some cement dust effects on olive leaf physiology.effects on olive leaf physiology. On Cement kiln dust has been applied periodically since April 2003 onto olive leaves. Cement dust accumulation and various leaf physiological parameters were evaluated early in July 2003. Measurements were also taken on olive trees close to the cement factory. Leaf dry matter content and specific leaf weight increased with leaf age and dust content. Cement dust decreased leaf total chlorophyll content and chlorophyll a/chlorophyll b ratio. As a result, photosynthetic rate and quantum yield decreased. In addition, transpiration rate slightly decreased, stomatal conductance to H2O and CO2 movement decreased, internal CO2 concentration remained constant and leaf temperature increased. The changes in chlorophyll are possibly due to shading and/or photosystem damage. The changes in stomatal functioning were possibly due to dust accumulation between the peltates or othe effects on stomata. Dust (in this case from a cement kiln) seems to cause substantial changes to leaf physiology, possibly leading to reduced olive productivity. Avoidance of air contamination from cement factories by using available technology should be examined together with any possible methodologies to reduce plant tissue contamination from cement dust. Longterm effects of dust (from cement kiln or other sources) on olive leaf, plant productivity and nutritional quality of edible parts could be studied for conclusive results on dust contamination effects to perennial crops.

  10. Leaf Extraction and Analysis Framework Graphical User Interface: Segmenting and Analyzing the Structure of Leaf Veins and Areoles1[W][OA

    PubMed Central

    Price, Charles A.; Symonova, Olga; Mileyko, Yuriy; Hilley, Troy; Weitz, Joshua S.

    2011-01-01

    Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure. PMID:21057114

  11. Jasmonate Controls Leaf Growth by Repressing Cell Proliferation and the Onset of Endoreduplication while Maintaining a Potential Stand-By Mode1[W][OA

    PubMed Central

    Noir, Sandra; Bömer, Moritz; Takahashi, Naoki; Ishida, Takashi; Tsui, Tjir-Li; Balbi, Virginia; Shanahan, Hugh; Sugimoto, Keiko; Devoto, Alessandra

    2013-01-01

    Phytohormones regulate plant growth from cell division to organ development. Jasmonates (JAs) are signaling molecules that have been implicated in stress-induced responses. However, they have also been shown to inhibit plant growth, but the mechanisms are not well understood. The effects of methyl jasmonate (MeJA) on leaf growth regulation were investigated in Arabidopsis (Arabidopsis thaliana) mutants altered in JA synthesis and perception, allene oxide synthase and coi1-16B (for coronatine insensitive1), respectively. We show that MeJA inhibits leaf growth through the JA receptor COI1 by reducing both cell number and size. Further investigations using flow cytometry analyses allowed us to evaluate ploidy levels and to monitor cell cycle progression in leaves and cotyledons of Arabidopsis and/or Nicotiana benthamiana at different stages of development. Additionally, a novel global transcription profiling analysis involving continuous treatment with MeJA was carried out to identify the molecular players whose expression is regulated during leaf development by this hormone and COI1. The results of these studies revealed that MeJA delays the switch from the mitotic cell cycle to the endoreduplication cycle, which accompanies cell expansion, in a COI1-dependent manner and inhibits the mitotic cycle itself, arresting cells in G1 phase prior to the S-phase transition. Significantly, we show that MeJA activates critical regulators of endoreduplication and affects the expression of key determinants of DNA replication. Our discoveries also suggest that MeJA may contribute to the maintenance of a cellular “stand-by mode” by keeping the expression of ribosomal genes at an elevated level. Finally, we propose a novel model for MeJA-regulated COI1-dependent leaf growth inhibition. PMID:23439917

  12. Interaction between Silver Nanoparticles and Spinach Leaf

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Li, H.; Zhang, Y.; Riser, E.; He, S.; Zhang, W.

    2013-12-01

    Interactions of engineered nanoparticles (ENPs) with plant surfaces are critical to assessing the bioavailability of ENPs to edible plants and to further evaluating impacts of ENPs on ecological health and food safety. Silver nanoparticles (i.e., nanoAg) could enter the agroecosystems either as an active ingredient in pesticides or from other industrial and consumer applications. Thus, in the events of pesticide application, rainfall, and irrigation, vegetable leaves could become in contact and then interact with nanoAg. The present study was to assess whether the interaction of nanoAg with spinach leaves can be described by classical sorption models and to what extent it depends on and varies with dispersion methods, environmental temperature, and ion release. We investigated the stability and ion release of nanoAg dispersed by sodium dodecyl sulfate (SDS, 1%) and humic acid (HA, 10 mg C/L) solutions, as well as sorption and desorption of nanoAg on and from the fresh spinach leaf. Results showed SDS-nanoAg released about 2%-8% more Ag ion than HA-nanoAg. The sorption of Ag ion, described by the Freundlich model in the initial concentration range of 0.6-50 mg/L, was 2-4 times higher than that of nanoAg. The sorption of nanoAg on spinach leaf can be fitted by the Langmuir model, and the maximum sorption amount of HA-nanoAg and SDS-nanoAg was 0.21 and 0.41 mg/g, respectively. The higher sorption of SDS-nanoAg relative to that of HA-nanoAg could be partially resulted from the higher release of Ag ion from the former. The maximum desorption amount of HA-nanoAg and SDS-nanoAg in 1% SDS solution was 0.08 and 0.10 mg/g, respectively. NanoAg attachment on and its penetration to the spinach leaf was visualized by the Scanning Electron Microscope equipped with an Energy Dispersive Spectrometer (SEM-EDS). It is equally important that the less sorption of nanoAg under low environmental temperature could be partially due to the closure of stomata, as verified by SEM-EDS. Cyto

  13. Modeling light and temperature effects on leaf emergence in wheat and barley

    NASA Technical Reports Server (NTRS)

    Volk, T.; Bugbee, B.

    1991-01-01

    Phenological development affects canopy structure, radiation interception, and dry matter production; most crop simulation models therefore incorporate leaf emergence rate as a basic parameter. A recent study examined leaf emergence rate as a function of temperature and daylength among wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) cultivars. Leaf emergence rate and phyllochron were modeled as functions of temperature alone, daylength alone, and the interaction between temperature and daylength. The resulting equations contained an unwieldy number of constants. Here we simplify by reducing the constants by > 70%, and show leaf emergence rate as a single response surface with temperature and daylength. In addition, we incorporate the effect of photosynthetic photon flux into the model. Generic fits for wheat and barley show cultivar differences less than +/- 5% for wheat and less than +/- 10% for barley. Barley is more sensitive to daylength changes than wheat for common environmental values of daylength, which may be related to the difference in sensitivity to daylength between spring and winter cultivars. Differences in leaf emergence rate between cultivars can be incorporated into the model by means of a single, nondimensional factor for each cultivar.

  14. [CO2-exchange in tundra ecosystems of Vaygach Island during the unusually warm and dry vegetation season].

    PubMed

    Zamolodchikov, D G

    2015-01-01

    In summer of 2013, field studies of CO2-exchange in tundra ecosystems of Vaygach Island have been conducted using the chamber method. The models are developed that establish relationships between CO2 fluxes and key ecological factors such as temperature, photosynthetic active radiation, leaf mass of vascular plants, and depth of thawing. According to the model estimates, in 2013 vegetation season tundra ecosystems of Vaygach Island have been appearing to be a CO2 source to the atmosphere (31.9 ± 17.1 g C m(-2) season(-1)) with gross primary production equal to 136.6 ± 18.9 g C m(-2) season(-1) and ecosystem respiration of 168.5 ± ± 18.4 g C m(-2) season(-1). Emission of CO2 from the soil surface (soil respiration) has been equal, on the average, to 67.3% of the ecosystem respiration. The reason behind carbon losses by tundra ecosystems seems to be unusually warm and dry weather conditions in 2013 summer. The air temperature during summer months has been twice as high as the climatic norm for 1961-1990. Last decades, researches in the circumpolar Arctic revealed a growing trend to the carbon sink from the atmosphere to tundra ecosystems. This trend can be interrupted by unusually warm weather situations becoming more frequent and of larger scale.

  15. Phytochemical Screening and Acute Oral Toxicity Study of Java Tea Leaf Extracts

    PubMed Central

    Safinar Ismail, Intan; Azam, Amalina Ahmad; Abas, Faridah; Shaari, Khozirah; Sulaiman, Mohd Roslan

    2015-01-01

    The term Java tea refers to the decoction of Orthosiphon stamineus (OS) Benth (Lamiaceae) leaves, which are widely consumed by the people in Europe and South East Asian countries. The OS leaves are known for their use in traditional medicinal systems as a prophylactic and curative agent for urinary stone, diabetes, and hypertension and also as a diuretic agent. The present study was aimed at evaluating its possible toxicity. Herein, the major phytochemical constituents of microwave dried OS leaf, which is the common drying process for tea sachets in the market, were also identified. The acute oral toxicity test of aqueous, 50% aqueous ethanolic, and ethanolic extracts of OS was performed at a dose of 5000 mg/Kg body weight of Sprague-Dawley rats. During the 14-day study, the animals were observed for any mortality, behavioral, motor-neuronal abnormalities, body weight, and feed-water consumption pattern. The hematological and serum biochemical parameters to assess the kidney and liver functions were carried out, along with the histological analysis of these organs. It was found that all microwave dried OS leaf extracts did not cause any toxic effects or mortality at the administered dose. No abnormality was noticed in all selected parameters in rats of both sexes as compared with their respective control groups. Thus, the possible oral lethal dose for microwave dried Java tea leaves is more than 5000 mg/Kg body weight. PMID:26819955

  16. Spatial trends in leaf size of Amazonian rainforest trees

    NASA Astrophysics Data System (ADS)

    Malhado, A. C. M.; Malhi, Y.; Whittaker, R. J.; Ladle, R. J.; Ter Steege, H.; Phillips, O. L.; Butt, N.; Aragão, L. E. O. C.; Quesada, C. A.; Araujo-Murakami, A.; Arroyo, L.; Peacock, J.; Lopez-Gonzalez, G.; Baker, T. R.; Anderson, L. O.; Almeida, S.; Higuchi, N.; Killeen, T. J.; Monteagudo, A.; Neill, D.; Pitman, N.; Prieto, A.; Salomão, R. P.; Vásquez-Martínez, R.; Laurance, W. F.

    2009-08-01

    Leaf size influences many aspects of tree function such as rates of transpiration and photosynthesis and, consequently, often varies in a predictable way in response to environmental gradients. The recent development of pan-Amazonian databases based on permanent botanical plots has now made it possible to assess trends in leaf size across environmental gradients in Amazonia. Previous plot-based studies have shown that the community structure of Amazonian trees breaks down into at least two major ecological gradients corresponding with variations in soil fertility (decreasing from southwest to northeast) and length of the dry season (increasing from northwest to south and east). Here we describe the geographic distribution of leaf size categories based on 121 plots distributed across eight South American countries. We find that the Amazon forest is predominantly populated by tree species and individuals in the mesophyll size class (20.25-182.25 cm2). The geographic distribution of species and individuals with large leaves (>20.25 cm2) is complex but is generally characterized by a higher proportion of such trees in the northwest of the region. Spatially corrected regressions reveal weak correlations between the proportion of large-leaved species and metrics of water availability. We also find a significant negative relationship between leaf size and wood density.

  17. Proteomic Analysis Reveals the Leaf Color Regulation Mechanism in Chimera Hosta “Gold Standard” Leaves

    PubMed Central

    Yu, Juanjuan; Zhang, Jinzheng; Zhao, Qi; Liu, Yuelu; Chen, Sixue; Guo, Hongliang; Shi, Lei; Dai, Shaojun

    2016-01-01

    Leaf color change of variegated leaves from chimera species is regulated by fine-tuned molecular mechanisms. Hosta “Gold Standard” is a typical chimera Hosta species with golden-green variegated leaves, which is an ideal material to investigate the molecular mechanisms of leaf variegation. In this study, the margin and center regions of young and mature leaves from Hosta “Gold Standard”, as well as the leaves from plants after excess nitrogen fertilization were studied using physiological and comparative proteomic approaches. We identified 31 differentially expressed proteins in various regions and development stages of variegated leaves. Some of them may be related to the leaf color regulation in Hosta “Gold Standard”. For example, cytosolic glutamine synthetase (GS1), heat shock protein 70 (Hsp70), and chloroplastic elongation factor G (cpEF-G) were involved in pigment-related nitrogen synthesis as well as protein synthesis and processing. By integrating the proteomics data with physiological results, we revealed the metabolic patterns of nitrogen metabolism, photosynthesis, energy supply, as well as chloroplast protein synthesis, import and processing in various leaf regions at different development stages. Additionally, chloroplast-localized proteoforms involved in nitrogen metabolism, photosynthesis and protein processing implied that post-translational modifications were crucial for leaf color regulation. These results provide new clues toward understanding the mechanisms of leaf color regulation in variegated leaves. PMID:27005614

  18. Incidence of ochratoxin A in rice and dried fruits from Rabat and Salé area, Morocco.

    PubMed

    Zinedine, A; Soriano, J M; Juan, C; Mojemmi, B; Moltó, J C; Bouklouze, A; Cherrah, Y; Idrissi, L; El Aouad, R; Mañes, J

    2007-03-01

    One hundred samples of dried fruits (20 dried raisins, 20 walnuts, 20 peanuts, 20 dried figs and 20 pistachios) and 20 samples of rice purchased from retail shops in the Rabat and Salé area in Morocco were analysed for ochratoxin A (OTA) by immunoaffinity clean-up (IAC) and liquid chromatography (LC) with fluorescence detection. The limit of quantification (LOQ) (S/N = 10:1) of OTA was 0.02 ng g(-1) in rice, 0.03 ng g(-1) in pistachio, peanut and walnut, and 0.03 ng g(-1) in dried raisins and dried figs. The incidences of occurrence of OTA in dried raisins, walnuts, peanuts, dried figs and rice were 30, 35, 25, 65 and 90%, respectively. Analytical results showed that pistachio samples contained no detectable OTA, but concentrations ranged from 0.02 +/- 0.01 to 32.4 +/- 2.10 ng g(-1) in rice, from 0.10 +/- 0.05 to 2.36 +/- 0.75 in peanut, from 0.03 +/- 0.01 to 1.42 +/- 0.45 in dried figs, from 0.05 +/- 0.02 to 4.95 +/- 0.02 in dried raisins, and from 0.04 +/- 0.01 to 0.23 +/- 0.05 in walnuts. The results also showed that 15% of the total number of rice samples analysed exceeded the 2002 regulatory limit set by European Union regulations for cereals. This is the first report on the occurrence of OTA in dried fruits and rice available in Morocco.

  19. Characterization of wet and dry deposition in the downwind of industrial sources in a dry tropical area.

    PubMed

    Singh, R K; Agrawal, M

    2001-12-19

    An atmospheric deposition study was conducted in the downwind of Shaktinagar Thermal Power Plant (STPP), Renusagar Thermal Power Plant (RTPP), and Anpara Thermal Power Plant (ATPP), at Singrauli region, Uttar Pradesh (UP), India to characterize dry and wet deposition in relation to different pollution loading. During the study period, dry and wet depositions and levels of gaseous pollutants (SO2 and NO2) were estimated across the sites. Dry deposition was collected on a monthly basis and wet deposition on an event basis. Depositions were analyzed for pH, nitrate (NO3-), ammonium (NH4+), and sulphate (SO4(2-)) contents. Dry deposition rate both collected as clearfall and throughfall varied between 0.15 to 2.28 and 0.33 to 3.48 g m(-2) day(-1), respectively, at control and maximally polluted sites. The pH of dry deposition varied from 5.81 to 6.89 during winter and 6.09 to 7.02 during summer across the sites. During the rainy season, the mean pH of clear wet deposition varied from 6.56 to 7.04 and throughfall varied from 6.81 to 7.22. The concentrations of NO2 and SO2 pollutants were highest during the winter season. Mean SO2 concentrations varied from 18 to 75 g m(-3) at control and differently polluted sites during the winter season. The variation in NO2 concentrations did not show a pattern similar to that of SO2. The highest NO2 concentration during the winter season was 50 g m(-3), observed near RTPP. NO2 concentration did not show much variation among different sites, suggesting that the sources of NO2 emission are evenly distributed along the sites. The concentrations of NH4+, NO3-, and SO4(2-) ions in dry deposition were found to be higher in summer as compared to the winter season. In dry deposition (clearfall) the concentrations of NH4+, NO3-, and SO4(2-) varied from 0.13 to 1.0, 0.81 to 1.95, and 0.82 to 3.27 mg l(-1), respectively, during winter. In wet deposition (clearfall), the above varied from 0.14 to 0.74, 0.81 to 1.82, and 0.67 to 2.70 mg l(-1

  20. CsPLDalpha1 and CsPLDgamma1 are differentially induced during leaf and fruit abscission and diurnally regulated in Citrus sinensis.

    PubMed

    Malladi, Anish; Burns, Jacqueline K

    2008-01-01

    Understanding leaf and fruit abscission is essential in order to develop strategies for controlling the process in fruit crops. Mechanisms involved in signalling leaf and fruit abscission upon induction by abscission agents were investigated in Citrus sinensis cv. 'Valencia'. Previous studies have suggested a role for phospholipid signalling; hence, two phospholipase D cDNA sequences, CsPLDalpha1 and CsPLDgamma1, were isolated and their role was examined. CsPLDalpha1 expression was reduced in leaves but unaltered in fruit peel tissue treated with an ethylene-releasing compound (ethephon), or a fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP). By contrast, CsPLDgamma1 expression was up-regulated within 6 h (leaves) and 24 h (fruit peel) after treatment with ethephon or CMNP, respectively. CsPLDalpha1 expression was diurnally regulated in leaf blade but not fruit peel. CsPLDgamma1 exhibited strong diurnal oscillation in expression in leaves and fruit peel with peak expression around midday. While diurnal fluctuation in CsPLDalpha1 expression appeared to be light-entrained in leaves, CsPLDgamma1 expression was regulated by light and the circadian clock. The diurnal expression of both genes was modulated by ethylene-signalling. The ethephon-induced leaf abscission and the ethephon- and CMNP-induced decrease in fruit detachment force were enhanced by application during rising diurnal expression of CsPLDgamma1. The results indicate differential regulation of CsPLDalpha1 and CsPLDgamma1 in leaves and fruit, and suggest possible roles for PLD-dependent signalling in regulating abscission responses in citrus.

  1. Method to acquire regions of fruit, branch and leaf from image of red apple in orchard

    NASA Astrophysics Data System (ADS)

    Lv, Jidong; Xu, Liming

    2017-07-01

    This work proposed a method to acquire regions of fruit, branch and leaf from red apple image in orchard. To acquire fruit image, R-G image was extracted from the RGB image for corrosive working, hole filling, subregion removal, expansive working and opening operation in order. Finally, fruit image was acquired by threshold segmentation. To acquire leaf image, fruit image was subtracted from RGB image before extracting 2G-R-B image. Then, leaf image was acquired by subregion removal and threshold segmentation. To acquire branch image, dynamic threshold segmentation was conducted in the R-G image. Then, the segmented image was added to fruit image to acquire adding fruit image which was subtracted from RGB image with leaf image. Finally, branch image was acquired by opening operation, subregion removal and threshold segmentation after extracting the R-G image from the subtracting image. Compared with previous methods, more complete image of fruit, leaf and branch can be acquired from red apple image with this method.

  2. The winter-red-leaf syndrome in Pistacia lentiscus: evidence that the anthocyanic phenotype suffers from nitrogen deficiency, low carboxylation efficiency and high risk of photoinhibition.

    PubMed

    Nikiforou, Constantinos; Nikolopoulos, Dimosthenis; Manetas, Yiannis

    2011-12-15

    Recent evidence indicates that winter-red leaf phenotypes in the mastic tree (Pistacia lentiscus) are more vulnerable to chronic photoinhibition during the cold season relative to winter-green phenotypes occurring in the same high light environment. This was judged by limitations in the maximum quantum yield of photosystem II (PSII), found in previous studies. In this investigation, we asked whether corresponding limitations in leaf gas exchange and carboxylation reactions could also be manifested. During the cold ("red") season, net CO₂ assimilation rates (A) and stomatal conductances (g(s)) in the red phenotype were considerably lower than in the green phenotype, while leaf internal CO₂ concentration (Ci) was higher. The differences were abolished in the "green" period of the year, the dry summer included. Analysis of A versus Ci curves indicated that CO₂ assimilation during winter in the red phenotype was limited by Rubisco content and/or activity rather than stomatal conductance. Leaf nitrogen levels in the red phenotype were considerably lower during the red-leaf period. Consequently, we suggest that the inherently low leaf nitrogen levels are linked to the low net photosynthetic rates of the red plants through a decrease in Rubisco content. Accordingly, the reduced capacity of the carboxylation reactions to act as photosynthetic electron sinks may explain the corresponding loss of PSII photon trapping efficiency, which cannot be fully alleviated by the screening effect of the accumulated anthocyanins. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Determination of total flavonoids content in fresh Ginkgo biloba leaf with different colors using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Shi, Ji-yong; Zou, Xiao-bo; Zhao, Jie-wen; Mel, Holmes; Wang, Kai-liang; Wang, Xue; Chen, Hong

    Total flavonoids content is often considered an important quality index of Ginkgo biloba leaf. The feasibility of using near infrared (NIR) spectra at the wavelength range of 10,000-4000 cm-1 for rapid and nondestructive determination of total flavonoids content in G. biloba leaf was investigated. 120 fresh G. biloba leaves in different colors (green, green-yellowish and yellow) were used to spectra acquisition and total flavonoids determination. Partial least squares (PLS), interval partial least squares (iPLS) and synergy interval partial least squares (SiPLS) were used to develop calibration models for total flavonoids content in two colors leaves (green-yellowish and yellow) and three colors leaves (green, green-yellowish and yellow), respectively. The level of total flavonoids content for green, green-yellowish and yellow leaves was in an increasing order. Two characteristic wavelength regions (5840-6090 cm-1 and 6620-6880 cm-1), which corresponded to the absorptions of two aromatic rings in basic flavonoid structure, were selected by SiPLS. The optimal SiPLS model for total flavonoids content in the two colors leaves (r2 = 0.82, RMSEP = 2.62 mg g-1) had better performance than PLS and iPLS models. It could be concluded that NIR spectroscopy has significant potential in the nondestructive determination of total flavonoids content in fresh G. biloba leaf.

  4. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    PubMed

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  5. Fungal Presence in Selected Tree Nuts and Dried Fruits.

    PubMed

    Tournas, V H; Niazi, N S; Kohn, J S

    2015-01-01

    Sixty-four tree nut samples (almonds, pecans, pine nuts, and walnuts) and 50 dried fruit samples (apricots, cranberries, papaya, pineapple, and raisins) were purchased from local supermarkets and analyzed for fungal contamination using conventional culture as well as molecular methods. The results of our study showed that the highest yeast and mold (YM) counts (5.34 log10 CFU g(-1)) were found in walnuts and the lowest in pecans. The most common mold in nuts was Aspergillus niger, relatively low numbers of A. flavus were found across the board, while Penicillium spp. were very common in pine nuts and walnuts. Low levels (2.00-2.84 log10 CFU g(-1)) of yeasts were recovered from only two pine nut samples. Fungal contamination in dried fruits was minimal (ranging from <2.00 to 3.86 log10 CFU g(-1)). The highest fungal levels were present in raisins. All papaya samples and the majority of cranberry, pineapple, and apricot samples were free of live fungi. The most common mold in dried fruits was A. niger followed by Penicillium spp. One apricot sample also contained low levels (2.00 log10 CFU g(-1)) of yeasts.

  6. Alterations in fruit and vegetable beta-carotene and vitamin C content caused by open-sun drying, visqueen-covered and polyethylene-covered solar-dryers.

    PubMed

    Ndawula, J; Kabasa, J D; Byaruhanga, Y B

    2004-08-01

    This study investigated the effects of three drying methods (open sun drying, visqueen-covered solar dryer and polyethylene-covered solar dryer) on b-carotene and vitamin C content of edible portions of mango fruit (Mangifera indica) and cowpea leaves (Vigna unguiculata). Commercial samples were analysed for vitamin C by titrimetry and b-carotene by spectrophotometry at 450 nm. Differences in vitamin retention and loss associated with the three drying methods were assessed by analysis of variance and least significant difference (LSD) at (p<0.05. The fresh cowpea leaf b-carotene and vitamin C content was 140.9 and 164.3 mg / 100g DM respectively and decreased (p<0.05) with drying. Open sun drying method caused the greatest b-carotene and vitamin C loss (58% and 84% respectively), while the visqueen-covered solar dryer caused the least loss (34.5% and 71% respectively). Blanching cowpea leaves improved b-carotene and vitamin C retention by 15% and 7.5% respectively. The b-carotene and vitamin C content of fresh ripe mango fruit was 5.9 and 164.3 mg/100g DM respectively. Similar to effects on cowpea leaves, the mango micronutrient content decreased (p<0.05) with drying. The open sun drying method caused the greatest b-carotene (94.2%) and vitamin C (84.5%) loss, while the visqueen-covered solar dryer caused the least (73 and 53% respectively). These results show that the three solar drying methods cause significant loss of pro-vitamin A and vitamin C in dried fruits and vegetables. However, open sun drying causes the most loss and the visqueen-covered solar dryer the least, making the later a probable better drying technology for fruit and vegetable preservation. The drying technologies should be improved to enhance vitamin retention.

  7. Investigating Dry Deposition of Ozone to Vegetation

    NASA Astrophysics Data System (ADS)

    Silva, Sam J.; Heald, Colette L.

    2018-01-01

    Atmospheric ozone loss through dry deposition to vegetation is a critically important process for both air quality and ecosystem health. The majority of atmospheric chemistry models calculate dry deposition using a resistance-in-series parameterization by Wesely (1989), which is dependent on many environmental variables and lookup table values. The uncertainties contained within this parameterization have not been fully explored, ultimately challenging our ability to understand global scale biosphere-atmosphere interactions. In this work, we evaluate the GEOS-Chem model simulation of ozone dry deposition using a globally distributed suite of observations. We find that simulated daytime deposition velocities generally reproduce the magnitude of observations to within a factor of 1.4. When correctly accounting for differences in land class between the observations and model, these biases improve, most substantially over the grasses and shrubs land class. These biases do not impact the global ozone burden substantially; however, they do lead to local absolute changes of up to 4 ppbv and relative changes of 15% in summer surface concentrations. We use MERRA meteorology from 1979 to 2008 to assess that the interannual variability in simulated annual mean ozone dry deposition due to model input meteorology is small (generally less than 5% over vegetated surfaces). Sensitivity experiments indicate that the simulation is most sensitive to the stomatal and ground surface resistances, as well as leaf area index. To improve ozone dry deposition models, more measurements are necessary over rainforests and various crop types, alongside constraints on individual depositional pathways and other in-canopy ozone loss processes.

  8. Ontogenetic and temporal variations in herbivory and defense of Handroanthus spongiosus (Bignoniaceae) in a Brazilian tropical dry forest.

    PubMed

    Oliveira, Karla N; Espírito-Santo, Mário M; Silva, Jhonathan O; Melo, Geraldo A

    2012-06-01

    We compared the richness and abundance of free-feeding herbivore insects (sap-sucking and leaf-chewing), leaf herbivory damage, leaf toughness and total phenolic content between two ontogenetic stages (juvenile and reproductive) of Handroanthus spongiosus (Rizzini) S. O. Grose (Bignoniaceae) throughout the rainy season in a Brazilian seasonally dry tropical forest. Twenty marked individuals of H. spongiosus were sampled per ontogenetic stage in each period of the rainy season (beginning, middle, and end). Herbivore richness and abundance did not differ between ontogenetic stages, but higher percentage of leaf damage, higher concentration of phenolic compounds, and lower leaf toughness were observed for juvenile individuals. The greatest morphospecies abundance was found at the beginning of the rainy season, but folivory increment was higher at the end, despite the fact that leaf toughness and total phenolic content increased in the same period. No significant relationships between leaf damage and both total phenolic content and leaf toughness were observed. These results suggest that insect richness and abundance do not track changes in foliage quality throughout plant ontogeny, but their decrease along rainy season confirms what was predicted for tropical dry forests. The general trends described in the current study corroborate those described in the literature about herbivores and plant ontogeny. However, the lack of relationship between herbivore damage and the two plant attributes considered here indicates that the analyses of multiple defensive traits (the defense syndrome) must be more enlightening to determine the mechanisms driving temporal and spatial patterns of herbivore attack.

  9. Bacterial colonization of the phyllosphere of mediterranean perennial species as influenced by leaf structural and chemical features.

    PubMed

    Yadav, R K P; Karamanoli, K; Vokou, D

    2005-08-01

    In this study, we assessed various leaf structural and chemical features as possible predictors of the size of the phyllosphere bacterial population in the Mediterranean environment. We examined eight perennial species, naturally occurring and coexisting in the same area, in Halkidiki (northern Greece). They are Arbutus unedo, Quercus coccifera, Pistacia lentiscus, and Myrtus communis (evergreen sclerophyllous species), Lavandula stoechas and Cistus incanus (drought semi-deciduous species), and Calamintha nepeta and Melissa officinalis (non-woody perennial species). M. communis, L. stoechas, C. nepeta, and M. officinalis produce essential oil in substantial quantities. We sampled summer leaves from these species and (1) estimated the size of the bacterial population of their phyllosphere, (2) estimated the concentration of different leaf constituents, and (3) studied leaf morphological and anatomical features and expressed them in a quantitative way. The aromatic plants are on average more highly colonized than the other species, whereas the non-woody perennials are more highly colonized than the woody species. The population size of epiphytic bacteria is positively correlated with glandular and non-glandular trichome densities, and with water and phosphorus contents; it is negatively correlated with total phenolics content and the thickness of the leaf, of the mesophyll, and of the abaxial epidermis. No correlation was found with the density of stomata, the nitrogen, and the soluble sugar contents. By regression tree analysis, we found that the leaf-microbe system can be effectively described by three leaf attributes with leaf water content being the primary explanatory attribute. Leaves with water content >73% are the most highly colonized. For leaves with water content <73%, the phosphorus content, with a critical value of 1.34 mg g(-1) d.w., is the next explanatory leaf attribute, followed by the thickness of the adaxial epidermis. Leaves higher in phosphorus

  10. A dry-inoculation method for nut kernels.

    PubMed

    Blessington, Tyann; Theofel, Christopher G; Harris, Linda J

    2013-04-01

    A dry-inoculation method for almonds and walnuts was developed to eliminate the need for the postinoculation drying required for wet-inoculation methods. The survival of Salmonella enterica Enteritidis PT 30 on wet- and dry-inoculated almond and walnut kernels stored under ambient conditions (average: 23 °C; 41 or 47% RH) was then compared over 14 weeks. For wet inoculation, an aqueous Salmonella preparation was added directly to almond or walnut kernels, which were then dried under ambient conditions (3 or 7 days, respectively) to initial nut moisture levels. For the dry inoculation, liquid inoculum was mixed with sterilized sand and dried for 24 h at 40 °C. The dried inoculated sand was mixed with kernels, and the sand was removed by shaking the mixture in a sterile sieve. Mixing procedures to optimize the bacterial transfer from sand to kernel were evaluated; in general, similar levels were achieved on walnuts (4.8-5.2 log CFU/g) and almonds (4.2-5.1 log CFU/g). The decline of Salmonella Enteritidis populations was similar during ambient storage (98 days) for both wet-and dry-inoculation methods for both almonds and walnuts. The dry-inoculation method mimics some of the suspected routes of contamination for tree nuts and may be appropriate for some postharvest challenge studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Scaling up stomatal conductance from leaf to canopy using a dual-leaf model for estimating crop evapotranspiration.

    PubMed

    Ding, Risheng; Kang, Shaozhong; Du, Taisheng; Hao, Xinmei; Zhang, Yanqun

    2014-01-01

    The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET). Canopy stomatal conductance (Gsc), an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1) the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2) leaf area for the sunlit and shaded fractions; and (3) a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98), with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL) agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and partitioning λET.

  12. Forever Young: The Role of Ubiquitin Receptor DA1 and E3 Ligase BIG BROTHER in Controlling Leaf Growth and Development1[OPEN

    PubMed Central

    Vanhaeren, Hannes; De Milde, Liesbeth

    2017-01-01

    The final size of plant organs is determined by a combination of cell proliferation and cell expansion. Leaves account for a large part of above-ground biomass and provide energy to complete the plant’s life cycle. Although the final size of leaves is remarkably constant under fixed environmental conditions, several genes have been described to enhance leaf growth when their expression is modulated. In Arabidopsis (Arabidopsis thaliana), mutations in DA1 and BB increase leaf size, an effect that is synergistically enhanced in the double mutant. Here, we show that overexpression of a dominant-negative version of DA1 enhances leaf size in a broad range of natural accessions of this species, indicating a highly conserved role of this protein in controlling organ size. We also found that during early stages of development, leaves of da1-1 and bb/eod1-2 mutants were already larger than the isogenic Col-0 wild type, but this phenotype was triggered by different cellular mechanisms. Later during development, da1-1 and bb/eod1-2 leaves showed a prolonged longevity, which was enhanced in the double mutant. Conversely, ectopic expression of DA1 or BB restricted growth and promoted leaf senescence. In concert, shortly upon induction of DA1 and BB expression, several marker genes for the transition from proliferation to expansion were highly up-regulated. Additionally, multiple genes involved in maintaining the mitotic cell cycle were rapidly down-regulated and senescence genes were strongly up-regulated, particularly upon BB induction. With these results, we demonstrate that DA1 and BB restrict leaf size and promote senescence through converging and different mechanisms. PMID:28003326

  13. Circadian, Carbon, and Light Control of Expansion Growth and Leaf Movement1[OPEN

    PubMed Central

    Flis, Anna

    2017-01-01

    We used Phytotyping4D to investigate the contribution of clock and light signaling to the diurnal regulation of rosette expansion growth and leaf movement in Arabidopsis (Arabidopsis thaliana). Wild-type plants and clock mutants with a short (lhycca1) and long (prr7prr9) period were analyzed in a T24 cycle and in T-cycles that were closer to the mutants’ period. Wild types also were analyzed in various photoperiods and after transfer to free-running light or darkness. Rosette expansion and leaf movement exhibited a circadian oscillation, with superimposed transients after dawn and dusk. Diurnal responses were modified in clock mutants. lhycca1 exhibited an inhibition of growth at the end of night and growth rose earlier after dawn, whereas prr7prr9 showed decreased growth for the first part of the light period. Some features were partly rescued by a matching T-cycle, like the inhibition in lhycca1 at the end of the night, indicating that it is due to premature exhaustion of starch. Other features were not rescued, revealing that the clock also regulates expansion growth more directly. Expansion growth was faster at night than in the daytime, whereas published work has shown that the synthesis of cellular components is faster in the day than at nighttime. This temporal uncoupling became larger in short photoperiods and may reflect the differing dependence of expansion and biosynthesis on energy, carbon, and water. While it has been proposed that leaf expansion and movement are causally linked, we did not observe a consistent temporal relationship between expansion and leaf movement. PMID:28559360

  14. Photoprotection related to xanthophyll cycle pigments in epiphytic orchids acclimated at different light microenvironments in two tropical dry forests of the Yucatan Peninsula, Mexico.

    PubMed

    de la Rosa-Manzano, Edilia; Andrade, José Luis; García-Mendoza, Ernesto; Zotz, Gerhard; Reyes-García, Casandra

    2015-12-01

    Epiphytic orchids from dry forests of Yucatán show considerable photoprotective plasticity during the dry season, which depends on leaf morphology and host tree deciduousness. Nocturnal retention of antheraxanthin and zeaxanthin was detected for the first time in epiphytic orchids. In tropical dry forests, epiphytes experience dramatic changes in light intensity: photosynthetic photon flux density may be up to an order of magnitude higher in the dry season compared to the wet season. To address the seasonal changes of xanthophyll cycle (XC) pigments and photosynthesis that occur throughout the year, leaves of five epiphytic orchid species were studied during the early dry, dry and wet seasons in a deciduous and a semi-deciduous tropical forests at two vertical strata on the host trees (3.5 and 1.5 m height). Differences in XC pigment concentrations and photosynthesis (maximum quantum efficiency of photosystem II; F v/F m) were larger among seasons than between vertical strata in both forests. Antheraxanthin and zeaxanthin retention reflected the stressful conditions of the epiphytic microhabitat, and it is described here in epiphytes for the first time. During the dry season, both XC pigment concentrations and photosystem II heat dissipation of absorbed energy increased in orchids in the deciduous forest, while F v/F m and nocturnal acidification (ΔH(+)) decreased, clearly as a response to excessive light and drought. Concentrations of XC pigments were higher than those in orchids with similar leaf shape in semi-deciduous forest. There, only Encyclia nematocaulon and Lophiaris oerstedii showed somewhat reduced F v/F m. No changes in ΔH(+) and F v/F m were detected in Cohniella ascendens throughout the year. This species, which commonly grows in forests with less open canopies, showed leaf tilting that diminished light interception. Light conditions in the uppermost parts of the canopy probably limit the distribution of epiphytic orchids and the retention of

  15. Faster Rubisco Is the Key to Superior Nitrogen-Use Efficiency in NADP-Malic Enzyme Relative to NAD-Malic Enzyme C4 Grasses1

    PubMed Central

    Ghannoum, Oula; Evans, John R.; Chow, Wah Soon; Andrews, T. John; Conroy, Jann P.; von Caemmerer, Susanne

    2005-01-01

    In 27 C4 grasses grown under adequate or deficient nitrogen (N) supplies, N-use efficiency at the photosynthetic (assimilation rate per unit leaf N) and whole-plant (dry mass per total leaf N) level was greater in NADP-malic enzyme (ME) than NAD-ME species. This was due to lower N content in NADP-ME than NAD-ME leaves because neither assimilation rates nor plant dry mass differed significantly between the two C4 subtypes. Relative to NAD-ME, NADP-ME leaves had greater in vivo (assimilation rate per Rubisco catalytic sites) and in vitro Rubisco turnover rates (kcat; 3.8 versus 5.7 s−1 at 25°C). The two parameters were linearly related. In 2 NAD-ME (Panicum miliaceum and Panicum coloratum) and 2 NADP-ME (Sorghum bicolor and Cenchrus ciliaris) grasses, 30% of leaf N was allocated to thylakoids and 5% to 9% to amino acids and nitrate. Soluble protein represented a smaller fraction of leaf N in NADP-ME (41%) than in NAD-ME (53%) leaves, of which Rubisco accounted for one-seventh. Soluble protein averaged 7 and 10 g (mmol chlorophyll)−1 in NADP-ME and NAD-ME leaves, respectively. The majority (65%) of leaf N and chlorophyll was found in the mesophyll of NADP-ME and bundle sheath of NAD-ME leaves. The mesophyll-bundle sheath distribution of functional thylakoid complexes (photosystems I and II and cytochrome f) varied among species, with a tendency to be mostly located in the mesophyll. In conclusion, superior N-use efficiency of NADP-ME relative to NAD-ME grasses was achieved with less leaf N, soluble protein, and Rubisco having a faster kcat. PMID:15665246

  16. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  17. Ozone and Botrytis interactions in onion-leaf dieback: open-top chamber studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wukasch, R.T.; Hofstra, G.

    1977-09-01

    Paired open-top chambers were used to study interactions between Botrytis spp. and ozone in field-grown onions. Charcoal filters removed 35 to 65% of the ambient ozone, resulting in six-fold reduction of onion leaf dieback and a 28% increase in onion yield compared with unfiltered chambers. Symptoms of leaf injury appeared soon after ozone levels exceeded 294 ..mu..g/m/sup 3/ (0.15 ppm) for 4 hr. Lesions caused by Botrytis were few because no dew formed in the chambers. However, when leaves were wetted with foggers, inoculation with mycelial suspensions of B. sauamosa in late August produced significantly more lesions and leaf diebackmore » in the unfiltered chamber. Botrytis squamosa, B. cinerea, B. allii, and several genera of secondary fungi were isolated from these lesions. Botrytis squamosa was recovered from lesions only, whereas B. cinerea and B. allii were associated more generally with onion leaf tissue regardless of lesions. 25 references, 1 figure, 2 tables.« less

  18. UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels1[OPEN

    PubMed Central

    Fina, Julieta; AbdElgawad, Hamada; Prinsen, Els

    2017-01-01

    Ultraviolet-B (UV-B) radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibit maize (Zea mays) leaf growth without causing any other visible stress symptoms, including the accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth in UV-B-irradiated leaves is a consequence of a reduction in cell production and a shortened growth zone (GZ). To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B-exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including growth-regulating factors (GRFs) and transcripts for proteins participating in different hormone pathways. Interestingly, the decrease in the GZ size correlates with a decrease in the concentration of GA19, the immediate precursor of the active gibberellin, GA1, by UV-B in this zone, which is regulated, at least in part, by the expression of GRF1 and possibly other transcription factors of the GRF family. PMID:28400494

  19. Assessment of leaf carotenoids content with a new carotenoid index: Development and validation on experimental and model data

    NASA Astrophysics Data System (ADS)

    Zhou, Xianfeng; Huang, Wenjiang; Kong, Weiping; Ye, Huichun; Dong, Yingying; Casa, Raffaele

    2017-05-01

    Leaf carotenoids content (LCar) is an important indicator of plant physiological status. Accurate estimation of LCar provides valuable insight into early detection of stress in vegetation. With spectroscopy techniques, a semi-empirical approach based on spectral indices was extensively used for carotenoids content estimation. However, established spectral indices for carotenoids that generally rely on limited measured data, might lack predictive accuracy for carotenoids estimation in various species and at different growth stages. In this study, we propose a new carotenoid index (CARI) for LCar assessment based on a large synthetic dataset simulated from the leaf radiative transfer model PROSPECT-5, and evaluate its capability with both simulated data from PROSPECT-5 and 4SAIL and extensive experimental datasets: the ANGERS dataset and experimental data acquired in field experiments in China in 2004. Results show that CARI was the index most linearly correlated with carotenoids content at the leaf level using a synthetic dataset (R2 = 0.943, RMSE = 1.196 μg/cm2), compared with published spectral indices. Cross-validation results with CARI using ANGERS data achieved quite an accurate estimation (R2 = 0.545, RMSE = 3.413 μg/cm2), though the RBRI performed as the best index (R2 = 0.727, RMSE = 2.640 μg/cm2). CARI also showed good accuracy (R2 = 0.639, RMSE = 1.520 μg/cm2) for LCar assessment with leaf level field survey data, though PRI performed better (R2 = 0.710, RMSE = 1.369 μg/cm2). Whereas RBRI, PRI and other assessed spectral indices showed a good performance for a given dataset, overall their estimation accuracy was not consistent across all datasets used in this study. Conversely CARI was more robust showing good results in all datasets. Further assessment of LCar with simulated and measured canopy reflectance data indicated that CARI might not be very sensitive to LCar changes at low leaf area index (LAI) value, and in these conditions soil moisture

  20. [Drying characteristics and apparent change of sludge granules during drying].

    PubMed

    Ma, Xue-Wen; Weng, Huan-Xin; Zhang, Jin-Jun

    2011-08-01

    Three different weight grades of sludge granules (2.5, 5, 10 g) were dried at constant temperature of 100, 200, 300, 400 and 500 degrees C, respectively. Then characteristics of weight loss and change of apparent form during sludge drying were analyzed. Results showed that there were three stages during sludge drying at 100-200 degrees C: acceleration phase, constant-rate phase, and falling-rate phase. At 300-500 degrees C, there were no constant-rate phase, but due to lots of cracks generated at sludge surface, average drying rates were still high. There was a quadratic nonlinear relationship between average drying rate and drying temperature. At 100-200 degrees C, drying processes of different weight grade sludge granules were similar. At 300-500 degrees C, drying processes of same weight grade of sludge granules were similar. Little organic matter decomposed till sludge burning at 100-300 degrees C, while some organic matter began to decompose at the beginning of sludge drying at 400-500 degrees C.